diff --git a/master/.buildinfo b/master/.buildinfo
index 1528dbe1c..39a3dce65 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 7819fe37108463a4b3bf57a557ea29c3
+config: 5e63c0b5ce2519e39e37ed8f49c2948f
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index f2f9be38a..f0e16b798 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index 1297471b6..cef6d3a82 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index 5892d7f6c..67fe48da2 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index cd3e3af01..f8dd5cd0f 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree
index 3ba409355..9b433d124 100644
Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index 535bff933..284d4a69e 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree
index 8606b7265..11e0588c2 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index cd451c3de..94b8e2a9c 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree
index 54000009c..2bb8ca2fa 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index 707397a2a..2eae0f8ad 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index 564fe19f9..d1ce9809d 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree
index 8128d3837..652b63f6c 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 928635efb..6a59a64fb 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index 72541bba7..b58740e55 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index d822d4d7f..25d3c9c8e 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index d0616f966..600b69999 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index 6607e7215..41ab18744 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index c553152f1..35f188980 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree
index 3ee414b80..42fdcac3a 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree
index 8714f1596..e31c47464 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index 358423bd0..d8397b87a 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index ac00aae28..425566500 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index 5dc2ad54f..d37cf263f 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index 04d5848fa..871f89934 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index 133ffbdc0..56036cd91 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree
index b9b7fbc63..c0b6f92f2 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree
index b6461efd2..d48cf29c4 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index 8b26ef911..aace6b19e 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree
index d5110b613..e2bad6e38 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index 49952bcfe..b1c4d7930 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree
index 1386e1183..761b261fa 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree
index a37a3a079..e9c2486ff 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree
index 420bc1027..8f2d6d840 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree
index 271aef037..ed3b98469 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index a410c0fe7..f97ba163b 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree
index 9522ad98d..bad2f8af0 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index 8d840e159..d9f779c53 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index a8b3f2ff1..a5a65761a 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index 663fd9e82..3c0b03cc5 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index d4bd56e92..cbc2f029f 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 04f5dacfe..8008fa233 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index 318ceb948..53cd8a8ed 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index d834197f0..0ed1d8412 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree
index 5070d5daf..ee4754a98 100644
Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index c3d2f52c2..63cf94f35 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index ae3450488..d5746fd30 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index 7491affd7..68b0cb3e9 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index 419d5dc0c..758f5420b 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index 3a22599f2..ad8935010 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index 882f87797..70ac6c8f7 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index c86f4bf25..ef648e0cc 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree
index 8ae072e71..c024a888a 100644
Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree
index 0b1cf46b1..a2f506e7b 100644
Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree
index 932138a14..6051b74d2 100644
Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree
index e58907802..499bdbc7b 100644
Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index 2a67afdcc..1c200e839 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index 689e6a4b4..419f61c05 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index b67a94de2..9c40c63b9 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index 81223f728..709624a1b 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index 54fe765bc..f9ce3a80e 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index 54b49d0c9..5a10ec5fb 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index f24ceecfc..eee2f1dd5 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index 620134ba8..4b173b9c5 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index a0e8c007e..844a2b4c9 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index 1a7ca9e30..bdf4b2878 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index 4e57ce061..52e6f5e18 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index d38021d17..996151b72 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index 11baa8f14..858e973c7 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index 5f489a614..a069d6665 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index 2c5ecb97c..0248a13b0 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index dd2cc837f..5d4123641 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index 236f97966..93e42d322 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index 11b2bb3cb..70a25ac0b 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index 71283bb30..53e1849bd 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index 80abbf89c..f87fe33a3 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index 53867e3ed..817acde8f 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index 380acc620..23f8cc34a 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index f0c53b8df..dc41df5e2 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index ba46ae6f8..baa0c4bb7 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index eb015f3b4..636ece6ce 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index 9d8d729bb..5f86ae6a7 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index 35a83f837..c8c0e750c 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index 8bf1f8be0..4d5356835 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index 657b757c7..ed07a6c71 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index 709e2a87a..bbe778893 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index c0cd39dc3..8aa24849b 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index 813266fcf..729fbdf20 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb
index f3d888536..cea7ddcbf 100644
--- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:19.683650Z",
- "iopub.status.busy": "2024-06-25T23:13:19.683483Z",
- "iopub.status.idle": "2024-06-25T23:13:20.876411Z",
- "shell.execute_reply": "2024-06-25T23:13:20.875863Z"
+ "iopub.execute_input": "2024-06-27T15:39:08.585179Z",
+ "iopub.status.busy": "2024-06-27T15:39:08.584836Z",
+ "iopub.status.idle": "2024-06-27T15:39:09.813243Z",
+ "shell.execute_reply": "2024-06-27T15:39:09.812668Z"
},
"nbsphinx": "hidden"
},
@@ -126,7 +126,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -151,10 +151,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:20.879016Z",
- "iopub.status.busy": "2024-06-25T23:13:20.878582Z",
- "iopub.status.idle": "2024-06-25T23:13:20.895831Z",
- "shell.execute_reply": "2024-06-25T23:13:20.895402Z"
+ "iopub.execute_input": "2024-06-27T15:39:09.815976Z",
+ "iopub.status.busy": "2024-06-27T15:39:09.815484Z",
+ "iopub.status.idle": "2024-06-27T15:39:09.833810Z",
+ "shell.execute_reply": "2024-06-27T15:39:09.833360Z"
}
},
"outputs": [],
@@ -195,10 +195,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:20.897855Z",
- "iopub.status.busy": "2024-06-25T23:13:20.897628Z",
- "iopub.status.idle": "2024-06-25T23:13:21.010572Z",
- "shell.execute_reply": "2024-06-25T23:13:21.009996Z"
+ "iopub.execute_input": "2024-06-27T15:39:09.836247Z",
+ "iopub.status.busy": "2024-06-27T15:39:09.835762Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.211400Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.210811Z"
}
},
"outputs": [
@@ -305,10 +305,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.037181Z",
- "iopub.status.busy": "2024-06-25T23:13:21.036568Z",
- "iopub.status.idle": "2024-06-25T23:13:21.040405Z",
- "shell.execute_reply": "2024-06-25T23:13:21.039967Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.241419Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.241204Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.245054Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.244590Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.042333Z",
- "iopub.status.busy": "2024-06-25T23:13:21.042161Z",
- "iopub.status.idle": "2024-06-25T23:13:21.050408Z",
- "shell.execute_reply": "2024-06-25T23:13:21.049993Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.247265Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.246832Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.255149Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.254595Z"
}
},
"outputs": [],
@@ -384,10 +384,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.052411Z",
- "iopub.status.busy": "2024-06-25T23:13:21.052111Z",
- "iopub.status.idle": "2024-06-25T23:13:21.054810Z",
- "shell.execute_reply": "2024-06-25T23:13:21.054263Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.257365Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.257091Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.259655Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.259220Z"
}
},
"outputs": [],
@@ -409,10 +409,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.056799Z",
- "iopub.status.busy": "2024-06-25T23:13:21.056479Z",
- "iopub.status.idle": "2024-06-25T23:13:21.584928Z",
- "shell.execute_reply": "2024-06-25T23:13:21.584385Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.261511Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.261339Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.790397Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.789846Z"
}
},
"outputs": [],
@@ -446,10 +446,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.587427Z",
- "iopub.status.busy": "2024-06-25T23:13:21.587080Z",
- "iopub.status.idle": "2024-06-25T23:13:23.402116Z",
- "shell.execute_reply": "2024-06-25T23:13:23.401472Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.792795Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.792563Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.690033Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.689420Z"
}
},
"outputs": [
@@ -481,10 +481,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.404837Z",
- "iopub.status.busy": "2024-06-25T23:13:23.404191Z",
- "iopub.status.idle": "2024-06-25T23:13:23.414068Z",
- "shell.execute_reply": "2024-06-25T23:13:23.413559Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.692713Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.692162Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.702272Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.701680Z"
}
},
"outputs": [
@@ -605,10 +605,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.416257Z",
- "iopub.status.busy": "2024-06-25T23:13:23.415941Z",
- "iopub.status.idle": "2024-06-25T23:13:23.420056Z",
- "shell.execute_reply": "2024-06-25T23:13:23.419521Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.704223Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.703971Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.707870Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.707432Z"
}
},
"outputs": [],
@@ -633,10 +633,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.422287Z",
- "iopub.status.busy": "2024-06-25T23:13:23.421904Z",
- "iopub.status.idle": "2024-06-25T23:13:23.429186Z",
- "shell.execute_reply": "2024-06-25T23:13:23.428630Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.709806Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.709531Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.716529Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.716076Z"
}
},
"outputs": [],
@@ -658,10 +658,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.431342Z",
- "iopub.status.busy": "2024-06-25T23:13:23.431023Z",
- "iopub.status.idle": "2024-06-25T23:13:23.542534Z",
- "shell.execute_reply": "2024-06-25T23:13:23.542044Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.718621Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.718222Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.830714Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.830147Z"
}
},
"outputs": [
@@ -691,10 +691,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.544624Z",
- "iopub.status.busy": "2024-06-25T23:13:23.544286Z",
- "iopub.status.idle": "2024-06-25T23:13:23.546943Z",
- "shell.execute_reply": "2024-06-25T23:13:23.546515Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.832837Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.832513Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.835427Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.834878Z"
}
},
"outputs": [],
@@ -715,10 +715,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.548943Z",
- "iopub.status.busy": "2024-06-25T23:13:23.548635Z",
- "iopub.status.idle": "2024-06-25T23:13:25.510005Z",
- "shell.execute_reply": "2024-06-25T23:13:25.509395Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.837277Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.837102Z",
+ "iopub.status.idle": "2024-06-27T15:39:14.822404Z",
+ "shell.execute_reply": "2024-06-27T15:39:14.821784Z"
}
},
"outputs": [],
@@ -738,10 +738,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:25.513097Z",
- "iopub.status.busy": "2024-06-25T23:13:25.512371Z",
- "iopub.status.idle": "2024-06-25T23:13:25.523496Z",
- "shell.execute_reply": "2024-06-25T23:13:25.522944Z"
+ "iopub.execute_input": "2024-06-27T15:39:14.825471Z",
+ "iopub.status.busy": "2024-06-27T15:39:14.824704Z",
+ "iopub.status.idle": "2024-06-27T15:39:14.836113Z",
+ "shell.execute_reply": "2024-06-27T15:39:14.835678Z"
}
},
"outputs": [
@@ -771,10 +771,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:25.525641Z",
- "iopub.status.busy": "2024-06-25T23:13:25.525323Z",
- "iopub.status.idle": "2024-06-25T23:13:25.545176Z",
- "shell.execute_reply": "2024-06-25T23:13:25.544739Z"
+ "iopub.execute_input": "2024-06-27T15:39:14.838261Z",
+ "iopub.status.busy": "2024-06-27T15:39:14.837937Z",
+ "iopub.status.idle": "2024-06-27T15:39:15.011888Z",
+ "shell.execute_reply": "2024-06-27T15:39:15.011390Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb
index 9af680b6f..acadfeca1 100644
--- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb
@@ -115,10 +115,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:28.905676Z",
- "iopub.status.busy": "2024-06-25T23:13:28.905503Z",
- "iopub.status.idle": "2024-06-25T23:13:31.555296Z",
- "shell.execute_reply": "2024-06-25T23:13:31.554730Z"
+ "iopub.execute_input": "2024-06-27T15:39:18.202742Z",
+ "iopub.status.busy": "2024-06-27T15:39:18.202571Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.198042Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.197385Z"
},
"nbsphinx": "hidden"
},
@@ -135,7 +135,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -160,10 +160,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.557860Z",
- "iopub.status.busy": "2024-06-25T23:13:31.557469Z",
- "iopub.status.idle": "2024-06-25T23:13:31.560897Z",
- "shell.execute_reply": "2024-06-25T23:13:31.560352Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.200796Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.200477Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.203994Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.203442Z"
}
},
"outputs": [],
@@ -185,10 +185,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.562942Z",
- "iopub.status.busy": "2024-06-25T23:13:31.562629Z",
- "iopub.status.idle": "2024-06-25T23:13:31.565542Z",
- "shell.execute_reply": "2024-06-25T23:13:31.565096Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.205955Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.205635Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.208797Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.208260Z"
},
"nbsphinx": "hidden"
},
@@ -219,10 +219,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.567524Z",
- "iopub.status.busy": "2024-06-25T23:13:31.567195Z",
- "iopub.status.idle": "2024-06-25T23:13:31.589244Z",
- "shell.execute_reply": "2024-06-25T23:13:31.588737Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.210955Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.210659Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.370903Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.370338Z"
}
},
"outputs": [
@@ -312,10 +312,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.591105Z",
- "iopub.status.busy": "2024-06-25T23:13:31.590840Z",
- "iopub.status.idle": "2024-06-25T23:13:31.594215Z",
- "shell.execute_reply": "2024-06-25T23:13:31.593789Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.373180Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.372853Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.376455Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.375919Z"
}
},
"outputs": [],
@@ -330,10 +330,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.596064Z",
- "iopub.status.busy": "2024-06-25T23:13:31.595883Z",
- "iopub.status.idle": "2024-06-25T23:13:31.599153Z",
- "shell.execute_reply": "2024-06-25T23:13:31.598670Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.378544Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.378146Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.381367Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.380892Z"
}
},
"outputs": [
@@ -342,7 +342,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged'}\n"
+ "Classes: {'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'cancel_transfer'}\n"
]
}
],
@@ -365,10 +365,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.601175Z",
- "iopub.status.busy": "2024-06-25T23:13:31.600751Z",
- "iopub.status.idle": "2024-06-25T23:13:31.603901Z",
- "shell.execute_reply": "2024-06-25T23:13:31.603365Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.383438Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.383129Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.386120Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.385587Z"
}
},
"outputs": [
@@ -409,10 +409,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.606046Z",
- "iopub.status.busy": "2024-06-25T23:13:31.605618Z",
- "iopub.status.idle": "2024-06-25T23:13:31.608973Z",
- "shell.execute_reply": "2024-06-25T23:13:31.608424Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.388022Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.387839Z",
+ "iopub.status.idle": "2024-06-27T15:39:21.391294Z",
+ "shell.execute_reply": "2024-06-27T15:39:21.390839Z"
}
},
"outputs": [],
@@ -453,17 +453,17 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:31.610942Z",
- "iopub.status.busy": "2024-06-25T23:13:31.610641Z",
- "iopub.status.idle": "2024-06-25T23:13:35.909329Z",
- "shell.execute_reply": "2024-06-25T23:13:35.908695Z"
+ "iopub.execute_input": "2024-06-27T15:39:21.393210Z",
+ "iopub.status.busy": "2024-06-27T15:39:21.393036Z",
+ "iopub.status.idle": "2024-06-27T15:39:27.666464Z",
+ "shell.execute_reply": "2024-06-27T15:39:27.665783Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "6477ae421e3e43aa814150445e014ac0",
+ "model_id": "45e38381b3044662a46d4f1951c0293c",
"version_major": 2,
"version_minor": 0
},
@@ -477,7 +477,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e62034a9e6c043cc997861592486168a",
+ "model_id": "227c52be562c41e894d3f47ecec18fc0",
"version_major": 2,
"version_minor": 0
},
@@ -491,7 +491,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1e2c610098e54fea94839bb48d055f22",
+ "model_id": "1e809c0aacfd4c7e9856d270a4004a03",
"version_major": 2,
"version_minor": 0
},
@@ -505,7 +505,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5b6e029c7f61484d880737df09cb3291",
+ "model_id": "f56dd1afd4f242f880025145f7e8d4ad",
"version_major": 2,
"version_minor": 0
},
@@ -519,7 +519,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e750160df873483c9096b064baeab112",
+ "model_id": "62d408a1fe9142d0bd15e24d5c3d91bf",
"version_major": 2,
"version_minor": 0
},
@@ -533,7 +533,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ddf577727f0e42a1b074bcb455a4258a",
+ "model_id": "aa3957dd11454c9295aa863153bba9c9",
"version_major": 2,
"version_minor": 0
},
@@ -547,7 +547,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "97155a33cf37454f8282b21b3806031d",
+ "model_id": "e43243d9257e4a88823097e7b7af5888",
"version_major": 2,
"version_minor": 0
},
@@ -564,14 +564,6 @@
"text": [
"No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n",
- " return self.fget.__get__(instance, owner)()\n"
- ]
}
],
"source": [
@@ -609,10 +601,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:35.912144Z",
- "iopub.status.busy": "2024-06-25T23:13:35.911799Z",
- "iopub.status.idle": "2024-06-25T23:13:35.914630Z",
- "shell.execute_reply": "2024-06-25T23:13:35.914095Z"
+ "iopub.execute_input": "2024-06-27T15:39:27.669349Z",
+ "iopub.status.busy": "2024-06-27T15:39:27.668878Z",
+ "iopub.status.idle": "2024-06-27T15:39:27.672003Z",
+ "shell.execute_reply": "2024-06-27T15:39:27.671571Z"
}
},
"outputs": [],
@@ -634,10 +626,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:35.916621Z",
- "iopub.status.busy": "2024-06-25T23:13:35.916300Z",
- "iopub.status.idle": "2024-06-25T23:13:35.918968Z",
- "shell.execute_reply": "2024-06-25T23:13:35.918524Z"
+ "iopub.execute_input": "2024-06-27T15:39:27.673974Z",
+ "iopub.status.busy": "2024-06-27T15:39:27.673659Z",
+ "iopub.status.idle": "2024-06-27T15:39:27.676360Z",
+ "shell.execute_reply": "2024-06-27T15:39:27.675805Z"
}
},
"outputs": [],
@@ -652,10 +644,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:35.920827Z",
- "iopub.status.busy": "2024-06-25T23:13:35.920512Z",
- "iopub.status.idle": "2024-06-25T23:13:38.614446Z",
- "shell.execute_reply": "2024-06-25T23:13:38.613776Z"
+ "iopub.execute_input": "2024-06-27T15:39:27.678361Z",
+ "iopub.status.busy": "2024-06-27T15:39:27.678034Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.399774Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.399140Z"
},
"scrolled": true
},
@@ -678,10 +670,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.617773Z",
- "iopub.status.busy": "2024-06-25T23:13:38.616881Z",
- "iopub.status.idle": "2024-06-25T23:13:38.624576Z",
- "shell.execute_reply": "2024-06-25T23:13:38.624128Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.402953Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.402101Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.410001Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.409330Z"
}
},
"outputs": [
@@ -782,10 +774,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.626671Z",
- "iopub.status.busy": "2024-06-25T23:13:38.626274Z",
- "iopub.status.idle": "2024-06-25T23:13:38.630173Z",
- "shell.execute_reply": "2024-06-25T23:13:38.629644Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.412083Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.411749Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.415620Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.415164Z"
}
},
"outputs": [],
@@ -799,10 +791,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.632131Z",
- "iopub.status.busy": "2024-06-25T23:13:38.631753Z",
- "iopub.status.idle": "2024-06-25T23:13:38.634921Z",
- "shell.execute_reply": "2024-06-25T23:13:38.634406Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.417751Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.417415Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.420495Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.419977Z"
}
},
"outputs": [
@@ -837,10 +829,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.636934Z",
- "iopub.status.busy": "2024-06-25T23:13:38.636530Z",
- "iopub.status.idle": "2024-06-25T23:13:38.639393Z",
- "shell.execute_reply": "2024-06-25T23:13:38.638964Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.422585Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.422261Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.425094Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.424667Z"
}
},
"outputs": [],
@@ -860,10 +852,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.641436Z",
- "iopub.status.busy": "2024-06-25T23:13:38.641098Z",
- "iopub.status.idle": "2024-06-25T23:13:38.647659Z",
- "shell.execute_reply": "2024-06-25T23:13:38.647204Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.427095Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.426697Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.433401Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.432860Z"
}
},
"outputs": [
@@ -988,10 +980,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.649778Z",
- "iopub.status.busy": "2024-06-25T23:13:38.649479Z",
- "iopub.status.idle": "2024-06-25T23:13:38.874003Z",
- "shell.execute_reply": "2024-06-25T23:13:38.873478Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.435532Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.435149Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.662831Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.662309Z"
},
"scrolled": true
},
@@ -1030,10 +1022,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:38.876436Z",
- "iopub.status.busy": "2024-06-25T23:13:38.876051Z",
- "iopub.status.idle": "2024-06-25T23:13:39.048915Z",
- "shell.execute_reply": "2024-06-25T23:13:39.048432Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.665354Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.664988Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.838214Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.837655Z"
},
"scrolled": true
},
@@ -1066,10 +1058,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:39.051340Z",
- "iopub.status.busy": "2024-06-25T23:13:39.050964Z",
- "iopub.status.idle": "2024-06-25T23:13:39.054620Z",
- "shell.execute_reply": "2024-06-25T23:13:39.054132Z"
+ "iopub.execute_input": "2024-06-27T15:39:30.840836Z",
+ "iopub.status.busy": "2024-06-27T15:39:30.840442Z",
+ "iopub.status.idle": "2024-06-27T15:39:30.844279Z",
+ "shell.execute_reply": "2024-06-27T15:39:30.843772Z"
},
"nbsphinx": "hidden"
},
@@ -1113,95 +1105,78 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "02a072ed32924507837162ad70da9612": {
- "model_module": "@jupyter-widgets/controls",
+ "0309d174881344979e02e7c9ea6d6579": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_1aab5456eec04063a5df26734e017b79",
- "max": 231508.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d7c835da9be44280b48466c92cb851d6",
- "tabbable": null,
- "tooltip": null,
- "value": 231508.0
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "03d9becbdd8046bf81525afd016ed573": {
+ "0467cbd4c26e42098c6c239d382b345b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "075ca50b902b46989673d1147902560d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_65b932c28ff3495098c0db8b56dd18de",
- "placeholder": "",
- "style": "IPY_MODEL_e098c9499e5142759ba844e4486a6da6",
- "tabbable": null,
- "tooltip": null,
- "value": ".gitattributes: 100%"
- }
- },
- "0ee27b719c824572adc4d14d07e72cf6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_68a06976e74d4773829c8f1f5d4cc2ab",
- "placeholder": "",
- "style": "IPY_MODEL_7bc89cc511714eb3b9db0329b0ad4f47",
- "tabbable": null,
- "tooltip": null,
- "value": "vocab.txt: 100%"
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "197c89430b124236a2a7ca6374f1edf0": {
+ "142c16d6d97843789d319f851b3796b8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1254,7 +1229,7 @@
"width": null
}
},
- "1a996c0fb30c4181aef76b9d0b39bd20": {
+ "15245b558e674dbb8f3191693eb7da4e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1307,7 +1282,7 @@
"width": null
}
},
- "1aab5456eec04063a5df26734e017b79": {
+ "18d09b23cf0d4a6d8e17afa36d4f415d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1360,7 +1335,31 @@
"width": null
}
},
- "1b04ac435f764f288a38e492f152ec20": {
+ "1e809c0aacfd4c7e9856d270a4004a03": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_90d1823736564616bffbcb2642bd9d43",
+ "IPY_MODEL_a8508b999ac247c2b9ae71f72c9fec4d",
+ "IPY_MODEL_ebfb13a4dc6e48059eed96040f488a21"
+ ],
+ "layout": "IPY_MODEL_e44c48a602c04e1ba55559695d828f01",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "20997a7f4f834a5ea0bc884903fd6ab6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1413,77 +1412,93 @@
"width": null
}
},
- "1d787eed2c504168b62c71e3e8b823c8": {
+ "227c52be562c41e894d3f47ecec18fc0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c363fe3444424a62b964efb6ec305f7f",
- "placeholder": "",
- "style": "IPY_MODEL_d622adb2d6724d848794f6e7c40de0b3",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4c6f79aa3444490b81d1ed5e8f106d33",
+ "IPY_MODEL_bb1109088dcb43298732aea78043b7d2",
+ "IPY_MODEL_e4928e678c124efcb3fb1643bab9c704"
+ ],
+ "layout": "IPY_MODEL_20997a7f4f834a5ea0bc884903fd6ab6",
"tabbable": null,
- "tooltip": null,
- "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]"
+ "tooltip": null
}
},
- "1e2c610098e54fea94839bb48d055f22": {
+ "22f9efa136d04b51ae0c8fc84ebfd1ef": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e7466595e3ae479d9ee9e989b0fa9efb",
- "IPY_MODEL_8784e3b2891144468a5d989adaf62ae7",
- "IPY_MODEL_a6280db66f3e434bbdb20ebab4989dec"
- ],
- "layout": "IPY_MODEL_32522284f75645f69b58819ffe34d2a7",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "20471efe14204b3fa973ce7c173612f3": {
+ "24a22af0736e4830ac0acd02a51f6f7a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "267e900d05ba47a6900e2d98b3a2b362": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5dc7272ce64644afa609af3b2046a38e",
- "placeholder": "",
- "style": "IPY_MODEL_c220349ac77649e3bffdb0998b40b102",
+ "layout": "IPY_MODEL_92a918200568415986bff5eea6d88161",
+ "max": 48.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3932e60b8a554c6b94864d66859f7bfb",
"tabbable": null,
"tooltip": null,
- "value": " 54.2M/54.2M [00:00<00:00, 298MB/s]"
+ "value": 48.0
}
},
- "2808a2dd85f840dc8384e96b6e31d382": {
+ "288c54ddb7b643059afe02217aa4eeff": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1499,17 +1514,40 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_8f55a6cbd0184173b7c3ecca3b2be6a1",
- "max": 466062.0,
+ "layout": "IPY_MODEL_d29330ea96c64555b06c0c32cec87c69",
+ "max": 391.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_670785469ef5401e82177c280f877928",
+ "style": "IPY_MODEL_999ff89c2d8c419a85d621d95c844d4c",
"tabbable": null,
"tooltip": null,
- "value": 466062.0
+ "value": 391.0
+ }
+ },
+ "2c411f0a9d5a488090a908e526190434": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0309d174881344979e02e7c9ea6d6579",
+ "placeholder": "",
+ "style": "IPY_MODEL_e7827c7095234d24881a19c9d3ea6afb",
+ "tabbable": null,
+ "tooltip": null,
+ "value": ".gitattributes: 100%"
}
},
- "2b78fa97669e4067a4bd3de6ccaaa88a": {
+ "3527647b8a764e52987d6c10176364d4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1562,40 +1600,71 @@
"width": null
}
},
- "2e901b505de34984a7c06e4ff7be8ebe": {
+ "3932e60b8a554c6b94864d66859f7bfb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "39ea495637ff44548280f286f0ba1606": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_ab64f8b595ef4648a47b1b2da8eac241",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_03d9becbdd8046bf81525afd016ed573",
+ "layout": "IPY_MODEL_fd1c46743c444a5ebfbdc2f58affb839",
+ "placeholder": "",
+ "style": "IPY_MODEL_d278ee1ae10c48939c20f2837c8e7706",
"tabbable": null,
"tooltip": null,
- "value": 54245363.0
+ "value": "tokenizer_config.json: 100%"
}
},
- "2fe0de05b5e847e89ba80b8e4d398c4c": {
- "model_module": "@jupyter-widgets/base",
+ "3b5711196d3e4649bca7de2e5100bfbe": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "3cb29c226c644123b7546a72e60694aa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
@@ -1641,7 +1710,7 @@
"width": null
}
},
- "32522284f75645f69b58819ffe34d2a7": {
+ "3db71f2b4d8d4cd5a014f202336adf7a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1694,25 +1763,47 @@
"width": null
}
},
- "328a64a36aa14cc4a13e8c232d198977": {
+ "3ddb822047bf417ba2e94dc5628802a0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "45e38381b3044662a46d4f1951c0293c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2c411f0a9d5a488090a908e526190434",
+ "IPY_MODEL_288c54ddb7b643059afe02217aa4eeff",
+ "IPY_MODEL_e632c1161be6436eac5234723764127a"
+ ],
+ "layout": "IPY_MODEL_d026f14f2ac34756984537f8b4e30acc",
+ "tabbable": null,
+ "tooltip": null
}
},
- "35b5e0b171c7498d8e1a3633c745e073": {
+ "484ba1921a7a4b5ab97a65274b5e03f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1727,51 +1818,54 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_93beb5b9f7914314ac973bada268bcc2",
+ "layout": "IPY_MODEL_7d5d4bc33b8b42f7a83dd8f9f383aa59",
"placeholder": "",
- "style": "IPY_MODEL_71736b2d04e142cea126cbddad9801e2",
+ "style": "IPY_MODEL_8e941efa321c47d3b7a366c3ca9fcfec",
"tabbable": null,
"tooltip": null,
- "value": "tokenizer.json: 100%"
+ "value": " 232k/232k [00:00<00:00, 3.30MB/s]"
}
},
- "3c2efa0519364cd7ad5d4149de79bec8": {
+ "4a43ac1e4d984e6582e3455ce47a9f7d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "3c700601fd7d4148894afa4961283a88": {
+ "4c6f79aa3444490b81d1ed5e8f106d33": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3527647b8a764e52987d6c10176364d4",
+ "placeholder": "",
+ "style": "IPY_MODEL_3b5711196d3e4649bca7de2e5100bfbe",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "README.md: 100%"
}
},
- "42243b174d064f20a73f6c60315575eb": {
+ "4dd634f0f25a4a8c88b73572fb638979": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1787,17 +1881,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_de1cc30d88f74d2299519f8846818183",
- "max": 391.0,
+ "layout": "IPY_MODEL_3db71f2b4d8d4cd5a014f202336adf7a",
+ "max": 231508.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_6e166f17ea384c918f9777404649330c",
+ "style": "IPY_MODEL_4a43ac1e4d984e6582e3455ce47a9f7d",
"tabbable": null,
"tooltip": null,
- "value": 391.0
+ "value": 231508.0
}
},
- "485477b3f18244cb8e82240fdfc321c6": {
+ "52c0d4d2ca364b15a22f5aa4b5badec9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1850,7 +1944,79 @@
"width": null
}
},
- "4a7d8e7b7ba3464fa41165f58db05e12": {
+ "53bfb82160754596924077dcab0a5550": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7cc2831d5a014e0ab876aa295af1f64c",
+ "max": 466062.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3ddb822047bf417ba2e94dc5628802a0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 466062.0
+ }
+ },
+ "557a0462e666492da24bb670d1cdb9e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e4153c4d51af407d8e4347574a7f12a3",
+ "placeholder": "",
+ "style": "IPY_MODEL_ed1b56a41a0c4865843cba86641e723f",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "vocab.txt: 100%"
+ }
+ },
+ "60a846c432e54e9f8566119329d83368": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d2caed10f3a04b98870818d6c8aeaa7d",
+ "placeholder": "",
+ "style": "IPY_MODEL_f150999a63df40109154c1728a2d29c0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "pytorch_model.bin: 100%"
+ }
+ },
+ "623d469a838f4b7bb748e5c2d6a5f6b1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1903,7 +2069,47 @@
"width": null
}
},
- "4d312e2d3f524fb1bf8dba710216c761": {
+ "62d408a1fe9142d0bd15e24d5c3d91bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9be8a34ab70a4ce39f864285d837f850",
+ "IPY_MODEL_53bfb82160754596924077dcab0a5550",
+ "IPY_MODEL_edb903940ed14fdaa539c72f7d10c90c"
+ ],
+ "layout": "IPY_MODEL_623d469a838f4b7bb748e5c2d6a5f6b1",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "6398767c5d004ab0a6cb3e9ef195eaef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "65e791554ea547b383e4eb5a39455d91": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1956,7 +2162,7 @@
"width": null
}
},
- "537d23f9aefe4d35aa82e5454ab78815": {
+ "6628ae41681544db80c9c17e7a17dcd4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2009,31 +2215,25 @@
"width": null
}
},
- "5b6e029c7f61484d880737df09cb3291": {
+ "70aea435c4134e5ea37e56a6a7213eeb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_fdddfa973dd841b39245eda900cf0339",
- "IPY_MODEL_2e901b505de34984a7c06e4ff7be8ebe",
- "IPY_MODEL_20471efe14204b3fa973ce7c173612f3"
- ],
- "layout": "IPY_MODEL_b0d211d5585d414d93c249182a668daf",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "5da1ee68b4f848c98bea7614ebf85f59": {
+ "799c951edc2e496bb185f6629f10cc99": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2086,7 +2286,7 @@
"width": null
}
},
- "5dc7272ce64644afa609af3b2046a38e": {
+ "7a761ae42f8346428132e6f44a593943": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2139,7 +2339,7 @@
"width": null
}
},
- "5f117a6515e1436cad7028680580b6a5": {
+ "7cc2831d5a014e0ab876aa295af1f64c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2192,49 +2392,7 @@
"width": null
}
},
- "634f7b4ddf0e46f3b98d4b3c9ce87c86": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6477ae421e3e43aa814150445e014ac0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_075ca50b902b46989673d1147902560d",
- "IPY_MODEL_42243b174d064f20a73f6c60315575eb",
- "IPY_MODEL_bbe4f79369114ed9839dd57535856697"
- ],
- "layout": "IPY_MODEL_1b04ac435f764f288a38e492f152ec20",
- "tabbable": null,
- "tooltip": null
- }
- },
- "65b932c28ff3495098c0db8b56dd18de": {
+ "7d5d4bc33b8b42f7a83dd8f9f383aa59": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2287,33 +2445,92 @@
"width": null
}
},
- "66d43ed9bf3f4ef6aedf76e3d08d36c7": {
- "model_module": "@jupyter-widgets/base",
+ "89b6578c24c744dc9015941a8d7fb94e": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8e941efa321c47d3b7a366c3ca9fcfec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "90d1823736564616bffbcb2642bd9d43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d192fadb0b214e1f83a1189ab63b3e02",
+ "placeholder": "",
+ "style": "IPY_MODEL_b8b88ca093444a2e8a261e5e61808757",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "config.json: 100%"
+ }
+ },
+ "916782575f624bae877841742fcbeb9c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
@@ -2340,23 +2557,7 @@
"width": null
}
},
- "670785469ef5401e82177c280f877928": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "68a06976e74d4773829c8f1f5d4cc2ab": {
+ "92a918200568415986bff5eea6d88161": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2409,7 +2610,7 @@
"width": null
}
},
- "6e166f17ea384c918f9777404649330c": {
+ "966f5204429a4e5dadde7ee80f6262d7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2425,43 +2626,23 @@
"description_width": ""
}
},
- "6f576e9c9374443588b496e63f781624": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "71736b2d04e142cea126cbddad9801e2": {
+ "999ff89c2d8c419a85d621d95c844d4c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "7261cd19786a4a0b95b770c51f033b0c": {
+ "9be8a34ab70a4ce39f864285d837f850": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2476,74 +2657,94 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_1a996c0fb30c4181aef76b9d0b39bd20",
+ "layout": "IPY_MODEL_799c951edc2e496bb185f6629f10cc99",
"placeholder": "",
- "style": "IPY_MODEL_8d98dfc145534a779ad6c609609abd31",
+ "style": "IPY_MODEL_24a22af0736e4830ac0acd02a51f6f7a",
"tabbable": null,
"tooltip": null,
- "value": " 466k/466k [00:00<00:00, 14.0MB/s]"
- }
- },
- "7bc89cc511714eb3b9db0329b0ad4f47": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "value": "tokenizer.json: 100%"
}
},
- "7dbd67a2cb264612b0d638e5e63a9a07": {
- "model_module": "@jupyter-widgets/controls",
+ "a2f7b661033442c1b0fa6e14eb3f52db": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "8674027fdc534d3791107a43a5e491ab": {
+ "a781699882004cd09c903aefc00ac617": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_dfd5800b7e4c41fb90cf34888c17c960",
- "placeholder": "",
- "style": "IPY_MODEL_9bdcb01ac1254e4ca46f786f1f48635e",
+ "layout": "IPY_MODEL_15245b558e674dbb8f3191693eb7da4e",
+ "max": 54245363.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_966f5204429a4e5dadde7ee80f6262d7",
"tabbable": null,
"tooltip": null,
- "value": "README.md: 100%"
+ "value": 54245363.0
}
},
- "8784e3b2891144468a5d989adaf62ae7": {
+ "a8508b999ac247c2b9ae71f72c9fec4d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2559,17 +2760,41 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e98f8f44d5174617bc22e566a83f2e14",
+ "layout": "IPY_MODEL_ae468927ed834adc8be3b18af05efdc4",
"max": 665.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_9e9b474bbbd44555ac3344b5d173ecd4",
+ "style": "IPY_MODEL_6398767c5d004ab0a6cb3e9ef195eaef",
"tabbable": null,
"tooltip": null,
"value": 665.0
}
},
- "8c2a54a50b174504b67275f6fc1758ea": {
+ "aa3957dd11454c9295aa863153bba9c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_39ea495637ff44548280f286f0ba1606",
+ "IPY_MODEL_267e900d05ba47a6900e2d98b3a2b362",
+ "IPY_MODEL_d2b950cdf44243a6b4aad36104e06c25"
+ ],
+ "layout": "IPY_MODEL_7a761ae42f8346428132e6f44a593943",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "aac1e856badb4c61ac3f116b9698cd7e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2622,25 +2847,7 @@
"width": null
}
},
- "8d98dfc145534a779ad6c609609abd31": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "8f55a6cbd0184173b7c3ecca3b2be6a1": {
+ "ae468927ed834adc8be3b18af05efdc4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2693,111 +2900,26 @@
"width": null
}
},
- "937b241a390b4aa1b76cb3c07905b257": {
+ "b8b88ca093444a2e8a261e5e61808757": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4d312e2d3f524fb1bf8dba710216c761",
- "max": 48.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_b11b3d0461c94c138ecf254a642eb544",
- "tabbable": null,
- "tooltip": null,
- "value": 48.0
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "93beb5b9f7914314ac973bada268bcc2": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "97155a33cf37454f8282b21b3806031d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_0ee27b719c824572adc4d14d07e72cf6",
- "IPY_MODEL_02a072ed32924507837162ad70da9612",
- "IPY_MODEL_c73c253ce5ce4c0c9744f5c0cb9d0530"
- ],
- "layout": "IPY_MODEL_bd8af8fcf5f34f848183718d176ce55f",
- "tabbable": null,
- "tooltip": null
- }
- },
- "9bdcb01ac1254e4ca46f786f1f48635e": {
- "model_module": "@jupyter-widgets/controls",
+ "baf1704dff5a44e8a88a10939c0105b0": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
@@ -2814,46 +2936,7 @@
"text_color": null
}
},
- "9e9b474bbbd44555ac3344b5d173ecd4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a6280db66f3e434bbdb20ebab4989dec": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_2b78fa97669e4067a4bd3de6ccaaa88a",
- "placeholder": "",
- "style": "IPY_MODEL_7dbd67a2cb264612b0d638e5e63a9a07",
- "tabbable": null,
- "tooltip": null,
- "value": " 665/665 [00:00<00:00, 129kB/s]"
- }
- },
- "a859632225cf4c338d075b33f4abd2e0": {
+ "bb1109088dcb43298732aea78043b7d2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2869,40 +2952,33 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_4a7d8e7b7ba3464fa41165f58db05e12",
+ "layout": "IPY_MODEL_3cb29c226c644123b7546a72e60694aa",
"max": 2211.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_c7cdf638b52549a3923f4d9f4dacf40d",
+ "style": "IPY_MODEL_be73293235a64ca2b8a4ddc3dd88959c",
"tabbable": null,
"tooltip": null,
"value": 2211.0
}
},
- "aa703043d8574c99856909333746a558": {
+ "be73293235a64ca2b8a4ddc3dd88959c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_537d23f9aefe4d35aa82e5454ab78815",
- "placeholder": "",
- "style": "IPY_MODEL_3c700601fd7d4148894afa4961283a88",
- "tabbable": null,
- "tooltip": null,
- "value": "tokenizer_config.json: 100%"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "ab64f8b595ef4648a47b1b2da8eac241": {
+ "d026f14f2ac34756984537f8b4e30acc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2955,7 +3031,7 @@
"width": null
}
},
- "b0d211d5585d414d93c249182a668daf": {
+ "d192fadb0b214e1f83a1189ab63b3e02": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3008,46 +3084,25 @@
"width": null
}
},
- "b11b3d0461c94c138ecf254a642eb544": {
+ "d278ee1ae10c48939c20f2837c8e7706": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "bbe4f79369114ed9839dd57535856697": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f933a441f363402d9fc2e796940cf4d3",
- "placeholder": "",
- "style": "IPY_MODEL_328a64a36aa14cc4a13e8c232d198977",
- "tabbable": null,
- "tooltip": null,
- "value": " 391/391 [00:00<00:00, 68.8kB/s]"
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "bd8af8fcf5f34f848183718d176ce55f": {
+ "d29330ea96c64555b06c0c32cec87c69": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3100,25 +3155,30 @@
"width": null
}
},
- "c220349ac77649e3bffdb0998b40b102": {
+ "d2b950cdf44243a6b4aad36104e06c25": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_aac1e856badb4c61ac3f116b9698cd7e",
+ "placeholder": "",
+ "style": "IPY_MODEL_22f9efa136d04b51ae0c8fc84ebfd1ef",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 48.0/48.0 [00:00<00:00, 8.82kB/s]"
}
},
- "c363fe3444424a62b964efb6ec305f7f": {
+ "d2caed10f3a04b98870818d6c8aeaa7d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3171,69 +3231,7 @@
"width": null
}
},
- "c73c253ce5ce4c0c9744f5c0cb9d0530": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_66d43ed9bf3f4ef6aedf76e3d08d36c7",
- "placeholder": "",
- "style": "IPY_MODEL_3c2efa0519364cd7ad5d4149de79bec8",
- "tabbable": null,
- "tooltip": null,
- "value": " 232k/232k [00:00<00:00, 16.1MB/s]"
- }
- },
- "c7cdf638b52549a3923f4d9f4dacf40d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c9a979755e9a403eb0ca342120826ee6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_197c89430b124236a2a7ca6374f1edf0",
- "placeholder": "",
- "style": "IPY_MODEL_634f7b4ddf0e46f3b98d4b3c9ce87c86",
- "tabbable": null,
- "tooltip": null,
- "value": " 48.0/48.0 [00:00<00:00, 9.85kB/s]"
- }
- },
- "d622adb2d6724d848794f6e7c40de0b3": {
+ "e1b247b97cfe467295808f682d7d7909": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3251,47 +3249,7 @@
"text_color": null
}
},
- "d7c835da9be44280b48466c92cb851d6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "ddf577727f0e42a1b074bcb455a4258a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_aa703043d8574c99856909333746a558",
- "IPY_MODEL_937b241a390b4aa1b76cb3c07905b257",
- "IPY_MODEL_c9a979755e9a403eb0ca342120826ee6"
- ],
- "layout": "IPY_MODEL_5f117a6515e1436cad7028680580b6a5",
- "tabbable": null,
- "tooltip": null
- }
- },
- "de1cc30d88f74d2299519f8846818183": {
+ "e4153c4d51af407d8e4347574a7f12a3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3344,7 +3302,31 @@
"width": null
}
},
- "dfd5800b7e4c41fb90cf34888c17c960": {
+ "e43243d9257e4a88823097e7b7af5888": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_557a0462e666492da24bb670d1cdb9e6",
+ "IPY_MODEL_4dd634f0f25a4a8c88b73572fb638979",
+ "IPY_MODEL_484ba1921a7a4b5ab97a65274b5e03f3"
+ ],
+ "layout": "IPY_MODEL_52c0d4d2ca364b15a22f5aa4b5badec9",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "e44c48a602c04e1ba55559695d828f01": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3397,7 +3379,53 @@
"width": null
}
},
- "e098c9499e5142759ba844e4486a6da6": {
+ "e4928e678c124efcb3fb1643bab9c704": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6628ae41681544db80c9c17e7a17dcd4",
+ "placeholder": "",
+ "style": "IPY_MODEL_e1b247b97cfe467295808f682d7d7909",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 2.21k/2.21k [00:00<00:00, 386kB/s]"
+ }
+ },
+ "e632c1161be6436eac5234723764127a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a2f7b661033442c1b0fa6e14eb3f52db",
+ "placeholder": "",
+ "style": "IPY_MODEL_0467cbd4c26e42098c6c239d382b345b",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 391/391 [00:00<00:00, 63.6kB/s]"
+ }
+ },
+ "e7827c7095234d24881a19c9d3ea6afb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3415,31 +3443,48 @@
"text_color": null
}
},
- "e62034a9e6c043cc997861592486168a": {
+ "ebfb13a4dc6e48059eed96040f488a21": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8674027fdc534d3791107a43a5e491ab",
- "IPY_MODEL_a859632225cf4c338d075b33f4abd2e0",
- "IPY_MODEL_1d787eed2c504168b62c71e3e8b823c8"
- ],
- "layout": "IPY_MODEL_5da1ee68b4f848c98bea7614ebf85f59",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_18d09b23cf0d4a6d8e17afa36d4f415d",
+ "placeholder": "",
+ "style": "IPY_MODEL_89b6578c24c744dc9015941a8d7fb94e",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 665/665 [00:00<00:00, 132kB/s]"
}
},
- "e7466595e3ae479d9ee9e989b0fa9efb": {
+ "ed1b56a41a0c4865843cba86641e723f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "ed4202bd0c224a4f8f3a66b368186970": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3454,92 +3499,80 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_8c2a54a50b174504b67275f6fc1758ea",
+ "layout": "IPY_MODEL_916782575f624bae877841742fcbeb9c",
"placeholder": "",
- "style": "IPY_MODEL_fd9acfb5facf4aeaa71d2088d344d085",
+ "style": "IPY_MODEL_baf1704dff5a44e8a88a10939c0105b0",
"tabbable": null,
"tooltip": null,
- "value": "config.json: 100%"
+ "value": " 54.2M/54.2M [00:00<00:00, 71.7MB/s]"
}
},
- "e750160df873483c9096b064baeab112": {
+ "edb903940ed14fdaa539c72f7d10c90c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_35b5e0b171c7498d8e1a3633c745e073",
- "IPY_MODEL_2808a2dd85f840dc8384e96b6e31d382",
- "IPY_MODEL_7261cd19786a4a0b95b770c51f033b0c"
- ],
- "layout": "IPY_MODEL_485477b3f18244cb8e82240fdfc321c6",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_65e791554ea547b383e4eb5a39455d91",
+ "placeholder": "",
+ "style": "IPY_MODEL_70aea435c4134e5ea37e56a6a7213eeb",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 466k/466k [00:00<00:00, 3.29MB/s]"
}
},
- "e98f8f44d5174617bc22e566a83f2e14": {
- "model_module": "@jupyter-widgets/base",
+ "f150999a63df40109154c1728a2d29c0": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f933a441f363402d9fc2e796940cf4d3": {
+ "f56dd1afd4f242f880025145f7e8d4ad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_60a846c432e54e9f8566119329d83368",
+ "IPY_MODEL_a781699882004cd09c903aefc00ac617",
+ "IPY_MODEL_ed4202bd0c224a4f8f3a66b368186970"
+ ],
+ "layout": "IPY_MODEL_142c16d6d97843789d319f851b3796b8",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "fd1c46743c444a5ebfbdc2f58affb839": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3591,47 +3624,6 @@
"visibility": null,
"width": null
}
- },
- "fd9acfb5facf4aeaa71d2088d344d085": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "fdddfa973dd841b39245eda900cf0339": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_2fe0de05b5e847e89ba80b8e4d398c4c",
- "placeholder": "",
- "style": "IPY_MODEL_6f576e9c9374443588b496e63f781624",
- "tabbable": null,
- "tooltip": null,
- "value": "pytorch_model.bin: 100%"
- }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb
index d40b1db54..93586bee5 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:42.048585Z",
- "iopub.status.busy": "2024-06-25T23:13:42.048169Z",
- "iopub.status.idle": "2024-06-25T23:13:47.015851Z",
- "shell.execute_reply": "2024-06-25T23:13:47.015219Z"
+ "iopub.execute_input": "2024-06-27T15:39:35.362328Z",
+ "iopub.status.busy": "2024-06-27T15:39:35.361825Z",
+ "iopub.status.idle": "2024-06-27T15:39:40.570041Z",
+ "shell.execute_reply": "2024-06-27T15:39:40.569408Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:47.018616Z",
- "iopub.status.busy": "2024-06-25T23:13:47.018295Z",
- "iopub.status.idle": "2024-06-25T23:13:47.021447Z",
- "shell.execute_reply": "2024-06-25T23:13:47.020989Z"
+ "iopub.execute_input": "2024-06-27T15:39:40.572766Z",
+ "iopub.status.busy": "2024-06-27T15:39:40.572228Z",
+ "iopub.status.idle": "2024-06-27T15:39:40.575350Z",
+ "shell.execute_reply": "2024-06-27T15:39:40.574921Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:47.023397Z",
- "iopub.status.busy": "2024-06-25T23:13:47.023066Z",
- "iopub.status.idle": "2024-06-25T23:13:47.027579Z",
- "shell.execute_reply": "2024-06-25T23:13:47.027038Z"
+ "iopub.execute_input": "2024-06-27T15:39:40.577400Z",
+ "iopub.status.busy": "2024-06-27T15:39:40.577085Z",
+ "iopub.status.idle": "2024-06-27T15:39:40.581458Z",
+ "shell.execute_reply": "2024-06-27T15:39:40.581032Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:47.029706Z",
- "iopub.status.busy": "2024-06-25T23:13:47.029408Z",
- "iopub.status.idle": "2024-06-25T23:13:48.557949Z",
- "shell.execute_reply": "2024-06-25T23:13:48.557324Z"
+ "iopub.execute_input": "2024-06-27T15:39:40.583428Z",
+ "iopub.status.busy": "2024-06-27T15:39:40.583105Z",
+ "iopub.status.idle": "2024-06-27T15:39:50.584027Z",
+ "shell.execute_reply": "2024-06-27T15:39:50.583280Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:48.560586Z",
- "iopub.status.busy": "2024-06-25T23:13:48.560204Z",
- "iopub.status.idle": "2024-06-25T23:13:48.570753Z",
- "shell.execute_reply": "2024-06-25T23:13:48.570316Z"
+ "iopub.execute_input": "2024-06-27T15:39:50.586704Z",
+ "iopub.status.busy": "2024-06-27T15:39:50.586468Z",
+ "iopub.status.idle": "2024-06-27T15:39:50.596927Z",
+ "shell.execute_reply": "2024-06-27T15:39:50.596449Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:48.572948Z",
- "iopub.status.busy": "2024-06-25T23:13:48.572614Z",
- "iopub.status.idle": "2024-06-25T23:13:48.578335Z",
- "shell.execute_reply": "2024-06-25T23:13:48.577906Z"
+ "iopub.execute_input": "2024-06-27T15:39:50.599153Z",
+ "iopub.status.busy": "2024-06-27T15:39:50.598811Z",
+ "iopub.status.idle": "2024-06-27T15:39:50.604158Z",
+ "shell.execute_reply": "2024-06-27T15:39:50.603720Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:48.580333Z",
- "iopub.status.busy": "2024-06-25T23:13:48.580014Z",
- "iopub.status.idle": "2024-06-25T23:13:49.044116Z",
- "shell.execute_reply": "2024-06-25T23:13:49.043554Z"
+ "iopub.execute_input": "2024-06-27T15:39:50.606326Z",
+ "iopub.status.busy": "2024-06-27T15:39:50.605894Z",
+ "iopub.status.idle": "2024-06-27T15:39:51.061002Z",
+ "shell.execute_reply": "2024-06-27T15:39:51.060399Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:49.046459Z",
- "iopub.status.busy": "2024-06-25T23:13:49.046048Z",
- "iopub.status.idle": "2024-06-25T23:13:49.682286Z",
- "shell.execute_reply": "2024-06-25T23:13:49.681791Z"
+ "iopub.execute_input": "2024-06-27T15:39:51.063242Z",
+ "iopub.status.busy": "2024-06-27T15:39:51.062823Z",
+ "iopub.status.idle": "2024-06-27T15:39:52.856305Z",
+ "shell.execute_reply": "2024-06-27T15:39:52.855828Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -474,10 +474,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:49.685227Z",
- "iopub.status.busy": "2024-06-25T23:13:49.684826Z",
- "iopub.status.idle": "2024-06-25T23:13:49.703315Z",
- "shell.execute_reply": "2024-06-25T23:13:49.702790Z"
+ "iopub.execute_input": "2024-06-27T15:39:52.858818Z",
+ "iopub.status.busy": "2024-06-27T15:39:52.858492Z",
+ "iopub.status.idle": "2024-06-27T15:39:52.876475Z",
+ "shell.execute_reply": "2024-06-27T15:39:52.875972Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -557,10 +557,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:49.705384Z",
- "iopub.status.busy": "2024-06-25T23:13:49.705205Z",
- "iopub.status.idle": "2024-06-25T23:13:49.708482Z",
- "shell.execute_reply": "2024-06-25T23:13:49.708013Z"
+ "iopub.execute_input": "2024-06-27T15:39:52.878507Z",
+ "iopub.status.busy": "2024-06-27T15:39:52.878190Z",
+ "iopub.status.idle": "2024-06-27T15:39:52.881147Z",
+ "shell.execute_reply": "2024-06-27T15:39:52.880732Z"
},
"id": "I8JqhOZgi94g"
},
@@ -582,24 +582,14 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:49.710490Z",
- "iopub.status.busy": "2024-06-25T23:13:49.710159Z",
- "iopub.status.idle": "2024-06-25T23:14:03.836426Z",
- "shell.execute_reply": "2024-06-25T23:14:03.835865Z"
+ "iopub.execute_input": "2024-06-27T15:39:52.883147Z",
+ "iopub.status.busy": "2024-06-27T15:39:52.882820Z",
+ "iopub.status.idle": "2024-06-27T15:40:07.290357Z",
+ "shell.execute_reply": "2024-06-27T15:40:07.289818Z"
},
"id": "2FSQ2GR9R_YA"
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n",
- "Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\n",
- " return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# Extract audio embeddings\n",
"embeddings_list = []\n",
@@ -627,10 +617,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:03.839037Z",
- "iopub.status.busy": "2024-06-25T23:14:03.838661Z",
- "iopub.status.idle": "2024-06-25T23:14:03.842744Z",
- "shell.execute_reply": "2024-06-25T23:14:03.842282Z"
+ "iopub.execute_input": "2024-06-27T15:40:07.293008Z",
+ "iopub.status.busy": "2024-06-27T15:40:07.292676Z",
+ "iopub.status.idle": "2024-06-27T15:40:07.296534Z",
+ "shell.execute_reply": "2024-06-27T15:40:07.295978Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -690,10 +680,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:03.844717Z",
- "iopub.status.busy": "2024-06-25T23:14:03.844392Z",
- "iopub.status.idle": "2024-06-25T23:14:04.554198Z",
- "shell.execute_reply": "2024-06-25T23:14:04.553609Z"
+ "iopub.execute_input": "2024-06-27T15:40:07.298675Z",
+ "iopub.status.busy": "2024-06-27T15:40:07.298278Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.006185Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.005598Z"
},
"id": "i_drkY9YOcw4"
},
@@ -727,10 +717,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.557144Z",
- "iopub.status.busy": "2024-06-25T23:14:04.556722Z",
- "iopub.status.idle": "2024-06-25T23:14:04.561566Z",
- "shell.execute_reply": "2024-06-25T23:14:04.561058Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.009254Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.008928Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.013451Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.012979Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -777,10 +767,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.563987Z",
- "iopub.status.busy": "2024-06-25T23:14:04.563613Z",
- "iopub.status.idle": "2024-06-25T23:14:04.661144Z",
- "shell.execute_reply": "2024-06-25T23:14:04.660555Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.015789Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.015476Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.116447Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.115851Z"
}
},
"outputs": [
@@ -817,10 +807,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.663549Z",
- "iopub.status.busy": "2024-06-25T23:14:04.663180Z",
- "iopub.status.idle": "2024-06-25T23:14:04.675655Z",
- "shell.execute_reply": "2024-06-25T23:14:04.675200Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.118940Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.118554Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.132017Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.131567Z"
},
"scrolled": true
},
@@ -880,10 +870,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.677803Z",
- "iopub.status.busy": "2024-06-25T23:14:04.677480Z",
- "iopub.status.idle": "2024-06-25T23:14:04.685163Z",
- "shell.execute_reply": "2024-06-25T23:14:04.684654Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.134286Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.133948Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.141786Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.141318Z"
}
},
"outputs": [
@@ -987,10 +977,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.687288Z",
- "iopub.status.busy": "2024-06-25T23:14:04.686965Z",
- "iopub.status.idle": "2024-06-25T23:14:04.691175Z",
- "shell.execute_reply": "2024-06-25T23:14:04.690734Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.143641Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.143469Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.147822Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.147361Z"
}
},
"outputs": [
@@ -1028,10 +1018,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.693198Z",
- "iopub.status.busy": "2024-06-25T23:14:04.692832Z",
- "iopub.status.idle": "2024-06-25T23:14:04.698386Z",
- "shell.execute_reply": "2024-06-25T23:14:04.697923Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.149778Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.149429Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.154984Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.154472Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1158,10 +1148,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.700375Z",
- "iopub.status.busy": "2024-06-25T23:14:04.700060Z",
- "iopub.status.idle": "2024-06-25T23:14:04.810591Z",
- "shell.execute_reply": "2024-06-25T23:14:04.810025Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.156849Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.156668Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.267171Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.266613Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1215,10 +1205,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.812699Z",
- "iopub.status.busy": "2024-06-25T23:14:04.812492Z",
- "iopub.status.idle": "2024-06-25T23:14:04.914526Z",
- "shell.execute_reply": "2024-06-25T23:14:04.913959Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.269516Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.269068Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.372198Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.371657Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1263,10 +1253,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:04.916775Z",
- "iopub.status.busy": "2024-06-25T23:14:04.916438Z",
- "iopub.status.idle": "2024-06-25T23:14:05.017283Z",
- "shell.execute_reply": "2024-06-25T23:14:05.016746Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.374467Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.374020Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.474469Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.473948Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1307,10 +1297,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:05.019268Z",
- "iopub.status.busy": "2024-06-25T23:14:05.019087Z",
- "iopub.status.idle": "2024-06-25T23:14:05.125584Z",
- "shell.execute_reply": "2024-06-25T23:14:05.124990Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.476420Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.476244Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.579952Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.579373Z"
}
},
"outputs": [
@@ -1358,10 +1348,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:05.127830Z",
- "iopub.status.busy": "2024-06-25T23:14:05.127392Z",
- "iopub.status.idle": "2024-06-25T23:14:05.130680Z",
- "shell.execute_reply": "2024-06-25T23:14:05.130142Z"
+ "iopub.execute_input": "2024-06-27T15:40:08.582028Z",
+ "iopub.status.busy": "2024-06-27T15:40:08.581848Z",
+ "iopub.status.idle": "2024-06-27T15:40:08.585066Z",
+ "shell.execute_reply": "2024-06-27T15:40:08.584624Z"
},
"nbsphinx": "hidden"
},
@@ -1402,7 +1392,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "01d773c5fc084c74bf3898f08469f8f7": {
+ "0ebf0e9732c34a3d965e32c7dbac0d34": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1455,7 +1445,7 @@
"width": null
}
},
- "048952d61d4143eeb7a3064dac9fe4ac": {
+ "145802e04e1f4146a256ba00d8b160f4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1508,7 +1498,7 @@
"width": null
}
},
- "065d70114b74423d9f2fa424de1b7a1e": {
+ "155bd60929d24ac3a8ec692078f3513e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1526,25 +1516,30 @@
"text_color": null
}
},
- "0c2f7ca60ab147c99ae03f759db46297": {
+ "175e5b7fcd734880bd33f8b9e7fe9d1c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c4bd9483ff0241e1ba50262c547840e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_e2ffea31726a453a9cdca019132287b8",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 16.9M/16.9M [00:00<00:00, 58.1MB/s]"
}
},
- "11546fd8d68648da9c138662014585e5": {
+ "1b11d177ea0a48a8a02610bd75c28747": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1560,17 +1555,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_048952d61d4143eeb7a3064dac9fe4ac",
- "max": 128619.0,
+ "layout": "IPY_MODEL_806c96d50373405cb55decdaff0beb87",
+ "max": 2041.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_cd596207fea4447b96658e0f41eec607",
+ "style": "IPY_MODEL_7650d332f52341719a5eb957982b2ec5",
"tabbable": null,
"tooltip": null,
- "value": 128619.0
+ "value": 2041.0
}
},
- "12f57656dd504d218c054ef511da9ab4": {
+ "1be6d8277daa4bbe80673a243e21aae4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1623,7 +1618,69 @@
"width": null
}
},
- "14c9df2de7cc4e1bbaf4f1a58d5e3037": {
+ "25ac513ae27f4241ad1ccbcf43619fb3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "2e841319167a459eb388641d4cd5e887": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c7a3ca1e7df541aeadf9506c0a3674e7",
+ "max": 3201.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52bf0020d0704e1dbbd4aa8b228b2080",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 3201.0
+ }
+ },
+ "2ee6a53ec761479c81f7ff2038a361da": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "37d7645a7db944d4b6278d00e05fa543": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1676,7 +1733,7 @@
"width": null
}
},
- "1510d16cc79a49c88e3542daf3152481": {
+ "3c7d77188b844a1faf42b704bd22ab6f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -1691,42 +1748,69 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_bd56af9d1df24f959c2e27458bf28564",
- "IPY_MODEL_b83e50a6f4c94c46b81bc9ccac82d8ce",
- "IPY_MODEL_d74890bb53b24653a178d14fa9fb1027"
+ "IPY_MODEL_70c6eff397da41fe81a81c0bbf14f167",
+ "IPY_MODEL_2e841319167a459eb388641d4cd5e887",
+ "IPY_MODEL_b4f93effb7dc4dcfaf26bb88e1a46f15"
],
- "layout": "IPY_MODEL_12f57656dd504d218c054ef511da9ab4",
+ "layout": "IPY_MODEL_0ebf0e9732c34a3d965e32c7dbac0d34",
"tabbable": null,
"tooltip": null
}
},
- "186fee51c3124d608de6a5c71a289764": {
- "model_module": "@jupyter-widgets/controls",
+ "3fc3a1d86d354ab9b2fa9a5080a051fe": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_8ca4da4898bb4451994f9434ae2ffbed",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_98428c59f17b40cdb1c0a7543994cae1",
- "tabbable": null,
- "tooltip": null,
- "value": 15856877.0
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "1dc5d0b009d545d1922ea03e17fa99b3": {
+ "4c585bde93e24903a13a0903548f3788": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1744,7 +1828,7 @@
"text_color": null
}
},
- "1e7ea41fcad145359a3915227cd3a572": {
+ "4cfeeae9619248e48d66dafa2a3664c8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1759,65 +1843,54 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_50e8d183b2e146bfa57d74e4574d6bf6",
+ "layout": "IPY_MODEL_37d7645a7db944d4b6278d00e05fa543",
"placeholder": "",
- "style": "IPY_MODEL_7936b993c44f45fc8f53ff71690b204e",
+ "style": "IPY_MODEL_59ae175c1f934ee195db16da94ad290f",
"tabbable": null,
"tooltip": null,
- "value": " 15.9M/15.9M [00:00<00:00, 328MB/s]"
+ "value": "label_encoder.txt: 100%"
}
},
- "227af90915cb483c9537459db20c2dcc": {
+ "52bf0020d0704e1dbbd4aa8b228b2080": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_78b9bcb39b554c0290d9800dc940ff71",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5869d031c1004d448f247c32b8c702e1",
- "tabbable": null,
- "tooltip": null,
- "value": 2041.0
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "3740245a44544188bb5216cfbbe7c096": {
+ "548dd46a58f240de91ab69db277d11c5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ae1c35581029419bac126538cc5ba8f3",
- "IPY_MODEL_186fee51c3124d608de6a5c71a289764",
- "IPY_MODEL_1e7ea41fcad145359a3915227cd3a572"
- ],
- "layout": "IPY_MODEL_fe755d796bba4ebfa0a4fd20368887fa",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_74cfcdcf171a4cfea119d665dde4a59c",
+ "placeholder": "",
+ "style": "IPY_MODEL_2ee6a53ec761479c81f7ff2038a361da",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 2.04k/2.04k [00:00<00:00, 496kB/s]"
}
},
- "3d0bc58be6a64dbb9402e4f43247bbd9": {
+ "584afeab526d44008f9b4fb18fd1ac75": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1870,7 +1943,48 @@
"width": null
}
},
- "40d6d738f9e542e98ecc6d953d704d68": {
+ "59ae175c1f934ee195db16da94ad290f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5db1646ad442462b9e263ba9fa3b133d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_67c46d257cdd41cda65848e202d3107f",
+ "placeholder": "",
+ "style": "IPY_MODEL_76ed0234cc8e419da2f3a384f551ef0a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "embedding_model.ckpt: 100%"
+ }
+ },
+ "657aef0bec7944c7be58feb57fd80ec2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1885,15 +1999,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_ecd21cd3f9be4e8587ead71ef6eddacf",
+ "layout": "IPY_MODEL_3fc3a1d86d354ab9b2fa9a5080a051fe",
"placeholder": "",
- "style": "IPY_MODEL_a873413b3495435bb8797c848d57b59a",
+ "style": "IPY_MODEL_155bd60929d24ac3a8ec692078f3513e",
"tabbable": null,
"tooltip": null,
- "value": " 2.04k/2.04k [00:00<00:00, 508kB/s]"
+ "value": " 15.9M/15.9M [00:00<00:00, 51.8MB/s]"
}
},
- "4673aa7828d449fdb54b14aa87a8046b": {
+ "67c46d257cdd41cda65848e202d3107f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1946,7 +2060,7 @@
"width": null
}
},
- "4bdd74d6b6f54d1fb924effdb6c35e73": {
+ "67ea4eb2bd2545fdadc785cbf8ba44c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1999,31 +2113,7 @@
"width": null
}
},
- "4c68ee845d584f78b9ec889e427c9ab8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ab9f826f70f04ba3b63e2e5db1d325f2",
- "IPY_MODEL_11546fd8d68648da9c138662014585e5",
- "IPY_MODEL_b5a2a7d91c7b447f8108b8896269f607"
- ],
- "layout": "IPY_MODEL_8954d8479e4b48759b6e0dbf92041c0c",
- "tabbable": null,
- "tooltip": null
- }
- },
- "4e926992584a4181a8551035087cce4c": {
+ "6cb2674538e34f9baba02e1231e14849": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2076,23 +2166,46 @@
"width": null
}
},
- "50e8d183b2e146bfa57d74e4574d6bf6": {
- "model_module": "@jupyter-widgets/base",
+ "70c6eff397da41fe81a81c0bbf14f167": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_e0aa1e84ce9b49ed907232cd59eb37e1",
+ "placeholder": "",
+ "style": "IPY_MODEL_e973eb0b10dd4e6da5cf364123326cb0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "mean_var_norm_emb.ckpt: 100%"
+ }
+ },
+ "74cfcdcf171a4cfea119d665dde4a59c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
@@ -2129,7 +2242,41 @@
"width": null
}
},
- "54403dba12ff4f26beb5b09e37a94253": {
+ "7650d332f52341719a5eb957982b2ec5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "76ed0234cc8e419da2f3a384f551ef0a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "77ba6bc71b3d4f44bd1396982a334ea1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2145,7 +2292,7 @@
"description_width": ""
}
},
- "5869d031c1004d448f247c32b8c702e1": {
+ "7f9e27ee45b4446fbeff9c02ee346ed1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2161,7 +2308,7 @@
"description_width": ""
}
},
- "59bb523ac7f646b8b418eac0ba2650ec": {
+ "806c96d50373405cb55decdaff0beb87": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2214,7 +2361,33 @@
"width": null
}
},
- "5f72fda67a4f475ebe8560f39a8c3d76": {
+ "82356fe1c9de41ce8ef3f89987561b1f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_1be6d8277daa4bbe80673a243e21aae4",
+ "max": 15856877.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_7f9e27ee45b4446fbeff9c02ee346ed1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 15856877.0
+ }
+ },
+ "91bddb822d3547f6822cf1e700d4480e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2267,25 +2440,79 @@
"width": null
}
},
- "67850b52aee848a899a4c1cc7561c6dd": {
+ "990cce492ecb46d796bd620f612fb0e3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ae478cbdb7c042f8a143485aae0573a9",
+ "IPY_MODEL_1b11d177ea0a48a8a02610bd75c28747",
+ "IPY_MODEL_548dd46a58f240de91ab69db277d11c5"
+ ],
+ "layout": "IPY_MODEL_f6d85d6b32754601ba2665f2a3e1f1fc",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "a16643af68c44d7b9c39e17d8c9bba42": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ff2caa0ab0324ecc84d1a0c498a294af",
+ "IPY_MODEL_82356fe1c9de41ce8ef3f89987561b1f",
+ "IPY_MODEL_657aef0bec7944c7be58feb57fd80ec2"
+ ],
+ "layout": "IPY_MODEL_145802e04e1f4146a256ba00d8b160f4",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "a44e1a7f85774071bded8caf2236744f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4cfeeae9619248e48d66dafa2a3664c8",
+ "IPY_MODEL_b3d0346d8010404bbe862dcd441c2ae4",
+ "IPY_MODEL_c6dc85e29c62451ba78650f428c8d75f"
+ ],
+ "layout": "IPY_MODEL_6cb2674538e34f9baba02e1231e14849",
+ "tabbable": null,
+ "tooltip": null
}
},
- "78b9bcb39b554c0290d9800dc940ff71": {
+ "a73e4d85ddf74f999d9635155319896d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2338,7 +2565,7 @@
"width": null
}
},
- "7906a23ebb7146d593158f78421f5ed4": {
+ "ae478cbdb7c042f8a143485aae0573a9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2353,15 +2580,64 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_4e926992584a4181a8551035087cce4c",
+ "layout": "IPY_MODEL_c3587c684b4d4dc8ba0452218a4389d3",
"placeholder": "",
- "style": "IPY_MODEL_065d70114b74423d9f2fa424de1b7a1e",
+ "style": "IPY_MODEL_b7953a0d91324da8a36a215c5592c221",
"tabbable": null,
"tooltip": null,
"value": "hyperparams.yaml: 100%"
}
},
- "7936b993c44f45fc8f53ff71690b204e": {
+ "b3d0346d8010404bbe862dcd441c2ae4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_f812f3736c2d474ea8de2ca68df629a4",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e34110f3d88d43c29aa20c76497d1b20",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 128619.0
+ }
+ },
+ "b4f93effb7dc4dcfaf26bb88e1a46f15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a73e4d85ddf74f999d9635155319896d",
+ "placeholder": "",
+ "style": "IPY_MODEL_c7082dc56f6a43f18de63428367b692d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 3.20k/3.20k [00:00<00:00, 781kB/s]"
+ }
+ },
+ "b7953a0d91324da8a36a215c5592c221": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2379,7 +2655,7 @@
"text_color": null
}
},
- "8954d8479e4b48759b6e0dbf92041c0c": {
+ "c3587c684b4d4dc8ba0452218a4389d3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2432,7 +2708,7 @@
"width": null
}
},
- "8ca4da4898bb4451994f9434ae2ffbed": {
+ "c4bd9483ff0241e1ba50262c547840e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2485,75 +2761,54 @@
"width": null
}
},
- "91f8c32305604aa6ad4753866f6428a8": {
+ "c5974408d6dd4497be50a319aaa0ec3a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "98428c59f17b40cdb1c0a7543994cae1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a172e9a2a9464f0597dc89df0bc665f5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5db1646ad442462b9e263ba9fa3b133d",
+ "IPY_MODEL_d460a42388b148c7968071d406aa9dae",
+ "IPY_MODEL_175e5b7fcd734880bd33f8b9e7fe9d1c"
+ ],
+ "layout": "IPY_MODEL_f603046267864b65b4f185baeaca4111",
+ "tabbable": null,
+ "tooltip": null
}
},
- "a7376840cbcd4df89be2e35d1d83b7a7": {
+ "c6dc85e29c62451ba78650f428c8d75f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_584afeab526d44008f9b4fb18fd1ac75",
+ "placeholder": "",
+ "style": "IPY_MODEL_25ac513ae27f4241ad1ccbcf43619fb3",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 129k/129k [00:00<00:00, 957kB/s]"
}
},
- "a873413b3495435bb8797c848d57b59a": {
+ "c7082dc56f6a43f18de63428367b692d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2571,30 +2826,7 @@
"text_color": null
}
},
- "ab9f826f70f04ba3b63e2e5db1d325f2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_01d773c5fc084c74bf3898f08469f8f7",
- "placeholder": "",
- "style": "IPY_MODEL_1dc5d0b009d545d1922ea03e17fa99b3",
- "tabbable": null,
- "tooltip": null,
- "value": "label_encoder.txt: 100%"
- }
- },
- "acd3ca854a9b41b0a7e7c7c976d08dce": {
+ "c7a3ca1e7df541aeadf9506c0a3674e7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2647,53 +2879,7 @@
"width": null
}
},
- "ae1c35581029419bac126538cc5ba8f3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_59bb523ac7f646b8b418eac0ba2650ec",
- "placeholder": "",
- "style": "IPY_MODEL_91f8c32305604aa6ad4753866f6428a8",
- "tabbable": null,
- "tooltip": null,
- "value": "classifier.ckpt: 100%"
- }
- },
- "b5a2a7d91c7b447f8108b8896269f607": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_14c9df2de7cc4e1bbaf4f1a58d5e3037",
- "placeholder": "",
- "style": "IPY_MODEL_c805d0141fdb44038dfd6b1b6edf7abe",
- "tabbable": null,
- "tooltip": null,
- "value": " 129k/129k [00:00<00:00, 7.47MB/s]"
- }
- },
- "b83e50a6f4c94c46b81bc9ccac82d8ce": {
+ "d460a42388b148c7968071d406aa9dae": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2709,40 +2895,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_acd3ca854a9b41b0a7e7c7c976d08dce",
+ "layout": "IPY_MODEL_67ea4eb2bd2545fdadc785cbf8ba44c1",
"max": 16887676.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_a7376840cbcd4df89be2e35d1d83b7a7",
+ "style": "IPY_MODEL_77ba6bc71b3d4f44bd1396982a334ea1",
"tabbable": null,
"tooltip": null,
"value": 16887676.0
}
},
- "bd56af9d1df24f959c2e27458bf28564": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_3d0bc58be6a64dbb9402e4f43247bbd9",
- "placeholder": "",
- "style": "IPY_MODEL_a172e9a2a9464f0597dc89df0bc665f5",
- "tabbable": null,
- "tooltip": null,
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "c25723012a2d443ba16eb7f6c52bc3a5": {
+ "e0aa1e84ce9b49ed907232cd59eb37e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2795,33 +2958,7 @@
"width": null
}
},
- "c7c838e69efb43a2b0ac48deb78c922d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f1d6704797ff4e7da238df4899d6eb75",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_54403dba12ff4f26beb5b09e37a94253",
- "tabbable": null,
- "tooltip": null,
- "value": 3201.0
- }
- },
- "c805d0141fdb44038dfd6b1b6edf7abe": {
+ "e2ffea31726a453a9cdca019132287b8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2839,7 +2976,7 @@
"text_color": null
}
},
- "cd596207fea4447b96658e0f41eec607": {
+ "e34110f3d88d43c29aa20c76497d1b20": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -2855,77 +2992,25 @@
"description_width": ""
}
},
- "d74890bb53b24653a178d14fa9fb1027": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4673aa7828d449fdb54b14aa87a8046b",
- "placeholder": "",
- "style": "IPY_MODEL_f63a5476d3574388b856445769573334",
- "tabbable": null,
- "tooltip": null,
- "value": " 16.9M/16.9M [00:00<00:00, 194MB/s]"
- }
- },
- "d8e5131818de460ba01fb92aed10a852": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f3b0e8a956184e818936ebd0416f606e",
- "placeholder": "",
- "style": "IPY_MODEL_67850b52aee848a899a4c1cc7561c6dd",
- "tabbable": null,
- "tooltip": null,
- "value": " 3.20k/3.20k [00:00<00:00, 795kB/s]"
- }
- },
- "e4e22d23b27f43a5843b7ba91eb92b25": {
+ "e973eb0b10dd4e6da5cf364123326cb0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7906a23ebb7146d593158f78421f5ed4",
- "IPY_MODEL_227af90915cb483c9537459db20c2dcc",
- "IPY_MODEL_40d6d738f9e542e98ecc6d953d704d68"
- ],
- "layout": "IPY_MODEL_4bdd74d6b6f54d1fb924effdb6c35e73",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "ecd21cd3f9be4e8587ead71ef6eddacf": {
+ "f603046267864b65b4f185baeaca4111": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2978,7 +3063,7 @@
"width": null
}
},
- "f1d6704797ff4e7da238df4899d6eb75": {
+ "f6d85d6b32754601ba2665f2a3e1f1fc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3031,7 +3116,7 @@
"width": null
}
},
- "f3b0e8a956184e818936ebd0416f606e": {
+ "f812f3736c2d474ea8de2ca68df629a4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3084,49 +3169,7 @@
"width": null
}
},
- "f63a5476d3574388b856445769573334": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "fb4875c647a74da78ce0b565e117d890": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_fe276545fde34f708d296c6f254d81e8",
- "IPY_MODEL_c7c838e69efb43a2b0ac48deb78c922d",
- "IPY_MODEL_d8e5131818de460ba01fb92aed10a852"
- ],
- "layout": "IPY_MODEL_5f72fda67a4f475ebe8560f39a8c3d76",
- "tabbable": null,
- "tooltip": null
- }
- },
- "fe276545fde34f708d296c6f254d81e8": {
+ "ff2caa0ab0324ecc84d1a0c498a294af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -3141,65 +3184,12 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c25723012a2d443ba16eb7f6c52bc3a5",
+ "layout": "IPY_MODEL_91bddb822d3547f6822cf1e700d4480e",
"placeholder": "",
- "style": "IPY_MODEL_0c2f7ca60ab147c99ae03f759db46297",
+ "style": "IPY_MODEL_4c585bde93e24903a13a0903548f3788",
"tabbable": null,
"tooltip": null,
- "value": "mean_var_norm_emb.ckpt: 100%"
- }
- },
- "fe755d796bba4ebfa0a4fd20368887fa": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "value": "classifier.ckpt: 100%"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index 17bb19429..8c230d5d3 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:09.178246Z",
- "iopub.status.busy": "2024-06-25T23:14:09.177763Z",
- "iopub.status.idle": "2024-06-25T23:14:10.319594Z",
- "shell.execute_reply": "2024-06-25T23:14:10.319043Z"
+ "iopub.execute_input": "2024-06-27T15:40:11.815285Z",
+ "iopub.status.busy": "2024-06-27T15:40:11.815110Z",
+ "iopub.status.idle": "2024-06-27T15:40:12.989400Z",
+ "shell.execute_reply": "2024-06-27T15:40:12.988851Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.322187Z",
- "iopub.status.busy": "2024-06-25T23:14:10.321743Z",
- "iopub.status.idle": "2024-06-25T23:14:10.324748Z",
- "shell.execute_reply": "2024-06-25T23:14:10.324303Z"
+ "iopub.execute_input": "2024-06-27T15:40:12.991789Z",
+ "iopub.status.busy": "2024-06-27T15:40:12.991513Z",
+ "iopub.status.idle": "2024-06-27T15:40:12.994521Z",
+ "shell.execute_reply": "2024-06-27T15:40:12.993986Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.326836Z",
- "iopub.status.busy": "2024-06-25T23:14:10.326547Z",
- "iopub.status.idle": "2024-06-25T23:14:10.335582Z",
- "shell.execute_reply": "2024-06-25T23:14:10.335001Z"
+ "iopub.execute_input": "2024-06-27T15:40:12.996583Z",
+ "iopub.status.busy": "2024-06-27T15:40:12.996408Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.004733Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.004294Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.337605Z",
- "iopub.status.busy": "2024-06-25T23:14:10.337298Z",
- "iopub.status.idle": "2024-06-25T23:14:10.342294Z",
- "shell.execute_reply": "2024-06-25T23:14:10.341736Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.006788Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.006454Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.011412Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.010879Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.344309Z",
- "iopub.status.busy": "2024-06-25T23:14:10.344016Z",
- "iopub.status.idle": "2024-06-25T23:14:10.523981Z",
- "shell.execute_reply": "2024-06-25T23:14:10.523494Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.013585Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.013287Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.197944Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.197322Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.526345Z",
- "iopub.status.busy": "2024-06-25T23:14:10.525993Z",
- "iopub.status.idle": "2024-06-25T23:14:10.892857Z",
- "shell.execute_reply": "2024-06-25T23:14:10.892276Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.200559Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.200177Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.567580Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.566914Z"
}
},
"outputs": [
@@ -569,10 +569,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.895029Z",
- "iopub.status.busy": "2024-06-25T23:14:10.894803Z",
- "iopub.status.idle": "2024-06-25T23:14:10.917811Z",
- "shell.execute_reply": "2024-06-25T23:14:10.917259Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.569984Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.569600Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.593638Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.593153Z"
}
},
"outputs": [],
@@ -608,10 +608,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.920262Z",
- "iopub.status.busy": "2024-06-25T23:14:10.919694Z",
- "iopub.status.idle": "2024-06-25T23:14:10.930815Z",
- "shell.execute_reply": "2024-06-25T23:14:10.930406Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.595941Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.595602Z",
+ "iopub.status.idle": "2024-06-27T15:40:13.606894Z",
+ "shell.execute_reply": "2024-06-27T15:40:13.606335Z"
}
},
"outputs": [],
@@ -642,10 +642,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:10.932988Z",
- "iopub.status.busy": "2024-06-25T23:14:10.932566Z",
- "iopub.status.idle": "2024-06-25T23:14:12.886828Z",
- "shell.execute_reply": "2024-06-25T23:14:12.886199Z"
+ "iopub.execute_input": "2024-06-27T15:40:13.609056Z",
+ "iopub.status.busy": "2024-06-27T15:40:13.608729Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.592465Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.591848Z"
}
},
"outputs": [
@@ -714,10 +714,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.889582Z",
- "iopub.status.busy": "2024-06-25T23:14:12.888947Z",
- "iopub.status.idle": "2024-06-25T23:14:12.909728Z",
- "shell.execute_reply": "2024-06-25T23:14:12.909257Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.594903Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.594448Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.615370Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.614933Z"
}
},
"outputs": [
@@ -830,10 +830,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.911863Z",
- "iopub.status.busy": "2024-06-25T23:14:12.911538Z",
- "iopub.status.idle": "2024-06-25T23:14:12.929776Z",
- "shell.execute_reply": "2024-06-25T23:14:12.929180Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.617343Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.617165Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.635227Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.634758Z"
}
},
"outputs": [
@@ -918,18 +918,6 @@
"130 True 0.000002 [129] 4.463180e-07\n",
"51 False 0.161148 [] 3.859087e-02\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n",
- " warnings.warn(\n",
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n",
- " warnings.warn(\n",
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:357: UserWarning: Overwriting key outlier in self.info\n",
- " warnings.warn(f\"Overwriting key {issue_name} in self.info\")\n"
- ]
}
],
"source": [
@@ -949,10 +937,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.931746Z",
- "iopub.status.busy": "2024-06-25T23:14:12.931414Z",
- "iopub.status.idle": "2024-06-25T23:14:12.945573Z",
- "shell.execute_reply": "2024-06-25T23:14:12.945130Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.637113Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.636941Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.651444Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.650988Z"
}
},
"outputs": [
@@ -1087,17 +1075,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.947591Z",
- "iopub.status.busy": "2024-06-25T23:14:12.947261Z",
- "iopub.status.idle": "2024-06-25T23:14:12.966119Z",
- "shell.execute_reply": "2024-06-25T23:14:12.965554Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.653563Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.653224Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.673590Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.673046Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a7755a803c3a40ef93dda582347c1c91",
+ "model_id": "6ac1d728bcaa467daf26b076a33832e5",
"version_major": 2,
"version_minor": 0
},
@@ -1133,10 +1121,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.967941Z",
- "iopub.status.busy": "2024-06-25T23:14:12.967765Z",
- "iopub.status.idle": "2024-06-25T23:14:12.982515Z",
- "shell.execute_reply": "2024-06-25T23:14:12.981981Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.676323Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.675948Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.690875Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.690341Z"
}
},
"outputs": [
@@ -1259,10 +1247,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.984568Z",
- "iopub.status.busy": "2024-06-25T23:14:12.984190Z",
- "iopub.status.idle": "2024-06-25T23:14:12.989904Z",
- "shell.execute_reply": "2024-06-25T23:14:12.989416Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.692983Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.692564Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.698353Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.697834Z"
}
},
"outputs": [],
@@ -1319,10 +1307,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:12.991867Z",
- "iopub.status.busy": "2024-06-25T23:14:12.991560Z",
- "iopub.status.idle": "2024-06-25T23:14:13.010114Z",
- "shell.execute_reply": "2024-06-25T23:14:13.009557Z"
+ "iopub.execute_input": "2024-06-27T15:40:15.700485Z",
+ "iopub.status.busy": "2024-06-27T15:40:15.700087Z",
+ "iopub.status.idle": "2024-06-27T15:40:15.719110Z",
+ "shell.execute_reply": "2024-06-27T15:40:15.718676Z"
}
},
"outputs": [
@@ -1459,7 +1447,30 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "1300012c40154e1da99babb9fe20b16e": {
+ "162e0754e0084b488635a0e6d611e292": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5d66f086986641999dd8ae4704c0e9a4",
+ "placeholder": "",
+ "style": "IPY_MODEL_4b690fb481ff48e9871f020aa9767937",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Saving the dataset (1/1 shards): 100%"
+ }
+ },
+ "1c7f90eae33f48c9be8d5f3df3f60a03": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1512,30 +1523,25 @@
"width": null
}
},
- "261be93bad834528939faa8054552fd1": {
+ "4b690fb481ff48e9871f020aa9767937": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_2b2ed3b3a7ae4284a9bdf276850e3b28",
- "placeholder": "",
- "style": "IPY_MODEL_ce12a71d028f4bb7883a05d9bc842498",
- "tabbable": null,
- "tooltip": null,
- "value": "Saving the dataset (1/1 shards): 100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "2b2ed3b3a7ae4284a9bdf276850e3b28": {
+ "5d66f086986641999dd8ae4704c0e9a4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1588,88 +1594,7 @@
"width": null
}
},
- "6489f0184cc74d83bb9ddc2889d4a3e0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_1300012c40154e1da99babb9fe20b16e",
- "placeholder": "",
- "style": "IPY_MODEL_a579e009a0944dd19902993fdacfd504",
- "tabbable": null,
- "tooltip": null,
- "value": " 132/132 [00:00<00:00, 13503.61 examples/s]"
- }
- },
- "781b877c2bbc46b7969db8529c1eb5c3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "a579e009a0944dd19902993fdacfd504": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "a7755a803c3a40ef93dda582347c1c91": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_261be93bad834528939faa8054552fd1",
- "IPY_MODEL_f70f2f9233844bc59865eab3649c0e10",
- "IPY_MODEL_6489f0184cc74d83bb9ddc2889d4a3e0"
- ],
- "layout": "IPY_MODEL_c6f6f871cbae4bd6b342d6cfded8728e",
- "tabbable": null,
- "tooltip": null
- }
- },
- "c6f6f871cbae4bd6b342d6cfded8728e": {
+ "63a5476a41dc4f07a300d89a3ff5240f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1722,25 +1647,31 @@
"width": null
}
},
- "ce12a71d028f4bb7883a05d9bc842498": {
+ "6ac1d728bcaa467daf26b076a33832e5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_162e0754e0084b488635a0e6d611e292",
+ "IPY_MODEL_ef9b6c163aa2443184feaabdd3c8f80f",
+ "IPY_MODEL_9aebe37d44914173be64d4c9ca68f326"
+ ],
+ "layout": "IPY_MODEL_92099b652f874db6b407e77dc978083c",
+ "tabbable": null,
+ "tooltip": null
}
},
- "daa1004e74fa4197b88715988591c621": {
+ "92099b652f874db6b407e77dc978083c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1793,7 +1724,64 @@
"width": null
}
},
- "f70f2f9233844bc59865eab3649c0e10": {
+ "9aebe37d44914173be64d4c9ca68f326": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_1c7f90eae33f48c9be8d5f3df3f60a03",
+ "placeholder": "",
+ "style": "IPY_MODEL_b594843483864af3bfc5e054404a40c0",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 132/132 [00:00<00:00, 12145.40 examples/s]"
+ }
+ },
+ "b594843483864af3bfc5e054404a40c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c91d4d01810d4b2e9e81bb9595425ce7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ef9b6c163aa2443184feaabdd3c8f80f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1809,11 +1797,11 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_daa1004e74fa4197b88715988591c621",
+ "layout": "IPY_MODEL_63a5476a41dc4f07a300d89a3ff5240f",
"max": 132.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_781b877c2bbc46b7969db8529c1eb5c3",
+ "style": "IPY_MODEL_c91d4d01810d4b2e9e81bb9595425ce7",
"tabbable": null,
"tooltip": null,
"value": 132.0
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 4fb163767..4b7588207 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:15.711188Z",
- "iopub.status.busy": "2024-06-25T23:14:15.711012Z",
- "iopub.status.idle": "2024-06-25T23:14:16.870873Z",
- "shell.execute_reply": "2024-06-25T23:14:16.870268Z"
+ "iopub.execute_input": "2024-06-27T15:40:18.510907Z",
+ "iopub.status.busy": "2024-06-27T15:40:18.510569Z",
+ "iopub.status.idle": "2024-06-27T15:40:19.673840Z",
+ "shell.execute_reply": "2024-06-27T15:40:19.673269Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:16.873481Z",
- "iopub.status.busy": "2024-06-25T23:14:16.873232Z",
- "iopub.status.idle": "2024-06-25T23:14:16.876287Z",
- "shell.execute_reply": "2024-06-25T23:14:16.875762Z"
+ "iopub.execute_input": "2024-06-27T15:40:19.676218Z",
+ "iopub.status.busy": "2024-06-27T15:40:19.675956Z",
+ "iopub.status.idle": "2024-06-27T15:40:19.678853Z",
+ "shell.execute_reply": "2024-06-27T15:40:19.678422Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:16.878379Z",
- "iopub.status.busy": "2024-06-25T23:14:16.878075Z",
- "iopub.status.idle": "2024-06-25T23:14:16.887427Z",
- "shell.execute_reply": "2024-06-25T23:14:16.886901Z"
+ "iopub.execute_input": "2024-06-27T15:40:19.680895Z",
+ "iopub.status.busy": "2024-06-27T15:40:19.680636Z",
+ "iopub.status.idle": "2024-06-27T15:40:19.689587Z",
+ "shell.execute_reply": "2024-06-27T15:40:19.689155Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:16.889377Z",
- "iopub.status.busy": "2024-06-25T23:14:16.889034Z",
- "iopub.status.idle": "2024-06-25T23:14:16.893463Z",
- "shell.execute_reply": "2024-06-25T23:14:16.893025Z"
+ "iopub.execute_input": "2024-06-27T15:40:19.691676Z",
+ "iopub.status.busy": "2024-06-27T15:40:19.691286Z",
+ "iopub.status.idle": "2024-06-27T15:40:19.696059Z",
+ "shell.execute_reply": "2024-06-27T15:40:19.695657Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:16.895454Z",
- "iopub.status.busy": "2024-06-25T23:14:16.895124Z",
- "iopub.status.idle": "2024-06-25T23:14:17.076668Z",
- "shell.execute_reply": "2024-06-25T23:14:17.076135Z"
+ "iopub.execute_input": "2024-06-27T15:40:19.698308Z",
+ "iopub.status.busy": "2024-06-27T15:40:19.697913Z",
+ "iopub.status.idle": "2024-06-27T15:40:19.880985Z",
+ "shell.execute_reply": "2024-06-27T15:40:19.880426Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:17.079016Z",
- "iopub.status.busy": "2024-06-25T23:14:17.078687Z",
- "iopub.status.idle": "2024-06-25T23:14:17.444945Z",
- "shell.execute_reply": "2024-06-25T23:14:17.444376Z"
+ "iopub.execute_input": "2024-06-27T15:40:19.883569Z",
+ "iopub.status.busy": "2024-06-27T15:40:19.883156Z",
+ "iopub.status.idle": "2024-06-27T15:40:20.200344Z",
+ "shell.execute_reply": "2024-06-27T15:40:20.199741Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:17.447239Z",
- "iopub.status.busy": "2024-06-25T23:14:17.446903Z",
- "iopub.status.idle": "2024-06-25T23:14:17.449525Z",
- "shell.execute_reply": "2024-06-25T23:14:17.449111Z"
+ "iopub.execute_input": "2024-06-27T15:40:20.202400Z",
+ "iopub.status.busy": "2024-06-27T15:40:20.202212Z",
+ "iopub.status.idle": "2024-06-27T15:40:20.205007Z",
+ "shell.execute_reply": "2024-06-27T15:40:20.204573Z"
}
},
"outputs": [],
@@ -602,22 +602,13 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:17.451586Z",
- "iopub.status.busy": "2024-06-25T23:14:17.451263Z",
- "iopub.status.idle": "2024-06-25T23:14:17.486312Z",
- "shell.execute_reply": "2024-06-25T23:14:17.485793Z"
+ "iopub.execute_input": "2024-06-27T15:40:20.206898Z",
+ "iopub.status.busy": "2024-06-27T15:40:20.206724Z",
+ "iopub.status.idle": "2024-06-27T15:40:20.240804Z",
+ "shell.execute_reply": "2024-06-27T15:40:20.240385Z"
}
},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:776: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"model = LogisticRegression()\n",
"pred_probs = cross_val_predict(\n",
@@ -647,10 +638,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:17.488380Z",
- "iopub.status.busy": "2024-06-25T23:14:17.488048Z",
- "iopub.status.idle": "2024-06-25T23:14:19.486184Z",
- "shell.execute_reply": "2024-06-25T23:14:19.485493Z"
+ "iopub.execute_input": "2024-06-27T15:40:20.242677Z",
+ "iopub.status.busy": "2024-06-27T15:40:20.242500Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.266097Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.265435Z"
}
},
"outputs": [
@@ -662,14 +653,6 @@
"Finding label issues ...\n"
]
},
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/filter.py:904: UserWarning: May not flag all label issues in class: 2, it has too few examples (see `min_examples_per_class` argument)\n",
- " warnings.warn(\n"
- ]
- },
{
"name": "stdout",
"output_type": "stream",
@@ -682,14 +665,6 @@
"\n",
"Audit complete. 30 issues found in the dataset.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
}
],
"source": [
@@ -710,10 +685,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.488814Z",
- "iopub.status.busy": "2024-06-25T23:14:19.488306Z",
- "iopub.status.idle": "2024-06-25T23:14:19.506666Z",
- "shell.execute_reply": "2024-06-25T23:14:19.506238Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.268793Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.268136Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.286425Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.285883Z"
}
},
"outputs": [
@@ -846,10 +821,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.508882Z",
- "iopub.status.busy": "2024-06-25T23:14:19.508469Z",
- "iopub.status.idle": "2024-06-25T23:14:19.514832Z",
- "shell.execute_reply": "2024-06-25T23:14:19.514311Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.288516Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.288210Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.294611Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.294092Z"
}
},
"outputs": [
@@ -960,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.516791Z",
- "iopub.status.busy": "2024-06-25T23:14:19.516482Z",
- "iopub.status.idle": "2024-06-25T23:14:19.522090Z",
- "shell.execute_reply": "2024-06-25T23:14:19.521611Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.296776Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.296476Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.301964Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.301404Z"
}
},
"outputs": [
@@ -1030,10 +1005,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.524150Z",
- "iopub.status.busy": "2024-06-25T23:14:19.523753Z",
- "iopub.status.idle": "2024-06-25T23:14:19.533902Z",
- "shell.execute_reply": "2024-06-25T23:14:19.533440Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.303895Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.303724Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.314345Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.313828Z"
}
},
"outputs": [
@@ -1225,10 +1200,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.535870Z",
- "iopub.status.busy": "2024-06-25T23:14:19.535545Z",
- "iopub.status.idle": "2024-06-25T23:14:19.544125Z",
- "shell.execute_reply": "2024-06-25T23:14:19.543654Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.316236Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.316064Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.325038Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.324559Z"
}
},
"outputs": [
@@ -1344,10 +1319,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.546177Z",
- "iopub.status.busy": "2024-06-25T23:14:19.545853Z",
- "iopub.status.idle": "2024-06-25T23:14:19.552700Z",
- "shell.execute_reply": "2024-06-25T23:14:19.552255Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.327062Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.326737Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.333539Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.332994Z"
},
"scrolled": true
},
@@ -1472,10 +1447,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.554580Z",
- "iopub.status.busy": "2024-06-25T23:14:19.554407Z",
- "iopub.status.idle": "2024-06-25T23:14:19.563718Z",
- "shell.execute_reply": "2024-06-25T23:14:19.563190Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.335625Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.335309Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.344369Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.343828Z"
}
},
"outputs": [
@@ -1578,10 +1553,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:19.565768Z",
- "iopub.status.busy": "2024-06-25T23:14:19.565442Z",
- "iopub.status.idle": "2024-06-25T23:14:19.576977Z",
- "shell.execute_reply": "2024-06-25T23:14:19.576554Z"
+ "iopub.execute_input": "2024-06-27T15:40:22.346419Z",
+ "iopub.status.busy": "2024-06-27T15:40:22.346109Z",
+ "iopub.status.idle": "2024-06-27T15:40:22.357852Z",
+ "shell.execute_reply": "2024-06-27T15:40:22.357421Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb
index da3ecdeb8..38aca061f 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:22.349033Z",
- "iopub.status.busy": "2024-06-25T23:14:22.348862Z",
- "iopub.status.idle": "2024-06-25T23:14:25.155777Z",
- "shell.execute_reply": "2024-06-25T23:14:25.155231Z"
+ "iopub.execute_input": "2024-06-27T15:40:25.001578Z",
+ "iopub.status.busy": "2024-06-27T15:40:25.001401Z",
+ "iopub.status.idle": "2024-06-27T15:40:27.866577Z",
+ "shell.execute_reply": "2024-06-27T15:40:27.866047Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:25.158288Z",
- "iopub.status.busy": "2024-06-25T23:14:25.158017Z",
- "iopub.status.idle": "2024-06-25T23:14:25.161499Z",
- "shell.execute_reply": "2024-06-25T23:14:25.161043Z"
+ "iopub.execute_input": "2024-06-27T15:40:27.869664Z",
+ "iopub.status.busy": "2024-06-27T15:40:27.869112Z",
+ "iopub.status.idle": "2024-06-27T15:40:27.873387Z",
+ "shell.execute_reply": "2024-06-27T15:40:27.872879Z"
}
},
"outputs": [],
@@ -152,27 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:25.163549Z",
- "iopub.status.busy": "2024-06-25T23:14:25.163223Z",
- "iopub.status.idle": "2024-06-25T23:14:35.757240Z",
- "shell.execute_reply": "2024-06-25T23:14:35.756685Z"
+ "iopub.execute_input": "2024-06-27T15:40:27.875682Z",
+ "iopub.status.busy": "2024-06-27T15:40:27.875354Z",
+ "iopub.status.idle": "2024-06-27T15:40:42.283432Z",
+ "shell.execute_reply": "2024-06-27T15:40:42.282878Z"
}
},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/datasets/load.py:1486: FutureWarning: The repository for fashion_mnist contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/fashion_mnist\n",
- "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
- "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "99fb59566db2452bab382261d05e2879",
+ "model_id": "f6bff3421ffe4305b801978e8849eb8c",
"version_major": 2,
"version_minor": 0
},
@@ -186,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cacaca4358c34e93a46a3e2019d188d4",
+ "model_id": "32a70da0aa9b42359a5f17bf665b81ad",
"version_major": 2,
"version_minor": 0
},
@@ -200,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "46c5f1e4a9ca403d83a2aa33da63b600",
+ "model_id": "126a726b8a0445da91b339235e96dcad",
"version_major": 2,
"version_minor": 0
},
@@ -214,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cc7010cd50844e48a3db713a6ea5f850",
+ "model_id": "5692b6450179456c853c8bda7c713903",
"version_major": 2,
"version_minor": 0
},
@@ -228,7 +218,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1e806f052f23419ba6ec80aa76644ed5",
+ "model_id": "570e337efa4b4edea75f724a0413e1eb",
"version_major": 2,
"version_minor": 0
},
@@ -242,7 +232,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3590fcc9756749e0b9130b8809114216",
+ "model_id": "acd955b18cd54e8e9525c5e97b625466",
"version_major": 2,
"version_minor": 0
},
@@ -256,7 +246,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "489746a2a7db4406b7ebfd5f2a155361",
+ "model_id": "40ca0cd146da417fb9d146f6a0460568",
"version_major": 2,
"version_minor": 0
},
@@ -270,7 +260,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b9c41de7ac0442aabfb15bbf3b5308c8",
+ "model_id": "9a62dbed8c0e414aba4d919f9a3b1266",
"version_major": 2,
"version_minor": 0
},
@@ -312,10 +302,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:35.759372Z",
- "iopub.status.busy": "2024-06-25T23:14:35.759148Z",
- "iopub.status.idle": "2024-06-25T23:14:35.763037Z",
- "shell.execute_reply": "2024-06-25T23:14:35.762503Z"
+ "iopub.execute_input": "2024-06-27T15:40:42.285586Z",
+ "iopub.status.busy": "2024-06-27T15:40:42.285388Z",
+ "iopub.status.idle": "2024-06-27T15:40:42.289192Z",
+ "shell.execute_reply": "2024-06-27T15:40:42.288724Z"
}
},
"outputs": [
@@ -340,17 +330,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:35.765199Z",
- "iopub.status.busy": "2024-06-25T23:14:35.764868Z",
- "iopub.status.idle": "2024-06-25T23:14:46.667044Z",
- "shell.execute_reply": "2024-06-25T23:14:46.666518Z"
+ "iopub.execute_input": "2024-06-27T15:40:42.291329Z",
+ "iopub.status.busy": "2024-06-27T15:40:42.290912Z",
+ "iopub.status.idle": "2024-06-27T15:40:53.511736Z",
+ "shell.execute_reply": "2024-06-27T15:40:53.511208Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e075f5bd416a447eb67433e0d225370f",
+ "model_id": "e616ea91cf69498784ed469d8d9c5d56",
"version_major": 2,
"version_minor": 0
},
@@ -388,10 +378,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:46.669519Z",
- "iopub.status.busy": "2024-06-25T23:14:46.669228Z",
- "iopub.status.idle": "2024-06-25T23:15:05.072765Z",
- "shell.execute_reply": "2024-06-25T23:15:05.072224Z"
+ "iopub.execute_input": "2024-06-27T15:40:53.514345Z",
+ "iopub.status.busy": "2024-06-27T15:40:53.514047Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.376798Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.376239Z"
}
},
"outputs": [],
@@ -424,10 +414,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.075378Z",
- "iopub.status.busy": "2024-06-25T23:15:05.075000Z",
- "iopub.status.idle": "2024-06-25T23:15:05.080668Z",
- "shell.execute_reply": "2024-06-25T23:15:05.080229Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.379517Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.379127Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.384918Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.384491Z"
}
},
"outputs": [],
@@ -465,10 +455,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.082696Z",
- "iopub.status.busy": "2024-06-25T23:15:05.082377Z",
- "iopub.status.idle": "2024-06-25T23:15:05.086277Z",
- "shell.execute_reply": "2024-06-25T23:15:05.085865Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.386874Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.386562Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.390744Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.390228Z"
},
"nbsphinx": "hidden"
},
@@ -605,10 +595,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.088252Z",
- "iopub.status.busy": "2024-06-25T23:15:05.087933Z",
- "iopub.status.idle": "2024-06-25T23:15:05.096769Z",
- "shell.execute_reply": "2024-06-25T23:15:05.096319Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.392789Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.392619Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.401333Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.400906Z"
},
"nbsphinx": "hidden"
},
@@ -733,10 +723,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.098773Z",
- "iopub.status.busy": "2024-06-25T23:15:05.098471Z",
- "iopub.status.idle": "2024-06-25T23:15:05.125306Z",
- "shell.execute_reply": "2024-06-25T23:15:05.124855Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.403336Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.403016Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.431428Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.430968Z"
}
},
"outputs": [],
@@ -773,10 +763,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.127482Z",
- "iopub.status.busy": "2024-06-25T23:15:05.127151Z",
- "iopub.status.idle": "2024-06-25T23:15:37.033092Z",
- "shell.execute_reply": "2024-06-25T23:15:37.032511Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.433579Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.433263Z",
+ "iopub.status.idle": "2024-06-27T15:41:43.942353Z",
+ "shell.execute_reply": "2024-06-27T15:41:43.941537Z"
}
},
"outputs": [
@@ -792,21 +782,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.649\n"
+ "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.871\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.481\n",
+ "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.594\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8835da69dbeb4826a96baa0561232a18",
+ "model_id": "68e3d0ba542f4dbeb8c6a0825b907d49",
"version_major": 2,
"version_minor": 0
},
@@ -827,7 +817,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1141e88c1cd549c1ad36f5867b926978",
+ "model_id": "43d72b9736c74a1ca37c68dd80b5fda9",
"version_major": 2,
"version_minor": 0
},
@@ -850,21 +840,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.663\n"
+ "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.845\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.663\n",
+ "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.415\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2a3f5349b34148209445198c9ae64559",
+ "model_id": "d204f6cd3d4946408d7f8da6c520e7d5",
"version_major": 2,
"version_minor": 0
},
@@ -885,7 +875,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2c1834764c78450699f4a69ba292fe8e",
+ "model_id": "5a7640261eb640c6adc4bf358876b135",
"version_major": 2,
"version_minor": 0
},
@@ -908,21 +898,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.680\n"
+ "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.936\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.450\n",
+ "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.512\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "02ef28fe5e5647e49f15e9889ac88c8f",
+ "model_id": "e3b81984ecf6429d82760070b58a79a2",
"version_major": 2,
"version_minor": 0
},
@@ -943,7 +933,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ebc081ac7cef42f58f0c46bdca672b27",
+ "model_id": "fa5b88ba2d5f4e2890a86a132006ee49",
"version_major": 2,
"version_minor": 0
},
@@ -1022,10 +1012,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.035751Z",
- "iopub.status.busy": "2024-06-25T23:15:37.035236Z",
- "iopub.status.idle": "2024-06-25T23:15:37.049525Z",
- "shell.execute_reply": "2024-06-25T23:15:37.049035Z"
+ "iopub.execute_input": "2024-06-27T15:41:43.944871Z",
+ "iopub.status.busy": "2024-06-27T15:41:43.944476Z",
+ "iopub.status.idle": "2024-06-27T15:41:43.958369Z",
+ "shell.execute_reply": "2024-06-27T15:41:43.957946Z"
}
},
"outputs": [],
@@ -1050,10 +1040,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.051460Z",
- "iopub.status.busy": "2024-06-25T23:15:37.051284Z",
- "iopub.status.idle": "2024-06-25T23:15:37.533678Z",
- "shell.execute_reply": "2024-06-25T23:15:37.533181Z"
+ "iopub.execute_input": "2024-06-27T15:41:43.960372Z",
+ "iopub.status.busy": "2024-06-27T15:41:43.959983Z",
+ "iopub.status.idle": "2024-06-27T15:41:44.421845Z",
+ "shell.execute_reply": "2024-06-27T15:41:44.421194Z"
}
},
"outputs": [],
@@ -1073,10 +1063,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.536010Z",
- "iopub.status.busy": "2024-06-25T23:15:37.535826Z",
- "iopub.status.idle": "2024-06-25T23:17:13.081610Z",
- "shell.execute_reply": "2024-06-25T23:17:13.080989Z"
+ "iopub.execute_input": "2024-06-27T15:41:44.424353Z",
+ "iopub.status.busy": "2024-06-27T15:41:44.424167Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.061556Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.060943Z"
}
},
"outputs": [
@@ -1112,18 +1102,10 @@
"Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n"
]
},
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "55c0a386d760485f92009bb75259396b",
+ "model_id": "bcbd871e719b4ad2aabe57836da305b9",
"version_major": 2,
"version_minor": 0
},
@@ -1162,10 +1144,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.084039Z",
- "iopub.status.busy": "2024-06-25T23:17:13.083667Z",
- "iopub.status.idle": "2024-06-25T23:17:13.530568Z",
- "shell.execute_reply": "2024-06-25T23:17:13.530038Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.064200Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.063532Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.524964Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.524405Z"
}
},
"outputs": [
@@ -1311,10 +1293,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.532958Z",
- "iopub.status.busy": "2024-06-25T23:17:13.532616Z",
- "iopub.status.idle": "2024-06-25T23:17:13.595525Z",
- "shell.execute_reply": "2024-06-25T23:17:13.594969Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.527621Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.527216Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.589216Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.588613Z"
}
},
"outputs": [
@@ -1418,10 +1400,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.597922Z",
- "iopub.status.busy": "2024-06-25T23:17:13.597476Z",
- "iopub.status.idle": "2024-06-25T23:17:13.606785Z",
- "shell.execute_reply": "2024-06-25T23:17:13.606218Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.591599Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.591201Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.600770Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.600354Z"
}
},
"outputs": [
@@ -1551,10 +1533,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.609099Z",
- "iopub.status.busy": "2024-06-25T23:17:13.608903Z",
- "iopub.status.idle": "2024-06-25T23:17:13.613602Z",
- "shell.execute_reply": "2024-06-25T23:17:13.613147Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.602892Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.602563Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.607362Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.606903Z"
},
"nbsphinx": "hidden"
},
@@ -1600,10 +1582,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.615408Z",
- "iopub.status.busy": "2024-06-25T23:17:13.615233Z",
- "iopub.status.idle": "2024-06-25T23:17:14.118370Z",
- "shell.execute_reply": "2024-06-25T23:17:14.117787Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.609426Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.608985Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.081442Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.080884Z"
}
},
"outputs": [
@@ -1638,10 +1620,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.120491Z",
- "iopub.status.busy": "2024-06-25T23:17:14.120304Z",
- "iopub.status.idle": "2024-06-25T23:17:14.128885Z",
- "shell.execute_reply": "2024-06-25T23:17:14.128442Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.083743Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.083562Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.092122Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.091588Z"
}
},
"outputs": [
@@ -1808,10 +1790,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.131053Z",
- "iopub.status.busy": "2024-06-25T23:17:14.130639Z",
- "iopub.status.idle": "2024-06-25T23:17:14.433754Z",
- "shell.execute_reply": "2024-06-25T23:17:14.433138Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.094350Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.093931Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.101089Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.100516Z"
},
"nbsphinx": "hidden"
},
@@ -1887,10 +1869,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.437185Z",
- "iopub.status.busy": "2024-06-25T23:17:14.436581Z",
- "iopub.status.idle": "2024-06-25T23:17:14.910179Z",
- "shell.execute_reply": "2024-06-25T23:17:14.909590Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.103083Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.102690Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.862069Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.861441Z"
}
},
"outputs": [
@@ -1927,10 +1909,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.912393Z",
- "iopub.status.busy": "2024-06-25T23:17:14.912024Z",
- "iopub.status.idle": "2024-06-25T23:17:14.927515Z",
- "shell.execute_reply": "2024-06-25T23:17:14.926933Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.864339Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.864043Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.879510Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.879007Z"
}
},
"outputs": [
@@ -2087,10 +2069,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.929547Z",
- "iopub.status.busy": "2024-06-25T23:17:14.929372Z",
- "iopub.status.idle": "2024-06-25T23:17:14.935923Z",
- "shell.execute_reply": "2024-06-25T23:17:14.935427Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.881757Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.881295Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.886969Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.886435Z"
},
"nbsphinx": "hidden"
},
@@ -2135,10 +2117,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.937944Z",
- "iopub.status.busy": "2024-06-25T23:17:14.937612Z",
- "iopub.status.idle": "2024-06-25T23:17:15.400691Z",
- "shell.execute_reply": "2024-06-25T23:17:15.399712Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.888928Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.888635Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.356645Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.355700Z"
}
},
"outputs": [
@@ -2220,10 +2202,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.403380Z",
- "iopub.status.busy": "2024-06-25T23:17:15.403170Z",
- "iopub.status.idle": "2024-06-25T23:17:15.412375Z",
- "shell.execute_reply": "2024-06-25T23:17:15.411801Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.359134Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.358923Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.368538Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.367969Z"
}
},
"outputs": [
@@ -2351,10 +2333,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.414938Z",
- "iopub.status.busy": "2024-06-25T23:17:15.414744Z",
- "iopub.status.idle": "2024-06-25T23:17:15.420451Z",
- "shell.execute_reply": "2024-06-25T23:17:15.419881Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.370975Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.370626Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.376432Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.375942Z"
},
"nbsphinx": "hidden"
},
@@ -2391,10 +2373,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.422902Z",
- "iopub.status.busy": "2024-06-25T23:17:15.422710Z",
- "iopub.status.idle": "2024-06-25T23:17:15.624779Z",
- "shell.execute_reply": "2024-06-25T23:17:15.624291Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.378787Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.378307Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.579346Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.578743Z"
}
},
"outputs": [
@@ -2436,10 +2418,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.627227Z",
- "iopub.status.busy": "2024-06-25T23:17:15.626865Z",
- "iopub.status.idle": "2024-06-25T23:17:15.634605Z",
- "shell.execute_reply": "2024-06-25T23:17:15.634166Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.581679Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.581319Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.589513Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.589053Z"
}
},
"outputs": [
@@ -2464,47 +2446,47 @@
" \n",
" \n",
" \n",
- " low_information_score \n",
" is_low_information_issue \n",
+ " low_information_score \n",
" \n",
" \n",
"
\n",
" \n",
" 53050 \n",
- " 0.067975 \n",
" True \n",
+ " 0.067975 \n",
" \n",
" \n",
" 40875 \n",
- " 0.089929 \n",
" True \n",
+ " 0.089929 \n",
" \n",
" \n",
" 9594 \n",
- " 0.092601 \n",
" True \n",
+ " 0.092601 \n",
" \n",
" \n",
" 34825 \n",
- " 0.107744 \n",
" True \n",
+ " 0.107744 \n",
" \n",
" \n",
" 37530 \n",
- " 0.108516 \n",
" True \n",
+ " 0.108516 \n",
" \n",
" \n",
"\n",
""
],
"text/plain": [
- " low_information_score is_low_information_issue\n",
- "53050 0.067975 True\n",
- "40875 0.089929 True\n",
- "9594 0.092601 True\n",
- "34825 0.107744 True\n",
- "37530 0.108516 True"
+ " is_low_information_issue low_information_score\n",
+ "53050 True 0.067975\n",
+ "40875 True 0.089929\n",
+ "9594 True 0.092601\n",
+ "34825 True 0.107744\n",
+ "37530 True 0.108516"
]
},
"execution_count": 29,
@@ -2525,10 +2507,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.636681Z",
- "iopub.status.busy": "2024-06-25T23:17:15.636363Z",
- "iopub.status.idle": "2024-06-25T23:17:15.834587Z",
- "shell.execute_reply": "2024-06-25T23:17:15.834003Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.591459Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.591165Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.764728Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.764122Z"
}
},
"outputs": [
@@ -2568,10 +2550,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.836769Z",
- "iopub.status.busy": "2024-06-25T23:17:15.836460Z",
- "iopub.status.idle": "2024-06-25T23:17:15.840847Z",
- "shell.execute_reply": "2024-06-25T23:17:15.840296Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.767171Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.766766Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.771152Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.770672Z"
},
"nbsphinx": "hidden"
},
@@ -2608,7 +2590,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "003b69c44f834dd6bd767bd85d0282c1": {
+ "011860ddb3ad4e8ba884381518d5ced9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2626,7 +2608,30 @@
"text_color": null
}
},
- "01e9581b8f904ce9bd99cf2093d8e0b6": {
+ "01500d66e7b5462b8986e7913e3bab3d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_92aac12715174e618aadd2413a571bb3",
+ "placeholder": "",
+ "style": "IPY_MODEL_fd27525b063140d5a2b812b1f7f7f8a4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "01fb1528960642ed98a41c018ebf8642": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2679,49 +2684,97 @@
"width": null
}
},
- "02ef28fe5e5647e49f15e9889ac88c8f": {
+ "02448502779f4704854c84633e322959": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "05e8e7e59e104979b50df89bbe1f0520": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_17898a71a5eb4556a9c02c78df55aeb3",
- "IPY_MODEL_aae89dad290345f5acc2526904d6d4e5",
- "IPY_MODEL_18560e45d46d48bf99bbf1a153e2502c"
- ],
- "layout": "IPY_MODEL_22708ad181354289ac5fa640bd1c4121",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_ff30ce297fbf40a3b41354d9b5c04b47",
+ "max": 5148.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2796655d79604ef6bee5962ec1d1e105",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": 5148.0
}
},
- "0302bede64084627a211292664570913": {
+ "07cd1625edcd4511ac422becaaae8150": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3e2d23b1b97446248a24202ea05b23f6",
+ "placeholder": "",
+ "style": "IPY_MODEL_fef9aeeb677745ee8a6954bb2c1e4439",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
}
},
- "040097e76c3b414292ef486207e132ee": {
+ "095830ecc6f342039c39260fd8b58715": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d1224d938d764efb951228670f63da06",
+ "placeholder": "",
+ "style": "IPY_MODEL_be12ecac68ba48ef9803433668eda3d1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "0a8f9d83f59f4dfbaa92bafedd8123c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2774,23 +2827,7 @@
"width": null
}
},
- "04bfeccaeea6416e98641eb5e663ae0b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "08971fe179644eda8bcd42e21d601e92": {
+ "0b40cdefc96a418498d22347f69b2092": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2843,7 +2880,23 @@
"width": null
}
},
- "08fa3b07fef4433e8a950677af858234": {
+ "0ba1c1e2af9e41f18556ca413d689f43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0dd2109ac6524d679b387d10fc63ae01": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2858,31 +2911,56 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_72b19493a1ca42c793bcda945b230961",
+ "layout": "IPY_MODEL_2e534a63ed884097b02dcd1326d0d76a",
"placeholder": "",
- "style": "IPY_MODEL_afdd5bafd5ba49909abaaef0bb7f6038",
+ "style": "IPY_MODEL_b21e560941054bc0b6909b7888124953",
"tabbable": null,
"tooltip": null,
- "value": " 26.4M/26.4M [00:00<00:00, 114MB/s]"
+ "value": "100%"
}
},
- "0ada4c3d2a88412599516fae13401849": {
+ "0e682a87f84f4712a692fa44c8c31485": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "0efd5977745c4fefa5ef1133064de182": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_67937a09a0154aeeb9c67f27216be315",
+ "placeholder": "",
+ "style": "IPY_MODEL_7fe5095bccf34852ad3afebc0775804a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 5.15k/5.15k [00:00<00:00, 579kB/s]"
}
},
- "0fc5778c044d4fcd9e8f745663d100c5": {
+ "0f5a34f2adfd4113ac57aa6e15e3d1a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2935,7 +3013,56 @@
"width": null
}
},
- "103b52da5fd24c24a14b4605ba5c3120": {
+ "0fb5933b90914a79b5531b97e21435ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6b615e4298d04a0790509b0bfe85a900",
+ "max": 26421880.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_415a1b6f4e32422b801128715782265e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 26421880.0
+ }
+ },
+ "121a97bb29964dcebd075045c33d81fc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_b4e407ab490340eabf317fd1b6b958ce",
+ "placeholder": "",
+ "style": "IPY_MODEL_011860ddb3ad4e8ba884381518d5ced9",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating train split: 100%"
+ }
+ },
+ "125e980bd8bd4808978c016c6551b9a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2988,7 +3115,31 @@
"width": null
}
},
- "10833dd9b558436e8141086cd6457744": {
+ "126a726b8a0445da91b339235e96dcad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_095830ecc6f342039c39260fd8b58715",
+ "IPY_MODEL_0fb5933b90914a79b5531b97e21435ea",
+ "IPY_MODEL_50353795eab74f10aa38a4d1996c3c16"
+ ],
+ "layout": "IPY_MODEL_c6861786e92c40328df1b1530c387ae3",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "14554b96acc44ee89164205dfa3f35de": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3041,49 +3192,46 @@
"width": null
}
},
- "1141e88c1cd549c1ad36f5867b926978": {
+ "15981f3a373742b788d47c1658d356d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7a70b6d736914713b75013fd280cd1fb",
- "IPY_MODEL_233edc846cd2411699f747246a5c017b",
- "IPY_MODEL_9b8b5db0d4ec47ae8f14fbae0720d3e0"
- ],
- "layout": "IPY_MODEL_32715003f9374a25a98d8e94a71e934d",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "11828cd7a97146ac81748612b0601834": {
+ "15ca594059d34b768c0d561ea6f825d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_fe13f2bdaafe4bd09546de6cf5e55c4f",
+ "placeholder": "",
+ "style": "IPY_MODEL_3eacc86ac54d435eb62e463374eff9de",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading readme: 100%"
}
},
- "11e93782fa6f464e9f6900e0c646f5cf": {
+ "1709639a246d43619f500f188e197fd6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3136,7 +3284,7 @@
"width": null
}
},
- "1232a69e4cd748539b2d4cdde35b417c": {
+ "1a73a20c7710418884500f2e000462ff": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3189,7 +3337,74 @@
"width": null
}
},
- "12fb080c89ea44b788b8036e7c269e2e": {
+ "1bc0adbfdc5a4373ad732ec4d2969795": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_8bd1494dfee649f88fa53da595105080",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d880c7278ba344aca21a81dfa7bf8061",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "1f2da7f8744547fe843e252764b428d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "229fd1bb4d404e579aa8deba0d11f45d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2375fe4daa3a48058f208bb2018db708",
+ "placeholder": "",
+ "style": "IPY_MODEL_fed1e24975764ce4a8e5c16384c09605",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 68.74it/s]"
+ }
+ },
+ "2375fe4daa3a48058f208bb2018db708": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3242,7 +3457,23 @@
"width": null
}
},
- "176f4fe537ab44709eed5f4771e5a748": {
+ "2796655d79604ef6bee5962ec1d1e105": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2abf6850738b4582a8f693aa3faa6025": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3295,97 +3526,7 @@
"width": null
}
},
- "17898a71a5eb4556a9c02c78df55aeb3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a805af9f6458409cbfcf1ef1829794dc",
- "placeholder": "",
- "style": "IPY_MODEL_7f159f23ebfd44699351ad51261161f4",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "17af51078a0c4c0f92db9850c8c773d7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "18560e45d46d48bf99bbf1a153e2502c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_040097e76c3b414292ef486207e132ee",
- "placeholder": "",
- "style": "IPY_MODEL_0302bede64084627a211292664570913",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 60.88it/s]"
- }
- },
- "18e5b3625d2a4b3abbfea651a20eef56": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_01e9581b8f904ce9bd99cf2093d8e0b6",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_293b9b52ffaa471e9c10ec006eefc31e",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "1a2ffe0f3d68433d9fc120a9b894e762": {
+ "2ad511699c5c40eea0c01730a536be37": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3438,30 +3579,23 @@
"width": null
}
},
- "1cdb544e05fe49e5b616044f82615b00": {
+ "2bc8b75b851e42a28606dadd908b0654": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_12fb080c89ea44b788b8036e7c269e2e",
- "placeholder": "",
- "style": "IPY_MODEL_2b67454e45604716a3d08831b42d274a",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "1e4148a5a5464b22b94684bad558cbec": {
+ "2e534a63ed884097b02dcd1326d0d76a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3514,49 +3648,7 @@
"width": null
}
},
- "1e806f052f23419ba6ec80aa76644ed5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1cdb544e05fe49e5b616044f82615b00",
- "IPY_MODEL_b602e59393ab410ba774d7c2419c556d",
- "IPY_MODEL_d6337601ed54490eb0d452da36303706"
- ],
- "layout": "IPY_MODEL_1a2ffe0f3d68433d9fc120a9b894e762",
- "tabbable": null,
- "tooltip": null
- }
- },
- "1f7f1fac2dd34d07b7fc07f799729df6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "20376214a3ff45e29c894539ac53a963": {
+ "2f3443b8d3394acab17170bfaf11851a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3609,30 +3701,49 @@
"width": null
}
},
- "20aa2cb116fa42218107305be2c9121a": {
+ "2fc4852506de448a95aeacc64083cb80": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "32a70da0aa9b42359a5f17bf665b81ad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_dd549dafe96d457a9f3e32fa6dda0ce5",
- "placeholder": "",
- "style": "IPY_MODEL_6f6e9c74347e4652b414406bd4c67238",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_15ca594059d34b768c0d561ea6f825d9",
+ "IPY_MODEL_94885e6cf17b418dad9d0a2507c50be0",
+ "IPY_MODEL_f98b94bfe32c4565a73c98a0212942f6"
+ ],
+ "layout": "IPY_MODEL_c6366076b6b543b9b666f246bf21490b",
"tabbable": null,
- "tooltip": null,
- "value": " 29.5k/29.5k [00:00<00:00, 4.38MB/s]"
+ "tooltip": null
}
},
- "20e8c6a9ab644e3da69655bfbc794894": {
+ "333938291ad5441294b505d53007d891": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3685,33 +3796,64 @@
"width": null
}
},
- "2253900d1539484ea6c5fb5f87e34fae": {
+ "3550ca0469f54d71b0069a2653195407": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_8b39eaec8f5843a3942f7b65e5320363",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e675357d5efc42b3968d61c273ca5f7f",
+ "layout": "IPY_MODEL_5fe1cd072cb942f0bdfef19cb5e3dd5a",
+ "placeholder": "",
+ "style": "IPY_MODEL_5c4b2393d2484cea8b933e01b505d429",
"tabbable": null,
"tooltip": null,
- "value": 60000.0
+ "value": " 60000/60000 [00:06<00:00, 8817.27 examples/s]"
+ }
+ },
+ "364261b66000475fa65f731235e8e4c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "38bc71e1a4f54479a7c61228eb6683a1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "22708ad181354289ac5fa640bd1c4121": {
+ "39e31f74f079463c92b570a68aecaf8a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3764,7 +3906,7 @@
"width": null
}
},
- "22e4e1da97fe49e290e9dac292880148": {
+ "3c3363fd27ee42a7b1d48f723bf24487": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3817,25 +3959,86 @@
"width": null
}
},
- "22ece7076054425f8784c9f44cd9c512": {
+ "3e22606fb1304c8782eb409c6223c206": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cceebb830e9f49ee9ba123a5e09eedef",
+ "max": 4.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ff007de4777147b0bb0ee154b5c66868",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 4.0
+ }
+ },
+ "3e2d23b1b97446248a24202ea05b23f6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "231c040b6a13479f944b5bef41c9994a": {
+ "3eacc86ac54d435eb62e463374eff9de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3853,49 +4056,30 @@
"text_color": null
}
},
- "233edc846cd2411699f747246a5c017b": {
+ "3eb604ce48144ab1a89860772d648c21": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_816719582fe14c11a648b648bb9e2cbb",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_474d936989bb4423af34fd74a8db3b23",
+ "layout": "IPY_MODEL_7347d6a09b3d4009ad5f859699f35e0c",
+ "placeholder": "",
+ "style": "IPY_MODEL_5384a23c08bc4c4c8ed05b003a727a7f",
"tabbable": null,
"tooltip": null,
- "value": 40.0
- }
- },
- "293b9b52ffaa471e9c10ec006eefc31e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": " 40/40 [00:00<00:00, 62.79it/s]"
}
},
- "2a3f5349b34148209445198c9ae64559": {
+ "40ca0cd146da417fb9d146f6a0460568": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -3910,34 +4094,32 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_bf0ad0d606f04b7aa5013f43b6f32049",
- "IPY_MODEL_5788b965507d455ca17eabfc155de530",
- "IPY_MODEL_453bcb1f0a7e4e41aa72dab72cbeed75"
+ "IPY_MODEL_121a97bb29964dcebd075045c33d81fc",
+ "IPY_MODEL_d8ecc3d7fedb4e9f919bf30f5fad4516",
+ "IPY_MODEL_3550ca0469f54d71b0069a2653195407"
],
- "layout": "IPY_MODEL_10833dd9b558436e8141086cd6457744",
+ "layout": "IPY_MODEL_14554b96acc44ee89164205dfa3f35de",
"tabbable": null,
"tooltip": null
}
},
- "2b67454e45604716a3d08831b42d274a": {
+ "415a1b6f4e32422b801128715782265e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "2bf71c3624ce4413bc347a20e07c26d5": {
+ "41d3221410464ffab0bd38d1e798b2c0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3990,31 +4172,7 @@
"width": null
}
},
- "2c1834764c78450699f4a69ba292fe8e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c6eb4afdd2a54d899795e4359d8c989d",
- "IPY_MODEL_caabab78e31d438eb521e9c3f2e1c0a6",
- "IPY_MODEL_e9b9c9bbe0374dd9b98a3a4c1553822f"
- ],
- "layout": "IPY_MODEL_20376214a3ff45e29c894539ac53a963",
- "tabbable": null,
- "tooltip": null
- }
- },
- "2d69655ca2a545e9a4b05f6865cdf2a8": {
+ "4262488a413446cca70bc24a050a64ac": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4067,7 +4225,75 @@
"width": null
}
},
- "307355aaf24e41138019598af025ac1b": {
+ "43426f230f894b57ae7975d364de7791": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2abf6850738b4582a8f693aa3faa6025",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ab7bb1edc23e4793808776a776524446",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "43d72b9736c74a1ca37c68dd80b5fda9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_59055224006b483282cc2c0156831282",
+ "IPY_MODEL_91801bc3fac74275b18087b654252e00",
+ "IPY_MODEL_ce4cdcdbb0fb42d583236c9d7dab8e10"
+ ],
+ "layout": "IPY_MODEL_125e980bd8bd4808978c016c6551b9a0",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "44007c0808df4ead8edb28f0e244a3dc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "4501ea081e5a40f38e06180d6447fe2e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4082,15 +4308,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_715dab8821f5465eade13b7f8765ed47",
+ "layout": "IPY_MODEL_333938291ad5441294b505d53007d891",
"placeholder": "",
- "style": "IPY_MODEL_71217b3eed354f73861bde4bfaf66ffd",
+ "style": "IPY_MODEL_a0cb1af6e06a458fa7479a68ae7c2382",
"tabbable": null,
"tooltip": null,
- "value": " 60000/60000 [00:36<00:00, 1535.58it/s]"
+ "value": " 4/4 [00:00<00:00, 1345.73it/s]"
}
},
- "311422b25c3d435280a7ae2e6c1b5cbc": {
+ "46934565459f444fbec76d736ee3c65a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4105,15 +4331,38 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_485dd48b720d4e1dbfce8f76953b154e",
+ "layout": "IPY_MODEL_f43b69d6c4c84e62adfd01c967a90fa3",
"placeholder": "",
- "style": "IPY_MODEL_8c6b20c613cf48bd9f826dbeb5124369",
+ "style": "IPY_MODEL_da3c6d236847473ca2befd4bbbe118c6",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": " 60000/60000 [00:11<00:00, 5863.43 examples/s]"
+ }
+ },
+ "485dc9cf3a6a4b8a9b63dcaa1c648c14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4c1426a1bdf947fc881b6182cd0b2f62",
+ "placeholder": "",
+ "style": "IPY_MODEL_92c72b44e8f94f7bb2e100c9f2da6463",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
}
},
- "32715003f9374a25a98d8e94a71e934d": {
+ "4c1426a1bdf947fc881b6182cd0b2f62": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4166,13 +4415,88 @@
"width": null
}
},
- "32d10bf33ee54d2bac909d0748596dac": {
- "model_module": "@jupyter-widgets/base",
+ "50353795eab74f10aa38a4d1996c3c16": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c88560d3040045e0a3c7af07b0582ef4",
+ "placeholder": "",
+ "style": "IPY_MODEL_b9f6e6d8add04fb3b54c5049e476874c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]"
+ }
+ },
+ "52a385af17b044b190124cefc696f61a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "52d6513593de40afb10d3b1ac14e91e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5384a23c08bc4c4c8ed05b003a727a7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5416f069966d47fba5e50a2f2d633d2c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
@@ -4219,54 +4543,7 @@
"width": null
}
},
- "3590fcc9756749e0b9130b8809114216": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9c8e988dcc76462ea4a6543f9f1dd759",
- "IPY_MODEL_61530f93052c4966a3ed9c90ec90c547",
- "IPY_MODEL_3c58f7da1e954e5f85811b8c931dddf3"
- ],
- "layout": "IPY_MODEL_839cc7aeb6cf41cba2328b772dda1354",
- "tabbable": null,
- "tooltip": null
- }
- },
- "37059badcffc423fbad95494b9745859": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_50aef71653f04eb49e220d1870cbf7ff",
- "placeholder": "",
- "style": "IPY_MODEL_eb33301487694b0f9f4a664fce743134",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:06<00:00, 8813.66 examples/s]"
- }
- },
- "373768b5fd4c42118d61459d55c65ad2": {
+ "55146f26e23c4922b73a9a1914de5a8b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4319,23 +4596,55 @@
"width": null
}
},
- "3764b604f5ba43288217fe3f4372b542": {
+ "5692b6450179456c853c8bda7c713903": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fdb9730e58fc4db8b34379709a24eedd",
+ "IPY_MODEL_95a24876f94b4a55b3f46d3b35b1db76",
+ "IPY_MODEL_d0422596105541058e10c255c9ca3c08"
+ ],
+ "layout": "IPY_MODEL_95778f2bc9f54690a56f99f57c409f35",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "570e337efa4b4edea75f724a0413e1eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_01500d66e7b5462b8986e7913e3bab3d",
+ "IPY_MODEL_78fac203adcf488999ba8fa1febaef8f",
+ "IPY_MODEL_9d6fc5b62c6f44eb919cd2a90b3124a3"
+ ],
+ "layout": "IPY_MODEL_846437eb94bc4024b126855256420dd5",
+ "tabbable": null,
+ "tooltip": null
}
},
- "3779e0b1881642b8b80007dfa03126bb": {
+ "59055224006b483282cc2c0156831282": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4350,15 +4659,39 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_1e4148a5a5464b22b94684bad558cbec",
+ "layout": "IPY_MODEL_5416f069966d47fba5e50a2f2d633d2c",
"placeholder": "",
- "style": "IPY_MODEL_885a1c18bad74f47ae49ef86de2c3a67",
+ "style": "IPY_MODEL_ff6918e846af4011afbcb1224c990aea",
"tabbable": null,
"tooltip": null,
- "value": "Generating test split: 100%"
+ "value": "100%"
+ }
+ },
+ "5a7640261eb640c6adc4bf358876b135": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9126d732f72c4e01822a3de4376a1cf7",
+ "IPY_MODEL_43426f230f894b57ae7975d364de7791",
+ "IPY_MODEL_f3c6cde529c44282837ed44228f6eb41"
+ ],
+ "layout": "IPY_MODEL_dc597e46ad7f4943a92756168a68d962",
+ "tabbable": null,
+ "tooltip": null
}
},
- "38bd0231f7c34338a8ccd2536adb5809": {
+ "5afb9ec5b208411896d3b39484fd57fa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4411,7 +4744,7 @@
"width": null
}
},
- "3c58f7da1e954e5f85811b8c931dddf3": {
+ "5bd3521095b04a7cb2122373f9addb51": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4426,15 +4759,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_d8441cb494324dad83d4a88dd3c805e6",
+ "layout": "IPY_MODEL_1a73a20c7710418884500f2e000462ff",
"placeholder": "",
- "style": "IPY_MODEL_3e99f4f8639445f0810c65d14dccca89",
+ "style": "IPY_MODEL_90131643dfdd4afe89bc4e2aa2801e89",
"tabbable": null,
"tooltip": null,
- "value": " 5.15k/5.15k [00:00<00:00, 906kB/s]"
+ "value": "Computing checksums: 100%"
}
},
- "3c76ee6a2244430cbb3e8e8416d1a23c": {
+ "5c4b2393d2484cea8b933e01b505d429": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4452,7 +4785,30 @@
"text_color": null
}
},
- "3e86a20ac6b044d4adccfeaba4245d25": {
+ "5f8d7abf69784dba85b33d715612d968": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_625e62d09de64c4ba5c32df2fa49ee0d",
+ "placeholder": "",
+ "style": "IPY_MODEL_0e682a87f84f4712a692fa44c8c31485",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "5fe1cd072cb942f0bdfef19cb5e3dd5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4505,77 +4861,49 @@
"width": null
}
},
- "3e99f4f8639445f0810c65d14dccca89": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "40e314c496664e698c489a3f5c279e1c": {
+ "60005588c4d04479a121c8b95b0e4b8f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_08971fe179644eda8bcd42e21d601e92",
- "max": 10000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0ada4c3d2a88412599516fae13401849",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5bd3521095b04a7cb2122373f9addb51",
+ "IPY_MODEL_3e22606fb1304c8782eb409c6223c206",
+ "IPY_MODEL_4501ea081e5a40f38e06180d6447fe2e"
+ ],
+ "layout": "IPY_MODEL_ff7d28ca3d77451c938e3d05c9d35bd5",
"tabbable": null,
- "tooltip": null,
- "value": 10000.0
+ "tooltip": null
}
},
- "41aa359adc6640ab9d5ea2369493623a": {
+ "60428097cbe14bb1a09686342a8903f7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4ae6fd916d6d470190a53d061fb0b02f",
- "max": 8845.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_63f97e8188cb4370abab083114492da0",
- "tabbable": null,
- "tooltip": null,
- "value": 8845.0
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "4251756ae8d344e8923025afa5b3be9a": {
+ "611c028f3a1a4f18a03f9c01fad5af77": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4628,30 +4956,14 @@
"width": null
}
},
- "42c5eeb19b2a4542b4159e63110273e4": {
- "model_module": "@jupyter-widgets/controls",
+ "625e62d09de64c4ba5c32df2fa49ee0d": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "42f688e5fa0a4f698ca681a4433e115d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
@@ -4697,7 +5009,95 @@
"width": null
}
},
- "431d46eafa8c450b8c8f1bf1f7883cf3": {
+ "6311d00053b444f98100b24bfd194457": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d06f5a2e7a6b4ff28e75e0ed13e49fd2",
+ "placeholder": "",
+ "style": "IPY_MODEL_2fc4852506de448a95aeacc64083cb80",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "660a237d926d49899ac17b9e92223c1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c8e23efb73c54b54807be50d0f941204",
+ "max": 4833.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b3a0b24dcdd4452da2055e8a4cf03d89",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 4833.0
+ }
+ },
+ "6682d6f94b9d4842b43984c0b13189ae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "66ff793507e445d4b2305d46ecb0cdd8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_987ed537eee4416d9b055dc46e2acafd",
+ "placeholder": "",
+ "style": "IPY_MODEL_e59874221f9f4d51bb63e23f8bea8e22",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 64.95it/s]"
+ }
+ },
+ "67937a09a0154aeeb9c67f27216be315": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4750,7 +5150,31 @@
"width": null
}
},
- "4536c7080de841acaaec729cdf955c0a": {
+ "68e3d0ba542f4dbeb8c6a0825b907d49": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_485dc9cf3a6a4b8a9b63dcaa1c648c14",
+ "IPY_MODEL_95e47994d42745dd991db48086a47985",
+ "IPY_MODEL_66ff793507e445d4b2305d46ecb0cdd8"
+ ],
+ "layout": "IPY_MODEL_8d5bae096ebe4a15bb8b69add371c657",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "6b615e4298d04a0790509b0bfe85a900": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4803,70 +5227,7 @@
"width": null
}
},
- "453bcb1f0a7e4e41aa72dab72cbeed75": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_103b52da5fd24c24a14b4605ba5c3120",
- "placeholder": "",
- "style": "IPY_MODEL_9d8907e922884b4c98182bd90146f805",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 60.08it/s]"
- }
- },
- "46c5f1e4a9ca403d83a2aa33da63b600": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_667ac6e91c614fc09ad352122a696161",
- "IPY_MODEL_59358b3c018e40c1b73065b80810af12",
- "IPY_MODEL_08fa3b07fef4433e8a950677af858234"
- ],
- "layout": "IPY_MODEL_4251756ae8d344e8923025afa5b3be9a",
- "tabbable": null,
- "tooltip": null
- }
- },
- "474d936989bb4423af34fd74a8db3b23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "485dd48b720d4e1dbfce8f76953b154e": {
+ "6bf8c919cc1c4f53989f3eb67720dded": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4919,49 +5280,33 @@
"width": null
}
},
- "489746a2a7db4406b7ebfd5f2a155361": {
+ "705e340973a94fde9d31bddb187be0f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ae4bdbf2d6494345acc4f7003fcd9cd9",
- "IPY_MODEL_dd4b960c1fc54808ac7ec7abfbe1ccbc",
- "IPY_MODEL_37059badcffc423fbad95494b9745859"
- ],
- "layout": "IPY_MODEL_73593795a4ac4b21a0677dccf1a525cb",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_feb23f7712944922882bc91b4b7dd179",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aaf5da7291584abd97bd0ab0ccf4fe37",
"tabbable": null,
- "tooltip": null
- }
- },
- "4a74983359df462095cf64e3c2706a4b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "tooltip": null,
+ "value": 40.0
}
},
- "4ae6fd916d6d470190a53d061fb0b02f": {
+ "71407435bce6442596615f552be60494": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5014,23 +5359,7 @@
"width": null
}
},
- "4d2f1756b094437bb3ff9f30ea93cbb2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4de2163b87c545ed89dfc257d6a7e304": {
+ "7347d6a09b3d4009ad5f859699f35e0c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5083,7 +5412,7 @@
"width": null
}
},
- "50aef71653f04eb49e220d1870cbf7ff": {
+ "747383714a754016b00b74ce13e738ed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5136,54 +5465,69 @@
"width": null
}
},
- "52638684784d4b5fb05e436a7f614243": {
+ "775244380ff94929b23d4c0eecc21177": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "78fac203adcf488999ba8fa1febaef8f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_ed7068ef4b08440eaae3bd1ba5cca147",
- "placeholder": "",
- "style": "IPY_MODEL_91c032ac4bfb4eceba18d1021672143e",
+ "layout": "IPY_MODEL_a2794dbf2ec140dea8dd7460ddc7e8aa",
+ "max": 4422102.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_364261b66000475fa65f731235e8e4c4",
"tabbable": null,
"tooltip": null,
- "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]"
+ "value": 4422102.0
}
},
- "55c0a386d760485f92009bb75259396b": {
+ "7a62182e1a1f495e934de1b0fb6f6766": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ed6f311b0f784e268d2c2f765d55a94a",
- "IPY_MODEL_9e8ad22d82bc455da31ccd997a15763c",
- "IPY_MODEL_307355aaf24e41138019598af025ac1b"
- ],
- "layout": "IPY_MODEL_1232a69e4cd748539b2d4cdde35b417c",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "5788b965507d455ca17eabfc155de530": {
+ "7b56a4227706477eb522308c9a7c494d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -5199,59 +5543,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_b37bca5ee3994510a0c5bf88495f1a10",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6c1210fd37c047b69d6bb77d7a585576",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "59358b3c018e40c1b73065b80810af12": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_6b3ea7da7caf4dc294c20842ed8cac54",
- "max": 26421880.0,
+ "layout": "IPY_MODEL_41d3221410464ffab0bd38d1e798b2c0",
+ "max": 10000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_3764b604f5ba43288217fe3f4372b542",
+ "style": "IPY_MODEL_2bc8b75b851e42a28606dadd908b0654",
"tabbable": null,
"tooltip": null,
- "value": 26421880.0
- }
- },
- "5a5ab3c1640f48e7953b2212cf787f29": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": 10000.0
}
},
- "5aed3d8999204da4abd99966f9859da8": {
+ "7cea0715899b45bd93041c98335201b8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5304,7 +5606,25 @@
"width": null
}
},
- "5c2cc530fc7746919e9df959510c6dc7": {
+ "7fe5095bccf34852ad3afebc0775804a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "846437eb94bc4024b126855256420dd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5357,51 +5677,7 @@
"width": null
}
},
- "5cbd075f38af4a35bd49255f7c6854c3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "61530f93052c4966a3ed9c90ec90c547": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0fc5778c044d4fcd9e8f745663d100c5",
- "max": 5148.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bbcf2512f0a048e99a7d2ad46cb7b594",
- "tabbable": null,
- "tooltip": null,
- "value": 5148.0
- }
- },
- "629ccac58fe74198b172012097674576": {
+ "862abdd9f64b4459bb95a0484365db13": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5454,87 +5730,7 @@
"width": null
}
},
- "63e3c00666534cf78aef58362ab798ef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_8abe4aff024b461ea93d3d85dd84f1f7",
- "placeholder": "",
- "style": "IPY_MODEL_5cbd075f38af4a35bd49255f7c6854c3",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading builder script: 100%"
- }
- },
- "63f97e8188cb4370abab083114492da0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "667ac6e91c614fc09ad352122a696161": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f8852f488ece4717923d24f0f949869a",
- "placeholder": "",
- "style": "IPY_MODEL_11828cd7a97146ac81748612b0601834",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
- }
- },
- "6a96595df722450495b69e3d9407c566": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6b3ea7da7caf4dc294c20842ed8cac54": {
+ "868a58720b8f42378b614845928b3aaa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5587,75 +5783,7 @@
"width": null
}
},
- "6c1210fd37c047b69d6bb77d7a585576": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6c53714694714ec184a3175a51eca22d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6f6e9c74347e4652b414406bd4c67238": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6fa798d1f46540b9bd3e051f98c21430": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "71217b3eed354f73861bde4bfaf66ffd": {
+ "8763c24da05f45f1a31655c1448a4718": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -5673,7 +5801,7 @@
"text_color": null
}
},
- "715dab8821f5465eade13b7f8765ed47": {
+ "89bf1005dcdb41e4a3d969647eaf4a10": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5726,7 +5854,25 @@
"width": null
}
},
- "72b19493a1ca42c793bcda945b230961": {
+ "8b6b0f86849c43d88b1496cb4909efee": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8bd1494dfee649f88fa53da595105080": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5779,7 +5925,7 @@
"width": null
}
},
- "73593795a4ac4b21a0677dccf1a525cb": {
+ "8d5bae096ebe4a15bb8b69add371c657": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5832,14 +5978,37 @@
"width": null
}
},
- "7439b162e309483580266f93e7ac4add": {
+ "8e7bd1246350476188909a1c70bd98e5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0a8f9d83f59f4dfbaa92bafedd8123c1",
+ "placeholder": "",
+ "style": "IPY_MODEL_8b6b0f86849c43d88b1496cb4909efee",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating test split: 100%"
+ }
+ },
+ "90131643dfdd4afe89bc4e2aa2801e89": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
@@ -5850,7 +6019,72 @@
"text_color": null
}
},
- "7461d590e55e4b9389cb1fa4b8b01858": {
+ "9126d732f72c4e01822a3de4376a1cf7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2f3443b8d3394acab17170bfaf11851a",
+ "placeholder": "",
+ "style": "IPY_MODEL_bc30f0e39a8641a8bb22ab899643c60e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "9131d71850c343d78a5365693d850e75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "91801bc3fac74275b18087b654252e00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c9f331343a804b1ca29dff6a5773145a",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6682d6f94b9d4842b43984c0b13189ae",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "92aac12715174e618aadd2413a571bb3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5903,7 +6137,25 @@
"width": null
}
},
- "7a70b6d736914713b75013fd280cd1fb": {
+ "92c72b44e8f94f7bb2e100c9f2da6463": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "93223ec843da40588ff01a9e1ff7f446": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5918,38 +6170,41 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5aed3d8999204da4abd99966f9859da8",
+ "layout": "IPY_MODEL_5afb9ec5b208411896d3b39484fd57fa",
"placeholder": "",
- "style": "IPY_MODEL_003b69c44f834dd6bd767bd85d0282c1",
+ "style": "IPY_MODEL_d05c0cfc9b9341049ecfc014c4d30b7a",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": " 4.83k/4.83k [00:00<00:00, 615kB/s]"
}
},
- "7b9f6a000ece4e85bd677afa0c44a483": {
+ "94885e6cf17b418dad9d0a2507c50be0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_a261db39bdb34321bc03d5b7cdb18bd6",
- "placeholder": "",
- "style": "IPY_MODEL_4a74983359df462095cf64e3c2706a4b",
+ "layout": "IPY_MODEL_4262488a413446cca70bc24a050a64ac",
+ "max": 8845.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f3dbc819150243c8b46c185ca1842360",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 61.37it/s]"
+ "value": 8845.0
}
},
- "7ba456d195e144f7ba05947f8e466206": {
+ "95778f2bc9f54690a56f99f57c409f35": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6002,30 +6257,33 @@
"width": null
}
},
- "7c3c537f030046e892febf09fbb3953f": {
+ "95a24876f94b4a55b3f46d3b35b1db76": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_42f688e5fa0a4f698ca681a4433e115d",
- "placeholder": "",
- "style": "IPY_MODEL_a034a2ade0914168baff132569eeeb46",
+ "layout": "IPY_MODEL_2ad511699c5c40eea0c01730a536be37",
+ "max": 29515.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d6e072ffe3b442d58132225a18a4702a",
"tabbable": null,
"tooltip": null,
- "value": "Downloading readme: 100%"
+ "value": 29515.0
}
},
- "7defd4db8e0e4d9d806b06b0ad18bad9": {
+ "95ac51ee93224cefb099d98ab4eea45b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6078,25 +6336,109 @@
"width": null
}
},
- "7f159f23ebfd44699351ad51261161f4": {
+ "95e47994d42745dd991db48086a47985": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6bf8c919cc1c4f53989f3eb67720dded",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_15981f3a373742b788d47c1658d356d8",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "977d496d29e64500aa96bd0650d141b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_39e31f74f079463c92b570a68aecaf8a",
+ "placeholder": "",
+ "style": "IPY_MODEL_60428097cbe14bb1a09686342a8903f7",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 60000/60000 [00:37<00:00, 1643.67it/s]"
+ }
+ },
+ "9872b9de9ec147fe9a77e4fc3c7b7a91": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "816719582fe14c11a648b648bb9e2cbb": {
+ "987ed537eee4416d9b055dc46e2acafd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6149,7 +6491,7 @@
"width": null
}
},
- "839cc7aeb6cf41cba2328b772dda1354": {
+ "98cfdc0c50404f04a587a0b4a250580e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6202,7 +6544,7 @@
"width": null
}
},
- "83fe2423c4494c2b9394412c402eca60": {
+ "9a4e1702bcee482fa266f9d72caa68b0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6220,54 +6562,54 @@
"text_color": null
}
},
- "865a8adbaefe44eb930f2df86dcd3a25": {
+ "9a62dbed8c0e414aba4d919f9a3b1266": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f35f77b3dc2d4f87b2f6435eb17b5f51",
- "placeholder": "",
- "style": "IPY_MODEL_231c040b6a13479f944b5bef41c9994a",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8e7bd1246350476188909a1c70bd98e5",
+ "IPY_MODEL_7b56a4227706477eb522308c9a7c494d",
+ "IPY_MODEL_a5d9d50b048d47f38b0d59f0e92065d6"
+ ],
+ "layout": "IPY_MODEL_55146f26e23c4922b73a9a1914de5a8b",
"tabbable": null,
- "tooltip": null,
- "value": "Map (num_proc=4): 100%"
+ "tooltip": null
}
},
- "8835da69dbeb4826a96baa0561232a18": {
+ "9d6fc5b62c6f44eb919cd2a90b3124a3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f99e5e0dbb254dd0a57ef096794a0277",
- "IPY_MODEL_9444514d4589415d940c94d2a40f0c7a",
- "IPY_MODEL_7b9f6a000ece4e85bd677afa0c44a483"
- ],
- "layout": "IPY_MODEL_8a730989a49141659124fe8758fe6b9f",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7cea0715899b45bd93041c98335201b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_f5ded18337834f7a9dbd8390a89b501e",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 4.42M/4.42M [00:00<00:00, 63.9MB/s]"
}
},
- "885a1c18bad74f47ae49ef86de2c3a67": {
+ "a0cb1af6e06a458fa7479a68ae7c2382": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6285,7 +6627,7 @@
"text_color": null
}
},
- "8a730989a49141659124fe8758fe6b9f": {
+ "a0fcbc8073a04dc3b3d50f64b4a77c05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6338,7 +6680,7 @@
"width": null
}
},
- "8abe4aff024b461ea93d3d85dd84f1f7": {
+ "a2794dbf2ec140dea8dd7460ddc7e8aa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6391,78 +6733,53 @@
"width": null
}
},
- "8b39eaec8f5843a3942f7b65e5320363": {
- "model_module": "@jupyter-widgets/base",
+ "a34e73d14fc04cf2923d3e2c3a13f4d2": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_89bf1005dcdb41e4a3d969647eaf4a10",
+ "placeholder": "",
+ "style": "IPY_MODEL_8763c24da05f45f1a31655c1448a4718",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 67.65it/s]"
}
},
- "8c6b20c613cf48bd9f826dbeb5124369": {
+ "a5d9d50b048d47f38b0d59f0e92065d6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_95ac51ee93224cefb099d98ab4eea45b",
+ "placeholder": "",
+ "style": "IPY_MODEL_38bc71e1a4f54479a7c61228eb6683a1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/10000 [00:01<00:00, 8915.28 examples/s]"
}
},
- "8ce5df9efdba4fd1bad996ee729dec94": {
+ "a7f628b7566f4c50a41d60c0c29b635d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6515,25 +6832,49 @@
"width": null
}
},
- "91c032ac4bfb4eceba18d1021672143e": {
+ "aa6090d12f9547aa838e8d1365aebece": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cf6554f388a8461fb889947d04abaf85",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0ba1c1e2af9e41f18556ca413d689f43",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "aaf5da7291584abd97bd0ab0ccf4fe37": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "91e935457d624042a2d02c107985c146": {
+ "ab4d075c34534c19a1bbc155e5546698": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -6548,41 +6889,89 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_3e86a20ac6b044d4adccfeaba4245d25",
+ "layout": "IPY_MODEL_71407435bce6442596615f552be60494",
"placeholder": "",
- "style": "IPY_MODEL_e522f4fa76294f30ae3dc6a49425837b",
+ "style": "IPY_MODEL_fda2c399539b430987fc114befcc2f59",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 65.93it/s]"
+ "value": "Downloading builder script: 100%"
}
},
- "92f49f3012f849ceaece9962b9690310": {
+ "ab7bb1edc23e4793808776a776524446": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "acd955b18cd54e8e9525c5e97b625466": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_373768b5fd4c42118d61459d55c65ad2",
- "max": 29515.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d3230f794b7e47c9beebfa7400ee3522",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5f8d7abf69784dba85b33d715612d968",
+ "IPY_MODEL_05e8e7e59e104979b50df89bbe1f0520",
+ "IPY_MODEL_0efd5977745c4fefa5ef1133064de182"
+ ],
+ "layout": "IPY_MODEL_9872b9de9ec147fe9a77e4fc3c7b7a91",
"tabbable": null,
- "tooltip": null,
- "value": 29515.0
+ "tooltip": null
+ }
+ },
+ "b21e560941054bc0b6909b7888124953": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b3a0b24dcdd4452da2055e8a4cf03d89": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "92fcc9156b2a48328c1fb11582bdbb81": {
+ "b4e407ab490340eabf317fd1b6b958ce": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6635,57 +7024,30 @@
"width": null
}
},
- "9444514d4589415d940c94d2a40f0c7a": {
+ "b71ed5e5d009421aa9071fa417747aa2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_7ba456d195e144f7ba05947f8e466206",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d837ff833a594ea2b02ce7f7523c9dcd",
+ "layout": "IPY_MODEL_98cfdc0c50404f04a587a0b4a250580e",
+ "placeholder": "",
+ "style": "IPY_MODEL_52d6513593de40afb10d3b1ac14e91e2",
"tabbable": null,
"tooltip": null,
- "value": 40.0
- }
- },
- "99fb59566db2452bab382261d05e2879": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_63e3c00666534cf78aef58362ab798ef",
- "IPY_MODEL_bee58d3e475246fba7aa8b971564b1a7",
- "IPY_MODEL_52638684784d4b5fb05e436a7f614243"
- ],
- "layout": "IPY_MODEL_dbc28ec812a84d3f80f20f8fcab2939a",
- "tabbable": null,
- "tooltip": null
+ "value": "100%"
}
},
- "9b8b5db0d4ec47ae8f14fbae0720d3e0": {
+ "b8512ae9927e4d10b472de980750960a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -6700,38 +7062,41 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_d1333e62f1304c11beca8dd72e8aa9f9",
+ "layout": "IPY_MODEL_611c028f3a1a4f18a03f9c01fad5af77",
"placeholder": "",
- "style": "IPY_MODEL_c2680fc6a8544c869d7830d31ed37cea",
+ "style": "IPY_MODEL_02448502779f4704854c84633e322959",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 59.41it/s]"
+ "value": "Map (num_proc=4): 100%"
}
},
- "9c8e988dcc76462ea4a6543f9f1dd759": {
+ "b8f2b21c88b04bb4b071ce6c50a878eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_f08b9948f05248b3b3ef10bd15ffc7d8",
- "placeholder": "",
- "style": "IPY_MODEL_bcf73aedcb8442be80cd3903dca5729d",
+ "layout": "IPY_MODEL_868a58720b8f42378b614845928b3aaa",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fac4ff02cc5b457cab68f4a636edcdc8",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": 60000.0
}
},
- "9d8907e922884b4c98182bd90146f805": {
+ "b9f6e6d8add04fb3b54c5049e476874c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6749,75 +7114,49 @@
"text_color": null
}
},
- "9e8ad22d82bc455da31ccd997a15763c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b9a6301405d54fc48fe5e9c1fcb3ff2f",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4d2f1756b094437bb3ff9f30ea93cbb2",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "9f427bf1023e48e693afcd4ee468c279": {
+ "bc30f0e39a8641a8bb22ab899643c60e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "9f7de506f89c48b29c2cbb938a4e7210": {
+ "bcbd871e719b4ad2aabe57836da305b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_7461d590e55e4b9389cb1fa4b8b01858",
- "max": 4.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_42c5eeb19b2a4542b4159e63110273e4",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_07cd1625edcd4511ac422becaaae8150",
+ "IPY_MODEL_b8f2b21c88b04bb4b071ce6c50a878eb",
+ "IPY_MODEL_977d496d29e64500aa96bd0650d141b1"
+ ],
+ "layout": "IPY_MODEL_caf2a178aab3449e83c8ea5db5d4b6ef",
"tabbable": null,
- "tooltip": null,
- "value": 4.0
+ "tooltip": null
}
},
- "a034a2ade0914168baff132569eeeb46": {
+ "be12ecac68ba48ef9803433668eda3d1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6835,7 +7174,7 @@
"text_color": null
}
},
- "a261db39bdb34321bc03d5b7cdb18bd6": {
+ "c6366076b6b543b9b666f246bf21490b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6888,48 +7227,7 @@
"width": null
}
},
- "a3d6f09afbca4e6482b56fd6d71d9b25": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "a518055f2d994914bf1de3d11ea03a82": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c32f5e002a7a4c4ea804958d4deec82a",
- "placeholder": "",
- "style": "IPY_MODEL_f332684f2b70406ab76c95d24f2f40ed",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "a805af9f6458409cbfcf1ef1829794dc": {
+ "c6861786e92c40328df1b1530c387ae3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6982,74 +7280,7 @@
"width": null
}
},
- "aae89dad290345f5acc2526904d6d4e5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_38bd0231f7c34338a8ccd2536adb5809",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c78a7456a9d940dd9a6d4e769ce24dc3",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "ae4bdbf2d6494345acc4f7003fcd9cd9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_32d10bf33ee54d2bac909d0748596dac",
- "placeholder": "",
- "style": "IPY_MODEL_bfc04f78f5024cc4b45fce30bcc4e7b2",
- "tabbable": null,
- "tooltip": null,
- "value": "Generating train split: 100%"
- }
- },
- "afdd5bafd5ba49909abaaef0bb7f6038": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b37bca5ee3994510a0c5bf88495f1a10": {
+ "c756f97ee26641b3ac1d738a98e7350a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7102,25 +7333,7 @@
"width": null
}
},
- "b45281dbfb444428b286e76808d4a658": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b5852aa7675d4ad7ab4bb8a846b7eead": {
+ "c88560d3040045e0a3c7af07b0582ef4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7173,56 +7386,7 @@
"width": null
}
},
- "b602e59393ab410ba774d7c2419c556d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_2d69655ca2a545e9a4b05f6865cdf2a8",
- "max": 4422102.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9f427bf1023e48e693afcd4ee468c279",
- "tabbable": null,
- "tooltip": null,
- "value": 4422102.0
- }
- },
- "b6bcf233e0084809823abddff92adea2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4de2163b87c545ed89dfc257d6a7e304",
- "placeholder": "",
- "style": "IPY_MODEL_7439b162e309483580266f93e7ac4add",
- "tabbable": null,
- "tooltip": null,
- "value": " 8.85k/8.85k [00:00<00:00, 1.46MB/s]"
- }
- },
- "b9a6301405d54fc48fe5e9c1fcb3ff2f": {
+ "c8e23efb73c54b54807be50d0f941204": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7275,132 +7439,60 @@
"width": null
}
},
- "b9c41de7ac0442aabfb15bbf3b5308c8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_3779e0b1881642b8b80007dfa03126bb",
- "IPY_MODEL_40e314c496664e698c489a3f5c279e1c",
- "IPY_MODEL_c6f60e04093c46f981b6f7b80f94e2d4"
- ],
- "layout": "IPY_MODEL_d6092c5dc4c74213a968d6db282bed10",
- "tabbable": null,
- "tooltip": null
- }
- },
- "bbcf2512f0a048e99a7d2ad46cb7b594": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "bcf73aedcb8442be80cd3903dca5729d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "bee58d3e475246fba7aa8b971564b1a7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b5852aa7675d4ad7ab4bb8a846b7eead",
- "max": 4833.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5a5ab3c1640f48e7953b2212cf787f29",
- "tabbable": null,
- "tooltip": null,
- "value": 4833.0
- }
- },
- "bf0ad0d606f04b7aa5013f43b6f32049": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4536c7080de841acaaec729cdf955c0a",
- "placeholder": "",
- "style": "IPY_MODEL_6a96595df722450495b69e3d9407c566",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "bfc04f78f5024cc4b45fce30bcc4e7b2": {
- "model_module": "@jupyter-widgets/controls",
+ "c9f331343a804b1ca29dff6a5773145a": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "c1f41731ec4247e3ab4c57371cd20bf3": {
+ "caf2a178aab3449e83c8ea5db5d4b6ef": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7453,25 +7545,7 @@
"width": null
}
},
- "c2680fc6a8544c869d7830d31ed37cea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c32f5e002a7a4c4ea804958d4deec82a": {
+ "cceebb830e9f49ee9ba123a5e09eedef": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7524,7 +7598,7 @@
"width": null
}
},
- "c6eb4afdd2a54d899795e4359d8c989d": {
+ "ce4cdcdbb0fb42d583236c9d7dab8e10": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -7539,78 +7613,109 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5c2cc530fc7746919e9df959510c6dc7",
+ "layout": "IPY_MODEL_a7f628b7566f4c50a41d60c0c29b635d",
"placeholder": "",
- "style": "IPY_MODEL_22ece7076054425f8784c9f44cd9c512",
+ "style": "IPY_MODEL_775244380ff94929b23d4c0eecc21177",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": " 40/40 [00:00<00:00, 58.62it/s]"
}
},
- "c6f60e04093c46f981b6f7b80f94e2d4": {
- "model_module": "@jupyter-widgets/controls",
+ "cf6554f388a8461fb889947d04abaf85": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_92fcc9156b2a48328c1fb11582bdbb81",
- "placeholder": "",
- "style": "IPY_MODEL_e06347bb350642c28c5755357c9f6b4f",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/10000 [00:01<00:00, 8738.82 examples/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "c75b1e8b04fc4bbe8b789d1cfa5fe576": {
+ "d0422596105541058e10c255c9ca3c08": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d8736cab840549168545a3a77aa8e714",
- "IPY_MODEL_9f7de506f89c48b29c2cbb938a4e7210",
- "IPY_MODEL_dc708bb2c5314b17862c251eeb9db099"
- ],
- "layout": "IPY_MODEL_22e4e1da97fe49e290e9dac292880148",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c756f97ee26641b3ac1d738a98e7350a",
+ "placeholder": "",
+ "style": "IPY_MODEL_9a4e1702bcee482fa266f9d72caa68b0",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]"
}
},
- "c78a7456a9d940dd9a6d4e769ce24dc3": {
+ "d05c0cfc9b9341049ecfc014c4d30b7a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "c82a1f05b0ec418a9670fcf0e44708f1": {
+ "d06f5a2e7a6b4ff28e75e0ed13e49fd2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7663,7 +7768,7 @@
"width": null
}
},
- "c8e6913e68754e7a9e614de447103505": {
+ "d1224d938d764efb951228670f63da06": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7716,150 +7821,107 @@
"width": null
}
},
- "caabab78e31d438eb521e9c3f2e1c0a6": {
+ "d204f6cd3d4946408d7f8da6c520e7d5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c1f41731ec4247e3ab4c57371cd20bf3",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6fa798d1f46540b9bd3e051f98c21430",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6311d00053b444f98100b24bfd194457",
+ "IPY_MODEL_705e340973a94fde9d31bddb187be0f1",
+ "IPY_MODEL_3eb604ce48144ab1a89860772d648c21"
+ ],
+ "layout": "IPY_MODEL_0f5a34f2adfd4113ac57aa6e15e3d1a0",
"tabbable": null,
- "tooltip": null,
- "value": 40.0
+ "tooltip": null
}
},
- "cacaca4358c34e93a46a3e2019d188d4": {
+ "d6e072ffe3b442d58132225a18a4702a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7c3c537f030046e892febf09fbb3953f",
- "IPY_MODEL_41aa359adc6640ab9d5ea2369493623a",
- "IPY_MODEL_b6bcf233e0084809823abddff92adea2"
- ],
- "layout": "IPY_MODEL_fb9b135b97bd45978b3759750aac7be4",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "cc7010cd50844e48a3db713a6ea5f850": {
+ "d880c7278ba344aca21a81dfa7bf8061": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_311422b25c3d435280a7ae2e6c1b5cbc",
- "IPY_MODEL_92f49f3012f849ceaece9962b9690310",
- "IPY_MODEL_20aa2cb116fa42218107305be2c9121a"
- ],
- "layout": "IPY_MODEL_20e8c6a9ab644e3da69655bfbc794894",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "d1333e62f1304c11beca8dd72e8aa9f9": {
- "model_module": "@jupyter-widgets/base",
+ "d8ecc3d7fedb4e9f919bf30f5fad4516": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_862abdd9f64b4459bb95a0484365db13",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9131d71850c343d78a5365693d850e75",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
}
},
- "d3230f794b7e47c9beebfa7400ee3522": {
+ "da3c6d236847473ca2befd4bbbe118c6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "d6092c5dc4c74213a968d6db282bed10": {
+ "dc597e46ad7f4943a92756168a68d962": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7912,46 +7974,73 @@
"width": null
}
},
- "d6337601ed54490eb0d452da36303706": {
+ "e3b81984ecf6429d82760070b58a79a2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c8e6913e68754e7a9e614de447103505",
- "placeholder": "",
- "style": "IPY_MODEL_6c53714694714ec184a3175a51eca22d",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b71ed5e5d009421aa9071fa417747aa2",
+ "IPY_MODEL_1bc0adbfdc5a4373ad732ec4d2969795",
+ "IPY_MODEL_a34e73d14fc04cf2923d3e2c3a13f4d2"
+ ],
+ "layout": "IPY_MODEL_eb91bc2da0d0401aa97f87f238166f9e",
"tabbable": null,
- "tooltip": null,
- "value": " 4.42M/4.42M [00:00<00:00, 95.7MB/s]"
+ "tooltip": null
}
},
- "d837ff833a594ea2b02ce7f7523c9dcd": {
+ "e59874221f9f4d51bb63e23f8bea8e22": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "e616ea91cf69498784ed469d8d9c5d56": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b8512ae9927e4d10b472de980750960a",
+ "IPY_MODEL_ec0cfb5e96cd45659f2cf1688322801e",
+ "IPY_MODEL_46934565459f444fbec76d736ee3c65a"
+ ],
+ "layout": "IPY_MODEL_01fb1528960642ed98a41c018ebf8642",
+ "tabbable": null,
+ "tooltip": null
}
},
- "d8441cb494324dad83d4a88dd3c805e6": {
+ "eb91bc2da0d0401aa97f87f238166f9e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8004,30 +8093,33 @@
"width": null
}
},
- "d8736cab840549168545a3a77aa8e714": {
+ "ec0cfb5e96cd45659f2cf1688322801e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_11e93782fa6f464e9f6900e0c646f5cf",
- "placeholder": "",
- "style": "IPY_MODEL_83fe2423c4494c2b9394412c402eca60",
+ "layout": "IPY_MODEL_0b40cdefc96a418498d22347f69b2092",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52a385af17b044b190124cefc696f61a",
"tabbable": null,
"tooltip": null,
- "value": "Computing checksums: 100%"
+ "value": 60000.0
}
},
- "dbc28ec812a84d3f80f20f8fcab2939a": {
+ "f0ecfab0de304d19b81550b7de254646": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8080,7 +8172,7 @@
"width": null
}
},
- "dc708bb2c5314b17862c251eeb9db099": {
+ "f3c6cde529c44282837ed44228f6eb41": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -8095,41 +8187,31 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c82a1f05b0ec418a9670fcf0e44708f1",
+ "layout": "IPY_MODEL_747383714a754016b00b74ce13e738ed",
"placeholder": "",
- "style": "IPY_MODEL_3c76ee6a2244430cbb3e8e8416d1a23c",
+ "style": "IPY_MODEL_44007c0808df4ead8edb28f0e244a3dc",
"tabbable": null,
"tooltip": null,
- "value": " 4/4 [00:00<00:00, 1332.58it/s]"
+ "value": " 40/40 [00:00<00:00, 55.94it/s]"
}
},
- "dd4b960c1fc54808ac7ec7abfbe1ccbc": {
+ "f3dbc819150243c8b46c185ca1842360": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_7defd4db8e0e4d9d806b06b0ad18bad9",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_04bfeccaeea6416e98641eb5e663ae0b",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "dd549dafe96d457a9f3e32fa6dda0ce5": {
+ "f43b69d6c4c84e62adfd01c967a90fa3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8182,7 +8264,7 @@
"width": null
}
},
- "e06347bb350642c28c5755357c9f6b4f": {
+ "f5ded18337834f7a9dbd8390a89b501e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8200,7 +8282,7 @@
"text_color": null
}
},
- "e075f5bd416a447eb67433e0d225370f": {
+ "f6bff3421ffe4305b801978e8849eb8c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -8215,126 +8297,79 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_865a8adbaefe44eb930f2df86dcd3a25",
- "IPY_MODEL_2253900d1539484ea6c5fb5f87e34fae",
- "IPY_MODEL_f669341590db4e77b2110a49a3fa808c"
+ "IPY_MODEL_ab4d075c34534c19a1bbc155e5546698",
+ "IPY_MODEL_660a237d926d49899ac17b9e92223c1c",
+ "IPY_MODEL_93223ec843da40588ff01a9e1ff7f446"
],
- "layout": "IPY_MODEL_431d46eafa8c450b8c8f1bf1f7883cf3",
+ "layout": "IPY_MODEL_1709639a246d43619f500f188e197fd6",
"tabbable": null,
"tooltip": null
}
},
- "e522f4fa76294f30ae3dc6a49425837b": {
+ "f98b94bfe32c4565a73c98a0212942f6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a0fcbc8073a04dc3b3d50f64b4a77c05",
+ "placeholder": "",
+ "style": "IPY_MODEL_1f2da7f8744547fe843e252764b428d7",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 8.85k/8.85k [00:00<00:00, 1.40MB/s]"
}
},
- "e675357d5efc42b3968d61c273ca5f7f": {
+ "fa5b88ba2d5f4e2890a86a132006ee49": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "e7e60d48deb84f8681aa2b4aaa1ad387": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0dd2109ac6524d679b387d10fc63ae01",
+ "IPY_MODEL_aa6090d12f9547aa838e8d1365aebece",
+ "IPY_MODEL_229fd1bb4d404e579aa8deba0d11f45d"
+ ],
+ "layout": "IPY_MODEL_3c3363fd27ee42a7b1d48f723bf24487",
+ "tabbable": null,
+ "tooltip": null
}
},
- "e9b9c9bbe0374dd9b98a3a4c1553822f": {
+ "fac4ff02cc5b457cab68f4a636edcdc8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_629ccac58fe74198b172012097674576",
- "placeholder": "",
- "style": "IPY_MODEL_1f7f1fac2dd34d07b7fc07f799729df6",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 59.81it/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "eb33301487694b0f9f4a664fce743134": {
+ "fd27525b063140d5a2b812b1f7f7f8a4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8352,31 +8387,25 @@
"text_color": null
}
},
- "ebc081ac7cef42f58f0c46bdca672b27": {
+ "fda2c399539b430987fc114befcc2f59": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a518055f2d994914bf1de3d11ea03a82",
- "IPY_MODEL_18e5b3625d2a4b3abbfea651a20eef56",
- "IPY_MODEL_91e935457d624042a2d02c107985c146"
- ],
- "layout": "IPY_MODEL_2bf71c3624ce4413bc347a20e07c26d5",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "ed6f311b0f784e268d2c2f765d55a94a": {
+ "fdb9730e58fc4db8b34379709a24eedd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -8391,15 +8420,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e7e60d48deb84f8681aa2b4aaa1ad387",
+ "layout": "IPY_MODEL_f0ecfab0de304d19b81550b7de254646",
"placeholder": "",
- "style": "IPY_MODEL_17af51078a0c4c0f92db9850c8c773d7",
+ "style": "IPY_MODEL_7a62182e1a1f495e934de1b0fb6f6766",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": "Downloading data: 100%"
}
},
- "ed7068ef4b08440eaae3bd1ba5cca147": {
+ "fe13f2bdaafe4bd09546de6cf5e55c4f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8452,7 +8481,7 @@
"width": null
}
},
- "f08b9948f05248b3b3ef10bd15ffc7d8": {
+ "feb23f7712944922882bc91b4b7dd179": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8505,7 +8534,7 @@
"width": null
}
},
- "f332684f2b70406ab76c95d24f2f40ed": {
+ "fed1e24975764ce4a8e5c16384c09605": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8523,83 +8552,41 @@
"text_color": null
}
},
- "f35f77b3dc2d4f87b2f6435eb17b5f51": {
- "model_module": "@jupyter-widgets/base",
+ "fef9aeeb677745ee8a6954bb2c1e4439": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f669341590db4e77b2110a49a3fa808c": {
+ "ff007de4777147b0bb0ee154b5c66868": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_8ce5df9efdba4fd1bad996ee729dec94",
- "placeholder": "",
- "style": "IPY_MODEL_a3d6f09afbca4e6482b56fd6d71d9b25",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:10<00:00, 5815.53 examples/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f8852f488ece4717923d24f0f949869a": {
+ "ff30ce297fbf40a3b41354d9b5c04b47": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8652,30 +8639,25 @@
"width": null
}
},
- "f99e5e0dbb254dd0a57ef096794a0277": {
+ "ff6918e846af4011afbcb1224c990aea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_176f4fe537ab44709eed5f4771e5a748",
- "placeholder": "",
- "style": "IPY_MODEL_b45281dbfb444428b286e76808d4a658",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "fb9b135b97bd45978b3759750aac7be4": {
+ "ff7d28ca3d77451c938e3d05c9d35bd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index 7f5df08d9..e10fb5ba3 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -73,10 +73,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:19.488251Z",
- "iopub.status.busy": "2024-06-25T23:17:19.488091Z",
- "iopub.status.idle": "2024-06-25T23:17:20.586301Z",
- "shell.execute_reply": "2024-06-25T23:17:20.585756Z"
+ "iopub.execute_input": "2024-06-27T15:43:27.478769Z",
+ "iopub.status.busy": "2024-06-27T15:43:27.478597Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.615331Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.614783Z"
},
"nbsphinx": "hidden"
},
@@ -86,7 +86,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -111,10 +111,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.589007Z",
- "iopub.status.busy": "2024-06-25T23:17:20.588566Z",
- "iopub.status.idle": "2024-06-25T23:17:20.607142Z",
- "shell.execute_reply": "2024-06-25T23:17:20.606704Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.617939Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.617477Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.634988Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.634564Z"
}
},
"outputs": [],
@@ -154,10 +154,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.609262Z",
- "iopub.status.busy": "2024-06-25T23:17:20.608896Z",
- "iopub.status.idle": "2024-06-25T23:17:20.630509Z",
- "shell.execute_reply": "2024-06-25T23:17:20.630057Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.637231Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.636741Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.683752Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.683219Z"
}
},
"outputs": [
@@ -264,10 +264,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.632342Z",
- "iopub.status.busy": "2024-06-25T23:17:20.632168Z",
- "iopub.status.idle": "2024-06-25T23:17:20.635695Z",
- "shell.execute_reply": "2024-06-25T23:17:20.635234Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.685832Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.685492Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.688933Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.688419Z"
}
},
"outputs": [],
@@ -288,10 +288,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.637844Z",
- "iopub.status.busy": "2024-06-25T23:17:20.637544Z",
- "iopub.status.idle": "2024-06-25T23:17:20.644982Z",
- "shell.execute_reply": "2024-06-25T23:17:20.644551Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.691026Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.690642Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.698127Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.697567Z"
}
},
"outputs": [],
@@ -336,10 +336,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.646840Z",
- "iopub.status.busy": "2024-06-25T23:17:20.646673Z",
- "iopub.status.idle": "2024-06-25T23:17:20.649384Z",
- "shell.execute_reply": "2024-06-25T23:17:20.648911Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.700172Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.699860Z",
+ "iopub.status.idle": "2024-06-27T15:43:28.702299Z",
+ "shell.execute_reply": "2024-06-27T15:43:28.701866Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:20.651376Z",
- "iopub.status.busy": "2024-06-25T23:17:20.651062Z",
- "iopub.status.idle": "2024-06-25T23:17:23.603750Z",
- "shell.execute_reply": "2024-06-25T23:17:23.603132Z"
+ "iopub.execute_input": "2024-06-27T15:43:28.704313Z",
+ "iopub.status.busy": "2024-06-27T15:43:28.703998Z",
+ "iopub.status.idle": "2024-06-27T15:43:31.609175Z",
+ "shell.execute_reply": "2024-06-27T15:43:31.608631Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:23.606640Z",
- "iopub.status.busy": "2024-06-25T23:17:23.606173Z",
- "iopub.status.idle": "2024-06-25T23:17:23.615532Z",
- "shell.execute_reply": "2024-06-25T23:17:23.614991Z"
+ "iopub.execute_input": "2024-06-27T15:43:31.611891Z",
+ "iopub.status.busy": "2024-06-27T15:43:31.611669Z",
+ "iopub.status.idle": "2024-06-27T15:43:31.620906Z",
+ "shell.execute_reply": "2024-06-27T15:43:31.620481Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:23.617787Z",
- "iopub.status.busy": "2024-06-25T23:17:23.617408Z",
- "iopub.status.idle": "2024-06-25T23:17:25.503397Z",
- "shell.execute_reply": "2024-06-25T23:17:25.502726Z"
+ "iopub.execute_input": "2024-06-27T15:43:31.622822Z",
+ "iopub.status.busy": "2024-06-27T15:43:31.622651Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.535648Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.535025Z"
}
},
"outputs": [
@@ -462,14 +462,6 @@
"\n",
"Audit complete. 358 issues found in the dataset.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
}
],
"source": [
@@ -484,10 +476,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.506132Z",
- "iopub.status.busy": "2024-06-25T23:17:25.505476Z",
- "iopub.status.idle": "2024-06-25T23:17:25.524117Z",
- "shell.execute_reply": "2024-06-25T23:17:25.523676Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.538337Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.537758Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.556718Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.556253Z"
},
"scrolled": true
},
@@ -617,10 +609,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.526096Z",
- "iopub.status.busy": "2024-06-25T23:17:25.525830Z",
- "iopub.status.idle": "2024-06-25T23:17:25.533770Z",
- "shell.execute_reply": "2024-06-25T23:17:25.533230Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.558849Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.558552Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.566516Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.565968Z"
}
},
"outputs": [
@@ -724,10 +716,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.535755Z",
- "iopub.status.busy": "2024-06-25T23:17:25.535435Z",
- "iopub.status.idle": "2024-06-25T23:17:25.544816Z",
- "shell.execute_reply": "2024-06-25T23:17:25.544397Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.568644Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.568246Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.577101Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.576563Z"
}
},
"outputs": [
@@ -856,10 +848,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.546828Z",
- "iopub.status.busy": "2024-06-25T23:17:25.546524Z",
- "iopub.status.idle": "2024-06-25T23:17:25.554523Z",
- "shell.execute_reply": "2024-06-25T23:17:25.554077Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.579284Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.578978Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.586679Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.586154Z"
}
},
"outputs": [
@@ -973,10 +965,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.556497Z",
- "iopub.status.busy": "2024-06-25T23:17:25.556176Z",
- "iopub.status.idle": "2024-06-25T23:17:25.564618Z",
- "shell.execute_reply": "2024-06-25T23:17:25.564170Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.588710Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.588378Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.596909Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.596360Z"
}
},
"outputs": [
@@ -1087,10 +1079,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.566583Z",
- "iopub.status.busy": "2024-06-25T23:17:25.566262Z",
- "iopub.status.idle": "2024-06-25T23:17:25.573703Z",
- "shell.execute_reply": "2024-06-25T23:17:25.573162Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.598991Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.598672Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.606013Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.605532Z"
}
},
"outputs": [
@@ -1205,10 +1197,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.575840Z",
- "iopub.status.busy": "2024-06-25T23:17:25.575524Z",
- "iopub.status.idle": "2024-06-25T23:17:25.582660Z",
- "shell.execute_reply": "2024-06-25T23:17:25.582224Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.608076Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.607755Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.614860Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.614434Z"
}
},
"outputs": [
@@ -1308,10 +1300,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:25.584694Z",
- "iopub.status.busy": "2024-06-25T23:17:25.584373Z",
- "iopub.status.idle": "2024-06-25T23:17:25.592350Z",
- "shell.execute_reply": "2024-06-25T23:17:25.591901Z"
+ "iopub.execute_input": "2024-06-27T15:43:33.616903Z",
+ "iopub.status.busy": "2024-06-27T15:43:33.616574Z",
+ "iopub.status.idle": "2024-06-27T15:43:33.624562Z",
+ "shell.execute_reply": "2024-06-27T15:43:33.624101Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index 47d0847e3..858b70c6a 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:28.279893Z",
- "iopub.status.busy": "2024-06-25T23:17:28.279723Z",
- "iopub.status.idle": "2024-06-25T23:17:30.902204Z",
- "shell.execute_reply": "2024-06-25T23:17:30.901649Z"
+ "iopub.execute_input": "2024-06-27T15:43:36.211196Z",
+ "iopub.status.busy": "2024-06-27T15:43:36.210616Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.877876Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.877226Z"
},
"nbsphinx": "hidden"
},
@@ -96,7 +96,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -121,10 +121,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.904858Z",
- "iopub.status.busy": "2024-06-25T23:17:30.904404Z",
- "iopub.status.idle": "2024-06-25T23:17:30.907555Z",
- "shell.execute_reply": "2024-06-25T23:17:30.907124Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.880571Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.880281Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.883432Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.882998Z"
}
},
"outputs": [],
@@ -145,10 +145,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.909531Z",
- "iopub.status.busy": "2024-06-25T23:17:30.909235Z",
- "iopub.status.idle": "2024-06-25T23:17:30.912305Z",
- "shell.execute_reply": "2024-06-25T23:17:30.911777Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.885401Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.885086Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.888163Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.887637Z"
},
"nbsphinx": "hidden"
},
@@ -178,10 +178,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.914377Z",
- "iopub.status.busy": "2024-06-25T23:17:30.913988Z",
- "iopub.status.idle": "2024-06-25T23:17:30.934290Z",
- "shell.execute_reply": "2024-06-25T23:17:30.933773Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.890191Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.889896Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.941357Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.940812Z"
}
},
"outputs": [
@@ -271,10 +271,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.936266Z",
- "iopub.status.busy": "2024-06-25T23:17:30.935961Z",
- "iopub.status.idle": "2024-06-25T23:17:30.939627Z",
- "shell.execute_reply": "2024-06-25T23:17:30.939095Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.943383Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.943067Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.946734Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.946211Z"
}
},
"outputs": [
@@ -283,7 +283,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'beneficiary_not_allowed', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'getting_spare_card', 'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer'}\n"
+ "Classes: {'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard'}\n"
]
}
],
@@ -307,10 +307,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.941560Z",
- "iopub.status.busy": "2024-06-25T23:17:30.941250Z",
- "iopub.status.idle": "2024-06-25T23:17:30.944331Z",
- "shell.execute_reply": "2024-06-25T23:17:30.943818Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.948819Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.948384Z",
+ "iopub.status.idle": "2024-06-27T15:43:38.951555Z",
+ "shell.execute_reply": "2024-06-27T15:43:38.951036Z"
}
},
"outputs": [
@@ -365,10 +365,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:30.946381Z",
- "iopub.status.busy": "2024-06-25T23:17:30.946063Z",
- "iopub.status.idle": "2024-06-25T23:17:34.606408Z",
- "shell.execute_reply": "2024-06-25T23:17:34.605752Z"
+ "iopub.execute_input": "2024-06-27T15:43:38.953619Z",
+ "iopub.status.busy": "2024-06-27T15:43:38.953322Z",
+ "iopub.status.idle": "2024-06-27T15:43:45.236989Z",
+ "shell.execute_reply": "2024-06-27T15:43:45.236337Z"
}
},
"outputs": [
@@ -378,14 +378,6 @@
"text": [
"No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n",
- " return self.fget.__get__(instance, owner)()\n"
- ]
}
],
"source": [
@@ -424,10 +416,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:34.609229Z",
- "iopub.status.busy": "2024-06-25T23:17:34.608851Z",
- "iopub.status.idle": "2024-06-25T23:17:35.466411Z",
- "shell.execute_reply": "2024-06-25T23:17:35.465834Z"
+ "iopub.execute_input": "2024-06-27T15:43:45.239672Z",
+ "iopub.status.busy": "2024-06-27T15:43:45.239336Z",
+ "iopub.status.idle": "2024-06-27T15:43:46.123974Z",
+ "shell.execute_reply": "2024-06-27T15:43:46.123390Z"
},
"scrolled": true
},
@@ -459,10 +451,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:35.469450Z",
- "iopub.status.busy": "2024-06-25T23:17:35.469026Z",
- "iopub.status.idle": "2024-06-25T23:17:35.471951Z",
- "shell.execute_reply": "2024-06-25T23:17:35.471467Z"
+ "iopub.execute_input": "2024-06-27T15:43:46.127752Z",
+ "iopub.status.busy": "2024-06-27T15:43:46.126790Z",
+ "iopub.status.idle": "2024-06-27T15:43:46.130878Z",
+ "shell.execute_reply": "2024-06-27T15:43:46.130372Z"
}
},
"outputs": [],
@@ -482,10 +474,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:35.474346Z",
- "iopub.status.busy": "2024-06-25T23:17:35.473954Z",
- "iopub.status.idle": "2024-06-25T23:17:37.379211Z",
- "shell.execute_reply": "2024-06-25T23:17:37.378561Z"
+ "iopub.execute_input": "2024-06-27T15:43:46.134460Z",
+ "iopub.status.busy": "2024-06-27T15:43:46.133513Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.069108Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.068128Z"
},
"scrolled": true
},
@@ -510,14 +502,6 @@
"\n",
"Audit complete. 85 issues found in the dataset.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
}
],
"source": [
@@ -537,10 +521,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.383383Z",
- "iopub.status.busy": "2024-06-25T23:17:37.382233Z",
- "iopub.status.idle": "2024-06-25T23:17:37.408704Z",
- "shell.execute_reply": "2024-06-25T23:17:37.408212Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.073009Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.071851Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.099092Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.098582Z"
},
"scrolled": true
},
@@ -670,10 +654,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.412193Z",
- "iopub.status.busy": "2024-06-25T23:17:37.411277Z",
- "iopub.status.idle": "2024-06-25T23:17:37.421651Z",
- "shell.execute_reply": "2024-06-25T23:17:37.421256Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.102662Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.101747Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.112519Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.112121Z"
},
"scrolled": true
},
@@ -783,10 +767,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.424437Z",
- "iopub.status.busy": "2024-06-25T23:17:37.423704Z",
- "iopub.status.idle": "2024-06-25T23:17:37.428917Z",
- "shell.execute_reply": "2024-06-25T23:17:37.428520Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.114945Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.114571Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.118624Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.118139Z"
}
},
"outputs": [
@@ -824,10 +808,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.430883Z",
- "iopub.status.busy": "2024-06-25T23:17:37.430707Z",
- "iopub.status.idle": "2024-06-25T23:17:37.438445Z",
- "shell.execute_reply": "2024-06-25T23:17:37.437883Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.120614Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.120315Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.126511Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.125999Z"
}
},
"outputs": [
@@ -944,10 +928,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.440387Z",
- "iopub.status.busy": "2024-06-25T23:17:37.440214Z",
- "iopub.status.idle": "2024-06-25T23:17:37.446599Z",
- "shell.execute_reply": "2024-06-25T23:17:37.446157Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.128507Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.128148Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.134473Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.133964Z"
}
},
"outputs": [
@@ -1030,10 +1014,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.448520Z",
- "iopub.status.busy": "2024-06-25T23:17:37.448196Z",
- "iopub.status.idle": "2024-06-25T23:17:37.454046Z",
- "shell.execute_reply": "2024-06-25T23:17:37.453485Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.136403Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.136103Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.141827Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.141387Z"
}
},
"outputs": [
@@ -1141,10 +1125,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.456157Z",
- "iopub.status.busy": "2024-06-25T23:17:37.455839Z",
- "iopub.status.idle": "2024-06-25T23:17:37.464219Z",
- "shell.execute_reply": "2024-06-25T23:17:37.463796Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.143837Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.143538Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.151732Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.151300Z"
}
},
"outputs": [
@@ -1255,10 +1239,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.466195Z",
- "iopub.status.busy": "2024-06-25T23:17:37.465883Z",
- "iopub.status.idle": "2024-06-25T23:17:37.471233Z",
- "shell.execute_reply": "2024-06-25T23:17:37.470679Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.153724Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.153415Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.158681Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.158138Z"
}
},
"outputs": [
@@ -1326,10 +1310,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.473304Z",
- "iopub.status.busy": "2024-06-25T23:17:37.472970Z",
- "iopub.status.idle": "2024-06-25T23:17:37.478474Z",
- "shell.execute_reply": "2024-06-25T23:17:37.478028Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.160608Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.160431Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.165627Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.165151Z"
}
},
"outputs": [
@@ -1408,10 +1392,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.480531Z",
- "iopub.status.busy": "2024-06-25T23:17:37.480222Z",
- "iopub.status.idle": "2024-06-25T23:17:37.483860Z",
- "shell.execute_reply": "2024-06-25T23:17:37.483411Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.167686Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.167383Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.170918Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.170385Z"
}
},
"outputs": [
@@ -1459,10 +1443,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:37.485748Z",
- "iopub.status.busy": "2024-06-25T23:17:37.485580Z",
- "iopub.status.idle": "2024-06-25T23:17:37.490849Z",
- "shell.execute_reply": "2024-06-25T23:17:37.490382Z"
+ "iopub.execute_input": "2024-06-27T15:43:48.173029Z",
+ "iopub.status.busy": "2024-06-27T15:43:48.172853Z",
+ "iopub.status.idle": "2024-06-27T15:43:48.177856Z",
+ "shell.execute_reply": "2024-06-27T15:43:48.177424Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb
index 05570c79a..271e14984 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb
@@ -38,10 +38,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:40.853361Z",
- "iopub.status.busy": "2024-06-25T23:17:40.852930Z",
- "iopub.status.idle": "2024-06-25T23:17:41.272322Z",
- "shell.execute_reply": "2024-06-25T23:17:41.271713Z"
+ "iopub.execute_input": "2024-06-27T15:43:52.541747Z",
+ "iopub.status.busy": "2024-06-27T15:43:52.541554Z",
+ "iopub.status.idle": "2024-06-27T15:43:52.966739Z",
+ "shell.execute_reply": "2024-06-27T15:43:52.966247Z"
}
},
"outputs": [],
@@ -87,10 +87,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:41.275299Z",
- "iopub.status.busy": "2024-06-25T23:17:41.274749Z",
- "iopub.status.idle": "2024-06-25T23:17:41.403175Z",
- "shell.execute_reply": "2024-06-25T23:17:41.402663Z"
+ "iopub.execute_input": "2024-06-27T15:43:52.969430Z",
+ "iopub.status.busy": "2024-06-27T15:43:52.968973Z",
+ "iopub.status.idle": "2024-06-27T15:43:53.099469Z",
+ "shell.execute_reply": "2024-06-27T15:43:53.098906Z"
}
},
"outputs": [
@@ -181,10 +181,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:41.405438Z",
- "iopub.status.busy": "2024-06-25T23:17:41.405028Z",
- "iopub.status.idle": "2024-06-25T23:17:41.427834Z",
- "shell.execute_reply": "2024-06-25T23:17:41.427281Z"
+ "iopub.execute_input": "2024-06-27T15:43:53.101731Z",
+ "iopub.status.busy": "2024-06-27T15:43:53.101470Z",
+ "iopub.status.idle": "2024-06-27T15:43:53.125646Z",
+ "shell.execute_reply": "2024-06-27T15:43:53.125036Z"
}
},
"outputs": [],
@@ -210,21 +210,13 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:41.430652Z",
- "iopub.status.busy": "2024-06-25T23:17:41.430206Z",
- "iopub.status.idle": "2024-06-25T23:17:44.079438Z",
- "shell.execute_reply": "2024-06-25T23:17:44.078785Z"
+ "iopub.execute_input": "2024-06-27T15:43:53.128358Z",
+ "iopub.status.busy": "2024-06-27T15:43:53.127895Z",
+ "iopub.status.idle": "2024-06-27T15:43:55.830328Z",
+ "shell.execute_reply": "2024-06-27T15:43:55.829757Z"
}
},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/issue_finder.py:116: UserWarning: Both `features` and `knn_graph` were provided. Most issue managers will likely prefer using `knn_graph` instead of `features` for efficiency.\n",
- " warnings.warn(\n"
- ]
- },
{
"name": "stdout",
"output_type": "stream",
@@ -243,15 +235,7 @@
"Finding class_imbalance issues ...\n",
"Finding underperforming_group issues ...\n",
"\n",
- "Audit complete. 523 issues found in the dataset.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
+ "Audit complete. 524 issues found in the dataset.\n"
]
},
{
@@ -296,13 +280,13 @@
" \n",
" 2 \n",
" outlier \n",
- " 0.356958 \n",
- " 362 \n",
+ " 0.356925 \n",
+ " 363 \n",
" \n",
" \n",
" 3 \n",
" near_duplicate \n",
- " 0.619565 \n",
+ " 0.619581 \n",
" 108 \n",
" \n",
" \n",
@@ -331,8 +315,8 @@
" issue_type score num_issues\n",
"0 null 1.000000 0\n",
"1 label 0.991400 52\n",
- "2 outlier 0.356958 362\n",
- "3 near_duplicate 0.619565 108\n",
+ "2 outlier 0.356925 363\n",
+ "3 near_duplicate 0.619581 108\n",
"4 non_iid 0.000000 1\n",
"5 class_imbalance 0.500000 0\n",
"6 underperforming_group 0.651929 0"
@@ -716,10 +700,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:44.082102Z",
- "iopub.status.busy": "2024-06-25T23:17:44.081500Z",
- "iopub.status.idle": "2024-06-25T23:17:51.711133Z",
- "shell.execute_reply": "2024-06-25T23:17:51.710550Z"
+ "iopub.execute_input": "2024-06-27T15:43:55.832965Z",
+ "iopub.status.busy": "2024-06-27T15:43:55.832431Z",
+ "iopub.status.idle": "2024-06-27T15:44:04.492966Z",
+ "shell.execute_reply": "2024-06-27T15:44:04.492355Z"
}
},
"outputs": [
@@ -820,10 +804,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:51.713313Z",
- "iopub.status.busy": "2024-06-25T23:17:51.713127Z",
- "iopub.status.idle": "2024-06-25T23:17:51.857400Z",
- "shell.execute_reply": "2024-06-25T23:17:51.856753Z"
+ "iopub.execute_input": "2024-06-27T15:44:04.495312Z",
+ "iopub.status.busy": "2024-06-27T15:44:04.494968Z",
+ "iopub.status.idle": "2024-06-27T15:44:04.655997Z",
+ "shell.execute_reply": "2024-06-27T15:44:04.655499Z"
}
},
"outputs": [],
@@ -854,10 +838,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:51.860009Z",
- "iopub.status.busy": "2024-06-25T23:17:51.859627Z",
- "iopub.status.idle": "2024-06-25T23:17:53.181642Z",
- "shell.execute_reply": "2024-06-25T23:17:53.181004Z"
+ "iopub.execute_input": "2024-06-27T15:44:04.658598Z",
+ "iopub.status.busy": "2024-06-27T15:44:04.658162Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.008495Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.008007Z"
}
},
"outputs": [
@@ -1016,10 +1000,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.183695Z",
- "iopub.status.busy": "2024-06-25T23:17:53.183507Z",
- "iopub.status.idle": "2024-06-25T23:17:53.614506Z",
- "shell.execute_reply": "2024-06-25T23:17:53.613154Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.010831Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.010491Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.454504Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.453979Z"
}
},
"outputs": [
@@ -1098,10 +1082,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.617165Z",
- "iopub.status.busy": "2024-06-25T23:17:53.616488Z",
- "iopub.status.idle": "2024-06-25T23:17:53.625569Z",
- "shell.execute_reply": "2024-06-25T23:17:53.625088Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.457199Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.456627Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.468762Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.468281Z"
}
},
"outputs": [],
@@ -1131,10 +1115,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.627646Z",
- "iopub.status.busy": "2024-06-25T23:17:53.627333Z",
- "iopub.status.idle": "2024-06-25T23:17:53.647292Z",
- "shell.execute_reply": "2024-06-25T23:17:53.646870Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.470767Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.470476Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.488173Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.487620Z"
}
},
"outputs": [],
@@ -1162,10 +1146,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.649278Z",
- "iopub.status.busy": "2024-06-25T23:17:53.648956Z",
- "iopub.status.idle": "2024-06-25T23:17:53.876935Z",
- "shell.execute_reply": "2024-06-25T23:17:53.876376Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.490211Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.489903Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.712598Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.711996Z"
}
},
"outputs": [],
@@ -1205,10 +1189,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.879777Z",
- "iopub.status.busy": "2024-06-25T23:17:53.879575Z",
- "iopub.status.idle": "2024-06-25T23:17:53.898417Z",
- "shell.execute_reply": "2024-06-25T23:17:53.897956Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.715566Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.715063Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.733594Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.733059Z"
}
},
"outputs": [
@@ -1406,10 +1390,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:53.900637Z",
- "iopub.status.busy": "2024-06-25T23:17:53.900291Z",
- "iopub.status.idle": "2024-06-25T23:17:54.067010Z",
- "shell.execute_reply": "2024-06-25T23:17:54.066325Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.735735Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.735338Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.904156Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.903547Z"
}
},
"outputs": [
@@ -1476,10 +1460,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.069491Z",
- "iopub.status.busy": "2024-06-25T23:17:54.069138Z",
- "iopub.status.idle": "2024-06-25T23:17:54.080042Z",
- "shell.execute_reply": "2024-06-25T23:17:54.079594Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.906516Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.906177Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.916223Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.915683Z"
}
},
"outputs": [
@@ -1745,10 +1729,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.083209Z",
- "iopub.status.busy": "2024-06-25T23:17:54.082726Z",
- "iopub.status.idle": "2024-06-25T23:17:54.092500Z",
- "shell.execute_reply": "2024-06-25T23:17:54.092040Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.918395Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.918078Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.927111Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.926638Z"
}
},
"outputs": [
@@ -1935,10 +1919,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.094651Z",
- "iopub.status.busy": "2024-06-25T23:17:54.094321Z",
- "iopub.status.idle": "2024-06-25T23:17:54.125818Z",
- "shell.execute_reply": "2024-06-25T23:17:54.122177Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.929131Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.928820Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.957898Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.957444Z"
}
},
"outputs": [],
@@ -1972,10 +1956,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.128194Z",
- "iopub.status.busy": "2024-06-25T23:17:54.127850Z",
- "iopub.status.idle": "2024-06-25T23:17:54.130729Z",
- "shell.execute_reply": "2024-06-25T23:17:54.130269Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.960022Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.959611Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.962384Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.961933Z"
}
},
"outputs": [],
@@ -1997,10 +1981,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.132753Z",
- "iopub.status.busy": "2024-06-25T23:17:54.132426Z",
- "iopub.status.idle": "2024-06-25T23:17:54.151669Z",
- "shell.execute_reply": "2024-06-25T23:17:54.151107Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.964363Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.964036Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.983071Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.982517Z"
}
},
"outputs": [
@@ -2158,10 +2142,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.153875Z",
- "iopub.status.busy": "2024-06-25T23:17:54.153542Z",
- "iopub.status.idle": "2024-06-25T23:17:54.157885Z",
- "shell.execute_reply": "2024-06-25T23:17:54.157427Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.985511Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.985071Z",
+ "iopub.status.idle": "2024-06-27T15:44:06.989351Z",
+ "shell.execute_reply": "2024-06-27T15:44:06.988923Z"
}
},
"outputs": [],
@@ -2194,10 +2178,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.159942Z",
- "iopub.status.busy": "2024-06-25T23:17:54.159537Z",
- "iopub.status.idle": "2024-06-25T23:17:54.187254Z",
- "shell.execute_reply": "2024-06-25T23:17:54.186748Z"
+ "iopub.execute_input": "2024-06-27T15:44:06.991366Z",
+ "iopub.status.busy": "2024-06-27T15:44:06.991042Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.018711Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.018244Z"
}
},
"outputs": [
@@ -2343,10 +2327,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.189370Z",
- "iopub.status.busy": "2024-06-25T23:17:54.189020Z",
- "iopub.status.idle": "2024-06-25T23:17:54.563581Z",
- "shell.execute_reply": "2024-06-25T23:17:54.563004Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.020577Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.020409Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.337879Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.337286Z"
}
},
"outputs": [
@@ -2413,10 +2397,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.566043Z",
- "iopub.status.busy": "2024-06-25T23:17:54.565580Z",
- "iopub.status.idle": "2024-06-25T23:17:54.568905Z",
- "shell.execute_reply": "2024-06-25T23:17:54.568452Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.340113Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.339804Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.343054Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.342520Z"
}
},
"outputs": [
@@ -2467,10 +2451,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.570928Z",
- "iopub.status.busy": "2024-06-25T23:17:54.570747Z",
- "iopub.status.idle": "2024-06-25T23:17:54.584558Z",
- "shell.execute_reply": "2024-06-25T23:17:54.584061Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.345190Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.344783Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.357931Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.357379Z"
}
},
"outputs": [
@@ -2749,10 +2733,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.586622Z",
- "iopub.status.busy": "2024-06-25T23:17:54.586423Z",
- "iopub.status.idle": "2024-06-25T23:17:54.600724Z",
- "shell.execute_reply": "2024-06-25T23:17:54.600241Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.360084Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.359601Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.372602Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.372167Z"
}
},
"outputs": [
@@ -3019,10 +3003,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.602957Z",
- "iopub.status.busy": "2024-06-25T23:17:54.602518Z",
- "iopub.status.idle": "2024-06-25T23:17:54.612377Z",
- "shell.execute_reply": "2024-06-25T23:17:54.611952Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.374570Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.374264Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.384219Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.383662Z"
}
},
"outputs": [],
@@ -3047,10 +3031,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.614486Z",
- "iopub.status.busy": "2024-06-25T23:17:54.614156Z",
- "iopub.status.idle": "2024-06-25T23:17:54.623497Z",
- "shell.execute_reply": "2024-06-25T23:17:54.622945Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.386607Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.386215Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.395533Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.394986Z"
}
},
"outputs": [
@@ -3222,10 +3206,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.625637Z",
- "iopub.status.busy": "2024-06-25T23:17:54.625295Z",
- "iopub.status.idle": "2024-06-25T23:17:54.630830Z",
- "shell.execute_reply": "2024-06-25T23:17:54.629019Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.397623Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.397305Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.400686Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.400265Z"
}
},
"outputs": [],
@@ -3257,10 +3241,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.633124Z",
- "iopub.status.busy": "2024-06-25T23:17:54.632790Z",
- "iopub.status.idle": "2024-06-25T23:17:54.684363Z",
- "shell.execute_reply": "2024-06-25T23:17:54.683802Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.402865Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.402399Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.452566Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.452010Z"
}
},
"outputs": [
@@ -3268,230 +3252,230 @@
"data": {
"text/html": [
"\n",
- "\n",
+ "\n",
" \n",
" \n",
" \n",
- " Age \n",
- " Gender \n",
- " Location \n",
- " Annual_Spending \n",
- " Number_of_Transactions \n",
- " Last_Purchase_Date \n",
- " | \n",
- " is_null_issue \n",
- " null_score \n",
+ " Age \n",
+ " Gender \n",
+ " Location \n",
+ " Annual_Spending \n",
+ " Number_of_Transactions \n",
+ " Last_Purchase_Date \n",
+ " | \n",
+ " is_null_issue \n",
+ " null_score \n",
" \n",
" \n",
" \n",
" \n",
- " 8 \n",
- " nan \n",
- " nan \n",
- " nan \n",
- " nan \n",
- " nan \n",
- " NaT \n",
- " \n",
- " True \n",
- " 0.000000 \n",
- " \n",
- " \n",
- " 1 \n",
- " nan \n",
- " Female \n",
- " Rural \n",
- " 6421.160000 \n",
- " 5.000000 \n",
- " NaT \n",
- " \n",
- " False \n",
- " 0.666667 \n",
- " \n",
- " \n",
- " 9 \n",
- " nan \n",
- " Male \n",
- " Rural \n",
- " 4655.820000 \n",
- " 1.000000 \n",
- " NaT \n",
- " \n",
- " False \n",
- " 0.666667 \n",
- " \n",
- " \n",
- " 14 \n",
- " nan \n",
- " Male \n",
- " Rural \n",
- " 6790.460000 \n",
- " 3.000000 \n",
- " NaT \n",
- " \n",
- " False \n",
- " 0.666667 \n",
- " \n",
- " \n",
- " 13 \n",
- " nan \n",
- " Male \n",
- " Urban \n",
- " 9167.470000 \n",
- " 4.000000 \n",
- " 2024-01-02 00:00:00 \n",
- " \n",
- " False \n",
- " 0.833333 \n",
- " \n",
- " \n",
- " 15 \n",
- " nan \n",
- " Other \n",
- " Rural \n",
- " 5327.960000 \n",
- " 8.000000 \n",
- " 2024-01-03 00:00:00 \n",
- " \n",
- " False \n",
- " 0.833333 \n",
- " \n",
- " \n",
- " 0 \n",
- " 56.000000 \n",
- " Other \n",
- " Rural \n",
- " 4099.620000 \n",
- " 3.000000 \n",
- " 2024-01-03 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 2 \n",
- " 46.000000 \n",
- " Male \n",
- " Suburban \n",
- " 5436.550000 \n",
- " 3.000000 \n",
- " 2024-02-26 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 3 \n",
- " 32.000000 \n",
- " Female \n",
- " Rural \n",
- " 4046.660000 \n",
- " 3.000000 \n",
- " 2024-03-23 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 4 \n",
- " 60.000000 \n",
- " Female \n",
- " Suburban \n",
- " 3467.670000 \n",
- " 6.000000 \n",
- " 2024-03-01 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 5 \n",
- " 25.000000 \n",
- " Female \n",
- " Suburban \n",
- " 4757.370000 \n",
- " 4.000000 \n",
- " 2024-01-03 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 6 \n",
- " 38.000000 \n",
- " Female \n",
- " Rural \n",
- " 4199.530000 \n",
- " 6.000000 \n",
- " 2024-01-03 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 7 \n",
- " 56.000000 \n",
- " Male \n",
- " Suburban \n",
- " 4991.710000 \n",
- " 6.000000 \n",
- " 2024-04-03 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 10 \n",
- " 40.000000 \n",
- " Female \n",
- " Rural \n",
- " 5584.020000 \n",
- " 7.000000 \n",
- " 2024-03-29 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 11 \n",
- " 28.000000 \n",
- " Female \n",
- " Urban \n",
- " 3102.320000 \n",
- " 2.000000 \n",
- " 2024-04-07 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
- " \n",
- " \n",
- " 12 \n",
- " 28.000000 \n",
- " Male \n",
- " Rural \n",
- " 6637.990000 \n",
- " 11.000000 \n",
- " 2024-04-08 00:00:00 \n",
- " \n",
- " False \n",
- " 1.000000 \n",
+ " 8 \n",
+ " nan \n",
+ " nan \n",
+ " nan \n",
+ " nan \n",
+ " nan \n",
+ " NaT \n",
+ " \n",
+ " True \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " nan \n",
+ " Female \n",
+ " Rural \n",
+ " 6421.160000 \n",
+ " 5.000000 \n",
+ " NaT \n",
+ " \n",
+ " False \n",
+ " 0.666667 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " nan \n",
+ " Male \n",
+ " Rural \n",
+ " 4655.820000 \n",
+ " 1.000000 \n",
+ " NaT \n",
+ " \n",
+ " False \n",
+ " 0.666667 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " nan \n",
+ " Male \n",
+ " Rural \n",
+ " 6790.460000 \n",
+ " 3.000000 \n",
+ " NaT \n",
+ " \n",
+ " False \n",
+ " 0.666667 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " nan \n",
+ " Male \n",
+ " Urban \n",
+ " 9167.470000 \n",
+ " 4.000000 \n",
+ " 2024-01-02 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 0.833333 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " nan \n",
+ " Other \n",
+ " Rural \n",
+ " 5327.960000 \n",
+ " 8.000000 \n",
+ " 2024-01-03 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 0.833333 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 56.000000 \n",
+ " Other \n",
+ " Rural \n",
+ " 4099.620000 \n",
+ " 3.000000 \n",
+ " 2024-01-03 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 46.000000 \n",
+ " Male \n",
+ " Suburban \n",
+ " 5436.550000 \n",
+ " 3.000000 \n",
+ " 2024-02-26 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 32.000000 \n",
+ " Female \n",
+ " Rural \n",
+ " 4046.660000 \n",
+ " 3.000000 \n",
+ " 2024-03-23 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 60.000000 \n",
+ " Female \n",
+ " Suburban \n",
+ " 3467.670000 \n",
+ " 6.000000 \n",
+ " 2024-03-01 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 25.000000 \n",
+ " Female \n",
+ " Suburban \n",
+ " 4757.370000 \n",
+ " 4.000000 \n",
+ " 2024-01-03 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 38.000000 \n",
+ " Female \n",
+ " Rural \n",
+ " 4199.530000 \n",
+ " 6.000000 \n",
+ " 2024-01-03 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 56.000000 \n",
+ " Male \n",
+ " Suburban \n",
+ " 4991.710000 \n",
+ " 6.000000 \n",
+ " 2024-04-03 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 40.000000 \n",
+ " Female \n",
+ " Rural \n",
+ " 5584.020000 \n",
+ " 7.000000 \n",
+ " 2024-03-29 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 28.000000 \n",
+ " Female \n",
+ " Urban \n",
+ " 3102.320000 \n",
+ " 2.000000 \n",
+ " 2024-04-07 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 28.000000 \n",
+ " Male \n",
+ " Rural \n",
+ " 6637.990000 \n",
+ " 11.000000 \n",
+ " 2024-04-08 00:00:00 \n",
+ " \n",
+ " False \n",
+ " 1.000000 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -3567,10 +3551,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.686913Z",
- "iopub.status.busy": "2024-06-25T23:17:54.686475Z",
- "iopub.status.idle": "2024-06-25T23:17:54.692178Z",
- "shell.execute_reply": "2024-06-25T23:17:54.691645Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.454975Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.454471Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.460205Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.459762Z"
}
},
"outputs": [],
@@ -3609,10 +3593,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.694316Z",
- "iopub.status.busy": "2024-06-25T23:17:54.693981Z",
- "iopub.status.idle": "2024-06-25T23:17:54.705261Z",
- "shell.execute_reply": "2024-06-25T23:17:54.704802Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.462133Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.461827Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.472460Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.471998Z"
}
},
"outputs": [
@@ -3648,10 +3632,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.707234Z",
- "iopub.status.busy": "2024-06-25T23:17:54.707059Z",
- "iopub.status.idle": "2024-06-25T23:17:54.923905Z",
- "shell.execute_reply": "2024-06-25T23:17:54.923350Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.474333Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.474161Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.692424Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.691818Z"
}
},
"outputs": [
@@ -3703,10 +3687,10 @@
"execution_count": 32,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:54.926218Z",
- "iopub.status.busy": "2024-06-25T23:17:54.925878Z",
- "iopub.status.idle": "2024-06-25T23:17:54.933331Z",
- "shell.execute_reply": "2024-06-25T23:17:54.932869Z"
+ "iopub.execute_input": "2024-06-27T15:44:07.694674Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.694341Z",
+ "iopub.status.idle": "2024-06-27T15:44:07.701787Z",
+ "shell.execute_reply": "2024-06-27T15:44:07.701329Z"
},
"nbsphinx": "hidden"
},
@@ -3731,25 +3715,1586 @@
"assert all(class_imbalance_issues.query(\"is_class_imbalance_issue\")[\"class_imbalance_score\"] == 0.02), \"Class imbalance issue scores are not as expected\"\n",
"assert all(class_imbalance_issues.query(\"not is_class_imbalance_issue\")[\"class_imbalance_score\"] == 1.0), \"Class imbalance issue scores are not as expected\""
]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
},
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Find Spurious Correlation between Vision Dataset features and class labels\n",
+ "\n",
+ "In this section, we demonstrate how to identify spurious correlations in a vision dataset using the `cleanlab` library. Spurious correlations are unintended associations in the data that do not reflect the true underlying relationships, potentially leading to misleading model predictions and poor generalization.\n",
+ "\n",
+ "We will utilize the `Datalab` class from cleanlab with the `image_key` attribute to pinpoint vision-specific issues such as `dark_score`, `blurry_score`, `odd_aspect_ratio_score`, and more in the dataset. By analyzing these correlations, we can understand their impact on model performance and take steps to enhance the robustness and reliability of our machine learning models."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1. Load the dataset\n",
+ "\n",
+ "We will demonstrate this workflow using the CIFAR-10 dataset by selecting 100 images from two random classes. To illustrate the impact of spurious correlations between image features and class labels, we will showcase how altering all images of a class, such as darkening them, significantly reduces the `dark_score`. This demonstrates the strong correlation detection of darkness within the dataset.\n",
+ "\n",
+ "Similarly, we can observe significant reductions in `blurry_score` and `odd_aspect_ratio_score` when one of the classes contains images with corresponding characteristics such as blurriness or an unusual aspect ratio between width and height."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-06-27T15:44:07.703783Z",
+ "iopub.status.busy": "2024-06-27T15:44:07.703532Z",
+ "iopub.status.idle": "2024-06-27T15:44:16.704543Z",
+ "shell.execute_reply": "2024-06-27T15:44:16.703978Z"
+ }
},
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.9"
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 0%| | 0/170498071 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 0%| | 32768/170498071 [00:00<10:31, 270019.71it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 0%| | 229376/170498071 [00:00<02:42, 1046704.96it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 1%| | 884736/170498071 [00:00<00:56, 3010831.02it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 2%|▏ | 3604480/170498071 [00:00<00:15, 10542069.14it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 6%|▌ | 9797632/170498071 [00:00<00:06, 24881276.72it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 9%|▉ | 15564800/170498071 [00:00<00:04, 34540236.65it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 12%|█▏ | 19628032/170498071 [00:00<00:04, 35874928.58it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 15%|█▍ | 25296896/170498071 [00:00<00:03, 41532477.93it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 17%|█▋ | 29556736/170498071 [00:01<00:03, 41816818.29it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 21%|██ | 35094528/170498071 [00:01<00:03, 45041939.92it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 23%|██▎ | 39878656/170498071 [00:01<00:02, 45842826.78it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 26%|██▋ | 44859392/170498071 [00:01<00:02, 46962275.29it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 29%|██▉ | 49676288/170498071 [00:01<00:02, 47288663.44it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 32%|███▏ | 54460416/170498071 [00:01<00:02, 46823522.69it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 35%|███▍ | 59375616/170498071 [00:01<00:02, 47343009.51it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 38%|███▊ | 64126976/170498071 [00:01<00:02, 46020324.01it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 41%|████ | 69238784/170498071 [00:01<00:02, 47454422.56it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 43%|████▎ | 74022912/170498071 [00:01<00:02, 46379262.96it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 46%|████▋ | 79167488/170498071 [00:02<00:02, 45618599.77it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 50%|████▉ | 84770816/170498071 [00:02<00:01, 48509742.90it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 53%|█████▎ | 89653248/170498071 [00:02<00:01, 47091873.18it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 56%|█████▌ | 94765056/170498071 [00:02<00:01, 48128520.01it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 58%|█████▊ | 99614720/170498071 [00:02<00:01, 46344196.75it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 61%|██████▏ | 104464384/170498071 [00:02<00:01, 46894011.20it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 64%|██████▍ | 109182976/170498071 [00:02<00:01, 46484995.75it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 67%|██████▋ | 113967104/170498071 [00:02<00:01, 46184247.05it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 70%|██████▉ | 118620160/170498071 [00:02<00:01, 45952591.18it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 72%|███████▏ | 123273216/170498071 [00:03<00:01, 46117098.59it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 75%|███████▌ | 128221184/170498071 [00:03<00:00, 47065378.82it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 78%|███████▊ | 132939776/170498071 [00:03<00:00, 46983338.07it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 81%|████████ | 137658368/170498071 [00:03<00:00, 46900728.46it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 84%|████████▎ | 142442496/170498071 [00:03<00:00, 47158868.00it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 86%|████████▋ | 147161088/170498071 [00:03<00:00, 46822813.35it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 89%|████████▉ | 152174592/170498071 [00:03<00:00, 47687781.76it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 92%|█████████▏| 156958720/170498071 [00:03<00:00, 46595240.09it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 95%|█████████▌| 162103296/170498071 [00:03<00:00, 47109627.20it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 98%|█████████▊| 166821888/170498071 [00:03<00:00, 47052813.87it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|██████████| 170498071/170498071 [00:04<00:00, 42480288.68it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Extracting ./data/cifar-10-python.tar.gz to ./data\n"
+ ]
+ }
+ ],
+ "source": [
+ "from cleanlab import Datalab\n",
+ "from torchvision.datasets import CIFAR10\n",
+ "from datasets import Dataset\n",
+ "import io\n",
+ "from PIL import Image, ImageEnhance\n",
+ "import random\n",
+ "import numpy as np\n",
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "# Download the CIFAR-10 test dataset\n",
+ "data = CIFAR10(root='./data', train=False, download=True)\n",
+ "\n",
+ "# Set seed for reproducibility\n",
+ "np.random.seed(0)\n",
+ "random.seed(0)\n",
+ "\n",
+ "# Randomly select two classes\n",
+ "classes = list(range(len(data.classes)))\n",
+ "selected_classes = random.sample(classes, 2)\n",
+ "\n",
+ "# Function to convert PIL object to PNG image to be passed to the Datalab object\n",
+ "def convert_to_png_image(image):\n",
+ " buffer = io.BytesIO()\n",
+ " image.save(buffer, format='PNG')\n",
+ " buffer.seek(0)\n",
+ " return Image.open(buffer)\n",
+ "\n",
+ "# Generating 100 ('max_num_images') images from each of the two chosen classes\n",
+ "max_num_images = 100\n",
+ "list_images, list_labels = [], []\n",
+ "num_images = {selected_classes[0]: 0, selected_classes[1]: 0}\n",
+ "\n",
+ "for img, label in data:\n",
+ " if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:\n",
+ " break\n",
+ " if label in selected_classes:\n",
+ " if num_images[label] == max_num_images:\n",
+ " continue\n",
+ " list_images.append(convert_to_png_image(img))\n",
+ " list_labels.append(label)\n",
+ " num_images[label] += 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find vision-related issues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-06-27T15:44:16.707543Z",
+ "iopub.status.busy": "2024-06-27T15:44:16.706805Z",
+ "iopub.status.idle": "2024-06-27T15:44:16.775260Z",
+ "shell.execute_reply": "2024-06-27T15:44:16.774779Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Create a datasets.Dataset object from list of images and their corresponding labels\n",
+ "dataset_dict = {'image': list_images, 'label': list_labels}\n",
+ "dataset = Dataset.from_dict(dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3. (Optional) Creating a transformed dataset using `ImageEnhance` to induce darkness"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-06-27T15:44:16.777638Z",
+ "iopub.status.busy": "2024-06-27T15:44:16.777420Z",
+ "iopub.status.idle": "2024-06-27T15:44:16.819190Z",
+ "shell.execute_reply": "2024-06-27T15:44:16.818723Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Function to reduce brightness to 30%\n",
+ "def apply_dark(image):\n",
+ " \"\"\"Decreases brightness of the image.\"\"\"\n",
+ " enhancer = ImageEnhance.Brightness(image)\n",
+ " return enhancer.enhance(0.3)\n",
+ "\n",
+ "# Applying the darkness filter to one of the classes\n",
+ "transformed_list_images = [\n",
+ " apply_dark(img) if label == selected_classes[0] else img\n",
+ " for label, img in zip(list_labels, list_images)\n",
+ "]\n",
+ "\n",
+ "# Creating datasets.Dataset object from the transformed dataset\n",
+ "transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}\n",
+ "transformed_dataset = Dataset.from_dict(transformed_dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 4. (Optional) Visualizing Images in the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-06-27T15:44:16.821371Z",
+ "iopub.status.busy": "2024-06-27T15:44:16.821193Z",
+ "iopub.status.idle": "2024-06-27T15:44:18.290804Z",
+ "shell.execute_reply": "2024-06-27T15:44:18.290204Z"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZBkZ3ku+n5rzFw5V9Zc1V1VPbdaas0tQSOEGLyFDfiKbVk6+8TdtsKEj8Pm+hCKwBzjCAMmuNd22NiYwAGECQw23gewD+MWm8FIYjBSax5a6rm7urq65sp5XOP9A1B45fMaClvZuDufXwR/1MvKzJWr1vetb60uvY8WRVGkiIiIiIiIiIiIiPpI/3nvABEREREREREREV35+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CDyZzQ/P680TVN//ud//rK958MPP6w0TVMPP/zwy/aeRHT543xDRJcK5xsiulQ43xDRpcL55j+ngXgQ+alPfUppmqaeeOKJn/eu9NXnPvc59cpXvlKl02lVKBTU4cOH1YMPPvjz3i2igcL5hoguFc43RHSpDMJ889nPflbdeOONKplMqtHRUfW2t71NbWxs/Lx3i2jgcL658pk/7x2gl8f73vc+9f73v1/dfffd6r777lOe56mjR4+qixcv/rx3jYiuMJxviOhS4XxDRJfCRz/6UfU7v/M76vWvf736i7/4C7W4uKj+6q/+Sj3xxBPqyJEjKplM/rx3kYiuEJxv+CDyivDoo4+q97///eqDH/yguv/++3/eu0NEVzDON0R0qXC+IaJLwXVd9Qd/8Afq9ttvV9/61reUpmlKKaUOHz6s3vKWt6i/+Zu/Ub/7u7/7c95LIroScL75oYH4T7O3wnVd9Z73vEfddNNNKp/Pq3Q6rV796lerhx566N98zV/+5V+q2dlZ5TiOes1rXqOOHj0K2xw/flzdfffdqlgsqmQyqW6++Wb1la985afuT6vVUsePH9/Sn+d+6EMfUhMTE+od73iHiqJINRqNn/oaIvr54XxDRJcK5xsiulQu1/nm6NGjqlKpqHvvvfelhwJKKfXmN79ZZTIZ9dnPfvanfhYRXVqcby5vfBD5I7VaTX3iE59Qd9xxh/rTP/1T9b73vU+tr6+rO++8Uz3zzDOw/d/93d+pD3/4w+rtb3+7eve7362OHj2qXve616nV1dWXtnnhhRfUK17xCnXs2DH1+7//++qDH/ygSqfT6q677lJf/OIXf+L+PPbYY+qqq65SH/nIR37qvn/7299Whw4dUh/+8IfV6OioymazanJyckuvJaJLj/MNEV0qnG+I6FK5XOebbrerlFLKcRz4/xzHUU8//bQKw3ALR4CILhXON5e5aAD87d/+baSUih5//PF/cxvf96NutxurlcvlaHx8PPqN3/iNl2rnzp2LlFKR4zjR4uLiS/UjR45ESqno/vvvf6n2+te/Pjp48GDU6XReqoVhGB0+fDjas2fPS7WHHnooUkpFDz30ENTe+973/sTvViqVIqVUNDw8HGUymejP/uzPos997nPRG9/4xkgpFX3sYx/7ia8nopcX5xsiulQ43xDRpXIlzzfr6+uRpmnR2972tlj9+PHjkVIqUkpFGxsbP/E9iOjlw/nmyp9v+BeRP2IYhrJtWymlVBiGqlQqKd/31c0336yeeuop2P6uu+5S09PTL/18yy23qFtvvVV97WtfU0opVSqV1IMPPqjuueceVa/X1cbGhtrY2FCbm5vqzjvvVKdOnfqJjdbvuOMOFUWRet/73vcT9/vH/5nS5uam+sQnPqHe+c53qnvuuUc98MAD6sCBA+oDH/jAz3ooiKjPON8Q0aXC+YaILpXLdb4ZGRlR99xzj/r0pz+tPvjBD6qzZ8+q733ve+ree+9VlmUppZRqt9s/6+Egoj7ifHN544PIf+XTn/60uvbaa1UymVTDw8NqdHRUPfDAA6parcK2e/bsgdrevXvV/Py8Ukqp06dPqyiK1B/+4R+q0dHR2P/e+973KqWUWltb+w/v84//pNeyLHX33Xe/VNd1Xd17771qcXFRLSws/Ic/h4heXpxviOhS4XxDRJfK5TjfKKXUxz/+cfVLv/RL6p3vfKfatWuXuv3229XBgwfVW97yFqWUUplM5mX5HCJ6+XC+uXwxNftHPvOZz6j77rtP3XXXXer3fu/31NjYmDIMQ/3xH/+xOnPmzM/8fj/+7/rf+c53qjvvvFPcZvfu3f+hfVZKvdREtVAoKMMwYv/f2NiYUkqpcrmsZmZm/sOfRUQvD843RHSpcL4hokvlcp1vlFIqn8+rL3/5y2phYUHNz8+r2dlZNTs7qw4fPqxGR0dVoVB4WT6HiF4enG8ub3wQ+SP/9E//pHbu3Km+8IUvxNKLfvz0u9epU6egdvLkSTU3N6eUUmrnzp1KqR/+S/4b3vCGl3+Hf0TXdXX99derxx9/XLmu+9KfJyul1NLSklJKqdHR0b59PhH97DjfENGlwvmGiC6Vy3W++ddmZmZe+geOSqWinnzySfUrv/Irl+SziWjrON9c3vifZv/Ij/+1PYqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6of/Wn/HHXeoj3/842p5eRlev76+/hP3Z6vx70opde+996ogCNSnP/3pl2qdTkf9wz/8gzpw4ICampr6qe9BRJcO5xsiulQ43xDRpXI5zzeSd7/73cr3fXX//ff/u15PRP3D+ebyNlB/EfnJT35Sff3rX4f6O97xDvXmN79ZfeELX1Bvfetb1Zve9CZ17tw59bGPfUwdOHDgpYbp/9ru3bvVbbfdpn77t39bdbtd9aEPfUgNDw+rd73rXS9t89d//dfqtttuUwcPHlS/+Zu/qXbu3KlWV1fVI488ohYXF9Wzzz77b+7rY489pl772teq9773vT+14elv/dZvqU984hPq7W9/uzp58qSamZlRf//3f6/Onz+vvvrVr279ABHRy4bzDRFdKpxviOhSuVLnmz/5kz9RR48eVbfeeqsyTVN96UtfUt/85jfVBz7wAXXo0KGtHyAietlwvrlyDdSDyI9+9KNi/b777lP33XefWllZUR//+MfVN77xDXXgwAH1mc98Rv3jP/6jevjhh+E1v/Zrv6Z0XVcf+tCH1NramrrlllvURz7yETU5OfnSNgcOHFBPPPGE+qM/+iP1qU99Sm1ubqqxsTF1ww03qPe85z0v2/dyHEc9+OCD6l3vepf65Cc/qZrNprr++uvVAw888G/2NyCi/uJ8Q0SXCucbIrpUrtT55uDBg+qLX/yi+spXvqKCIFDXXnut+vznP69+9Vd/9WX7DCL62XC+uXJp0b/+W1YiIiIiIiIiIiKiPmCPSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7c6sbvu4XboKalc1Bba1cglqpVIFat96B2tAEvp9ZHIaaZvU8PzXweapX96C28NSLULNyNtS275mEmmNqUAs9C2qBj9sNjSahNrkDv5dh4q8jDHyomRbuc62E33d9ZQ1qXhjfv1fesh+2ibr4md/85nehNj03DTXHSkBt6cIK1AwnA7VsOgu1f/7st6FGV77/+X/dDbXja3g+f/fZM1BLp1JQO7RnO9QKEc4bUbMNNS+Kjwcr48A2uo7vVavVoZZI4PhQugGlagv3o9rtQi0wcS5IZnBuKTVdqK2s4/FUbRz7OQvnL4XTnPJVCLWmF9/nhIPHzvfxdaEXQC2TwP0YFa4PC6uruB8uzo/CV1BfeQavEXTlu/vX74FapCKsRVjzfeEareHZZQr/7mvbaahpvdtpeO4aFtbsJI7xdhvnDK+L843nYi0McG7xA/zcjt+EWhDgvoQhjvMoEtZVgXSMpRrOEZ7n/cSf/61a6OHvMBL2Vxd+r10Xv6svfIZ0nqwtCXMwDQA8F4IQz2dpvgmlC5dAx5cqTaj1foYwJOX3F9Y80v5qwpjRpKvvFj9XJH0vqSiQ9u9l3A2lQqwee/Z5qG1W8N75Fbe9Cmq2jfPy1o873rPSle/I598Mtc2lJagNTeB62usK6/MGzl9+iPdd9Saeb34m/szBSuFzhBsPvwJqup2H2tOPPwe1X3jzW6Fm2cKzFWFcBgHOwWG0tXlZmtOkMegHeDzFeyBhDdUK4+uKXBKfmaUcvE8SdnfLpNdKazmJk9ra3zryLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1ZgYbYDqjQ1DLCIEKpXIZasVxDCaZ2IUhMZWO1BSzpwGoEPLS6jSgFoTYQDyfwwaoo2O4b2YkBMRUhcamBn5uZgSbuHpCU9RuG2uBhw1LE2mpubLQgL6L39e042ERw3lsdtpqVLFWa0FtfWkTao7QSNmIcN/SuQLUXOH702CyMnheugsLULtp/xzUigUhCAlPQaUaQhNiB8dqIR0fM2GAQTJSk2MngfOSpgmNijs4Z+Ysoam48BnNLs4PhoHhEVoHw8Fs4Z+hOkK7dZxFlNzyXOhqbPX8W1ejjHNLKDRvzmdxDk4lcG7RInxtOomBQKZwPCPhtTSYNF24pkphD1sMNpDOLalfeCQ0Qu/NrgoiIQzFxTGuTHwvyxaapXs43yjhe4VK2E5oyG5o0r9nC+NNWH8JOYPKi4QwGSGYRgqBiHrDdITP1EJstK8JQSFKasguBUAIrzWF80kKmaDB5AvnTCCEGZ08dgJqI2OjWBsfg5on3Ds88+hjUOu04+uZV7zmdtjGtHAt44khXTigQ2HNI115pSAoKVwnlGdSfO0W028iMThHuh5In/HTCkppQhDF+WMnoXbm7Fmo3fiKW6EmhZqK+yZ8B2m+pStfGm+nlNsR1tPC+VGvCddt4XJpmDjfZJP43KDdeCr2c3npB7DNkeoTUAtSu6FmpzCE9NR5DOGR5gzLxDVKp4v3SfNL61Bru8Kzn1AaXDgGG8JzmVZXWAcG+Nys04wfz1ddfwC2ueWGg1ALhABAcY4TSME8Uk22tTUPpyUiIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7beliNEGpiCeEBmRyGDKRLuN34tiLUnGwaalUXw1/M3iajOn6NoI2BEqbw2DUthPBITZj1yIFap1nDmou10B/B7arYFLW0UoGaYWND1dEZ3BdTaErfbWLz2KQTP8bJBL5/0MFkj04LG6y6LWxYOj6Mv9dkDsNDPOEZ+LLQZJYGk9+b2KCUGi7guTUxiY3b3S4GObi1OtQaXWykbNg4BwU9wQOhi/NDMoEBKVJLdqkhvZST4XVx/koJjY9NYVKzDSFwxsR9WRe+f7ODTZMNDecIS5g3HAvnpawR/z1mHZxHksIcJzWulxqydzvC71B4qS4EVOhiyAYNolAIJomkMBSh6XkobBf2hqYopUwb54hQOC9rtVLsZzuJ+2Ym8P07wpyRSeN8li3geKvX8LVeA2tKx7WcHmAtEI6JEhqmh0JYT+Dh2kiTmq0LIRBRTxCPJvxedeEzDWESNoRm9lKD+yiJa0gp/EgK8qDBJLf6x3NmY3kFagkD73fGJjCs5sLCOaideOpJqBk971e95hrYJjOEoZ5GCs/72loJanYK5wdTeG0oBWFJB0rMlsGi2xHmL2FeslI4R0rhFpo098McJMzVFq5li0U8nmsX8PfaqGJgRcqZgpoYHrHVPAm64rk+rs11G88328Hr2/i0ELhSwnusZhnP81AT1t09STcTmFGsTrbxedPiMo7TbRN4LX/8f2HQjSuMBdvA/Y2EaM5qE+cR38NruRR65brCcxNh3eIJYXyuh68t2PHa9fvxGY+U8CWts6S/Q5QCvrYeTPPvx5URERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsJj+KzZDrFWxMnMykoJYdwrCSwiQGTzS6UFKWjs1Tk3a88aonNCT3O9jw3BZCETQfG3GWVzAgJyk8su02MABDadgUNGVgY+ZsGo9JKDRA9YQmzIaJv7bQx8amupDaYFnxY2AIoSBOAvd3Yjs2SN62fRZqk9N4nnSFIJ3F+UWotdrYmJkGkxdgk+Ox8QmoJRM4ZixhvIUtnA+UhvOGIzRrjqJ4Q2BTGFdOEoMoAmFM2iaON9vB/W3UcQ4KhMAGy8Ym1PVaBWpZXWi+HuCEW28KQRHCZcISmrJrQlNj04o3qi+k8PqQFoJ+AiHEw4/wMys1DAfzPZyDCxkMUdN1/jsc/ZAUdhAJTb+lAADDwPPIF9YV0nZSwMzSyoXYz7t247yXTuOYbHWwcXlHCNbKCmMhV4CSUga+ttPEOSNwcU7zXaGZe4RzqwpxrGpCY3UpdMYShq/txOcbQ2hIrwtrHsvAQA1DE14rnCdiWJHwvaSgDBpMoXAtk/LZpPV5eWMdaheO47n13a98FWrVixgIOTIdX9s/9ci/wDapPM4Zh26/DWo/eOhBqO3etw9q+64/CDVPClQQQp86TQzKsG0cv2dOnYZaV1gHHjr8KtxOCIqwhZCgpdX4fczG5iZss3PfLqitri9Dbf38Gag9+a1vQO11d/9vUNOE80S63gjTIQ2AyiqOmXYHa4ZwP9Vu4jpAE7I5C6P4WreNY6Y3YLMtrNefW8S1wpoQQCw9b3noOXy2EAkhcwnhtUrh+sYXAlyE6QFCv5RSKhDuYz1hbegHeD1oCcGm+3tCnh999Bn8TA+/wy2HroWaY+O9WBDgMbkU90m8EyMiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkhJAFTaiNTWCoSa27ga+18KO7VWyyaevYFdUK489PIyEkwXWxcTu2A1WquoEBKU46DbVOUghAGC5ALZPF4Im60IS55WPT5CCF31UTms23qy2o2TY+U9YsPC6pnjChhI5hF7kxbGK6//r9UFPC7z9y8DN1oWlySggFufEwNlSlARXhea8UnjPlKgZGWTael67Ql9gRQmIyKeGc7kmoMAIcM5EQrpJJ43ZSQ3rfE4K1HJwfOy2c06TjNJbHICxLaGA8Oz0JtY0uNsJ3hWbSQv9mpYR5uF6Jh8mECdyPRA4b4RsmzhlSz+SEjcdJ2A0lvJ0SpiUaUL7QpFs8kQRS0I34GT6OX6lmWfH3CyPcpt7ANUC7WxE+Fbuq1xs4xtMZnAt1E79/IoXHydAwKKLbEdYjQliNYWAtn8N1kC78ekyhObwUTtMrEoJvDOHaoiIhwEg4J3yhqbwndLN3u8L8TQNJvHwKYUZ+B6+X3/v2Q1DLCqdv0sPAO79ZgdrZk/FrdPkCBqnYObwn2ncQQ2iipvCZHZyrvC6Oj64wtoSsGnXs2Weglsvk8P2EObJVx4COoIvHOJT2T7jfadTi689WCdejy2cWoPbCY49CbUQIz7j41BP42p07oDaz5yqo5aQEMuE8oStf2hHOcSEIOBQCPBsVvD+JhLEQCGMmaQlhwz1hn4YQ/nlhcw1qyxs4t0ykMfT4/AK+Np3Be6KEcO/kdnHO8IV1gJbGe5ZEEu/3pIdOYSitK3BDzxMCO3tCbY6enodtXjj2ItTOXcA56Jd/+Y1QKwjHyRdCUsUlr/SAbYt4K0ZERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqupV6tQ04Sm3xcWzkMtbWHz8dZmDWqBhw3TbaGharNSif2sp7BZeuhj41Rd6LBpJ/D9h2cKUEsX8lBLZbGxp5SoEHjY7NNrYPNYTWiK2lgrQa26vgm1A4ewcfTwxBDuX8+uJCw85gWhMXW6iM2g2wEeY0/oWDqUKWBtO54T9QY2o6XBZDvY+Lfr4vhYXcXm4FPj2MA4IQTTBGJABZbMnmbKYjiFME8pIaRKC3DcS51/bRv3t93GsIOa0Ah+aAy//3CIc2QkhEL4QvDExjrO1duHh6FmCwFkm+uV2M+W8P6+MFeHwr+RRUK6jJPA45S08XiGQhCAbbJzO/1QIJ2DwjkjDn1dCLgSghdaLRyrQYANyfM9YVP1BgbqRTqGLugGzi26lPIifK9mC99PCroxNHytk8R1xvjEGNQSJtZ0DcegLnyGKUzMoRASo/esv8SG70JNF1IcAg/XMl0h2MJ3seYK20mvpcH0+LMvQG1p4SLUvKVFqJXPnoJabgzH4PAw3p8YQijVai0eRtGq4zo8FMbfQ//0Fai1L2IQVnkFwyOef+I5qPnCnKkpHKtLC2eglhLWHlkhwKbZwfe7ePIkfq6P86aVwxDPZiM+bzaF8FNTuMvOBW2ojRUxAMPzcQ46+s2vQ211cQlqt//SW6AmLKtpAJiOsA4Qrp9K4fq8UMRroyeEXzZc3K4tfEapFJ+DrDSO06KB89Tw9gmoJZN4T1DI4ndwhPBPXeH9j2ljLRRC8ZRw79AVggfbQsBoJNzb2Da+XyTMfUHP/aOREga0hu//9X/GcKzzy6tQe+ub/gvU9u3ZDTVDiFvz/wNpNfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivtt6WE0TG617OjannH/meahNz05BLZvGQJRCGpsBR0J/72q1p7G61GjexUafGeEzd1w3A7WR3RjEYAhBCZrQFHT1PIb6XDiGDaeLWWwuffU1B6H2xAsY/lPZwGbS6SyG6egGNn/uduNNa1MFbJCcTGCT63Qam8c6EW6nBfiZI4VRqD3/wlNQO/EiNo2mwZTO4xhcPodjwQ1xDCaTOI8EntA0WJhvVCg04e15rSOEY/k61mwN58dQCGSybWE/TCEAQ+g37bYwSKYqhCckNJzqi0Kj55tmR6BWzuLYj4QArsgUAjrs+E67nvAlhASQZlMK48Bj4qTw2EnbGcLx7A0hosEVCqExYYTjNxKCXnoDUpRSSshbUY0SntObm9gwPNlzSR7aJsw3JoYdmJrQfF7YESkMxheCVBI2jplsApu560IAl27jPJfJCPts4PhttHCO8EOcv6Xxa/X827rXFb5rB0rKDYXgPWFd6bv44kBo3C/VNGkCp4H0vx76AdQ2VjHoZa+N5+D+EbyPySZwrPpdnA+k4NChRPy8vNDGc7fj4xxXfRbv9YQpUyUbeJ+QagpjRhjjysc5IyMENNghvl/UxuCYRh2PSa2B83K3jrWh7ZNQGxmP39vMnzkN2ySF7zU7gYGCVeGYJAwMsTAqGP6zEB2Fmvu6X4CawlwQGgAri3hura7hOT67H58HrNSnobbRwet218f7/JaPY1XT47VxA+ez3VMYyLt7Nz5HOn4Rn7fcePNOqIVCEJa0bouEEJZAw+t21sOQVF8I5lmt4fy9fHEeapXyAtRC4T4uGN0T+7lp4TxScHC+TQhhfE8/fw4/0/sa1H71l++E2loJj3smj5PL619xA9Qk/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23JYTauDTYPdEJtzdiOhQfIUBk84ITZNDoTmnLqGTZgzyXh4wnoJmxJ3hIbLu66Zg9rcDdiItRthc2Ehl0bVl7Bh58kfYNPgRlUIl9mHzUMDhfucGxuDWkLYl4QQluHhIVbZ6Xij2LVuCbfJYMPatIPNac0QP1P52K068HCHz568ALXVM9iEmQZTVwg1Ob+ADX1nZ+fwtW0MFNBDPC91ISQlErqtOz3N0U2hMXzkYjPkhPD+miGMU6FBsu/j90/bOKC7IY7LUJgzIwNf2xvsoJRShtBw2RDCec5dXIGanREaU/dMcx3hOmKEOBfWWxiOlhCCMmyhJjWmtixhvg2Ezvo0kIIAm4prwvhVSghpEmqhh+eWLwToRcJ4a/UENdldHH+Bjo3mTeF8tiL8Drowx9lSGJ8Q8KSHQmCUhcvIZhebzZerOC+n0kKoi4lNz20L90/6Ho3N+JrMbwu/w0AI3xJ+h1LQjxSQYwrzaCQsGKVzggbT+dPzUCvVKlCbGcXggTEhjK1p4xjUhjF4zhCCWRI95+p4EQMQ0kP4XulsAT/TxrFlpfE7TG/bBrVkEq/lvUGBSillCN9fUzi2vC6+dr8wH4bC+ktaz3lCGJ/Zk6a6eBwDN7XaBtS6wj1cVce1XM7GdUvaxLWR5uJ3dYVgRIW3kzQADCE4M+/g2uP7z+CJ+cQCXo9dA58RRBoGZwZhBWq7Z+NhMpqJ+3auiudztoVrtIX1i1BLCYFMoXD/FwbC/ZmwXJACCjUfv6up4dy3bwbnuQPb8D7pmcdxjnj8ke9DzZgZjxdSOC97wv66wnyTTGHAcUYIPQ6F4L1vPHwEasPDOLkwrIaIiIiIiIiIiIj+0+CDSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyj0gng/0rGhv437VPTON/Ez+3ayfUhpwhqC2cOQe1pbPnoVYcjfcnsITeiu4E/rfu2/ZPQE2Xeg91hB4kPjYPOPvkItSaJezBsu9a/P77b70KassL2DcxJzSE3H9oL9T0HPYScQrYm9NKxd+v41Zgm9US/q41hX2qDB2PSaDjsavXsS/c+hr2kAqF3gY0mBYuLENtYmwSani2KdVsYA+djDDOQ6HHrSX0APN7tjOEadNQQr/cOu6HJfUqEfo7tVwcM4GLPVJcoS+cK+xf3cP+bPkkzhkp4YBmHexpUhzB+Ts9jHNuS4+P81KrAtsEQp+8QhHfX+oRGQn9IE1hDpK2I/oxfYunhyGcW2Lv0hSOwbltU1CrbOI1+tjpJ2M/R0L/Sml/0w6Ov2wS+7NFIb6fLcx7Qkm1u3XcF13oTZnE+dYLcA5qtLDvr50s4PvpeIxNA4+x5cQPTIBLQ5U0cH1jC/OoJ/TpDSKsKaFXpZ7AudVMCj21aSCtLuC9w7nz81DbvhvvWWZHsT9bMouN0aziOG63DfuYOU469nOQxHlE6nkaCHOQoeN2bhfXQbrQs9kW+tBnC9iv0hR61yqhz6NUCgIcv1InYDPCucUz8AtXe3rUDWdxvvWbq1DTA2HtmcDfjdQP0/SEPt517PV/5ulHoTa1cx/U6MqXTAk9RP001I69iBdMI/oO1MaFcX5xBT+j7uFcte3Q7vh+hPiZyRSOSs/EsZsQblgKaVxnBCG+VuylL/SF1oX+mqHQt3ttA/fZrZyB2swUzq979uAznWPP4/htNeLrLysn9B1P4twlLW+jSHjOpeO8XBjBNaohvGO1UhE+ZWv4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH239bCaIjYdtctVqOlCfEQmiY2UnRw2Jt55FTbSXVlYwdpqPABhIoNNfq+/FsNgtk9gs/goxGexvo7N3E+9cBpq6wvrUBvfMQq1/bdeDbXsMH7/dhubrOay2KQ9MY4NnHULm6d6QoDG6un4Pm/fiw2t2z4GZZhSd3xd+MwQG7ZurC9BrbyJQUeOjseEBlOkYdNcQ8fzuVHFOWgsj/ONbQotyQ0c55aGTY3rjUbsZ18IPslYOO+lctgM2vPxtfUAv2vXlsJ1sBm0k8O5IHDxONU2MBzKq+J8M57Ded4I8NhZFs65VhLHb7KnmXJ7sQzbOCZ+fyshBDsI4VhSwJVmCEEZXTx2UiN4GkzZNIYMOEJIUy6Hc0tOCIrICmN/KI9j6+nHsSG5dT5+XkrX3khYZ5k6jsl8DhuNm8JcmEjgUtDtCuEyFZwzAx2bzUsBNtJwi3wMv/FDXH/oER5PQ1gvJHuOsRbgh+otnOMNhfurhIb8mhAooSlco4nt4YVAHBpMFxYwpKnbwfP+mQsXoTaz41aoXX891uxRDPfreDh+a258/PodHM+hcO76Pr6XKQzySAgF9IXQvmq1BrWlpeNQ84Tv4Lq4z/l8AWrpNM4jm+t4H+d1cfwGwrw57MRrlTrOZ5qL75W18TskwwrUdFe4PxVCBpUQfvPI974HtVf/yq/ja+mKt7GB1/LFJRyrhonX1O2jWBsp4vhtuVhLKgzbGul5DnPyFAa6ZNJ4TfWE+xop4CoS/rxOuO2Sg6CEADxD+Hs9N8L5RtNwTGcL+H6vvmU/1E6lMKj4y0JIYb0dvxfNCHOrRMjqUWGE81m9hb/DWkv4rsJBln4/W8W/iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6rsth9UkpUABIZjE97ArptToWBOCB5w0NgLfdTUG2Dz53SOxn49fxIbOB2/DgJiuhR1LrSru23CE+1FXBahdvXcP1Eb2YPiLJTRebbaaUBudxc+w87gvbexhqooONl498wwG/SwurMV+vm3/Qdgm1LGxrZAJoSIdG/x7AYaHhF4La4FwnghBITSYNjYrUFtbPAe16w7shVrSxjHju9gIPpXYWtPvQm/IhIbj2RYCG7oRvpcw3ahNJQQxpDDYwknjvxsVJ4T5po7BNC0Xx3R9o4Sv7eAYbEc44fg6XjoqNfyMciN+XNarOO9tK2AwTUOYHwOhwb0lhHRpwlxlW/i71jUhwIgG0lV7cZ2RyeD1TQo7SCRwPjBsISRFWG2VhYCGqKcReEI4x5tdnFs2ag2o5dMFqGXz+B1MG79DJIQ+qRaOoyjCOSMSgl7CQAqMkq75wnzj4fcNFM65vhmfIwwLf4fJJIYQZZL4/bUQf2GBsBDyhfVtIHSH9xXXN/RDXRfHQiSEv0zOXQM1fRuGHTQTeaj5wo1Cs4HXVb8nFGGoiO8lhcFI4QS+ENIURlIQFM6P3/z6N6D2/e9i4Eo2V4BaRwije9XhV0HtwIEDUPvBv2BgWLOLx04Kd7j9UPz+aXJmG2xjpnBuSTk4t5SFdZbp4bGzWzjPd3z8/qV/f3YEXWGcDJ67nnB9jwy8NkYanltdIUTJsPA8nxibwe3M+GurwrplagTva6QgqIQQLmMK4ZqhlGCjSTV8bSCMy9DHcdkWQr6GdDwmo0MjUNscwmOgCYGtQc/0Kq1HhCxVce6KhOctvvBcplbH378vhuQIAaNbxL+IJCIiIiIiIiIior7jg0giIiIiIiIiIiLqOz6IJCIiIiIiIiIior7jg0giIiIiIiIiIiLquy2H1YwbKajNtzCcIBDCHjyhkXDgY1NMPYENjLftnYPa8vz52M8rG9g4NDGFTVc3fWwMP1bF/cgG2Kx5yMGm57tf+3qoFaeKUKu2McCloWFQRDfAQA17SQh1aeL3bTgYCGNpeDx33xBvyp8cwVCMzc0y1FoevldGaMifMPD3n8TNxKCIRgOb0dJg+taD2KR8qoghC/ksnr8ba2tQawnn1sz2MajlUhh009v8NxRCDEo1/ExfyMIxR6agtn3qeqi1qtj4eOkMhvX4TWyknE0JgRppnA9rdfyuoYPHsyM0eg48/NzSGs5zR0/F97njC02zhYbLUpiZ1Ejal0IhfJyDDKFZM8Nq6McmJyagZkkBR0KDd0MIXhBy/KDRuFJKGSaOQbcb39DScO2VFcIOmsL6IRSCZHQTd26ttAG1hBCyoCewIbnfwfFmC4Femob7HAbCusXE9U0kjN9mF1/rq/jvwhIOejLC/bBNodG6sH6SZoxQCOgIInytL4Tw0IAS7n+SDl6jr7v5JqjlczmodVrCOBLWRtJ1NXDj+3Lx4hJuI4QYZIUwL0MIgDBMHAurq6tQ++53vwu1Ww/dArUdO3dBbbOE91MTQpDf2DgGRdz2ujugZgpzvxSWZ/ZcDwJ/FLeZwUDFUMf3N32cv4OL56HWXpV+Pzi3rJdwPUaDyQ9xfmhF+Jyj5eF9RyEQ1v9CMEvCwWcfhZHtUDN7bqjSDq4VCnmc49YW8R6rmClATRPW9ZEQKBcJ4zkUkl4iA8dWZOCc1nGFUC5BbxihUkq127iG0oU1VOjHXxsJC00pKC+U7rGEdUsqg/tmCetFT/iuboDPA7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raZQx7KHZaEJN6O+tqmUMiYmE5sdj27FhvO5gM/drXnld7OeDHWxebAgNRtsb2Lx33MaGoKlAaElebkBp5exp4XOnoZbTsdm8EeD36nrYANQuY1NY28T321jCgJndGWxW3VXx79upY4NR08RGyrXmJr5XhMd4ooD7Fgrfy7Tx1Jsax0bPNJiOLmB4wvTMDNSG8niOGyGOmfSuHVDL5bDZer2G46jb05hZalq+0cGJz0ni+xcKOMdlMtiYubU5DzXTwLH69FPPQG1zcx1qc9PDUOsKTahNA8dlLi0cJyHQqtzG5sehijfgD4U5Y6WO15FCEvfDkf7ZTAieUJbQXFtoVi3tCw0mQ2g+rgnRJJoQmuK5eB55Cs83IadJTUxsg9qLz8fHjC/MLSMjeK2cHMM1lZPB9U0mg9doKSiv7eK4tISwnkjD9YJl45wWCKGFvi8k+IRC2JQQghEIQTehF/+MbAob8ocV/K6uh8ckYeG8J/R3F+eWtoe/i0YbazSYPCEUYmQc7x1MC8dvx8VxJAXHRELwghT4ttETHLOxhkEySgjk2r1nN9TMtHCvo+N3eOrxZ6DWbuH3Gp/E+fF7//Io1J575jmo/eIv/iLUWh4ek8VVDMGQxrlQgrHvCcc8IdxjDgtrqkwK1zJDaZy/FoV51O5gzZQCuGggVWt4/VwtCeeHLwQLBxhC0zLwmp8exbGaK+Bro551VVJ4FiAFAGoR7q+WwNdqrhD8IoxLN8A5WNfxOGk6fkZbCGsxdLy+t2oVqC1euAg1P8DjLgWL5Zz4cRdyfsTnSKEQIh1FuF0mh8c4mxGCeYR7vZbwGVvFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVaCnsijmxbRxq3S4GKgQeNrF0O9gotLyCIQtjc9uhNjQcb4CaLuHX6F5Ygtq00EDd04XG5Ro2n5+aEl4rNAX1LmDj43WhQXIoNMfPCg2M0w42KzZtbCiq61jLJfA588ZmPLDHnccAn6iIQTop4TMNKT3Cwia23RC//9y+nVDbMYPNumkwjY+MQC2RxEboq0IAlSWEQmQKOI66QshEZOA8Zznxc79cxzHeFUJTJkamoGabDtSqFxeg5paWoVZwcM7YvxuDup4Vvtew0PRdambfdXFetoRwi/Y6hgnV2vhatyeMois0klZCg+iUj9slTPzF6row3wjXG88XmkubQrIaDaSucH6oCJuPa1JYiXCuhkK0gVQbK2KI1Ny2udjP5+ZPwjamwnN3bAbnOC3AeSkSAmKGsrj2WC9hQJ8mNCQ3hSAZ3cTP9UMcv1GEc0sQ4TwSKvxcIXdDBT1hNXoGNwocrNUauA5M6ThXtz18baOD8229ie/XamGNBlMoBN6NjmIAldfFc8vMpKFmC+tz6TMiIVgp6lmzp4aHYJuUhePZEmqRhusnLcL5oVLGdZsUrlKv4Rx07uw5qFVLJfxc4fsnEsK9k3AvtrGBYXzNJoZ3dXrud20H54wx4XiOjOFcPVLAObjbxmN8oopz4agQMuIM4/05DSYtIYReBfhMIyNctxPDs1DbHNkPNXsVx7QuPOdZWI0/5zm3hEG4xSE8d+t1fP9ECseCY+PzCzOJc5Dt4NrDEcKRpaVhVQihyQifqwvz7RNPPIZvGOL+eS6G8XlhfE0qheZIQdC+LwTlRXjslhcwSGd1L4bENlx8zucJz3m2in8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq0kWhAbJG9j418lhw05baIBqGlgrL61AbWxyAmqBEW8Y7tewIapXxkafawE29LWS2MQ1l8HvkMRMBJXKYrPXTgsbgHZb2NhTaijaaNSxZuJrDVPYGQMbr9pCk+Tt+XjQTxjiMTl9YhFqQ+NjUOta2OS50cb3M4TTzElgzY3wtTSYXn1wH9SyKTzHn3zmBNQOCM11x4Wmvp6HY7AjnL+JngbkyUwWtpkQ5oJiEQN3PA+bz9eWMKwmaGJj5vwwjsGRcQzzGpnCRs/ZPDZRr9VqUJOa3m+uYoiYZuC/YVlCI3ilx+fqlBB8o2v4ezAtfP+MMC+3O/haV2hSLwWKWEJYDw2mWguDCDTh/DCEf7uV/jVXF4JULOGcdnK4rnrlrbfGfs4Ka5SNTQzMOvrUWahlhnBMTm/H+ctKCoE7Aa49bOE7iOF5wtrAtvF7qA4e46ArjMsQ501NCP/RehqmN9r4e7VtDIqoehiK0Q6kICys1et4nHpDLJRSShOaw9NgSibxWrZj5w6o6QZOJEI2lApDvA7qwjVa6ThmZpx4LafhfUgkXFPbEY6jpsK5xRDG6cTkJNSOn8C1nBJe26zj/oVCAJfr4VquXsF1VaWE66Djx09DTVq7dTvxca7bOD80R/E47c7g/NjUcH5oCXOQH+F823ErUCuVVqFGg2ltFeeHxRaGw7o+zhkrJ/FczWxg8FpxCNcymWQBau1u/Jp82003wja+EPKSTuB71aq4b3VdeG0S5wdLCu4S1nyeEDbcauHzi1pTmKtCvO8KEzjOo/UzUDOEEK1Wz2cMCfOyH+E81W5jTTdwHnn0UZyDz53G53INfOSmcgWc+7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6raTYx/MV3sQGmj/01lR9ic84gwMaeZgobe7Zq2Jg4mc/EX5fDJpmH73gN1I489RTU/uWJp6F2cO8eqI0P4WfUN7HBeb6AjYm3jWNj5nYTX7tZKUFNCs9QBh671U1sKJrKYjPS2d3xEBCtg7+bHUID1PkSNsc3c1NQa3Zwf+dPYSPWcyePQ21y7lVQo8G0o4jhL8trG1Bru9iEOVRCeIIuhCdYGJ7QUtiEebNUjv2cKRZgm3QGGzVbNjakT5i4b0Mz2/AzV3F/rRR+hungdmY6AzXPx3GZz+J2uo7/NtVM4j5PTmOj66rQEDnZM6eHLs43bgeDHRxhHp2WPrOG16WFJZyrJJoSEkVoIAVCMIshpEJoQk0K3ksKATOJBAYPeF2cb/KFeKDTa1//atjm+PEXobbxL5v4/g2cH3OJItSCANdZmhCoJ0xfKungus0W5hYPlxVK6Meu2kKAnis0R9eEF+s94RZNIazGyOC+dTX8gHYDrzfKxzldCuMrOHigLEMI66GBpAtpViMjBaiNT2DgXaOF4SpKw9f6kbA2EgIhs6XzsZ+d80/ANp6G9xzt60eh5to4towIv+vxE0IYjI8ThGHjfBsqIaBBGINLG7gOSAiBCusbZaiVKxX8XA/XLr3hWJoQaFO38dhtlvH9N4TwQJXD378hXFtMF4/xeh3XRjSYNldwzCxX8H6i1MWas4xrgzfN4fo8JYzV4hBup/z4tdHJ4jXV7eD5nN5/FdQeenYJai+exnGU0HAsWDo+g9ETuL+BsOhxcJeVE+Fn5Cd3Qm3HTgwdfWEVn9/smMP7nbqKrw0TaQz/FHLLlIrwdyOtxzoBvp93EQO+pKDmlPPvX9/wLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1bhubqqdTQkNyhc16wyR2xXRy+NpUGpsfBwE2CA57mqhfrGKT9j0pbEp8y8EbofbkU9j0vdXFz3QcbGKatIVm6UIT6qWlVahJjetn5+agFoX4fpaFn7u9gU3Zl4XPPX0s/n33Xn0DbLOreDXUSkfWsVbG5qyewn3brGGz0/wQNmHeuWsX1GgwZYTm6JNCAMJqDUMGWi0Mnuh0cLsgEJqee9jpt1SOn7+GMHcNC3NhMokhDvUSNka3hRADQ8fXum2clxIFnG8jIfwlEoLFggiPsWXhvDQ2hOEWYYj/hlUXArhanfh1Y3WzAts4Fs5xqTQGfCWT2CE6V8B5ZHEDP6P3d6iUUiNCmBcNJlMITXFsHAtJG8dqUmhmblq4tAp8HL/lMq5d1tYuxn4+cNVe2GZ6bgJqb0q/AWqlEgbgZTP4HSIN10ul8iJuF+I60BNCbSIPQzEiDY9nqHAOUsIaKtLwF6QZ+H66Hp/TO8Kc6Qa4b7oj/Ju80PS9YAqBYa7wWiHYoinMjzSYpPC8tBAyl89jKECjjWEMvfdESimlNBxHQklpPQE2fgfnDMPG9YgSggJ14X4lEtZyrTbeO7jCGsUwcYwXx/A+sVXDfbGEMLpGC++TGm0cl7kcjvOEsDZyeq4HLSFVK5PF91qq4/wQCeFCmovXh4ZwLz4pHHcDDycNqEi4x5i2cR5JCkG1U9fg84DxIoaafPNbD+MHd3CdsrAQX1fMCc892l0cp4GwpnjDrbjmOXXxBNTWasJg8PG67beE8E8dx2rBFO4ncsL9pLSGTOF60W/jvFFM45rM7llrDudwXm4LgYoZIRzaFebvIIHf1fKF8FdhzZt18LtuFf8ikoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio77YcVmMITcVTGWyunBvGWjfERpy2jc9ANxaXoZYewaCE2lJ8u6TQEPTRF49D7VXXHYLaW//rW6G2eH4eaoHQSDmZxWaiQn9klc0IjetDfL+lxRWo2UKT6NDH15pCo9DxbdjUuboZbwK7sYIN6U9XsYnt5MQc1BZX5qEWZbCJ6cy+GajNv3gOaiuLG1CjwWSFON8MOUJQhFOAWjGHtSgSQp+E4Il8AcfR+ZX4fFNtYiPlfTlsKv/ic89DbWN5DWpX79kPNd0SmtSXcXysnXwBapqJ3yuTKkCtKXyPQGh6X+/i/H1qCb/HufMLUFspxeeSthAGpKdwf0OhabaUa5EQfoe54WGoXVjDY2c3sWE+DaZsGgMFbAOv25aONVPHtYwtBKk4WQy8yxdwDdHq1mM/D0/gdXz/CAbYHH/mKNQmRvC1J05iM/e5HVNQs00cg8vVs1ALhTCKjhDaYFh4nIRRrpQQ5GEJ6yBfyOcIw55m6zo2uHcD3DcrietW5eN+JIVQCK+F4RGlNZwfK3VscE+D6aoDs1CzbRxHfoQjxBDCCKLe814pZQkBT75wDXWT8XnJGcfQyECYzwIN9y0SRnQkJORIYZ3CsFeOgwF1b3j9HVBbmMP7mEwa54yFC0tQO3/uAu6fsNjwbdyXWk/gn9us4zbC3LKk472uIX5/LO5JC+FotnAvnsZzggbT958XzucsjsuOEHQpnG6qUsFrme9i6FNbCIcqrcWDb3dvx+cDC/PzUFtbxcDcV938CqjdehWOhQcew2cmxRSOj2kb1zcnWjhXtwxcL1ba+F1zDTyelS7WWgrvYy5s4v7tvSr+uVOjGBq0WsX9yCeENVUG5zNVGIJS5ONn2Akp6FO4uGwR/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWk3KkZuHY7HSoOAI1vYuNQjsuNuxcu4gNh4eE/pe+F28I7EyOwTYlCzuZ/+DZp6H2ptf9F6hFHWw+vnDmNNQSjhDM42Jz9KkJPCaJBB76Sh2bvSaFMAYtwOO5KgRZBAl8zuyk4w1K200MpvG6GOLwnadPQW2+hY2ZM0LYR34Yz51t+7ZBbWR8HGo0mFJCY/BAaIZbruI5qOkYVpLIYviLG+D48DvY6LfTM39dOI3z1MED10OtUcaGziM5DKcoCoFci2exgfpTzz4Htfw4NhfeXNuE2vgohlFsNHCcL6zja6stnKuXLmIYQ7uFIRDJVM/YFzrS59P4u9GEJIpcHhtEKyHoZkgI6HADDC+rCnM1DaaEgfONkxCCkDI4foeHcPxOTOL1TVobpdJ4vRwZj293/DSGXk1M45pneKwAtaSJY+bosRehFgjrLCeNTcqNFq5bXCFYSmpbHgnBG0KOhTKF8MFQCHKQkjdcLz6naUJAjhfiuLeF92/X8FqwXsKaW8L5sd3FNaSmC1+WBtL0OI6tnI3jw/LxmqoJ533Xw3sCKSTG9zEAoZqOrw02d+A8ZQmBVJEQ2GDrOHYNA1+bE9ZBY2N43S4WcX2Tz+B6IXBxvRAKgaB37LkVanu24/c1WrgOSjq4rvRT8bnfVTi3mCYek9Es/v6LGs4Z0ry0KIRHPPX9f4ZaWwhRo8HUCnDMXLVvH9SmJoX7JCFg8umTOD7MJJ6siSSuF155yw2xn8eHcIwfP46fmRSu5RfXMPRp4QLOcd0uvp+n43zbruGcEWpYSw/hetFy8bvmAlwbZBt4Xzg7hUGGWgvXlRknPpfOTuIxGR8S7pOE8FdPCGBu1HF/pZBBX/hejSbOX1vFmYqIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO/4IJKIiIiIiIiIiIj6jg8iiYiIiIiIiIiIqO+2HFbj5IUGwRE2J9WFZsVL589BzU1jI+XQxNrqAgZDbJuLh5q4bWycWRSaub/4yDNQS3/3e1C74Zo9UOu0MUjGTmFYzcgENmF2W9ic1HWxCfVIEZshh0LD6aWlFagFrvBM2RWaVfe8XxBiE1cnYUPtwhqGU+jD2OS5tFHGz6xUoHbj7a+C2sQIw2roh0yh0Xa1hc1wS+US1EY6eF66SggKSGGTZOlz8z1hFF/9n9+FbfbM7YfarrndUAuEcKhqBb9DubQOtUKmALXbD/8C1C6cPgm148extrSJ+3J6Dcevq3Ce9wOc5yeGcP+cTLyp83IVv2vKEho/C3EXhtC4vTCFITxVHy9rAfalVlUhlIwG0+5d2Lh9fATXEKMjOLfkctho3DTxnO52MMhAOqevv/7m2M+nFzAo7sXTJ3A/hNVcuoABEJaD1/fFlSWoTU5jyJwphOx1QlzLSHE1obDW0BUOTNPAzzCEedkw8TOCniAaw8TG9Z4QbNEVArlaQjCNvoGvtTzcX03HY6wJ+0uDKVXA+SGfxxCSbBbH4GYFz7eukDbltnG+8YRQG02LX8t9TRjjUFFKj3BNpbcqUDMNXCsUh/FeJ5fDe8yJiQmopR0h4GsU5+CNTQzw3DE3C7VD1+Dc3zqFAWFGHj9j2Yrf7506dx62CTycg0IT54eacB+rXFyjtJsY0Dg5gdcqz+F8Qz+0YxbHWyaLi4/pIo79C6t4vi2W8Zq/q4ghKQsL+OzH1uMhgItL+IwnsnBuyWRw/H3/GQz1XFzHZzBvPoTrNlsIAt6s4GdUykIQlrDW0kLc5/IKzkFlWwiEifB41jbwuKxeiIcmH33iUdim0xYCzoT7X93ANVVOCAfrdnH+SgprSEeYl7eKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww+ryWAj5XoHm3ieO3Eaas0yNuxMp7CJuic0bm+2sWG40RNucHZ+AbaplbDB6vRBDI/42re/D7V6F0Mcbjl4EGrdDjZ+TqWwCbVt4WGuCgEuUuiOIwTi6BY2sE442PTdEZq+uz0N47tC8+pugM1Jt+/cBbWGic1Jqzo2SB4ax9+1SmCj2NXOJm5HA0kTGummHJyDZrZvh1rSxHPLd/E8122hCbFw7vcGcC0uYZDMxz79Wai95c7XQG2kgI2UnTUMwqperEBN1fE71OaXoTadw8bU62n83OPnMKBCa7SgVhwTQqTS2Jha6o1uafGi4WID/Ua1ArVgFOc428Lfa8bB7SaFoLLiGDZhXl/BAC4aTLccOgy1hNDMXIvwJNc0nKuaLVx/PHoE1xqRiWM6PxKf56odnG/KVTx3x1MFqFVquJYx8jgGWy0MqWr6uJ2p4yLNFpaRkSaE1WhCWI0QeGFFeDylfzH3hNf2huREobAfPq6VojbWMibOLV0DwyMMIczLEM6TKMTfNQ2m7O4ZqHWF+aa8LIQd1HFuqW7MQy1t471ISrhuW078c00hrFLXtxYgJY9IrCaEz1hbw3nuu9/9AdTmZnE9Ytr4vaR7seqxx6H2pX85CrWFhrBOEe7ZStX42q3WwvtVaU0ZCTNaTgjDGcrgHLRLWGhd98ZDUDOLeIxpMAUWns8PPIL3Dv/8L7iusFLCqE4UoFTAJbZSDZyrHvzuY7GfazW8/7nt1bdCbWoCnyMc3xCCuyIc99fuw7CayTSOy5ow7suP4nOZFQ/nailY2LBwXZFwcI44+cJZqD31+NNQ27FzW+znShWP3fIaPkcZKhSgls3jPeF1ezF0VXqWlhOC1RbP47O/reJfRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oSQgDE8voFqJ0/fgJqBw9dDTXDxAbf9UBoGC408O204w1Fh4tF2GbhwnmoTe6dhdqOmw5A7fT8ItR2zmFz6V2z+H6dBjYi9QNsLjw2MQ21pUXc53ING4XaCo+TLzRCLwtNRhOp+O8xCoVGyj42lbeT2Ii1WcWmqNt24HGaPYBBNxfLGDDU6GCjWBpMSSGERMPTXrXLGMbQEhr4eu0u1AJVhVp1fQVqCwvx+cAUmrRvlPC9Pv+Vb0ItLzQIHh/C+WvUwCAovYKf0WpiuExuNAe19SbOBWFCavSM80irjE3kIwPnb0cIj5gcis/fI8L3j4Tv6glzUL2OQRGjXZwzUkn8XkNFPCbl5VWo0WCyhaAIKXohEhqS60IoXKuLc9D3juB8sFnFczCRi88v7QDnuFQa97dTwcCZlluBWjPE7ZSJk+vKOjZpj7rC2iCN41cTjlMghNWoEOcRU6iFLu5Lu4PH2A3i85cv7K/q4L7ZnhAekcO1Z11IVGzXcF6yhI/VA/67P/1QZOGYCSI8t1wf7x1WLmLI3He+9g2oWcL12BSCM/VkPNQkncNrdCFfgFpRuO+amMAgGSkg55nHn4BaXVi3ZYRQy1oe14ZBA+9Fh6fxXiRRxrlv8/SLUCsZGG4ReLiGTPbM/ZlhfJ0hHXMp6EeomcK9nqnhPZvr476ZEZ5jNJjufMOdUBs6jvPNZgPX/2GIF7PNpZNQa5fwvFxZwvsp3Yuf02khAO/0yXmoXbN3H9QSm/iZgXDv8D++js+lMibOrVYC92WjhXOQnsbthhwcb6ZwyW/UcT23a88c1K6+Dp+bNWuV2M+jYxhM6ggBV6EQ2pfOYhCyKazRshn8rlqEc7UuzFVbxZURERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHfbTmsplrBBpuNagVqmZTQuFwIREkksHlmcSgJteUNbATedOONeed2YVPi/OgQ1M6cOgO1/bMYpKKbKai5EYYitDoYTJMTvn/dx0brroe1VK4AtY3KGtTaQsPlXBYbq6csfM6s9zQjHUpjY9N6gI1I00IoRkFoJJ0fH4PaehfDLho+hmeoyMYaDSTDFhptd3Ae8To4jjTsrasapQrUwhw2Zq7VcJ7bXI+PwavnJmGb/PAo1BaFRs0bZQycOd/CsdVNYyPhUSFQoyU0Vz4uBHWdWd2AmpbA+bYmHDu3K4RWCGEM611smO71hEdMCw3upfAfT2jSf/YsBlyNjE1BTcvh9xrK4jzHVu70Y4GG55skDPDEbzZwzjh3Hs/VMMDBlUhgMITZk8rVqODYLW2WoOa7Qk3DuUUTgqbsCNcPzRUcz906Xrend2IQlCUcztCQgvFwO80VQoKE465ZOB+mE/FRbQkhDn4LP1QTQm0SDi6P7RFcVy5LQWjCmteQOtfTQLKEUADDwFpxCOeHThvvifLDeF31Grhdo45re60n8O3MSbxPcoTwQEsI3DF0HLuGibW6sB9BiNutr2KY14TzWqjtzOK9Q72CYZpdIcAnkcDX2koIaLDwvrA3BCKMhMAGoRZ4QuCoh7//MMA1ansW5+p1IUhHVXDdRoPp8E23Qu2VN+L5Vuvg+VYS7lkq6zhmFubxfse+YS/WesJkWj0BLEopdXQR3+vcwkWouRV8bSHCwCjP3w215a4wZwiBO6bwlCyfwQWOEeF4C9tYK5fwGI8M41pmZtcOqL347POxn6enMfRYF+bg558/BjVDCscSrkuRje+XFAKGTGkxt0VcGREREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2paTWzInkpgs+LDb8BGwvuv2gm1C5vYEHlRSEpon8KGy+1WPCSm7mGTzNHMMNQ2Q2z6fuyF41C7/erroDaSwYbs9U1shpwTwhg0oWF6tYXhN0rDX4cu9D5Op7GBdSqJzaTbwu+stzFzqGEz1VZC+F23cEd2TmKj1E1TaM5axeNuOdic1W8LCRg0kHwhnKAqNCbOpDDUxbKlJsT4WlPIRooUNiGe2xY/z/fO4jbLSzgXJHM4Z1w1Mg41Q2gGHPnY0LiQxfdbEwLDXljEBu8LFWwOH0X4WkNoQG8ZeKBMHber+UKQR0+oRqODc+FYEt8/NY2BQBubGNJ17vgJqO04gNeb6SKGTJwwhWQeGkj1LgbPra9hyNq5+XNQOy8E0zSkucrBJuqOg9fySIuvDUohBsTMn8PP9G0MtjNsISjQSENtLDMBtdEiBnCdXMXxdvToBagVt+Fn6A6uIRxhrs4lMYwh4eDcJ0xLKnDj4Tx+V1hnNYQgGQ/XXqGFr005+L2yOayVNyv4uUQ/okcYIrVaOgs1rYvr5EIGw9gKQ3h9qwv3E5GG1+1sOn7+VoRgUulvVoIA10GNBs6jurCm0nXh1lMI0arU8Tj909cfgVpB+JOaKI/zyOwEHqeyh59bbeJawwtw/nJ7AmaCCL+rJwSTqhDfyxJCJq7ajyEbswcxYHXDrUDNF447DSY3wGueJYSnpQ287/CEYOGhnduh9tUvfxtqmjDfDOXjzypGx3Bd9Lb7/jeoJWwcp40mzjdugN+r3hBCn4THDW0PFxVHz2JYzyOnMDjn3Dquv8ZSeL8zWhTWMgHOEUlLWOBo8e/m+cL6TrivsYWbXd/DYzI2is/Nqi18BieFkmXyp6C2VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LfeILE5g78PJPXuhdv3eWagNjWCvjlwRewfY2EpQmRn8b9E3V+P/XXwo9FBaOL8MtUIK98Maxd5Ia218v+1p7ANk+Ng7IRB6oPku1gKFfV5sA38dtobPittCX4DJMeF7YMsC1WjGv1tF+K6dCI95u4Kfud5ehFok9MDTXOxFkEhjbz89gdvRYNosYc/FstDncdvUNqjlC9gH6HwFB0NlGeeI2R3Yf2d0Lj6nbSwcg20unsBes7N5oR9kiPNeKoHj3hP6FtUa2C8p7OKYKeax50orwl5TnjAuu0It8nA+aAa4nW/id9Os+Py12sTvMJ7FuVUTepqsr67gvnXxd5FM4fEcH8LeJ3t34++aBtMXvvQFqK2u4PnW6WIvn1Do92WGOH6lsdoU+jh3uvF+rraO/Z+3D+O5e24Dr9GdFl7fnQy+X3YEa6YmrDO24TpwU2gppwv9p2ycgpRlC2seoQ+jbuF6IVTYwzGZjH+ulcY12uaK0C9X6G/bauB2ptDbbqhYgJor9F9q1LGfFQ2mfZkpLAo9F1MFvGfpLOE1NHn1NVB78fhJ/IghvJYnrJ5z+iSuZXzhnkPT8L004X7FEGpKw/kxn8O5xU7gvLS5iT3b1jWcC/T1CtQSIY7Lu+9+K9Q+9vFPQW3xIq4Xw56/5UmmU7DNnn3Y5zHl4P3fiRdfhNpmGdfBpdIY1Cw8TMrk7RT9yNHnnoLa9il8ZqA6eI1qt3FsTe/FPuy3veE2qJ09i/3qaz396ucv4oOfinDe75zDTApN4aJiduceqEVdXAeZUg/GAPshpixc8z36AtY6Po5p38e5Op/Gz73x2qugVqo9CrUwjF8jFs7jMxhdmG6DCNeo1Tou3KT8kVXhvtsTeo5m0vj9t4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtpt7A552LjItRcD5uTzu7YAbVt4xiosG9qH9QMoTm4Y5diP3e72Gi8W8f9rVWxe++1ezFwJ5nC0IXKGjZPHTWxOefiOjZevbiJr40sbMi+cwLDLbIp7EKsGdjoue1iQ1lTx6aojUa8aasvNFUfz2Az5Bebp6D2wrlzUNsxi81OUzYeT6+Nv58L5xegRoNJF/6NZHIMm5kndDzvmzUcbwmhYXpVaMK7quE5aG+fjP2cmcRG87M34H6MDY1CrXRxHWorF3DOyFg4t+SFBudhChvG6w6Ot4zQwbjm4T5vtLBZdcvFxsSqI3RCD/D9HD2+z1ZSaOhs4zy1XMPm0mtCk3o3xO/feeYE1GbmZqA2ux2DjmgwHX3maajphhC8IIwjT7iGdprY9NxvY2idZeK1PNET8JQUmqrnRvHczWYKUCttYuBO0sJxGgkhVU2FzcztNH7/VIj7p1m4JrOEdYAljP1cAed5K4mhHbUGzvPdTnxd4QiN4UemcV6un8e5JRIDZ/CYFIoYhJUXAmzqQlAXDaZ9OVzrd4SgS+m+y3TLUJsax+vbC5g5o3bsmoNaOhEfl49+73uwTRBg2IEu3IfoSgqwwe0sIbnKFAKuduzE76UU7svzLz4HtaQQutlt4jE++iLe2zRb0ljFMKGoJ/xGj3DOyCTw+wfC/VokhJ8+/dizUGsIITz3v+O3oJZOb/n2nq5wH/nQ30Bt+xQ+g5kcL0DNsvC6PX4cJ5e5HRhUPH0jjl8rEb8HmJraDtukLRy79SoGs2jCXBC4+PzC6+B49nUMNY2EEJaucE+USwhrmYIQsudhSKqh4TiXgmPCCLez7fhxuXhBOCY6zjepND5Hcl08dvNnz0MtK6ReGQmcv4oj//7wT/5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3225m+3mCgYq+D42JH/xOIY97FjFUJvDrzwEtZFCBmqzI9iU3ehpxnmhgg1Bt1+FDUvXFrHJ8+nTj0OtMDQBtZzQOLSO/ejVwgI2Dz1x/gLUxoZx/0ZS2Fh9tICN0IcKOahdWMbjnhOCbgo9TdSbzRRss14rQa3UbECtKgRKKA2bzLaF82Tl7GmoOSEeYxpU+G8kkRAU0RUakiuhGfBwoQC1VA6bCy9u4FzyyA/iY+umV9wM2/gGhrA8efRFqGU0nHJ9IRRjaAwDFVJCM3ejKjRQF46JHm0trCafxfkgFI57q4WTX6uJTZ3T6fgxNoQG956L7yU1lR8fKUBtegKDg8anJqH24osvQG2yiM2qaTD5bWxm3hUCBTyhFobY9DspNDN3UjiOLBwOSg/izcE9Yd/qQpiC28Wm4ikhU6oqhB2UbdwwOYrrh2Qav1cCL++qrXD8BsIcJM1VhoGfYdrCUtXAua/T87muh3NLIoGf6WSEILAq/l49D8NDegMAlVLKTuE8ms7i9YYGU9vHUIR6G8/VcgXvWZQwZxw7imEt505iaJtl4j1GIR+/nwiE9bqwylK6sNZXQihgJNw7SS/NCuOj1cL7jh075qC2vIQBVyuLS1A7UcVQiKOn8F5ECuKJhDWp1vNFOk28Pjz+yFNQCwKcb/PCfd1rX/cqqF173TVQG5/FwA+DWTX0I5aB4VCrGxjQVu/gGt628bx/5gTOLSvLuCYxhGt0YSgeaLt9Ep+3TI/hc49MBsfkqBB6vL6J82hOCCDOj+BnZFN4nCJhzVeMcF4aHce1QauBE13vPZFSStWFNUTg4Rqqd4oo7Mc5w3GEEDHhmmFb+LwtaVSgNj5cED4Dv4MUSrZV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23I721YbG3bmktiQ+9T8OtQWzq1CrVHDpqiHDh+AWnEIAwUmRmZiP6edPH5meR5q4TZssNlI4n7Umhgu4yexmXk9FIJZRrNQM01sJFxuYLNTX+r1KTR6rpUrUBseH8d9aWAz2nI1XtOF5tUXNzGY6KnT56A2cv1OqNlCs+rFkxjgkxGCeexI6KxPA0kKwoosHIOrZWzymxD+eWVHHucRXQhHyiYwoKHsxxvGzx+fh22GxjF8arGJ38EXmrQnTWykrEfYzF4PcIIYMnF/SwHOaTmhCXPRwkbHgTCndTrY/LkjhHFoRXy/XK6nEX6Ix6TZxv2VGtxbQsflbBrnkbQQ6pO2cbtQ+F40mEobeM1TEYaVJITzKCXUErYQGKXh9c1v4zqgW4vX2kIoXKuOr7OE5JuiEMgUCuu2jWYFap0qjtWkhrWEh8fJx5JSCl/bCrHB/VIHQyaconCcIiHkqhM/xponzMFCuI4VCNcbIfxHCQ3Z28JaLhBy99IZhtXQD9W7OD/UOnjStEMh9MrB6+xoBoMSbtg1DbWl5XmonXwhHuASCGNB4glhd8JlW7zHkKaHTAbDE+bn8b6j3cE5IyeEEW6u45yeyuMacnwC751qNQy1WVnB+9h2p/e4C4E2QrpQEOLcsm0bhuy97Td/HWpJB9dyvhB+42PWBQ2obbMYzBKGOGfo0vVNWJ9Law1XWNvXNvEz5i9UYj8//sQp2MY0cYYwhM80TawVsvgMppjHuWV0COfRYgGfJZXbQtjuagVqtTQ+TnOEa35jCn8XplWAmqHjPWA+E79u5PMY1jNaxPc3DLxPTCfxOA0L7yflwQaBEEq2tcuGiH8RSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd1sOq3FS2ORX+disWA+ws+XqyibUvv3l70Mtl8fGo3sO7oZayow3Gd2WHYVtEjo2Oz0RYmiKhv2Bld3FjstRF7+rl8QGweMjGFox5uOHNEvYDLkufEYmEhrVu9gA1nSE0IYENjUu93STPrd4FrY5Pn8aaiqFzU7HprdB7bnvHIHaa26+GWqHXv1KqH3vwW/i59JASjp4vrlCI+VyHRuXFxxs8N6FpuJK1aoVqDUaON6GkvGGw5qH88OZF05ALZ/ARsWzYxNQawlBEVGIc0EY4feydZzCh1IYRuFauJ2l4fs1qxi8gL8JpcwMXg8sC98v1TNveD42YHaFuSsIcf4OhfAQ6fd19tga1MaHsAnz3ATO1TSYDAvXLbaO57MUhKX7OLd0Kxik4nax6Xu7iuevW49vp7k4Zkyhg3hqqID7puMOW8L8mIlwrZAWgruCNZwfVAu/qykE04QWzpuBht9jQ8M53RouQS2Zwf1L9DSv1wKcp9wm7m+7hrWEEB6S1HF/Qw1/P01PCBNKM6yGfihUeB5pBl6jdaGWcvD6PjWN9xhSUNVsCcfR2lr8/qwyh2uUdluYz1xcozSbOHbbwnrJE0LxpLSD/VdhgGlZCO+6uIxBMm6A4/J1tx2G2uwMhvqUS3jP2mph+svjjz8Z+/n8PN5jRsJcmBDWPNdcsx9qgYvHvSaEh5hCkJ8pBIfSYEqncCx0u1irCyHClZowptv4WkNhrZjHtUak4ud+5ON1sdXFsVZq4r51hcCsehMDkxdXMbhKF8aHFH6TEsIvk0JYZ8kUAkGHMfzmKm8f1Fwh2LSQxn1Jz/UE0Zj4OiMphSfiNcNK4vt3wjLU/DZu53t4THT73z/fcKYiIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVWGl8ZinkDihrCJtizhaw+fHisRWoff9bz0ItlcOG5Kl0vAF52sF9G8vvxH1LDUPt/AYGs9RaGELTcbApaLmKTVHrLtY6a1WopVrYRN0Li1CrJDGgwU5koea6uF25gY2pLzbi+1KSGshncd8mhvH3sH7uPNRMYT9mdmegZpjYDLqQwcauNJjWVnF+SKRzUBsV5oeJERznbgebH1tC+M1QCseWMuLzSyKH2xjCP+kkhCCZpIbjTfrnoEjDcdRROC+ZwosdB5sma4EwpzUwMMsTgidyWWwmnRTmXE0Ixkj2hkfY2OS53cV9k3rZeyFecHBvlRrO4zwyMoSN+zM2NnWmwZQSQiEioRF6pyU0bq/jOHLbGFYSCeF+KsBxrvz4WkMXpoxQmkaEoh5gTVP4mWlhLGgd3F+/KgTT+PgZfiCE1ehYs4T5QElBNy4GVIRCWGBoxN9PE0KvpODBqIFzi49vrzwdt4s0PHc6QqBgxxd+1zSQbGEd4Bt40dOF4IGMietpLcQ1uy+EQEyM4Boq2BkPa3G7OMYDH8ekK8yP7Tae9y0hHKpSwfnxuTMYMtdoCKGFXRxHtQreY2nCfPj0E09B7cVnnodaKo2fm84I66CeEEDbFOZbIWRvz+x2qI0V8P2Xz+P9aSqF26WSQpissP6kweRYwno9wFoopPFFWTyPEsLSWVN4P6WEz2j3rBfKQohfNxQCeYXQmFAIRzZs3A9DuEHThcA/JayrbOH9Mhl8zpUT5ofhYgFqgYdrSFOYv4tCtp3eE8zcFkJ93AhrgVvB7UIhwDQhBJ36+P2DSAhBtPC+c6v4F5FERERERERERETUd3wQSURERERERERERH3HB5FERERERERERETUd3wQSURERERERERERH235W62UYgNNiub2GR0+SKGtVx16xzU3CZ2Ba1sYkPyh77xBNT8nqbn7l5sID7lYW04hyEW+yauhlq5jo2P11obUDOEpuopHZt9du0C1E4+/SLUltewWfPktl1QK509AzW3gw2hNYXNWJ2x+L7MHNgH2wzNzECt2cHm0rrQPHZ4cgxqkYO/i0odz51KTYqeoEGUSmGz8FwGOyRnhe3sBDb+LZWxsbpt4vRnWPgZYU+z8SjAZsAjQqNxx8T3sjycM6R/DmoEuL8bQuCO38H3ywoN7kMhKMMQxq8jhP9EUhN9IdxD03G7SIvXksLvJhBCzwIN38sXgjdSaWzcH0bYXNkSulC7QvAIDab6Kl5723Vcj3hNvA6GLo5LW+iDnjLxvNSFOcjtCZMJhWCLQAiDiVwc42FbWBfoGJ6QEPatVsUQHkMIpjGFcWkIwSymLcwZQsN4zRO+bxO/r24Kjdr9+PcV2ucrS8eqJjS9D4Q0xq7we5Xmb18IynBdXPPQYHKEmDXLktI/hZNLCDYIhXPVE2q+h+e+H8THpZeURg3SpGu0cN/lCWF0rQaOhXQK752eObkovB9et8fTQlBCJMyRTby3EyLEVFDH79a2sGb3hHtcu2sctskJa5TxMbwXNT3hnPBxPeZouL5LCsE0CencoYGUT41CLZvE66cq4JjxhFCqQAi/rDdxvdDu4vstrvSMQR3HbtsV1gVC8I0UOCrdOxhCJl4kXPNNHTdMOzgGR0aFYJphDALLp3CsOhrOQd06rit9ISDMMuNzf8LCYM6hNH6mH+Hvq1LGObjt4ff3hWMsxe6lbSHodYs4UxEREREREREREVHf8UEkERERERERERER9R0fRBIREREREREREVHf8UEkERERERERERER9d2Ww2oqq2WoHX/yJNQ6TWyAaiSxufLw9gLU3Da+9uIpDIl5VD0b+9lysMFmbbQEtVwJP3NqbCfUCtkRqNlC49+U0DR4NIWvHZ3DJsyzeWzs+Z1HMZjnXHMFahvNi1AbLkxAbXpmFmrbtk3Gft4+tR3ffxN/1w3VgZoSAiCy2SGodUOhSXuAx2RsWmobTYMoITQIzghNv00bx2WtjefbYq2C21UwjGIkjeMyl483Jja6+JmrtU2opVLYhDmBQ0bpITYD9gycW1yhmXlFCNSIhAbnqQTuS1I4xp4QMqEJYRl2AvcvioQgi54wDqnBvWHg8ewIDbIzwnfICNcWN8Qmz4aGnxEJAT40mJbnz0NNE8IeEkIgkyGcbwkL1yRRF9/PFYIcQjP+GYHwmX6E4zQQzmdN2DdPCLUxhblAF5rD+8J3iITgHE2YC1QkhHEI4TeG8NowxH3RQly+RmH8M0IhNCYSjqeQO6iEr6W6IX4HTQjzioR/44+EfaHBJJwyykxIiQrCi4XzSBhZytSFc1CYl/yetDjPE0KlpOunMAdJC5wwiQMpn8W13IgQ4HLNVXNQq9cw2KHTlQI18HN9H+dbXwgQlNYpphDu17t2sW1cFxnCMU8mhbWhsL5JpTAUIynUbOG10r7QYBrfhs8CfOF5iybNJFJeljD2vS4+c3F9HKtT2+Jjv9HCMVkWwqK6bWG97uN3kMJqEgn8EgkhTNQQgllc3D2VK+B4S2eFzzUxWEsXJnVPWGvpGj4j6b0gCFO88lz83RgmvpfjCKF9wht6beE7CMcpEgKTt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdaJCUMEBEREREREREREb2M+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRP6P5+XmlaZr68z//85ftPR9++GGlaZp6+OGHX7b3JKLLH+cbIrpUON8Q0aXC+YaILhXON/85DcSDyE996lNK0zT1xBNP/Lx3pa8+97nPqVe+8pUqnU6rQqGgDh8+rB588MGf924RDZRBmG8++9nPqhtvvFElk0k1Ojqq3va2t6mNjY2f924RDRzON0R0qQzCfKMU76eI/jPgfHPlM3/eO0Avj/e9733q/e9/v7r77rvVfffdpzzPU0ePHlUXL178ee8aEV1BPvrRj6rf+Z3fUa9//evVX/zFX6jFxUX1V3/1V+qJJ55QR44cUclk8ue9i0R0heB8Q0SXEu+niOhSGfT5hg8irwCPPvqoev/7368++MEPqvvvv//nvTtEdIVyXVf9wR/8gbr99tvVt771LaVpmlJKqcOHD6u3vOUt6m/+5m/U7/7u7/6c95KIrgScb4joUuL9FBFdKpxvBuQ/zd4K13XVe97zHnXTTTepfD6v0um0evWrX60eeuihf/M1f/mXf6lmZ2eV4zjqNa95jTp69Chsc/z4cXX33XerYrGoksmkuvnmm9VXvvKVn7o/rVZLHT9+fEv/+dGHPvQhNTExod7xjneoKIpUo9H4qa8hop+fy3W+OXr0qKpUKuree+996aGAUkq9+c1vVplMRn32s5/9qZ9FRJcW5xsiulQu1/lGKd5PEV1uON9c3vgg8kdqtZr6xCc+oe644w71p3/6p+p973ufWl9fV3feead65plnYPu/+7u/Ux/+8IfV29/+dvXud79bHT16VL3uda9Tq6urL23zwgsvqFe84hXq2LFj6vd///fVBz/4QZVOp9Vdd92lvvjFL/7E/XnsscfUVVddpT7ykY/81H3/9re/rQ4dOqQ+/OEPq9HRUZXNZtXk5OSWXktEl97lOt90u12llFKO48D/5ziOevrpp1UYhls4AkR0qXC+IaJL5XKdb5Ti/RTR5YbzzWUuGgB/+7d/Gymloscff/zf3Mb3/ajb7cZq5XI5Gh8fj37jN37jpdq5c+cipVTkOE60uLj4Uv3IkSORUiq6//77X6q9/vWvjw4ePBh1Op2XamEYRocPH4727NnzUu2hhx6KlFLRQw89BLX3vve9P/G7lUqlSCkVDQ8PR5lMJvqzP/uz6HOf+1z0xje+MVJKRR/72Md+4uuJ6OV1Jc836+vrkaZp0dve9rZY/fjx45FSKlJKRRsbGz/xPYjo5cP5hvMN0aVyJc83vJ8i+s+F882Vj38R+SOGYSjbtpVSSoVhqEqlkvJ9X918883qqaeegu3vuusuNT09/dLPt9xyi7r11lvV1772NaWUUqVSST344IPqnnvuUfV6XW1sbKiNjQ21ubmp7rzzTnXq1Kmf2Ij0jjvuUFEUqfe9730/cb9//Ge8m5ub6hOf+IR65zvfqe655x71wAMPqAMHDqgPfOADP+uhIKI+u1znm5GREXXPPfeoT3/60+qDH/ygOnv2rPre976n7r33XmVZllJKqXa7/bMeDiLqI843RHSpXK7zDe+niC4/nG8ub3wQ+a98+tOfVtdee61KJpNqeHhYjY6OqgceeEBVq1XYds+ePVDbu3evmp+fV0opdfr0aRVFkfrDP/xDNTo6Gvvfe9/7XqWUUmtra//hff7xf7JkWZa6++67X6rruq7uvfdetbi4qBYWFv7Dn0NEL6/Lcb5RSqmPf/zj6pd+6ZfUO9/5TrVr1y51++23q4MHD6q3vOUtSimlMpnMy/I5RPTy4XxDRJfK5Tjf8H6K6PLE+ebyxdTsH/nMZz6j7rvvPnXXXXep3/u931NjY2PKMAz1x3/8x+rMmTM/8/v9uG/RO9/5TnXnnXeK2+zevfs/tM9KqZeaqBYKBWUYRuz/GxsbU0opVS6X1czMzH/4s4jo5XG5zjdKKZXP59WXv/xltbCwoObn59Xs7KyanZ1Vhw8fVqOjo6pQKLwsn0NELw/ON0R0qVyu8w3vp4guP5xvLm98EPkj//RP/6R27typvvCFL8TSGX/89LvXqVOnoHby5Ek1NzenlFJq586dSqkfPul+wxve8PLv8I/ouq6uv/569fjjjyvXdV/682SllFpaWlJKKTU6Otq3zyein93lOt/8azMzMy9dICuVinryySfVr/zKr1ySzyaireN8Q0SXyuU63/B+iujyw/nm8sb/NPtHfvw0Ooqil2pHjhxRjzzyiLj9l770pViPgMcee0wdOXJE/eIv/qJS6odPs++44w718Y9/XC0vL8Pr19fXf+L+/Czx7/fee68KgkB9+tOffqnW6XTUP/zDP6gDBw6oqampn/oeRHTpXM7zjeTd73638n1f3X///f+u1xNR/3C+IaJL5XKeb3g/RXR54XxzeRuov4j85Cc/qb7+9a9D/R3veId685vfrL7whS+ot771repNb3qTOnfunPrYxz6mDhw48FJD0X9t9+7d6rbbblO//du/rbrdrvrQhz6khoeH1bve9a6Xtvnrv/5rddttt6mDBw+q3/zN31Q7d+5Uq6ur6pFHHlGLi4vq2Wef/Tf39bHHHlOvfe1r1Xvf+96f2vD0t37rt9QnPvEJ9fa3v12dPHlSzczMqL//+79X58+fV1/96le3foCI6GVzpc43f/Inf6KOHj2qbr31VmWapvrSl76kvvnNb6oPfOAD6tChQ1s/QET0suF8Q0SXypU63/B+iug/H843V66BehD50Y9+VKzfd9996r777lMrKyvq4x//uPrGN76hDhw4oD7zmc+of/zHf1QPP/wwvObXfu3XlK7r6kMf+pBaW1tTt9xyi/rIRz6iJicnX9rmwIED6oknnlB/9Ed/pD71qU+pzc1NNTY2pm644Qb1nve852X7Xo7jqAcffFC9613vUp/85CdVs9lU119/vXrggQf+zf4GRNRfV+p8c/DgQfXFL35RfeUrX1FBEKhrr71Wff7zn1e/+qu/+rJ9BhH9bDjfENGlcqXON7yfIvrPh/PNlUuL/vXfshIRERERERERERH1AXtEEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd/xQSQRERERERERERH1HR9EEhERERERERERUd+ZW93wFfuug5rvhVCLQg1qmhXhdjq+1rYs3A5fqtyuG3//EN8rmTKgZujC1/XwA1yvC7WuizUnZeN2nQC3s/Fzh0bxtaaVgJplp3E7hd+3VKrivoT4nLn39+N3PNy3Au7b+Cjumx8Jx9jCz5wr4HfouPi5msLP+MA/PAA1uvLd9b//JtSi+hrUdDsJNcPEecQU/smlE+DYDzR8P9eLv9g08P1Dr4Wv6zagpqcdqOUyGaglNRzj41n83DPPPgI1r1aGWn5kH9SWx3fg/k3MQU2r1KGWMnDsl1ptqBk9E7jbrME2Y0M4P2Rt/N2EwvFsVEtQizwfarv34fcfm5iG2h+88/+EGl35/uD//O9Q27Z9EmrSmmd4eAJq2SKe041OBWr5oWGoJdPZ2M9dD9cUSuFcsGPn9VAzItxubGQMahcunIXaqRPPQu3sqedxV0Icb5lsDmpWEo+JZePcl84OQa1WqUBtJJ+FWrEYf+3I5Axs4wzh988WcD9UhBeNs6fwOH3sr/8KagsXXoBat4Pz18MPPYOfS1e8//b+q6Hm4dJAFefwvDSqeC9SW8RzNTRwu9Esjhmz5/Le1puwTWTjvKeHuAaoVPH6biVwDsoUca3fKuP6ob2J27W7uNaa3D0KNdXBdUt3RViTuXjsCtM4B9kzOKdVmpV4oenCNlZC+K4LOGd2dZznp185BTW3ht+huYmf26p0oPb3HzgBNbryHZ7Fc3B02zaoDQ/jesSt43ywsTgPtUwSP2N6DK+1kR+/96818H7FD/H5QCqJE2TGSUHNEu5NNBOfwWRyOJ6dLK5RvBDHZauNc2s6XcDP1XFuabVx/mq08BibJj5LM/R4rdPFMe52hWdVwnFyUsLzJuEzV9Y3oXbi3AbUIhOP5z8/cx5qEv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYXAgBcF2tOEsMeMjmsdQJsqBn62KDUFcJfEk68GWk2j++fTmGT57MnV6EWCYEVqTSGtfgRNmtudbBBcMLEfQkVNk/tCA2SNRe/a9bCz03n8P2m09hcudXFzzh/fiX2syWEfSQ0bGK6bRibJpd9/P1vbK5DbbOJv9e56QLUPOF8osGk+djQVxcCrnwhKKHbxXGUTmLD9Fodz9V0fhx3piecph3guE+lpKAt4d95NGwGrISSEgKpOi1sUp5LYQPnrhCc0wywiXxSCNuqN7H5sWrg981ksPlxTmgmrav476faxN9NJISDGTbOcUN5bCR988HdUNsxgyEjO3ftxM8QQo1oMOWH8Nx1fQw7aLVwfOh4qqrNBo7B9fIFqNkpHEfDo/E5SFpnFAoYkHP1NYfw/U18f1eYH+p1bBi/urYEtUCY+7wu1mZ2XQU1ZeGabLOGxzPycVlqC43gixN4DMqbPY3VUzhnFp0i1FIBzoVeF9ctThK/Q7OJn+ELa9mEENpBg8mMcAyOTe6B2mgCQ1gatXNQ8yt4fZ9xcG1fKGFtYyN+Te52hXlvP65lzGEMJzBruJ0vBIe6GVzfeCUMbAiFALxEQQgoFMJ0uj7e25ljuM9GA8dlfQ3Hb07DOVJPxOevzAj+vlob+DqVxN9/MoXHri3cT+nCmtfK4HfIDRXwc2kg5YVrz2QRx0LHxeuxZeI4yuSEkBghEVRLCvOBF7/hydgYoGXZeD3OZgv4/r5wPyF8B9PGZxqFkRGoKSEwOScEfOlVvObbQvCeZeD31xM4v2oWrnkMIXTHC+LznC4EBqeS+HtNCMcz5QjrEeGWtRng/m628Ka1UsPg0K3iX0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfXdlsNqXA+bBieFZpfJLDax1A0heKGMzXpNoaFqOodNNhM9YTJ2Ap+nekKz8CDEUIQowkasSQdDEVwXm536QriKZuO+1FrYSNo0saFoWmjI7tWFQBiheb3URL84hE2dt0/Em8ymHAy5GR7G77/Zxf2oNbC5tCb8rn0dz51jJ6u4bzPboUaDyVBCw2EL55ZmWwhXMXHOaLZx7LddbMJrhUID5zDeENnFU1xl0tiouIunvSrmcLxpJn6vRg33LfSwQbLQR1olkthI2s9gGIey8DglhaAqM4kNobuNCtSElyrDiH+33XMYMHHjwX1Q27VtDGqTo/i7sYUD4Ll4nNZXz0OtKYT/HDx4C9Toynf81PNQy+VxzIyOYJhVcRSbmbddHFvPv3ACaomU0PS7shHfRhjPY6MFqBnCtffMmWNQG8rjHOR6eC3f2FyGWtLAuaDTwbl1fRPnr/RwAWq+sA5yhYlk+zYMgXCEOW11oxL7OdTx99AJcI3muvh7SFj4/qaJS2bPw2tQSwoWywpzMA2kUS8PtVckb4NaVggjqAZ4vnXHcRzldDzPN57Fe5HK8/FxXhfGeGJOuDfT8NobaDgHhRXc31C49XQKQgBGHe/jGiG+X6WK38sW5mW7gYuy+qqwUGsIgYcGft8wH6+FBXyr7ATOt00N7381D79r+YwQDiaE1aSzWEvm+XdG9ENpA8+jqIHhIuPC2qAhjMFyG69vyQw+N2gL2xWG4nOVHuLcohlCwLHC7RJp4VlNhPvb9YUgrAqGF4fCfJsW7jE1HeevIMLv2hGeQ5lCMM3oBK4r2y2cI6Jm/HsUCwXYJiUEICYSuKbqtHCNtiQEa1U7eEwK4zNQm189CbWt4kxFREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rGZvGJqa6wgbf7SY2RQ09bPybtLChZiAExwQRPivtdOINQDUPv4ZuYG37zDDUDBf3NyWE5oRtbPbZ0PD7O6O43bTQPNQrYRNTv1WBWsvHY5ebnsTPTeNxMoTvMTK2LfazKTS+Lozg/q6X16FmBtgguZDGpqtJoem7XsQm8oU910GNBpMtNEwPQymACpujR74wFoT3s/D0VWkN542EHR8Pho0NksOuMMcJDZf1JL5W6Tjv+QaOXSuJDe514ZjoNo63agsDJVI49SlTOE62jhtObsNwnp27MWxq757dsZ/HR/A6Yir8DpsrC1BbW92AmqZwfyOhSX9+CI/d8GgRajSYMnkcq8k0zgVSzY8w7GBoCK+DI0Vs8B0Ia6hGM35Ndhwca0kbz+fzi2egtryyAjW3g43bT595EWrVGl7zk8P4ufmhAtSsBO7zQ999DGqbTRz7TkoIqxEC9EYLGEYx1LMvgYWvC8r4+6oVsXH77BT+Dg3s265MC+ebXA73rVbDRvA0mMwqnjNrjzwHtZqw1phK49ogMIU1tnAdVGO46Gkn42sDu4Frhb01vG77K7j2soTAzZUmzjfdCo7BzBTed+ij+Bm5At47mGlh/hZCr/wqBkBkxnEODnCaU66Dn2vMxkP1uhZOEJoQrmO0hPCIOh73ZArfbzSJ97GRifNop4pzGg2mHVMjUIs0Ye1cxwAbVcEgqAkdx4wmhPdGNRzn1Vb8fiI0cJ6qdCtQqwthNaOTGGrpNzE0ZkoIPXaFecnz8F6sui5ct4W51RCCiiPhGVFCWM/lA/z9tBs4V3Vgn4W0UmE91qjiPHpxCdeGz568CLWmjkFokYnzbSAE82wV/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjvthxWo0XYdNNtYXNKWwhZCDxs1ptMCttp2HjTFcJarJ4QlvImNh3VhK82OYoNnSfHsbYhNFI2ktg0eKRQgFpG+F6+i99B1/HYtYXgCU84JrOjwrETQn0iIYjH7GmmbNrYILrWwMam6fQ01PQEHifNx4a1DeH9JmeEwJ0Mhl3QYDI0PGc6LjbzjoR/S9GE8JfAxTkoJ4QoaW0cq6qnqfPoEDZubwgNkjs+Nhtut4WQKgv313KEMC8lBIEJoV8JocF91sTjOTe9DWqzew5Abdd27Nw+M4nNn9tC2JZpxueqtRUM1DCFOa4gNKR3kvj7Cnz8Xi0P5+r1UhVqFy5gIM6NN70RanTl80OcWzJZbNKdymKT7lYHx36lhg3ek2kcv5uVCtSaPWEyk47QLFzHIIKl5XNQe+yJJ6GWz+D7ddq4v5q0RhGCbpIJHJff/e6/QO3sEr52zzUYUHfo0PVQS5u4rhgr4vdwkvHfT9PF+eGZY6eg9j+f/SrUtk1imNV9v/5foTY+geERtfoy1BLC/EWDqR4IQZ8VDApYOrcJtWUDz6Pxa3dBzR7C+abawACq9FB8DWU4eD22XVxnmes4tjIXcS6ccPB6vCbkxLVaOD/oQtBpOoEv1oTAC28dgze6bVwHpueE4IUW/n6sTSHcoyf4Kkji6/Qsfv/cNvwdDm3gPDIc4L75Hl6rykJon5MTghFpIF119UGoBU28P2k0cB3QFQL6LCGYZKON5/npNfyMVs+9XSgEv2w08Ry383g+N5YqUDO7OO8dmN4DtfEsjkFXuE+st4X7OCEkteMJgVEdfEbSFr6b565BLZnA75uw4kE3QSSsKcsVqK2t4XVkaQV/10sb+P0jB4O1ui2cW4vCebJV/ItIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23J3yUYNG2wmTCEoQmia63rY2FP3sMmmrwlBETruYq3U06g9wEbmuTTumxFhM9FugI2Z0xkMShgpYihEV2iEfvEihiIIOTJqbgoDIDxN2Gch/MY28HMbDWwy2u5iQ/tEK97stFjAhu/JFIZxGBr+Hjol/B222tgU1dCFZtVrK1CrtB6FmlL3CDW60oUejmkpMMtzcUwbIW7n2Hj+ekJIjBQY1XTjY9oJcax1NJwfXQ3fywnxewVtHEeRwibHmTTOS+Ozc1C77ioMnJma3QG1sWl8bWTifLO4+DzUVpdwbsmncY7Ugvicdvb4s7DN/v37oLa+XobaseMvQu30mXl8bQmPe62KTfSDAK83b/8//i+o0ZVveHQEalYSm3RLoQi2hdslHBznyQyOD0sIsDHL8fN3Zf0EbFOqY7BFMonf4egLOHZHi6NQ27N7FmpBgOuMSAgCqwlN7xcvLEFtZGgOasPCMXnj618DtaIQEmQqKRgvPi+tlnGeKtVxbs0lcG71uhWovfAihv94Pr5frYbrQCuB5wkNJguzZZS6iOEEt9yagdoLP3gOat/5ZwwemLoV54PtuhD+2RMIYxfx3kQK1DNs4Xw+X4FSUgiPGN8nBG5mcQxu2Bhg0ziFY9pKCcEO23GuTtlYCzt4f6JqOLeoCq77dCv+PZLFLO7bkBA8qON6xK1VoLbewECNVgO3Uzg9KstkOBb9kCsEwuSEsN10EsdgEOAc1MFbLPXscxeg9sIGXge1VHzeMIVnPNksBjcpYZ21uYnPG7Qu3ot97ykMydwzi5+xYxs++xgdw1DPTAbDdn0DD0qzhXNVKATMrK1juF2rheuqyIjPw64QmrNRwbllcbUCtc0Kvr8rBCs3GhtQc4TwZsvGc2er+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+Wwmm4LAwC0pNC4PY0Ncm0LP0YTQmKCUGqUic0+dRVv0Dk2jA2Cc3nct0IeG2yOjGOtXsPvungWm6KmHGyeunMOG8F3Qmwe6uvY4Hx8GzaFtYT+n5aODZxH89igtTiGzaqvuvZg7OddO6+GbdaXsdH8D76PQTL5JP5uxorYhLrVxN/rwtoa1Grnj0ONBlOrhY3BPR8biFsGDhBxvomEgJkI308XAgXazfh4CxQ2+XXSOJ/VhYCUXIhjfHo7Nj7esRsbJE9PjUFttFCEmvJxvBkG1mrr56Bmp3A+/MoXPgm1bhPnr1+/59ehNjEeb3w/OzkN2xSy+B1OnJqHWsvFfbv62luhNjk6I+wHHuNsHhtT02AKcfiqQCgKm6kgwmrCxDXJ7Axea6+5WmgE3xMeUanidXajhA3Ea60SfubsFNTcDq5vNkurUItCXGdIc7AKcL4dHsK1RyaD3zUhhBtGXfxcP4HH2BQyJlr1SuxnQwg4k0IWb7wRfzed9jrUvvXNL0ItlcY1TyKB6+DNagVqNJj0YTyfT57EAMfpwn6o3frGw1B79O8egdrR7yxC7Zb9GNBgd+L7Mj6BYTVJ4d6suo7zjVI43tyqcO94VAgZXMVxOXUTzqMV4f7HDXAM6gVcQ0UZIUz0DK7nNCFgVQ3jWjM9HA/J8YVQz3oZ10qGi9t1s0LQ6xwG3agqTnzuAt5Paev4vWgwnV3GMJTpAq5/ZwsY+mSEOC43Ozh/bVbwPNctvOan0vHPqFYwaEu6x8oaeN6Pj41DbX0Fr9unVzH8crWBz3RW63gvcvuNON9OCvcsvhCe5yRwXqo1cN5M2rhds4GhNvVW8yf+rJRSG1WsNbtCULMQdJN08Hc9NoHniSmEFjbruE7dKv5FJBEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMYy8JmlJjzH9D1sYhkKzdxN7GmsErrQ9DuLDTULQ8nYz7k8vi5dwMam+Sw2/h0exUacXoCN29cq2Iizu4ZhFAeuwkOaSEJJVasYLnPoemzsetN12PS80cHjPj23D2ojo7uglh+L1/K5HGxzzMUmrtuEoIw9cxg8MTaBzW7PnrkAtc4j2JhbbBBNA6nVxvGhCXOGJTQDDgNs+h10sIHvzjSOt7SN421Vjzf6nWrge9XK2Cz8lZM4Zm581SuhtvuaPVDzDWwu7IXYDPnU8Reg9txzz0Ltv/+/3wy1lInN1w0hFOLq/Rj+8uV/ehBq/9/3/gXUxkbinzE8hmFeEzM78HWzWLvt9ldBbXICwziKFp4TpoHzcmTgdjSYmkLTb9PC66zrYi2fxwAIv4OhV9unXgG1PXsP4GcE8XFumHjudjxs5t7qLEDts5//H1Cr1XAts7gwD7WG0PRcEwJi8hn8/lkhtHBmGudDQ8drvuZhsJgR4ViNAnzt6Ei8ifzCCob6GDpeH/wQP9NJ4XGfFBq3RwE2lV8cwe1qXWzmT4MpSOFNgY7LAPXM2Xmo/dLN/wVq178C10uP/8M3oPbwGoa13DIW3xd7O+5H2BDO3TLODykhpKuh45zpbQpjvIzjOS+E0GRmsDYv3J81KngfN3YY5yDXxGPXNoQAmyL+ziI/vk7rrOHc0tXwe4XCDXCYwOPkKDxObR/Xhnoej7ue3/LtPV3hfCF478nnjuGGe/Geft8MXt/DOl7z2kIIXq0hBIz2hPwmbVwrNds4/sIA5yDXwWc6+Tw+0zCTOGd0uzi2Ti7hMx0niSG6poFjWvdxPgwjnA88F49d2BbmUuEeMNDi+9wUQlg94V7XFz7TSeP9X1LD82THrBRWAyW1tioEGW4R/yKSiIiIiIiIiIiI+o4PIomIiIiIiIiIiKjv+CCSiIiIiIiIiIiI+m7LTSR04T8K9wP878ndBv4367bQ+yIM8b+xTwo9mcYnsffF0Gi8v8b4NPYldNtCDxZd2K6L/5382gr+t/lK6CuUH8Y+H5aNfQwyDvZAGM5PQm3PHP469u7HnibJ3F6s5bEfpOdhv4fSWnyf1y5gX6n1dfwOu3ZdBbXdV+ExHh7C378m9LY7ehx7N21s8Lk4/YjQbiIQeu0YJo5VW+G8VEwXoJZu4Pu5a9hXaP/IROznRA37l7gXLkJtSOhL0jzxItRazQrUcjuxl+LwXuzVuDGKvdj27t6G+5LFOUj3cJybER74W27YD7VyFee+Cy+WodYux+eX8+eXYZsXTmAP2ab/HaiFOn4H08ZjPJnDYzK3HY/d/3H//VCbgAoNAk3D81438PrmJLGBWjKJfUrbQm8vL8DrWwenEhVo8TnNF9ZKto3roloF9/fZZ85ArTiCPZ/SmVmozW67FWqmVYTa4oVFqHnuOag16jhH5oeEnm0dqUckjn1h+amMRHzsZ4bwOIU6/q7bHvaJy6bxeO6ewTXVw9/+OtRaDVzfJGz2bKMfapTxHO+k8Xrc0rD34bPPnYTaDbdcA7W3nDgBtc2TeI32avF7m/nzFdhmHJcUanQ7zoW+jvdTHaHHbfncOr7WxbVc5Qz2tExt4PtNWPi5lnAvOjyE/eP8JH65toH7t3zxFNSq2UrsZ2MCVxBZhfvWamDPtkATekSauJaplGpQU6UCvt+c0NCXBlI+h33+mgUcb0fP4vp8oojPTZLCM51cAc/VgnAv5kXxzx3KY6/+rovXY7ctXLcbFagNFXHfhobzUKvg1KI6LZyDnz6JayjXwz6M187hPVvKFBYpER530xRyDSJc90HfciE4QUraMBM4ZzaEPBdfyFfoCuuxRArXY8n/wPqGT36IiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy90lPaF5qGHgyz0Pm/BaJja2dGxspJtK4efa2P9UZXLxDR0Lm4r7TWwQPDSC23ktbEo8nMbvOn0bNj3fdwAboOaSUoN7PE4zO+agVshhI/hEDhug2pk9UDOTuF2o4XHfuHg+9nOrjg1g53bgeyWMCtQWjmPT7E2hse3ionCaYY9VtbyCjblpMPlCx91Ix2LUxnOmITTzvtjGBsGrLWzWG/k4Hn5xLh50UlrEIAYng/PNs+tLUBuaPw+1+ho2SLb2j0Bt9399LdSCDE6Q24YKUJs/vga1bFSBmraMjZkff+5ZqD09j6/12zgf2j2NmQtZbBa/eyc2eLdtvBh0uvg7XFzH72U4GGBz06FXQC0axjmdBpPQ81vpOl63HAfP3yjC861Rx7CSwMfzt1ptQK1UjYe6WI4QYpDAtcK3vvV9qDWFhuybZVzzNJs4t05N4BgsVXBO67bxQ+obuJ0jLPC0BDZCr0ghE0EBakpYf3b9nl+kjvNjJIRHBCHWMlkM0ikUMZjIF37/mQKGA5Q7JajRYAqbuG4JhDVPVQjte+rE81CzcnjfccthvOY9tvptqNXa8cSss+fxmuppOI6SNoZMJISohKIwj0Z5nAvqdTwmYYDjsl7BdVvCxprl4vtVHsawQGcUg+yGJnH9NZy9EWprzfhcunoB5/NGEX+J9S6uUYcKON8ETgFqURETztprOGemMXeEBlTk4bic3oEBt2dOnIXavzyJ9zs3HtwJtaGCECwc4vOgSi2+XohCXBcVhPdqNnA7IcdPKSHkpbyJ195cDu9XEkKw1toarpeePIHrm1IJ10G7p3EdMD6Ec5om3Nt2PPy+jW78eDbaeHy7ws1zqOMa0hKCPvMOzvOtFu6H28b5JhKCbraKfxFJREREREREREREfccHkURERERERERERNR3fBBJREREREREREREfccHkURERERERERERNR3Ww6rMU3s5h4E2ITXtoTGxEIAhJnBRpnJAgbYbJvDBr65bDwQ5cxZbCY6NDIJtZYQTFMs4me+8fpb8LU1bD6/uV6GWn4cm6yOj2Pj406AjVJr6hqoTWQwyEHTsNmpCvEYp9L4O9u2O94k2k5gM9V8Ad/++ONHofaDJzCsZnTqAtSuuRq//+e/tAm1lRI2QKXBFBWwaW4gnOONGjbuXlzFpsGhgfNNxcb3i0xsev7cerzrd62ETdBtoRl0Mo0N5Ic0bPzbqeC8FPzgNNS85zFIxk8IARBvejXUlmz8N6fZVgVq2UeegFqijsd4uI3HzinO4udG8WN1roxz5rkI5yk7gb//dBqb46skBnKNTW2D2i/cdAhqHeFaRYPJEOYHXce1QaWCc4smBKKsr2Lggy+sg4Qe4mptNT4fZDJ4nn7ryMNQe+B/fQtqm2Vs0l7vCusxB6/R5xaxcf3yOl7fd23H1+6Z2wu1QMf5sOHivLmwimstJ4/rqlD4d/RON94wvSUEXOk6Bg7VathovdUW1qjpaah1Iwzoq3eF497CUDIaTI1VDMSsLGLwQLOE65GFNQxKsOdxbfCqA7dCbfv1O6B2+rkXYj+7FZxvtBDvE5SJ43nj/CJu18Ex6AzhtdzJFKAWCuuqbgvnr3YHx5aRxPskU8N7jObiMaitncRjkJ/AoKqDN8Xv2eY8DKE5v4IBhatC+I8XNaEWebheStu4b4mrcA7qLuO+0GA6cxLv1QszGDijUjguzy/g/Yn74kWo1T1cx9dqQihTz/ObrhCEXBjG5z6ZLM4F1Qq+f9LBe4J6E+eHpRVMcxodw88dHcfwXmkdeGYd7wurHZzTt43gPdv4EM4Huo7zXMeN13whrSeZwHnPSeP7JzL4DEoXFqRVYQ3ZaOJcZQvhN1vFv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LXfrj0Js3K4UNiGOdGz6bRr4vNNOYhPmye3YRHx4eBxq5eV4k9F0FpuTzsxi49SR4m6opZztUNu2HRu2et1VqGWz2DR6dBTDZYanDkKt1sBGpOmUEAjUXYBavYENSodHZqCmJbEZ6dSeeNPprtBMtSI0pD/yNDZnrXSxWfW+FDZX/p9fPQW1oy9is1M94nNx+qHAx/NS+neTjo81awSbiieS2Mw7Y2Jz4UYNa0EQH29GCoMTNtZxfOSz2JS4aGLTYM3BzzQDbK48WhGOiY5TeDWJ4/K6W6+GmvvoU/i5TWw4PF7Fz7hJ+Fyrgt9jxo9/DyOBc3wohNWEIf5etSbOe80WziOuj420j33tf0Ht6t/8b1CjwdSoC823EzgGwwCbo+fzQmP1DK4hbBubiKcyOC9pRnyt9egjP4Btzp/Btceendh8frKDc+HJc/jatTqOrfU6Bjv4EY57O4Hz4a/86n+H2tIirmVOn8VAnO8/+iR+roFzWkporF+txH+PXSGYx7JwvSj0fFdPPoXrllwG56qWj/t2+vwK1JotnB9pMG2cwuvbwtM4B3VdvE/SR/GcvtjBMX1+Cc/BvbfgvUiyJxjwme9ieEu9jHOBYeO4Tw1jcNXZkxhgEzZwbp2bxrlwaEwInhDWGVEDSiqBw1J127iGMoXbYMvH/Tt15GmoBdX4vtx8B95PZtrCPHoBa4tFIVjroHDfncD9ra/idam+JK2haRDd/srroXbkOK6Tx7fvgtrcNK5v/uU7R6AmrRc0ITgl0uLndEsIvnTXMMw2l8f5QTfweZNh4DXaFIJUulWcRy4u4TwqhWSOTeJznrbwLGWzjMF7tQv4jGRdmNNmJwtQC734HBEp/K7XXYdz/OQUPh9aK+M969IyBvg063itSqRwctU06Rnh1vDJDxEREREREREREfUdH0QSERERERERERFR3/FBJBEREREREREREfUdH0QSERERERERERFR3205rMbzsaGo1CjT97F5aHYIPyY/jM1Dh7LYWL3VwC7EgR7fl5ECNg7dOTcNtcnte6GWMLDBpt/GJp4dvwu1sRH8XkaAzU7XF7GJ6eg0NoVtNLD5cza/DWqTcxjgE2n4+ylv4L6cfOpc7Oeggc2wh4bx9zpWnIfa7CQ21166iMfpwYfx+wcedocPI9wXGkwJVwi9MnG8lT1s8O3i1KJsW2ik28Dz3PZwO7Nn7rOVEGLhYVPiXAqbK6dcrPlCUkJ6BENdOn4LagUL9/fi2fP4ucKcseTiWG07ePC2mbgv48J22vI61LLV+D5L82ikC78bQ7g0afj7GrJxu1IVm0GvPf441A7++n/Fz6CB1BYCBZoNHG+2gdeostD0e7NUgdr/8yUMTHJSGBi1sRkfv8vnX4BtbrnhENQ8HB6q3cbxVigOQe3pU9ikfKmG4TJBhOuMTgdr/+Pv/xFq5RLOkekshnflRkehtryBv5+pCfweVk+Ahqnj9aHTxnWLpuO/yfshzi2VBl6X0nlca1YaeNwDha+lAYVDRllZDHYIhfPN2MDr5UID56DuyKNQc6+fhVoxHx8z2w/sgG1WzmDwjbCEV06hALXcKI7djfMloYbzQ7uD66WkgwE2uTweO9vCHYyEELzAx7WMncWa6eB9zImeIJ6mjyEbNx7E+7pbirhvczqeFAt1/F5rFtb8KobV6ELQEQ2myfFhqA0v4rkqPfuY3oMheNdcdw3UvvXdJ6CWFkJCGz0TR7OLY0Hr4D1WEArBcybOhdJarivcTzopXHuEAW7X7uL7razgemliAu+xzDEM+ilt4DxXauI6JVPDz80k44u8iYlJ2Ga4iL/rHXM47+/Yheub4ydPQm1tFed+KWDINP/9f9fIv4gkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuq7LYfVhCE28QyFBt/pFDb5nRjDZr1zQpiMJoSVBEK/3b3XXB37eWoSm4SmMkIIjRC4kxLCDswUNkPudjGwYfEcNlzevRubs2o67l8ii81DrSx+riE0AF26eBZqbgubpy4ex6aoRhD/XczOJWGb1RP4XlfvwgbJJy/g+3/l69jstlwVwmoCbOYeRkK3fRpImhBMY0fY1NgKhOCYCGue0MC4vILn6p5ZnJeu3TYS+znh4b6tCSFVw0kM2lpr4Tm+EGG4yrTw/SMb56+cgfNy6okXoXZmZRVqtQM4B7WuxxCtoILHKSphMM2sjQ2XgygeDGEb+P1DTWgqr+P3klqvhy6+dijAY5cL8NhlhWbVNJg8D8+3hhBWs7Z6Gmqbmxg444d4zUskt0MtncM5wknFr41zOzFkb3gYG5J7Jp7jjonXbSeFIS9DE9iQ/KnjJ6CmBzjGvQbOtxfPLELNFtYyvnDJd6ZxXC4Kc3VvMI1SSuWd+NjXheuDY+LvJpPF9zq3gOubyMT1rZXAtWE2i8fY17a83KYrXHESx31+As/BpWO4bvGauHauV/HquLiOYRRnV3DArWrx+46JIq4LDk7j3JVM4VzQ2liD2vAs3v/oCRxH7TVcB1Xqwv2ZEOJQHBOCBzN4b5NKpKCmKZxvSiUMfwmTuC9BEF9/LC/gdeRsEo/T/h14fzorzA+5Ms7pJ0v4XV0f5/nNYYbV0A/VQzwX8gU871dLOAa9Doa77duN90nnL+IaYn6lDrVELn6u6glcF+ghzg+h8HdzSScDtUYdPzMSnl85No4Zy8bnN9JzibYQprO2hvdEk1N4nHbtwfXcGSEkZrGE65Tpsfj3nSlgsF8g7G+lhr/DoWEMeZ6awnl+ehIDd06dqkAtnfj330/xLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy92zkw42DxXDX4TGo9PbilCrV7HZZ7WOgQq3HtqH7ze+M/bz8Bg2Q14vYUPjMMDvkEtjE9NOF7+X0rDZ69AYfi9XYYPkrtDYtLp+BmqVGgYvGCY2Xi2tX4Ta7Cw2TM8l8P38np6l1eULsI0uBPg8/jQG2Pw/X8PG/RsV/P1nM9jEtIM5AEph/2YaUJUIG3xnXRyrMwrHqtHBRuOFAE+4IIvNimcNnDdu8OKvrRzDxsLXuEID+Ys4PlYaOAeNb8cGyb9w9RzUisvPQC3oVqA2bWBDdqOE+9cRpn9vGhsTezoOzGQbj2fCx/mmrcUbJ4dCIJkUUhYF+F6hEGwhXsAiPCfKm3ht+fZD34baG/9f/7v0jnSF6w0dUEqpzU0Mo1sVQlNaLZyrNBvH+WROCDUZxebgMzPx0IqdI3hNHcrhnNHovbgrpUwf58y0EGBTSGDNFgJ3lDAGcwZ+15TC4D1daphv4XrJEgZ6s4Hfo9XE/SstnYv9fO74E7BN4OL1YWIC572TZzF4Y2J2P9TSefwOkxNTUKs2cN1GgymxA9fE1Qu49ugqnFtsIegl4eAc0XXxtX6E80ZtI35/MjqE9ytCnpxqtHA/9AIGIOQtHLtWEueHsiUEVAhhdJ0ajt9KCe+TWm38HgkHx2oygeuFbhd/F/lJDBOKNuKf667h3HXuLP4eOl3ct5kx/N1MF3BeukkIwhqqYLDW6ZTwS6OBdHYVw7HSQyNQS3TwXC3VcV2RSOI9htLx3L94AQNsRqfiASvFIXyO0m7htd0Q3t8X1jeZDAbYeEJYpZ0UntV08fvrQijz8DAeu1IJ14vnzy9AbWYG13wZYW24torrjzCM/x7TKRz30u/m2Cm8Z7XP43pkxw4MKhsewUCcCwv4WtvEOX2r+BeRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9t+WwGl3DTTtCY1NL6Ff5xJPYsLNQwOboh245ALXi2F6o1dvxpsYpoWn5aDEPNT3EZqKtOtaOP4f7m0ridx0qYPPi2iZuNz+Pn7FtewFqG1X8HmPj2KB1+wQ2ffe72Dw0VcAGrXpuV+zn5YvYsPWpoxiy8c3vPge1ktBA3hAa1xshblcoYGPmSOH3osGUFM6j2QD/3STdwnPmWhvH/nQTt7OEUJPEGo7V9PJm7OdtVWz8bAuN4XUhuMoWGi4bVdyPoadxPCdDnINXhYbkto+N1pNZbI6vpXD/yjVsTD1nYyPlyW27oOafwUCrhhZ/v0gMpMLfjRhqIwRlCLFiyjfwOL1wEps1//3v/H+gNs+wmoGUsHEsRMLySNO2ds3zhBO9HeD7bTbwDD720CPxfesIDc+HCsJ7YWCDE0gBMdjMfK2O4Ql6G+cWy8X9zWj4XdMaru+iQJgjW/i59Y1NqGWFwJ5WA+fh8vpS7OfS2jnYJmXjOqtRxvAtVwjkatQwrMiw8RgPFzBQ4sKZZ6BGAypdgFKnsg61yXGcl1SI43JsN463pI7j3FqoQM2ux187mcbPzGL+g6ps4vjLjGC4SlLHOcMT1kuJNN48uiaG7KUTuB7plnBx0O0KAX1C/tZGu4KfIdzvOkmc5+1CfF3V1fF7NWq4b0vrOJ+VhDn47CqGfUxMV6A2PIzHJFnn/RT90DMn8H4i5+A80hSuqd5SBWptITi0URPWH0Lw7fpSzz2WhtfKnPBsxTZxneG7eK8jZGsqUxjPmnBD4aTwPkk3hXAwIRAmEu5ZPA8DZ+bn56E2MzMDtZFRnEtLq/FrxPkLeM0oFjH8Rzfx9+WWy1ATlnLqwiJ+h7U1/F2nU9Ld2NbwLyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPqODyKJiIiIiIiIiIio7/ggkoiIiIiIiIiIiPpuy2E1zQ42BbVs7GyZsLCxZ7mCr92zE7sf50xslFrfxJCU7PCO+Db1Kdhm5cKzUGu3MUzBCLF7cUpoRBoIzZXXLmKzT2Vh0+iZGWz+rOkYCjFUkBod16A238JaLosBHZqGv4uLK8djPz/w9fOwzbPP4fcKhCbMhWFs7Bp0hUQJ4dg5aTx3DB+PHQ2mrMLzQ1/H89LZxIbkmoP/vpIoYfBALsTXOglsmK6H8SbE7aYQAmXiuRsKISzTOjYNTuNUoLw6NgPuCE3kNzScv6aEJsyBMFbLITZHL9fw/YoBHpP2CDZHV+PjUPKW4+EOtnTJEcKsdKGmhHAhPYHv52cxCKsZYGPuNeF8osG0f88+qJXKOD5CFwdru43XN2EYKUMIunG7GH7SG8FUq+P1fjXAD1hdx+2SeNqrpoPjoxvhnGFJ4XERfq4urA08H+fbwMWd8Rr4GQeuwyCsro3rxU4b98XvWWsEHm7TEo65kEOh3Db+riMf5+WsMwq119x1D9RGkltebtMVzj2LY3V4VDgJhZI0ZeQDHL/DwhqqnsOxWu3Gx6AnhBhcsxPH5HkXg1TOr+M9VlQsQM0VQhFCIdjCtHDDbhvvJxNDOD9YAa7JukK4RdfHdWBTCOqqCvNwKhPf5317RmCb9WWcR5bP47y0KcxnayH+vi62cA7Kr+D3OhkJkz8NJiFFuOvj85aVVRz7G5t4LZ/bNQ213TN47us4tNTzJ+PzRhDgut5xcOwmbJwMN5s4GSZsIQhXw3VGTXi2kssXoBYEuG7rCM/Dcjm8J5Jeu7yMc+TaKgbCTG/fDrV6Lf47WxHWfI8eeR5qTlYIehWCeRYWMPymUcX5KyGsIa+6eg/Utop/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1Hdb7p4t5B+opI0NRVtNbPA+M40hC4cP3wi1IbFRKDbwHUnHP6NSfgG2WV3D5p/jwzuh1sSeo2q9chGLHjYFLRawkbJmCUERSmh22sTv1e5g89hSGRuFTk7OQG1sYhvUfvCdY1B7+DtnYz8fO4eNYjtd3DdPaFJvJfA5diGDDVBzBQzSuW4fhgOkDeEko4HU0fG8VKMFKJWFf0ox5zA0pXYW54Oqi+Nt2zgGDxi1SuznYTUE23hrq1BLukLwiycEVhg4ZpYn8DOyqSy+dnkBah2hSbkmNELPJfBzJ8bwc6edItRCoYm+vms31Jql+DH2NGHO9IUADKGBtS40fg6kpvcJvC4Np/A7/PLhQ/hiGkgHduL1qFzFJu3jRbwet1p4/lYbODFF1jDUChNYe+zJU7Gfj59agm3aJWF+1HA8n1/GQIlQGEemiQPaEIIHM1kMhVht4/45CWzc3vbw+p7QcL598UwJansmcV8qNdyu0xMk5nr4uqSOjdbDUAgUDPH6YAjrwIyBjfC9Nk5MU0WcH2kwVedx/Np4iVLFGbxFayzidr6P1/xuDs/B9QxeG1O747WzRzdhm0O1a6E2WsAxvpLE+WwjxH2zhFDAZAbXHs0ahmd0fAxwsYRwu0jDe1Fd4WvTQjBGK4H7bLo4l0QqPm+srWM6R9LEfUtl8HdTGMb13bb9OKc36nhd0oSwxFJdSEyjgaRFeA5qwr1TUgjbTZk4V+2bmYCaY+L5ZrgFqJWq8bAlI4HjSnreZAvresPC+THwhXsHAz/DFe7PVlfwPi5SuDO6sF4aGsL5KyUEwkihNtWqEEi4jvesuaH4a6WAq46wNDR8PE61lQrUhDxQFQnz9+REAWqhEMa4VfyLSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivuODSCIiIiIiIiIiIuo7PogkIiIiIiIiIiKivttyWE3GwWbeuvAc0zKxCfHeHdNQy2UnoRbZGGqiAmzM6+TjDTtzw9hhcyR3DmqGhs3HV2v4HdzUGNQyDu5bvboBtcb6OtQunMEGyZsVbGrccbE2OjoLtbt+5U6oqQADdpZXsFnzQk8vVs/FRqymgcfEd7HWEZoh+4bQPFZo9mp4eExmxrARPg0mWwo9mpqC2vK5eag5szi3rLhCI919N0PJFZqIV154IvbzXL0O24wI6S1J3Ey5VWz8+3QBmzCfzOI4esUozqN6G+fHbgWbzadrON5GDZyr/QDHaiqJ+1cP8P0SQkPolhXfrqlLYT1QUotCw+lQ2G48EBrhr+EcbM1gI+n/3x/8Ib4hDSg8x90uji1dx+1Gx0egVq5igEt+SAhosDHoxIjiYyYpjD+/hWuFlLBGs4RG8J0OjsGW8F2zFoYnVIWAmKoQKDE5uR1qQ6NY89o437TaFahlHEwVzAkhEydX4vsSajhPeQrnlkAI0RJyxVRxGMM43vLLb4JaqYJrr9IKNp+nwZQw8bo1JoTgNc/h+Zv0cKxmduPauWzia6MSjrew55rvjeKJf9HDULxtGfzMiQIGBY5M7oKa0vH7BxX8XmtnT0AtWsd9MXy8t7OTeM+WcHBOawn3YvrCBaj5G/gZ3Uq8VjXxPsnegXPGgb24b1oXg9C6qzjfhqu4v2Yef6/DNh5jGkw5C8/LegvXHmPjOH4jD58tRF0cC6aOa41iDu9jXn1zPFj3+IUKbON7+GzBjXD9pAuBem4DX9v18XpsmbhvoRCE5blCsJjw7KtZr0Kt1RIC74TnK6k0BuhVq/h+wyPxuSRXxPmsXqlAzXJxreT5uObRheC9oRH8jEQKj93FRZwzt4p/EUlERERERERERER9xweRRERERERERERE1Hd8EElERERERERERER9xweRRERERERERERE1HdbDqtRGj6zDDRsgDk2gk14ay1sxPnMMyehNjWBzdY1E5uUq058u/HRUdhkaBgbJDe6NailIww2SAfYfN3vYmPPZHof1EJ1BmqPHTkGtXOL2HA4ITRw/m+/djV+bgKP01M/eBZqzzyLzUM3NuNNjaMIm7NmHGwKm0rgqSI1NnVdrL3yxj1Qm8U8ILV797VYpIGUbWLD9JMLOI7CTRzTURmbnmsNrBWTOdzOxObCjhtvdOxvYuhAQmikHAY47x3LpaD2j1YFahcXV6H2/AVMv3njXgyAyHTwuzaEECkniftsHcOQr41FDOXqzGBw0ISHY99Z6Gks72CDey+FTfofa1agttbFptFvv/4GqN160wTUSsLnZq2tX/7oyvY/PvslqLWEUJdcAYNpCkN4Mfv2g9+HWqmGa5lAw3OwUIyvoVK4zFJDRQxAiCJs3C4Fz5lCoEIUYc0QtrNs3JnZWQzU04Xvdd21+/H99CLUjjz9PNQcAxu333HHK6BW2zga+7ndwtAzFQjN4vM4B80mcC07uxPXMoaF67ELi7gOVEJQBg2m/Ha8Z1EFPFfHhRClyK9ALbkX56BUBq/HpaO4djn98ErsZ3sHjoU1ITihGOG+ucEK1ILCDNSchDCpObhecqbxPi4xgnOGreH3ymTxfspbxUCY6im8F60s4D1gtYzzdypfiP08e3AnbJPMYJBMbQNDaDpruJZtb2LIRqOD92xKuE2u5vh3RvRDpdVlqLlCuExHuE/w8fRVrS6ecLaB66UoxOccQ9n4fcdQGj9zuSXcwzSE0FsL55GWj2PcF8IvIw3fr9PB/Y0i3C4KcW7RcLpVbgePUyj8/V8kPF+zTfxujWp8jkin8H4y6eB1pNPF76UJa7SWcNxNA++Jtw3h9Sv08LhvFWcqIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+44NIIiIiIiIiIiIi6js+iCQiIiIiIiIiIqK+23K3/qkpbLS9vlGB2vI6NrZcry5B7cRZbB56263Y1PjAPmxM3GrGGwkvtjdhm66PjX+rdXzuOjKJ75+yMcShWcPmxWaITYOnJoUG6nVsdnry/34aanYGwzMOHpyDWnUdmyuvr2HzYysjNGDf/f9v78+DLUvL+873XXsez9lnnnIeqiqzBqqgBlWBGCUVsiQLWhKY9m1fQlyFQq3r0OUGVljua4EdRNgOG5lQyCERJiRhy90guYWEhJiaQSCGGqgxq7Kycjp58uSZh332PKzh/gFUeO3fI+kAtYumzvcTwR/5sIe11l7vu961Muv5xRuZLl/R3yYMtOlszgh2iFxPaq+8Y0Fqr3+1Npwey+pv0c5ooAQOphFjDC5tXpNav6YNclerOlYzSW3MnPmGBjzdawS4TEXx72iWtBnwjhE01TfmlpW2bsdaTRut+0bT6I0dbXz8lK9j8NhhDbBJH9Vay9dtzm9pc/TxEd3f+bMa1JU5pvP38VvioTZpzdtxX93QMJxrf/YxqWV9bY5fOHun1G77h6+T2lcefUxqN/b0umFECOAAaBjhWH1dorgnnnhOau3eM1IrFPRalvC0EXino+ul3c2BcW4EXHmh1rpdY3BZHdSdjvsw1J3tdHRuPX78uNTSab2W93raHL3V0Xn52GENvcqk9b21zWWpFTP6veNj8TXPiR//SXmNtf8TRghRKqHN4re2dB++8dCjUrPCfy5cWjS2BQfRu/6nX5BaUNBwpOeufl1qT1+5IbW+r2Om3NU5aPrIjNQ698TnpStf1nlkPKHzyNFX6rqg3tI12oVnNQBv94bOe7lx3f/Zm2+S2ui0hkN1nYbptG7oumr9rzVEqnpBtyXo6fidNdZQM7fG569sXt+3Zuz/1tWq1CIj6DNrhIR280ZQhq/vXasZKSM4kBoNvW6FaZ0fCiV9zlMY0Vp5QueRiZLe2zR3NXQzn4m/bnZcP3+vr2PSM0J6QyNwJV3QdVbY0jHTNcIvEwkjHCzSsdU3FoeJhI63Xl+fESVTepxCT7cvm9J963Ti92dtI1xmbEzvO7e29B7L7+k+jI7pM6NsWrfNuBy4m4z5cb/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTUjRX2p72mTUa+uTZNLRhPTfEobj27VtVHoyo42AJ0dide6PW2qvrl+SWr9rgY7uJ42XC4WdF/7oW7btQ0j7KCqjZ5nxzWEZmFWm83v7Glj0/reFanNTOixO3TkmNTOntEAm0tX402d9zZ1X3s93Y5MRhuWvuLWo1J785teL7WpSW1I/9QT35SaG7kupdv1VTgAckkNCqhMa5TIutE0d7OmjcvbfR37NzIaUHE80LF6ohEfD4mqNlJupbTxb2p+QmpbRiCVv6bvLRmNlHtpnUeXA33d0X/401IbP6Jj8NENbSzfshpC+zofnKxUpDZ/6JDUDp+Ih9osfV5DY57ceFZqk+VpqR1L6fXms5/6nNTGP/sVqa15eh0ZTesxcW94UGt42Ssa4TKtjjEujWbubSO0L2uMo2JR1xqNhs5V6Wwx9mejV7rrdHRM9o05rlQqSi2KrLAaoyF5Qv+e2tqWWl2DAY23unpD10tZXQa5171OA/+OnjwhtfVlbcB+ZD4ejJcr6/6PjOhvnTSaxY+U9XWTU3oNymX1OzJp/f0/9scflxoOpuLOOanlmxr0uLSt162+00C9ZE2D7OrXdJ3SaeqcVpyMBxSEnt7D+KGO8d2mvq5u3FJeW9ZwnWee1fCM0bTOj7NLGnZx6IiuocpZnUeDVZ1v3HUjZCKrc/r42Vn93sO6JqltxEO01lY0/LO1q98ZGWEXPWMt50KdRzzPCNFq6X33tT29L8bBlCvqNWpjR4MpPSPIrVLR925ua0jKkSkNsisbIbfjpfg57aX0OcX1Xd22jtO50DfWLZ4R8FRIGIF/TufMTFq/o9PRsWWtg/pdfV3KCKYxP8+4P3EpY9/C+Bf3jM9qtHTezxvrwPq2zo+JjG6HlzPCwSJ9Xd5YG+8X/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zm+oo2vh2b0Aago0Zow9628d4TFamVxrWx541do+HwQNDNXadulpd4vjY7bbbWpBYE2vS9WtMQi2pNGzNnPGP/k+NS290zmoIazU53qnqcrl7dlNotp7QpbDLSBqW1DW0Sfe1i/HWpjJ4ClTFtbHpifFRq99x2VmpRXxusJo3PO3nHSal5JQ2/wcFU62gz5H5CG+SOzGlT8XZBx2WxoA3eM1kd+648KaWd3fjYLxkNnU/PayPztZR+58WnL0htKqPNgO8Z0897NqWTxlpd57mdjIYsTGV0/Gam9dj1zuoYnDECGjyjCfWFz39Vap/54z+Nf2db/+7rSlLnvR89eZPUpjsaGPbFlaeldtFoVj1yVMMupm8+JTUcTKdPHJHa9o5e80fLOo5mp3SstgNdQ0Sero0qZR1vrWZ8TEeerosiT8/xTEbnh/l5DWTa2dHm8JHRfX2vqgEQyaRui+8bixljgbNwaE5quZyOaevvx+dnda5qGU3ZpwfmqsjTz0+Exj6E+lk7WxqGkzFC1J698ITU5mZm9HuNUEUcTM9d0bX51KjOD62Gnr+5pM43nrFe6uV1ndK+ruNydyDA8ubDul6/yekaxTdqe0bI3m5bv7Pm61quYYRtLT2joaM7G7q+u31O11q5thEgmNXjeehmPZ5TMxqIs3ttWWpbF+O1blN/h44RLuQbc1wqpXN60ggWa+mSz11u6X7VnTW34iBKpjVIZGZW1zLdtvGcw7g/2d3TtcHSqj5fOWsEdo4W49+by+l1MQz13iw0Ap4yOb3X6Sb0+h46nYMyeQ3H6hiDK5/TcVnMG6GexjIo8HWbc8b9iW88iuv29L3ZZHxMt42AnHZD92F6VtcjubTOQVvGmmc8rfd/7Z6xvvWNMOh94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfVNHraPHRuTBv63n67BqmYjZQjbVbc9bQBZs/X7+0OvGyrps1Ot1aNpsHhmNTGRnU7csZ2NFvanDRb1qbOVaNB8tKqfl7DaOo8MqLNhS89r/u28wp9b3NXX9dtdqQ2NRr/jsJYRV6TNHoczx1bkNqxO18rtZGiHqf1pUel1g/097ntljv1i3EgPb9yXWq9ljEHzR+W2i133CG19XUNfSq09RwsntKQlDf/8jvjr8lrs/S0Eeb05S/+tdRa594vtfsmNcThrpx+Xr6sY+svl7SZ+3NL2lR9ZkGPU9WYgxp5DWOYuk3DwOZPHJOa98wVqTWz8WbrnYzOt5HRlPn0dEVqY219b3NFGyRv3anb9hPv+n9J7eSrH5AaDqY7bzsttU5Hr9uh00boK2s6t2w19Nqbympogefr6y5fjI+jp85flde4pI6FbE7HbsK4lieMv35ud3Q7rPemjQCulBHg0mxXpZbPaXP4trE27HQ1oKHW1Cb6U1PaCH9paTX25wsXNBzs1Cnjt+5Wpba8tCi1WSO469mnz0ntnKe/T3V9SWo4mJY2NBwpU9LzuZ3RwVq/ouGXU/M6L3UCTU/Y6WiQQasTv3c4NqaBm2NOx26tq591bXVXPz/Q8Tw2rfdOmaIGT2zf0PCEmYqug6amNIxjd1MDNSbndK01fUgDCusXdM7dW65KrdaIrz/aRgiPS2ut7+kx8XytpYw1z1UjCG3L+DdFY8f0mOBgsv7F2cKCjoVMTsPzrNC60On1eKehIXguYQRdDpzSa0Z4XscYC0kjWLfZ0PVD4Ov46BtzYWi8Lp3RRU8pp2uedssInsvofeFIWZ+RNep67Pod3V85UM45NxDYarzCBcb9VGtPrzflMZ1vDx3W+8R5496xt61ha+mQsBoAAAAAAAAA/zfGg0gAAAAAAAAAQ8eDSAAAAAAAAABDt+8ekSNl/e/kg1D/C/WVmv534jnjdelA/5v1KNT/Pr+c115p4VYt/p1N7QN0fVO3d0tbHbhsTp/F3nWL9moJ0rodlSnth5krGP+d/Kr2kDp5c0U/b2RWah2jj9sXvnpearMjur9nTul/2/+a++Zjf97saO+EZkt/m7Ex/Q39UHsdJMKu1MpJPc1297SXTH3tsr739Jukhpe/w2dOSS2X0N5As+M6Zvo97bexdPma1Dyn881aQ/tQXtuMzze9zrq8ZvXGmtSefOoZqfkt7at0dmJeajfPzkgtYXQE+Upax1bC6HOyXdLXjTid046VpqW2+NTzUnvoy1+RWsXoTbJxMr5vW7WavGbxmh7PC6t6PI8YPbRGyhX9zqUN/Y7z2kszmdC+V69+8Kelhpe/uUntp5VI6flRHtV+YpVR7Xf28DN6vqWMHo6urfPN1Hi8R1shp2OhY6ypikX9/JbRy6jX12t0va7jMp3WvnPJhK4zckbvx05Hv3d5eUVq28aibGdP1xXX1rTv7cK89rjqDfS6XFrUef/Jx3XueuD+H5HayWO6fvrj//3/kNripYtSO31c14ZT43qccDDVtnXc17U1owsy+rr5Ke07linoNT/Y1jFdzuh6fzqMj/PxhjGPFLS2tleVWj+lc0ZUNPrh57U/24jRA/vk1BGpnS3rvhacvrc+ottczFaktvW0zksba9qbsrqrfXR7/YH7x7TRp9do/5YM9XeohXovumJkM2zpIXZjhzX/oLSg34GD6dC8rp2TKaN364jRuzWha41OV9cBtaZey7eMfohHBnqy7hlZFkGgn58xniOMjupgkDHpnIuMsdWs6baNFI3vTel80+rp/FWZPqTvNQI39pr6jCiZNJ6beTp+i4X475NK6n7t7lal1jF6A3v6CMZli3qMVzd17eV2dX70x/RefL/4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIaOB5EAAAAAAAAAhm7fYTXptDYs3d5clVp1T5v15rLasPOQ0UjYedp49OT0gtQyvXhjz77TBqNlo0FyOqXNP/sto1n6pjZxTZa1mX2vro3QQ0+bJhdGtbn0ycmC1CZGtBH+letGI+W2hskUxjTcYrW+LbUbnVb8O40G6rVtbR47NqK/zeULj0mtO6Kf94pX/6zUZjxtwtzZ1e3FwXT2zjuklvd0nBfTOo6efORxqc0f0WCDJ67o+E1fXJLab/x//rfYn/eMxsKNlo4Z3wi+aTe1gXzVCOHpzUxJLVsqac3oR764fEVq5z+lY2tv8YbUalcXpXZ9U+egutPAi2PTOgcFjfhxWWvq3JXM6LXg0av6nRfK+t7Mgjazd2N6PJ9a1d+6Z8xVr9ZPwwFw8uhJqZVGNQAgSuh1cHZW55bylI6Fx57W8KpOoONoemDs/+hrNEhleX1HaovXNFSq29XP9/u6vikVKlJLG+PSOZ1wwlDXWp6n68VmQ8dv3wi4Mnrju8aeBvZ0K7p9/sD+fv1vPqvf2dW5ulHVz7/9Nr0Gba1fl1rQb0mtkNelte+0wT0OpvU1XQfk0novkj2pgXLFsgZKVFf0vemanpe3jlekVrtUjf257+n9WjPSc/fqigYg3NAlmstM6DgtG0EMga/jciSjCT75MV0H7S3pesFVdW65vrUotd6u/hYtY05rhzqmvUT8WHmBMRcagRVBWtcoqw39vdbT+m+Fxo7re6dv1lpxlnAsfMuUMe4jY5x7xiUqa7wundfzrdbW+eCxZ/ReJD0QOrNrBRwX9HlLrqD3eg0jjC9lbG9kjMFi3gqW0vFrPZeantPnUp2+7sduXddf1bpuszPem04Za4ggvi1NY/8jY53R941jbIR1urYG+ETdqtSmS/pbjFb0Odd+8S8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNq/L428czktOFws67NLqfK2sRyalqbMHf6Gu7Q7evnBal4w87Ryqy85lhBG3Y2axtSKyS0ienatu6X1cT0wrMa9vCqV8xLbWNZG6FXKtqM9c7bNKCiMqnbcmVxS2rPX9J9m53V43LxUnybTx27VV6TPaoBEDs761Ir5zalNnL0AaltLmkT/amb79bvHTc6XeNAGi1oQ/Z0QqertDF+X/36+6VWM5oBf3HxWal99uFzUhsMx6pn9e9vsiPGHJfUffCNEIdNI8zriXUdb9uRzkH1qgZAfPJzn5Jas6vvzfaM8C6nrzN6tLtkRvdj64bOQdOFidifb5k7Ia/x0toMulrT5vsLJ3ReevM/eqvURkb0eJZyOrdkjKAfHEzFgobLpFJ6zviRnjTptIa/3HbmJqmNjekc8fyFS1Lb3oqf+6WyNjyfnda1wuxMRWp7NZ0fuh1dG3U7Ou59X/e10diV2taWjvtkUueHXFaPpxWmMz87LbVTx7U5/PychgSNDMzDS8+dl9c88sjDUmvu6j6M5HWev+fu26V25fJlqV03wrHSxjyHg8nIrHO1Pb3mHU7qfcJ6TUNdDrd1bE2Geo/VXddAiSt+PCSl5nTd0lg1Avr2dDvKhzXEIFnUUISoZyRSBXqv53V0/uoF+h3djM7BfkrnuXbXCMlJ6/Z1ukawlpHk4ffjtV5Pt8PLG8czr7/XSkqDJ8ojGsyTL2vIRnJEj+eR03qNwMGU8vRali/oeiSX11qzrpNVvaXhl6mMnudr2xpo/PyVeNBeq6vbVhw1wmqKGpCztaXbUa8a48gIUhkt6jjqt3Rft3Y0RKrv9FqeDnWOTGWN+1gjOCeb1XHuIp1LGo34HNnr6RyczegNWyKpx7gT6HtPGOHFdy3o2nhkVPcrbwVQ7xP/IhIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0O07rKZS1gabXkabBnf62nA56evzzlJRm11O5rQBaN5osnnhWrxh525DG42fuvkWqWVL2vxzY6kqtXRWmxLPT1WkVk7sSG15XZuzHp3XZp+Vin7H1rY2Xg0CPe55TxsuT1W0kWuppL/PicPxpqjlojZYbbe0iWm7ptt275nTUqu29ffa2TXCehaWpVaYOSs1HEzT5YrUvJSOhcjoeb50fUlqj5/TEBq3azRHN2bEaKBYNoJPUkYQQdeaXTPahPnxTQ192juqY/fixStSW21oU/VcQY/TdE7n29mMNkieOamBMAu36Tg/PK2BElYoWWks/r1jed2vvhEE1nc6x5XSOsf5aSPAKNSTwmvpdzinczAOptBYZ1hnhzUHecbf5yZCXWscOnRIajPTGriyMhD6dPnyorym3tCG7LkRYz3W1et7q6W1Zl2v+bu72ri919daOqP7n07puMwZAQ2bRtDN8pKGv5x73AgIM8JvCoV4s/VmUxvNz89roOD9998rtbe//eekFhq/69qarm/OPa3Xm+1tDRnEwbS1qfdJmZyuDSb0dHNRX8fC7qoR2lDTsRrUdewnwvg1entHv3T9ut7ruIRuR66t4z5T1xCDelXXXv6e1raM0JiU0+NUnD2pr/N0XPZbGgLoBzrTpyPdt62+vm7Djx+rnhHiF+Z1bm0Z8/fEIQ2XseKt6tsaOJSv6Vx48fyi8W4cRJtbOn7Hx3WsppK6xm739Fzdaes5uL2hc8v07JjWjozH/rxuJHeVSrodzgj6DIwQ5Y1Nvc5uGPs/Oa73K9NTWksbqZaNvarUQmcFcOl78wmtZQs6ftMZHf3ZdrzW8/WYj5T0vi4yggc7xu86WtTf69RhDT3udXVd9f1kf/IvIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DaiZGtXFms6eNQu84MSm1Q+PaiHMmo19dHh2X2vrWitRGC/EGwaWS0bB0VRueLxw6LLVOUhubZka1WXM3qc05/ay+7uplbYY8WdBmzZXbdV9rOzekNjGl4RHrgR67x89dlNr8YW1ketPp+O+TSFeN92kQRTbU339xaVFqS2vPSa04epvUbr/vdqlFPW1MjYPJC7X1bRQa8RFGyERxxAhmmZyQ2pkZbcK7kdWxurIWD6DqtvU8bRlN1V1RwyPKJW20fq2mjZSvnq9KLTCm64VjGrzwxte/WmqvPKXhXfNlnYPKU9qsOCzq/J1NGKEdSaOpsxefN1OdrrwmGepvWDAa4ac7+vt3ejove309TmGg14iQsBp8h7EeidLWOa61REKblOeM8zcIdL2QTunrTp2KzxFTU3o9rhkhVVtVnUdWVzWwwQqhaZd1XI6M6Ljvdnal1mpqLWnMy92WNkf3jDl9YlznoFxaj3HGCAjL5uJN7icmdI7L5jTY4tTpY1JL66XATUxooMTCIQ0jvP2OM1LrGA3+cTD5fStESsdgbV3njJ1Iw0+icQ13CLo6tnpNHUetTj/250ZSt2P6Fg1xCJu6D+u+jvFgQ7c3NAIxUx2dW/eaui3eJb0nnN4zArj6OkdeXtG5r+UbIRNG9ELb0/mmFsV/n5mjev87cVonkqVv6r1er6v7Gkb6+0dG+GtrQ39rL92XGg6mZkfXv3ljDupsadjuXl2fkXgpI5xztyq1o2f0ejkzEAhz8ZKO+7QR6LJb03VGP9QxM2s8v/AiHYNNIxxr6Zqul8ZGdG4tGqmmvpGc2m3rMe51tGZFaeYGgvecc67vx8d0aVTvMYt5I3BoR8PRxozgvaJx//vMihEsbIQRHskvSG2/+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E145WK1ObS2nTz8Ig2MS0VtPbkijYcPpHRJptLq9rUd2tvoAmv0VR+fEwbnvuRNi9OGc05mz1tuNxpaaPxWl2DEra39JhMzer3ri3r9x65RcN0QqPhdNTWpqgJXz+v1dLnzKPleCPXtKdtUttGw+nbX/caqT37yBNSu+uwNkDNFXR7N5aWpBZeW9Tv/clbpYaXPy+rc4Zn9BQPjbCD6TENKJi+7z6p3X/v/VKr1bWB8fnnzsf+vL21La9JGiEW4+O6HYGv4+3xxx6XWsWYb0/fdJPU7rhDQ58mJjSYxxlhLZ7TAxo4o8F5V9/bM34MbS/tXHKg2XoUWSEe+k7faKTcNsI+usa2+X2dq0Mj/KjX00bXOKCMNYRVi4xx7hnBLAmnr0sZrzNOcxcOFKemdDxPTWsowuFIm4WfPHFUaptb2ny+uqvNzKvVqtTKRnCV0bfctVu6Nsqkdf8PHZqTWtKY51NG8/pcTrclPRBgY82F09PazH5yqiQ1L6E/ThDonBEYP6IVYFQq6/oWB1PBuNcJu3rdynh6jvdSOrcUb9HQgvQrKvreZWPsfyM+9nvGvNc27uvaK7r2SmV1Mpid0aCb+jVjDRVogE3+iI7fipExt7asIROXq/p51ZQxjyxogGCU1P3wmsbaaDM+p61c13nPZfV3zef1fs0K65ya0HkpMIJjGx0N4XFVPXdwMM3NajCntW6pN/U82tipSi0I9fxNZvV822voeHvsqcXYn3dqek1te/oMomasKSpGkF/JuHfqdXXsbq/p/vcbet0uGM+IekbwXNpYG3Z8I5jG123J9ozwH6f7Gw0sjkoFDWZN9PV4Hp/T52G3TOn9aSfS9z67qgFG+aQG6WSy+h37xb+IBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0+w6rqWhvStfY1ea6iYw2zyznteHwTEabmLbr2sA4ndFNDMJ4s8/aujZY7XS0yW+3q5/vktrQOJ3R5uNeS7djZVkbqh45ok1hy0ZYy+Lz16R2xytvltpuTZvIt/Y0oOEnflzDZJ567mmpzU7H9+Obj2po0PrartSOLmxI7f43vE5quxtXpZbOaIPsZF8bsSYjbRqNg6nZ1HFZKBiTkBF+YgVAREYxaTRlL5d13njg/nioTb+vzYYHQxKccy6X04b0fk/f+7rXvnZfn2cF4kSR7pdvbF9ohdUYgTP7rbmEHvco0jl9sGa+xgiSscNldL/aRtPoXk8bRFtJR9Y5gYMpNE5x6/zwjBASa1y60Pg7XqNmDCOXGkh/scZ4aNTSkW7bxPio1CYnKvqlRtRUt6uNy1dv1jXK6VMnpLaxvi61dkfHahBo8kQ2o83hyyVdVxaLWhsbCCk8dEgDAMfG9JikMkYgV0/XKNYxsebHTEYb93tWmhcOpPnbb5FawrjX6c/quTWS03VQ1NZztV7XOaKxo9fG9Xr8PmZ0ekpe013S95VbekKnk/qdM77Oj+mcjt3ri3o/ubqt92wjRd3/lY6uF3ezOqanZ/R7C0U9xv2+vreW1+8YPx1fL/oNI3ijqp9fzOp2dFp6H9swwhhHR/SiUfL0ddsXNXgRB9POuobD7jX1etw31udhpPci23XjfiLS9Xm0adQGQqmyRvhWu6rjPmuE64wYoSl5I/QqXdS5deqwhqs09NGHSxlrrV5Wj1PHyLLKF3QtE0R67DLGMcgWNICs7cfHedDSeTkbae3MzYekNmqE8Fzd0Dk4ndWwMd8IY7y+p8/D9ot/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6PYfVjM+J7WpioaLjBpNLAt5bQ4+NaINUOtG4/JjM9o4eau6FvtzN6eNQw+NaefQmWltxLld00akxw/pfq0sayPhibLu60hJ97W2ZzRhrmlT406gz4U7LW0AemXxhtQWThyX2mvv1YbYzXo8/Ob6Df0sf0ubqa488ozURl6nIUSdlobrjE9rM3uX0EapzTU9TjiYzj/7vNSmpvR8G61oI10rcCaZ1KnOCk5JGOkR4UBohRVYYHyUGcTQbWsj5UqlIjUrEMeqWax9MANnDIP7+rex9s16r3WM9/Oa/W6vxdoO69j5vs5zOKCM09ScH4zzMuGMgCfj73iTSV3zRNE+xpGn57ORmeOcsfYKjJAq8/OMv5LOZ3V7jx5ZkNrEmDZ9t+ZIawxa4T+FvDagtwJsskYY2CDrNwyNAIjQac26ZmSzeqAyxrZZAUOBEYCBg6mb1fFRGDFCU9JVqQVdDSEJVnRsVesaWrCzru8dLcTnjWTHuDepGeFxWWMSyuqYuXpuTWrtvn6HP6bjKG3MD9s9HVu5Y/re2aSGPYS+MS5zus25ipRcKqnbMlqOz1UTuUl5zca6hoKsXNrR7ejpMd41AkXazggOmjeuLaP7vr3Hy1whreM+zOlYaPf1+lYpVaQWOX0ucXRB1wFjOQ1tC5rVgYKe46m0hjmlEnqOF9L6+c64vgfGGi1t3Cf6ZZ1HnHEt7xjX8qVdPcZbTT1OUd8IHfV1m/tt472d+LbkEvpZt57QgL6jk/rb7DZ1e8cm9HnbRF5/i6qxbdni378e+9vwLyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADJ0X7SdNAAAAAAAAAAC+D/yLSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg8jv0uLiovM8z/2H//AfXrTP/NKXvuQ8z3Nf+tKXXrTPBPDDj/kGwEuF+QbAS4X5BsBLhfnm/54OxIPIP/zDP3Se57lHH330B70pQ/PRj37UvfKVr3S5XM5NTU25d73rXW5ra+sHvVnAgcN8A+ClchDmG+ec+9jHPubuv/9+VywWXaVScQ888ID7whe+8IPeLOBAYb4B8FI5CPPNQb+fOhAPIl/ufvd3f9e94x3vcOPj4+63fuu33C/90i+5j370o+5Nb3qT63Q6P+jNA/AywnwD4KX0vve9z73jHe9whw8fdr/1W7/l3v/+97s77rjD3bhx4we9aQBeZphvALwUuJ9yLvWD3gB8f3q9nvsX/+JfuNe+9rXuc5/7nPM8zznn3AMPPOB+5md+xv3n//yf3T/9p//0B7yVAF4OmG8AvJS+8Y1vuH/9r/+1+8AHPuDe/e53/6A3B8DLGPMNgJcC91Pfwr+I/LZer+d+8zd/073qVa9yo6Ojrlgsuh/90R91X/ziF//W9/zH//gf3dGjR10+n3eve93r3Llz5+Q1zz33nPv5n/95Nz4+7nK5nLv77rvdJz7xib93e1qtlnvuuef+3n+ee+7cOVetVt3b3/72F05i55z76Z/+aVcqldxHP/rRv/e7ALy0mG8AvFR+WOcb55z74Ac/6GZnZ92v/dqvuSiKXKPR+HvfA+AHh/kGwEvlh3W+4X7qW3gQ+W21Ws19+MMfdq9//evdv/t3/869733vc5ubm+7BBx90TzzxhLz+v/yX/+J++7d/2/3qr/6q+43f+A137tw598Y3vtGtr6+/8JpnnnnG/ciP/Ig7f/68++f//J+7D3zgA65YLLq3vOUt7uMf//jfuT0PP/ywO3PmjPud3/mdv/N13W7XOedcPp+X/y+fz7vHH3/chWG4jyMA4KXCfAPgpfLDOt8459znP/95d88997jf/u3fdlNTU65cLru5ubl9vRfAS4/5BsBL5Yd1vuF+6tuiA+AP/uAPIudc9Mgjj/ytr/F9P+p2u7Ha7u5uNDMzE/3iL/7iC7WrV69Gzrkon89Hy8vLL9QfeuihyDkXvfvd736h9qY3vSm6/fbbo06n80ItDMPogQceiE6fPv1C7Ytf/GLknIu++MUvSu29733v37lvm5ubked50bve9a5Y/bnnnoucc5FzLtra2vo7PwPAi4f5hvkGeKm8nOebnZ2dyDkXTUxMRKVSKfr3//7fRx/72MeiN7/5zZFzLvq93/u9v/P9AF5czDcAXiov5/mG+6lv4V9EflsymXSZTMY551wYhm5nZ8f5vu/uvvtu99hjj8nr3/KWt7iFhYUX/nzvvfe6++67z/3VX/2Vc865nZ0d94UvfMG97W1vc/V63W1tbbmtrS23vb3tHnzwQXfx4sW/s/Hx61//ehdFkXvf+973d2735OSke9vb3uY+8pGPuA984APuypUr7itf+Yp7+9vf7tLptHPOuXa7/d0eDgBDxHwD4KXywzrffOc/i9ze3nYf/vCH3Xve8x73tre9zX3yk590Z8+ede9///u/20MBYMiYbwC8VH5Y5xvup76FB5H/g4985CPujjvucLlczk1MTLipqSn3yU9+0u3t7clrT58+LbWbbrrJLS4uOuecu3TpkouiyP3Lf/kv3dTUVOx/733ve51zzm1sbLwo2/2hD33I/YN/8A/ce97zHnfy5En32te+1t1+++3uZ37mZ5xzzpVKpRflewC8eJhvALxUfhjnm+/8J0vpdNr9/M///Av1RCLh3v72t7vl5WW3tLT0fX8PgBcX8w2Al8oP43zjHPdTzpGa/YI/+qM/cu985zvdW97yFvfP/tk/c9PT0y6ZTLp/82/+jbt8+fJ3/Xnf+e/63/Oe97gHH3zQfM2pU6e+r23+jtHRUffnf/7nbmlpyS0uLrqjR4+6o0ePugceeMBNTU25SqXyonwPgBcH8w2Al8oP63zznSbxlUrFJZPJ2P83PT3tnHNud3fXHTly5Pv+LgAvDuYbAC+VH9b5xjnup5zjQeQL/vt//+/uxIkT7k//9E9j6UXfefo96OLFi1J7/vnn3bFjx5xzzp04ccI5962/WfuxH/uxF3+DDUeOHHnhAlmtVt03v/lN93M/93MvyXcD2D/mGwAvlR/W+SaRSLg777zTPfLII67X673wn18559zKyopzzrmpqamhfT+A7x7zDYCXyg/rfPM/Osj3U/yn2d/2nb/9iqLohdpDDz3kvv71r5uv/7M/+7NYj4CHH37YPfTQQ+4nf/InnXPf+tuz17/+9e5DH/qQW11dlfdvbm7+nduz3/j3v81v/MZvON/33bvf/e7v6f0Ahof5BsBL5Yd5vnn729/ugiBwH/nIR16odTod99/+239zZ8+edfPz83/vZwB46TDfAHip/DDPN5aDdj91oP5F5O///u+7T3/601L/tV/7NffTP/3T7k//9E/dW9/6VvdTP/VT7urVq+73fu/33NmzZ19oYPw/OnXqlHvNa17jfuVXfsV1u133wQ9+0E1MTLhf//Vff+E1/+k//Sf3mte8xt1+++3ul37pl9yJEyfc+vq6+/rXv+6Wl5fdk08++bdu68MPP+ze8IY3uPe+971/b8PTf/tv/607d+6cu++++1wqlXJ/9md/5j772c+697///e6ee+7Z/wEC8KJhvgHwUnm5zje//Mu/7D784Q+7X/3VX3XPP/+8O3LkiPuv//W/umvXrrm/+Iu/2P8BAvCiYb4B8FJ5uc433E8dsAeRv/u7v2vW3/nOd7p3vvOdbm1tzX3oQx9yn/nMZ9zZs2fdH/3RH7k/+ZM/cV/60pfkPf/kn/wTl0gk3Ac/+EG3sbHh7r33Xvc7v/M7bm5u7oXXnD171j366KPuX/2rf+X+8A//0G1vb7vp6Wl31113ud/8zd980fbr9ttvdx//+MfdJz7xCRcEgbvjjjvcH//xH7tf+IVfeNG+A8B3h/kGwEvl5Trf5PN594UvfMH9+q//uvv93/9912w23Z133uk++clP/q39mwAMF/MNgJfKy3W+4X7KOS/6H/8tKwAAAAAAAAAMAT0iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAxdar8v/He/+zV9cyoptUTCerbpGZXIeF1ofJ5+RzqdGvhz2niN1pJJ/axUSrc3Y9Z0HzJJrSWT+l5rH7JZ3b5sTn+OpPEdkXGcXKjfmzR+C2/g48JIPysMjZr1cxnPscNAX9jrB1rr+lLzje/98R+dtb4YL3OX/n//X6lFSR0f/UDPraTxOj/Qc8s6pT1jrmqH8XO1cs+r5DXZY7dKbWu5IbVrm1tS22npWOimRqTWK85JLTWmtVyhIDUv0mPihTovuVCP58q1Z6RW3V2VWmm0JLV0Jj5HjI7oawq5nNQmxnX/xyu6X4Ws7kMxrb9hIWNcq4Ke1BYWRqWGl7+7XjsttaCZldrm9brUMuaaR+ebsTE9p2dmJ6V2Yy0+R2ztNeU1oyP6ncW8jq1OW8/xINnWWqBjptXQucBzGa0ldF89T99byOo479R17kvk9LgHTl+Xzxnrr0J8W7qR7qvr68wftPR4dvu6X9b67q6bTunrSvre88+uSO3C+XXdPrzsPfjjd0ktNNb667s7UvONuaWQ03E5WxmT2kylIrVcLn4v0ui15DWdhs57QaTjKJnU7RjL67yX0unBhUn9vERar9utps6HobEtqZSuebrGfJjP5aWWTut+NJu6nqvX49uSy+i+jo3p7zA3p+s2q5bO6JzZ7+nBC3xjDdnW4/T//t/+jdTw8vffH9FalNCxYDxZcKFnXPON8ZaIjGu58brAmOe+V5Hx+UZJnns4Zz2Vcs4z3mvfJ74EIv2WhDe4/tjflnjGjtnvNB/0GB+o83JkbO/P6a2yiX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WYwaYGAEpVgdMqylmZDXFtLqMGu1Tw4HkFLs5qRUaY4W3WFunr4sCI5jFacNOz/iOyPi8fmS81ze22Xhv2mgInUzoftihMwPHzuhO6xuBM74RCmIF3fi+1no9bWJrNVy2wmpwMHnZotQSkRFMY7zXOn9TxitTRniVMYxccmDs54zkppxurjtyZkprp7XW3O1IbW1Lm8PfqGqwwdaNG1JrZ8tSK48dklqxrAEdYUbnlkJewyNc7qiUOkl9XTEfH9PTE9p8fayoB2+krK9Lp/S4FzI6P46kjSb6YVdqflePsXOE1RxEVqBcq6PnTNIIQOj1dPyOj+t5lDKClfxIG8a3/XjAipfR87nb7+vnhxoyEfWMZvHGqi9lhDOkk8Y131gHJYy5tW9sX9dpLWMERXQ7ug7o9zV0JmUs/LoDc39khAy6jhFmZgQTJY1EDS+hv/XG5obU5kcmpJbO8ff++JbEPiMQRkoa0Na3AiZ9HVtJ495mtKSBVpmB4MzAGUkyGZ0Lm20dk+mchnBai6rAuE8IjECFbMYI2fP1OxrVqm5Lyggx9fTzMsaaxwq6saQHwnQ6vT15zfUb21Lb3VuT2ubWdall8/r7l0t6bRkb1UCcQl7nVhxMXsIIKzGun2FDQyizns4tUXFGaoHTucXz9HqZkGcf33v0ix2tst/EGSNE2Xp+ZT6X2ifrA/f5eXbAzsB795muY4VDW8Gs5nM5k/WsZn/P0iysjAAAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAM3b7DajodbTpqNfRNWgEQZkiM8SVGE2YrTCYYCE6xQlkioyFoxmh8bIW8+EbQjVkz9tXr6+cljIbpaV+3pWs2SDaCF4zjmbJSNoxjEATxYxVawTRGI2k/1AbWgfF7Bf7+Pi8KjUapPBbHt20VtPFxwtdgh3SkQUhZ4xw08h6cZ4TfREYt3Y5/b+/xi/KaXqDbkTmkDZ2LeW0qXhnT183MaqjNbX2dg3d2tBH68mZDakurj0ltd0Xnm+zcEamNFYwALl+bqHcSGjqTHnhvIqHHyYX6u7rAmFuNxsxeqPsQetqkvtvTxvr1qobVzOuW4AAoFDQcqepr8ECpOCK1TlLHR72lY7VlnIN7Df2OYOC6nckaATGBXj9rdT2fy3ndXiutptc35kJjqFq90e0G71rzQ216b4b7+Xrsbr9Jg7Xmj+m+XV7Ziv15Y1s/q93XHTNysFxkHOMg0lqjpUEeG1s7+nmsb/Btga/nTNcIcLTOGWPISICnc86ljACukZIG2UUDwQP5rM6FGeM+xAr4Shd0DWDNI7mCBqn0jLVBs6NzZrdnrAPzus0JY6x6xphutYyQL+PeyboHzmbjQTeJpN7rJKx7wqTua3VvU7ejpu9dWdVty2d0PTY2omtIHEwJI0Mq6up8s3fjKamNu0WplY/eLbVWUWs9KzBKvtaOM/6eGeN+v6x1i/2war8faNT2vX3G/DVYMz9qf8dzv7tlZusYz5ui7+O4szQCAAAAAAAAMHQ8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHT7DqvxfaPjsMEKjrECZ6xGmVbeihV0M6jfN5qgmyE3ug+eGQaj35G2Qm162nB6feOG1LL5jNTm5uakVioZjeWNRqFWIFBkNnfVbR7MnAm0X60LjYbOvtFxOjCCPTzj2XZoBNOYXbi/j/60eHlZymrTc+f0vO/UalKrGN11R5J6DuaMRsq5tI7VpBefJv0tDYhJPdnUbbuyKLUgrSE87tC4fufopNSyYzpnzB89LrWF0zovHbl4QWqXvvms1GrnNYhnO9RG6JnyYamVC9ocvZSL11JRVl5js5orGw2SjVo3NMJD2jp/Wa/DwVQq6znuJXRuqe1pLZXUeaQfGOeWcRnsBxq8kC/EP29kVOeMZl1DHEKdulyUMq7HbR1bVlBGwriWG5l95iIiawQDzh3WwJnl1TWpFYs6Vn/sDSf0a9MaMnF1LV5Lp3VfK/O6bRmn61bn6fVmfVPnr35fD0qtYfw+kfED4UBKGEGPCeMcDIz7Lt94bzqh51YxZwTCdHVtMBjQFxhhMM4KnAy01mxoUF5lRAP6Cnld33Xqu1JLGROO3u3ZoZvWPVFoXPOtucq6j91POGu7o8cuZczBVjha1/ht0mm9tnSM7+h0dS7c2VmXGg4oT0dNFGj4UmNnUWqF1FWpjdQqUsunbtLvTevrBi+rnhly8n0ExFj2+WzBeh6076/Y71v3uWsSTOOcBN3sN6vGOsTW/dR+g26s+67vB3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1YagNKwOjSbnV5DeR0KbfViCMlWnyvYqMzqHWdqTTRqBLqI1d17dWpPbM049L7dJFDYA4c8vNUku5V0lt4uazun0pbY4eebpvbeO3MPo3u1Qm3iQ5aZwCVoCNM7KKPKO/u3WeOKMJt983zh1rg3EgZeY1nKBd00CYbrIutZWuNmFeNUIhEoE2B/daWnONeEDF4UAbsh/uGPNjSuebZl23I6pe1680AqOSIxr20D6uDaLLCxNaa+9J7WxK99U3giKqoe7vjeY5qa3sGPN8Px6mk8rqHBflNZjHN7ore0ZzfNfV4xkYIWKe8ftHfeO3xoFU39I5I+wbgUnGJSowwkoSSb2u9n39jnRaAyUGm5SnksZ2JIyxkNIxU2/pdyaN0K+RUQ2PqNc0cCWRsLZF54x5Yw7KF/Q4HT6iQTyHxzS8qxdoqM31GxoMOFWKH/es8XftC0dGpXb0qH7n2oruv/+EBpV1jfSMvrGG3NnWORgHUz6r4TK9jgaO9I21TN8IqykaYVvjYxoSE/SN0MkwXssYIX4ZI8Sv0dbtbbW0NjqqY8uYvVy3qeu7bEa/d6qin1c3Qgv3rGCxrM63ViCMxTeOXWZg+zJ9vV+zQiGM22TX6+nn931jXWnUJsc16LRc1HMCB1OvYdw7VfVa1mnqmKkXjPPNWIun2stSyxbKUuun4mMmaTyrGQzQ+lZRx1HCMx5hWZ9nLdyMYJbIfNBhfYUR5Gd8Q8JM9zO+19g88xnWQMnI2TKDoPtWmJd1PK3EaM96IGQEgX0fAUP8i0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEPHg0gAAAAAAAAAQ7fvsBqrcaYdTGM08TR6WFrBMamUvtdqJKzNf3Xbkkaz+FRKa72uNld+/uKTUrtw/jGprSxf1m0LNQDh2OEHpFbI6rEbKVr7r8epYzQ13qpXpVZvaqPrXDbeHD6T1mbxmYw2OU5n9HdIG41Yu0bn9iDQ7Y2MBqh932qKioPo/vt+RGpt43zudvR8q3X0dbW6Bq609qpaa2j4zfXHvhL780JLvzPK6Fi4KhXnqiltvj7mG83Se7odIzsa2ND2db/8G9rMPRXoNudCbWCdShmNqfMaZFFK6lidM+a+C8vxUJtrXQ2AOPKKH5Va0mlTeT+tc2Y2rXN6qajv7eQ1rKavpwkOqBsXd6QW+FZzdOPvbs18Nh1vnmeEEXSM1AJv4JpvXI9TOePau6drGecb4QxZ3eDRMQ1ZqNd1fkga4X4LhzUoYWJCPy90Oj+cPKzBMXnjOLWNoJ8jC3NSu3kgJOfKos43z165JrXAaOZ+43rVeJ3+XmMT2pB/fdMI4+uxvsG3FIxrar2t52ponG8dI8AmKujr0gm9NmaMMIJkciA8Iqv3HKGvY7JU0nEfZXS+6RuBcnvGWMgZ81zPCJ5r+DoveYNzpnMuawSB+Uaw1PaOBnQ4IxCoZYTz5DoD6zkjZCM0PqvX11oQ6nsLBd2HwNiJ0Lg/z2T3fXuPl7kd497B6+v5nDDCcbMZI3Cma4ReeRromxrX0NEwGf+OpLGA6jaNbTOeGXlZK5DJCHmxHkIZ4Sqe8W/zPGPOjEJ9nTVHNutGYJYRYprN6X1hOmPs78BNS31bf9dWW+fHickF/c6ChplZIaGRGUJjHbvvHf8iEgAAAAAAAMDQ8SASAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQfRfdbK2O7Nqe0gqESVnBMUYISyatDTsLeW1Gmhx4fJo0mn8afU3djeXnpfbXX/6S1K5d02bmkdEs3WlvUlcytnd0tCK1XF6bwiaNzIpcXo9x32iEnzQawfttDbzYrcWbwOaMEIdsVncsaYRCJJLGtvWtEBqjSb/RwLrbNzpJ40CaHtVm7lExJ7XQ6JBr9AF3ga/zV2C80Mjfchcy8S/xHv6qvCZnjPGx40el1vU0HGprd1tqfmtPam0r4MnT/ZrJ63eMFnRure9tSS005oxWTeeW9d1Nqc2nde6LGvHGyeer5+Q1U2fvllohpQ2yE3n9e7OsEWaWyei502lrqE8mq8cEB1PPuLx7RjBNZDTzTiW1sXrGCN4LA72GZnN6/vrp+HXQSxhBcUkNMQh7eo4nAp0zJqd1fvACDcrIpfS6PVbR7z12VOdlI4vDeZ6ONy/SAx8Y60Vr/Zkz5v6ri/F589lLOnctreq+bm3rfDs9o2EcC0e1trSsDenDUPd1fGxCajiYskaoSyLUmxa/pwsS31j0pI0bHt9YT+/1dN09Nho/pwtpHbzrjarUWm0dk5GxbdY9QWTcO3iRjvt2R7e3Z6TMZTN6PxUEOm/2jZAc6/6x39d5o9nWbdnZjc8bWeP+N22ExiRSRmhQRl8XGMETRePc8X3dtlZLrwc4mEpjRoBj0wiWTRjBNEZgVMcIBC3kdRwljXEeevE5zXiJyxqheDkjRCtI7+/f0hmZX871df5qVDW0sFrdlVq7rfPI5g19brS2vCy1iekpqc1OV6R2aEFfd+6xh2J/vvzcU/KanjHvT8wekdoDr/8JqS2cOCO1KKFzqxX6ZT8j3B/+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE3S00ahZgiNkbhiBdgkEkazYqNpaWgEs2SS8W1pNTRg4dy5x6X2yEOfk9runjYpTxphBwlP9ysKtWGpkcvirAyWntGEereq21KrayN0IyPI5YwwmXJBm8hvbsUbGKeKVvN9bTra62rD2p7R+No3DoD1+6eTRsBQ4rvITsLLW2Q0QjeCFwIjrMWFRrBByhi/1vxlNAL38vFx9MjaurzmkNENuW2EU0SZMamdvfdmqe0Z88gnP6shOZurGnTzrn98l9SOvepWqTV2tQlzZIzzh//yL6X28b/8vNTe+oYfk9pGJ/5bnHjFHfKadFGDHawG1lZD/rYxV2UT+luk9NRxib7xJTiQPKfnlmf8PW0Q6sDMVPT8zRd0HmnV9CTMGCFSXhBfMCR6GobTb2qz+JwRgDC3MC61V7/aCNHq6dqjuqON63MFHVuZsm5LJqtrjyg0ru9GgE02q83RW1Wd59Jd/bxzz8dDtJ5f1N8w4fS3GR3ToK3Z+WmpnX/+stTWNnSBN1aZkZpx+cIB1WxpYFLKWP+mjHWLM+ag0LjmNfv6HWnj/my3Hh+/axt6z7G2pcF2XWP9H/j7O8nHx3VeyhsJV72uXt+7PeOanzHWd5ER7tfTsZrL6dhPGyF4CeOf7TQH1pDpwSRV51xobIcVVhNY95Md43pj3It3nP7+xTxhfPiWkbxeyyPjGUTKuD8JPD0Hi+MapJItjOp3JHSsJqP4GIyMIBkv0PuQ+uaG1Kot3bYbN9aktrOj65ueMQfvbGjgTK2m90l+X8d5v62vy6Z0LZNLnpXaE1eelNrzWZ0jRovxtUvaSI3pG0FCl849KrXq0kWp3Xb7q6R2/J5XS23m0EmppdO65jMfVhn4F5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu3035UkaDjKTR1NGsGZ/nGT0tvIT2yOgZfU6Wr6/G/vzYIw/La1auL0otn9R+AqNGf5BOqPvQN7Y3NPofeEbfuXyuJDUX6VHpGz0bvIx+XmA0G2o3tafC4lXtd3B18Xrsz6Njk/Ka2bkFqZVKI1KzetqkjUfb7WZValavlkbL6IfptGcBXv58X8eC0TbS9UOjz4nVYNDp2Pc8a2zpOLq2Fu858nRNz9OdUWN8GP1nF2a1B8vIxITUfF93dq2mvXBH5nWsZufnpPbhT3xSt2XhmNT6xve2RualduyVb5DaRlb7PgX9+PG8qaz7WjTm0aIxj2SNE6Cf1N8/SBs9mayexPw9HL7NmFpcFOk1Kmn0JJ1dOC619e1VqaXy2lOt2WlK7fTh+Dg6e0r7MV1b3pFaY1bXGZPTOt/4kb43ndM+lFPzRp80Y7xFRv9sz2l/svKozg9bW1Xdvp6u+aanDkvt2QvaN3J5c+C9CV3f+UYfO2Nqdc+d155U64Of75wbn9I5uLGnfZo6LaNZOA6kjtHHK2H0FyyXdExXd3Ss1jp6Ate6OrfkM9rHbXMlfp7vbFblNT1re617QqP3u7Wve1UdR+Wy9rELjX7f1rXc6uGfSRv9Z41au6HHKYqM9aLRh3O8Ep9fR8rG72X0mEtk9Nj1jLWnHxj9+YraSzM0evPX9nS/cDAl+jpnWB1ECzkdv72Gjt9e1zinAz33U6VNqeUnj8T+7BvPW3aNdcFf/clHpLa0tCg16zlKNqvbljfyADptXRtZc0E6rWMw2dP7wnxen6+Ujf7h1TX9fULjWdrU0Xjv6c6efla5rGueUlp/1+DCBak1jV7AXzyveSuzd90rtXseeKPU3EldG1u4EwMAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kZzS6dkQmRdNoI3Aqw8TxtAFrf00ahVxevSO38M0/H/tyra6PmqbI28cwlslJb36lKLTJCESIjAMP3dF8D45AmEtoW1sjYcNWq7ke3q41i19fXpLa2qk1hF69pWM3axnrsz8m0bm9lrCK1Qk6bs1bK2vjaaqS8vaO/69qq7sPq2g2pve+f/89Sw8tfs63n/e62nkef/MynpXbmzGmp3X+fNte9snhValtVDZjZGAidKR3VBryrxvyQTGsD9eO33iS1zISGUfRWdCz8L2//B1I7fcxoBmyEcnlGGke7pQ3jb6xoQMOhkgbM3HLna6W2tr4itXw9HtpR/9zX5TW1i8tSax4+IrXpcd2OwjGtJWe0Vm81pOZZBwUHkmesW0KjSXlpRK9vnV29bpciDQq4804d566ra5ITs/FQl0JGP9+f1HN3u6f70I90XbChJZcr6N9Jj4xog/fIWPQVMnpMchkjmGZdG9znjbDAU7MzUruyrI3gv/Gs7kiYih/PdFJ/h9CYq1strTWbGi40MaXzUqGgIRu72zqnMd3gO0olHTMNIzQl7BkBbX0NPao1NOzgxpqOj5TT76jvxtcBhYyO+2xa76fyuZzUQuPeaaSsNztWgI0VRphIGKGexv5XjXVboaBzy2hR9yMywjJ8IyTHCoRxLj7fjI7qPVGro2uPZld/LyvAJpvU60OxZARwdfWYhMb1AAdTf0/D8/o94zrYXpdaffu61MpZHZezE/qcw2sZQZzdeMBToVSR12wa42NzRbcj62nA0/S0rj1OH9fr9okTJ6S2vaX3P4tXL0vt+g19XdsI8IlCnQ8iIxpxzljz3HJa14uJgUDn0Tv0XjfwdS64+I0npVbf02NcammtfEi349Llp6X2pW09Jj91329IzcK/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOqxkpaSPSREKfY6ZS+pEtowHm6o0lqV24fE5q14zXJV28+XExp985XtBGypGvDZKTRuNQF2pT4sgI3Ikiq8G91qpVbWJaq2tz5Xq9KrV2W49draaN25t1bYhcKmsTdRfFG5neMI7vteu6/4lIf+u0pw1rMxltrpxK6euspta1WlVqOJiyRiP0YkmbqN985mapjRphS8mMft6Fq4tS++wXvyQ1L4iP6cee1sa/K7vaBH5mRpshX21r43bf14bLf/UXH5faxIg2Ka+89S1S+8o3HpZaIm00Pc9qrWCEkqXzeuyu3diWWlTUxsxT6fjcN/PoRXnNzrMaqnVjQZtcr3Z0bq0c1ybP2UNa6x+eltqxV+i5g4MpawQW9I2QuU5fx29lT5t0/+xPzEltdEzPwaUlvZYXyvFrea2la4V+Tq+fhaIxZxrzaDah+7C1o2ujrR0NsyqMadhDcUzXGRsbul+1us6Rrziqc+TSqoaS/fknn5FaOzTmtHR8fTM9o9s7OqnN7J89p+F5Qajvbbf1uHe7ur0ZY23UDbWJPA4m6z4pbYTb+Q1di4eBEabp63uDrq7Z+30d54mBf49SNoJ0IiMAIZ3Sz08k9bwfKY9Ird7QAK6xMX1d0vi868saWrG3p3NkFOoxCQOd05Oe7odnfG/eCL8pFuJzRNcI4TGDeYz7zl5Xw7FyOWN7jfvuwLg/HRvTeQ4H07VLev3sRjoHbW7qWqaY1fO+09FnGt3QCJhZ1dA2V4uvPzI5vc4uX3xOagszs/pZxn1NFOmYOTSvYTUP3K8Bpp22zkte+Gqp/dknPim1x57Q+8KpqUn9PE/XX4WCzlW3nFiQWmpgzk0l9DfsVPXe7PnPfVlqUUnXbXuNLam9ItK58I77fkRqi9/H8xv+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM3RI9p0s93SZubb29ooc+XGVa2taBPThtFwOGOEJ+Sz8eamBaOB/IQR1NLzdXdTu9p01RmNmRORNgNORPq9UaDNpXd3tQFo1mhCPDKiYRxz81NSW76uzZo3VrWWy+mxy2XjtWLBaPbqac0Z4TJ+X/fVS+kx6QV6PPt9rYWRfh4Opn6owSSpjI6ZyWkNJpmb06AIL63vzY9WpBYZYUuVgTCG1HUdpwueBrW8+Q0/I7XL3arUWk1tkHx15YbUvv7YitTuulsbLn/kjzXopjxSkdqP3Kdz3xe/8HmpvfMf/6LUCtMaJjMxOSa1owPz4exzOu97ef37sNW8zg8dI2wsbwR5FC/oe6duOi21UlF/RxxMfWMp5CX0enRkXNcB//j1t0rt1CkNXvjY556W2m5bz9WRw/Gx5WU1cCZtBJ+kjKbiUUdf1zPCaqy1gt/TObjX0Yb01RUdl2lPj92hGQ1PeOZRnQ8efuKC1LqRHoOMEZaRSsa3eXZOrw+bWxqk4/d1feNp/3jXbOh7R4razD+b0utNzzgmOKCMjExjie2aTR1vWSN4b6ys9wmJQNcyQU/HamFgXdUyQjNHR/V+KpnUubDT1XvC3aqGsBjZKi5vBDZYAT7pjI77TEY/MJm07ll0W/pGSEzSuDOeHK9IbTCcZntH7/WqxvFMZfULMsa9mGccqHRa3+v39hdqhIPp0ce/LrWE9fjHuA6OVHS+8et6z+I8vT9Zbej6/OpGPDjHy+jawxnr+rCmoXCNvs4P1ZquW04dPSS156+uS+1vvvIFqY3l9TidOn5Sahvrm1ILjDmy2zECcTydl7vGXBoF8bkvmdZgsWZNP6vW0lrfuNeNjh+X2s6ly1KbO3tWaqfvuV1q+8W/iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAwdPsOq8kb+SWXLmoTy42NDal1O02pTY5ruEOrra/rO208mh8Iesk5I1zG16arfaNRcdIIw/HaRnPlUD/P6IXsQuM78gVtXH7bbdrss+/re32/K7WrV5+X2rVrF6XW7mhj9eRAaEcyoc+iEyk9LUIjmCdhHLtcThvbRsax6/Z0X7vGscPB1DZCEbY3tRH4H/yXP5LaT/3Eg1J73RtfL7WnLmgoQkdPc5cqxMOxjOHhxhI6FgId9q6+oQExlRENUkkWdBylnDZmLqTzUstmNIQlCHWjWx0db7WWzsHFrO5IMqvbYjWw/uZ2vIH1fEp/19kJDZRYKBvzyIy+Lml0lS+1jVAyozl+ir+Hw7e1M3rOHNFsFffzrz8stROHdAx+5TFdB13da0jt9EkNeMp58fCTwFgDzZQ0IKXR1ObmqbyOo55xza9uazhWKqnfkU/r3HLTIT1Q1xc1tPCrX9DQwqUb2pR+dF6/I9HVNUQiYaz7BgJsFq/pNWNzXec4zwjoi4w1j/O01u3pdmSzRnCQ8XE4mNodHdPXVjSMYXNLz9VSWeeblHG/EwYaUJBL6Xk5PR6fg9odnUcKBf3OTkfvTVpN3V4rmca6T9jc0DnDOR00gTHe8lbwghEcGhrXfC+hx86KeanVdf7uDITV+L5+Z7+r+2Dd61aMhWXO+K09I4Qm7el+7VX1fMLBtLaqoXB5Yx1QyOm1fM9YJjf6utYvjRrhxXs6HjIT87E/33HvXfq+RX3Gsfz0E1I7UtFg0vYFXcvkizrfbO3ovdiTT+s9Yd7T+6T52VmphYHO6fWmzml7dT1OlZJunwv1wIcDgYRrNZ2Tnrm+JLW+8bytYDyX2zDmuEJW56+ttUWpveqo3nfvF3diAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1m0ZQxI0bRoPztAYbjIwZXd9DbYDprWizT+e02WnCi292ynicmor0s8oZDVjIZ4ym4p42QzabHFthNaFur9Ef2qWtjY6M5qSBNno2chdcJ9DG0XtNbQQ/NR1v7po2fodkUo9Tp6efHxn7b/SldoHRpT0K9YWJhJHugQNptKyBBXkjNOV//dVfkZrX1xMz6Bvj0hhJJWP+2rq2Gvtza1MbNY+lJqS2vqLhDP0dDbFot7Wp/N71TalVIt02K+ApNOabrDEJFdLa4H22NCm1nKff2+rqHOm1tAnzjY212J97TsNqjp05IrUpq1Fzymjo7Ol+ZctaaxtN9KO+zmk4mJJZXS+cOaphLbcd17XM//FX56X2hcd1jjh7V1FqR0c1jKC3HT8v0+Mj8pq8sZZJBXred4ywu76n4/TIIR2Dm2s6Zz77xLrUnn/WWBuuVaW229TPy06XpeYZjdvDtq5lxkb090kMLEBWrhnBNM6YRyyetR5VVghNv2+sb425CgfT1Wt67/Tc1RWppbN6izZe1utx1lh4p41AuUJBx0wqGb/W5o0gmUZDr9vNptaKRZ2rxsY0kCtlBLNYQS/JhO5XyjPC6IzbqcBYG6Uyum/j4zqnD4bQOOfc3p7OQeVyJf75RnieZ4SC1Ft6fbDCKVLW+iapv3/CuJNP6OUGB1TSeLbQbeg6IAg0XCXV13GeTeq1sdrStUajp/cYx286Ffvz3MkT8pqNGxq4sm4Efba7xjooadzXlXQ7Uim9T0wZ90mT43pPlEjpGOwYIVqD6xHnnGs2NUQq6+n97nZNj/vKRnyttb6ua6+V5WtSa/V0X0eMxy3RhhFgM6KTS/7ys1Kb/fLXpHb0+E36JQb+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WE29ro0zI6MBatIIe4iMhrt+oI09Ox1tlNk3mq13uvFGqZWsduWtjFWk1u3p5xda2sQ03NFGrEY/cudFZjKLlKJAmzBHRkhMKmE0M0/p9o2UtCF0JqOv63T12J255Uzsz76v27GzrU1h61bYg6fv9Y3QHCvUJ1vU36zfsY4yDqJ6VRuD93rafPzzn/mc1E6dOCW1nBF0k+zo51WMrt+NgRCIs7e/Sl4zUdDQBSMHy80fmtHXtRpSu+P4gtRmShWpLRiBDW+884zUillthnz7zdpI+LARYFPM63fsGNeDkZQRBjb4Z0+vGaMjo1LbvKGhPjkjHctqPh8ldP4uGGFbyVCvQTiYRvM6F9xzQseqkX/gHr2gwQblgobQ3HpEA6221mtSW74RP1cPn9BzfG5c57OJypTUNvd0HE2Nz0rt+Ys6B33tq89JLVXQMV4uathD5bCO6Yyvx2lHp3m3s6tN9FO6hHIFIxhitxp/b0JmIOecsW5xxpwRGas+z5i/rL/P941wNCuMEAdTGOn5MVrRNXFkJCGVjMAZa/0/atwneFb4y0BAQ9sIaul2deIrGmv4hQVdtxSLuvZwzrhPMmou1HHpG/c1kRES2m3rGiVtBN4VjPtHzwiOqYUaMFMaWPcFxn1tqaRrw65xXxsZ6xsrEKhnHM8o1Pf6/f2FbeHlL2Hc5wehsZgxwlq6TT1Xx2Y0gCqX12t+sq6ft7O0GPvzjbyuKTIdHUc3H9X7um6g43R6TOfHE0eP6nbUNOhlrKLvnZjU9U2tqXOBFeibN+ZqZxz3Vkufr3zjiXNSu7K4HPvziDHEM7u6qJooGXNwyngeltbj2avqemxtd1lq5z76x1J74P/5Tv1eAysjAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEO377Aav68NjDtdbaTbtxqgGg2Sq9vbUqvXtAFoq6ffEfjxRu07gX5+2FuRWrutDdm32tqwM3D6eZEVTGM0CLaaBq+trRmfp68LAu08agV01Pe0wf2JOW0SvVfX47m3tRP7c6GsjZQt2Zw2w/YSug/ttjaZ9Y1DVzIaXe8ZTVZxQBnNx5PGeZRLa6PjotEg+LGHH5Hapae1GfD4aEVq5YFTurujzXszOT3v7x/XsIvpnIZMtJ54Wmr/ONSpuVQ3Gpz/lYb1/OyGjvus0/nbbT0qpRkjMGutcF3fOzmt22IENKQGAiW8LaPJ80MXpFZbXZdapqjN9/2S/tZJo/m11TO6uqu/j3Ma9IOXv5+454jUbjp5SGqf/vIlqfXbeh388ddqIMyCZtW48w29rkYD12QvbUx8Ts9x32jcvnBYm7Q/d17XXl/58rNSmzpUkdqcEZzTDXVe2tk1gl46utZoJXVNVm1XpXazEUBWMgI6rl0e+H0SekwizwgPNAJsCkUNugmMMMJOQ9dogwEgzjnnzKAbHESeced1622npba+otdB674jaZxbpbIGFOzs7Egtm42Po4kJnahSDb1PShnhdNa9TsIYg2lj3WbV+j1dt3hG0GdghZq29N6xUtZ9u35Ngxd2dzWws1jQe5bpqfg6qOXrOjCf0zkzZ9xPNTo6FwaBvrde19dZ4ae+bwRm4UA6lNH7jvnpeam1y7rG7qd08XzrrTpXzR7SNdQ9ns5BhYH1+dh4RV5TMQI381kjkNcItYlCXS9NTet3rK7qeH7HL7xVavNzupZbvrEktdJTul4wHvOYAVztlt5T7hqhwYko/t6+8Yynf+OG1MYqGi5kBWaNGGueateYb+q6D8GmzqP7xcoIAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6zmyhUNFFhf0xCDfqANcgOjY2ejqk02rRCWnqdNMf2BIIvarjZgTvpGM00rDEYqzjmjCbPn6z4Y/c1daDQNthSNsJaM0VDWavR89JAG09xx8rjUrKCbmcPxhrLFMW1iWjMapz70yENS+5uvfElqfaMBamD8FieP3SQ1v2v+GjiAJsfHpWaNrXf+L/8PqXlJHb9//if/p9SuPve81C47PVddLz7266tb8pJ5I0nnJw7dqtvmawP1qKXBWiM9HUfZtjGn5bWRdFanUZfL6XzTm9BG0gkj6MUb0e9IzU5JzXf6+/RT8Tmtl9aG0/6oNsjOzU9KzS1ouExmYlRq3kVt1pwxGl07K1ACB9LpaQ0F+PTD2nz7k9/QsX9iXN87Oa5Lq16g17dyXt/rufiYyST1fY2uhkLMHjkptXPPrkrt//obDce6+W5tNJ8paiP4WrMqtZaRg1Xb0202cl5cp6PrxUJex2omr9uytW0ENIQDgTjGsbNyB6NI11nZrDZuN/Jx3HpPw39Sxgt7XatzPQ6ijq+DJoz0mn/k8JzUenv6Os+zAjb1fMvl9ZzOD9RSRmjM1KSuAfZqutDY3NiQmjO2LZnUa6+1D/2uHqfJcb1nKRuhdWnj3mlsVAOzttZ1Lt3b1TE9P6sBfRNj8fVHyggW6xhBr05zKFwqpdeMkRHd3lxGf8NWU8OEcjkjoQ8H0l0zx6R2/MQJqdUWNJglN6Vr8ZGirrvLJb3HOH5M56/x0fh9h/WMw5oz9sua91ZWdC03O6fjeX5eA3xKJb1PGjfuOz71qU9JbXtLn03tN6i4mNXjcuhUfJ3W2dGJJLICPI3gqowxB6eM4x6Udb4pN/XY9dPf+/Mb/kUkAAAAAAAAgKHjQSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHbd1jNN77+Zam1O0bDZaPHaBBpU3HPeGGvqw01o7Q+K+0NNPYMA21knvL0fWFCvzM0+odHRuBOOqGNPaOk7pfVdHRiYkJqJ09qY/luV5tQDzaSds65hHE8Lz35hG6fEe4xORFvPDsxq81pm8Z2PPzQ16W2sa6N8INQf4t+T49J2mjMPD2pxwl4gXHeh30dq8mE0Wx9QsNV5o1zf3lTmxrX0/F5LjurARPFXW0WHl65IrXyhDYf7/S1ya9fNhq8G3NLuKnNkHuVQ/p5I9pIOkjpd/hOx+/68lWp1eb0eE6WdfymJ+Pzzcydd8prcjed0u2oaMPlT517TGp7G7oPs4vawPmNr7lXaiPT2nAZB9Mjz+o587UnNIzvyJw2bv/xe7Qhe5TQMb2zWpVawum6oujF56+opdfK4oKO0+cv6Xzz+c9o7cTtur1BqAF121UN1moa/cgbNd0WK5il3dbP63eMEEBfg17OP6OBEv2mHrswqgxUjL9rN0JBrLCanW0NVExn9BqUyeh7M1ljfWuEB+JgihJ63nd6DanljeC9iYoG+Vn3CcbU4kpGSOag3R1dUzQ7xny2W5XawiFde8wa66yLFy9KbWtLg8AmjGAa636q29G5ZdQIeikW9XiePav3YqdPaXjX/LzOm8mBcBorY2N3V68tW9u6r3OH9ThVKrr/KZ1uXT+t62DPfe+BH3h5aa/omF48fFpqS9c1bCq8tq61vo6jm07o2D9+VAMmEwMhKVZ4izNz3ayi3hNt7+jYahghexMTOrayWZ0frZBUMxzMeJjUbutaI5PR+8dcTo/nA/e+SmpjlXhwTscI+O3VdS2329iTWrVWldrerr6u29JjUt/W1wVZ3Yf94l9EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABi6fYfV+H1tBry9pU1M+6E2D/WS2jU5ZTRhtpJuMlFGX5eINw/1jIalvtFg1EXGd0b6nZ7VEzVhPbM1wjOcEbhjNGNtNjXcotPRJqOBsR+dpja19o2N7oe6LYvXFmN/zpW1obN17Not3V7PaB7rGYEiCWPbImPbIuO9wAs8nUe6fT1ndrc3pTY6pY3Ax+a0IfnipgZUZAaCr44dOS6vOR5qcFP5um5H2hhvqa6GM/Tq21Jzob7Onz0qtQuT2iA6KGj4y5236X5Mjer27Z0/L7X11RtSmxzTJvoT5Ur8zz295ATG79VyRqiPMd/e2K1JrVTR5sregjaa7wf8PRy+5fHLeu3t+BoAcddNel7eepO+bruqc1XWuA5mslorlOLjvG1cK2t9Pce/8PnnpHb6jJ73aaOp+PqejqOWsW7ZrhuBKz1dQwU9I2Swa4y3rrF2C3SO8EINRpwcMRZqAyFBW3X9/CDU7YhCI9nDeF3oaVJEIqnb4ftGk3ojwAYHU9/XMe0boXV7HQ06mZjVwKxMVtcGrbZxj2EEUVar1dif02mdH7ykjkkj+9PNGAFwt916q9SCvo6jbEa/97WvebXUVm/o2uOZZ7SWN0KkEp7O1aeMYJqsESixs6NrsquLl2N/3t7T++Rnn39eav1A57OTN2lojt835se2Ec5q3E8njftuHFDH9J7gohEet7Ot841nBP/2jUDQiXEdW4H/99/TW8Evf8srpWKFzJVLJal1jDAr6/OsbbFqBeN+qlQakVo2q6EuRSMwzAqyu3RVgwY7nficXm/oHN9o6POhRlP3v5jTOS5h3GPvNjS0rzhekVreuC/eL+7EAAAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqEp42zQ1DbXzcMkJYAqPpecpoiGw1CDZ6OrvAjzf2DCN9USplNVfWZqqe0+acvq/NgLtGP9XQCojp6nsXFxelNjo6KrWs0XC639d9aza1eWiqqPuWS2pj/Xwp3ig1ZTSh7na1sWmvo82Vw8D4cYxACSuspt3ShqqtpgYG4ICyxpvRHb1rNPPeMhouJ9M6tyRLGq6yW9PzspKPj5mFW++S14wWdKz1Qm1ovHdiQWqZvL5utKLjqDx9QmpPtHS++T8feVRqya6O1VuOz0vNyvjKj0xIzWq4HDndltZmvMH7xacv6Psm9djtHjFCNlIaXJZP6byXnteG+a0JnW9bqztSO3tGG8bj5W9nT9cy02W9Hh+fp27i9QAAISNJREFU0/MonTGWUZFeQ48uTEmt19H1Ur0VD15I5LT5+mc+pQFPhXFjTTGi2/aNRy5KrTSh47ljhAc221pLBMYaqqsTSWSEQxlLSOeH2rj9+Jxu3y+/4xVS63Xj65Q/+OjT8pqlbd1eax2YMGpJq5m9EdrXM9Ztuaxeg3AwZVN6/5MO9fpWKeq1d2HhsNQaRjDNdlWvb1bwQm/gJitrhBiMj49JLWPcY/WMUMuN5WWpFYwglTNHdb+mRnTuy3gaPJjP6eeFoa5HSll9nRUIurikoYXPP3dJasur8cDW5R0Np2i19L7mtltPSa2Y1X0NOsa9rRGcWrLWY8Z9Nw6mhfteJbWlSxqw2TPC2DLG9T00rtGR04t50ni+IJ9lnKZWfo0VaRMab67u6RjMGPd/6bSu75w1ZowvtsJqcvn9Xd+t4BwrvPhrDz8ktVotHioYGftfLutc0Gzq85u7br9TaofmdG69ek1Dc04e02CahVmdv/eLfxEJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj2HVYTGYEw5ZI27Eyn9dlmu6uNMr2ENkDNZKym59oANRHGAyoGw2ucc843Um48/XiXTGrT6H5fG7YmUkajdf04sxn0U09rw/StrS2pZYywmmxGa4mk0TA9oVsTBhrkceJEvEly1Qjn2N2tSm1l5YbUPKOxq9kg2WgGfX3pstTaLaNzPQ4mI+DIOO2dC7Txb9DSZsVLq4tS297ckNrUpIakTEwMhEzkR+Q1R372Qamd+V/1s/ptHW/JtE5Mqbbu15bTMIonvvyI1JZ9bY6eGWhy7JxzX/jIH0rt3r42zL/5dT8mtSOvMAJ7JjR0ppuOh8lcNQJtvlrX4I3Hv/k1qZ04q+EU3V39rWfveaXUWsY1yBnzIw6mXELPywdu02CpnBGot1vTZVQY6pjerValNjM+KbXB9cylVR27tZ6e92Fd12PdGzrf9I3Qvk5P10Gdro6PbtNYZ4T6Os8IukkatVRorL98nfunR3XOfdPd2ljd68bDsW5cOSKv+chnNYjCCpeJjLCaKND9TyV0jWYFZViBODiYRkoaTNJv6zk4Pq/zwz/82bdILfD0vPzEX3xCaovXFqU2NhYP7bPW8HtGAERkXD/XVlek5vn6uoIR7FAs6Dja3liTmkvpOJqZ0YC6dlfXQZub+nnnntcwhuXldamt3ND1Yq0RX6f5xv3fqZPHpHbmllukljRCrwLjPjaV0+Nk3e9aga04mKodHYPFjK4D6jldQzjjup0O9JmLdXVbM55zRGF8LV4x5sJE3jjHjcDNv/jLv5DaZz7zaamNGWFbv/jOd0ntljNnpGY96YmM8RYaIcfLy4tSKxZ17ssk9b4rnTDCkDvxoOKdXQ25SYQaitgxti0wnhnlyvr7j4zpfWe5qL9ZKm3doO8P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtv5utp81OJya0iWUUaVNxq5Fus6WNhLttDSvp9LUpaq8Tb3YaGGEogdFAPZnR5p/jk9p000rF8Iykm0KhKLUTx09KbWdnR2pXjabRvZ4RuhPosUsYDZEzWW126hsNSp89fyH254WFQ/v6/K1Nbd7szGAaPU5epJ/XMcI4+sZvjYOpZzRCD/oaOFLd1fPy8nMaDlUe1WCD173mfqldPaTN4bc3q/HtWNPwiEZRmytf3q1LLfXEeamF169KrfLMstSeOXmr1FZndA5+44++SWpXHn9MasvPPSG1ubQ2K860dH9Lgc4tF557Rmrf+NKXYn9+8qnH5TX9vP59WL+lv3V2Sq8tKesSFuo8UjfCemYnZ/S9OJCOHJ2QWs9Y89Rqet3Kp3T90dPljWs19HX9voZAjI3Ez/OFMb1+3nOHjo8vftMIZ9jRZuajU9osvdPRMdNqGM3HAx2rRs9zM5glMtZpzgpo8KzAQ/0t2nu6b8cq8c/7n+4/Lq954mldjz18RUN9oowxtxjhaM7pnBn1jEbzgRGYhQOpmNOgiJqxJl44pIFZp2+5WWrlsYrUxqY0tOBrX/2q1J566qnYn61gyvpeVWqjRsiEFUy5saEhL9mMEVJV0bC7TE7va7Z2dfzu1nUe3Wvo8bx8XcN01je3pdYygjNDI6hqdCR+DI4t6Jri0JzWMkbgjt8z1jzGcbLuu6yAIcJq8B1t4znCkSM6t8xMj0ut2zXuy43nK6Mj+jzk8195WGpjqfjnvWFet232Vg2mfHJD1wWf+tSnpFav61r/4sWLUpua0Hu9Yl7nm5UVnTOWljTwbntT56V8TtdajbquNfb2tJbJGM9NBkI3fWNOMp7KuISxpkomjJoxZ+Syeq1aOKzPjb4f/ItIAAAAAAAAAEPHg0gAAAAAAAAAQ8eDSAAAAAAAAABDx4NIAAAAAAAAAEP3XXSzNZqKGw1QPSPoJJ/Xhp2FvDbA7Hf181JJfVba6cSDIUKjQXK3q82GXUob/06Oj0lte3tXasWiNlIOfG3YOlLWxuW9rjaR397Sbc6kjSbtRmiDFWDT7+m+pYz93d2JN2bOZTVkw/q9At9qPq/bGwTadNXajqSnjW3TCT3GOJiuXLkitdDXMd1s6PhotLRJeSKtDYyTaT0v02mdEv2BNIYRIzQl7OlccP2cNkie/eYFqXmrl6W2t6v7cH1KmyvvasndOv0j+rrxValdzj4lteWuNm5PP/V1/ZLrGgh0fvF5qfV68d9sdFTnx1njeBayumNTRshGPq8N87dXtbl0ypirkkagBg6mdFbPjyevaGjDVFmbdB+b1TCCYlE/by+roQ03VrZ0W7x4yEQxr9foY9PTum2jOsb3VnXtsberIS9BX+evqKdrI6sTesJZIXNGE3UrZMHIw0mltLi8rGuyx57Q2sT98W0uF3UeffBePXZL23p9WO1oIFcqr2uUdsdYa/ra9D4grAbflkoY4ZdFXRMfP6Xhl9mC3jtFxuedvuWs1GbmNKAiV4hfQ7/0pS/Ka0ZLum0zRhhOY0/H0fK1JalZwS8pcz2mtc3NTak99pSuZTZ29F6k2tXvNXJIXbGgc+7RQ0ekNjcTPwY5Yz5LRPqdOSuExpj3PCsQ1AiesOZWKyQWB5MVwtLpapim8QjChaFe3zxjvsnldMxsrWuIlOfH54h6UueMwpSG5lx8Ttctd999t36+sUh59tlnpfbkk09IrdPW76hWdfus+86EMZFMjet9zNWGfl7beF6Vyui9jZeMzxujFT3m2aLeY7V3da1kTFUundbzpGoE6UTGwi2b0fuz/eJfRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYun2H1QSBNjPvdPbXfNsKkykZjZmzJW2yWShoA8wwjG9Lv69NxXtGrWu9rqPNSb1QXzdZGZXa0vVlqZ1/RkMcWkZ4Rq2ujWKLRpNRv6fN5stlbZh++qabpLZsbF9+ICRoYkz3K5nUpqspI4RofEIbm6Yy2nS1XK5ILePNSu38+atSw8EUdjUAoWaOIx2rV65raEP76qLU0jmdW8p5nZcKhfjf1/gF3bYLW+tSa1zRYJr7RvU7FyZvldqlrO7XJ68sSq29rg3JdzZ13DeMxtRrkc4tyZJeEsK2hmxkOnqMp419q4zHgzyKxnxeMYLLRko6LxXGNDyjaYQEpXt6THp1bbjcM+YlHExJ4+9k620d55sNvb5dXdWAp3xRr6F33HlKal3j/N3ejs9zvTFt3N5o6tidm9Lr8U5N58xcsSK19Q0NzfF9I9jB0++IPJ2rrLCa/Uqn9L21lh6nv/zqdX1dIj7P7W5r4NBNJ05I7Vf/0R1S++unNBTjqes6j2xsGCE8kTaRd8nv/Zjg5SWX0XGUN9YjR48fk1pkBHhaASaeEZ4wPqlBTW/48Qdjf97a3pHXXDqv9zV14x5mfX1NatVqVWqzRtiWdU9ofcfGpq5HusZ6MZvRMbhQ0Xus8YmK1MbGNEBvcmpCav1u/B44aOs98dSkhvqEvs6ZuYyuvYzbLhcaQRFhaIXJ6pyJg2nxigZnPve8hkta913FvI6ZdFbnqtEJHR+5gr43NXCaX0tqgNYzz+o8cv2q1qZm5qXW7uja6PjRo1Kr1zQ0ZmPLCOtM6TyyU9XwF7+v9x2BEbBqhfpMTuoaL2sECbsofjw9zwizinQ70oMH3Tm3sa73rEGgc0u7rfvw2JMa/pNK6vb+2E89KDUL/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ7btH5H4lElavEv3vzvs97UXQD7W/Riqtmzj437tnM9qHIHL63853uvrfulere/r5xuPZleVFqdWN9zbq+uYg0m2x9r+X0uOUSOh7iyXtqTY/pz0Xq7vaxyCTjfemOXLkkLxmY0N7I/VTul9zM9rX4Mwdk1Kzfp9rF7V/yeJVoycCDqSi0atxY0fH28aW1hIF7e8zP1GSWqGo59tIRsdWbSXeZ+zLX/trec3Dz5zX9y0tSe3qPfdK7Sfue4PUeqNpqW1f1d6PnaUVqX2tqNtXq+lxGi3r/s+OG/2MCnpMPKfzVyGhPamymXgtmdL9KuX095oe0flsr6nfGWrJ7dW0h1S9rn1jMuM6V+FgSqb13M0bvZg7kfZG8oy+yMlURWrnzmvvnrlDp6W2W3sy9ufFVV0XXVvRc3xsSq/Rd5/RcRQZvXxGi9qz7NJV7Z/tG/2HjKWWWbPWgZYoq70Uo7zOEV+9of2clh6Nr13Snv42o/P6W99/i37+TWO6Rnl8Udejf/Il49ht6nGKki/6chs/pDLGufCKV75KakeOHZOa1Wk0MsaWZ/QF8wN99+xcvM/aL/yjd8hrPv3n+llf/NxnpWb16z9+/LjUJif03sFL6D5Y65ZcTtcjZ8/eIrWxce1Zl05Y9xjG/Zmv64VuS3vKdQa2L5/Xa0Yhr9eMbEbXQcYlyPWM+0SX0P6iCaOvPz0i8R2XLmo/yO1N7fOeM+alblv7IgeRziM3Vq5ILWv0f08O9CF89HEd9x3j8286elJqlTEdHxNGT21rLORy+lxid1f3NZnUdVB1T/voZowxfffdd0ptelrnJb9rjFWjx69z8XVFFOj++5HxDM7ptvX7Ou9V93Rf08bzm41tnZeNqX/f+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu392zrSbEVjCNVbMahfpGgEvGaFZstetMDzTmtRr/esZ25DO6u+WCNi8OjH7stZo2Mc2n9Xu7vh6nZlcbH3ecfkm/p6/zPD12CaNd9fqaNp7ttFu6fZ34dzTrdXlNu6UNS7u9qtSabd3/889oE1PrV2zWjFMvqduCg6naNcZRW4MHmnUNLDh+7LDURic0mGRlRcNk/uaxh6QWNKqxP2+vrclrVpcWpdb2dYx/7qnHpfb08lWp3XXXnVIbndRG6CuX16UWGU2j56fGpDY2PiO1nKeN0Asjo1LzjLkvndL3un78Nyul9TXlvH5+5On8XTPms05HmzUHXSPgq6jhR/7+sjNwAPjGX8nWWzoHXbumQW5vPHNMaqvrGhT3hW9ow/g3P3iX1DJj8bnqsUcuyWtGijqOijmdH7ORtfbS1911dk5qezWdH1e29L0JY85w7nsfXEkjoC9nhHfVOsY6qBP/IXMJDd965FldZ82Fuh65ZVL366fu0euI39P3/u5fabBYzRHGh2+ZmtJr7y1nz0rNCnAJjTFtvi60AhB0ohscRdMD4TXOOffWn/9HUpsx9uGhv/kbqWVTuv4PA51bGx1d/69XdX0XeDo/TE/ruJyd0TmtVzcCS3c1eCLy9XVzk7qGWpiJB09sbmugTc8ISS0ZATbW72qF+1k137g/H6/ougoH09qqrkf8vq6nU1m95mWzGlaSMJ7fJJLGIsq4B6o14+F7KeN6n8rotdIPrQQ8nVsuXdb7n/GJitTSWb1uNzd1Djp6WAN9p8d1bE1OagjNzWdukpr1vCphrZeMfRuc5j0jaKtnHHPjsZRLJnU7rO/s+zovBYEV8GWlFu4P/yISAAAAAAAAwNDxIBIAAAAAAADA0PEgEgAAAAAAAMDQ8SASAAAAAAAAwNDtO6wmn89LLQy1WbgVVpNMagPMrFXbZ/hNcqCxp2c0+kxZ7zMCFjyj0brf1/3KGNtbLmgTVz/S93b62qy40dRAmEZDA3FqNQ1/6Xb0vTtb2kS/Yby3WIiHNuxsb+nnt7WZe884Jteu6HvbRsPpvNGYOZ3S8Agj0wgHVKPVkVrBGG/Hjmkj4a7ml7haVZs1d43x5owm6ovLi7E/b1V1rI2N6LbNlUaklsvpWBgvaWPmybzWRhZ0rkpkdFyOjuj3lvM692US+t6op7W00Ue5WNZmzbl8SWr9ZvwYp4ym6ilj/rbm/bJxDZoYqUitu2PMQQV9rzOa3uNg2tzRa2XSaNy9uaXnViIcl9posSq1s7dpM/NHnnxOaqVS/No4PaOfnwo0FGEko+Not6rjbWSsIrW0Md+k07o89IygvMj8+2xjbBkN7s1Im44RxpHVNUnG6evCVnye22vqaz5/XsN/Rv1TUku/Sue4lK/XkTtv1XCPE0/p7/P0Dd0HHEwjFR3T4+M6P/h9XczU9vQcTBshcNb1WNIOnHNBFK+FxjgdnZiV2pve/DO6HUaQyt98/rNSa7d1Hr20puFY129o6NORQwtSyxiho76xlusbtU5P15qlsq7nSiMaFjg4z01E1pypx7zV0rmgXNbP94zfwgqmsWbgY0eOGFUcRIV8RWqtUMfgxsaG1NJpvWfJZnW8eZ6e55mMFWQX50dGSLHxbCkIdC608mvqTb2vm5zWudW4xXCnTh+V2pmbbpZawZhvS0YgZiKp84Hf0zVJZDw3skb14H1RZMwPVjh0FOox9szPN0Kkk8YqzXgelk5+7w9w+BeRAAAAAAAAAIaOB5EAAAAAAAAAho4HkQAAAAAAAACGjgeRAAAAAAAAAIZu32E1WaNxud1q3GhI7hnBMVanUOPjEkajzEQy/l6jR6pLGE2ZE8YLrWaf1l5ljP1Pp7TW6BhN1T1t4Dye0Uboo0Yz5HGjsXy9pk1m93a3pdbvGg2Rpydjfw59bQDbbGjj/qbRXLnb0/da4T9eVpu4utBodqqHCQdU2PelZo3LvNE0OemMQJSynpetPf3E8ZK+rjkVH6vFnDYWPnRIm7lPjU/pthnzXiatc1Ai0P3PGPPNTYe1cXs6o82lXahj1W/pPGI1Vh+zwm/GK/p5uskuGpiHMxndh7EJ/SwrACPy9bj7vjZIzleM7Z3QcIBchgkH31LfbknNCtnrG2uZzz2+KLW3/rg2OD99dkZqTz6rwVePPBYPbbj7dg0dmB3TMIXl6ytS263rmNkI9PoeNHW/msaATib1dX6gtTDScZkw1lpWzUU6B7ebRjP3tBFQMbAfka9BgUGg4/6vH7kqtaNHNMBm8bwGhWy1q1LrBRqAkfeMFDUcSGMVXf9b9xjWPUvLCNnLZXU+yOd13W0FjOoNlH6nFcKZK+l3nn3FK6T2yb/4U6k98vA3dDvyOt9Oz+gaygrA6Bv3It2EjsGUcYxnZqelljPC/fpGcFAqFd/mUkkDggJjjWJdW6ywD+vn6nb18zJWEGtC50ccTF5Cz7dkUs8PKzPFCtHtG4FJaeMctEInB+cgaywUjeAXa/w5Y50RGfdO3bau70pFDbCcmpnU2pTeO3iBHqjQSM4JjbFvsca5tdYanJutZ2vWo7XIekj2fYiM53x24M7+8C8iAQAAAAAAAAwdDyIBAAAAAAAADB0PIgEAAAAAAAAMHQ8iAQAAAAAAAAzdvsNqrBdazTQ9M4xBm5ia7zUaYFpCF28A6gdG40xPG2cm9tlL02q6mkrp9qZS+rpMThvA1lva7LVR15pvNFy2QoIyRoBNMa+Nmf0xK/wm3kzZahRbyOl3Wo1tk0ltKJtOayNps4mtEUL0/TQ7xcuL1aQ9MDr6dnsaRuAbIU1Ws+JGdUNqzT0NjygMNC5PJIwm8F1t3pzo63ZYASlp4++DrCbPXlLnOd+Y5zLG3Jo05qp2R49x0WhAn9pnw/yM1TA/F58Pysb8GHm6X829mtR6TT2e+Zw2nC6PjUkt0GnOeeH+Gknj5a9Z1/GbzRpzkHHKXDPmm69eWpPafYf1vDw5bgTZPXAi9uevPPy8vKZ9RBuor9U1pOrx68tSO3WiIrV6Rxu8d4zAsK4RTOOZ121rLWc0c3d6QNPW/JXRWsdoXh9149tizbfWqN9p6Gc9cVmDaTJpDc+4ePGK1EpjGpiVIKwG33b8qAZQGUtiZ9x2uNAYR72Orv/7HT3fkhm9/g4Ge5oBE7oZrhfonLm8dkNq11a01uzp9p65+RapFYu6poj6OoILWV0HZI2x74V6kAtGqI8VqtfrW8FX8W3pdfWYl0p6H2aF2lgBIM2Grlu7ff39682m1D7xl5+W2s/9yq9LDS9/gRH0mDLu6UtlvW7t7Wm4ncU6p61gKSsgWLbNCOa0grZCYw46e0bnEWfcY4wZ1+jyqI7VyAimsYKlBkOUnXMuMuYb65mLFa7sefq6waWW9cwkldR5zzeCB819MOZ+a3vNn/D7CMThX0QCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6HkQCAAAAAAAAGLp9h9UUC9o02Gp2abFeZwaTGB9nvdcbeGFkNG8ebCLsnHNGr1MzFMNqimo14vR9bZRq7UMuqw1bXaTHs93SN1thHEGgjUeLRW3WnMtp8/p8Pv691k+YyxkN3o1jYtXMhrLW8bR+s9BIlMCBVK/VtRjqed9uaKhJs64hA8vL16S2samBEmGoYzocGOeh2fjZavKrgytrjK1CVptGGxk0rmc0Tc6XtNF6vqhNmFuNqtQyRhBWOqVjsNnQ38IMeomMubQTD/Lo1nQ7UimdH0Nf54e8FYZT0Hlvr6HNtbNGSI4eORxUkxNzUmsZ4UguoWEEtT2dlx5+TIOwqosa8HT/nRo6ky/Fx9bclDaBr+7q+Nvt6fg7e89pqZ2Y1M97dnFdam0j4Cs0rtFJo3O5Z8VbGA3jMzkd+15aX9f39bfIGiF46VR8nLfrug9BaIRxRFr7ymMrUivldDtSCZ1bGh29jvhG43ocTIfndb4JjbCSwAhkyhrhKoHx3n5X7x2sa200MFatwFHzPkkqzk1MTEjtla+8S2qTE7pGSRshmbW9qtTGyqNSKxd1TrOOp2cklrbaOi93uzrPDd47OedcNHBcjIwNlzXWdyMjuv/ValVqOeO+u1DU0LPQmIOLZT0mOJgCI9A36YygWmNuSRtBl77xDMJ6VmPd+1uBKIOsQBvruUetpmv9+blZqTWNwODRUR2DhYLuv288S7KefSQ8K1lM98MOhNGJwzfCAgcPi2d8p/XsyzqedmiOEbhjJ9Poe6393yf+RSQAAAAAAACAoeNBJAAAAAAAAICh40EkAAAAAAAAgKHjQSQAAAAAAACAodt3WM1+Gox+NyKjiaf1WNT63sGa2fzTqFkBEFYjzpTRcdj6jv2GsKSNUIhk0mhCbAQvWN/RNZpQ93ra1LpvNGvuduPN1otFI+wir02OA+P36hmf325rM3drHwIjeMM6JXAwNWoaQpM2AmG67Y7U1tY0hGZza0tq1viwzlVvIIQln9Gxm0lb85R+VmTsQ69nbEdfGw7ni2WpjYxq43Jtcexczzea3hsBLrmMBlz5CZ1v+sY8FxkBNn4//l7PCPhKJXR+zBf1GCeNRvtrO5tSsxK4EqMVqfW6eu7goNJx2W7rmBmp6PjYW9O5alMzUtzWqJ6/9aKOh2MDvdaPHZ2U1wR9XSs8/7Wnpdaq67ZNG8F2q6v6urBnhFlF2rg+Ycw4gwEYzjmXSOkxLo3qnLa9p0E/WSPwL53U+atdix/PwLcasuv8EBhBW7W2bu9eQ3/YpBGilkjqnOk5wiPwLXkjpKnR0nPGN8IqzUAFX6+9PWNtlDUC36KBUD3remzlEETGWunQjIbw/OSPPSi1z37mL6VWbValFhpro4Rxn1AyQl1Gyzq39H09JjVjrdlq6dyfy+l3JBLx+WXHWI+ExrrICvbwfZ1HrPs6YxlknhOjCd1/HEyJhHWvY6zhjYHuGQGWCSN4rmsEa3l9Pc/TA89XrLFQr2tA5uD7nHNub0/H7pUrV6Q2Na1rqMgIXOkb86i1XjCfEXl6nELj86zj7hkPp6xAnMGQGM+4D0sY95hmoLMVOLrPPL3ICt7bZ3i1hX8RCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDo9h1WY4U4WEEvnhUuYzSxNJt9Jo2QgX2E5CSS2iQ0adQi32j+aYVTWGEH+w3rMTope8Z+OaOxqdX82Q7T0W1JGWEZ/Z7RPHXgO/p9bYYdBNrY1jMaWJvNbq1zwmiAmzCOk9+3YjZwEFnnUWDU+kbD3ZLRpHw6nJLa3t6O1HZ3jfCTKH5ehkbQUt/pWCvmNdgiERnj1GhSbmQ92B3jrYbLRghLZGxzxgjHSiStYC1jf41wByv8Jwjiv0/WaKTsjLm1H+gxaXT18ztGUESxPKLbYZwnnVZDtwUHUq1W3dfrgkCvl8m8jo9UQcfHbqTn29PLek6v1+MhLLsTGsoyktbzOZXTMJSNG9tS+/Luc1Lb2TOu+b4GIKSNJuWhMVmFOh26pDH2q8ZxTxvBNMmUhuQ09nSeS/jxOddqIB8YQTJRZIWU6XE3l4EJfV1ovS7g7/3xLd2OhjqmjHPcGedlaFwbPWP9YQVHlkd1DZUcWFdYkQODgX3OORcFRlCCcQ9z+sQJqS2dvklqDz/+iNQKeV2j9Fo67q37yelpXfNt7WiQ4UR6Qmvj+nnF4qjU0un4b9Yy1hTdroZ4NBr6Ouse27ouJbLGGi1rhIJkmW/wLa++/xVSazSbUusZ4Vi9nga09YznBtb5a90rDT7nsJ8Z6PlcMO6nrJCm2bl5qU1O6hjvGwGeXePeKZcz7uOsZ0TGxGllulhBfr5xnBJGSNBg5owZrmpsW9KYHwfvzZyzA3Ksz7Nq+w26sTBTAQAAAAAAABg6HkQCAAAAAAAAGDoeRAIAAAAAAAAYOh5EAgAAAAAAABg6L7I6hQIAAAAAAADAi4h/EQkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOh4EAkAAAAAAABg6HgQCQAAAAAAAGDoeBAJAAAAAAAAYOj+/3m5SdhyMQ74AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSIAAAJOCAYAAACjuXmIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edBkZ33mfd5nyf3Zq55apSqpVEJCRrJYhEBgLBv3C7bBg9sY9bwx3a1oxq+jzfTLEEF7Gk/Y0A5muju6cWMHDkOYoKHt7gHbAxi/eIEG0WAbbYAEJbRLpVKp1mdfcj3L/CHQOPO6gMQoC6ue7yfCf9TPJ/OcPHnuO+9z9PC7orIsywAAAAAAAAAAExT/sA8AAAAAAAAAwMWPB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeR36fjx4+HKIrCf/pP/+lZe88vfOELIYqi8IUvfOFZe08Az33MNwAuFOYbABcK8w2AC4X55h+mHfEg8sMf/nCIoijcfffdP+xDmaiPfexj4eUvf3lotVphbm4u3HTTTeHzn//8D/uwgB2F+QbAhcJ8A+BC2QnzzUc/+tHwohe9KNTr9bC4uBje/OY3h6WlpR/2YQE7DvPNxS/9YR8Anh3vete7wm/+5m+GN77xjeHWW28Ng8EgHDt2LDz11FM/7EMDcJFhvgFwoTDfALgQfu/3fi/8yq/8Snj1q18dfuu3fiucPHky/PZv/3a4++67wx133BHq9foP+xABXCSYb3gQeVG4/fbbw2/+5m+G97znPeFtb3vbD/twAFzEmG8AXCjMNwAuhH6/H37t134tvOpVrwqf/exnQxRFIYQQbrrppvD6178+/P7v/374V//qX/2QjxLAxYD55mk74n+aPY5+vx9+4zd+I7z4xS8Os7OzodVqhR/7sR8Lt91223d8zX/+z/85HD58ODQajfDjP/7j4dixY7LNAw88EN74xjeGhYWFUK/Xw0te8pLwqU996nseT7vdDg888MBYf5773ve+N+zbty+89a1vDWVZhq2tre/5GgA/PMw3AC4U5hsAF8pzdb45duxYWFtbC7fccsszDwVCCOF1r3tdmJqaCh/96Ee/574AXFjMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4zDcALhTmGwAXynN1vun1eiGEEBqNhvz/Go1G+NrXvhaKohjjDAC4UJhvnuPKHeC//Jf/UoYQyrvuuus7bpNlWdnr9YZqq6ur5d69e8t/8S/+xTO1xx9/vAwhlI1Gozx58uQz9TvuuKMMIZRve9vbnqm9+tWvLq+99tqy2+0+UyuKorzpppvKK6+88pnabbfdVoYQyttuu01q73znO7/rZ1tZWSlDCOWuXbvKqamp8j/+x/9YfuxjHytf+9rXliGE8v3vf/93fT2AZxfzDYALhfkGwIVyMc8358+fL6MoKt/85jcP1R944IEyhFCGEMqlpaXv+h4Anj3MNxf/fMNfRH5LkiShWq2GEEIoiiKsrKyELMvCS17ykvDVr35Vtn/DG94QDh48+My/X/rSl4Ybb7wx/Pmf/3kIIYSVlZXw+c9/PrzpTW8Km5ubYWlpKSwtLYXl5eXwmte8Jjz88MPftdH6zTffHMqyDO9617u+63F/+3+mtLy8HD74wQ+Gt7/97eFNb3pT+PSnPx2uueaa8O53v/v7PRUAJoz5BsCFwnwD4EJ5rs43u3fvDm9605vCRz7ykfCe97wnPPbYY+FLX/pSuOWWW0KlUgkhhNDpdL7f0wFggphvntt4EPl3fOQjHwnXXXddqNfrYdeuXWFxcTF8+tOfDuvr67LtlVdeKbXnPe954fjx4yGEEB555JFQlmX49V//9bC4uDj0f+985ztDCCGcO3fuBz7mb/9Jb6VSCW984xufqcdxHG655ZZw8uTJcOLEiR94PwCeXcw3AC4U5hsAF8pzcb4JIYQPfOAD4Wd+5mfC29/+9nDFFVeEV73qVeHaa68Nr3/960MIIUxNTT0r+wHw7GG+ee4iNftb/vAP/zDceuut4Q1veEP41//6X4c9e/aEJEnCv/t3/y48+uij3/f7fft/1//2t789vOY1r7HbHD169Ac65hDCM01U5+bmQpIkQ/+/PXv2hBBCWF1dDYcOHfqB9wXg2cF8A+BCYb4BcKE8V+ebEEKYnZ0Nf/qnfxpOnDgRjh8/Hg4fPhwOHz4cbrrpprC4uBjm5uaelf0AeHYw3zy38SDyW/7kT/4kHDlyJHz84x8fSi/69tPvUQ8//LDUHnrooXDZZZeFEEI4cuRICOHp/5L/Uz/1U8/+AX9LHMfh+uuvD3fddVfo9/vP/HlyCCGcOnUqhBDC4uLixPYP4PvHfAPgQmG+AXChPFfnm7/r0KFDz/wHjrW1tfCVr3wl/MIv/MIF2TeA8THfPLfxP83+lm//1/ayLJ+p3XHHHeHLX/6y3f6Tn/zkUI+AO++8M9xxxx3hp3/6p0MIT//X+ptvvjl84AMfCKdPn5bXnz9//rsez7jx7yGEcMstt4Q8z8NHPvKRZ2rdbjf8t//238I111wTDhw48D3fA8CFw3wD4EJhvgFwoTyX5xvnHe94R8iyLLztbW/7e70ewOQw3zy37ai/iPzQhz4U/vIv/1Lqb33rW8PrXve68PGPfzz8/M//fPjZn/3Z8Pjjj4f3v//94ZprrnmmYfrfdfTo0fDKV74y/Mt/+S9Dr9cL733ve8OuXbvCr/7qrz6zze/+7u+GV77yleHaa68Nv/RLvxSOHDkSzp49G7785S+HkydPhnvvvfc7Huudd94ZfuInfiK8853v/J4NT3/5l385fPCDHwxvectbwkMPPRQOHToU/uAP/iA88cQT4c/+7M/GP0EAnjXMNwAuFOYbABfKxTrf/Pt//+/DsWPHwo033hjSNA2f/OQnw2c+85nw7ne/O9xwww3jnyAAzxrmm4vXjnoQ+Xu/93u2fuutt4Zbb701nDlzJnzgAx8If/VXfxWuueaa8Id/+Ifhj//4j8MXvvAFec0/+2f/LMRxHN773veGc+fOhZe+9KXhfe97X9i/f/8z21xzzTXh7rvvDv/23/7b8OEPfzgsLy+HPXv2hBe+8IXhN37jN561z9VoNMLnP//58Ku/+qvhQx/6UNje3g7XX399+PSnP/0d+xsAmCzmGwAXCvMNgAvlYp1vrr322vCJT3wifOpTnwp5nofrrrsu/NEf/VH4xV/8xWdtHwC+P8w3F6+o/Lt/ywoAAAAAAAAAE0CPSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATl4674e7FOanFqb68N+hLbdDPpJZnudSqdX2/qFLVg4mj73CU/39lXkqts76p75/qs9hGq2Z2afZZaq0stFap6T7qTfO57D70c0Rmu2yg2/V7PakVI8c8Pzel+ywKKZ0/vyK1erMutSTSz9rt6nFEcSK11FxP559a0uPDRe+lR/dLbaunc8vKxrbUkkSvrblWQ2qVYMZvrvNSOTIG3Zzhx6TOe3Hi/tuPvnZgjiMz47I04y1OdW4Z5PranpkfQqHzSBrp+XTKoK/NyuH9uu+mMPt0815i5oxapSK1jvlcmZtHda/hjPmNwMVv/6UHxtvQXEej80MIfj5w11tsx9bIlpF7fx3PcaK13Ix7t0YpTC2UOrcUpb5fUbo50+zXDHPLbFeMed7LkbnEHe/oNt/pvewBm9Pk5q/SzdXm/XpmbYSdwNwTFd977RFCCG6oOrG7fO1lPlw0tzX+/WOdH8afC81Oxtyv5T6XKxru+J7Fw7Brqvvv/YbUltf0Hutlr3yF1KpVXd+Nf951vYSL3x1/9DqpLZ86JbX5fbukNuiZ3/wtnb+yoim1zW293rKpq4f+XWkelG1edNPLpBZXZ6X2tbu+LrV/9Lqfl1qlqs8W3O92bu67/PrG3U+Y8ebuC82aLMvMOc71frddDIb+PVOfkW2aDX0uM/bay3CvLcz6xmk0x/tbR/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4wIa4qo2Ik1NE8tBNJBataa7rpnwk4ELMpBm7toQNO/rPl2D0TTVZvFV09g0Ms9ss8w0KQ/a2DStmoAG12jdBOy44JjYHLPr9OyasUYj4RbVin7WPNNz58KF+l1tpuoaWEem+3ViQiYK9/mxI8WpuT46HanNTmmD5Iq5plPXj9yMXx+iNFwrx2xeHCfjBVaUpkl9xYwj1wk9N/NDZBouB1NzmV/mlcG1JR73v2DFI584c/OyeV3FhNokY4SUhRBCYgKBXJP+79BaHjuQHZd2w/EC5Xx38DEDGuRiNY3MC20W797LTSNuznBKO/Ldbm0Mj6n9APu159htVowW7B7Gen+fgCGiMUNtYhMshp0pM7/5eaZj+qH7H5Ta7j2LWtu7R2oDExx6z+13Sq07sq562Y+/SrZJzZpqYI43Ndd4YYK17JrChau4WyI7M48XHuGUdl4eMzj0exZCiEwQxRP3PyS1Rx97TGovetmNUktMqOe4oaY2KxEXvZZmmoR+V0OP3E/U5oau2RNzo5CkOt9M19tS62x9dejfq6f+Vra5Y/1uqeXNo1KrNi+V2sNPaAiPmzMq5h6z2+tK7fip81Lr9E2oTTFeEOlWT89nu2fuz/JVPb7t4fP5iuuvkW1e+sJrpZa7ZytjhnTZUMCx029MKLPBtAQAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4r6PsBrd1AWTuEa6idmu1tBGoYkJYclMU9BIQgu06WZpwhlcb87EhPC4Rpyu8XFhmjXnpQljKLRhZ2GaVfd7+n76WUOomiAH12S2ME2SR4NzYvP+pQv/yfW9XMPamgkwis01UZjz2Wtro1jsTK6BeLWi46hW05oLf3Fj1TWMd2E1o7OBmx/cHOcaqI/b5Nd9BhdRZRu8mw7vJi8q9F3DfDOmIxO64+Z+F8aQjhxfYeYu/xnGaxbv5lHbgtk2c3cbYifyWUZjjlX7UvN76eYWs102Mle5qSWKXYCNmTPMb29a0Qs/M2F0uVk/2IWGm1zGzH5xaRSlC9PxJ9nUvndYjQuXcfONCyh06zH7n/NtLhETDp7mZxa9PpZOn5FaLdExvWefhtU8eeJxqT341a9ILRl5v/UXvEC2mZqf1deZcNGNcytSqzZ1jZaa17p7gmTczC8zfvtdDTcMJsCz0myZY3H3gGb9IXOkueeq6Ly/sKDn89yT+r1urWtgRbNxQGp2XUkWH76lnzWkFptQ3qp5LrP3oAlcWdmW2vaqCeWN9L4rHnlwsG+/bBIe6mi6zsnTOk4v2afrlrv+QoNu+mYsuOcoZdDnN+vbOo9kA/PcyExMfRPO2TfrqoELAx7oa+eqw7Xrr9aAILemKkzAqlu4uDXK+ME0f3/8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rKZSrUkty7RRpgucSSu6m4oJmbC90U0T4jga3kfpQiFMw3MbimD22e+Zpu+mQXKRayNWJ3EhDqaJfGmavttezWMGObjNRkMm3HslpolrvaHNpet1bYBbb+h1kpvj6HY0mCYvtDkrdqbChDjUanptJTZsycwH7iI02yVmoJcjDcjHGVch+CAK9+LYhFhkZm6JzWTgAmJGwy5CCCE1n1WCHUIImQmlct3h3X/BcudgVMXMLS7oxzVIdvP8wHzW0jWkN/Mt4RF4NrjfUDv0zWsLs07p9YabozdNsEOaukA5F+akv6mpCbtItUe9b3pu5qW8cA3O9e3K0gXdjJlqY7azc1Dyvdc3dj6zYTU2FWOsY7sQDd7x3OXWNzZM06wNVpfOS+3JB/R6++Kn/kxq60+dktrug8PhJ1/98t/INs3Zaand8KpXSu1vb/u81I5edZXUrrr+WqkNXKCCWd91tzUoo1rV+8lHH35Eai4Q84abXqHbmaCIqpk3T509OfTvpeVl2ebIVVdI7ez501I7/8SjUvvKZ/9Kaj/5xn8iNReymCQmTNYlHuKit3ZWx0ynq7WkptdMZ9uE6OqtWJhb1Nf2O2atMRIQ3BnouP/6SV2QnOuY8KlIX3vb109KrTQLnJp5bQg9qWRmHWCmBwn9CiGE3KyXBpnO1e6+q23uba6+ZGHo37fffo/uc6Cf4aU3XCe1RrWprzVppePc1/2g+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3dlhNbJoGp6a7sguUGOQaauOaEBcmrcaFMYxWTDaBbQLv2ocP+tp11AXuFCYpolLRBqhJasIjzJ7zQpuClqa5sPtwhWnuak6Tfcw8GkQTB/2scVVrUzNT+mauSb/Zpw3EMd//7PyMvhg7lButenG5sJLIzS3m7VxIigurkfcvXcdvF3yj29nACtO4PjbBVYUNktH9Vitmv2Y+bNY1BKNf6FxduJPnmICGLBueq0rzGWITZmYDQMwuXciEzZgwr7U5FtiRLkS4iBvnhQ2ZG74wR8OyQtBxFcJ3CHsz482HDOpcaEO5kvHmZTPdhNhsZ8MIE11Xuawt99pxAqhc6FU07n+Ttzk6Zo3mvms7f2MnclepC1nLuho88KXP3Sa1aRM2VR9s6fttr0ntsYc2hv69+qQGqVRnWlK76loNoSm3zT67bakNejpX9VwglTlR9997j9RmpvTeobel+21vakBH3tNzXLjjM/eFWxubw++/sinbnH70hNTuu/N2qe024RlPffVufe2Ry6V26MrnS21mZk5qwYWS4aLXaphrPNaLoTDpvVtrGvBUmrGQmzFTN89I6iP3WO6e68nlc1I7vaRzy77WgtSeOKGvbU3p84taqfeO/Z7OGZm5F4taGt5VM+G9ZukWChvupxsOBnp8o6E2xx45Ltvcd/83pfb4kzoH/dzPvVZqc+Y8ZSYE0d47/QDLG/4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1MI3TTuLvT6ehOTChE3tdGnGVhgmlMCks+eiwu5MU0/7TN10035GrDhdDoqXI114XaHIoNbXCynjaWz0zAztScNpOu1r53Z+LYfDcV91mrWstNc2nXCL6S6nFUGk2pZbleE9iZYhP04gIQeqahb91c9+79bD6FDUX47v9+uujmIJdsMN64j2PTDNqcABd61ahW9fDcHGkCKgrz36b6Zr5x+3DBMf2ReT42E6Rr0l+acDB34hNznuzPgZZ80A12JBtW42o2CGm8YKU817Hq9lEZCZvKcx1/ZTAhXabRvE15GffYTPdxN2IS0/Q+rrn5wcxLNsDGhckoN2+MBtjY0EIXEGSOw72/C6EpzT4KMy+7Y8HOdNe990nt1ImnpDY4dVJqq489LLWZPfNS27VLgweSKQ2oO7sxHEbR3tRQiMLMaLf9yaek1nnqvNRWz2h4xDfu/rrUMjsudZ47deJRqTVN4N20CbDZ7ur7PfXQQ7pfEwZWmdF7lu2t4fCb7aVV2cbdJs7kep+8Z0EDMAYmwPXYZ/5SamdPnpLaq37m9VJrmDwNXPzShvl9N0GfIehv9NyC/r4PBhp+s9XX7TpmHysrw3NQpaXjdCHReWrXpfukVq/r7/bctH6GRkMHYRw0WDmtaq1IzAA2zzR6JgSw09ZaadYa1aq+n1vj5fnweU+aZkCbe9G//B8ajvXE6bNS+/mf/V+kdtWVR6WWmBVZ9gOk1fAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGtPM3LVBb29sSK3e0MajaaohAxVTK02P1cFgpGgbiOvRJabpaHNWm31Wm9o4dLQJ+reKUuq1tbF8d6srNRfgMj2tzYrXNrWp8cAE/aSJOWaphFCMnBcbwhObmgn7cA1L3UVRrWjz2I3NdaltmybZ2JmSVK+ZbrstNTPMbdCLCxQIZr5x1285Mr/EJg3FNSCOXOCKad6cmuMNpQnAMJv1g843AzMfupCYignqmmvqeR+YUBsb9GOmg3zkHNi8BjOP5qZZvJuD3bzk3m/M6Rs7lVtDuO1c8NyY4SrZ6LolhNDva9P30WVKxTRkL2M3kNxxjBdW4+ZHF+aUjhkMGMf6WdPEBQjq+DVD3wfMmEMZZ0i7vLDcff9mny6Exv62uLDEMb8LXPz+4ra/ldrSWQ16eV5Vf9+v3q3BlNM1M456utZoVTSMYb42fE0/2dE5qZvpYFu/9xtSc2OrvqWhOc1t3UdeaLBDyPT+Z8oENFQLfb+yo8ExW5t6TjZGAmdCCKG3qbX5S/dLbffexaF/H3/0Edmmbj7X4X0LUls356Rm7uuSNQ3/OVEek1r/J/+R1ILmgmAHOHNSr62z5/QaP3y1PoM4s3lQaktdDW7qZYtSa2c6VqN4uLY30fns6IFlrR09ILUHntLnCC96yRGpFea33AX1lmYFkUf6mz892JRaZu7tzm7o/H36qeNSW1s9IbXCrA3zxSuH/r1d0XlkrqHzbS3oPPK1bzyu+xz8udR+8edeI7VzK3rep2Z1cnn1y14oNYe/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1eQmrKYwzbddLa1rAEJSugCEv1/D9H5fG4IWpoF4c1obrDZnNEincB3pTRf0rKv73V41TUwH2sQ0mTJhFGa/lao2lzbxDCE2ndsLs2G1MXLuCv0MqQmwSU0oRGS+Q5di4RpYt7e0CXWvbZpVY0dyzYU7Hb1mGk0d00XughyUDzZwIVfD135kQl5cOJb7rzyRG6fmSFxQQmqaKxd2NnDJLPpad3wueKFqAiraXW2kHJlQm9FDKWyIgx6vC0dzzaVdzXH7IDoC3+bG2w/0fja/xCZhSWl0rRUX5to1DdRNZo6d41xoiguzCokLozOBUS5sygQ09E3yYJJoM/sQmeA9l0llPm8+GF7PmGyZENy6xTLnySVcud8Dc55sshp2pCceOS61lY01qR1a1OCBPWYtvl3VNXu0a7fUEhPMUhtZG+xd0ACE1ry+V2t6TvdZ1fupSks/w8FLLpFava73OtlA5xEXUBeZe6dBT197tRmXdv3V17E6SM2arBxeB5184CE9to0lqfXMFLQe61p2pqpzYSvV0Maob+bbLRP+uUdLuPglkY6P2YY+l/jre/TCvPuEhpD0Ew21KSMNKs6LNakdPTwcJhOlemyPr+v1PG2CgE+cf0pqTRPI5J4HFfl4oZZu3RZl+lnTSOe+qw7pPHfNJbrmuecunSPu+vJfSy05tHe40NR5eWCOt2/mm3pzVmpT01orBnqv91dfuENqu3bp5EJYDQAAAAAAAIB/MHgQCQAAAAAAAGDieBAJAAAAAAAAYOLG7hGZpNqXIzd9KWp1/d/JN1ra+6ISa++LTlt7X3Tb2heuMtIPxfUHKWr60RpT2oPEPop1vQNMe5/2Wldf2temRFMzLa3Na9+UXkffz7Vdm5rT14bU9G6qaG/O0V5Leal9F3oD24VS38v1UzA9WLJMv5++uXae5TZdeA7rmLFQq+nc4nqguX62tt2ZueBcD7DR7Vy/Qdd3rchMn0N3jZseY7npaeKO140Z1/MoM+832ms3BH+eEtOHsWJ6FyWmT1UehueXQa7zjftc7v1/kH6QwLMhMvOD7V1qBlKjYXqg9fU3enN7bejf4/avTBLT2zl2SzzXi1u3cqOoME0XI7M4iuyEq/vNc13fxbH2rrJ9HU3f22hkgjWbhKjU9U1szrHrd17azrLm85vrJIrdugo70dkTJ6X2+BPHpXbp0X1SO7yo/dnq09oYrbKwV7e7xNyfNYbvT/K69gkrzUDKzVBwa4V+T+/r4or+vlcbep84Paf9KlNzL+r7YmvJrQ3dPJeWOm8OEv3A6yM96nZN671Ztn1WanGuc1zFrG9dP8zUZQ5srkjt0a/dLrUDR66SGi5+9abpIZrpc4n7v6n9AJPyf0ptrxnnT53RfWwOdK665Iajw8dR6D7rTR2Vg1THbq2p42OuZZ7LmHVLYRpPl2YtE5v+mkVP123nlvSY+2uPSu3QAZ1fr7zyeVK7/xs6fttbwxkklRmdC8q6zl121WLWQZF5Lje3e5fUEvOO62trZi/j4S8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc+GE1Fd00Mk1zXWiDa5juwm+aUy7ARRuZ9nrDTVFrJtFlZkabpDZMkI7r4lmYhqXbG9tS65tjqzW1iakLpkkrJvwn11rFnKe4pg1FI9NM2jVb720PnzsX4GMb0rsT5fZpmrT3e9o8dmDCamLTPBY7lQkiMNdgPtDwk6pphO7CGFx4gt3HSINzN65Sc90nqc57hQlFyEwQQ2H+E1FZmEbKqX5Wt12W63grzPxdM8c8dkCHCWNI0uFjyYMeR2LmER9MY4KEbFCEvtKdE/e5sDOlJuglMWFOqRkfqRmDLlChYtZQG2urUos7w9elm7tKG5hlQqXMsUXmDWNTc+uAfKBrntKE37h51AXHlK6JvAvTCaaxuqnpOtWcJ5OyYfrRh8TOD+Odd7uwJIwP3/LkiRNS63U1uOmeJ5+S2qHLb5Ta9ddrrbq4X2pds17a6A+P6ayrY7zIdYBkmb5XasJVykLXGS48b319Q2qnTj0gtYH5DP2+HvPs7JzUWi0N6Fg+f1730TPrQBMIuqsxXFvb3JRtor6+13RVP0O9WJNa3Ne5JavrnB5M+M2Xv/Qlqf3YL/xzfS0uektLeg9+8pRbr2tg1KWLWtu9oOO33ddaPWjY1u59B4b+/dDDGugy1dLnEoO+XuMu4Mrl2mUuWMsFQbl1oPl975c630SRjunpOX2/H3vp1VJ7uPmk1P7UBHtudraG/j1l5lbHLLNCYYKFN9v6HW60zWc1J9l9P+PiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATNzYYTU2nMD14zahAKUJaDA9v21z+Na0NhdeW14b+vdWVxuxzixoWI0LoYkyPZCqacSZBW0QPGXCdaotDauJTVPU0QCMEEKoNUzIhgu1MY3Vq4l+ju0NbTLaHQnYWZjS8+Q6t/s+63r5lKU2WHUN6d0lAXxb3zQk73XaUpsx84MLPylLvQYTF4hitpOACheuYgIWXKjNwFz3ffN+kWuabGbrak2bOrsm8rkZg1lftxuY+duFR7hQqiLT7QYjk1V/oMdRr5j51syP7nfE/S5FrmaOl6gafNv0lJlHzIBzYQyxWbfYICQz3QxMYFQYaSLurvHMjNN+pmOmkuqYdOGBbsy4kJw8d8k5JkTKJ0bpfs2aLJj5xq0r89itU4a3iyL9rC5UK7W/BeOFY7m1jJur3GuxM/VMWGNpfrf3X/YCqcWXaNjBdm1WallH3297S0M3s5FQhPkFfS8XBuPCCTJzjRdm3AczBj/zl38ltb/+ogauTM/MSa3b0/P5ipteIbVrrrlGan/7N7dLbbun586FO7zqhmuH/r3/0CWyTdrUNVqzofPSqrl3Sgd67qrtLal1M/38K3//7AhcZBpTeu0OzLqlTBpai/Ta6pkQpaSi1/m+PYd0u5Fw4fUNvZ4P7N4rNRcEVXNrNLNGKVyCjUvPM+uW3IxLd6/TMSFf87Gek8X53VJbntdzEEX6PGg0Zy+3z9ukZOeuMjL3hOa+a2NTv//MhuTos69x8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaWtDmwm2XmuKadI8ZYBOZ7uj1VlNr7c7Qv3t9E2JQ1+Ptl9pgs2bSI9JSm4RWTZP61i5tOlqt62sHue43Nw1gcxOUEXdN59HRjqUhhCw2rzVxDM2Z4YCdpKqXgAsKyQt9rzTVWmyaz5scHdcTNmTmPGFnOr+0IrW6CW6qjAbJhBD6pnF5num11Whoc10XRjGqNI1/+6bRvO2PXK3rcdRmpJabZsjdbQ3rKTIzf7lAjVRrpQm3KE3zZzPd2Dl9YM7B5sgx2/fSkmfmjML9jphjc3OQ+RqxQ9VM6FM8ZjNz91vmrlWb2Wf2UYxcv5FZe6VmreTWD+MGBfZNeIYL4Qkm1KU0gzqy/43bnRQ9Znfa3SThAv/KkYHuAhXduig2jeHd8bq534Uglva1Zr2Mncn89tYbGhTxoy95sdRmZ3S90G3r2qAyrUGU7h4r7w8fy1NPndJtzFibNmGdLigwMWuPs2fPSu2LX/yi1G684aVSu/zIFVJbXtH14r59GnixZ6/es73yJ2+WWloxQRGFCf4amSPzbFG3OfQ8qRWxvn+adaSWP/WE1Dpn3feja6/zK+tSw86UFTo/tEsNpWoPNHBlLtcxnZtgllpjQV+7+1KppSNrklZD115zszrHnTt5TmoLU3NSc0GBpXlWVZrx7O4nysTc25l7rG5/vN/30twYdjp6fxpHel6KbPi1pXku44JJR9eUIYQQmUVVc0qPrWKe8wzMZ+3nGho9Lv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1Wkw1M4IppYOz6kQ9M+Ilrol4zTUsj0xx9en64kelM0TLHYRqR9k1YjXkUm7j0hIF+1l57W3cbaRhFGmlj06g0gRKm12ls9hvHJoinp+e4aYInijDaXFl36hroZ7k2sy+CvtYFithgItNQtmnCQ7AzbXb0eqs3tLmyC6uJTChAYkKvUtNEPTOBK8VIo+PSNPntm6bBSazHVkt1jktT0xh9oM2lIzOnbaxrQ/L+QM9ds65jqzDBC7EZl/Y89fU8DVx2mQRt6Lnrmsb9FdNU3wXOWGZOd5kdLnAHO5P7PbLbmZq7jgpznburrVbXgIpoc2P4dWaZVTW/lXHNhPalOhjceC6C7sQ1PbeN4F1AhQljcM3h3bgMZv6OXPiLOebRfaRmDeQmqsLsMzbzt+MyaArzWTOX1IUdaWBCIXbvPSi1tKLrha4JlnLBMT6oSsfR0khwzNI5DZIJ5p7j6JVHpZaadVYS62f46l33SK3T1s+1d/8lUvvS39wuta/f83Wp/fRP/7TU2iac9ORZDcFwk7UbvfnI2nDg7mur+vl3tfT7mmrqfDPf0jXvSRPGWO1qLU25n8LT1jf0N/rsirk+MhP0mWsITTvR3/fWoo7VmTl97WiQW90E5iZmvolKPd6oZu7/zHOe2IzLfq5zcGyeN0VmHdAxYS2JCQxub6xJ7eSTT0nNPV9xwWIzjeHzbh6ZhZ5b35ggYBeeNzWj53h6ygTzdPR8tn+AsGH+IhIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxI0dVhMl+syy5gIQXENy08zdNS4fuCa8DQ1/qVSH95ua4ISiq41IXXhEEWmDUddovlbX19rPZfZr+pqG0oVCmMbqqWkK6wJ8quaZcmqanfZHgoOKjp67YAJnEtfE1aVHmMb1LhOiOaVNrRvmu8bOVKuaMAbTwLhnGhO7QImaCbUpbFKCXr/xyNzX6+kYd8Ev9apez+4zDLodfb++7qNixttUS4O6Nrb0c1Vq440tN39HiQu30Lk6y10IxPd+f/eNmewf+1/NXHhG4eZlG5hl3hA7kr0sTRibY0Mh3HamVq3o73uzPvzb2O5syTYuvKXWMGsFMy+5A6mYtUe/0Dko8idKucFl1galmQ/tifJF3WqkAbtr+G5yAkNmQvsS872aKS7kZr5xc6ENd8SO5H4HFxcXpTYwIZTplP7mV816yd6LmeuyHJmDmrvmZZtmReeHiqmVkQkcLXXcr61qyJ4LV9nc0Lnv8ccel9r6yoru13z+Ws2sK836ZmlpVWrb2xpO2u11h/5dbWj42B5zPnfv0RCa3XMaYNPr6Dl+cF3XvIsmZKSxa6/UsDNFNRN6lc9IbcrcJ9V2HZba8u6rpVY9q2M6Ns9DTpw9P/Tvx08tyzYL83rtbm7q+9eaOhYa5r4rrZtnJo3xnkGYpUFYNyE0U+5+z8y3d999p75hocc36Gtg6WAkQNCF5pRmnZGZQNBQ6rk7fUKDdM4+75DUtvpdqQ1+gPBP/iISAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDE8SASAAAAAAAAwMSNHVYTmwCTuK/PMZPUbGcahruQgUFXG2BWTZPV0f7rhekmWgxMw87SBDGYEJZKaj6XOd6kps3hcxfY4Dqcm0boWa7NQzOT2hCZpu8hMuc91eNrjDSmHm3uHkII7S39HiqmyXNhzknmwi5MY313TZRjNqTHxW9hWhuyp6ap+LppZj7V0obhLpjGhU25Bu+jATOxa+hsaqOhWt/p/TMTVlOauaBS0ferNvWzVus6Z6Zm/h4MtBF+bOZDFyLmAmbcXDq6mft9cMz0EFLzWhcU4WaRws39NtYIO5H77XXcNTPuVeSGR2Lmjfn5ueFtTFBg34RZba5rc/OkakK0TPBenJhRU+oayq3b3JzhQmLcCYjd0siGTblm61oarbnvNY7Nus00bk/M2qswTeVdI3gbyjVmqBEufvW6BhtcfuRyqcUmoM4t/4tCr8HRkL2ni3oNHmoM12aiTdnGhYt2Sg1c2Q7TUkvMQN23f7/UHnjwQam5Qb69qcdXZLpdf6Drls01DbxYW9nQY3ngEam59VJv5J41rurcsr2o5+nolK5ltiOdg9q5vl9W6jqw21+T2srKWalhZzp3VueHk+2DUutnOmeceUiv1aklvWdZmNd7tqn6nNQ6veHQp1e++EWyjQt7a9X0vTbW9dg2zaKiVTcBni64y/xGDwZaa7d1DbWxbeaqwtyL1nScl+cflVpi7nfbI/uYd/eTpc5THRNKHCc6j9x+u87Bjz9yRmpbuvwMM3M694+Lv4gEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFjh9XkuTY7dY09f5BaZJpz5plpIp5+7/CI2V27pLa2ro2KV0zz4pkpbbpaq+g+sr4eW2q2a9S0MXVumqj3TTNkG3QT6bnr9TVgJkm10XWjNTX8Vvl4DdTbA+1OGlXM5zLBQe1tbaLf3taQkXpzYaxjwcWvWdVx1DWhKS4TwP33FRtM4gIVcq2Njsu0og3EXQiLC29JTdhDtaHjqN8z483Mj7aZvdnOzbcVM2+6MIrcNL2vmWMeFCYsY+RYXLhM4QIlzDl2Df5dUESnazopGzFhNfiWMowbZmTWLTbAZbyxWpp11Wiw1O7d+ru4taW/n0srK/r+JoMnjbVJudvQBXy5oIzEhdWY+dBltZg8GBssVYwZnDP6/bh1a2TmvcJ8/3lmQrpK99tiAg/NnGkPFzuSC2vcvXtOanv37ZbaVlvDVUKkr83MmClKvaanV54Y+nfjibtlm4G55+hcvyi1fnVKasloumgI4YEHTRiMuXdIqjqO3FjNzK3sqaVzUquZQIXzS6tSW11b0/0OdI6MRtYzkbmH26zquVte1fdf2jDf64x+/4kLI+zrOT6/qesx7EzLZ3TMnF7T5xwrPa01Tms41M9epgFMTTNWF+Z1u5ANrz8a0+b+p6vXc+vq50vttntPSe2bj+g4qkU6FiqxrqHimh5vnup6ydz+hEap+5jdf0Rqlx/ZI7X7zmogzOWXaZjQZmgO/bvWaso2JrfMrlsG5t65m+v7DZ7SZ2TN6RmtNXReGhd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOq3GhKaNBBCGEUJpm7qZPZkhMw3D3fq7D+Wipm2mD4Fai7z83rY1I19e1EasLVIhjc7wu7MJ0JO+a8ATXrLrRbOj7mUbPsdlH3QQ+9Mx+tzeHG7ROuaajpuF0f1Xfa9A3AUamwf/AfD+VijaAbTa1US52Jjcx1c2c0TMNzl1AQWFSbWx4ghn7g5EG5C7soGLmm8QEVmSmmXkcmaAbUyvNsQUT7GDnTPdaM1e7NIqaCY5x5y43wTGj30XPfn6dM9xvQWxCMeoNnUc6fd3H6HcYQgjVlP8Oh6e5HBH3++6uwcSMmci81gVGuYC60eC5aROeVzeNwfcuarCBu+4Te93r/DUYdKRWuiAZF+BjU8TGHG821GW8tdZoJTfn3IXhmOnWTo8Vsw6M3Ec18637XcLO5MKsWi1dd8/O6vp8q6NhDIW7ttz4cMNoJMAm62roVVI19yZm/R+b9KnSBN20Oxrs0De/20mqa4+FPRqS097QY6mYOWOrva21joZWzMy4wFI9lkZ1eB5u9/U+aWpa3+vUpt6vlS6Qq78sta2Ozsv7zXlP9HRihyoTXS8crOo8Uje/2wde8CNS27ugoSaf+ewXdMfdfVI6ceLk0L8vu+wy2abT03GaDzRo66du/CmpPfzUg1I7t2EGQ6brkayt83Ia61idSzXAZfeMCdGqmtDNpt6zZB2dNxZaGqxVHQnO2TWj83LHrEenTChx38zfeU0/ayXT441NgM90Qz/ruLgTAwAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fVRKZzd2ICGtKq1grXhNc0c+93u1JLqtoUc9Ab3s41i1/d0gbECzNzUtu3T5updk0zYNdo3gXY2J7qpuGya/reMw1LI9PU2gVURKaJfq2uDWoHg+FmpP2envPtTBuW1mvanLbb04bTpWmE35jShqrtTX1tr6vNaLEzmf7moZLotRUnOrYqdryZxu1mDqqYhuSd3vC4HJhgqCkTYLO5oc2g+z29xqdNk/oo0vfLTLPmXqZhWy5wJjXnyYUnuHkuMw2st00QVtvMm92R+caFAaXme7VpOIYLD0nNb0bHnPfYhOtgZ0pTE47kQmjMD3xkEiDca2Ozj9TMG/nG8Jip1PR6dgEIWxs6F9TMWNja1kbwzaauFWIzCXcz85svlRBKM2fYAB/zWreI8usgUxo9ZnMcLqzGreWixHyvbp8myLHf0/kxM+sq7EzPv+aw1KpV89trrlV3v1MWJmTAJDBl5vrt14dDPBt7r5Btcrd+MClNZTA1Mz/Wavp+bog3GnWp/dSrb5baictOSm2qpfcdJ548JbUnHn9Sj89MLllVj2VjZJ3S39Y5eKOu67tT8WmpuazWRkOLV7Z0Tk9NwOhMi/kGT/vrb5jredoF6+rzAHO5hbU1DWvJ+vrMpWPCoVbOnR/699FLD8k2J44fl9q5s+el9oqXvExqNz5fx8Kn79SwmoWmjo+D1cek9mBb5+p2ouuvtY5+1pktPZ9r5plLO+j668llPb7nPX94vwcW9bnM2XU9jtmaziOVKZ3Pwty8lMpM91E1a9LvtJobB38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6rSUwnXZcnUK2YJpauYXihQQE90yi14pqDl8NNPJOaCWUxjdZXNrTB6t7di7oDc7yu6Wpiuivn5qTUTWPP2DRud83MXRiDO/E9E2RRmmbro99jboI3ShNisWw+f9u8Nk11n2lFz5MLsKma7xE7U2Kue9cKd+ACACIz3kwohJu/XLBWMTIfdLZ1npqZ1jfLB3psVXMc1aoJyGlr8Mu6Cb9JTdP3gQlmqdW0MXHfhLV0+trUeWDmg64JlirMdvK74QKCzDlxX07FzCPBBN1UTECH+64HJggAO1Nsgh3cHJSagL6qCbiq1fX3rWLWRon5vRxtBL61reO+boLoKmYecWuUTRPk58ZHYsJ1otwEzpgXm2ywMG4zcxdqE8rx1kHlyLrS5HrYoEAXMpib35ayr7VioO+Xm/Ut8G0H92oAwExVr6NKZgIsTeJMb6C/2y4kxt1jrLcODP17+fLdehzmfqo0gQ3V2MxBib52ZmZaanv26L3YwoKGJ8xOzUgt77t1m56Tm6+8UWpXXqqfN2kvS63e2CW1rLkw9O9+0HVRasITF6f1+1+IdM1XNUuekyY84qt//T+k1nH3jtiR2rmOmedfdZXUDuzX7foDHVtfe0jHR1rXi7VW1/XSy1/6wqF/753XMf7AA7rPekWv56fOaejTiSd1juv19P0GsXnOs6FzRhFprTWv91OVvn7WmVzvFae39DnU4QOzUovaC1KbagzPpYf36znZO6/zcjAhoQNzr7e1aQKjzXnPzOfa2tb5a1zMVAAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbvywGhf24Dp8mwbJ3Y42tixNE17X4LxnXttoDjdqHw2TCCGEqmnmvrWqTULT5RWpzUxrs08X6hKZxvWNitaKXJuCuowNF/Tjzkm3qw2sbe6CqY22LHWN5mMTctPpmabZJhSibxqglpnWZhe0EWutSlgNnha5RusmDGVgmrRXCxMy4HaSaBPx2Ow3HQmjOHtW54xWc8rUdB4pzVzgPsOgr03PK6bp+cK8NnjvtjWMYmtLw6a6Jnhh2wTdFGaeL83EVKvo+B0Nq+lm+v6JSZRw/4XMfDUhNSE81cIcr3k/dz1hZ3Jj1f0eVc1vngsjiExQQJHrD7K7pmdn54b+3e7o2N00Y9zk3oQk1eONzO971/y+1+pmXJrXZi7pxvCbaTFy84ELy7BBhiPn2Jxgt+ZxQVs2AKNv1ktmLozMDOYDfLATNef0d2t2VkNIpqc19Gp5Te8xerlel/2O/ta6tUYUDc9fWaTvr3dh/rqP22tSS806a2GXBr/MzGhQxr59+6TWauj77V7UsIel5SWpXX7ZYand8AIN7Wg//A2pJbO6j9OV4dCdhx9/QrZxoYWFmZc3zL1u6GsARGd7U2r79+2R2qAx3ryMi9/lh3W8TU3rQ5iDCzr2nzyr19vJVV0vXLGga6gTJx6XWjUeXledPHVStikrOrdMTen4++t7ntRjO69BWK+7QQOpqmZ9t7ym+1hbNesA8+QsMvcdq2d0DlqtmkCYUs/nxpKel7NPPjL072N33y7bdDvmWY25h4tN0OeMCQfr9XT+qjd0/mqYeXlc/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6wmTrWxaVZoM9y2CUXIByagIBkvmCUvTKDASCP4dlsb+mapabA5o81Uzy5p8ERmwi7mprUBamE+f2IagEaRftbMNI12oTtxouc9irSWJOZYTNP3YqRRe2FSbka3CSGERlMbaWfm/V0/9kpNP//odxhCCL1CrxPsTC7EIYn1um/Utel7PMZ1H4K/Vl2QwWh4Qqer1+kTTz4ltb17tEF01YR+JUHnuKyr80PIdKxmpsF53TRC7yUm4CozzdFNaEPFhUi5z2F6o4+GTERmzsxMcldZdfOefq+pmW/rDT3eSlUbKfdNQAd2prk5DU+LzW+U4+aRzITbra3qWqOMdTxURq79gfldHAxMuIwJhRiYsRWlus/chGjlJlHQNj13gTA2mGW88AQbVGX26/L5xtmlm+Pdm6VmnVVELuDKhdW4QxnriLEDTB89JLWe+Z1dPW3CDjY1PGJ96bjUWlVdGzVbeg9UGfm9TM16PY7N772ZH/11b4LtzD7OnTsvtS9+8W+ldtnhvVJLq/q5mk39/Ov33yW1T/7NMamd2NI5d2ttTWor68OhYRttvf8tzG9BaWa5GROGMz+lYUVXmBCaH33tDVJLF8x9F3akvKLX86e/fFpq/+Nvzkmt0jSjujYnpTnNOQlhS+eqz3/xzqF/b2xo8N4rf+xGqR3Yp8GcDyyZ4K5Sx/11V2lYzf6WjssNM+5Xb9f7pDMDnasLsw5KKvqbX2voHPHQfY9J7at3fU1qlx+5ZOjfa+t67k6fW5ba/Nyc1KZn9ZnWjz7vaqltrOh3OGOC1U4+8YjUxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuPHDakxQQN7TJp4dE1YzPTcltcg09sxMD/HEhCIU+XAD0GpVm/J2Om2p1U3j36Zp2Lltwm+aTfPahtaKTJuZu97o1Zo2VO11db9hoA1VY9OBPTc7GfS1AX08Gu7gDs7U4kS/LxdCVDfnqTGtjU27A/2seU4zdzwtNsE07j+b5GZ8uFppQliKoONjYAJMOiOBMC5Ip2/2efqMNl9PKzqf1So6f1XNTiL3Wc3nSk0wS881TI9NAIQZ+26cu5NgvrFQqwwfS7XithovXCgzYT01FxhmPlelqufdfdfYmcYNprHMWHAhe8trOh+40Jm4Mvx+ealj14XiFZkJnCm0lpUmCCvScdTrm7WMGW+ypgj+v3CXZh8u1SZySTfmfOYmVHB03nDH6zJjYhdWU9F5NDPHlps1n/uosU/wwQ5UmmvLhUP1zU3RmadOSe1//vlfSa1irje3/ojrw+uP1ozeE83NzkltYUEDvvbt0yAZF5Bzz113S23TBC9M1TQUYmNW7zHyrSeltuugBgLVVleltvzIN6W2kmi4RW7m6noyfD6ndunrEnfOXdCPqaVmskojnff6mR5bWuo1hp3pNT/1GqnNP6DzzfKWC9E1a5lTD0mts6LX5ZlTZ6QWD4av6Za513vkoeNSe8HzrpJabdncE5nf4//+lw9KbcqE9lVqeixLbZ2D4pZuN9/Q8ZaahdDW5obUrrjyMqn9yI/+iNS2N9aG/r1oAlEb5jmXC1ZuTetzudSE8U1PmdDCUufq+AcI4+MvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNZkJSshMc/TUhJpENvxE91Gt6HPRrmmYnhfDTTEbLW3O6QIbtrc1SGeqoY2Uo0gPrii1EacLiqiYz5+Z15amlqR6zH3TIDkfmPNuQn2S1AVDDH8XlUS3yVxzfPdZTXPlSk2DN/qFhl24Bvyh5Lk4nuYad4dCx8xocFUIPlgr65vrreICUXRs9UdCTaabGjRVMYEzHROG0jcBUp1cg5uKRMdz1ZyT3ASzbHU1qGu7ZwJnzCScuZwIc95NXlbou+9nZO6vmyb9LrjMZWi1TYiYC/2KTIfoipkLmW3wbeZy89u5MKdM55aOuVZdMEsc6zgf3SozYVGDvtYKE0xTBhOk4oKwzFIw75nxbD5rvWnCGMzosmE1rr+5+zLMeY/MPJ+OzJFu3Vbm7jjGC+irmnVl16yN3HXizjt2pooJBUgSrS3Ma3BMt6Nzy+wuDY4ZbOl2W5saMhCNrA0efehR2aZhgjkr5rfcBcUlqdY2zXHkhW53/uxZqe1r/ITUjkzr+mtzbVlqPTMH18w9S9VE70UVDd0cDYFw801w944DrWUDE6iYm/Xi4VmpnTf3iWFNw2SxM9304hul9vIX6fW20dXrbWV1XWpr53XMnDiuwTTVFz5PayNhMu2RAJYQQjh2Ut/r8RNPSa2/pq+dKzUwapAdldrpnpkzTOCOebQSZqdMSGap463oaG11Rc/x7l0aiHPoisul9s17vzH074MHD8o2sZmDv/GN+6WWuHAs87tUVvX96ubeMXXPdMbEvRgAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rCbPTYCJaYq5sKiNQqemtMlvp6/BMZ3MBLNsm7CakebgmWk0Xku0kfKg1AbvrnnzwvSM1KqmY6lrIu9CK1yz4oEJ2dA29V7igmlM6Ixroj/6nRWmgXweu7Aa3a5Z1wbW/ch8VnOe4kSfgReuiTx2JNfsf2ACs1Jz3bsQg8wEPLk8HKfZGA5Eael0Fnpdc42bcTpd1abELsPAhVlVTJhVz4TrbHZ0Hu1kLlBBX+tCglz4T2Tmqsx8Z9lIqEZm5r2aCYVI6hpCY4N+tnT+bpjfGxeSs014BL4lK3Ru6ZuAp3ZHg6A6JjzCzTdJomuD2IRSjSa4JKYJ+JYJwyljHfdRbEJYIhOEZebRqlnLbPd03ba5qQ3ZK3UzLyemwbtrmB7rWLWhPmb+LouRec4FbZk5KCr1eG2goGvSbub5gfn+x49EwsUuLnUeObvymNSinq4X5qb0t3Fufl5qm2acl5GOrenWcGDn2tqGbOP+ZiU36/WtLZ0fYnPdu/EczBy0tqnn6U/+8stSm3NzwayGuhzep+dpdaD7Xd9elZq7Z+uPBMzkdt1qQmPMvFQx99PPv1pDNg5fe4XUlvprUsuYb/AtffP8pmJCHVuJ/m4NanodzR+5VGp/9qefk1pk5pv52eHnBot79JnRm2/9J1KrVXWcbpkA4n6un2tzy4WESil0BrrmOfaYhvV8+WENznn8/Dmp7WnqmmxxQZ8vJbnOEXX3LGlk0TMwz3hqJpizmup7uTXqnsVdUls3a0337G9q9mGpjYu/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHFj94is1L53b5EQQpgx/bkqVd1NWtH/jXmsLZmCayXS7w33LChND6WO6ZOWmn5MsenZ5vopNFwvOtOCQ3oUhRBK16fIPAN2ve1i04stN+9Xb+jn0DMQQjbSU8D1xjItN0OeabFfaO+AYM6n64cSm353wfSzws7UN31FXd+tRk37lKamH2BnoKOh39Ox2mjqnFZtDu+j39G+hN0tPd5GavpBmvHs+m2UhenBaPo8un5nrk9tHsw4NwO9cHOVmw9ML6TS9Vwc6QHXz/Uz1Ez/EjcX9nv6HW4W+l3EpudkzZyTlmv2iR3p9JkzUnPXW25+3934cN1HS9NTzfXezkd+k6NI1x6Nqs5T7f547+/6M6em/1JkPlitbnpv6y5s/0bXk9f2pDVrreD63QWzrhgZ+6ZldRiYNU9p5sK81O86SvWbrVT1nBSmv2Tu5m/sSFdNHdCi68M+p30Ou6e0b2L9R14gtW8+8JDuYt79No6MrYcekG1G7xtCCCEyv/fudztxk4GZ02ZnFqRWNeu75WXt2XY+Mj26z69JrVboGvKNb/x5qb3/Ax+W2smnTkutGLmPq5s1xZVXaZ/H0b7jIYTw4De/KbXl1WWprazskVpFT1NIXZta7EjHvv5VqV16YJ9u2DXZHR0dWwefd0Rqr/ypV0rtscfOSm1jbXjNfvypJdlmzVz3Ry47KLUo6D3W4SNXSq3sbUotdT0Yc32m0axo/8bb79NaN9MxnWU6V8+2dL8vuu75UlvZuF1qo/dsJ544Kdu4dVZu1iPrm9oLuNWaltrZlTWpDcy6cqqln39c/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMKEInVwbdhalNnhvNLWBb6NqwgPqU1JzDZHjaLgLrwtd6JjG4Fmmn2Gmpft0YQeDvjZsrZmGy52ebtc1IRuuWXOzpo1XU9u43QXY6DmIzHPm0eb17tzVTMjGZqZNbDf72oi12dBLKjHdU+311DHhN9iRXKhL3cwZsUkjyDPTuNyMmUFfx2Uv6DUYjwRBpTVtytuc1eOoVnQcDbo6P/ZMM+jEzA8u36lmpoeQmzAKcz4HpoGxC5Nxc4sLoArm/eKRz+GCMkozP3RNc/y+mUddDFixrgE2jaZ2c280TId37EibGxqAYMMYzGsLE9xUmPWHC63z65vhfydmm0pV56DEhPENTEiXmzPdeHYBVy48MHH/Pdsk+UUmlCs2Y9+FjUWx1rJc581iZH2TmPmmaoL9srZZo9nAGT0nFfO7VDGfITNzK3amq2b2Sq1r1gadtt5jpf1VqR3Ye0hq92nmTLj8isuk1hoJIr39S1+SbXKzXnehUi5c04VtVUyoZZrqWL38iH4u96v/jW9+XWr1Uo+lt63n+Ng3H5badlvvbVwqWTkSfhOXOo9MmUVabu4nSxMI+rU775Xalgnhedtbf1lqrdbYt/e4yL3vvb8vtUsP7Jba/r1zUnO/ZXsf0MnlsssPS+3gi3T8Vkbunw4cuFS2aZkw4811DWaJzFyQ9zXMadDV8ZzF81IrTQhLr63PPmZMeHNlTgME48E5qSVmbeSCY9y6slodPi9PPWnOSWyeLbX0Xqff13N3/LEnpDZtUq+Sms5fC7uvkNq4+ItIAAAAAAAAABPHg0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABM3djfbvglhKU0zza0tDXto9rTh8vz8nNSqFT2cRtUFCgw37OyacIrGlDZD7nW16eZ2e01qFRMykZq8hqzQxqYucGW7rbWqadZcdY3VK64Rup6nTk/3kZr3G208G5km1P1Mz9PANHEdmMbtrp1/bq6T3rY2gE3MOQa+rTShDS6sxKmapJck1aa+XdNEfHVleGzNzs/qcZiG7Oubm1JzoTGF+Vz1mo57F1oRZdp83YmqOmekJoSmYs5J6ca0C7UxtdGwLRfOUZT6OhdmVa3qd9gwwUHVus6tW+a7qJkm3NiZShvSpNdg4UKajNgFs5gQPLNZCCO/l4U5NlcrzXh2v6nZwPyWx/q5kqoJozCBEqY3esjNzFya/+5tlgYhinQ7F3QTTPZLMbJfN7eYfJwQm3kvDEwIkQmwycw6yAV5pCZMCDtTx1wzm+beYXVNg2mCuVTvP6ZhLY8/9KDUKqmuK+ZmZ4b+nZugLTdNuQDAYMauu090L52e1rCHdluD5y6//DKpnT61ILUzJ09J7cF1DYU49vAjUnPj181fo+uZ7rauH+/68lellud6jzU7NyO1n/jJV0jtuh99gdT2HtbAD6YbfFsl0TXx2SUN6Nvs6n15tarX/T0P6txy5rQGwiRmATI3Pz3070v375NtDu7ZJbWpKR2Ti3s1cOf8ss6jM01d68/u1n1MN/U8leaecKHUeWlxrz7nam/pRNdq6Ty3uaX3J7kJGhydIuau1jmj0TDrNvObUa1oUHM9WZPa3l1zZh/6GVwo2bj4i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2O9vchAeMBhGEEEKvrY09O21tupmZhsijTUxD0HCVEEKojwTYpIlu0xlo49Syrsebx3ocWa7NTkvzWV1US2FCIaJIA3cG5vOXriN00Gavrtl81YRb5KYhtgTMmK7RLrBjfVvPZ3W2KTXXU76zpU1cXZBONHb0CC52hW1wbsJlzFhw/3WlacJqIhOUkLgkg5Ht2iaQq2LGXzczYQdmfNgQGjPu3fFWzDkZmIAGN1dXTPCE40JoChO84X5O0nS45sIpchP6ZT6+DbpJzXGkZjv7vY4ZPIKL38D85rmLMDZhDLG5tlxYjft9K826qhhZG+RmjstNeJwbH1WzfnJrmTzT48jN/BWbSSg2ITk2d868X27mqm6h64XEBPS5QJzRMKHIHZs5uNgUSzc/mHPs1lnu87twNOxMmz29jja6etV0ChPQ1tCAgsUpHTMvvOKg1E6dPi61h+4bDnBxv/fOYOACTHW72ATkuF/eqSkNTzh+/HGpdbp6LzIzNye15fNLUmvOarjd3n17pbaxoaE2Z86cNccyet7dfY2ZbwsNq7nkkv1Se/Mv/XOp1RsaqJGZ8JsxcwyxA1xyWINZCvM7G5v7iU5HA2wqFd2uX+i8sbGs+zj+5NrQv++6+2HZJk1NeJ7ZZ2p+U+em9TnSwqzOLYvzOo8uzGkQ6WpHP9eZs2tS22iZsOUpDXXZOqDfRVqZk1oS67pidmr4d2N2VsN6Fhf0/ZNEn0G16nqedpn3c8+l8tyEko33s2HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7ssJrENDgPpWk5bJoV93ra1HjpzIoeTKpdMVsz2uwziYYPu26aIbum6mWpjVMj7V0c4kI/q2tcXsZaq1X1Daul1vK+aS5s9pGYRui52S4yDfNTUxuMdJNudzV4Y6utzWmD+f5rdW2AurG8JrVds9oAdm7XvNSWl87rfrEjJbFeb4UJCuib0KeKCYpwY2aQ6Rh0wQPV0WvfdGRvb5qGzuYzNGpmLjCNxt3cWgb9XLE5JxUzVhMbnuGCF/R8uv9aFZl9uICO0d+NwoVHmLAxF/ZQmvPuGuu3NzelVqvqb0TTBAxhZzLDKEQumMZtZ8ZqMTABT6aZuwuiKUfnIBfcZTqIu0AX98HcOHXhcW4OLnsmWMqMQRe2VZr9ujmt3zPrtKqZ00zYlsyHpW5TmIAgN+8lZnkbm+MtzVrTfa9RMvZyGxe5wlxH7vqITa3Z0JDIAwc16GRhQdfYh1f0vuvcueWhf69dtk+26XT0PqFvAr62TahlZ6DjY+BS+0zawdXPv0Zqqxv6+/7UaQ2S6ZtAr5985U1SO3xIQ31WV5al1jahq3fd9ZWhfz9x/KRsUwb9XLWGrj1e8IKrpZb39bxvmPCQ1MzVqfn9ws7UaupY6Jnf8s0NvbbWNsyY7uhrExPfuzDr1vbD136Z6TOedk/H2sq2HlvPBGZtbutzhJNnNbjKBQ+68JumWWfUa/q5VlINkVrYpc8+nj+4Smr9bRPe3NJjaV02EkSTmnVLXeeWWlV/MyomvLlbrEot65ig5oFZe1X//vMNMxUAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e3ZktnRZNXHFBDRUNKChu6UNyVfOb0gtMc1Dk+nh56dpqaEp1VSbc04n2sSz09cGqFlumo+bhvGDgTZUzQptnpqbprBJbpqol9oAdZDofuNYvwwX5NAdaAhGd6SBs+k5Gkpzzmsm+Kbf1kbKkQmjaLT0eKNIj61iQiuwM/VMs+I41euoZhoJu2ASFzblggcqLlBgJAAhNuPDtF63zZBjG8Pi6HZmurWBM7EJnnCTdWECGkoTPJHaJvrmWFwwxkgtMcdWuCAwc0KLMcNqKia0o1rRuSUxcxp2psSM1XLMMeMCrkoTlODe7zukMg39080t7vfebWdyVOxO3ViIzLh0nz8yH8uG1Zh1VWz2W7iT0jXn08wl5cj3GJnzFMznCpmZb+2E675DPY7czdalCfrBjlQ1AzNLzO+nCR6YSqekFhV6j5WZEIh9u2eklh8ZDmvp93Rd78Kc+iYootPR+7r2tr7f2tqW1L7+6DmpbW3pvV2/p2NrY21dau5e5Gt3f1Vq37znG1JrtnS/rSk9n/WRtUY1dcFierxXHr5Uanvm9P1PP/GIHltTt2vWXeoq4Vh4WqNift/dM4ia+U2dNvddJucxCuamwOyjM/Jbu9ozITSFziOpudcrchPa54LtzFohdjcZZrlQNe83NaXPl2bM/LBrYU5q+UDDf1Izfy/o24V4enHo3x1zn9wvtZb313S7Qr/XSk0/Vz/Tz5+bNU+lomE94+JODAAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd/NttRmxYOB1rpdbWA8Na+NfwvTuHzQ12bey+fX9FBGGj2XLX2vWqoNgqsV0/i5Nq3HYZrP93L9XK4he2Iathaxvt/2+qbuo69NRmt17Vg6aGuz08KENrj29Ult+CtvTGvj60pDv6+8MI3WTThFtbYgtTLR78Kd44FpiI2dKUl0HKWm4XBqtotNksrABDeNBqmEEELkQitGx7lpPl41ASnu/WMXHmFyDXIzt/RNAIYLVEhj3a8NtzD/GSqOXAqNKbkXu7SM0fd3ARPunLh9mvPurhP3Yvdf3PyciZ0oM02/czfezO+WG4RmCIbEzAfuN9RlpIySOek7HIcLn4pMUIYLmsrMnOmDaUzNbJe4k+K4nBc3f+UmTGdknWpDxEzV5FrYfbrt3If1GTmE1eBpjaABLpWKuT5MyEQwwQZuXnJr7Gygv5dZPrx2GdTdb6ryc4Y5jp7OI+0tDahoNTUo4Z6HTpr30/ufvS0TlGDuWcttDbXRO7sQ8k39bJ2Ku98Z/n6uu2KvbDPT0nusvXt2SS0dmGsi03uxRqT3sXUTTFNz1w52pNnmotSm67rmCXPuOY8J4M11TG9ua9hwp6fvd/LMyBiMdex2+ubezATfVMz9Sm7mJZeDW5qgmzTWDVvmecjuRRNMs0uDwGabOlYbkc5BvU0N78rM85BKOjz31yqzss18S/eZlfp9ra3qHNwZ6OfPzDl2a9RWVZ+ljYuZCgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1W4xoOb61rs8vCNBCPTHhEta5NMUvz2u62NkpdPTfcFDXer01HB1U93srANPStadPRSqrNPl02Q2KanlcTfW2tqZ+/acItllfXpNbOtKFsP+vqfiva8LVumqw2GsPNTus1bXzdN03q87Fa6IeQpvq95qVpwl3qOanVXSd47EQu1CRN9ZqxDdNNKEDHNm7XWjXVcTm6XxfE0Mt0nkrMZ3D/5ScqTXiCC7Eww8M1pA9mv0lsjsXMyy4Dw4VyxS4QR18qoTY22MIUCxdMYz6Dq9kgD8fsAztTt6NBAe76cL/57sp3gSgu/MReqyMvNdODfy9zvG7s5ibUJjFzgZuXSpeOZdOmDJsIoyV3zH5IuxPzvV9XugnHfQZTciFi/ooY49iwYyXm8khrLlHBvNiMIxeDlLrfxooJIxgJ5RqY+yQb4ud+P2sm4KmuoQuzJiRztwlwecHzL5Pa5oYGO3R7LlBD95tlem+TmdBVt65MU7P+GFlrVat6/5eYc16v6/1araa1ZlPvT+umVjWvdceCnWnvJYellnX02ULkZhKXl2XG/qC3IrV+pmP1wCXDY3+rrWNy1YRF9TomVso8H3FhNbWafoiaec6TmGCWvh5emJnT8daaNvtNNVgrNpP6wATxxJGGd43+IJgpPgz6Zn2X6ns1GmbNZ95w0DGfwZynsmvW0GPiLyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATFxUuq7nAAAAAAAAAPAs4i8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIr9Px48fD1EUhf/0n/7Ts/aeX/jCF0IUReELX/jCs/aeAJ77mG8AXCjMNwAuFOYbABcK880/TDviQeSHP/zhEEVRuPvuu3/YhzJRH/vYx8LLX/7y0Gq1wtzcXLjpppvC5z//+R/2YQE7yk6Ybz760Y+GF73oRaFer4fFxcXw5je/OSwtLf2wDwvYcZhvAFwoO2G+CYH7KeAfAuabi1/6wz4APDve9a53hd/8zd8Mb3zjG8Ott94aBoNBOHbsWHjqqad+2IcG4CLye7/3e+FXfuVXwqtf/erwW7/1W+HkyZPht3/7t8Pdd98d7rjjjlCv13/YhwjgIsF8A+BC4n4KwIWy0+cbHkReBG6//fbwm7/5m+E973lPeNvb3vbDPhwAF6l+vx9+7dd+LbzqVa8Kn/3sZ0MURSGEEG666abw+te/Pvz+7/9++Ff/6l/9kI8SwMWA+QbAhcT9FIALhflmh/xPs8fR7/fDb/zGb4QXv/jFYXZ2NrRarfBjP/Zj4bbbbvuOr/nP//k/h8OHD4dGoxF+/Md/PBw7dky2eeCBB8Ib3/jGsLCwEOr1enjJS14SPvWpT33P42m32+GBBx4Y639+9N73vjfs27cvvPWtbw1lWYatra3v+RoAPzzP1fnm2LFjYW1tLdxyyy3PPBQIIYTXve51YWpqKnz0ox/9nvsCcGEx3wC4UJ6r800I3E8BzzXMN89tPIj8lo2NjfDBD34w3HzzzeE//If/EN71rneF8+fPh9e85jXhnnvuke3/63/9r+F3fud3wlve8pbwjne8Ixw7diz85E/+ZDh79uwz29x3333hZS97Wbj//vvDv/k3/ya85z3vCa1WK7zhDW8In/jEJ77r8dx5553h+c9/fnjf+973PY/9c5/7XLjhhhvC7/zO74TFxcUwPT0d9u/fP9ZrAVx4z9X5ptfrhRBCaDQa8v9rNBrha1/7WiiKYowzAOBCYb4BcKE8V+ebELifAp5rmG+e48od4L/8l/9ShhDKu+666ztuk2VZ2ev1hmqrq6vl3r17y3/xL/7FM7XHH3+8DCGUjUajPHny5DP1O+64owwhlG9729ueqb361a8ur7322rLb7T5TK4qivOmmm8orr7zymdptt91WhhDK2267TWrvfOc7v+tnW1lZKUMI5a5du8qpqanyP/7H/1h+7GMfK1/72teWIYTy/e9//3d9PYBn18U835w/f76Moqh885vfPFR/4IEHyhBCGUIol5aWvut7AHj2MN8w3wAXysU833A/BfzDwnxz8eMvIr8lSZJQrVZDCCEURRFWVlZClmXhJS95SfjqV78q27/hDW8IBw8efObfL33pS8ONN94Y/vzP/zyEEMLKykr4/Oc/H970pjeFzc3NsLS0FJaWlsLy8nJ4zWteEx5++OHv2oj05ptvDmVZhne9613f9bi//We8y8vL4YMf/GB4+9vfHt70pjeFT3/60+Gaa64J7373u7/fUwFgwp6r883u3bvDm970pvCRj3wkvOc97wmPPfZY+NKXvhRuueWWUKlUQgghdDqd7/d0AJgg5hsAF8pzdb7hfgp47mG+eW7jQeTf8ZGPfCRcd911oV6vh127doXFxcXw6U9/Oqyvr8u2V155pdSe97znhePHj4cQQnjkkUdCWZbh13/918Pi4uLQ/73zne8MIYRw7ty5H/iYv/0/WapUKuGNb3zjM/U4jsMtt9wSTp48GU6cOPED7wfAs+u5ON+EEMIHPvCB8DM/8zPh7W9/e7jiiivCq171qnDttdeG17/+9SGEEKampp6V/QB49jDfALhQnovzDfdTwHMT881zF6nZ3/KHf/iH4dZbbw1veMMbwr/+1/867NmzJyRJEv7dv/t34dFHH/2+3+/bfYve/va3h9e85jV2m6NHj/5AxxxCeKaJ6tzcXEiSZOj/t2fPnhBCCKurq+HQoUM/8L4APDueq/NNCCHMzs6GP/3TPw0nTpwIx48fD4cPHw6HDx8ON910U1hcXAxzc3PPyn4APDuYbwBcKM/V+Yb7KeC5h/nmuY0Hkd/yJ3/yJ+HIkSPh4x//+FA647effo96+OGHpfbQQw+Fyy67LIQQwpEjR0IITz/p/qmf+qln/4C/JY7jcP3114e77ror9Pv9Z/48OYQQTp06FUIIYXFxcWL7B/D9e67ON3/XoUOHnvmBXFtbC1/5ylfCL/zCL1yQfQMYH/MNgAvluTrfcD8FPPcw3zy38T/N/pZvP40uy/KZ2h133BG+/OUv2+0/+clPDvUIuPPOO8Mdd9wRfvqnfzqE8PTT7Jtvvjl84AMfCKdPn5bXnz9//rsez/cT/37LLbeEPM/DRz7ykWdq3W43/Lf/9t/CNddcEw4cOPA93wPAhfNcnm+cd7zjHSHLsvC2t73t7/V6AJPDfAPgQnkuzzfcTwHPLcw3z2076i8iP/ShD4W//Mu/lPpb3/rW8LrXvS58/OMfDz//8z8ffvZnfzY8/vjj4f3vf3+45pprnmko+ncdPXo0vPKVrwz/8l/+y9Dr9cJ73/vesGvXrvCrv/qrz2zzu7/7u+GVr3xluPbaa8Mv/dIvhSNHjoSzZ8+GL3/5y+HkyZPh3nvv/Y7Heuedd4af+ImfCO985zu/Z8PTX/7lXw4f/OAHw1ve8pbw0EMPhUOHDoU/+IM/CE888UT4sz/7s/FPEIBnzcU63/z7f//vw7Fjx8KNN94Y0jQNn/zkJ8NnPvOZ8O53vzvccMMN458gAM8a5hsAF8rFOt9wPwX8w8N8c/HaUQ8if+/3fs/Wb7311nDrrbeGM2fOhA984APhr/7qr8I111wT/vAP/zD88R//cfjCF74gr/ln/+yfhTiOw3vf+95w7ty58NKXvjS8733vC/v3739mm2uuuSbcfffd4d/+238bPvzhD4fl5eWwZ8+e8MIXvjD8xm/8xrP2uRqNRvj85z8ffvVXfzV86EMfCtvb2+H6668Pn/70p79jfwMAk3WxzjfXXntt+MQnPhE+9alPhTzPw3XXXRf+6I/+KPziL/7is7YPAN8f5hsAF8rFOt9wPwX8w8N8c/GKyr/7t6wAAAAAAAAAMAH0iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcem4G85PzUitLMZ8ceRqpZai8Z6LFsXwjqNS3ytOdKdRZA5EXyrv/51qSaLHWxTmWGLdb6Wqr43N54/iRGtSCWEwGOixlLrl6NGVuX6uSkWPo2aOtzRHEpnP2kz1M+TmO3PPxR8+edZsh4vdG/7XX5JauXlOanG1LrUkrUgtNVNLN9drMI/0/fqD4Renib5/MWjr63pbUotbDanNTE1JrR7puNw7rft99N4vS22wsSq12d1XSe303sv1+PZdJrVobVNqzUTH9Eq7I7VkZJz3tzdkmz3zLalNV/W7Kcz53FpfkVo5yKR29Cr9/Hv2HZTar739f5caLn6/9r//U6ldcul+qWUDHZe7du2T2vSCXtNb3TWpzc7vklq9NT30794gl21C0Lng8iPXSy0pdbs9u/dI7cknH5Paww/eK7XHHv6GHkqh421qWteLlbqek0pV577W9LzUNtbWpLZ7dlpqCwvDr929/5Bs05jXzz89p8cRSv3ReOxhPU/v/93fltqJJ++TWq+r89cXbrtH94uL3sGr9Not9Cc1VJt6ixaZOSjr6mtLs4aoJub9RqaXIuh8U8bmfs3cXwwynQvc/U9i7jFy87mKgdku1+OrtapSc/NS0dPXmtMUKnWdN+OG1gb5yH1Xpm8WxeYzdMz6xtwT1+d1PVqYc5z3db/ufJ58WOcgXPwWmnoNVut6L1KtmnubTMdMv2PW+uZ5SKOq47IcuSfIRsdQCKE0D5cS8ywkMfchsXvOY2ppqnNhYp5VuMdcbg5KzH2he+bkXpuZ2jgfY+xnVebcxeb7MlNV6PX6Uttqay3E+vnPr+t9scNfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDakoTwlKYwJHEdLt0jYkL04y0tI03v3f4S1rRRpypaWK6vd2TmgurcU1XS7Nhbo7XBc64eBnz0lCYfbiQDdNvOtRNQEee6347neFz4Bopx+b5dMOEggzM99/vaxPTvmnC3Kjrh3DXGHamKNMmt3FsmrSbhuQ905C8ZZqPb2ye1+1m9+rBjDQh7uR6jTeb+v6lCTvwHYi15Fokd9vaaHymqQ2neyY4ZzvXkJh6UxtJb26brvdb+nmnppp6LKb5dRyGv5/1bdMIf6DzclLV+Xt+VsMuXnLtUaldfkhDRo5ccUT3YeZM7Eyz83rt9jMNaWq3dXyYPuBheUvH4PnVJ6VWbeo42rU4PAe1uzr+5uY0IOdHXnCDvn+q798388PmpgZcnT13Smq5mfsGppn5oSueL7VQ0UCY5Q09n2Wma4Nqa05qC/v0HKwuLw8XmjpnLjQWpNbMdS4c9LSJfqOun2F7W/eRZfraWo35Bk+LTCBMo6a/b9W4JrXMrI1KE1bZMPdAaV/XJKNL9n6hv8eFyXKKTbBFpMuxUJrg0NLcw7iQudLcw8Tmpsjddrnbibhqdmz2kfXMvVhwAQ3D67TUhHPkff1uQuLCLsx9Yt/cs5r7RHtOKsw3eFpq7vNrFR0LLujE3bIk5pmLyaQKwY39kYGZxiZAy7xZ6tbrbpCbZ0suCLlixqpLa3GhNgMzV0Xmc9hzEptJ0mzogm70mZuZR9xxuOdy5rtxslKPt2/mTLcOHBd/EQkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4sYOqylKbYrpGmDGqWm66d5voO8XmZCY1DThjUe2M4dhg3RK08TUhdXEpslzUZgAG9co1Xz+QW4am0Z66hOTQlNmesx98zHyXM9n1TSUrdeGa0miDWCrJiiibz5rluk+gwmmKSPdbmvbNNduaGAAdqYkaIhBWtGxtd0x4SqpNiHe7mjT705fwygqxYzUusXw9evG31RLu7n3Orrdwsy81CIzZ2xt6LEVAw1FSM0UVKtrQEU2ZcZWRc9TPdLm+Gldx29va01q5qXSEPnoZRow8aJrr5LaFZfskdr+Rf1uquYEDPp6ns6ffUJq2yb859prXyo1XPweePgbUpuZ1TGzuFvDrBYWp6XW6evY+sZ9D0qt1tSxv7a2NLyNGc97FuekliQ6MT366P1Sm5/VOag/2Jba0vJpqdVNyEK3q3Pr+WWdv1q75qSWpTqm+2YiufSSRak1zJx2dmlt6N9FrN9DN3eBHfo91Cr6/r5xvf4GtV2w2DTrGzytWui6ez7REKW0NEEq5l6sqOl16W7u+m29F8k2h8dvZtbwSdOEHZibJxc3WQxMMKm5K3QBGFFmQkJNkJ8Lh4pMME1k7qfynruhMuegbz7dyNdobjtDaoIScxOo6MJa+21z32nuYxOzDjK3dtihkshd4yZQzQTCuPt8+0zDPDfJzXaVkZAcH5liAo5NzT1vKsxcEMyc2c903VKa+TbJTSiXS/AxwanZmME51ZqueQrzTCeM1FzgZmK+h9FnZk+/lQl6NcFaWaGftVLTtUzH3HeNi7+IBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcTyIBAAAAAAAADBxY4fV1Ora9NspctOY2AXCxNpQ023nmhrno019S32e6nqJNhr6GSLTIDhx6TemeXFmWjMnVX1tPdFGpKVp4FyY5rG5OSlpva7Hp6czROZzVKvD5yAyzVQrLqxm0Nf3d681n9V91y54pNKalRp2pqoJRSgKMz7M+C0z01jdvF9Fe/WGlgmRqlWHwyKSakuPzTQfryc6TuO6vjbEZm4xncYrdR0fsTkncVUbCa+3tTFzU4d0SM15qsa64f5LNJznyNFLpfa8K48O/Xvvbg3KSIN+huUzJ6R27uyS1KJgmr6beW92Xs/drkUNB8DONDWrY7Xe0rnA1bJSU6nm5zXUZvfCIanlZn2ztT0cftJo6FirV/V6fuLko1I7feaM1PpdDaZ55NFvSm1947zud5fud3Z+TmqVmh7zbV+8U2rLLrSuacJqdum8uTinIUHzI8eSV/R1+ap+XxsLGq5z+IB+h6YPfEgrOt/MzOixbWys6ouxI8Vm7dFf3ZBaFps5yAQPmIwFew8Uaib8ZXt4DRWbe7jWQNcjdp9m3dIzoQguwCapm5CFqgl7MOPNBWUkJhTChaSaW5bgck0Lc96jxvCLC3PS3RolMoFZuQnSGQ37CyGENDb3kyZgqBiYiww7UrNmnt+YayZk5qYg0+vIDJkQuYBgc00P8pF9mDFjpoeQmbWSC3kpzXxTN6HHhQnhcfnDmQlwsZOrm2/Ndu55SKXU78cFELtjFiaky3yFNmRwY1vXRvloIlfw91g2vHlM/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6zGccE0kWkQXBbaYDN2zS5N81TXADNOhxuADvquKa82Ca2bEJZaTRtx9k1D4yg2jVIrJoTlB2jiWZjwG1drVPVYSpdWY/Y7+jki87osMyE8JngjxKZxqmlY696v3tBAjTg1+8COlEQ6t3T72ly3NP8tJTLhL3m/K7WZil6DUcdc09FwbXFeA1e2trek1s3aUut0tPFxVtHjrTSaUsuDNpIuKrpdzYTpTKd6Pi87eInUDl95jdSuuFQDKg7t1+bKnfaa1NJ0eH49d0YDNVIz78/N6fs36vp9uQbv7YHOaedX1qX25JMaiPOiF79Warj4ZYXOLVPTM1JrTutvVLurY39tQ4Mn6i0dv8tra1LbHgmT2d/Q4yhjDVc5dfpxqd1591ekNjul79ft6PFGsc5VHRN0U6/puPziF/9Gao+d0tde+YIfldoNN1wvtVaqa7w9C/o5GiNBftt9nR/uuf9hqf0f9/6Z1C7Zr2FWt/7zfyy1vft2SW1j87TUamb+ws6UmaSXfKBrlG5bx2DP3GNVZ/Q3P66YoAgTRjGaLxMl5p7LHG/ZN0GahbkXM/dOfZOdkZuQCReAkcQmdNQERRQmZKJw4aQNc89mloHxwNzHjdwrmtzUEFITOGOCeSrmpFTMG5YmSWfgglNTc0+IHWnarGVKE4aSZTpmKub6jc2zhX6h222bEM/Rigu96ptnS3Gqz2rynh5vZF47bUJCa2Z8uPkhM8+vXIiwe62tmePr93RedqE2o7XSjPu+eR7W6+v793q6Xdesl0LsPoO+n7tOxsVfRAIAAAAAAACYOB5EAgAAAAAAAJg4HkQCAAAAAAAAmDgeRAIAAAAAAACYuLHDajITCmB6EIfIBa6YHr+u4a5rvOm6EGf9keahpnFommijT39spnlxappBm6CbwnywbtcF56hGXRuvlqbJaJqYRrHmvGemAWpuGkfH+fDnqFT0EkhGu1eHECLzzDofmH2aJqaR+Q57JnhkkK9KDTtTMXCNy/U6GpiG5Ilpmtyo6nU+MCExnULfb7s/HHTSKExT+Uiv536k79UwYzLv6JgpQ0dqUy1tZr738GVS+9Hna+DMgcOXS23PQX1taRpCnzz5DamdPaVhGbMtDc6J8uF547EH7pVtrr76KqmdP69zwf0PfFNqjzx6XF+7oud9Y10DRXLTrPst/9v/Q2q4+O1a3C21Sr0mtSgxa4OKbldr6DivT+n4qJgAm3R1+Po9c/5B2WZl8yl9/7p+hmP36dhdXFiU2pVHD0stN2uK0gSBbWxrKNfJJ09Jbff8ZVLbZc7Ja1/941JbMCFBadBzvLU1PC+dXdV5amVT59aZms6tg96a1O77pob/DDJ9v40NDceq1PQ6wc4UaXZCCB1do8zNa21zRYOlVs7rWKjNm8A3EwwXj9w/RRVzb2JeF0wwZzDhOokJbKhNmRAWc9/VN4GY+bZZG5r7vbih60AzfYdg1ovBBGwGc78zGmSYmPup2ISa5pF+rsIEhfQz81qznfuTojgirAZPc5d46u79zcOFstTt3Putb+jv4Ka5PxsdhC7geDTkMoRg55u+e38z36ys6xql1dB9NBs6Z1arZu2R6m956Z5VmQCuYJ45uech7v5kNIO5MM+++pkJoTGhPi6U2T3Tyk3AmcnRCfEP8HeN/EUkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgIkbO6ymMI3LI5eaYroBu7CSyDTZNK05Q24ab46qmSCK1HyySkWPo1ozDUZNU+JuW48uMZ/VNTstTFP10nzaWkMP2vRxDVGk71dN9ZirpgH71MzM0L9bzWnZptfVMI7VFQ2PqMSmQXbFhNrkJhSkp81Zs7YGSmBnarf1GhyYuaCSmObCpglzVJqAmdKEOZlAgc729tC/86CNjxstvcY3TUDKTDEltYOX7pfa5Ucv0e0O7JHa4tyC1ELm5iqtbZx/XGrVpnYh/tTHPyS13rY2pv7nb/rnUtu3d3bo34f3H5Rt5qb1Mzz48HGptft6bD9y3Y1S2794yByHnuPp2XmpYWdygXq5KZrNQm7WMrVUf1cPH/oRqb3gR3Q+6I40EV9b18CVpZUlqW20V3Sfhw9Ird/VxuXLK2elVhbbUnNzcMh1vt01r8E5U1P6WWtmHVT2dL9ZzQUS6qG0N9eG/p2YgLOaCcV40Yv0u+l2zkvts5/5hNSaLW16X6s1pLa8viY17EyRCcrb3tI1Sr2iY2Z+j/5erp7Usb+xrO83P2WCKEeGYKtmAlfMzOeCAiVNIYRQuOCXTR33UU9fW5/VQT5wQS9mnEcVHYMh0WMuzb2duz8N5v4xGQkxLc3nd/eTkUn7KFJzP90wk1xmXtvR+6kwGuqKHavd1eujbkKpGiZYyYWE9k1u08CFOcUuDHd4H5lZUwzMPUxqxl/N3K/1zGfdNmEtPROs62oLszrf1lO973Rhy7F5RpaZsCkXEpSbgOjR8JvMBNr0zblza1kXdJOYcOSa+T0wj/TGelb3nfAXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywmtg04XVK1+TXtXg3bxebpqixaSxeGWmompomv66xaWq6m1er2rC1KLXZaW+gTUyLvjbnnJ4yn8E87h2YRqRzLf06ZmdM+Euh29Ub2tS6WmtKLa22hv5dccEehX7Wel2bwraadanVanqO29vaNLtY1Vqw1w52orZpvu0a5FZqZvyaBr55VwMQjrR0zLSq2uD8bDzcXPjAlr7Xxuo5qb18v4bLvOgVL5fa0RdcKbXMNFUfFDrfPPzAfVL7+tfvldo//b+8TmpN03A5MaEQP3K1hr/86Z98Xmr/r3f+ltT27B7ex649i7LNvkOX6+sOa+2Vr3qF1Pbv0zCOBdOEO010nisT3Q4703Zbx3Rqgtf6fa3Nzu6SWtbV38tLD7xMalc+7xrdx0hD8sQk73UHGpjV7p6Q2kf/6L9LbWNDw29Onjguta11PSeRyU6YndLPP93SefTQQZ0Pk9gEOQx0bZCUOlZLE6C4uHu4sfyJMxrqk8T6+5AVus9GU8/7/n0acFWaBvcnd+t2Gz0N+MLOVCZmILW0tNHWa2bPnP6Gzs7pNb32lIYtLZnQhvmRNXtkluGluV8JA12PJJGOmczc7JUmSCUy2TepuSdMGjoHdwZmTA90DVlb0Hm5iPSz5SZEK66a72zknqUwn8ucuWA+lv2zoNi8uijNnGl+IyIXfoMdqTDPYNbMOiBM6e92q2HWyWY+yAsTrmKCquKRByKxSeTNzT1cZq57N49WzPo/N2GdRaG1ra4Z97GGjrrwrlC6cCgTEmPOU2k+b2LmpXJkPojM/ODeqzT7TMyzNadpvn93L97r/f2f3/AXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7sHpHukaVr6ZeZ3gGuR6L7X5Mn5n93XqvrIVaq0cg22iegyM1OTf+SotCd9ruup6XWXG/KyPQ8ShLX51L7K7aa+n5TU9rHLU61t11S0X6QRaH7GPSH99Hvag+anulz0nL99Kb0c1UrpiOKuVA2t7SvUr/vuqlgR9L2QyE3PTOSVBsLVc3sstCak1prS9+vf+6s1K7evW/o37UN7c/Wf/Ipqc3XtbfG9oPflFp7e01qM0e0D9Su52mvxqVF7enyvKOX6LFMa2+keKBjPy31xL/0hVdLbXVd56onv7kqtc7qcN+6J544Ldvc9+CTUtvO/qfUilg/Q2p6/O6f0XNy2aV67v63t71Navukgp0givS6jxP9/WzUL5Vava59SjtBew4OzJqkq1NJyEeapWWmv0+1Oi21jTU93nvveVRqC7u1p2Nr6rDUDl9yo9TSyoLUTj55UmqD/uNS29rUOXJ2XvtG9ruuR6SO/dws05La8NifmtfzVMT6XXdMP7nplp7Po4cOSu0Ln/tLqbW3tDdlrTr+chsXt8z0NCxS16tQr9WNDe1ZNjM/I7V929rjtb+l66VipI9bp6Pb1HQohFpdf2dL0++tMDeA/baOt7LQAT1omz6UfV171Mw+ItNDtmrGYBnrh8sjvT/pmT7j2cj6M6qZNYq5ec7NfXJpGq8l5nMN+qaZ5sD00DX3k9iZKqnpm1gx9+Vt/e2tVfT5SmzapaZmu4rrkThSq5rXFeZZQGHGsxtHFX1kYvtGmha3Nl9gw8yjpekvOd00PfftEDQ9Xs3zJTOVhmi0uaxpS+merUWxHohbP7mMF9fTMjXPtBKzj3HxF5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJm7s7tmlaVgZmW6aZenCSsZrbJmYBqiuYWeSDm8Ym4a+LqymUjHHm2tT4qppGl1f0FM1Na0NUFNzLO6zNpoaLpOahrJxxYRMJC2pRYk2So3Mc+bRcJo80+akTdN0NTbN/Dtb2sR1YBrPdrqmiakpdXumeyx2JNODOJQmCKrsbEpta2VDak+ZBuxn23rtl5legz992XDQycpJDWJomFCpe8+fktr88SektnlOQ2MqV++W2tF//BNSy6e0Yfwl83NSO/7AOalNl2tSi05ruMVdX79Xal87rq/NOrNSq5bD531uWpvqHz2iETHVqs6P3Z5+hyfP6+dKGjqPvviGl0mt3KVBFtiZTE5AiGP9zW809PotS73etjY1rCTP9PpdX9fgiZX14VCXSkN/xxs1DY357Gf/Wmrb61IKy6vndbttnVsP7NMxuLKmc1qvozvZXNLt3Jonqmlz/LUtre3K56QWEv1+etnIFxmbQI2gc3VeaG1qWoN05hY0mCgz3//U3LzUVrsrUsMOles6w4V/DkxtfVPXPFGq6+65eb0G13o69gcjIRDttt4TFcEEVpj1mPvLlopZ7JfmeDOz9gqj4QwhBDONhiQ2YQ+Fvt9gSc/daMBVCCFUajofVFNd3/Sy4dCdngmxyKp6bJk5topJ2ShjnVtCVfeRm3CPSKdR7FTmfqpufo/bW5qet7KutdlpfW0lNcHC5nnQYGQAl+b5kHuv3ITVuDnTpbUMBjqnuecthVkI9nr62rVtHVz9gU5MLRNYWjPPoVwYcmHCu/KR53CZOSeFOSkuCCs28/Los7UQ/Hl3wUH+yxgPfxEJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDieBAJAAAAAAAAYOLGDquJTLNLF0zjtzONhE2AS1xxoS4a1pKONNR0zZUr1brU8rwntWpV97k4O6evzXQffROekDb1lNZM4+PcNDgPQRvh1xL9/C4kyDUKTVzoTnMk6CfR46iYq2JrTZs8r65pw+VqXYM3pqf18586o+ezN9AmzNiZyjltIJ6bBt9bG9pI+eRZDU8ozHW+VjUN41MdR18/f3ro3xsrOhaqAzPWWjoHzUc6Z3TXtIF8/rePSG3wDQ2SyWomAOJnf0xqp6o6Zxxur0lt+st3S622qed4V0fPXWPhsO63HD5Xj6+uyjaPm4b0VdNAvtWaklqo6/y458AlUvtHL75Bal030WFHSsz8EMfauHttTeeWyASinD+rIUoujMFk24VzZ4fng6kpvU4/e8cXpPbpv/is1JZXNSBl04TCpQ0Nx3r85GNSO33+Saldcam+9srLnie1PNb5cMuELJw4q0E/jVkNlirMf0fv9obXEG2zRotjXWdtbOjao93Ra6LeOii1XqnhgZs9c97bujbCzpT1TIhDV2smSzN03DXd1uDI+WkNq6nP6Hoh3xj+jc5HA59CCJG7XzH3If2OSUjJzb1JVefWxIRHuOxTF5RQuDBVc48ZReYcdzQwrLelr63UdP6amRuel7JS59Z2V8d935y7IugcVJT6Xbvw03hKz2dB+Ce+ZXtbr/FKQ3+3XABcp2PCq0ygnAsYdWue0SAaN3YrVX1mYB5nSPBNCCEkZlGV5Tq2uj39DNWq3k+45zcD87nafa1l5rPVzdxXMyG/kUndyUcCbFw8jAtvTsx8E5v51qUIZyboJzNha26/4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3Pjd+k2ggG2VGWktNgE2rq9lvaGHUzHNQwfd4SajSapv1tD+8aFa0easSaIbNsxxFIUG3aSJNjut1fR4q3Vtjp6ZhsuJ9isNZWEaHZvmz9Wqfo4o6LHUp4Ybr7rGz4O+7nN1Q5vCDgo94KlEgy3OndVG2pub2jw2stcYdiIXDuX+u0k301pl9wGp1eo69qdSDZ3Z2tBaPjJGkqYGJyyd1xCL2WltDL+QmnHa0H2muY7BxTVzTmKdq9br2lT9R2/8Ean1b/+q7ndbGxjvXdd9vNjst2ICrQ5lw58jqelcWJhxXxT6vUbbOldtmyb9/ewpqd3/538htR/5pf+z1LAzbW3qdVSt6Rgs8g2pzc7ukdrUlAYrVU0D9uaUzkvRyELg9i//rWzzxKOnpHblkSNS29/VufChx/W15zZ1bJ3fNA3pSx331ZrOh7/wi/9UaqdOnpDaI49pIM5f3/4V3W+ic1qzqed4fW34e+yZwIZKRddFpqd8+MpXH5bazJTOVe1Mj+2RJ85Ibbut8yN2pv62XkeddRNWYq7LqKbr/465P6l3tdaa09/fZCQoYX1Zgy0yEyQZmfCpxMxxbRNsUXb0/Zp1s6ao6XnKTTBgZnIuTdaYvd+JTEBDXOobbpugsnIktGJ2l67vpk1QxoYJJupWzLHNmHsiE1aTmXkuM/vAzrRrflZqq2Zc1hp6z9Ko65heXVmTWs8MwsgGmAxfv6P3VyGEUPb0XidNdX5wgS5mONvjKAY6ZrpdPSduv+45T24m674Leunos5S+OZZGzYTJuPSuETMzuh6r13Ve6o35+fPczI/Bhev8/Z/f8BeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmjgeRAAAAAAAAACZu7LCaYowmmSGEUJbaPDStaBPLtGpCJlJtfpxn2lCzHAnEqabaOLTZ1Peq17W5uen7G4rc7NM0Iq1V9cVRqc0++6ZpcNWEZ2S5fh1pRT+HC/BxwUGDvjar3l4fDpMpTfBNxXyuWkUb9zdqep565rMuLZtmtOY6cX1nsTPV+tr42DUNXh2Yxr+mx2+1ajqXb+l1Xh3odunIHFQNJsRisCS1maaO8WbfjHszt7R2a1P5bqZBUHMVPd6nHntC93vZXqmdMvNDp6En75JUj2Wv2S46fV5q0yPzTTfTfZauq3xifppM6Nl8VbdbWV+V2rm77pLatf/8H+s+sCN1Ovq7vb2l462a6I/U6qqGGCybZu7/309qYFKjqYFRS8vD4/f0E/fJNi994Q1SG5i1TKej421uYV5qX3v4tNRObWi4TF66Buda++9/8MdSW13RObI1rU3UZxYXpXZ6Sb+fA/v0c1Sqw43a01h/H7odDSZyzeyzQueWtS39XWrNHjTb6XnPg0nUwM5k1rqxCd0Mmdmwb4JuMr3Oi6r+DhYzOt6qI+uqhgnZ623r+CvMoSWprgvSqglx6GiIg6vlJhAzMWM1NefO5mSY+9iyNK817xeZuX9r5LzkpX6G2WmdR+bMGrVvgl47JoyxV9FaaUIxIrJq8C21mgbOVLt6zZTm2Ue9pfPBtAlE6S6vSS02oZb5yMRhsmps8EtZ6hwXmQc4LpCqMM8bEpMOXJqJOS/0d7vb0/mwbgJsIhe23DdznwsvzrSWjhyyDUd2oYhN/Q6bJlxma3QHIYR+z9yzueeB0d//7xr5i0gAAAAAAAAAE8eDSAAAAAAAAAATx4NIAAAAAAAAABPHg0gAAAAAAAAAEzd2WI3rrlyaZpdJos82azXdjQuTsWElpgH71PRwo1TXJDRJTRNT02AzMUEJ7jMUpnF5p61NR1stF7Kgxxen2jS64hokm4CGbleb6Be5Nk/tbpkGxuVIY+qGfn7XmHq6pce21dHzeea8NpQdDFzjWVOTCnaqyATTVM01U8lNcEyptYEJo1g9oyETVx7W4IHrLtk99O/aQI/tXH5KarvqW7pdW8fziVKbyh80n7+saiPpmUQbKTfv/qbUHj1zVmob1xyWWvv6K6SWr+l5Klc0mOZwVcd+Xg4HQ1QTMy+bruplrJ/LzQ9FX187b0K/ZkwT7ummzsHYmQYDvd62TFjNubOPSG15WQNnskJ/e2v1S6XWmtE5otEcbg5+2ZHnyTa7du2S2iDVa7yRauPyRlNDXub3nZHaVx94UGpxbn7ft3S+ferRk1KrmvVNZtZ3jYM6Lk+auXo0mCaEEGYbw2M/Nr8PjVS/m9E1ZQghPH5Cw3VKE8ZRqWmY1/S0nuMs+j6W27ioVU3QY8XcJ3VNOFJhQgxMpmfomlCEtuYOhN5IyECtYsIpds1JLTHhLbkJwKs2TYiDWQfkPTO3mAkid+tAk9/pAmeSqkmJMX+PM+ibwFITjDEautntmLDWWGtTTX2vhrnZTQf62tiseQoTuDPQqR87VGZDhE0wSV/HYGnCWqbM85tOV3+32ybILh4JW4pshpsJZDJbpSYMJ3MBx+bVsUmzis3zIHvfYcJlej235tPz1GxpYGl7WwP0uua5SX1kDdEwE5/LAR4MzO+NCdKp1/U7rNd1u+1tvU4Sl/w8Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjd092zX2HG3UG4JvWFmva9fczDTiHGTa6Hh+bkrfrzbcTLlqwmp65v2TUo+t4houF6bbZ6S1Sk0/V2Ge7Ra5dmPNetoIf5DpPqJIm4z2+xq80WzoV2l6NYdy5FCynr5XZL7DtXXd7vQ5bbDaH5iGy6k2gDWnxAYTYWdaK7UZ7nRfL5pDQcdH0t2Q2lyu4y2f1vF7ONHr/IWD4deu3f+QbPMC06R98ykNtjizpc3S916qzYv/0Y9cJrWF0/dILe+tSe1gos3mkxU9vq6Z/gcH92jNNHCud/R81kwT/c5I2FZhfjMiUytNM+jCzA/2B6zUa2J1WcN6Pnfb56T22v/T/+reERe53Fxvy8srUjtrQlPabZ2rIhOKsH/GhJosaoDNoUPDwSlHdusP+fyMzhlbmf4ep5nOmS0TYDNn1jJVE7jjfqNnEv2szWAC+sy6araizdwrZqBvm9CO9rYe38qpx4f+/fgDd8s2eV9/H/bt03nvocfO6XaHr5Zaa1Y/w/59B6S2vvWU1LAzxU39TR10TDDNmCELJl8z5O53Neh+s97w3Fer6HGY25+Q5TpOIxOeYHJDQ2Q+wyAyH8LMGbkJo3BhDLm5yYiT8QJLi8IE4tTNamMk1Kbo6Ydtt81axnyuRs2ssyo6L8+a+bsy0Llw231p2JHa5t4pMddWbNZBAzPeXKiL0+2a8KpyeL8VcxxuPWZye+39RGqCPt12bh51497tuFLVYx6YMdjpmLC8hgbCJOaY+z09d+XIvU2SmOC9ln43WyYMJzIBrk0T4Fk1n7XT0eON3fw9Jv4iEgAAAAAAAMDE8SASAAAAAAAAwMTxIBIAAAAAAADAxPEgEgAAAAAAAMDEjR1WE5mGnZlrKGp6fa6va8POSkXfb3ZuWreraVP2LB9+fpqY46hVzEczARh5ps0+tzb1eJPYhNWYfbgQHtfMvtHQ/fYHuo+q9n4ODVMrCm08mlRMMEQ6HGTR7eqz6PVNbWx6flkbvA9yF67jEnLGO3fBNObGzlQ3AQiHc722Wm29Zq6rzkrt4La5Bk2oSe2cBlS0Ti8P/fuS9S3ZptrXMR4HDTGomiCoZF2PY/5rGmxQL3TMnG3qfFPNdC6oT2sT4qipx7e6oWP/sqqGbOy/5AqpZY+eltpWNPx+pe1xrd+NDbUxzar1zIWQJXqe7ntIA4b+4Ff+b1I7TljNjlSr6lgozfIoikzTdzNXDcyF3sn1/Za39Aq+/7YvDx9b94Rsc2h+zrzXptQa5jd6tqJhVufMmifumMCGvh7vVKSftRVpg/MyN3NkW/e7ubQstWkT2NPe0nl49fypoX+vnHtctmlWzZpvVcO3+iaQa2tDw4qSqp7jXXPzUnvy0Xukhh3KzBmFCeusVcf7W5GqSatJXEhMxwRPZMMb1sx7mSyFMDBzQZrq/VpibgrLUmux2W9pXpvGejBmarHBEy6Lol+YwEOTyhWbtVttJBE0N2uZ3CxSun19r4EJ+2ubwIpaXd+wWjXhEboMxA61saUXQ+qCek0wTdE1QVBmfZ6bwKjELNr7vZHB6kIozfOB2LxXWZjUWzfv+aLuI9G1jAvW8mE95j7GBP512rqucAE27uFPfyQUtePCgExQoksbKwcmZNGcE7ePfs981y4xbUz8RSQAAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRs7rMYF07jmva42MAEuraY21KxE2gAz62sD9rQ63Gw9y7SpZ6+j4Sp5rk03o6DHlphGpKXpctzrmg7JJqyl0dCaa3pfMeEyeab7aJvux5XUNCg13Vi7veEG72fPabP4jU3dZ2nOU6XqzpM5jEI/V2I6aUclz8XxtOmg11Z8flVqjWUzps14q61og+CZQl/bqOlcEo9cv51t0/A91XCGwjQvPhjruG9pPkwYbOq8121poMZSpM2QD5iOw/kubYa8WujYX93Q91vI9Zx0dmuATdi7V0qD08PhDlX3k2MaTseuCbUJF4prJjBsWhvmb5vfr3PmesLOdPWVV0ltZVXHR9HXwdrp6O+lGUYhMb/5/Z6Gn4xGMG1s6lrmbK47OHtet6ub3+Ptho6PXqlzRsWFx5W63zjWzz/IdL7N+3owgy3dxzU/qkFYveqU1LodPZZsJDQsH+g2bXPO62b51O/od11mOi9PNxal9uNveJPUdtfHXm7jIle0zRreBdOY8IAic8F7ul3VvDhLdQ4aFMPbuRCD6abOGR3zG93payhGWTHBPFIJIZh7x8jcixW5CQwz4RYuEMcF2AQTsmGWCyHrm/2mw8fcauk6sN/T1/Xa5rfABPP0zJnqmvVnavZh8hmxU5nnEoUJaeqOBsmEEPrmum+ae5FWQ699N9A3t4fvu0oTfJPYZ0v6Gfrm+Uia2kRMkZlgntQ8R3HHV5i5z79W99vr6hzZM6FUdRNgM3rMPRMas7qqaxST3xkSE8zT6ehxZJm5PzOvnTL3XePiyQ8AAAAAAACAieNBJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAiRu7e7bJPwixaYCam8aWjbo2tpyfn5VaxTQ1dg2Hq8nwPrKBNufs9bRJeW0k5CaEEMzhhnygzURdUEKl4k6KloJp+p5l+rly0zx2MNADrNe0iWm1ps1jV5e3pLa8PNxEfqvtGrGaJs/me4gz0+DeNIpNzfc609Lm8ya/BjtUN9axEBbnpLRqxlt6mYambDx2TmrrfR0fl+zV4IFkY23o37vCvGwzOHdWavW+CX4x47mf6Hg+vU/3Md2c1teePiG1rhmrkQl2mDHzyL49ut+DjQWpFSbcIb7iqNS2V4bP8SDS+SHKTACGCeSKTZP63PSlLmraNHtXUz/Dz910g74YO9I1RzSsZnVdA1f2LmiASbut1+/6lk5MZWWX1Ob2ae3Orzw89O8HHj4l23RWzPwY6Xh+4vQZqbmwB9doPTG/21PT+rt9tqPH16hpmFVnoD/wtUjn228+uiK1K/frsaxt6HajQQ79gb6uHmtT9aLQ9VNU6O9DMtBAoKlE11CDjk5MBxZ0fsTONOiY9bT5Ta2a4L3c3Z6YVIQ81df2TC1pDde2N3U+m810PFfN/NAzH8LkdoU40eOIzRzkwjpz81ljUyuDubkz92KJOZY81u0is105csPXN4FccWT2mepcmFb1drwxpft04REujGRg7jGxU5nUFHO/nZhAmMSMhamG/l7GJmwpKnVMD0YCVyITTOOOzYXVuNe6udA9mHHPOVxojBOZ8eaeX7m5JTXBWgMTmNUz94+jr+3bZzVSCpEJI8xMMJE9daZWMyGhwcxz4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NhhNa6JaeQ7ikqp1dTGpmlaM6813ZpLbcybjDTsrFS1SWY11UbzUTANQU0KT1HqsSWJnqrchCxkJiSnu60NRfuD8QJhqlVtQD+3Xxu8h1I7WHd7eu46I71YbWNTLdnvOjfNkBNzPl0L08h81oZrgIodqTql1/3MgQNSO/34cak1Du+X2pm+afB91Uuk1J/SkIG1++4e+vdlmxqOtdukt9R1s9Bf1+v+a3MarvLQtI6Fly0elFrc0Xmut7YstdaGNiZeTHSey3Idv826Ht9mru9XS/QctCvD223HLqxHSuFkpnN1Ybbbm+v5rJw7r7VDGsLz//61X9c3xA6l13i/p2MrjnW7xb27pba6rgEus/M63upm7ZKUw2OmbsZf1tam6k3TQL5S0zHZ7eoYbJvPOl3RcKx1ExCzvrEqtf37L5Xa/KLWBh2db9qdNalNNXR9M9Mw8+aZ4WMpIp2nBmYdmJsQLZMrFhZ2abjQ63/uZ6W2stbR2hkNTMPO5PIZasGEtbRN+IkJKEhaJgDBhQfocJAFeqnDKnQLvZ4bqe6zVtM5rlrXcCh3V1CaEJbetgZGhb4ei7tPjGM9vtjdx5l7sdDRfZRmDVmMhEwMzBdba+oJnTLfVyjM+5v7ydAzoSCpvrZiQkawM5mMKhvUW62a5zKF/vaWJlg3Ntd+xYQyLcwOr1O2uiY0xTyYKEwonAuNKcw9QVHqPmL77MeF95r9mrGVmWCtyNxPuWcpSaLrj2yg71epDs8lLvgmN6+LzM1TYQJsXCh1paqvdSE8XTNnjou/iAQAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwceOng9gQEn2OWavqW2a5Nrvc2NiWWr1mnotGppFwPryda5BcqWiD5LzQJp5J0GbAo83iQwihLPTzx8mUeT9t+r62pqkV7a5pQi2VEA5eog3j41jP5/rKhtQ2NrTJbH/ko5UmNCY1jVNL01w6cg2nzdc1P6vfhekzH1ot/azYmaa3tZPyQyful1qxrNd9uWqCqra0tlCf0e1SbY7eGGmOni1r6EDNBFwVuV739880pfbHlTWpPXXyrNS+8aTOI699ngZATHX1s26ZJu2Nupk3739caksnl6TWPaTBQfsGOh80TpwYKeicOWhqkMyd22tSO9fTBtlvuf6FUrvxxfuktmL2O20aPWNn+u8f/aTU2ibUZWZOg2nm5vdI7XOf/2uprZjf4zzSa3BuYXbo3ybrIMwvaGhKWWrYRWqaiqemc31Zai0x2402Sw8hhMOHD0stNp/rR6+7Wt8vXpDaHV/7htQaybrUbr75ZVLbWDo29O9OW0PPRtePIYTQnNU56HBtVmtHrpRaUtGQoCdPPqr7bbC+wdMqJoAqVHTdXXP3Xe4+Zkrfzyzjw2BT73e2l4fnpbip80jfBDFUTehCUWqIVpnrGHThp8Hc1yQNXUPFZg6KI92vydIJhVlDZNt6L5p1TMiVCbVJKsPnqjmt6zuTmROy0RuxEELRNyFafd1nZsKKgillJigEO9Ogp+OjcOPXhb+Y98vNNejCX9wDgcrIuqJi1ii9XNdeuQ6PEJl5JDdBly78pjTHm5ugG6c0oTaxO5/mPPkIKRMcM8ZncyE3sam543D7zM15j0zoWb1iQo3yv384Fn8RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixu7WX6/ppn3TcLdrGu72BtqkfautjS0X5rSp8fSUNk7OR5pidk1j4aIwTYm1D2eo1kyTZ9MkNDPNmiPTsLRem9PXah/0sPWUNl+PTXflaRNukfU0UMN9F1Gq567RGv5snW3TXNo1Yo1d42PdbnZGG7fvWtCG0xXzCLxwXZ2xI81UtRnuifNPSG1gQq9Or61KrZroWKjefq/UXmoCXBbL4X1sT+k8tRJrM+DBfg1iONXR4zizoeE3mQmXObei8+jXM20+f9mlGmBTOay1dqbH3FjqSG1hRj/vgWuuklr1skNSu/zq4VCbiubthL85p2E4T3zyY1KrZdqEuXnN9VJ7wc/9uNS+dPdXpfbU+rLUFvXwsANsmXCsgWmOfs89D0it079Pas2mhiPFkYZIdbv6W756fmScmzVAVGit1zODyzQad+3n3Xqp29W59fLLL5daxfyY9/u6rmh3dV6+7FINvapW9LUb509KrVXV/S7MDy+2jvyjn5Zt3OffZUKI0ljXhktL+hluv+NuqbnwnwcfOW6OBTvRof163ZfmN3+rrdfbRlvXATZ0stD3q5qUyHxueO7bXta5sBLpOqMxq7/HWa7rhy0TFDjo6D4SE3Ram9J7h7RqwhhKE/TS1Xmkt2yOZcuFW+j9Tq2h66Da9PB6MU70db1N3Wff3LO6oM/E3HcV7l7MvNbk8mCHcs8vbDiUuX4TE+qYVnQeqZpwu3ygYzAeeb5SN++fmfVIcAFXJlwnsmG7Ot+4AJvIhYOZ5yGuVpj3cyExLoTGhQEnNkxn+HOYR1qhUjFhY32dv4M53tS81k037mlQy8yP4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjpIGlqmnhG5uUmACE1DVBj0yi1n+l23YFpGpwON9l0jdb7fW20XuSmo28xXsPWstRa2zQArVX0WGqmGWu9pvsdmHOXDbTRcc00aW+YRqHTU9qgdrs9XBu479U0WHV9YmdMaMeeRW36XjXBI5vrGtYTUm10jZ2pnmgz5Lk9GiVy1mQxnN/Qa6sz0LH6VFVb/V6ez0jtyNbwmInXNGCineq4Tw/sktrSlL5/dkZfO2U6jfdNI+GTuW53+OdeJ7WFQ9oc/+5zGv7TrmnYVGEaXV8xNye1A5dcIrVLjwyH2pz4nIbG3Hvum1LbPb1Hapel01L7zF98VmoLn/mS1M6Yxs+zFT0n4SdeozVc9FomXKbdNeNySq/BztKa1GpmHLVa+nu5taVzVaU2HNBg+qKHblfH5MDMcVMm7MEFW7im6qNN5b/TsWxsbpjX6nabWxoOVdPMnfDjP/4yqR2+4ojUzp7UkKtDB64Y+nd9Wj//zIx+10mkn39mWrfbvai/QfWa7qNa0e//Y3/0CalhZ0oGOmaSXK+ZjskYKN3fjwzcvYMGRYwGfYYQQlodWVdEJrzFhMEMzNojMzEGnY6G62xu6fxVifSeqNbRz1BvmPCM2Bxz15y8rgmoMCGZ1Wm9Z6mbIMOsP3zP0t0059x8Ny4owwVg5Cb0yk2ufXNv2+65KAvsRIkJcOmZ6zIEHUeV1DyrGei11ajp+EjNunv0/SIThNUx71+YuSU3YyYy6SpJ0M8QuQAbE37j1kZuHVQU+n6Re7/cjcsxQ6lGj8O8V+4+v/kOMxdwbF7ramb6smHL4+IvIgEAAAAAAABMHA8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABM3NjdJbtdbYpZqWoDzEqkXSwHrrFpU4MX0qoJqzGBMGGkAehsS5uKB9M4NI+0kbBrEDzI3GfQJq6xaa6cRhqyMcj0M7g2pO48tdt6zFMt0+G91NdmPW0S3dke/hyxa2xqQjGaow2tQwhzpum762IambCe5ow2eA+pNvPHzrTR1ZCmgblWZ/bvk1qnqeOj1dRGytWaNusN0xq2tLK6OfTvqaDNi688oOEqZ1Ld58PfeFBqi1VtUn/DvL7fN1MdW2c2NeBpparjcrE6K7XqHj13/WsOS22vCWhwY/rBz/2N1P7qjz4+vM+O/revxxINFvuxK54ntT1dnW9vO/UNqT1c02ObOaxhF3uuOio17ExXHjkkteWVTanNTus42reoY7VjmoiXJgRiblrHW3t7eEyXkf72uqDAalXnhwMHNJBpZWVF38+sg9bXNEgnSfRYMrNeCrHWDl6yX2r1uo5p99/HD+zTuard1tCwPSNzVWnWaHFhPkOh77WypGE4VROi9s0H75Ha/r17db8mQBE709a2rs2rFRNWkpugT3OP4e53ykTfrzBhLYORAMuWGZMtMyZLEwCRmdAUc1sTssIET5h1VWdTx0yrp/udruvxxSaYx93v1Kd0nVar6vw66Ohaqz/yPbogityeOxMKYW4K3X2iCxxqm+vEBQdhZ3KBTLWaCSExAVQutM49D+l09VnFdF3nqkoyfCw9FzRl5gIXshebz+VCbUJwoTY6j7jwFzdnpIkL8jPvZ9ZVpQt/cWE15llKMvLa3My3uQk9rpmgrcR8/33zvK1S1e8wd2k15vsZF38RCQAAAAAAAGDieBAJAAAAAAAAYOJ4EAkAAAAAAABg4ngQCQAAAAAAAGDixg6ryQrTALOiDTCnp03giGukXJrmnCbopjDNPkf7ZPZNN+R+zzQNLrVJeaViwlpMY9M8N82QU21OOjCNhDvalzpkptlnmuqxtLf1cwxmzfGZ5rGucXJ1ZB8umMY1Ta43NVCjObNLaq6Ja6+jTe9LE64zPTWjO8aO9NCpJ6XWb2u4zP4Dl0rt6uuuk9rZs+el1uxoIE7rqIakvPaXbx3epqFhOJUFDbH44m3/U2rtY++W2o27NcThhXV9v8a0jsH/48QjUnvgxEmp7T2o52mtp3PGVkMbEy++4CqpHThymdSi+x6T2nZt+HejawLJyr4ex5V75qQ239HXbp/S5spL1+ux/S9v/r9K7YpX3CQ17EzXv+BKqbmAviLo7+WpMzq3LG3pj35a0/VSlOl2jz48PI6+fv/jsk1IdCzUTGN40489mN7zodPV43CvrZgArtQEuGx31qTWqOvasGNCybo9XWtubGtw0OKirj9OnDg99O8HH9RwsKNHzXfdW5PayRPHpbbPBHd98xvHpHbMLKLWzp6QGnamTt+EIpgwutwEG2Tbug6q1XW7gckT6Ltwg2L493e+YgImzN+sZOb+ot3TY8vN/VSlZkKkEq31u/r7Xq3odlUXLtPXY0lruoZy82a2ZcISu/p+2UgwhLn9s3/uU5pz4kqRC6Zx36sJu6g0x769xw7UMAEmUaK/0dlAr/sk6Jp9kJvwTxesNXKp9sz7m8dNITLPFnIXCugCYtxwM0Ub3mv3q58/uPDiVMdgnplnNS7nxWZNfe8AKhfq454PpSZwtN7Q779e1zmz6Ot6MSKsBgAAAAAAAMA/ZDyIBAAAAAAAADBxPIgEAAAAAAAAMHFjN5FIU31m6f53991Mi4npBxmV5n9jb/7372mshzjaU6ybb8k2nZ4er2lFZnsCzE5pX4MyNv0la9orLknM/06+15NSa8q8n+m/lJtekksr+nlr5vuZaun/3n9hbvh/72/aMdn+B6aVZCjNdxiZZ9up6Zc0MH0hst627gQ70qXPPyq1eqy9KvYt7JPaoK8X9YlHn5BaFLSnx5ktvS6fOL8x9O9+96xsc/qpM1K79+v3SS1rd6R2za4DUrtq316pxWZ+/JLp8xFX9XMtT+l2M0H7UF42tUdqx7/+kNTu+OKXpDZnJthzVwx/tqWNDdnm+BN6Ph88refz0JT2hJuZntN9njin+7hfe2kmsc6Pr3jN66SGi9/+3dNSi1O9PqZnd0ttbrYltTvv0+stNb3IQkfnm8WFhaF/N+s6FrqFzgWtlr5/u62/qf2Brkc2N3VcVsyPfhLrGqVuej92u7rfkydPSW15SftHr6xrP8gnzmjf24MHtLduf6TX5YnjOu/f+zWdu256+cukdsVl2lf3j/77/0dqxx95WGpXXn651BYXTP907EiZWaNkbo0d63b1mvnNNz1jS7PGTmO9n6iVw2v2Sqbvlbve75m+f+kazJvXuuOomJ77zZqZg81nTcxaLjM99939ZH9D+531etqbMjNZBMXovW1kG0KOxdw6h665ye6bU1xp6OdKdbmMHarh1h4mk6NqxqD7a7XCjOnMPDfoZzpmRo9l4Po8mr3GZm5xmRSxed7kxqDr1Wjfz+zXPZepmLnKvTYzfXoj812YFt0hSYbHuZtuB6YfZG5yWoJp6el+R7qmH2To6/xYmsyYcfEXkQAAAAAAAAAmjgeRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAAAAAAAmbuywGpPpEvp9bXo+yLSJZWJeXDfhKu65aLOmTVbjkUahrrFpmmrzT/cZilw7dg76prNpqqeqyNpSK02L0cS8tmkCJaqpaTbfMY2UTVPYxDQK7WYajNEdaQxbNcfhGmlXTOPn7W1tNJ+bZrezCxq8UTPdY4uBXjvYma65/jqpNSK9xlsVDYy6966vSe3AIQ02uOcxDTKoPHxCau/4v/8/h/69nuh1utXWcZqZ4JvOtoZCrJkQnv7eRanVpqa0Zqaq4ycfk9r9f7EstfXjT0lt4/HjUnvyvIZMbAad+y/bo+M83xo+L2e2NWgrqeq8d/fjus8Hp/W11YOHpBbm9Xx+/bR+1/0ZE1aj74Yd4IrDV0htanZeai60bt8+nVumF3UsfPUbGl7VzXUc7RkZ+z/2Sg1SOXl2RWrHn9BQqZ4JyssG+vs+1ZyTWsWMS9f1vShMaJ3por69peN3YAKu3Dpta10De3pzenzZyOf98l9/RvfZ07l6a03f/9oX6G/Q0tknpZYPdB3YNOERWTAN47Ej9Xrmuo91vRA3TWCUWWNnXTMGTVDEtAmgyraH91uatf7AjPt2V+eRrrmti6suXMYFSujxViId44m7Z+noPBfMPNfp6z1R4cIdSn1t4Y55tGbCZdxcGCL9DD0T2tE3r6009SRXp8w9cM3FXWAnqppQSxcO7EJdXOBKnJgxaEJY1jc1tG50PAwG5llN4gK5dJ+5GTN+vGkpMcE09gSYAKpaTe8x3JwxyFzNrAPMa2Oz33Jku8wG/ehnKAuTSmzOZzBrudDT36Wa+Q2q2GtsPPxFJAAAAAAAAICJ40EkAAAAAAAAgInjQSQAAAAAAACAieNBJAAAAAAAAICJG7u7ZGGa8Lqm4rlpxFmraYPkalVrhWsQXJrmmSPNSNOKNg5tJnq8mQvSMY1NeyasJjKff3tTm57Pzuix9LraSNk19mxMaxhHxfSLb3f0c2xv6z5qNX2/7e3hY241p2WbuKkhDoOBvn8a63FUGtrgv9fRhrW11pzut8JzcTxtttmSWiXWMVOJtWnuK25+udQ2TBDSbce/KbXP3HlMatX+8Gs3a6Z58cyM1BYT/QyZmW/Om6bi95w9K7VlMxdurmkAxKc/+xdS2zbN8WtmnhsE3a4wvxKJaUC/9NQ5qe1p7hr699X7j8g2kWmgv7ahQVgHj2gwzWv/yc9LbWZGz+dUXefCqulLjZ2p1dRwmTTVayYz64BKRdctL3j+86Q2P69zxEMPPiK15aXha39qWn979+3RMKt9e+ektr6h80Ovq2u0ngm7yDL9rFtbq1JbWtJxnyQmoNCsR1yYzoF9e6R29PKDut1+DQmaGZmHTzxwv2xz1113Sm17VT/DTEPn+Rtecq3UHnv0Uak9acKxKmaew85k8iZDZkJTGpH++PZMCEu9MAEmwdxj9XTst0dCYjJzW5iZOSMbaC1t6G9vZEIRzK1eKE1YjQtPKEp9vyIyAQ3u/rRw2+m5y808b0MgRrYrzPu7UIjM1LqxftbUBJ3GJug1MgFDjZYLG8NOFJm0liTR+cGFxOSZWRvkej8VmXuxngm+3d4efq3JuAmpeT7irvt+X48jM8+g3DiqmPcrzMTs9lGYv+GLg34Qd05s+I+5t3XBOdnI8bkQmtg8mHMBPi5cp1kxYcPm3ik127nvZ1w8+QEAAAAAAAAwcTyIBAAAAAAAADBxPIgEAAAAAAAAMHE8iAQAAAAAAAAwcWOH1VRMM1zXiLMwDZdNH+GQpqbZpWnY6cJktjrD+0hM49TW1JS+v/m0vc7AHIcecM2E62SRvrbT0wCbpm32qftwTVFL02TWPT2umuahiTnHzZFm0mmiDUvzXJu95iboZ25OwzgGuR5v3wTdVOodqSU1Dc7BzrRnek5qkbmeXUPyE0+ekNrXjmkITVjdNPvQzcqR4rQdzzo/9NzsWtVr/Gvnz0tt/XBTag8//JjUTm9pGEW9qedpT13H6r6qzpF7r9BAmIMvuFJql+7RQInFaQ3jmJof3u98Qz/XwDSkH5hGzVMmlCwzTa0rhfmtapt0gGCa42NHKhITWGC2c3NQ5BqXmybil1xyidT27tHAlVMjoU+PPnpcttnc0gC4+oyOrW5Pf7fbbRN2Z4L3Vlc3pNYfaK1S1c9fMc3h6w2dN8+boJuTJzT85djXTECYCb9pjgTtbW+3ZZsDBw5I7eUvf6nUbrnlF6RWmO/1zJkzUjv2Df29WV5ekhp2pn5P7x0ic4PiAtVMjkoYdPX9skxrpQmgisrh/fYHuk2vq3NGcPcmZv0fZzp2XTBPaUIxTNZFiMxta1LT9U0U6ZxWtPVexJ1Pd4/VNcfSHw2rMS8s3T2WCdSomnWlWd6GrK+vTcw53trSeyzsTP2+zgUVEzhZccFNbn1unhH0zWCtmqDiWmM4RKlnAmISsx5zo2E0LCqEEPpmzeOerVTNPVu1qnNLZJ4HFWZudcxLbchzbD5vHJvayHl3Ac8VEzjkzlNRmFAfE2DUNOu20rz2B8n+5C8iAQAAAAAAAEwcDyIBAAAAAAAATBwPIgEAAAAAAABMHA8iAQAAAAAAAEzc2GE11dQ0MTUNMGeaVanVK6bRuOnYmVb0tb2+NhwezWVJE9OwtGuaudcbUisibWIamyCZIjLNOU0n0s62vl9uGpFOzehnzQbms1bNMZuEjvVNbUxcr2sj09bUyH5jbbrqmsrHpX6GdkcbwXd6Gp6RphrQMTNngmlMU1zsTFGhY8s1yA1mbLVmTDDL7l1Se/7efVI7V9NxeerM6aF/9zp6jbfNdR9aGh4xPaXX/RMbK1J7/P41qeVmuj54mQYv/OTNr5Dai45eLbUD0wt6fIvzUitaOh/UTFBZZObhrWh4jki72iw+MR3em6ZRc6Wr33+3r3NQNNDzVJiG2AVhNfg206S8NAFwUeJC9vT3uG6u3zw3jcXNuuro0eE5YnFRg6E2TEjV0prOI6dPa5CKC6HpTOu4nJnRcd/rrkqtva0112y+19Y1WWTm9F0LOgfVK3qOXbP5Wn040GrXLp3javUrpHb0ysukZpajYdeuRakdvGSv1K697vlS63YIj8DTCnPv5OaHgcmIGZiAgoEJjCoL8zto7mPykQCmzGxTm9KxFjI9jl5p7pN6JuXFfNbIhMxlJhQjbOt9Um1gAmHMsWz3dB2Qm/266IXcBHlkI9/jaBBHCCHUWvq6zroJ0jFzoTuy4E5nz0RFRGZD7EiZCVlzgXqFed4yMEG1kVnfuKBied4QQqjVhuelpG0CrsyF746jNHOhG4Pub+5yc7ydjgnWNWu0xAXnmL0WZp5zgXfutaWpjn5eF/rs1l55Xz+rmdFDmphw6K5eEy5EulHXMNFx8ReRAAAAAAAAACaOB5EAAAAAAAAAJo4HkQAAAADw/2vvzmMuues73//qVJ392Z9+ene33V7AJjYmGBs8hDU3ZJKgIUqCxZ07c1FQNMqgUcQVE4XRncCMkGaiGTIoSkTQoAQyjESWCYTEIQQBnjATsA1esI2Xtt3d7r2ffTtb1am6f9hYOefzMT7YPs11P++XlD/6mzp1qupU/epX5YfvBwAAjB0vIgEAAAAAAACM3chhNeWyLlo1YS31xITQmAaYG6YBZsM0A26b5XrDTZJN48yyaWSeB23Y6ZquZiY0pW+aJmeZ1no9bURaqely3bZ+R33CNPs0oR0uYyEyATb9vjku8WAD+pLpfNw3TZOnTNP3zTVtej9d1+0tmd+/6xq308wdz4iqev2ay9w2+N49q+fq7ltukdobbn6D1DY2N6X28CMPD/x7eWlZlolNiMXcnG5HP9Pr/t577pXazMyM1K6+5hqp3XDD9VKbn9dgnmDCWiLTcLkfNLwqmAbvPfNjuIbL8VBz5cKEXvX7+knXXLttGj93zbZlqY4juRlHez1tTI0dygTTuFphrvPINAcvBV0uMcuZ01yamS8s6PW8sHuX1C4rDkjtyiOHpba4tCS1tdV1ra2tSW3SBFclZhbZbmmIVMWEFh48uE9qZroQEjPXrNV0W4bnfW4s3L1bw392LUxILSqZuVFfx4zhsI8QfIDRxOQLb+aOS0tsnjuCmcuUzN+K5C7os27GpSnzDNTWwId0bfCeX5jnsL4LKzX3VDenGA6nCCGEvtkOF34TVzR4wmSJhq4Jwds2ATapGVvimhnnzfwmMvOUMPS1HROoF8w4UjL3Avf7Vypm2+xvYYI+U/7OCE+rVc29x1wLmXlO6JlQl8K8b7DvUsxpub4xODfomes0Nu9qXHBV2YSLxokZ98xYlZZ0zMjNBsdmQlKYZxF3QPvm/Urhxs3IBCTbFz2D35G4+aiZjzRqekwmKu4dmX52s+vCasz3llz8zWgYqQAAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACM3ehhNaaXe980MY1ME8sk1oaiVfMKtJ9pUEJkGjMXQ309s55uR57rruW5CWKITINos22RCX5xjYnrddPM3Ry79rYGKkxNa8P01ByTfqaNTRd2aTDGxpYGb1Srg/uxvqZNo7td/c56XRu7zprvTLu6X1FJvyMq9NhFxcinIy5x29smzKpR1wVN+IkLgChMMTaD2uSkXoO3vmEw1CZN9fpw4Vi1mjaIznr62Te/6U0jrc8F4hSF7ldmti93YTWuIfuINTdIFsMDs6nZZUzzZh8uo/vVNgFXvZ5phO/CddyJgh0pN6e4Oz/cfMRdlyF3YQQm1MYslgylv7hrPDe1smkgPz83LbVd8zP6pSZqqtvVe/7ZV7xCaldfdURqF86fl1q7o9eqCwGsmoCKyYmm1JpNrc3Ozg78++DBy8wyekySimnS39PAHXdM3PhYqeg80PSjxw5VM/MM+6yjp1FIRgy6cUERfRMM0R0K3Syb6y9v6+cSE97ipgpVMy6lJZ3rt014XNfcy11AQ8eER6Qm4Kpa1c/a4dvMU7KSCZOZGNyP3ATumKlXSEr6pX2zoMnGCkniBhITxrFtvhg7knsuT829155Z5vrtmXcQNkXXhPcOz2dKZtDom2cYMzyGxIQCDgdkhhBCZEKUqyZcxbxuCZEZC+z0zjxO2LmhOcr2Ect8dvixqDBjcMls70TNhH6Z+0irZ97LmLE6N8E8HRPePCr+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0eVlPW4IVKWT+emCaWsWl2WTHNQzPTZLNR1SabvXSwg6/p+xtqZe0cWq2ahuSm6Wqjptvb6ehnK7Huw3Cj+RBCyFJt4tkxTY1ddEJuGsq2WhrkUWs0pDY/ow2xhwOB2h1dV9HTY9JZ0+CbZN40te5rt9dqVbfNvQPvd2mujKc9/L3HpLawMC+16ZkpqbnAmTjW69IFp5RMA998qAuxCywwq7JBDN22Xm8zMzNSc4E4rua4fbCBM8bwvj4Xt2/us+4Yj7LMqNvruO1wxy5z3fyxM5nT1I4P5rwsmTlPZO5vcazN0QsT2ibnb6Tns2vcHkzjdheAYNdn/pN0varbe/jQAanNDwXEhODHSHcNuoCORl1DyVyATdWEgQ1zv2Fugj1y02jf3TOqJmWxYrbNBQy5cEfsTHnJheeZuUfJ3PPN+Vt0zD3PPGOkZo5dHnqOicz9Mzenbu4GIVNrb+pY0HdzhYqZt+g3uPyLEDdMEJibQ7iwvNiM1WY8tGEZQ0mklZKOBV0TANHZ1t/VDBk2UKS/bZ47ayboqPzC51C4tMQlvYDdvbFvgmncOw0XTFOv6XyhbC6kYnhO4oJrTeixu55js5ybzLmnkMg9EybmwndzCFNrm/t7zwS4uPAft4FunjJ8qMwrqDDZ0HlRo6K/TWrmhuWyjl8VE5rjxqWSO3Yj4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIxdVIySJgAAAAAAAAAALwJ/EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBH5Qzp+/HiIoij85//8n1+ydd5xxx0hiqJwxx13vGTrBPDyx3gD4GJhvAFwsTDeALhYGG/+/2lHvIj89Kc/HaIoCt/+9rd/1JsyNp/73OfCj//4j4darRYWFhbC+973vrC0tPSj3ixgx2G8AXCx7ITxJoQQ/viP/zi84Q1vCM1mM8zMzIRbb701fO1rX/tRbxawozDeALhYdsJ4s9Ofp3bEi8hL3Sc+8Ynwnve8J8zNzYXf/u3fDr/yK78SPve5z4W3v/3todPp/Kg3D8AlhPEGwMX0kY98JLznPe8Jl112Wfjt3/7t8NGPfjTccMMN4fTp0z/qTQNwiWG8AXAx8DwVQvKj3gC8OL1eL/ybf/Nvwpve9Kbwla98JURRFEII4dZbbw3vfOc7w3/9r/81/Kt/9a9+xFsJ4FLAeAPgYvrWt74V/v2///fhYx/7WPjABz7wo94cAJcwxhsAFwPPU0/jLyKf0ev1wm/+5m+G1772tWF6ejo0m83wEz/xE+HrX//6c37mv/yX/xIOHz4c6vV6ePOb3xwefPBBWeaRRx4Jv/iLvxjm5uZCrVYLN910U/jiF7/4vNvTarXCI4888rx/nvvggw+GtbW1cNtttz17EocQws/93M+FiYmJ8LnPfe55vwvAxcV4A+BiebmONyGE8PGPfzzs3bs3/Nqv/VooiiJsbW0972cA/Ogw3gC4WF6u4w3PU0/jReQzNjY2wqc+9anwlre8JfzWb/1W+MhHPhIWFxfDO97xjnDffffJ8n/0R38Ufud3fie8//3vDx/60IfCgw8+GN72treF8+fPP7vMQw89FF7/+teHhx9+OPzGb/xG+NjHPhaazWZ417veFT7/+c//wO256667wrXXXht+93d/9wcu1+12Qwgh1Ot1+f/V6/Vw7733hjzPRzgCAC4WxhsAF8vLdbwJIYSvfvWr4XWve134nd/5nbCwsBAmJyfDvn37RvosgIuP8QbAxfJyHW94nnpGsQP84R/+YRFCKO6+++7nXCbLsqLb7Q7UVldXiz179hS//Mu//Gzt2LFjRQihqNfrxalTp56t33nnnUUIofjABz7wbO3tb397cf311xedTufZWp7nxa233lpcffXVz9a+/vWvFyGE4utf/7rUPvzhD//AfVtcXCyiKCre9773DdQfeeSRIoRQhBCKpaWlH7gOAC8dxhvGG+BiuZTHm5WVlSKEUMzPzxcTExPFf/pP/6n44z/+4+Knf/qnixBC8fu///s/8PMAXlqMNwAulkt5vOF56mn8ReQz4jgOlUolhBBCnudhZWUlZFkWbrrppnDPPffI8u9617vCgQMHnv33zTffHG655Zbw13/91yGEEFZWVsLXvva18O53vztsbm6GpaWlsLS0FJaXl8M73vGOcPTo0R/Y+Pgtb3lLKIoifOQjH/mB271r167w7ne/O3zmM58JH/vYx8KTTz4ZvvGNb4TbbrstlMvlEEII7Xb7hz0cAMaI8QbAxfJyHW++/z+LXF5eDp/61KfCBz/4wfDud7873H777eG6664LH/3oR3/YQwFgzBhvAFwsL9fxhuepp/Ei8h/4zGc+E2644YZQq9XC/Px8WFhYCLfffntYX1+XZa+++mqpXXPNNeH48eMhhBAef/zxUBRF+Lf/9t+GhYWFgf/78Ic/HEII4cKFCy/Jdn/yk58MP/MzPxM++MEPhiuvvDK86U1vCtdff3145zvfGUIIYWJi4iX5HgAvHcYbABfLy3G8+f7/ZKlcLodf/MVffLZeKpXCbbfdFk6dOhWeeuqpF/09AF5ajDcALpaX43gTAs9TIZCa/azPfvaz4b3vfW9417veFf71v/7XYffu3SGO4/Af/sN/CE888cQPvb7v/+/6P/jBD4Z3vOMddpmrrrrqRW3z901PT4e/+Iu/CE899VQ4fvx4OHz4cDh8+HC49dZbw8LCQpiZmXlJvgfAS4PxBsDF8nIdb77fJH5mZibEcTzw/9u9e3cIIYTV1dVw6NChF/1dAF4ajDcALpaX63gTAs9TIfAi8ll/9md/Fo4cORL+/M//fCC96Ptvv4cdPXpUao899li4/PLLQwghHDlyJITw9H9Z+8mf/MmXfoONQ4cOPXuDXFtbC9/5znfCL/zCL1yU7wYwOsYbABfLy3W8KZVK4cYbbwx333136PV6z/7Pr0II4cyZMyGEEBYWFsb2/QB+eIw3AC6Wl+t48w/t5Ocp/qfZz/j+f/0qiuLZ2p133hm++c1v2uW/8IUvDPQIuOuuu8Kdd94Z/vE//schhKf/69lb3vKW8MlPfjKcPXtWPr+4uPgDt2fU+Pfn8qEPfShkWRY+8IEPvKDPAxgfxhsAF8vLeby57bbbQr/fD5/5zGeerXU6nfDf//t/D9ddd13Yv3//864DwMXDeAPgYnk5jzfOTnue2lF/EfkHf/AH4W/+5m+k/mu/9mvh537u58Kf//mfh5//+Z8PP/uzPxuOHTsWfv/3fz9cd911zzYw/oeuuuqq8MY3vjH86q/+auh2u+HjH/94mJ+fD7/+67/+7DK/93u/F974xjeG66+/PvzKr/xKOHLkSDh//nz45je/GU6dOhXuv//+59zWu+66K7z1rW8NH/7wh5+34el//I//MTz44IPhlltuCUmShC984Qvhb//2b8NHP/rR8LrXvW70AwTgJcN4A+BiuVTHm3/xL/5F+NSnPhXe//73h8ceeywcOnQo/Lf/9t/CiRMnwl/+5V+OfoAAvGQYbwBcLJfqeMPz1A57EfmJT3zC1t/73veG9773veHcuXPhk5/8ZPjyl78crrvuuvDZz342/Omf/mm444475DP//J//81AqlcLHP/7xcOHChXDzzTeH3/3d3w379u17dpnrrrsufPvb3w7/7t/9u/DpT386LC8vh927d4fXvOY14Td/8zdfsv26/vrrw+c///nwxS9+MfT7/XDDDTeEP/mTPwm/9Eu/9JJ9B4AfDuMNgIvlUh1v6vV6+NrXvhZ+/dd/PfzBH/xB2N7eDjfeeGO4/fbbn7N/E4DxYrwBcLFcquMNz1MhRMU//FtWAAAAAAAAABgDekQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGDteRAIAAAAAAAAYO15EAgAAAAAAABg7XkQCAAAAAAAAGLtk1AV/6xN/rx9OYqmVSu7dZmQqhVkuN+vT7yiXk6F/l80yWotjXVeS6PZWbE33oRJrLY71s24fqlXdvmpNf47YfEdhjlPI9Xtj81tEQ6vLC11Xnpua+7nMe+y8rwv20r7WupnUMvO9/8dP7HVfjEvc4//v/yO1ItbrI+3ruRWb5bK+nlvulI7MWNXOB8/Vmde9VpapXv4qqS2d2pLaicUlqa209FroJlNS6zX3SS2Z1Vqt0ZBaVOgxiXIdl0Kux/PMiYektrZ6VmoT0xNSK1cGx4jpKV2mUatJbX5O939uRverUdV9aJb1N2xUzL2q35PagQPTUsOlb3q+KrWir/e3Xluv1ZIZM9zoUq7oNVitVqTW7g6el+7+WTbzETe/yd24F5maGQz75l7u7vl2LhdpLTbzoDwznzXzFjfncXOjKB5cX17osXObW/R1XbmZ9ETDE6gQwtRE83m3I4QQtrY6Wtvs6sbgkrd7Qe8zhRlGummqy5kT2M31q+YZyNVKpcEv7ps5QN/MswozaESRbkfZzMdK7ho0+x+VtNjPzLaYY+KuVfd84p7Z3H64Y5Blg/eDuKT7Wi7rGF+t6f2mVtV5UOTGQjMuud8iN9v7wCNHpYZL35/drbWipPNf82Yh5JGev5E530qFmRuZ5frmvv1CufPezWXMUGBnbWba8hzPiReBGRBLMi6NtiWR2TH/Sfuix6xQ53KF2d5f0Edli7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fV2AATE5DiOmD6Vu6uK+hoATbDTcR9c1IXGuOaErutMw2CTeP6PGjDTttc2KwvLcxnM7PN5rPlWJvHxqapsw+dGTp2pjttZho6Z6bxsQu6yTKt9XraxDbtmcbPZnuxM0VVDQAomeABE7diz9/ELJmYcAdzGYV46NqvmWbhNd3ccOjaBa1drbXtVQ0xOLe0KbXTa+eltnT6tNTa1UmpTc4elFpzcrfU8oqOLY26NlYPtcNS6sS6XLM+eE3vnteG7LNNPXhTk7pcOdHj3qjo+DhVNg3pcw2FyLp6jEMgrGYnciFVfRP0YgMQzH3LBdO44IVRwuLMVMZ+LjK5LK77vA+FMHMP0+DczrVcaJ0JvMjNxkQuwMaFMbi5jJ1DysYpF0xj5nd2amgOcq+rY0utaRr8u5sL8Ax3drg5int2ssExdn0mOGbovLRxBW6ub+ZZNqzUXEg2ZMJ8rX0+M9fRcGjM04uN9rw36nOheQQyQT8mhLOjgUNppnO+Xq9t1u8CVk04q6m58DLsTJFJh3KBM/mWhlBWIxOY1dwjtX7QIMoo0vO8JO8+Xvh90UerjJo4Y8Lu3NzIvpcakVvhiOvzATtDnx0xXccFCro5r30vZ7l3NaO9S3P4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWE2no01Hk0Q/7hrk+mbA5ktcA3bbNHiwa7BrFu+aIVdMA3kX8pKZJse2ZvY1Sk0z5ERr5Uy3pWuOp+s8GpvjmbhG6OYYDDfgz10wjQmcyUzz+b75vfrZaOsrctMoldfieMZSQxsfl7Ke1MqFNgevmnOw4hr4mvCbwtTK7cHv7d17VJbp9XU7Kge1oXOzPiu1mVldbs9eDbX5sVTH4JWVZamdWtyS2lNn75Ha6hkdb6r7DklttmECuLKG1DolDZ0pD322VNLjFHL9XUPfjK2mMXOU6z7kkTZu75pG8JtrGlazX7cEO0Acu0A5PVdjE/aQmwCTzATd9M08JTUhC8MNw4cDEZ5ZSL/TrCspmTmFSatx8wAXZGeN2GvezclC5NJ09HhOTmgQVq2u+9bqDI4l3dT8DmY73NTDba4P99Nit2fGNLJq8IzChlTZlIFRV6gfNc9O5cSF3wyKzUS8ZB8V9TotuYAUs1tuORdm1XehV+bYuVAXmzVltmX4eTIEf+27AC55tjXjWeF+V3NQ0tSMGUanq3OZ2Ox/OdHALOxMJZ0Sh6Kr5/P66e9KbS4cl9rk4Zuk1mpqreeCleRrfZzxC+bS+Ebkxgf/smrUFZrayNtnwnSGa3ZVox3PUXfLZuuYOWnxIo47r34AAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTWuEbrjgmNc02TXKNP1ZHdBN8PSNB3pO/smUCKyYTD6HWUXatPrSu38hdNSq9a1afC+ffukNjExpV9sGoW6QKDhBvdPc03pB/9t+jSHvG/21TTu75um8pF5t52bYBqbTPMi+tPi0vJUVYNPQtDzvrOxIbUZ0113KtZzsGYaKdfKeq3G0eAwmS1pQExy/7Zu25PHpdYvawhPODin3zm9S2rVWR0z9h++QmoHrtZx6dDRR6X2+He+J7WNhzWIZznXYJrK5GVSm2xowM5EbbCWFBo64Y3WfL8wtW6uY8tmW8cvtxx2ptiEOIRIz5ksNXMId166xt3ulueCF4bGqrIJscvMjdtmIrim4iaYxgVlSGP0p4vKhb+Y763V9NrvdDWAK451fQvzOgYVJT0GraEG/G6eWauZQEFdLLid7fbM3MsGB7kQHtJq8LTIhcuYe15ulnOhT5EJ03QBJu75bPheW7hlRstbsc9YiZlnuW0bDtIM4TnGIMcdJ7ucufbdg6fhn2MHa4XbB7N69wznwnAi8/zrvsMF7oRc54HYoSJ9R1L09d67tXJcao3kmNSmNmakVk+u0e8t63LR0Kkf2fviS3yvHPHdghuDR/6KUT864q7ZsW/oWI2aVeMOsRvPRg26cc9dLwZPYgAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGbuSwGtfM3DXIdc2QS6YxsQuEcZkmL5Rr6Oy2o1w2gS65NnY9v3RGag89cK/UHj+qARDXvvIVUkvCa6U2/4rrdPsSbfBeRLpvbfNbmJ70IanUBv4dm1PA9T0OJqsoMj2t3XkSgi6YpebccRuMHamy/4jU2hsaCNONN6V2xgQgnO33pFbqazPvqGUafG8NBuJc1t+SRS7rmPHRBGBsb+p2FGsn9StNYFQ8tVtq7Su0QfTkgXmttdeldl2i+5o19UJfy3V/T28/KLUzK2acTwfDdJKqjnFFXYN5MtNdOTJN2kNXj2ffhIhF5vcvUpq542lZT88tkyNj2WAa1zDcrNCFTAw3KXd9wX2TchMyN2IARLlsAnHMPdp/r459tZoJqDB5QLW6fm+9bALvCr1W2y0d5yvJ4BaWzBa772yYQMFO18xR1nUccVMeFx7YM0FH2Jli8wCUm4l34Z6xzPrKZq5RKes1WJiTdfhcdQGh7i9W3POfC9FKEr227FNCpp91QTIVs75+ps9sqQlYjcwzoB2D7fj9/CFBo4SrPhcXTOTmPC4Uo2LG78QFsGFH6m2ZZ6c1Dd3sbGv452ZDT7hd5rxM2qekVm1MSi0dun5jG8hlXkK4oKnIvMJy6zNzFDebKeyLDvcVbt6mSmZssd/r5hDuHdZQqWJ2341dqXm34uatNrgrci+ETLDaiwgY4i8iAQAAAAAAAIwdLyIBAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIzdyGE1rnGmD6YZrfGvC45JEv1s2TRcjmSFum1x7Jr3aq3XbUntsaP3S+3Rh++R2plTT+i25dpU/fLLbpVao6rHbqrp9l+PU6enDVWXNtektrmtzdxr1YmBf1fKE7JMpdLQ7ajo71A2jVi7XW0a3e/r9hamAWpqmlVjZ3rDLa+XWtucz92Onm8bHV1uY1MDV1rra1rb0vCbk/d8Y+DfB1r6nUVFr4VjUglhzTRan8302go93Y6plXNSa2e6X9npOaklfd3mWq4NrJPENKauN6U2Eeu1us+MfY+eGgy1OdFtyzKHXv0TUotDXWpZWcfMqmnSPtHUz3bqGjKR6mmCHaqzbcKMXGDSqCt03cfNPMXNq/pD85uyC1gwOQR55tLjzHws1u9MTEBMZsIegmlmXjfhL2WzPhez0TCfjc1x6pugn3pNg/wmaoPja6ut49RmS8cg93N12macN8u5OVq3Zxa0QX7YiWJzTbugFxvq4tIk41Gek0IomdpwJYpNmII5d2PzPFWY8aYwz4mZW585JnnuQjhd6JPbV12fCyBLc7e+0cJZ9Xn3+cOAQniOgCszuMQu4cvshI3icMET2JFWzLNDlOq7j5IJx61WTOBMV6+ZfqSBvsmcho7m8eB3uPt9d9tsm5sHVfVdhbsa3LjnxozI/G2eu47cOJeb+dL2pob/uBCpak2fC8sVs79DDy2by/q7ttr6XDe/64B+Z2NWai4ktLCz3hcxNzb4i0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM1ztMPVFZoGxokLjjENvitlbdjZqGsz0njo9Wlsmn+avqbh9KnHpPY//+4OqZ04cUJqRWaSDUyP4wmzvdPTM1Kr1bUprOk3HWp1PcZprk3U46BBEVlbAy9WNwabwNZMiEO1qjsWm1CIkmlqnaYuhEbXl3b1e7up7hd2pt3TGpBSNGtSy02H3NQ0JO9npvm4WdD0VQ+PVga/JLrrf8syNXONz15xWGrdSMOhllaXpZa11qXWdgFPke7Xnrp+x3RDx9bN9SWp5WbMaG3o2HJ+dVFq+8s69hVbg42TH157UJZZuO4mqTUSbZBdqut/N6uaMLNKRc+dTltDfSpVPSbYmdx175pvu8bdJXNd2t7ophF4yTVCH76mbcCEC2Iw22ECECpmjhYKE8RgxhYXQlM316XLWHD/3TsyATaFP3j6Hea3aLUH5xqb27r+dkf3tWcCAKtVPU71htbabTMRNL912cxvsTO54AV3zriQmNwFBZhrxn02Ndd5eWg8SEzIS9c8c7jMHDdq5mYM8vEHWu2bCZ4LSY1NSKoLG7PjvPlzHHfssr6ZL6aD174LxXBjfIh0XTZcxozpsdngwgTYuHAd7EwTsybAcdtc0yUTTNPT+X/HBII26jpuxOYdQT507ptFQrWsxVpV19+3oXjKXLohpHqNb62tSG1tbVVqbROCt3ha3xudO3VKavO7F6S2d/eM1A4e0OUevOfOgX8/8ch3ZZmeeY8yv/eQ1G59y09J7cCRa6VWlPRdVWZf1bzwMD7+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVhObBsY2hMYkrrgAG9fA1/Uoz02T5MpQJ/TWlgYsPPjgvVK7+86vSG11XUMhYhN2UIp0v1xzeJPLElwGS6+n3VNX13RbNjY39MPmONVMmMxkQ8M9FpcGQxuSpgkcirXpaK+rDWt7PQ2cycwBcL9/2XSzL5V+iOwkXNpMg/PCNN/um0CFYBqN1xJz/brxq6JNnaP64HV097nzssxB0w253df1F5VZqV138yuktm7Gkdv/VkNyFs9q0M37/ulrpHb5a18lta1VbcJcmOv8rr/6K6l9/q++KrWff+tPSu1CZ/C3OPLqG2SZclNDHFwD67Jp8N82Y1W1pL9FYvq2l1LXMh87kQtKsDdaF7xgGqbHw4l6IYS+aY5eMsvlQyl4kZlnFGa8sU3fa3ptzc3pGJfnJlCu5wLqzD4kui0lEx7hIyp0OffZfmrmGma5za3BJvpb7dGCfkxv/FCtaZP2ra2W1DpmLldO9LMvopc7LjGZmcu4wJnIJqm4EBITxmeWc+tLs8Hzt9vTIIqumeu70JjCjI+OC26KzTNB7sJ6TPCEDasxx6QwxySOzHOHGZfd8NUfet5xv6G98N3Paj7pAmciN9C7+4HbB+xIU3UNoSnMfSsxzyf9SOcGzTkNUqk2pvU7SiZkrhh8IWJylkLU1+eQzcULUltr6badPn1Oaisr+m6l12rrchc0cGZjQ5+TstSMo21drmrmAbX4Oqnd9+T9Unusqtf5dHNw7lY2qTGpCRJ6/MFvS23tqaNS+7HrXyu1K173j6S25+CVUiuX9X2Tn/MpRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clO+xPTgiE0/DFsz64uCNgaIStoPo5fq/47/1MmzA/++5+67ZJkzJ49LrR5rP4HpWkNqnVz3ITXbm5v+B5HpO1evTUgtFHpUUtOzIaro+lzfkPa29lQ4fkz7HRw7fnLg39Ozu2SZvfsOSG1iYkpqienpaNplhfb2mtTSnvY22GqZfphBexbg0pdlrv+QLpeahkGJ66ET9NqPTG+gvulNcuLcYM+RBzb0PF2ZNteH6T97YK/2YJman5dalunOntvQXrhT+/Vare7fJ7VPffF23ZYDl0stNd/bmtovtct//K1Su1Cdk1o/HTye10zqvjbNONo040jVnABprL9/v6zjo+1JzH+HwzN8ZzNzP3b9mc0cwvVZi8y5mpn+j836YD/byab2GWq3Tc/Eqs4pKlXTG7fQe6+be1Vqo/XxLkwfIHdtJaZPb6+n43Jujkm1qn0tN7f0GLR7w5/VY+L62KWmJ+/Wlt4Lul1znKraGylLzXzR9HHDzuT6K7r+gkninhNMb3rT49WNLe4+2OsMXkdubm7PXdvTUmu5eV5JzfXhesnbSZ/73uD21fSfNT0yh/s8PvPF5nu1Ntzr0v1emenj5vYhN/ebwjTQS0wvTTemZanrJYqdqJRqb2Pt0hpCo6bnVm9L5zK9rvZDLPX1PUcysSi1+q5DA//OzPuW1aU1qf31n35Gak89dVxq7j1KtarbVjd5AJ32itSKQseHcllzROKePhfW6/p+ZbKh37t2Tn+f3IwRC4f3DPy7s67rmpzU+ehEWX/X/qOPSm17aUlqX39Y81b2vuZmqb3u1rdJLVx5hdYMnsQAAAAAAAAAjB0vIgEAAAAAAACMHS8iAQAAAAAAAIwdLyIBAAAAAAAAjN3IYTU10+zS9CgPsWka7AJsokgbgG6ua6PQY8eflNrDDz0w8O/epoY4LExqE89aSZu+n19Zk5pr/FuYAIws0n3tm0NaKmlbWNOrOqyt6X50u9oo9vz5c1I7d1abwh4/oWE15y6cH/h3XNbtnZmdkVqjps1ZZyanpdZs6nLLK/q7njur+3D23GmpfeQ3/k+p4dK33dbzfnVZz6Pbv/w3Urv22qul9oZbtLnuk8ePSW1pTQNmLgyFzkwc1ga8Z834EJc1nOGKV10jtcr8gtR6Z/Ra+Ge3/YzUrr7cNAM2oVymz3potzQI7PSZC1I7OKEBM6+88U1SO3f+jNTqm4PBYptf+aYss3H0lNS2Lzsktd1zuh2Ny7UW79HaZmtLapE7KNiRIhNOUJhabMII+ibpxM2DpqdNe/i+/rfgRm1wudjMlQqzKtOjPRRBA126WgolM70rm3CZwgQqxCVdrmRqva6GNpRM8EKzqvO0Vkc/u7ppdiQaXF/JzNEKM2/t97XYb+u+VkyD+9gEFKY9HVuB73OBI5kJdTFZJTbAxIUtdcyF7kJdhkNN4ki3zYWwlNyg4UJezDjiAjdtYph5dixyEzZlwnpic4zLiY63LmzLPQMG873Df8rjxky3r30TJGRydEJkiu4eVJgHSnecsDOl62e11tPzvtU+L7XN5ZNSmzTBeHvndVIStUwQZ3cwsLMxMSPLLHY1vGXxjG5HNdJAud27NTTz6iv0eeLIkSNSW17S55/jx56Q2snTulzbBPgUub4jcfPKfXv3SO2VV+tzYWkoVHD6Bn3W7ZtwrKPful9qm+t6jCdaWps8qNvx+BMPSO2OZT0mP3vLh6Tm8BeRAAAAAAAAAMaOF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMZu5LCaqQltRFoq6XvMJNFVtkwDzLOnn5Lao088KLUTZrl4qGF6s6bfOdeoSa3INAAjdh2STePjwjVNLrThcG5qa2vaxHRjU0MxNjfXpNZu67Hb2NiQ2vamhjFMTE5KLRSDjUxPm+N74qTuf6nQ37psmlpXKtpo3jW6zk0z6I2NNalhZ6rW9PptTkxI7RXXvkJq0yZsKa7o+h49dlxqf/v1O6QWDTUbv+cBbfx7ZnVbanv2aDPkYyYAIcu04fJf/+XnpTY/1ZDazM+/S2rf+NZdUiuV9bp0oRANE0pWruuxO3F6WWpFUxszL5QHx7493z4qy6x8T0O1Th/QJtdnOzq2zlyhTZ6rB7WWXrZbape/Ws8d7Ewlk2CSm3u+6/8fpXr97l0w90FzDbbbJmQhGaxlfW0+npuciDg2wQauph8NvVSvrV5qgmnK7jt0/tXr6X6lJrRhuqFjWtuE2pw7r0F+udmTOBrc5oppql+uaKDE5qb+hkVhgolMeEjecaEgIwZgYEeKbIDnaOeMPY3M/NwF3eQmJGWYe4ZzATklE/rkwlXc+rJMx4eyCfczhyS0O/ocl6U6Zrg01cKM8+Yr7G9RMkE0ydD46o6vP+b6I+bm5uKesd32usAddzyxM514/CGpdQu9LhcXNXCkWdV7dKej7zS6uQmYOatBlGFj6B5d0wC4U0cfkdqBPXt1XWZOVZgkv4P7Nazm1jdogGmnrfOMKP9HUvvCF2+X2j336XPhwsIuXV+kY2mjodfqK48ckFoyFLaVlPQ37Kzps9ljX/k7qRUT+n5ofWtJaq8286Abbnm91I6/iPc3/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOazm8CFtutlutaW2vKyNMs+cPqa1M9rEdGtdA1wqJjyhXh1sbtowTdXnTVBLL9PdTVa16WrItPGxa2ZfMg2ci742YV5d1Qag1Zo2VJ2a0jCOffsXpHbq5EmpXTirtVpNj11tqHl7s2GavUZacx2ys1T3NUr0mPRMs/3UNJfOC10fdqbUNPhOKnrN7NqtwST79u2TWlTWz9anZ6RWmLClmdnBsSQ5qdfpgUiDWn76re+U2hPdNam1trVB8rEzp6X2zXvOSO01N2nD5c/8iQbdTE7NSO31t+jY9/WvfVVq7/2nvyy1xm4Nk5nfNSu1w0Pj4d5HdNyP6vrfw87WdXzomLCxekvvGc1H9bML11wttYmm/o7YmXLT7D8ygQJ10///wLzONZpNnWucWdTrvJfr/bI83Gy9pPdxN/ewMQZ9E4oQuVAEF8zjAhV0XE5NeETJfEfdhcSs6WdXNzR4Lzf/zdwFWURD31ur6XjeNUE6NgDEHU4zN0xiF5pjwkPC8weFAP9Q3wQ8uQCTcqLzGxdgE8x4Ew+tz57jZR3PXGiKHR/M85kTx2YMNvtqSiEy45cbHwoTCJObY+I+WzHHIB9Kr+r1NLgqNcfT7pcJFrNjnAuwMSGpLocVO9O37/2m1Eru9U+qJ83UjIZVZps6lwmRPp+c3dL5+bELg8E5UcXE55l5fb6xIrWtVOcUaxt6LVx1+KDUHjt2Xmr/6xtfk9psXY/TVVdcKbUL5xel1jdjWrdjAnEinQd1u/p+regPXvtxuSnLbG/oujZaWkvNs25xxRVSW3n8Cantu+46qV39uuulNir+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlM3+SWPH9UmlhcuXJBat7MttV1zGu7QautyqWnwXR8KeqkFEy6TadPVNNVGwrEJw4naulxkmhzHphlwbr6j3tBG0j/2Y9rsM830s1nWldqxY49J7cSJo1JrdzakFg+Fdgw3qg4hhFJimjKb5vglc+xqNW1s6xpEd01T5645dtiZ2p2W1JYXNfTpD//os1L72Z96h9Te/La3SO27jz4qtY7pq540BsOxzOURZk2gRN/0j9+8oAExM1MapBI39DpKgjZmbpTrUqtWNISln+tGtzp6vW20dAxuVnVH4qpui2tg/Z3lwQbW+xP9XffOa+DQgUkzjuzR5eJY92uibULJTNP3hP8Oh2fkJuzABdPsm9frrVHXa395Xa+tVqYhKc2GfkkpDK6vMKkD1US/M8t0rhSZAITCJCCkPRc4Y0JyInO9meC9tplDrSzrtd/u6DEpV/V7TZ5ECCYQJxrat1ZLt6NnwmpCMA3zR+RCfUrmGJMdge/rmzlxu6PPMd2eCe1LXFiJ+RJz0bjzsloeHIP6JnAmNoFMuQnSceE6Tsmszz0TOO55wj3HFOa6LKLRgmkcN74OHyu3bS5XrJ+bca9k7gVmvI3MfkUmOsg972JnOndWQyLr5ppp1Oaktm6myVupzvUnpk148bqe55X5/QP/vuHm1+jnjus7jlMP3Ce1QzMaTNp+VIM+6019nlha0Wex+x/QZ8J6pNfR/r17pebGw81tDW9e39TjNDOh2xdyPfB5MThunjPBfg+dfEpqqXnf1jDv5S5s6voaVR3Als4dl9prD+tz96h4EgMAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiOH1SyaoIjTp7UpaFLWxuVTs9oA1TVSjs64Rsfa7HS4ga/p3RySQtc1WdFmwPWKNk0uIm0anZt3tq5BdG6aEJu+8qHsNrowzUn72oTY9Vbu9DXUZn17XWoLuwebu5bN7xDHepw6PV2/6ZlsGz/3TbfmItcFSyWT7oEdaXpSA1fqJjTlX77/V6UWpXpi9lNzXZoracKMX0snzg78u7WojZpnk3mpnT9zTGrpioZ5tdsaFLF+clFqM4Vumwt4ys1448ItGmVNINs7sUtqtUi/t9XVMTJqaRPm0xfODfy7FzSw4vJrD0ltwTVqTkxDZxOoUZ3UWntbGzMXqY5p2KFKOmZMNPQ8mjThMqcvaIPvJdOkfXJa11c3gW95Oni/LJV1muZCJ8ylEHJzf+8HrdVrGsLT6+ox2drQa2Z7U8egjhkf0r4JdamYKaiZGxU9XV/FBF6EaPCz3dZowTRuTuVCgp5jQZGb0AoXKIGdqdXSe/6WmQdELkzSPIu4vygpmQAuFzozHPAUu+A9E9SSmXAGFx5XLuuY6farcM+EZpwrmeQ599xh12f2zW2fGzezVMegJBn8rL3GU61lfTMu2ecps/+R+bVdCI978MSOFJt3C90tna/3+xqukqQ6Z6/Geu2vtXRusNXTZ4wrrrlq4N/7rjwiy1w4rYEr503QZ7ur124Sm+e6Cd2OJNELLjHXzK45fSYqJfpM1DFzFDdP295ekVo10ufd5Q097mcuDL6HO39e38udOXVCaq2e7uuUed1SXDABNlM6ptef+J7U9v7d30vt8BXX6JcY/EUkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLEbOaxmc1MbZxamAWpswh4K00U962tjz05HG2WmmTZA7XQHG6XOVJuyzMzsjNS6PV1/o6VNTPMVbcSqrYBDiAqbzCKlwjQmdo2UE9NIOSS6fVMTU1KrVHS5TleP3bWvvHbg31mm27GyrE1hN13Yg2mQnJnQHBfqU23qb5Z23FHGTrS5pkFLvZ6GInz1y1+R2lVHrpJazQTdxB1d30xJh8St/uB1ed31r5Vl5huTUjM5WGH/wT26XEvDLm644oDU9kzMSO3AVENqb7vxWqk1q9oM+fpXaCPhy0yATbOu37Fi7gdTiQkDG/63abQ+PTUttcXTGupTM+lYSUUDbIqSjt8NE7YV53oPws5UjvXeM9MwcwNzi1rfMvdyEwoxWdcxqNfVuUFn6D5Ya+g1UzMBNhVz7XbN/Klu5mhb27odKys6LkWmEXxS0fWVNfsmlExonenvHtJUr18z1QixGUtSCdUYNbDBTFJsbcS1uSQ/wmrwLBeU4B7HdDkXOFMy4S9luz4VDYXa5CaYxoW3uDGuVtP7sQuwGf3aMs9TJo3PXW+5CdNxx8mF87jQmcwEpyZD++a2w/2uuRkLHRcSlLvjaQ5nYQKzsDOVzHN+P9fnH5es293WOcTsnlmp1eo6j483dX0rTx0f+Pfpuj43VDo6MXjFYX2u6/b1et49q88rRw4f1u3Y0KCX2Rn97PwuDVve2NbAUhfoW2/o+oI57q2Wvl/51n0PSu3J46cG/j1l8p0rq/rsPD+hz38hMe/Dyno8e2saanRu9ZTUHvzcn0jt1v/7vfq9Bn8RCQAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rydKO1DpdDSxIXQPUkjb+XVteltrmhjYAbfX0O/rZYHP0lb6uP++dkVq7rc3Xl9rasLNvGhUXLpjGNAN2DYLPnTtn1qfL9U1zZRfQsbm+IbUj+zTcYn1Tj+f60srAvxuTGrLhVGvaCD8q6T6029pkNjOHbsKE1aybJqvYoXJtDG5yEkKtrI2Om6ZB8D133S21xx/QZsBz0zNSmxw6pbsr2ry3UtPz/g1zGkyzu6bBDq37HpDaP811aJ7Y1GbIxV9rWM8/uaDXfTXo+B2Wvi2lPaZx+7nGSf3srt26LenzN3OPlkyT5zsfldrG2fNSqzQ1pCub0N86Ns2vXc/otVX9fULQoB9c+hZmNF2l2dDa4orOF3ITULcwr6EN5tIPWy39b8HFULhBZDNOzJzHZBPUaroPW1s6Vq0smzHDXEdVE5zjghfS1GyMCZmII53zpCbcb7Kh84XEBE+0pem7C6sxQRHmGMex+W3cbpnfP/I/GvA0c3pMTuk53u3oPd8Fk7hwFRcSk6b6PFEauueXTfhUZEJT3DneNQGZIWjNhca49RUu1MVchG45F1aTJLpv7ZbOjdJUx0gXElQZOlZ5rt8Z24AcrWVmzlu45TJdzh8TwmrwtIPmmt6/e7/U2pM6x04TnTy/6lVXS23vwUNSe12kISmNoXnF7NyMLDNjAjfrVRPIa0JtilzHkYXd+h1nz+p4+55f+nmp7d+3V2qnTj8ltYnv6lzLXoJmjGi39Jly1YQGl4rBz6bmHU96+rTUZmc0XMgFGU41dR/WuvrerNjUfegvaoDNqPiLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjN3JYzZNPaqDA+XMaYuAajfdNx86tNW2y6UJYeqaZ+XBT343VFVkmNs2VbRiMVEIIiTZpjzLTkNz0Uc5zUzSaJqxluPFxCL6p8+GDGkxzw5VXSM0F3ey5bLChbHNWm5humMapd959p9T+1zfukFpqGqD2zW9x5eXXSC3r2l8DO9CuuTmpuWvrvf/s/5JaFOv1+xd/+j+kduyRx6T2RNBzNfQGr/3Ns0uyyH6TpPNTB1+l25Zp+FbR0mCtqZ5eR9W2GdPq2ki6qsNoqNV0vOnNayPpkgmoiKb0O5K9C1LLTAhEOtQcvlfWhtPZtDbIru3fJbVwQMNlKvPTUouOarPmiml0HRIXZIGdqFnRc2FxTe+D51f1HtWo6D26UnZhMnp9JCYQZfi/D0eRzj2y3IwPZb3GN7d0ucUVHSAmTFhPKdbvTfvaHL5vpjxppkXXuL1vEnZcSEwp1vX1evrZvBia0pZGm4+5AJDhEI+nt0OX65p5SxTp1NoFGWJn6puxoGxqdRMSWZhry4XfuJO6ZAJXhq+3KDLjmRkfXWiKDasx2+bCdVwqV2GCHSomoDAx9/KS+Y5Kotdlz2yzC/WpVXW+NLwtmQlm7Zt9CDqM2rCepKzbW4p0X92zbcneW7ATvWbP5VK74sgRqW0c0GCW2oLOxaeaOu+enND5xxWX75Pa3PTgdeTecTxHQt9IXEjTmTMapLJ3nwZu7t+vAT4TE3rdz5nnji996UtSW17Sd1OjBhU3q3pcDl41+P6ms6KBNoUL8DRjdcXcCxJz3PuTOjec3NZjl5Zf+PsbRioAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGPHi0gAAAAAAAAAYzdyWM23vvl3Umt3OlLLTY9R15g5Mgv2utpQsyjru9LeUGPP3DRQT0zD5dw0Enb9wwsTuFM2XcoL00DdNR2dn5+X2pVXXik11+i5XjdN5M3xfPz++3T7TLjHrvnBxrPze7U57bbZjrvu/KbULpw/K7V+rr9F2tNjUjZNo3fv0uMEPMuc93mq12pc0mbmC/MarrLfnPunFrWp8WZ5cJyr7q3JMs3Vbd22J5+U2uT8pNQ6pjF6NqljVWzGlnxRmyH3Zg7q+qa0kXQ/0e/ITBf186eOSW1jnx7PXZN6/ZZ3DY43e268UZapXXOVbseMNlz+0oP3SG39gu7D3uPawPltb7xZalO7teEydqa1LT3vV9c1rKZe00C5hWkThGQCZtKOjlVOPDx36ZsQg5quf7ulY9DSBQ3Hak7p+FWYsbWXmnAsM1/KUhMaY4P8dH2FyXEoCp27bW3qnCQ3xyUEHfv1C0yQjgm2SM29pWS2t2QavLtQGxfaiB3KjA/93JxvJnivXNYxKLaBD1pKTEDBMBfU4kKleqmOmTXzvFIzQXFb2zpWuXBNF0zjQj1zMzdyQS+xmfNMmnCHiabuR9Xshzxmulwac5zcvlbruv6yC051z6yMLfgB2mf0OeH4ZVdL7amTF6SWnzivtVTPy2uO6HPHFYc1YHI4MMueu/Z0dkW94JZXNEx0a3tNavPzGtRbrepzkgtJdcFSLoyu3dZ5S6Wi869aTY/nrTe/VmqzM4PBOR0TlNfb1Hnr6ta61NY21qS2vqrLdVsmBHFZl+tXR5h7PQf+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOl2vR8eUmbmKamIXlkGiQnpgmzS7qpFNqYOJQGm4dGpmFp5rqlF+Y7C/1O1ww4uGbQwYRnBBO4Y5qxbptmzZ2ONhntm/3obG9JLXPN8U3z6+Mnjg/8uzap4Rnu2LVNI/zINI+NTCP4ktm2wmyba5gPPCvScaSb6jmzurwotekFDaaZ3XdIascXT0qtMtSR/PJDV8gyV+Qa3DR5UrejbK63pKtNynuby1ILuS6X7T0stUd3aYPofkMbst/4Y7ofC9O6fesPPyy182dPS23X7JzU5idnBv/d01tO3/xerWBCfcx4e3p1Q2oTM9pcOTqwT2ppn/8Oh6etb7tgFh1vppp6/k5O6HI9My6VzHTLTSviZLDoQk4yM29ZWtR5QXNSG6NHJrSvm2mggsldCGnmUmhc43YTDOhu76bBe2H2zX20kpiJWjS4ZC8z6zcpHpH5Tsc1pDe5iDYo0C2Hnck9E7j5b2aCTipVfSYqxXpyueBM9zwx/B2RO1FNOIO7YqomSGbSzHnc9RGbcWluTucU3baGpG52dR5QMutzf3vTNME0JZM25UJ8Wq3B5+Jepsd8c0vH5cKMaA0TmmNzPPpmbHFjmvnNsENdrs8ER9v6TmdlWYMe3XiQmkDQ+Tm9jvpuviDrH/U8NfMME2w3OTEhtU5H99Wtz22LqzXM89TExJTUqlUNdWk29fnEhVc9fkzDTjudwfcwm1v6XmbLjDdb2ya0sKZzw5J5xl7d2tTPzs1IrW6ei0fF1AgAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlOKtAlvnnel1jIhLK7ZelLWZqfVijbPzDTTJPSzwcaeeaELJYlpDB9pM9UoaHPOzDRu75p+qrkLiOnqZ48fPy616elpqVWrGkaRprpv29vaPDQxDZdrsTaJrk8MNkpNYj1O3a42Nu11tEF03jc/jmnC7MJq2i1tqNra1rAe7FDuenMhC6mOS0um4XJc1rElntBG6Ksbel7O1AevmQOveo0sM93Qa62Xa0Pj9SMHpFap63LTM3odTe4+IrX7Wjre/I+7vy21uKvX6iuv2C81FyhRn5qXmmu4XATdltbiYOjO0Qce1c/t0mO3ekjDZcqJNsKvJzrulffv1u2Y1/G2dXZFatdde6XUcOlzISzVRP87baOq90sX/hJMkFu9pvf33IS2Zf2he21Jv/PCBf1cXNE5VSnRbVtd0zlaUtF5UN8EuGR9F1phmsj3XeKfC7XRpWyQQ1W37/ABbQ6fDw1gJ09riEU7db/XaDW3rza00Mx5Yxt4iJ2oZAIgSiZ4oRzrPa9WM6EQJiS0Z4JunOFzNTHjWdmNLWa53ATkdNs6r49NAMREXferkuh1X6rrOFqK9f7uBhcXiONGqpbZ5m0TDNHpDj4Dt3s6LrvQoMlJnT/FZpy3wTTm2CUmENbtF3amA7e8VmpPPa4Bm73IhGP19dzKcw1XKYK+D4rN+wVZl8ucM7dZe+c1H15b14CYinn+K5d1HLHpUOaLXVhNra7f4bjgHBde/Pd33Sm1jY3B+YwLz3Njy/a2vr95zfU3Su3gPg11PXZCQ3OuvFyDaQ7svUxqo2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rKUwgzOSENuwsl/XdZrurjTKjkjZArZiG6VlXG6CWhhozD4fXhBBCZlJuIl19iGNtwpyaJs8l07je9Fm3jYS/+8ADUltaWpJaxYTVVCuuMbNpol4yDdNNk+QjR64a+PeaCedYXV2T2pkzp/U7TWPXwjV7NQkYJ596Qmrtlv7W2KFMwJE57UPoa+PffkubFT919rjUlhcvSG1hl4akzM8vDBbqGpJw6J+8Q2rX/ktdV9rW6y0u68CUtHW/loI2ZL/v7+6W2qlMG61XNjS04Wuf+bTUbk61Of4r3vyTUjv0ahPYM6+hM93yYAP6YybQ5n9vLkrt3u/8vdSOXPdqXf+q/tZ7X/fjUmuZe1Aw4yN2ppK5m89O6vwmNvOWNDX/PdcEvaQmBK9a1utt+B7aMgF4WW6CKDLTVL6j86DCBPT1czO/MY3QcxdC41IRRuv5HiLz38ILM1+olHWqumvaNJsfaqLf2dYAjJOLOj7mZoPNLciKTPCITeGxRwA7kQsXcddbuabjw969GihQmPP33PnzUmubeUXZBIcOy0xoppvrd92zngtuivWacWFOqXn+c0kW1aoep+Hgqufavs1tPSadjn5vp621bGgOUZhrvNHU+8jkxITUfOSZGZfM/rvfwi2HnWmto3PdZkXvjZs1PVdDbsKr+vrOxbxeCefMe44iH7wGZ8y14AKpMhO4+Zd/9ZdS+/KX/0Zqs3OzUvvl975Paq+89lqpuTc9hXm/lJv53alTx6XWbGqoTcWEkpVLJgy5MxhUvLKqITelfEFqHbNtffPOqGbmvFOz+tw52dTfLCm/8PGGv4gEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2vIgEAAAAAAAAMHYjh9WESJudzs9rE8ui0CAHFxyz3dKG4V3TDLiTalPUXmew2WnfNCXu57q9cUWbf87t0qabLhUjMkk3jUZTakeuuFJqKysrUjt24rjUej0TutPXY1cyTYgrpllzZhqUfu/hRwf+feDAwZHWv7Soja+DDabR4xSZxv0d0zQ7Nb81dqaeCRLpp9pofG1Vz8snHtFwqMlpbfD+5je+QWrHDu6S2vLi2uB2nNPgl62mNld+YnVTasl9D0stP3lMajMPnZLaQ1e+Smpn9+gY/LafeLvUnrz3HqmdeuQ+qe0ra7PiSkv3d6KvY8ujjzwktW/dccfAv+//7r2yTFo3Tepb+ltXF/TekrhbWK7jyKYJ69m7a49+FjtSvWHCDkxaSZbpuFQyy5npR+iboJfchM5UksFzumayJGamdM6zvK5f2k21Vq6YYJq+mUNlpvm4uZc7kYtesOEvJvDOzD9cSE7f/BaNoWO1d07Hs/VNPeZrLZ1nBRNMFIJZzrXpN1k1uQ2wwU4Um7CazAwatboGGzRNuENiwpzKJvzSPYsM3xs7Hb33ZuZ+n8Tu8dEF2JjAURNM4wKp3HI9EybqgsBSM4dsmWfMrnnu6pvx0AXClIfG6npNj3nd/A42cMb8/u5ZzHGhNiUXooUdqW3eIxw6dEBqe3bPSa3bNc/l5lydntL3IV/9xl1Sm00G1/fW/bpte1+lwZT3X9Dz+Utf+pLUNjd1rn/06FGpLczrs16zrvPAM2fOSO2pp05KbXlRx9Z6TcfvrU0NLF1f11qlYt6bDIVtZW6ckoofC1w4WJzoGFyraqjRgcv0vdGLwUgFAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDseBEJAAAAAAAAYOxGD6sxLTD7pgGqa8JbNw2XG3VtgJl2dX1JrO9KO53B5r+5CatxDZJDol3fd83NSm15eVVqzeak1Fyz9KlJbY7e62owz/KSbnOlrPvaNqENLsAm7em+JWZ/V1eWB/5dM42U3e/Vz7S5dpHr9vb72nTVbUccaWPbckmPMXamJ598Ump5ptf09pZeH1stDUIqlbWBcVzW87JsGqZnpcFrdcqEpuQ9HQtOPqgNkvd+51GpRWefkNr6qu7DyQVtrryqpfCq3a/X5ebOSu2J6neldqq7LLXyd7+pX3JSA4EePv6Y1Hq9wd9selrHx73meDaqumMLCzou1evauH/5rDaXTsxYFbuQCexIpZLOWza2TWBSbM5Bcw81Pb9DmmnT905Ha6WhoJfYzIEa5js3E93etKvjUpqaBue5C54zKTlG5JJZXAjNSGsLweUztDsaRrG+boJ+5ga3OYl1/3fPaEP6dk/X1TXzysgEdLj5pw31IawGz3BhTi7AptHQ+2XJjAcu4MmF2lSrOn4Nf+/yss4BkkS3rVrRMahvQmPaJpjUBV1GZgyOTKCCC5dZN2F0vdQ8J5kQMZer5Z476w19Zq0NhYT6v+zRfY3NvgYTiPpiuHAd7EwuhKXT1TBN8woi5Lk+d0UmyK1mgpqWzq/rZ7PBa3Uz1mu3saChOUcf2ZbaTTfdpOs319v3vvc9qd1//31S67T1O9bWdPvcc2fJXL8Lc/occ2xL19c276uSio7fUTw4v5me0WNebeo9o72q77RcDFa5rOfJmgnSKcz8plrRe8uo+ItIAAAAAAAAAGPHi0gAAAAAAAAAY8eLSAAAAAAAAABjx4tIAAAAAAAAAGM3clhNv69dfjsdbdjpuGbeE00NK6lOaJPNRkMbYOb54LakqTZI7pla1y3X0eakUa7L7ZqZltpTJ09J7eGHNMShZcIzNja1UWzTNBnNetroeXJSQ12uvuYaqZ0y21cfCgman9X9ck2zE9MMe25eG5smFW26Ojk5I7VKtFdqDz98TGrYmfKuNiTfsNeRXqtPntRglvax41Ir13RsmazruNRoDP73mqyh2/bo0nmpbT2pwTS3TOt3Htj1Kqk9XtX9uv3J41Jrn9eG7CuLet1vmcbU5wodW+IJE8bQviC1SkeP8W6zbzNzewb+3TTj+YwJLpua0HGpMavBYtsmJKjc02PS29SGyz0zLmFnco27MxeC19day4xVcaxrnJrS+3tuQmJ6Q+d0EjQ0JjNBedWq/nflnlkujnV93b7ugw07iExQhj16LzwowYXVZH1d3/lVHb+yaPDaT3s6R22aAJDLD2hg1vKGHpPNto4t3Z7Z18JMrd1hwo4UmxAWF0pVN+eqC6Zx4TfuhCtXdM4+v7B74N89E9y0vaXzhywz14IJXUjNcjWzHYkJgnLf0TPf4Z4xS2asqlX12aZSGS20sGK2efh7i9yMy+Zzbmy1ATaGHVndEERYDZ5x/EkNznzkMQ2XdM9dzbqOQWUTejU9Py+1mhm/hoP8TsQHZJmHvndOaiePaW1hz36ptTs6L7ji8GGpbZqAqwtLJqwz0UCYlTUNf8lMOFbfBKy6UJ9duzScp2oCCUMxeDyjyF34uh1lk5544bw+s/b7Oga127oP99yv4T9JrNv7kz/7Dt0+g7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdiP3iBxVyfQ+iUxPk7SnvQjSXPv5JKZXx/D/3r1aMX1UTNOMjuktsra2rus3r2fPnDoutU3z2a1N/XDf9Opw+99L9DiVSvrZ5oT2VNu/T3surq1qH4NKdbBfyaFDB2WZCxcWpZYmul/79mhfg2tv2CU19/ucOKq9VI4fMz0RsCM1Ta/GCyt6vV1Y0lqpof2+9s9PSK3R1PNtqqLX1saZ0wP//ru//5+yzF0PPayfe+opqR173c1S+6lb3iq13rT2LVo+pr0fO0+dkdrfN3X7Njb0OE1P6v7vnVuQWt7QYxIFHb8aJe2/VK0M1uJE92uipr/X7ikdz9a39TtzLYX1De1pubmpfWMqczpWYWdyc5TY9NXJg57jUUn7k0WRnuebW3ovr9Z0nEuzwd5F7a7pS9nRE7+srcjCzIS5p5reaUlivqOl9+j8RfQdG7VFYmHmPMH0j1sxx6C9NlgrRbpfSU23ZNb0xp0o63ast/SzZ5d1ue2efq/vpYmdqGTGm6lp7YvsekSOzHyHu3yrQ/3e9h3Qnm2L53SesbSozwmF6XnbMPOHihusDNcjsmR62E9O6PzO9cMs2b+90W3OC71+875uS54N9tMsmXHK9dwvmX6Qrjeu631p/37IfZgekXjG40e1H+TyovZ5r5nzt9vW/up9c32cPvOk1Kqm/3s81Ifw2/fqudsx67/m8JVSm5nVOcD8rL6XcBkntZqOrauruq9xrDkia+srUnO9Zm+66Uap7d6tvTSzrm5fiHTcCGFwDCpMb++sMO/gTJ/xNNXxYW1d97Vs3t9cWNbnSRPBMjL+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVpOaTpQumMbVXKPQzDTSrZgGvq5dZ3mo+W/VNAmNzHbUK7q7kw1t5m56EoeNDW1iWi/r93YzPU7bXQ1K6AT9krSny0WRHrtS0Eau589p49lOu6Xb1xn8ju3NTVmm3dKGpd3emtS227r/Dz+kTUzdr7i9YU69WLcFO9Na11xHbQ2b2t5cltoVl18mtel5DSY5c0bDZP7XPXdKrb+1NvDv5XPnZJmzTx2XWts0Wv/Kd++V2gOnjkntNa+5UWrTuyalduaJ81IrTNPo/QuzUpud2yO1WqQN3htT2kQ/MmNfOTEN6NPB32zCNKmfrOv6CxOosWHGs44JrOh3TcBXU0NBMrIj8IzCnAtZX8+jdkvHoF0T2sy7Y8avJdMIffeCnvuloWtkfU3vx0msG5zELiDFBDGY+cP0RE1qWWrmLSaEJXqJ/3u2y12ITVhemuvcaDjXJzbj2dqWaVxvgmQmKvqde2Z0fUWunz1+QYMXM/67P55Rqehzx8Sk3t/dLcpd0z4HyS33/De94fCaEELYu08DbKpmH1ZXNMTBBfO4bcvMg1c31fu72/9qVbfF1fJMx6/MpSyYsAz3nFmrDtZ6qQm0MYEzsQkFceEykZkHuVphtjcxczTsTOfOanBtlup8Oqnq/a1a1flNyZyrpdjc38wz0Mb24L0xMeF0iRlbMhOE5QJdHn9Cn3/m5mekVq7qNbi9qO8gDl+mgb6753TetmuXhtC84tprpObGkZIbwM2+Db8ii8xY2DPH3LyWCnFsxgfznWmm86W+mRun2QsPx2JmBAAAAAAAAGDseBEJAAAAAAAAYOx4EQkAAAAAAABg7HgRCQAAAAAAAGDsRg6rqdfrUnNNeF1YTRxrA8yqq40YfhMPNfaMTKPPxH3ONO+NTDPzLNX9qpjtnWxoE9fMNA3upNrgfmtbG9BvbWkz+40NDX/pdvSzK0uLuj7z2WZjMLRhZXlJ19/WJvU9c0xOPKmfbXe02Wu9rs2vy4mGR5hMI+xQWy1t9t8w19vll2sj4a72Nw8ba9qsuWuut9DXrr7HTx0f+PfSml5rs1O6bfsmpqRWq+m1MDehjZl31bU2dUDHqlLFBE9M6fdO1nXsq5RMuIUJoyibPsrNSW3WXKtPSC3dHjzGiWkMn5jx2437k+YeND81I7XuihmDGvrZEL3w5sq4tHR72uDbRSy45UJhgptiXW5y0gSnmBC8JBmca1SqZt5S6PoTEwqRmgbvZTcPMo3mIxMe6I5K8RyRGqOw0RmmEXooudA+s1x/cD9Ss66lTZ0/lXOdj0Qz5jjlOn5NTeqY3tw0TfrbTHDwNBckUjZBbrl5nnDhKiUXamKeWZxRrlQXHrFrt4bduSAV92zSz/X6aHX0uaNtau55wgVlFCZQw9X6JvRqeAwOIYSk7B6XB9dXNn/b48Y4F+CamAAbO7K6UBuzXMPMl7AzNeozUmvlOk++cOGC1Mplvd5cEFRk5h+VigmwHJKZpMDYvFvq9/XBzuXXbG7rnGrXbg2SMY8Y4aqrD0vt2mteIbWGGasnTCBmyVzTWU+vfRc25f5OcPi5yI5nZmxxgXouZLBkgoMqJhgxmHtLOX7h8xv+IhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2I0cVlO1jXpHa1LuGhjHrlOoWV3JNMocbkxseqSGkmm0XjILjtr4t2L2v5xobcs0V65E2ph6rqJhD9NTk7rc7IzUNje0yez66rLU0q5uy+TuXQP/zjNtALu9pSE32y1dV7enn3XhP1FVm7iG3DQ71cOEHSpPRwuPqJumyXEwgSgmKKK1rmucm9DlthcGr9VmTRsLHzy4V2oLcwu6bWbcq5R1DCr1df8rZry55rIDUitXtLl0yPVazVo6jrjgr1kXfjM3o+tzOR5D43ClovswO6/rKsx/Iysy07g/0wbJ9RmzvfNzUqtVGHDwtCzV88g1Xy9MbWlD7417d+k9r2nGoI1NvS7X1gfXNz2loQO1st4/220NxUszHVu6JuimMH3G+25uZOdQ+lkXgGGDadyHzXzRBtmZ5fL+0LeYJvBFoZ9bXmtJrV7X37C1pb9XzwScuZCRmHAsPMMFRrlnFh90otdvlul44AI2X6jCXNElF+A5rffeC+fPSm3NhAcG86xXMfM7F2TnglPzyIzp5hi74A333FmYZIzh4dCF3PjPmV/W1cz4mJv1uWdbNz5iZ4pKel7GsZ73LjPFheimJjDLj2nPf626MOOmCX5JU5NCaiYuhRkfu229v080dV61sGeX1hb02SHqm/HGXJe5eT5xzPAVYhPANXxHcO/W3Ks1N299Mdz9wAfujIaRCgAAAAAAAMDY8SISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDYjRxW4xZ0zTQjG8agTUztZ22Lc5WHwQagWd80zoy0cWZpxF6arulqkuj2JokuV6lpA9jNljZ73drUWmbCX1xIUMUE2DTrHV3frAu/mRj4t2sU26jpd7rGtnGsDWXLZW3Ib5vYumbQL6LZKS4trvl233T07fY0oCEzIU2uWfHW2gWpba8vSq1RHzx/SyU97/OuNm8upbodLiClbP57kGvyHMU6zmVmnKuYsTU2Y1W7o8e4OdGQWmJ+i5ZpYF2p6mfrtcHxYNKMj4UJcdhe35Bab1uPZ72mDacnZ2el1jd9+6N8tEbSuPT1TRCSuwZdtkrLJKmsbOu4NFvXa7BR0e8ozw1eRyur27JMbtbVyXRd622dFzQbZhwxcygbAFG4puejNkI38zQXgmHGG9dr3YXphKGG8SXTzN3NMnum+fxGS8f0qKTj1/a23lsSG+7I/AZPa9T1vmWvrBEvrcLcywpzTrvnMxucMrwus3W5OZ/bHR1vWl3zbGLGlsmJCam55xM3CMcmjMNd+05sAmbcGOQCqIbDTguzX3GsY0Figgfd+t19yYViuON5/rzOb7EzufMoMc/0E5MaNrW+ruG1zoS5fisVfR/gAoJl29z14eYjJijuumtfqSs0zxizsybUclrfmdhx1IwPwyHKIYRQ5LqcG9NsUFnkgq+G/m3GjCTWuWFmkkTtPpj7g9te+xO+iEAc/iISAAAAAAAAwNjxIhIAAAAAAADA2PEiEgAAAAAAAMDY8SISAAAAAAAAwNiNHFbTbGgQwShNvRanKwAABtFJREFUjp9rORtMYlbnPhsNLeganvdNA3nT69Q3JXYLmuWyTBulun2oVbVhayj0eLZb+mEXxtHva+PRZlObX9dqNanV64Pf637CWk2bnbqgEFezDWXd8XS/WW4aU2NH2tzY1GKu5317S0NNtjdXpXbq1AmpXVg8p1+R6zWdD13nuW387Jr86sVVNddWo6pNo00GjQ1UqE9ocE69qU2YW1trUquYQIWyady+vaW/hQ16MUEWeWcwYKa7oduRJDo+5pmOD3UXhtPQcW99S5trV01Ijh457FSVit4r+5k5x82FmZlzdW1dg+fStq5vdsoF+Q2ur1rV6zRN9TtNKUzO6FneqOg1vtky8wwb5uTmfPrFowYPugbv7ivyQrfFhVEM19w80AVvuNryuoZsJCVdX2S2w4VHjNCjHztE3YW2uXPGBJP4UITRwqZiE0YgJ+aIYVHufK6YML7p6Wldzsw9XIBlluqcr2yCLBIzbxkOrnqae1bU78jNeGCDc4a5Mcn8Xi6MI01N4KH5zmpsAkDMfmUpz1N4Wt+E0cXBBNXWTQCtCbrMzDXj3tW4McgFogxzgTbuOt3Y0Ln+/n17pbZtAoOnp/U5qdHQ/c/MHMK9+7DhWG78toEwOh64sU+Hal2XnfO4gC8bmuMCGm0yjX52xHAwh7+IBAAAAAAAADB2vIgEAAAAAAAAMHa8iAQAAAAAAAAwdryIBAAAAAAAADB2I4fVjNJg9Ifhmiu716Lue4drtvmnqbkACNeI0zUSdt8xaghL2TRmjmMNXmiY4AX3Hd2uNpbv9UxzfNP8uNsdDI9oNk3YRX1Can3ze/XM+tvtttTcPvRN8IbtLY0daWtDQ2jKpul3t62BAufOaQjN4tKS1Nz14c7VaCiEpV7Ra7dSduOUaT5v9qHXM9uRasPhenNSalPTs1LTFsch9DIdH1yAS82EdmQlHW9SM84VJtwiSwc/G5mAr6Sk42O9qcc4NqE251YWpeY665emZ6TW6+q5A3yfa0juwpyyrl5xPZPz0uuaMIZYv6MxdFk26iacoNBxZGtFQ6X6mW5bJdZ5RtfsQ5E/f1Dg0zUzFkjFB164uZYbq0ql0Zqj94eCg/w+KBdWk/VdQKEJq3F7ayab0ejTbVzi3PNJZubEhQlpikzIhHuOceE3bpI9nDFnQ0jdKW5qtarOH3bvWpDa4qJuW2rmBkU82kNBYoIXEhPy5Y5JZsZI93zigmOGx8NeqmOXHwzNYqP+huY52YVdhIjxBk8rldyzjhsLzHsTM+cpmYu/a879KNUTfThsyo03m5s6l3EhVevr+pz45JNPSm1h9y6puXt+au7vbu5h3xFFepxysz533CMzX3Dzz+GBw809bJiZDQd2YYzmKw03r7ITvBHxF5EAAAAAAAAAxo4XkQAAAAAAAADGjheRAAAAAAAAAMaOF5EAAAAAAAAAxm7kbrYuxME1141cuIxpYmmbfcamIfkIITmuiXBsakXmmjebpuIu7GDUsJ6SOSZmv4JpbOoaE/swHd2WxIRlpD3TPHXoO9JUgyj6fW1sG5lACdvs1p0TpgFuyRynLHUxG9iJ3HnUN7XUNNydmNRQl925NkxfX1+R2uqqCT8pBs/L3DQyT00D+WZdG7eXTMhEapqlB9un2I1BpuGyCWEpzDZXTDhWyTQ9j02gRjrc4T748J9+f/D3qZpGysGMrWlfj8lWV9ffyXW55uSUboc5TzqtLd0W7EiZOXcdFx7h7/m6WFrodbTZMcFz2eD1kFbM/d58gZsHtdu6Xyupnve91OxDYcIZzHXvGqG7vuVuXuUCKlxzeDeHyMx8LhoaXyPz39oL0xje3W/cf6d/Ef3YbWYFdiZ3P3LPTvakseeqnpjD994QQkiSsn4yGg5AGI2d65tas6HBc+2mBmKura9JzT3H5Wa/3NhSrWjIV88875RLekzK5igk8fMfu76Zt9iwThNi4X5VNzeM3Pjowrz4MyM84x+94dVS29rellqv54JwW1oz15E7z92z0vB7Dv/OQM/nhnmeajQ0bHfvvv1S27VrXmqpCcXrmmenWs08x7l3RGbgdJkuhXm4c0FlJRMSNDxI2HBVs22xed/m7g8uIMetzwaavYi5EUMVAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLGLCt+lGwAAAAAAAABeMvxFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAseNFJAAAAAAAAICx40UkAAAAAAAAgLHjRSQAAAAAAACAsfv/AJY9ImxcxnAkAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "def plot_images(dataset_dict):\n",
+ " \"\"\"Plots the first 15 images from the dataset dictionary.\"\"\"\n",
+ " images = dataset_dict['image']\n",
+ " labels = dataset_dict['label']\n",
+ " \n",
+ " # Define the number of images to plot\n",
+ " num_images_to_plot = 15\n",
+ " num_cols = 5 # Number of columns in the plot grid\n",
+ " num_rows = (num_images_to_plot + num_cols - 1) // num_cols # Calculate rows needed\n",
+ " \n",
+ " # Create a figure\n",
+ " fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))\n",
+ " axes = axes.flatten()\n",
+ " \n",
+ " # Plot each image\n",
+ " for i in range(num_images_to_plot):\n",
+ " img = images[i]\n",
+ " label = labels[i]\n",
+ " axes[i].imshow(img)\n",
+ " axes[i].set_title(f'Label: {label}')\n",
+ " axes[i].axis('off')\n",
+ " \n",
+ " # Hide any remaining empty subplots\n",
+ " for i in range(num_images_to_plot, len(axes)):\n",
+ " axes[i].axis('off')\n",
+ " \n",
+ " # Show the plot\n",
+ " plt.tight_layout()\n",
+ " plt.show()\n",
+ "\n",
+ "plot_images(dataset_dict)\n",
+ "plot_images(transformed_dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5. Finding image-specific property scores"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-06-27T15:44:18.292989Z",
+ "iopub.status.busy": "2024-06-27T15:44:18.292805Z",
+ "iopub.status.idle": "2024-06-27T15:44:19.075335Z",
+ "shell.execute_reply": "2024-06-27T15:44:19.074817Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Finding class_imbalance issues ...\n",
+ "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "70462dbacd1f4317adbb0ee71a2daa15",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/200 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Audit complete. 0 issues found in the dataset.\n",
+ "Finding class_imbalance issues ...\n",
+ "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "5d3c6623c4f04abaa89443bbb98a7cdc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/200 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Removing dark, blurry from potential issues in the dataset as it exceeds max_prevalence=0.1\n",
+ "\n",
+ "Audit complete. 0 issues found in the dataset.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/markdown": [
+ "### Vision-specific property scores in the original dataset"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " property \n",
+ " score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " dark_score \n",
+ " 0.295 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " light_score \n",
+ " 0.415 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " low_information_score \n",
+ " 0.325 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " odd_aspect_ratio_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " odd_size_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " grayscale_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " blurry_score \n",
+ " 0.325 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " property score\n",
+ "0 dark_score 0.295\n",
+ "1 light_score 0.415\n",
+ "2 low_information_score 0.325\n",
+ "3 odd_aspect_ratio_score 0.500\n",
+ "4 odd_size_score 0.500\n",
+ "5 grayscale_score 0.500\n",
+ "6 blurry_score 0.325"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/markdown": [
+ "### Vision-specific property scores in the transformed dataset"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " property \n",
+ " score \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " dark_score \n",
+ " 0.000 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " light_score \n",
+ " 0.185 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " low_information_score \n",
+ " 0.015 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " odd_aspect_ratio_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " odd_size_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " grayscale_score \n",
+ " 0.500 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " blurry_score \n",
+ " 0.015 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " property score\n",
+ "0 dark_score 0.000\n",
+ "1 light_score 0.185\n",
+ "2 low_information_score 0.015\n",
+ "3 odd_aspect_ratio_score 0.500\n",
+ "4 odd_size_score 0.500\n",
+ "5 grayscale_score 0.500\n",
+ "6 blurry_score 0.015"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Function to find image-specific property scores given the dataset object\n",
+ "def get_property_scores(dataset):\n",
+ " lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n",
+ " lab.find_issues()\n",
+ " return lab._spurious_correlation()\n",
+ "\n",
+ "# Finds specific property score in the dataframe containing property scores \n",
+ "def get_specific_property_score(property_scores_df, property_name):\n",
+ " return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]\n",
+ "\n",
+ "# Finding scores in original and transformed dataset\n",
+ "standard_property_scores = get_property_scores(dataset)\n",
+ "transformed_property_scores = get_property_scores(transformed_dataset)\n",
+ "\n",
+ "# Displaying the scores dataframe\n",
+ "display(Markdown(\"### Vision-specific property scores in the original dataset\"))\n",
+ "display(standard_property_scores)\n",
+ "display(Markdown(\"### Vision-specific property scores in the transformed dataset\"))\n",
+ "display(transformed_property_scores)\n",
+ "\n",
+ "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n",
+ "assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.9"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {
+ "06be87951a0149e2a92671f49c77f98a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7413ef3e14ca46e993de191f94774aea",
+ "placeholder": "",
+ "style": "IPY_MODEL_6fa8791c8e27442da35e330b705e6337",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "07dbe0f79d8347918a74eb0fa73e4d15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "328927eea3ae4cf087f0911a50b621fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "35595a9dccd44ad6983d0e55d980a52b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_880e97022549492681fab85c2ae8f44d",
+ "placeholder": "",
+ "style": "IPY_MODEL_a6d49e19924b4b03a9ef27b3724cfc68",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 200/200 [00:00<00:00, 802.74it/s]"
+ }
+ },
+ "38364ada893b4214a245d022115deca2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "46eeff215ef04da585ab49b425fe3bd8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "56ba7b1c266048d48c8f7dfe35edc4b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_5a32a68be45b4cde9be91d68d21dd475",
+ "placeholder": "",
+ "style": "IPY_MODEL_c27c174b5eaf4f0d87baed379442250c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "5a32a68be45b4cde9be91d68d21dd475": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5d3c6623c4f04abaa89443bbb98a7cdc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_06be87951a0149e2a92671f49c77f98a",
+ "IPY_MODEL_a62238a59da74c0a8df565ed27f79dc2",
+ "IPY_MODEL_f20b29ffa70542f6ad874185cc4b1039"
+ ],
+ "layout": "IPY_MODEL_c47e5ce73c6a43c1af6c7d412b844c9e",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "60352e650195478d9dc6a1f83e63826b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6d045e4c917d45a8a0abe493ebec93c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6fa8791c8e27442da35e330b705e6337": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "70462dbacd1f4317adbb0ee71a2daa15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_56ba7b1c266048d48c8f7dfe35edc4b2",
+ "IPY_MODEL_7a321f2e9a4c4bf6afae21f026fadcb4",
+ "IPY_MODEL_35595a9dccd44ad6983d0e55d980a52b"
+ ],
+ "layout": "IPY_MODEL_46eeff215ef04da585ab49b425fe3bd8",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "7413ef3e14ca46e993de191f94774aea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7a321f2e9a4c4bf6afae21f026fadcb4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_60352e650195478d9dc6a1f83e63826b",
+ "max": 200.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_328927eea3ae4cf087f0911a50b621fd",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 200.0
+ }
+ },
+ "880e97022549492681fab85c2ae8f44d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a62238a59da74c0a8df565ed27f79dc2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_38364ada893b4214a245d022115deca2",
+ "max": 200.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6d045e4c917d45a8a0abe493ebec93c9",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 200.0
+ }
+ },
+ "a6d49e19924b4b03a9ef27b3724cfc68": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c27c174b5eaf4f0d87baed379442250c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "c47e5ce73c6a43c1af6c7d412b844c9e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d0dab558fba14a74952f4a9b45f15158": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f20b29ffa70542f6ad874185cc4b1039": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d0dab558fba14a74952f4a9b45f15158",
+ "placeholder": "",
+ "style": "IPY_MODEL_07dbe0f79d8347918a74eb0fa73e4d15",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 200/200 [00:00<00:00, 827.64it/s]"
+ }
+ }
+ },
+ "version_major": 2,
+ "version_minor": 0
+ }
}
},
"nbformat": 4,
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index d462fdaea..69b3cd43c 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -70,10 +70,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:58.501344Z",
- "iopub.status.busy": "2024-06-25T23:17:58.500004Z",
- "iopub.status.idle": "2024-06-25T23:17:59.801482Z",
- "shell.execute_reply": "2024-06-25T23:17:59.800950Z"
+ "iopub.execute_input": "2024-06-27T15:44:23.089966Z",
+ "iopub.status.busy": "2024-06-27T15:44:23.089535Z",
+ "iopub.status.idle": "2024-06-27T15:44:24.255393Z",
+ "shell.execute_reply": "2024-06-27T15:44:24.254802Z"
},
"nbsphinx": "hidden"
},
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -110,10 +110,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:59.804004Z",
- "iopub.status.busy": "2024-06-25T23:17:59.803708Z",
- "iopub.status.idle": "2024-06-25T23:17:59.806736Z",
- "shell.execute_reply": "2024-06-25T23:17:59.806281Z"
+ "iopub.execute_input": "2024-06-27T15:44:24.258234Z",
+ "iopub.status.busy": "2024-06-27T15:44:24.257585Z",
+ "iopub.status.idle": "2024-06-27T15:44:24.260732Z",
+ "shell.execute_reply": "2024-06-27T15:44:24.260197Z"
},
"id": "_UvI80l42iyi"
},
@@ -203,10 +203,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:59.808933Z",
- "iopub.status.busy": "2024-06-25T23:17:59.808705Z",
- "iopub.status.idle": "2024-06-25T23:17:59.821999Z",
- "shell.execute_reply": "2024-06-25T23:17:59.821381Z"
+ "iopub.execute_input": "2024-06-27T15:44:24.263108Z",
+ "iopub.status.busy": "2024-06-27T15:44:24.262682Z",
+ "iopub.status.idle": "2024-06-27T15:44:24.274273Z",
+ "shell.execute_reply": "2024-06-27T15:44:24.273739Z"
},
"nbsphinx": "hidden"
},
@@ -285,10 +285,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:59.824481Z",
- "iopub.status.busy": "2024-06-25T23:17:59.824047Z",
- "iopub.status.idle": "2024-06-25T23:18:03.535596Z",
- "shell.execute_reply": "2024-06-25T23:18:03.535061Z"
+ "iopub.execute_input": "2024-06-27T15:44:24.276467Z",
+ "iopub.status.busy": "2024-06-27T15:44:24.276029Z",
+ "iopub.status.idle": "2024-06-27T15:44:33.502020Z",
+ "shell.execute_reply": "2024-06-27T15:44:33.501414Z"
},
"id": "dhTHOg8Pyv5G"
},
@@ -694,7 +694,13 @@
"\n",
"\n",
"🎯 Mnist_test_set 🎯\n",
- "\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"\n",
"Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n",
"\n",
@@ -2559,13 +2565,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "\n",
" * Overall, about 18% (1,846 of the 10,000) labels in your dataset have potential issues.\n",
" ** The overall label health score for this dataset is: 0.82.\n",
"\n",
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index 713861397..e60a48a49 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:05.926443Z",
- "iopub.status.busy": "2024-06-25T23:18:05.926263Z",
- "iopub.status.idle": "2024-06-25T23:18:07.103304Z",
- "shell.execute_reply": "2024-06-25T23:18:07.102799Z"
+ "iopub.execute_input": "2024-06-27T15:44:35.812613Z",
+ "iopub.status.busy": "2024-06-27T15:44:35.812448Z",
+ "iopub.status.idle": "2024-06-27T15:44:36.959377Z",
+ "shell.execute_reply": "2024-06-27T15:44:36.958799Z"
},
"nbsphinx": "hidden"
},
@@ -137,10 +137,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:07.106148Z",
- "iopub.status.busy": "2024-06-25T23:18:07.105603Z",
- "iopub.status.idle": "2024-06-25T23:18:07.109155Z",
- "shell.execute_reply": "2024-06-25T23:18:07.108679Z"
+ "iopub.execute_input": "2024-06-27T15:44:36.962118Z",
+ "iopub.status.busy": "2024-06-27T15:44:36.961823Z",
+ "iopub.status.idle": "2024-06-27T15:44:36.965274Z",
+ "shell.execute_reply": "2024-06-27T15:44:36.964816Z"
}
},
"outputs": [],
@@ -176,10 +176,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:07.111219Z",
- "iopub.status.busy": "2024-06-25T23:18:07.110877Z",
- "iopub.status.idle": "2024-06-25T23:18:10.366450Z",
- "shell.execute_reply": "2024-06-25T23:18:10.365818Z"
+ "iopub.execute_input": "2024-06-27T15:44:36.967365Z",
+ "iopub.status.busy": "2024-06-27T15:44:36.967036Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.212356Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.211751Z"
}
},
"outputs": [],
@@ -202,10 +202,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.369846Z",
- "iopub.status.busy": "2024-06-25T23:18:10.369009Z",
- "iopub.status.idle": "2024-06-25T23:18:10.408435Z",
- "shell.execute_reply": "2024-06-25T23:18:10.407723Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.215518Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.214659Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.250385Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.249775Z"
}
},
"outputs": [],
@@ -228,10 +228,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.411187Z",
- "iopub.status.busy": "2024-06-25T23:18:10.410945Z",
- "iopub.status.idle": "2024-06-25T23:18:10.447524Z",
- "shell.execute_reply": "2024-06-25T23:18:10.446786Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.253059Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.252740Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.289877Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.289247Z"
}
},
"outputs": [],
@@ -253,10 +253,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.450344Z",
- "iopub.status.busy": "2024-06-25T23:18:10.450101Z",
- "iopub.status.idle": "2024-06-25T23:18:10.453289Z",
- "shell.execute_reply": "2024-06-25T23:18:10.452762Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.292569Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.292302Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.295458Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.294917Z"
}
},
"outputs": [],
@@ -278,10 +278,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.455428Z",
- "iopub.status.busy": "2024-06-25T23:18:10.455099Z",
- "iopub.status.idle": "2024-06-25T23:18:10.457834Z",
- "shell.execute_reply": "2024-06-25T23:18:10.457357Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.297481Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.297218Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.300030Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.299562Z"
}
},
"outputs": [],
@@ -363,10 +363,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.459894Z",
- "iopub.status.busy": "2024-06-25T23:18:10.459627Z",
- "iopub.status.idle": "2024-06-25T23:18:10.483748Z",
- "shell.execute_reply": "2024-06-25T23:18:10.483202Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.302271Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.301972Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.325394Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.324857Z"
}
},
"outputs": [
@@ -380,7 +380,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "558d7887a3b248ccbc78e41ae8f6a2ad",
+ "model_id": "b8fa97ab69bf43228c78ed3ed04acd70",
"version_major": 2,
"version_minor": 0
},
@@ -394,7 +394,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "633ecf7c235f443883ad78f8a1d748cd",
+ "model_id": "f5f6626fc81f4263b798ca0b721371b5",
"version_major": 2,
"version_minor": 0
},
@@ -452,10 +452,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.488896Z",
- "iopub.status.busy": "2024-06-25T23:18:10.488605Z",
- "iopub.status.idle": "2024-06-25T23:18:10.495342Z",
- "shell.execute_reply": "2024-06-25T23:18:10.494804Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.330533Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.330080Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.336361Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.335930Z"
},
"nbsphinx": "hidden"
},
@@ -486,10 +486,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.497491Z",
- "iopub.status.busy": "2024-06-25T23:18:10.497223Z",
- "iopub.status.idle": "2024-06-25T23:18:10.500578Z",
- "shell.execute_reply": "2024-06-25T23:18:10.500143Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.338354Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.338092Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.341428Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.340992Z"
},
"nbsphinx": "hidden"
},
@@ -512,10 +512,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.502533Z",
- "iopub.status.busy": "2024-06-25T23:18:10.502242Z",
- "iopub.status.idle": "2024-06-25T23:18:10.508483Z",
- "shell.execute_reply": "2024-06-25T23:18:10.507959Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.343346Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.343067Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.349552Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.349010Z"
}
},
"outputs": [],
@@ -565,10 +565,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.510615Z",
- "iopub.status.busy": "2024-06-25T23:18:10.510302Z",
- "iopub.status.idle": "2024-06-25T23:18:10.546530Z",
- "shell.execute_reply": "2024-06-25T23:18:10.545827Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.351502Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.351203Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.387124Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.386414Z"
}
},
"outputs": [],
@@ -585,10 +585,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.548998Z",
- "iopub.status.busy": "2024-06-25T23:18:10.548767Z",
- "iopub.status.idle": "2024-06-25T23:18:10.582483Z",
- "shell.execute_reply": "2024-06-25T23:18:10.581909Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.389816Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.389562Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.424566Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.423985Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.585385Z",
- "iopub.status.busy": "2024-06-25T23:18:10.584868Z",
- "iopub.status.idle": "2024-06-25T23:18:10.710386Z",
- "shell.execute_reply": "2024-06-25T23:18:10.709794Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.427197Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.426905Z",
+ "iopub.status.idle": "2024-06-27T15:44:40.551680Z",
+ "shell.execute_reply": "2024-06-27T15:44:40.551060Z"
}
},
"outputs": [
@@ -737,10 +737,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:10.713077Z",
- "iopub.status.busy": "2024-06-25T23:18:10.712538Z",
- "iopub.status.idle": "2024-06-25T23:18:13.846109Z",
- "shell.execute_reply": "2024-06-25T23:18:13.845478Z"
+ "iopub.execute_input": "2024-06-27T15:44:40.554409Z",
+ "iopub.status.busy": "2024-06-27T15:44:40.553742Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.591199Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.590631Z"
}
},
"outputs": [
@@ -826,10 +826,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:13.848642Z",
- "iopub.status.busy": "2024-06-25T23:18:13.848179Z",
- "iopub.status.idle": "2024-06-25T23:18:13.910214Z",
- "shell.execute_reply": "2024-06-25T23:18:13.909621Z"
+ "iopub.execute_input": "2024-06-27T15:44:43.593780Z",
+ "iopub.status.busy": "2024-06-27T15:44:43.593358Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.651658Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.651092Z"
}
},
"outputs": [
@@ -1285,10 +1285,10 @@
"id": "af3052ac",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:13.912512Z",
- "iopub.status.busy": "2024-06-25T23:18:13.912056Z",
- "iopub.status.idle": "2024-06-25T23:18:13.955394Z",
- "shell.execute_reply": "2024-06-25T23:18:13.954784Z"
+ "iopub.execute_input": "2024-06-27T15:44:43.653801Z",
+ "iopub.status.busy": "2024-06-27T15:44:43.653552Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.694296Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.693693Z"
}
},
"outputs": [
@@ -1319,7 +1319,7 @@
},
{
"cell_type": "markdown",
- "id": "411cb3b4",
+ "id": "40b044b4",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -1327,7 +1327,7 @@
},
{
"cell_type": "markdown",
- "id": "c0fc51ac",
+ "id": "ebb7621c",
"metadata": {},
"source": [
"The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n",
@@ -1338,7 +1338,7 @@
},
{
"cell_type": "markdown",
- "id": "31d0af7b",
+ "id": "c979fb67",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by Datalab?\n",
@@ -1349,13 +1349,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "ddefd054",
+ "id": "61925736",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:13.957642Z",
- "iopub.status.busy": "2024-06-25T23:18:13.957445Z",
- "iopub.status.idle": "2024-06-25T23:18:13.965853Z",
- "shell.execute_reply": "2024-06-25T23:18:13.965258Z"
+ "iopub.execute_input": "2024-06-27T15:44:43.696599Z",
+ "iopub.status.busy": "2024-06-27T15:44:43.696241Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.703974Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.703400Z"
}
},
"outputs": [],
@@ -1457,7 +1457,7 @@
},
{
"cell_type": "markdown",
- "id": "96a1ec22",
+ "id": "7463b4fa",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1472,13 +1472,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "d478ad17",
+ "id": "6670b933",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:13.968394Z",
- "iopub.status.busy": "2024-06-25T23:18:13.968108Z",
- "iopub.status.idle": "2024-06-25T23:18:13.989832Z",
- "shell.execute_reply": "2024-06-25T23:18:13.989245Z"
+ "iopub.execute_input": "2024-06-27T15:44:43.706022Z",
+ "iopub.status.busy": "2024-06-27T15:44:43.705663Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.724461Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.723993Z"
}
},
"outputs": [
@@ -1490,14 +1490,6 @@
"\n",
"Audit complete. 3 issues found in the dataset.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/tmp/ipykernel_7878/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n",
- " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n"
- ]
}
],
"source": [
@@ -1529,13 +1521,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "ff936017",
+ "id": "ad393460",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:13.992065Z",
- "iopub.status.busy": "2024-06-25T23:18:13.991705Z",
- "iopub.status.idle": "2024-06-25T23:18:13.994946Z",
- "shell.execute_reply": "2024-06-25T23:18:13.994403Z"
+ "iopub.execute_input": "2024-06-27T15:44:43.726475Z",
+ "iopub.status.busy": "2024-06-27T15:44:43.726145Z",
+ "iopub.status.idle": "2024-06-27T15:44:43.729522Z",
+ "shell.execute_reply": "2024-06-27T15:44:43.729061Z"
}
},
"outputs": [
@@ -1630,43 +1622,46 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "01de1302b1ac41a68c4d605171741bc4": {
+ "00d405cd874e4d93b1779853b89cd0f7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "05b22c53719c4c21a23fad4a52106f28": {
+ "0f4e70486c0943199e248019574dfa45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2cd8bd24077746149668fb6aa3ba9d2c",
+ "placeholder": "",
+ "style": "IPY_MODEL_698e96e54e764558aac4f4e73f2f7d77",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/? [00:00<00:00, 1058606.29it/s]"
}
},
- "0e5d155060264c219bd191119ba7e533": {
+ "19071873d04f437796661ff9a7554d49": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -1682,23 +1677,30 @@
"description_width": ""
}
},
- "0f44c68a58214c4e8e72391024cc96e8": {
+ "1cc2f905137a468e8835d65cec38038b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_781e4a4e6f7f494180239789213696ea",
+ "placeholder": "",
+ "style": "IPY_MODEL_2d1b2b742b314519ba401c5d482aadd5",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "number of examples processed for estimating thresholds: "
}
},
- "20b4f1fb000f40e69908d463dce3c07d": {
+ "21317cfda48d4538b212082d0f2cc4fb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1751,25 +1753,60 @@
"width": null
}
},
- "21bd4c1e909b435f96eccf76ffa92cec": {
- "model_module": "@jupyter-widgets/controls",
+ "2cd8bd24077746149668fb6aa3ba9d2c": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "2414d070f8b94c0488b54d3ad24457fb": {
+ "2d1b2b742b314519ba401c5d482aadd5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1787,31 +1824,33 @@
"text_color": null
}
},
- "558d7887a3b248ccbc78e41ae8f6a2ad": {
+ "350d9d23aa68460eb3705e7d9f43c50d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_95142643f01f48508a522fc8ef8c8553",
- "IPY_MODEL_e962ea686d414b5ca4d9f4f904cd468f",
- "IPY_MODEL_db994fd696e94ac29224215d7f867ee2"
- ],
- "layout": "IPY_MODEL_5eb199074cca45eebcd2fae654f3d219",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_37a952d6211542fcb5bcf5cba9d47897",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_19071873d04f437796661ff9a7554d49",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": 50.0
}
},
- "5baa096c30154543accc624858291e39": {
+ "37a952d6211542fcb5bcf5cba9d47897": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1864,7 +1903,7 @@
"width": null
}
},
- "5eb199074cca45eebcd2fae654f3d219": {
+ "43d88e4a37934e48938b26486739d0a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1917,31 +1956,25 @@
"width": null
}
},
- "633ecf7c235f443883ad78f8a1d748cd": {
+ "698e96e54e764558aac4f4e73f2f7d77": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a6fc608ec49049b99b50be3158f92470",
- "IPY_MODEL_b5ef166a707247e98779b17c09955c28",
- "IPY_MODEL_9218df49202c42f186276c2b0c86c0ef"
- ],
- "layout": "IPY_MODEL_81ac2032ca0b474aba6329ab92b63efd",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "80ffedccfbbc46d0bd395580acfaf87f": {
+ "781e4a4e6f7f494180239789213696ea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1994,7 +2027,7 @@
"width": null
}
},
- "81ac2032ca0b474aba6329ab92b63efd": {
+ "78882dd6e6f34fddbc77e247be0c3f1c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2047,7 +2080,7 @@
"width": null
}
},
- "9218df49202c42f186276c2b0c86c0ef": {
+ "81482564dab54ea4bc615bb395105d98": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2062,15 +2095,33 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5baa096c30154543accc624858291e39",
+ "layout": "IPY_MODEL_78882dd6e6f34fddbc77e247be0c3f1c",
"placeholder": "",
- "style": "IPY_MODEL_05b22c53719c4c21a23fad4a52106f28",
+ "style": "IPY_MODEL_d71a2298c0664cabb50d3e7cd8d76a12",
"tabbable": null,
"tooltip": null,
- "value": " 10000/? [00:00<00:00, 1516982.17it/s]"
+ "value": "number of examples processed for checking labels: "
}
},
- "95142643f01f48508a522fc8ef8c8553": {
+ "9d6b1617781f4aa2b05aed42bffc6bae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b46b36118bba4d82aed9017dca726dfb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2085,38 +2136,39 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c84021d7d3264151a5fb14b29eaf1cee",
+ "layout": "IPY_MODEL_43d88e4a37934e48938b26486739d0a0",
"placeholder": "",
- "style": "IPY_MODEL_21bd4c1e909b435f96eccf76ffa92cec",
+ "style": "IPY_MODEL_9d6b1617781f4aa2b05aed42bffc6bae",
"tabbable": null,
"tooltip": null,
- "value": "number of examples processed for estimating thresholds: "
+ "value": " 10000/? [00:00<00:00, 1637952.12it/s]"
}
},
- "a6fc608ec49049b99b50be3158f92470": {
+ "b8fa97ab69bf43228c78ed3ed04acd70": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_efd5cc9a580b4925b2b71b81f5bd69d9",
- "placeholder": "",
- "style": "IPY_MODEL_01de1302b1ac41a68c4d605171741bc4",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1cc2f905137a468e8835d65cec38038b",
+ "IPY_MODEL_350d9d23aa68460eb3705e7d9f43c50d",
+ "IPY_MODEL_0f4e70486c0943199e248019574dfa45"
+ ],
+ "layout": "IPY_MODEL_ec33686c3f7944c1810d5fcb8f494d91",
"tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for checking labels: "
+ "tooltip": null
}
},
- "b5ef166a707247e98779b17c09955c28": {
+ "c7732a3a74644a5196a3616939028df2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -2132,17 +2184,35 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c4f061a7d9044c3cbc2d5dc4162c65ef",
+ "layout": "IPY_MODEL_e7ae634431c44d099f615a40e61b9fa4",
"max": 50.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_0f44c68a58214c4e8e72391024cc96e8",
+ "style": "IPY_MODEL_00d405cd874e4d93b1779853b89cd0f7",
"tabbable": null,
"tooltip": null,
"value": 50.0
}
},
- "c4f061a7d9044c3cbc2d5dc4162c65ef": {
+ "d71a2298c0664cabb50d3e7cd8d76a12": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "e7ae634431c44d099f615a40e61b9fa4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2195,7 +2265,7 @@
"width": null
}
},
- "c84021d7d3264151a5fb14b29eaf1cee": {
+ "ec33686c3f7944c1810d5fcb8f494d91": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2248,106 +2318,28 @@
"width": null
}
},
- "db994fd696e94ac29224215d7f867ee2": {
+ "f5f6626fc81f4263b798ca0b721371b5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_20b4f1fb000f40e69908d463dce3c07d",
- "placeholder": "",
- "style": "IPY_MODEL_2414d070f8b94c0488b54d3ad24457fb",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/? [00:00<00:00, 1059381.69it/s]"
- }
- },
- "e962ea686d414b5ca4d9f4f904cd468f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_80ffedccfbbc46d0bd395580acfaf87f",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0e5d155060264c219bd191119ba7e533",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_81482564dab54ea4bc615bb395105d98",
+ "IPY_MODEL_c7732a3a74644a5196a3616939028df2",
+ "IPY_MODEL_b46b36118bba4d82aed9017dca726dfb"
+ ],
+ "layout": "IPY_MODEL_21317cfda48d4538b212082d0f2cc4fb",
"tabbable": null,
- "tooltip": null,
- "value": 50.0
- }
- },
- "efd5cc9a580b4925b2b71b81f5bd69d9": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "tooltip": null
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
index 902b836cf..652551c5d 100644
--- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
@@ -53,10 +53,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:17.256748Z",
- "iopub.status.busy": "2024-06-25T23:18:17.256569Z",
- "iopub.status.idle": "2024-06-25T23:18:18.418999Z",
- "shell.execute_reply": "2024-06-25T23:18:18.418397Z"
+ "iopub.execute_input": "2024-06-27T15:44:48.147366Z",
+ "iopub.status.busy": "2024-06-27T15:44:48.147196Z",
+ "iopub.status.idle": "2024-06-27T15:44:49.321368Z",
+ "shell.execute_reply": "2024-06-27T15:44:49.320829Z"
},
"nbsphinx": "hidden"
},
@@ -68,7 +68,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -95,10 +95,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:18.421550Z",
- "iopub.status.busy": "2024-06-25T23:18:18.421304Z",
- "iopub.status.idle": "2024-06-25T23:18:18.599266Z",
- "shell.execute_reply": "2024-06-25T23:18:18.598641Z"
+ "iopub.execute_input": "2024-06-27T15:44:49.324091Z",
+ "iopub.status.busy": "2024-06-27T15:44:49.323521Z",
+ "iopub.status.idle": "2024-06-27T15:44:49.506194Z",
+ "shell.execute_reply": "2024-06-27T15:44:49.505523Z"
},
"id": "avXlHJcXjruP"
},
@@ -234,10 +234,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:18.601825Z",
- "iopub.status.busy": "2024-06-25T23:18:18.601625Z",
- "iopub.status.idle": "2024-06-25T23:18:18.613136Z",
- "shell.execute_reply": "2024-06-25T23:18:18.612703Z"
+ "iopub.execute_input": "2024-06-27T15:44:49.508864Z",
+ "iopub.status.busy": "2024-06-27T15:44:49.508610Z",
+ "iopub.status.idle": "2024-06-27T15:44:49.521078Z",
+ "shell.execute_reply": "2024-06-27T15:44:49.520490Z"
},
"nbsphinx": "hidden"
},
@@ -340,10 +340,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:18.615067Z",
- "iopub.status.busy": "2024-06-25T23:18:18.614888Z",
- "iopub.status.idle": "2024-06-25T23:18:18.849624Z",
- "shell.execute_reply": "2024-06-25T23:18:18.849023Z"
+ "iopub.execute_input": "2024-06-27T15:44:49.523386Z",
+ "iopub.status.busy": "2024-06-27T15:44:49.522992Z",
+ "iopub.status.idle": "2024-06-27T15:44:49.761259Z",
+ "shell.execute_reply": "2024-06-27T15:44:49.760654Z"
}
},
"outputs": [
@@ -393,10 +393,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:18.851953Z",
- "iopub.status.busy": "2024-06-25T23:18:18.851541Z",
- "iopub.status.idle": "2024-06-25T23:18:18.877468Z",
- "shell.execute_reply": "2024-06-25T23:18:18.877017Z"
+ "iopub.execute_input": "2024-06-27T15:44:49.763628Z",
+ "iopub.status.busy": "2024-06-27T15:44:49.763381Z",
+ "iopub.status.idle": "2024-06-27T15:44:49.789884Z",
+ "shell.execute_reply": "2024-06-27T15:44:49.789414Z"
}
},
"outputs": [],
@@ -428,10 +428,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:18.879561Z",
- "iopub.status.busy": "2024-06-25T23:18:18.879211Z",
- "iopub.status.idle": "2024-06-25T23:18:20.899666Z",
- "shell.execute_reply": "2024-06-25T23:18:20.898976Z"
+ "iopub.execute_input": "2024-06-27T15:44:49.791905Z",
+ "iopub.status.busy": "2024-06-27T15:44:49.791729Z",
+ "iopub.status.idle": "2024-06-27T15:44:51.886248Z",
+ "shell.execute_reply": "2024-06-27T15:44:51.885611Z"
}
},
"outputs": [
@@ -455,14 +455,6 @@
"\n",
"Audit complete. 78 issues found in the dataset.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
}
],
"source": [
@@ -482,10 +474,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:20.901960Z",
- "iopub.status.busy": "2024-06-25T23:18:20.901648Z",
- "iopub.status.idle": "2024-06-25T23:18:20.919398Z",
- "shell.execute_reply": "2024-06-25T23:18:20.918920Z"
+ "iopub.execute_input": "2024-06-27T15:44:51.888650Z",
+ "iopub.status.busy": "2024-06-27T15:44:51.888335Z",
+ "iopub.status.idle": "2024-06-27T15:44:51.906193Z",
+ "shell.execute_reply": "2024-06-27T15:44:51.905621Z"
},
"scrolled": true
},
@@ -615,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:20.921440Z",
- "iopub.status.busy": "2024-06-25T23:18:20.921079Z",
- "iopub.status.idle": "2024-06-25T23:18:22.361092Z",
- "shell.execute_reply": "2024-06-25T23:18:22.360462Z"
+ "iopub.execute_input": "2024-06-27T15:44:51.908417Z",
+ "iopub.status.busy": "2024-06-27T15:44:51.908017Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.377092Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.376553Z"
},
"id": "AaHC5MRKjruT"
},
@@ -737,10 +729,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.363669Z",
- "iopub.status.busy": "2024-06-25T23:18:22.363060Z",
- "iopub.status.idle": "2024-06-25T23:18:22.376718Z",
- "shell.execute_reply": "2024-06-25T23:18:22.376170Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.380328Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.379266Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.392501Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.392074Z"
},
"id": "Wy27rvyhjruU"
},
@@ -789,10 +781,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.378792Z",
- "iopub.status.busy": "2024-06-25T23:18:22.378469Z",
- "iopub.status.idle": "2024-06-25T23:18:22.452119Z",
- "shell.execute_reply": "2024-06-25T23:18:22.451527Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.394717Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.394312Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.472241Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.471703Z"
},
"id": "Db8YHnyVjruU"
},
@@ -899,10 +891,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.454608Z",
- "iopub.status.busy": "2024-06-25T23:18:22.454246Z",
- "iopub.status.idle": "2024-06-25T23:18:22.662363Z",
- "shell.execute_reply": "2024-06-25T23:18:22.661824Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.474636Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.474208Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.682279Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.681691Z"
},
"id": "iJqAHuS2jruV"
},
@@ -939,10 +931,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.664593Z",
- "iopub.status.busy": "2024-06-25T23:18:22.664244Z",
- "iopub.status.idle": "2024-06-25T23:18:22.681198Z",
- "shell.execute_reply": "2024-06-25T23:18:22.680722Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.684408Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.684211Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.701275Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.700807Z"
},
"id": "PcPTZ_JJG3Cx"
},
@@ -1408,10 +1400,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.683372Z",
- "iopub.status.busy": "2024-06-25T23:18:22.682962Z",
- "iopub.status.idle": "2024-06-25T23:18:22.692419Z",
- "shell.execute_reply": "2024-06-25T23:18:22.691897Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.703293Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.703098Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.713200Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.712738Z"
},
"id": "0lonvOYvjruV"
},
@@ -1558,10 +1550,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.694507Z",
- "iopub.status.busy": "2024-06-25T23:18:22.694073Z",
- "iopub.status.idle": "2024-06-25T23:18:22.776192Z",
- "shell.execute_reply": "2024-06-25T23:18:22.775639Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.715593Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.715092Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.799524Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.798982Z"
},
"id": "MfqTCa3kjruV"
},
@@ -1642,10 +1634,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.778586Z",
- "iopub.status.busy": "2024-06-25T23:18:22.778226Z",
- "iopub.status.idle": "2024-06-25T23:18:22.894081Z",
- "shell.execute_reply": "2024-06-25T23:18:22.893472Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.801876Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.801534Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.928209Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.927576Z"
},
"id": "9ZtWAYXqMAPL"
},
@@ -1705,10 +1697,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.896294Z",
- "iopub.status.busy": "2024-06-25T23:18:22.896067Z",
- "iopub.status.idle": "2024-06-25T23:18:22.899817Z",
- "shell.execute_reply": "2024-06-25T23:18:22.899290Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.930682Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.930336Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.934290Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.933731Z"
},
"id": "0rXP3ZPWjruW"
},
@@ -1746,10 +1738,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.901918Z",
- "iopub.status.busy": "2024-06-25T23:18:22.901602Z",
- "iopub.status.idle": "2024-06-25T23:18:22.905366Z",
- "shell.execute_reply": "2024-06-25T23:18:22.904793Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.936433Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.936050Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.939711Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.939186Z"
},
"id": "-iRPe8KXjruW"
},
@@ -1804,10 +1796,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.907395Z",
- "iopub.status.busy": "2024-06-25T23:18:22.907096Z",
- "iopub.status.idle": "2024-06-25T23:18:22.943768Z",
- "shell.execute_reply": "2024-06-25T23:18:22.943295Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.941803Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.941399Z",
+ "iopub.status.idle": "2024-06-27T15:44:53.978056Z",
+ "shell.execute_reply": "2024-06-27T15:44:53.977512Z"
},
"id": "ZpipUliyjruW"
},
@@ -1858,10 +1850,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.945705Z",
- "iopub.status.busy": "2024-06-25T23:18:22.945390Z",
- "iopub.status.idle": "2024-06-25T23:18:22.987000Z",
- "shell.execute_reply": "2024-06-25T23:18:22.986556Z"
+ "iopub.execute_input": "2024-06-27T15:44:53.980221Z",
+ "iopub.status.busy": "2024-06-27T15:44:53.979917Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.021764Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.021192Z"
},
"id": "SLq-3q4xjruX"
},
@@ -1930,10 +1922,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:22.989099Z",
- "iopub.status.busy": "2024-06-25T23:18:22.988778Z",
- "iopub.status.idle": "2024-06-25T23:18:23.079367Z",
- "shell.execute_reply": "2024-06-25T23:18:23.078808Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.023732Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.023409Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.117648Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.116975Z"
},
"id": "g5LHhhuqFbXK"
},
@@ -1965,10 +1957,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.081992Z",
- "iopub.status.busy": "2024-06-25T23:18:23.081632Z",
- "iopub.status.idle": "2024-06-25T23:18:23.163660Z",
- "shell.execute_reply": "2024-06-25T23:18:23.163108Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.120433Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.120068Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.202925Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.202329Z"
},
"id": "p7w8F8ezBcet"
},
@@ -2025,10 +2017,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.166170Z",
- "iopub.status.busy": "2024-06-25T23:18:23.165696Z",
- "iopub.status.idle": "2024-06-25T23:18:23.373652Z",
- "shell.execute_reply": "2024-06-25T23:18:23.373076Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.205153Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.204919Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.415014Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.414492Z"
},
"id": "WETRL74tE_sU"
},
@@ -2063,10 +2055,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.375920Z",
- "iopub.status.busy": "2024-06-25T23:18:23.375563Z",
- "iopub.status.idle": "2024-06-25T23:18:23.542133Z",
- "shell.execute_reply": "2024-06-25T23:18:23.541601Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.417178Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.416852Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.599512Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.598904Z"
},
"id": "kCfdx2gOLmXS"
},
@@ -2228,10 +2220,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.544310Z",
- "iopub.status.busy": "2024-06-25T23:18:23.544080Z",
- "iopub.status.idle": "2024-06-25T23:18:23.550244Z",
- "shell.execute_reply": "2024-06-25T23:18:23.549696Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.601799Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.601584Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.607587Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.607130Z"
},
"id": "-uogYRWFYnuu"
},
@@ -2285,10 +2277,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.552552Z",
- "iopub.status.busy": "2024-06-25T23:18:23.552102Z",
- "iopub.status.idle": "2024-06-25T23:18:23.765551Z",
- "shell.execute_reply": "2024-06-25T23:18:23.764971Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.609450Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.609279Z",
+ "iopub.status.idle": "2024-06-27T15:44:54.823297Z",
+ "shell.execute_reply": "2024-06-27T15:44:54.822719Z"
},
"id": "pG-ljrmcYp9Q"
},
@@ -2335,10 +2327,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:23.767794Z",
- "iopub.status.busy": "2024-06-25T23:18:23.767426Z",
- "iopub.status.idle": "2024-06-25T23:18:24.838654Z",
- "shell.execute_reply": "2024-06-25T23:18:24.838036Z"
+ "iopub.execute_input": "2024-06-27T15:44:54.825510Z",
+ "iopub.status.busy": "2024-06-27T15:44:54.825318Z",
+ "iopub.status.idle": "2024-06-27T15:44:55.887198Z",
+ "shell.execute_reply": "2024-06-27T15:44:55.886648Z"
},
"id": "wL3ngCnuLEWd"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
index b4c4a33f9..e955474a9 100644
--- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
@@ -88,10 +88,10 @@
"id": "a3ddc95f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:28.410867Z",
- "iopub.status.busy": "2024-06-25T23:18:28.410704Z",
- "iopub.status.idle": "2024-06-25T23:18:29.523341Z",
- "shell.execute_reply": "2024-06-25T23:18:29.522804Z"
+ "iopub.execute_input": "2024-06-27T15:44:59.468627Z",
+ "iopub.status.busy": "2024-06-27T15:44:59.468466Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.591032Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.590468Z"
},
"nbsphinx": "hidden"
},
@@ -101,7 +101,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -135,10 +135,10 @@
"id": "c4efd119",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.525967Z",
- "iopub.status.busy": "2024-06-25T23:18:29.525510Z",
- "iopub.status.idle": "2024-06-25T23:18:29.528645Z",
- "shell.execute_reply": "2024-06-25T23:18:29.528187Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.593760Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.593202Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.596242Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.595817Z"
}
},
"outputs": [],
@@ -263,10 +263,10 @@
"id": "c37c0a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.530912Z",
- "iopub.status.busy": "2024-06-25T23:18:29.530502Z",
- "iopub.status.idle": "2024-06-25T23:18:29.538778Z",
- "shell.execute_reply": "2024-06-25T23:18:29.538338Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.598385Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.598077Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.605729Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.605174Z"
},
"nbsphinx": "hidden"
},
@@ -350,10 +350,10 @@
"id": "99f69523",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.540895Z",
- "iopub.status.busy": "2024-06-25T23:18:29.540489Z",
- "iopub.status.idle": "2024-06-25T23:18:29.587259Z",
- "shell.execute_reply": "2024-06-25T23:18:29.586733Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.607687Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.607416Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.653808Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.653208Z"
}
},
"outputs": [],
@@ -379,10 +379,10 @@
"id": "8f241c16",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.589466Z",
- "iopub.status.busy": "2024-06-25T23:18:29.589277Z",
- "iopub.status.idle": "2024-06-25T23:18:29.606524Z",
- "shell.execute_reply": "2024-06-25T23:18:29.606095Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.656075Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.655764Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.672779Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.672331Z"
}
},
"outputs": [
@@ -597,10 +597,10 @@
"id": "4f0819ba",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.608443Z",
- "iopub.status.busy": "2024-06-25T23:18:29.608267Z",
- "iopub.status.idle": "2024-06-25T23:18:29.612218Z",
- "shell.execute_reply": "2024-06-25T23:18:29.611771Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.674888Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.674484Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.678316Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.677783Z"
}
},
"outputs": [
@@ -671,10 +671,10 @@
"id": "d009f347",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.614226Z",
- "iopub.status.busy": "2024-06-25T23:18:29.614054Z",
- "iopub.status.idle": "2024-06-25T23:18:29.631367Z",
- "shell.execute_reply": "2024-06-25T23:18:29.630956Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.680411Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.680099Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.693774Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.693335Z"
}
},
"outputs": [],
@@ -698,10 +698,10 @@
"id": "cbd1e415",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.633306Z",
- "iopub.status.busy": "2024-06-25T23:18:29.632964Z",
- "iopub.status.idle": "2024-06-25T23:18:29.658440Z",
- "shell.execute_reply": "2024-06-25T23:18:29.658012Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.695788Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.695460Z",
+ "iopub.status.idle": "2024-06-27T15:45:00.721230Z",
+ "shell.execute_reply": "2024-06-27T15:45:00.720808Z"
}
},
"outputs": [],
@@ -738,10 +738,10 @@
"id": "6ca92617",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:29.660435Z",
- "iopub.status.busy": "2024-06-25T23:18:29.660092Z",
- "iopub.status.idle": "2024-06-25T23:18:31.561212Z",
- "shell.execute_reply": "2024-06-25T23:18:31.560640Z"
+ "iopub.execute_input": "2024-06-27T15:45:00.723435Z",
+ "iopub.status.busy": "2024-06-27T15:45:00.723118Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.652946Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.652251Z"
}
},
"outputs": [],
@@ -771,10 +771,10 @@
"id": "bf945113",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.563955Z",
- "iopub.status.busy": "2024-06-25T23:18:31.563327Z",
- "iopub.status.idle": "2024-06-25T23:18:31.570324Z",
- "shell.execute_reply": "2024-06-25T23:18:31.569880Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.655941Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.655387Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.662756Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.662202Z"
},
"scrolled": true
},
@@ -885,10 +885,10 @@
"id": "14251ee0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.572276Z",
- "iopub.status.busy": "2024-06-25T23:18:31.571950Z",
- "iopub.status.idle": "2024-06-25T23:18:31.584255Z",
- "shell.execute_reply": "2024-06-25T23:18:31.583817Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.665017Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.664581Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.677290Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.676854Z"
}
},
"outputs": [
@@ -1138,10 +1138,10 @@
"id": "efe16638",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.586203Z",
- "iopub.status.busy": "2024-06-25T23:18:31.585878Z",
- "iopub.status.idle": "2024-06-25T23:18:31.591999Z",
- "shell.execute_reply": "2024-06-25T23:18:31.591576Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.679365Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.679031Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.685486Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.684929Z"
},
"scrolled": true
},
@@ -1315,10 +1315,10 @@
"id": "abd0fb0b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.594128Z",
- "iopub.status.busy": "2024-06-25T23:18:31.593809Z",
- "iopub.status.idle": "2024-06-25T23:18:31.596328Z",
- "shell.execute_reply": "2024-06-25T23:18:31.595895Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.687634Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.687246Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.690043Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.689488Z"
}
},
"outputs": [],
@@ -1340,10 +1340,10 @@
"id": "cdf061df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.598281Z",
- "iopub.status.busy": "2024-06-25T23:18:31.597974Z",
- "iopub.status.idle": "2024-06-25T23:18:31.601541Z",
- "shell.execute_reply": "2024-06-25T23:18:31.600983Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.692044Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.691745Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.695116Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.694642Z"
},
"scrolled": true
},
@@ -1395,10 +1395,10 @@
"id": "08949890",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.603595Z",
- "iopub.status.busy": "2024-06-25T23:18:31.603264Z",
- "iopub.status.idle": "2024-06-25T23:18:31.605889Z",
- "shell.execute_reply": "2024-06-25T23:18:31.605456Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.697161Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.696845Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.699375Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.698946Z"
}
},
"outputs": [],
@@ -1422,10 +1422,10 @@
"id": "6948b073",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.607856Z",
- "iopub.status.busy": "2024-06-25T23:18:31.607558Z",
- "iopub.status.idle": "2024-06-25T23:18:31.611501Z",
- "shell.execute_reply": "2024-06-25T23:18:31.611048Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.701167Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.700997Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.705189Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.704724Z"
}
},
"outputs": [
@@ -1480,10 +1480,10 @@
"id": "6f8e6914",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.613408Z",
- "iopub.status.busy": "2024-06-25T23:18:31.613238Z",
- "iopub.status.idle": "2024-06-25T23:18:31.641822Z",
- "shell.execute_reply": "2024-06-25T23:18:31.641266Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.707181Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.707011Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.735513Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.735059Z"
}
},
"outputs": [],
@@ -1526,10 +1526,10 @@
"id": "b806d2ea",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:31.644000Z",
- "iopub.status.busy": "2024-06-25T23:18:31.643674Z",
- "iopub.status.idle": "2024-06-25T23:18:31.648272Z",
- "shell.execute_reply": "2024-06-25T23:18:31.647708Z"
+ "iopub.execute_input": "2024-06-27T15:45:02.737575Z",
+ "iopub.status.busy": "2024-06-27T15:45:02.737383Z",
+ "iopub.status.idle": "2024-06-27T15:45:02.742352Z",
+ "shell.execute_reply": "2024-06-27T15:45:02.741808Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
index 9593cdb90..2ef3b5160 100644
--- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
@@ -64,10 +64,10 @@
"id": "7383d024-8273-4039-bccd-aab3020d331f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:34.388005Z",
- "iopub.status.busy": "2024-06-25T23:18:34.387509Z",
- "iopub.status.idle": "2024-06-25T23:18:35.555688Z",
- "shell.execute_reply": "2024-06-25T23:18:35.555141Z"
+ "iopub.execute_input": "2024-06-27T15:45:05.699973Z",
+ "iopub.status.busy": "2024-06-27T15:45:05.699801Z",
+ "iopub.status.idle": "2024-06-27T15:45:06.857177Z",
+ "shell.execute_reply": "2024-06-27T15:45:06.856603Z"
},
"nbsphinx": "hidden"
},
@@ -79,7 +79,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -105,10 +105,10 @@
"id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:35.558285Z",
- "iopub.status.busy": "2024-06-25T23:18:35.557842Z",
- "iopub.status.idle": "2024-06-25T23:18:35.751397Z",
- "shell.execute_reply": "2024-06-25T23:18:35.750860Z"
+ "iopub.execute_input": "2024-06-27T15:45:06.859790Z",
+ "iopub.status.busy": "2024-06-27T15:45:06.859298Z",
+ "iopub.status.idle": "2024-06-27T15:45:07.049527Z",
+ "shell.execute_reply": "2024-06-27T15:45:07.048975Z"
}
},
"outputs": [],
@@ -268,10 +268,10 @@
"id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:35.754209Z",
- "iopub.status.busy": "2024-06-25T23:18:35.753733Z",
- "iopub.status.idle": "2024-06-25T23:18:35.767096Z",
- "shell.execute_reply": "2024-06-25T23:18:35.766635Z"
+ "iopub.execute_input": "2024-06-27T15:45:07.052251Z",
+ "iopub.status.busy": "2024-06-27T15:45:07.051728Z",
+ "iopub.status.idle": "2024-06-27T15:45:07.064966Z",
+ "shell.execute_reply": "2024-06-27T15:45:07.064409Z"
},
"nbsphinx": "hidden"
},
@@ -407,10 +407,10 @@
"id": "dac65d3b-51e8-4682-b829-beab610b56d6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:35.769292Z",
- "iopub.status.busy": "2024-06-25T23:18:35.768939Z",
- "iopub.status.idle": "2024-06-25T23:18:38.460798Z",
- "shell.execute_reply": "2024-06-25T23:18:38.460293Z"
+ "iopub.execute_input": "2024-06-27T15:45:07.067098Z",
+ "iopub.status.busy": "2024-06-27T15:45:07.066806Z",
+ "iopub.status.idle": "2024-06-27T15:45:09.757625Z",
+ "shell.execute_reply": "2024-06-27T15:45:09.757094Z"
}
},
"outputs": [
@@ -454,10 +454,10 @@
"id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:38.463138Z",
- "iopub.status.busy": "2024-06-25T23:18:38.462688Z",
- "iopub.status.idle": "2024-06-25T23:18:39.817391Z",
- "shell.execute_reply": "2024-06-25T23:18:39.816843Z"
+ "iopub.execute_input": "2024-06-27T15:45:09.759992Z",
+ "iopub.status.busy": "2024-06-27T15:45:09.759608Z",
+ "iopub.status.idle": "2024-06-27T15:45:11.112703Z",
+ "shell.execute_reply": "2024-06-27T15:45:11.112185Z"
}
},
"outputs": [],
@@ -499,10 +499,10 @@
"id": "ac1a60df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:39.819916Z",
- "iopub.status.busy": "2024-06-25T23:18:39.819475Z",
- "iopub.status.idle": "2024-06-25T23:18:39.823477Z",
- "shell.execute_reply": "2024-06-25T23:18:39.822931Z"
+ "iopub.execute_input": "2024-06-27T15:45:11.115163Z",
+ "iopub.status.busy": "2024-06-27T15:45:11.114818Z",
+ "iopub.status.idle": "2024-06-27T15:45:11.118894Z",
+ "shell.execute_reply": "2024-06-27T15:45:11.118425Z"
}
},
"outputs": [
@@ -544,10 +544,10 @@
"id": "d09115b6-ad44-474f-9c8a-85a459586439",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:39.825523Z",
- "iopub.status.busy": "2024-06-25T23:18:39.825189Z",
- "iopub.status.idle": "2024-06-25T23:18:41.816360Z",
- "shell.execute_reply": "2024-06-25T23:18:41.815747Z"
+ "iopub.execute_input": "2024-06-27T15:45:11.120805Z",
+ "iopub.status.busy": "2024-06-27T15:45:11.120500Z",
+ "iopub.status.idle": "2024-06-27T15:45:13.138189Z",
+ "shell.execute_reply": "2024-06-27T15:45:13.137525Z"
}
},
"outputs": [
@@ -594,10 +594,10 @@
"id": "c18dd83b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:41.818930Z",
- "iopub.status.busy": "2024-06-25T23:18:41.818429Z",
- "iopub.status.idle": "2024-06-25T23:18:41.826321Z",
- "shell.execute_reply": "2024-06-25T23:18:41.825851Z"
+ "iopub.execute_input": "2024-06-27T15:45:13.140803Z",
+ "iopub.status.busy": "2024-06-27T15:45:13.140321Z",
+ "iopub.status.idle": "2024-06-27T15:45:13.147889Z",
+ "shell.execute_reply": "2024-06-27T15:45:13.147408Z"
}
},
"outputs": [
@@ -633,10 +633,10 @@
"id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:41.828406Z",
- "iopub.status.busy": "2024-06-25T23:18:41.828097Z",
- "iopub.status.idle": "2024-06-25T23:18:44.431218Z",
- "shell.execute_reply": "2024-06-25T23:18:44.430687Z"
+ "iopub.execute_input": "2024-06-27T15:45:13.149938Z",
+ "iopub.status.busy": "2024-06-27T15:45:13.149581Z",
+ "iopub.status.idle": "2024-06-27T15:45:15.762528Z",
+ "shell.execute_reply": "2024-06-27T15:45:15.761940Z"
}
},
"outputs": [
@@ -671,10 +671,10 @@
"id": "c1198575",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:44.433395Z",
- "iopub.status.busy": "2024-06-25T23:18:44.433032Z",
- "iopub.status.idle": "2024-06-25T23:18:44.436462Z",
- "shell.execute_reply": "2024-06-25T23:18:44.435934Z"
+ "iopub.execute_input": "2024-06-27T15:45:15.764619Z",
+ "iopub.status.busy": "2024-06-27T15:45:15.764424Z",
+ "iopub.status.idle": "2024-06-27T15:45:15.768184Z",
+ "shell.execute_reply": "2024-06-27T15:45:15.767636Z"
}
},
"outputs": [
@@ -721,10 +721,10 @@
"id": "49161b19-7625-4fb7-add9-607d91a7eca1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:44.438430Z",
- "iopub.status.busy": "2024-06-25T23:18:44.438123Z",
- "iopub.status.idle": "2024-06-25T23:18:44.441587Z",
- "shell.execute_reply": "2024-06-25T23:18:44.441125Z"
+ "iopub.execute_input": "2024-06-27T15:45:15.770204Z",
+ "iopub.status.busy": "2024-06-27T15:45:15.769898Z",
+ "iopub.status.idle": "2024-06-27T15:45:15.773509Z",
+ "shell.execute_reply": "2024-06-27T15:45:15.772957Z"
}
},
"outputs": [],
@@ -752,10 +752,10 @@
"id": "d1a2c008",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:44.443586Z",
- "iopub.status.busy": "2024-06-25T23:18:44.443248Z",
- "iopub.status.idle": "2024-06-25T23:18:44.446272Z",
- "shell.execute_reply": "2024-06-25T23:18:44.445845Z"
+ "iopub.execute_input": "2024-06-27T15:45:15.775576Z",
+ "iopub.status.busy": "2024-06-27T15:45:15.775249Z",
+ "iopub.status.idle": "2024-06-27T15:45:15.778400Z",
+ "shell.execute_reply": "2024-06-27T15:45:15.777870Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
index ceb7220d6..ff2404cec 100644
--- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
@@ -70,10 +70,10 @@
"id": "0ba0dc70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:46.821534Z",
- "iopub.status.busy": "2024-06-25T23:18:46.821356Z",
- "iopub.status.idle": "2024-06-25T23:18:47.991566Z",
- "shell.execute_reply": "2024-06-25T23:18:47.991020Z"
+ "iopub.execute_input": "2024-06-27T15:45:18.463792Z",
+ "iopub.status.busy": "2024-06-27T15:45:18.463378Z",
+ "iopub.status.idle": "2024-06-27T15:45:19.617248Z",
+ "shell.execute_reply": "2024-06-27T15:45:19.616753Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -109,10 +109,10 @@
"id": "c90449c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:47.994044Z",
- "iopub.status.busy": "2024-06-25T23:18:47.993746Z",
- "iopub.status.idle": "2024-06-25T23:18:49.077383Z",
- "shell.execute_reply": "2024-06-25T23:18:49.076740Z"
+ "iopub.execute_input": "2024-06-27T15:45:19.619702Z",
+ "iopub.status.busy": "2024-06-27T15:45:19.619248Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.409416Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.408754Z"
}
},
"outputs": [],
@@ -130,10 +130,10 @@
"id": "df8be4c6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.079931Z",
- "iopub.status.busy": "2024-06-25T23:18:49.079715Z",
- "iopub.status.idle": "2024-06-25T23:18:49.083128Z",
- "shell.execute_reply": "2024-06-25T23:18:49.082576Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.412130Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.411640Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.415047Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.414491Z"
}
},
"outputs": [],
@@ -169,10 +169,10 @@
"id": "2e9ffd6f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.085315Z",
- "iopub.status.busy": "2024-06-25T23:18:49.084875Z",
- "iopub.status.idle": "2024-06-25T23:18:49.090995Z",
- "shell.execute_reply": "2024-06-25T23:18:49.090565Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.417375Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.417044Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.423110Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.422685Z"
}
},
"outputs": [],
@@ -198,10 +198,10 @@
"id": "56705562",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.092987Z",
- "iopub.status.busy": "2024-06-25T23:18:49.092664Z",
- "iopub.status.idle": "2024-06-25T23:18:49.578049Z",
- "shell.execute_reply": "2024-06-25T23:18:49.577480Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.425113Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.424847Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.910812Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.910225Z"
},
"scrolled": true
},
@@ -242,10 +242,10 @@
"id": "b08144d7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.581141Z",
- "iopub.status.busy": "2024-06-25T23:18:49.580804Z",
- "iopub.status.idle": "2024-06-25T23:18:49.586187Z",
- "shell.execute_reply": "2024-06-25T23:18:49.585728Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.913649Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.913317Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.918911Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.918469Z"
}
},
"outputs": [
@@ -497,10 +497,10 @@
"id": "3d70bec6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.588207Z",
- "iopub.status.busy": "2024-06-25T23:18:49.587912Z",
- "iopub.status.idle": "2024-06-25T23:18:49.592364Z",
- "shell.execute_reply": "2024-06-25T23:18:49.591919Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.920816Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.920511Z",
+ "iopub.status.idle": "2024-06-27T15:45:22.924388Z",
+ "shell.execute_reply": "2024-06-27T15:45:22.923851Z"
}
},
"outputs": [
@@ -557,10 +557,10 @@
"id": "4caa635d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:49.594287Z",
- "iopub.status.busy": "2024-06-25T23:18:49.594112Z",
- "iopub.status.idle": "2024-06-25T23:18:50.586165Z",
- "shell.execute_reply": "2024-06-25T23:18:50.585507Z"
+ "iopub.execute_input": "2024-06-27T15:45:22.926540Z",
+ "iopub.status.busy": "2024-06-27T15:45:22.926241Z",
+ "iopub.status.idle": "2024-06-27T15:45:23.849633Z",
+ "shell.execute_reply": "2024-06-27T15:45:23.849043Z"
}
},
"outputs": [
@@ -616,10 +616,10 @@
"id": "a9b4c590",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:50.588520Z",
- "iopub.status.busy": "2024-06-25T23:18:50.588324Z",
- "iopub.status.idle": "2024-06-25T23:18:50.808698Z",
- "shell.execute_reply": "2024-06-25T23:18:50.808228Z"
+ "iopub.execute_input": "2024-06-27T15:45:23.851970Z",
+ "iopub.status.busy": "2024-06-27T15:45:23.851776Z",
+ "iopub.status.idle": "2024-06-27T15:45:24.083809Z",
+ "shell.execute_reply": "2024-06-27T15:45:24.083290Z"
}
},
"outputs": [
@@ -660,10 +660,10 @@
"id": "ffd9ebcc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:50.810921Z",
- "iopub.status.busy": "2024-06-25T23:18:50.810585Z",
- "iopub.status.idle": "2024-06-25T23:18:50.815013Z",
- "shell.execute_reply": "2024-06-25T23:18:50.814577Z"
+ "iopub.execute_input": "2024-06-27T15:45:24.085835Z",
+ "iopub.status.busy": "2024-06-27T15:45:24.085633Z",
+ "iopub.status.idle": "2024-06-27T15:45:24.090084Z",
+ "shell.execute_reply": "2024-06-27T15:45:24.089637Z"
}
},
"outputs": [
@@ -700,10 +700,10 @@
"id": "4dd46d67",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:50.816841Z",
- "iopub.status.busy": "2024-06-25T23:18:50.816666Z",
- "iopub.status.idle": "2024-06-25T23:18:51.264514Z",
- "shell.execute_reply": "2024-06-25T23:18:51.263937Z"
+ "iopub.execute_input": "2024-06-27T15:45:24.092087Z",
+ "iopub.status.busy": "2024-06-27T15:45:24.091759Z",
+ "iopub.status.idle": "2024-06-27T15:45:24.545615Z",
+ "shell.execute_reply": "2024-06-27T15:45:24.545021Z"
}
},
"outputs": [
@@ -762,10 +762,10 @@
"id": "ceec2394",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:51.267205Z",
- "iopub.status.busy": "2024-06-25T23:18:51.266984Z",
- "iopub.status.idle": "2024-06-25T23:18:51.597569Z",
- "shell.execute_reply": "2024-06-25T23:18:51.596965Z"
+ "iopub.execute_input": "2024-06-27T15:45:24.548711Z",
+ "iopub.status.busy": "2024-06-27T15:45:24.548340Z",
+ "iopub.status.idle": "2024-06-27T15:45:24.880563Z",
+ "shell.execute_reply": "2024-06-27T15:45:24.880008Z"
}
},
"outputs": [
@@ -812,10 +812,10 @@
"id": "94f82b0d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:51.599806Z",
- "iopub.status.busy": "2024-06-25T23:18:51.599595Z",
- "iopub.status.idle": "2024-06-25T23:18:51.933374Z",
- "shell.execute_reply": "2024-06-25T23:18:51.932766Z"
+ "iopub.execute_input": "2024-06-27T15:45:24.883240Z",
+ "iopub.status.busy": "2024-06-27T15:45:24.883058Z",
+ "iopub.status.idle": "2024-06-27T15:45:25.247794Z",
+ "shell.execute_reply": "2024-06-27T15:45:25.247180Z"
}
},
"outputs": [
@@ -862,10 +862,10 @@
"id": "1ea18c5d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:51.936579Z",
- "iopub.status.busy": "2024-06-25T23:18:51.936094Z",
- "iopub.status.idle": "2024-06-25T23:18:52.348181Z",
- "shell.execute_reply": "2024-06-25T23:18:52.347588Z"
+ "iopub.execute_input": "2024-06-27T15:45:25.250664Z",
+ "iopub.status.busy": "2024-06-27T15:45:25.250300Z",
+ "iopub.status.idle": "2024-06-27T15:45:25.690141Z",
+ "shell.execute_reply": "2024-06-27T15:45:25.689553Z"
}
},
"outputs": [
@@ -925,10 +925,10 @@
"id": "7e770d23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:52.352428Z",
- "iopub.status.busy": "2024-06-25T23:18:52.351994Z",
- "iopub.status.idle": "2024-06-25T23:18:52.773521Z",
- "shell.execute_reply": "2024-06-25T23:18:52.772929Z"
+ "iopub.execute_input": "2024-06-27T15:45:25.694772Z",
+ "iopub.status.busy": "2024-06-27T15:45:25.694396Z",
+ "iopub.status.idle": "2024-06-27T15:45:26.140688Z",
+ "shell.execute_reply": "2024-06-27T15:45:26.140107Z"
}
},
"outputs": [
@@ -971,10 +971,10 @@
"id": "57e84a27",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:52.776870Z",
- "iopub.status.busy": "2024-06-25T23:18:52.776447Z",
- "iopub.status.idle": "2024-06-25T23:18:52.965633Z",
- "shell.execute_reply": "2024-06-25T23:18:52.965014Z"
+ "iopub.execute_input": "2024-06-27T15:45:26.143603Z",
+ "iopub.status.busy": "2024-06-27T15:45:26.143156Z",
+ "iopub.status.idle": "2024-06-27T15:45:26.332015Z",
+ "shell.execute_reply": "2024-06-27T15:45:26.331369Z"
}
},
"outputs": [
@@ -1017,10 +1017,10 @@
"id": "0302818a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:52.968518Z",
- "iopub.status.busy": "2024-06-25T23:18:52.968035Z",
- "iopub.status.idle": "2024-06-25T23:18:53.169696Z",
- "shell.execute_reply": "2024-06-25T23:18:53.169139Z"
+ "iopub.execute_input": "2024-06-27T15:45:26.334333Z",
+ "iopub.status.busy": "2024-06-27T15:45:26.334028Z",
+ "iopub.status.idle": "2024-06-27T15:45:26.517564Z",
+ "shell.execute_reply": "2024-06-27T15:45:26.516954Z"
}
},
"outputs": [
@@ -1067,10 +1067,10 @@
"id": "5cacec81-2adf-46a8-82c5-7ec0185d4356",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:53.171908Z",
- "iopub.status.busy": "2024-06-25T23:18:53.171701Z",
- "iopub.status.idle": "2024-06-25T23:18:53.174679Z",
- "shell.execute_reply": "2024-06-25T23:18:53.174135Z"
+ "iopub.execute_input": "2024-06-27T15:45:26.519990Z",
+ "iopub.status.busy": "2024-06-27T15:45:26.519546Z",
+ "iopub.status.idle": "2024-06-27T15:45:26.522634Z",
+ "shell.execute_reply": "2024-06-27T15:45:26.522203Z"
}
},
"outputs": [],
@@ -1090,10 +1090,10 @@
"id": "3335b8a3-d0b4-415a-a97d-c203088a124e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:53.176658Z",
- "iopub.status.busy": "2024-06-25T23:18:53.176332Z",
- "iopub.status.idle": "2024-06-25T23:18:54.151841Z",
- "shell.execute_reply": "2024-06-25T23:18:54.151257Z"
+ "iopub.execute_input": "2024-06-27T15:45:26.524690Z",
+ "iopub.status.busy": "2024-06-27T15:45:26.524304Z",
+ "iopub.status.idle": "2024-06-27T15:45:27.479354Z",
+ "shell.execute_reply": "2024-06-27T15:45:27.478760Z"
}
},
"outputs": [
@@ -1172,10 +1172,10 @@
"id": "9d4b7677-6ebd-447d-b0a1-76e094686628",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:54.153970Z",
- "iopub.status.busy": "2024-06-25T23:18:54.153788Z",
- "iopub.status.idle": "2024-06-25T23:18:54.367334Z",
- "shell.execute_reply": "2024-06-25T23:18:54.366782Z"
+ "iopub.execute_input": "2024-06-27T15:45:27.481677Z",
+ "iopub.status.busy": "2024-06-27T15:45:27.481269Z",
+ "iopub.status.idle": "2024-06-27T15:45:27.662233Z",
+ "shell.execute_reply": "2024-06-27T15:45:27.661738Z"
}
},
"outputs": [
@@ -1214,10 +1214,10 @@
"id": "59d7ee39-3785-434b-8680-9133014851cd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:54.369532Z",
- "iopub.status.busy": "2024-06-25T23:18:54.369222Z",
- "iopub.status.idle": "2024-06-25T23:18:54.583472Z",
- "shell.execute_reply": "2024-06-25T23:18:54.582875Z"
+ "iopub.execute_input": "2024-06-27T15:45:27.664486Z",
+ "iopub.status.busy": "2024-06-27T15:45:27.664165Z",
+ "iopub.status.idle": "2024-06-27T15:45:27.839845Z",
+ "shell.execute_reply": "2024-06-27T15:45:27.839265Z"
}
},
"outputs": [],
@@ -1266,10 +1266,10 @@
"id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:54.585760Z",
- "iopub.status.busy": "2024-06-25T23:18:54.585359Z",
- "iopub.status.idle": "2024-06-25T23:18:55.323353Z",
- "shell.execute_reply": "2024-06-25T23:18:55.322814Z"
+ "iopub.execute_input": "2024-06-27T15:45:27.841913Z",
+ "iopub.status.busy": "2024-06-27T15:45:27.841731Z",
+ "iopub.status.idle": "2024-06-27T15:45:28.508692Z",
+ "shell.execute_reply": "2024-06-27T15:45:28.508151Z"
}
},
"outputs": [
@@ -1351,10 +1351,10 @@
"id": "8ce74938",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:55.325548Z",
- "iopub.status.busy": "2024-06-25T23:18:55.325207Z",
- "iopub.status.idle": "2024-06-25T23:18:55.329284Z",
- "shell.execute_reply": "2024-06-25T23:18:55.328852Z"
+ "iopub.execute_input": "2024-06-27T15:45:28.511345Z",
+ "iopub.status.busy": "2024-06-27T15:45:28.510832Z",
+ "iopub.status.idle": "2024-06-27T15:45:28.514788Z",
+ "shell.execute_reply": "2024-06-27T15:45:28.514332Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
index 4aeee095a..dce990b87 100644
--- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
@@ -109,10 +109,10 @@
"id": "2bbebfc8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:18:57.455185Z",
- "iopub.status.busy": "2024-06-25T23:18:57.455007Z",
- "iopub.status.idle": "2024-06-25T23:19:00.140522Z",
- "shell.execute_reply": "2024-06-25T23:19:00.139964Z"
+ "iopub.execute_input": "2024-06-27T15:45:30.811235Z",
+ "iopub.status.busy": "2024-06-27T15:45:30.811074Z",
+ "iopub.status.idle": "2024-06-27T15:45:33.603967Z",
+ "shell.execute_reply": "2024-06-27T15:45:33.603351Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"id": "4396f544",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:00.143299Z",
- "iopub.status.busy": "2024-06-25T23:19:00.142777Z",
- "iopub.status.idle": "2024-06-25T23:19:00.459330Z",
- "shell.execute_reply": "2024-06-25T23:19:00.458710Z"
+ "iopub.execute_input": "2024-06-27T15:45:33.606565Z",
+ "iopub.status.busy": "2024-06-27T15:45:33.606249Z",
+ "iopub.status.idle": "2024-06-27T15:45:33.934741Z",
+ "shell.execute_reply": "2024-06-27T15:45:33.934122Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "3792f82e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:00.461903Z",
- "iopub.status.busy": "2024-06-25T23:19:00.461603Z",
- "iopub.status.idle": "2024-06-25T23:19:00.465997Z",
- "shell.execute_reply": "2024-06-25T23:19:00.465462Z"
+ "iopub.execute_input": "2024-06-27T15:45:33.937444Z",
+ "iopub.status.busy": "2024-06-27T15:45:33.937123Z",
+ "iopub.status.idle": "2024-06-27T15:45:33.941418Z",
+ "shell.execute_reply": "2024-06-27T15:45:33.940892Z"
},
"nbsphinx": "hidden"
},
@@ -225,10 +225,10 @@
"id": "fd853a54",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:00.468073Z",
- "iopub.status.busy": "2024-06-25T23:19:00.467652Z",
- "iopub.status.idle": "2024-06-25T23:19:04.713802Z",
- "shell.execute_reply": "2024-06-25T23:19:04.713212Z"
+ "iopub.execute_input": "2024-06-27T15:45:33.943554Z",
+ "iopub.status.busy": "2024-06-27T15:45:33.943246Z",
+ "iopub.status.idle": "2024-06-27T15:45:40.969059Z",
+ "shell.execute_reply": "2024-06-27T15:45:40.968467Z"
}
},
"outputs": [
@@ -252,7 +252,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 1867776/170498071 [00:00<00:09, 18674661.14it/s]"
+ " 0%| | 32768/170498071 [00:00<10:29, 270980.66it/s]"
]
},
{
@@ -260,7 +260,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 13533184/170498071 [00:00<00:02, 76238255.65it/s]"
+ " 0%| | 229376/170498071 [00:00<02:41, 1053920.96it/s]"
]
},
{
@@ -268,7 +268,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 25133056/170498071 [00:00<00:01, 94330786.80it/s]"
+ " 1%| | 884736/170498071 [00:00<00:53, 3192666.86it/s]"
]
},
{
@@ -276,7 +276,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 36732928/170498071 [00:00<00:01, 102749472.78it/s]"
+ " 2%|▏ | 3506176/170498071 [00:00<00:15, 10604458.14it/s]"
]
},
{
@@ -284,7 +284,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 48431104/170498071 [00:00<00:01, 107856210.55it/s]"
+ " 5%|▍ | 8519680/170498071 [00:00<00:06, 23321397.03it/s]"
]
},
{
@@ -292,7 +292,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 59244544/170498071 [00:00<00:01, 104969542.54it/s]"
+ " 8%|▊ | 12877824/170498071 [00:00<00:05, 29461386.54it/s]"
]
},
{
@@ -300,7 +300,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████▏ | 70385664/170498071 [00:00<00:00, 106967167.13it/s]"
+ " 11%|█ | 18513920/170498071 [00:00<00:04, 37736470.82it/s]"
]
},
{
@@ -308,7 +308,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 82051072/170498071 [00:00<00:00, 109967427.14it/s]"
+ " 13%|█▎ | 23003136/170498071 [00:00<00:03, 38396688.94it/s]"
]
},
{
@@ -316,7 +316,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 93618176/170498071 [00:00<00:00, 111587704.91it/s]"
+ " 17%|█▋ | 28278784/170498071 [00:00<00:03, 42619760.41it/s]"
]
},
{
@@ -324,7 +324,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 105381888/170498071 [00:01<00:00, 113341455.44it/s]"
+ " 19%|█▉ | 32636928/170498071 [00:01<00:03, 42167836.16it/s]"
]
},
{
@@ -332,7 +332,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▊ | 116850688/170498071 [00:01<00:00, 113640126.52it/s]"
+ " 23%|██▎ | 38436864/170498071 [00:01<00:02, 45347567.59it/s]"
]
},
{
@@ -340,7 +340,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 128221184/170498071 [00:01<00:00, 112577089.48it/s]"
+ " 26%|██▌ | 43581440/170498071 [00:01<00:02, 47004803.84it/s]"
]
},
{
@@ -348,7 +348,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 139886592/170498071 [00:01<00:00, 113733636.99it/s]"
+ " 28%|██▊ | 48332800/170498071 [00:01<00:02, 45932449.35it/s]"
]
},
{
@@ -356,7 +356,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 151355392/170498071 [00:01<00:00, 113996738.39it/s]"
+ " 31%|███ | 53149696/170498071 [00:01<00:02, 46308281.48it/s]"
]
},
{
@@ -364,7 +364,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 163020800/170498071 [00:01<00:00, 114693076.37it/s]"
+ " 34%|███▍ | 57802752/170498071 [00:01<00:02, 45967843.37it/s]"
]
},
{
@@ -372,7 +372,183 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 170498071/170498071 [00:01<00:00, 107997102.42it/s]"
+ " 37%|███▋ | 63373312/170498071 [00:01<00:02, 48778631.19it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 40%|████ | 68288512/170498071 [00:01<00:02, 47078314.83it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 43%|████▎ | 73334784/170498071 [00:01<00:02, 47855334.78it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 46%|████▌ | 78151680/170498071 [00:02<00:01, 47242481.34it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 49%|████▊ | 82903040/170498071 [00:02<00:01, 45069060.40it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 52%|█████▏ | 89063424/170498071 [00:02<00:01, 49630672.23it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 55%|█████▌ | 94076928/170498071 [00:02<00:01, 46811169.88it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 58%|█████▊ | 98828288/170498071 [00:02<00:01, 46426745.82it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 61%|██████ | 103907328/170498071 [00:02<00:01, 47648394.24it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 64%|██████▍ | 108724224/170498071 [00:02<00:01, 46103460.62it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 67%|██████▋ | 114262016/170498071 [00:02<00:01, 48674395.73it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 70%|██████▉ | 119177216/170498071 [00:02<00:01, 48036641.98it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 73%|███████▎ | 124026880/170498071 [00:03<00:00, 47365481.11it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 76%|███████▌ | 128811008/170498071 [00:03<00:00, 46653907.12it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 78%|███████▊ | 133496832/170498071 [00:03<00:00, 46396344.18it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 81%|████████▏ | 138936320/170498071 [00:03<00:00, 48691317.42it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 84%|████████▍ | 143818752/170498071 [00:03<00:00, 46374695.74it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 87%|████████▋ | 149159936/170498071 [00:03<00:00, 47769038.39it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 90%|█████████ | 153976832/170498071 [00:03<00:00, 46318588.94it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 93%|█████████▎| 159121408/170498071 [00:03<00:00, 46637826.29it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 96%|█████████▋| 164495360/170498071 [00:03<00:00, 48643996.25it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ " 99%|█████████▉| 169410560/170498071 [00:03<00:00, 47839908.83it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "100%|██████████| 170498071/170498071 [00:03<00:00, 42685946.86it/s]"
]
},
{
@@ -490,10 +666,10 @@
"id": "9b64e0aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:04.715884Z",
- "iopub.status.busy": "2024-06-25T23:19:04.715703Z",
- "iopub.status.idle": "2024-06-25T23:19:04.720331Z",
- "shell.execute_reply": "2024-06-25T23:19:04.719901Z"
+ "iopub.execute_input": "2024-06-27T15:45:40.971400Z",
+ "iopub.status.busy": "2024-06-27T15:45:40.971201Z",
+ "iopub.status.idle": "2024-06-27T15:45:40.975993Z",
+ "shell.execute_reply": "2024-06-27T15:45:40.975557Z"
},
"nbsphinx": "hidden"
},
@@ -544,10 +720,10 @@
"id": "a00aa3ed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:04.722383Z",
- "iopub.status.busy": "2024-06-25T23:19:04.722067Z",
- "iopub.status.idle": "2024-06-25T23:19:05.264665Z",
- "shell.execute_reply": "2024-06-25T23:19:05.264156Z"
+ "iopub.execute_input": "2024-06-27T15:45:40.977819Z",
+ "iopub.status.busy": "2024-06-27T15:45:40.977599Z",
+ "iopub.status.idle": "2024-06-27T15:45:41.527781Z",
+ "shell.execute_reply": "2024-06-27T15:45:41.527141Z"
}
},
"outputs": [
@@ -580,10 +756,10 @@
"id": "41e5cb6b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:05.266862Z",
- "iopub.status.busy": "2024-06-25T23:19:05.266533Z",
- "iopub.status.idle": "2024-06-25T23:19:05.782683Z",
- "shell.execute_reply": "2024-06-25T23:19:05.782187Z"
+ "iopub.execute_input": "2024-06-27T15:45:41.530331Z",
+ "iopub.status.busy": "2024-06-27T15:45:41.529870Z",
+ "iopub.status.idle": "2024-06-27T15:45:42.057214Z",
+ "shell.execute_reply": "2024-06-27T15:45:42.056595Z"
}
},
"outputs": [
@@ -621,10 +797,10 @@
"id": "1cf25354",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:05.784979Z",
- "iopub.status.busy": "2024-06-25T23:19:05.784496Z",
- "iopub.status.idle": "2024-06-25T23:19:05.788141Z",
- "shell.execute_reply": "2024-06-25T23:19:05.787582Z"
+ "iopub.execute_input": "2024-06-27T15:45:42.059555Z",
+ "iopub.status.busy": "2024-06-27T15:45:42.059223Z",
+ "iopub.status.idle": "2024-06-27T15:45:42.062832Z",
+ "shell.execute_reply": "2024-06-27T15:45:42.062275Z"
}
},
"outputs": [],
@@ -647,17 +823,17 @@
"id": "85a58d41",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:05.790197Z",
- "iopub.status.busy": "2024-06-25T23:19:05.789889Z",
- "iopub.status.idle": "2024-06-25T23:19:18.262418Z",
- "shell.execute_reply": "2024-06-25T23:19:18.261753Z"
+ "iopub.execute_input": "2024-06-27T15:45:42.064935Z",
+ "iopub.status.busy": "2024-06-27T15:45:42.064505Z",
+ "iopub.status.idle": "2024-06-27T15:45:55.556440Z",
+ "shell.execute_reply": "2024-06-27T15:45:55.555646Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c487c0c381e74a26a4f49ff121b50dc9",
+ "model_id": "a6c22c3e77c84cc8bd08a52e1cf9b902",
"version_major": 2,
"version_minor": 0
},
@@ -716,10 +892,10 @@
"id": "feb0f519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:18.264580Z",
- "iopub.status.busy": "2024-06-25T23:19:18.264398Z",
- "iopub.status.idle": "2024-06-25T23:19:20.351765Z",
- "shell.execute_reply": "2024-06-25T23:19:20.351216Z"
+ "iopub.execute_input": "2024-06-27T15:45:55.558966Z",
+ "iopub.status.busy": "2024-06-27T15:45:55.558582Z",
+ "iopub.status.idle": "2024-06-27T15:45:57.651196Z",
+ "shell.execute_reply": "2024-06-27T15:45:57.650529Z"
}
},
"outputs": [
@@ -763,10 +939,10 @@
"id": "089d5860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:20.354001Z",
- "iopub.status.busy": "2024-06-25T23:19:20.353823Z",
- "iopub.status.idle": "2024-06-25T23:19:20.594457Z",
- "shell.execute_reply": "2024-06-25T23:19:20.593862Z"
+ "iopub.execute_input": "2024-06-27T15:45:57.654042Z",
+ "iopub.status.busy": "2024-06-27T15:45:57.653576Z",
+ "iopub.status.idle": "2024-06-27T15:45:57.907027Z",
+ "shell.execute_reply": "2024-06-27T15:45:57.906457Z"
}
},
"outputs": [
@@ -802,10 +978,10 @@
"id": "78b1951c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:20.597502Z",
- "iopub.status.busy": "2024-06-25T23:19:20.596997Z",
- "iopub.status.idle": "2024-06-25T23:19:21.266452Z",
- "shell.execute_reply": "2024-06-25T23:19:21.265865Z"
+ "iopub.execute_input": "2024-06-27T15:45:57.909700Z",
+ "iopub.status.busy": "2024-06-27T15:45:57.909398Z",
+ "iopub.status.idle": "2024-06-27T15:45:58.574563Z",
+ "shell.execute_reply": "2024-06-27T15:45:58.574010Z"
}
},
"outputs": [
@@ -855,10 +1031,10 @@
"id": "e9dff81b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:21.269364Z",
- "iopub.status.busy": "2024-06-25T23:19:21.269161Z",
- "iopub.status.idle": "2024-06-25T23:19:21.610132Z",
- "shell.execute_reply": "2024-06-25T23:19:21.609580Z"
+ "iopub.execute_input": "2024-06-27T15:45:58.577526Z",
+ "iopub.status.busy": "2024-06-27T15:45:58.577074Z",
+ "iopub.status.idle": "2024-06-27T15:45:58.918893Z",
+ "shell.execute_reply": "2024-06-27T15:45:58.918198Z"
}
},
"outputs": [
@@ -906,10 +1082,10 @@
"id": "616769f8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:21.612438Z",
- "iopub.status.busy": "2024-06-25T23:19:21.612030Z",
- "iopub.status.idle": "2024-06-25T23:19:21.854392Z",
- "shell.execute_reply": "2024-06-25T23:19:21.853886Z"
+ "iopub.execute_input": "2024-06-27T15:45:58.921501Z",
+ "iopub.status.busy": "2024-06-27T15:45:58.921042Z",
+ "iopub.status.idle": "2024-06-27T15:45:59.189588Z",
+ "shell.execute_reply": "2024-06-27T15:45:59.188711Z"
}
},
"outputs": [
@@ -965,10 +1141,10 @@
"id": "40fed4ef",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:21.857100Z",
- "iopub.status.busy": "2024-06-25T23:19:21.856718Z",
- "iopub.status.idle": "2024-06-25T23:19:21.949451Z",
- "shell.execute_reply": "2024-06-25T23:19:21.948923Z"
+ "iopub.execute_input": "2024-06-27T15:45:59.192574Z",
+ "iopub.status.busy": "2024-06-27T15:45:59.192290Z",
+ "iopub.status.idle": "2024-06-27T15:45:59.276757Z",
+ "shell.execute_reply": "2024-06-27T15:45:59.276135Z"
}
},
"outputs": [],
@@ -989,10 +1165,10 @@
"id": "89f9db72",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:21.951971Z",
- "iopub.status.busy": "2024-06-25T23:19:21.951792Z",
- "iopub.status.idle": "2024-06-25T23:19:32.299281Z",
- "shell.execute_reply": "2024-06-25T23:19:32.298639Z"
+ "iopub.execute_input": "2024-06-27T15:45:59.279342Z",
+ "iopub.status.busy": "2024-06-27T15:45:59.279159Z",
+ "iopub.status.idle": "2024-06-27T15:46:09.531418Z",
+ "shell.execute_reply": "2024-06-27T15:46:09.530750Z"
}
},
"outputs": [
@@ -1029,10 +1205,10 @@
"id": "874c885a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:32.301554Z",
- "iopub.status.busy": "2024-06-25T23:19:32.301299Z",
- "iopub.status.idle": "2024-06-25T23:19:34.462906Z",
- "shell.execute_reply": "2024-06-25T23:19:34.462279Z"
+ "iopub.execute_input": "2024-06-27T15:46:09.534232Z",
+ "iopub.status.busy": "2024-06-27T15:46:09.533762Z",
+ "iopub.status.idle": "2024-06-27T15:46:11.746017Z",
+ "shell.execute_reply": "2024-06-27T15:46:11.745431Z"
}
},
"outputs": [
@@ -1063,10 +1239,10 @@
"id": "e110fc4b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:34.465814Z",
- "iopub.status.busy": "2024-06-25T23:19:34.465269Z",
- "iopub.status.idle": "2024-06-25T23:19:34.668011Z",
- "shell.execute_reply": "2024-06-25T23:19:34.667512Z"
+ "iopub.execute_input": "2024-06-27T15:46:11.748794Z",
+ "iopub.status.busy": "2024-06-27T15:46:11.748237Z",
+ "iopub.status.idle": "2024-06-27T15:46:11.948800Z",
+ "shell.execute_reply": "2024-06-27T15:46:11.948305Z"
}
},
"outputs": [],
@@ -1080,10 +1256,10 @@
"id": "85b60cbf",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:34.670373Z",
- "iopub.status.busy": "2024-06-25T23:19:34.670183Z",
- "iopub.status.idle": "2024-06-25T23:19:34.673433Z",
- "shell.execute_reply": "2024-06-25T23:19:34.672977Z"
+ "iopub.execute_input": "2024-06-27T15:46:11.951095Z",
+ "iopub.status.busy": "2024-06-27T15:46:11.950910Z",
+ "iopub.status.idle": "2024-06-27T15:46:11.954096Z",
+ "shell.execute_reply": "2024-06-27T15:46:11.953666Z"
}
},
"outputs": [],
@@ -1105,10 +1281,10 @@
"id": "17f96fa6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:34.675236Z",
- "iopub.status.busy": "2024-06-25T23:19:34.675068Z",
- "iopub.status.idle": "2024-06-25T23:19:34.683440Z",
- "shell.execute_reply": "2024-06-25T23:19:34.682879Z"
+ "iopub.execute_input": "2024-06-27T15:46:11.956074Z",
+ "iopub.status.busy": "2024-06-27T15:46:11.955782Z",
+ "iopub.status.idle": "2024-06-27T15:46:11.963897Z",
+ "shell.execute_reply": "2024-06-27T15:46:11.963383Z"
},
"nbsphinx": "hidden"
},
@@ -1153,23 +1329,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "2a6c0688ba264a97aee90eb6e37e9dc2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "2ed8f22a488e446d9dd09c9e760c1fb2": {
+ "2867482e9d3444df873ee05b569a66cc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1187,7 +1347,7 @@
"text_color": null
}
},
- "3a433760fb114684b1ce550e725410f3": {
+ "2d9ce638a81541a69c6b0f5430fcf5f7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1203,17 +1363,40 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_cac77136c4f843fea7898f1735deb973",
+ "layout": "IPY_MODEL_472e6894066f4beb9d6bb48527daa24c",
"max": 102469840.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_2a6c0688ba264a97aee90eb6e37e9dc2",
+ "style": "IPY_MODEL_7629b1d5428148fe8288ca24f99967f8",
"tabbable": null,
"tooltip": null,
"value": 102469840.0
}
},
- "55e4c9a3e7c7475b9b79a0916ea74432": {
+ "46dfbd06512a46a6b805e755503dec3d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a0cc2013504e4b7886e198d1c391e884",
+ "placeholder": "",
+ "style": "IPY_MODEL_2867482e9d3444df873ee05b569a66cc",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 102M/102M [00:00<00:00, 257MB/s]"
+ }
+ },
+ "472e6894066f4beb9d6bb48527daa24c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1266,48 +1449,7 @@
"width": null
}
},
- "7b2c005a31c74359a9e6040ef88246ae": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_55e4c9a3e7c7475b9b79a0916ea74432",
- "placeholder": "",
- "style": "IPY_MODEL_2ed8f22a488e446d9dd09c9e760c1fb2",
- "tabbable": null,
- "tooltip": null,
- "value": "model.safetensors: 100%"
- }
- },
- "acf4b18dbb8e42a391b0dfa7d26e3612": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b8d3a0d6f70d45e596f645995e60a137": {
+ "4d6c4b8b33aa493e93329931c7f4f318": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1360,31 +1502,7 @@
"width": null
}
},
- "c487c0c381e74a26a4f49ff121b50dc9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7b2c005a31c74359a9e6040ef88246ae",
- "IPY_MODEL_3a433760fb114684b1ce550e725410f3",
- "IPY_MODEL_d732fe2e90af4c978675ca6771e1718c"
- ],
- "layout": "IPY_MODEL_d9309721bf15440c9369f140e0453a0f",
- "tabbable": null,
- "tooltip": null
- }
- },
- "cac77136c4f843fea7898f1735deb973": {
+ "5dfc1d62bb0e4dc58b2161ae9c1bc8d0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1437,30 +1555,41 @@
"width": null
}
},
- "d732fe2e90af4c978675ca6771e1718c": {
+ "74a0e7dc77404b66aa096c6ac1086de1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b8d3a0d6f70d45e596f645995e60a137",
- "placeholder": "",
- "style": "IPY_MODEL_acf4b18dbb8e42a391b0dfa7d26e3612",
- "tabbable": null,
- "tooltip": null,
- "value": " 102M/102M [00:00<00:00, 218MB/s]"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "7629b1d5428148fe8288ca24f99967f8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "d9309721bf15440c9369f140e0453a0f": {
+ "a0cc2013504e4b7886e198d1c391e884": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1512,6 +1641,53 @@
"visibility": null,
"width": null
}
+ },
+ "a6c22c3e77c84cc8bd08a52e1cf9b902": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_a9415174d636420a9369ae15096b0f3b",
+ "IPY_MODEL_2d9ce638a81541a69c6b0f5430fcf5f7",
+ "IPY_MODEL_46dfbd06512a46a6b805e755503dec3d"
+ ],
+ "layout": "IPY_MODEL_5dfc1d62bb0e4dc58b2161ae9c1bc8d0",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "a9415174d636420a9369ae15096b0f3b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4d6c4b8b33aa493e93329931c7f4f318",
+ "placeholder": "",
+ "style": "IPY_MODEL_74a0e7dc77404b66aa096c6ac1086de1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "model.safetensors: 100%"
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
index 4dccd9a0a..a6fce8c94 100644
--- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
@@ -102,10 +102,10 @@
"id": "2e1af7d8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:38.796252Z",
- "iopub.status.busy": "2024-06-25T23:19:38.796082Z",
- "iopub.status.idle": "2024-06-25T23:19:39.953258Z",
- "shell.execute_reply": "2024-06-25T23:19:39.952691Z"
+ "iopub.execute_input": "2024-06-27T15:46:16.118840Z",
+ "iopub.status.busy": "2024-06-27T15:46:16.118673Z",
+ "iopub.status.idle": "2024-06-27T15:46:17.349519Z",
+ "shell.execute_reply": "2024-06-27T15:46:17.349002Z"
},
"nbsphinx": "hidden"
},
@@ -116,7 +116,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -142,10 +142,10 @@
"id": "4fb10b8f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:39.955862Z",
- "iopub.status.busy": "2024-06-25T23:19:39.955512Z",
- "iopub.status.idle": "2024-06-25T23:19:39.972881Z",
- "shell.execute_reply": "2024-06-25T23:19:39.972463Z"
+ "iopub.execute_input": "2024-06-27T15:46:17.352024Z",
+ "iopub.status.busy": "2024-06-27T15:46:17.351735Z",
+ "iopub.status.idle": "2024-06-27T15:46:17.369618Z",
+ "shell.execute_reply": "2024-06-27T15:46:17.369156Z"
}
},
"outputs": [],
@@ -164,10 +164,10 @@
"id": "284dc264",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:39.975108Z",
- "iopub.status.busy": "2024-06-25T23:19:39.974726Z",
- "iopub.status.idle": "2024-06-25T23:19:39.977547Z",
- "shell.execute_reply": "2024-06-25T23:19:39.977124Z"
+ "iopub.execute_input": "2024-06-27T15:46:17.371774Z",
+ "iopub.status.busy": "2024-06-27T15:46:17.371486Z",
+ "iopub.status.idle": "2024-06-27T15:46:17.374581Z",
+ "shell.execute_reply": "2024-06-27T15:46:17.374129Z"
},
"nbsphinx": "hidden"
},
@@ -198,10 +198,10 @@
"id": "0f7450db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:39.979571Z",
- "iopub.status.busy": "2024-06-25T23:19:39.979249Z",
- "iopub.status.idle": "2024-06-25T23:19:40.010006Z",
- "shell.execute_reply": "2024-06-25T23:19:40.009548Z"
+ "iopub.execute_input": "2024-06-27T15:46:17.376456Z",
+ "iopub.status.busy": "2024-06-27T15:46:17.376280Z",
+ "iopub.status.idle": "2024-06-27T15:46:17.774991Z",
+ "shell.execute_reply": "2024-06-27T15:46:17.774436Z"
}
},
"outputs": [
@@ -374,10 +374,10 @@
"id": "55513fed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.012066Z",
- "iopub.status.busy": "2024-06-25T23:19:40.011740Z",
- "iopub.status.idle": "2024-06-25T23:19:40.191233Z",
- "shell.execute_reply": "2024-06-25T23:19:40.190672Z"
+ "iopub.execute_input": "2024-06-27T15:46:17.777150Z",
+ "iopub.status.busy": "2024-06-27T15:46:17.776935Z",
+ "iopub.status.idle": "2024-06-27T15:46:17.961475Z",
+ "shell.execute_reply": "2024-06-27T15:46:17.960994Z"
},
"nbsphinx": "hidden"
},
@@ -417,10 +417,10 @@
"id": "df5a0f59",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.193662Z",
- "iopub.status.busy": "2024-06-25T23:19:40.193313Z",
- "iopub.status.idle": "2024-06-25T23:19:40.401417Z",
- "shell.execute_reply": "2024-06-25T23:19:40.400809Z"
+ "iopub.execute_input": "2024-06-27T15:46:17.963889Z",
+ "iopub.status.busy": "2024-06-27T15:46:17.963694Z",
+ "iopub.status.idle": "2024-06-27T15:46:18.173983Z",
+ "shell.execute_reply": "2024-06-27T15:46:18.173345Z"
}
},
"outputs": [
@@ -456,10 +456,10 @@
"id": "7af78a8a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.403764Z",
- "iopub.status.busy": "2024-06-25T23:19:40.403425Z",
- "iopub.status.idle": "2024-06-25T23:19:40.407638Z",
- "shell.execute_reply": "2024-06-25T23:19:40.407217Z"
+ "iopub.execute_input": "2024-06-27T15:46:18.176210Z",
+ "iopub.status.busy": "2024-06-27T15:46:18.176008Z",
+ "iopub.status.idle": "2024-06-27T15:46:18.180677Z",
+ "shell.execute_reply": "2024-06-27T15:46:18.180114Z"
}
},
"outputs": [],
@@ -477,10 +477,10 @@
"id": "9556c624",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.409677Z",
- "iopub.status.busy": "2024-06-25T23:19:40.409360Z",
- "iopub.status.idle": "2024-06-25T23:19:40.415770Z",
- "shell.execute_reply": "2024-06-25T23:19:40.415356Z"
+ "iopub.execute_input": "2024-06-27T15:46:18.182807Z",
+ "iopub.status.busy": "2024-06-27T15:46:18.182476Z",
+ "iopub.status.idle": "2024-06-27T15:46:18.188147Z",
+ "shell.execute_reply": "2024-06-27T15:46:18.187711Z"
}
},
"outputs": [],
@@ -527,10 +527,10 @@
"id": "3c2f1ccc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.417772Z",
- "iopub.status.busy": "2024-06-25T23:19:40.417455Z",
- "iopub.status.idle": "2024-06-25T23:19:40.420042Z",
- "shell.execute_reply": "2024-06-25T23:19:40.419591Z"
+ "iopub.execute_input": "2024-06-27T15:46:18.190157Z",
+ "iopub.status.busy": "2024-06-27T15:46:18.189845Z",
+ "iopub.status.idle": "2024-06-27T15:46:18.192555Z",
+ "shell.execute_reply": "2024-06-27T15:46:18.191997Z"
}
},
"outputs": [],
@@ -545,10 +545,10 @@
"id": "7e1b7860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:40.421960Z",
- "iopub.status.busy": "2024-06-25T23:19:40.421649Z",
- "iopub.status.idle": "2024-06-25T23:19:48.997759Z",
- "shell.execute_reply": "2024-06-25T23:19:48.997063Z"
+ "iopub.execute_input": "2024-06-27T15:46:18.194646Z",
+ "iopub.status.busy": "2024-06-27T15:46:18.194322Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.858189Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.857616Z"
}
},
"outputs": [],
@@ -572,10 +572,10 @@
"id": "f407bd69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.000433Z",
- "iopub.status.busy": "2024-06-25T23:19:49.000048Z",
- "iopub.status.idle": "2024-06-25T23:19:49.007281Z",
- "shell.execute_reply": "2024-06-25T23:19:49.006704Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.861110Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.860469Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.867521Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.866967Z"
}
},
"outputs": [
@@ -678,10 +678,10 @@
"id": "f7385336",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.009612Z",
- "iopub.status.busy": "2024-06-25T23:19:49.009171Z",
- "iopub.status.idle": "2024-06-25T23:19:49.013898Z",
- "shell.execute_reply": "2024-06-25T23:19:49.013343Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.869584Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.869247Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.872878Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.872434Z"
}
},
"outputs": [],
@@ -696,10 +696,10 @@
"id": "59fc3091",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.016095Z",
- "iopub.status.busy": "2024-06-25T23:19:49.015919Z",
- "iopub.status.idle": "2024-06-25T23:19:49.019068Z",
- "shell.execute_reply": "2024-06-25T23:19:49.018547Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.874782Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.874481Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.877465Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.876953Z"
}
},
"outputs": [
@@ -734,10 +734,10 @@
"id": "00949977",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.020914Z",
- "iopub.status.busy": "2024-06-25T23:19:49.020745Z",
- "iopub.status.idle": "2024-06-25T23:19:49.023808Z",
- "shell.execute_reply": "2024-06-25T23:19:49.023350Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.879407Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.879233Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.882138Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.881703Z"
}
},
"outputs": [],
@@ -756,10 +756,10 @@
"id": "b6c1ae3a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.025803Z",
- "iopub.status.busy": "2024-06-25T23:19:49.025488Z",
- "iopub.status.idle": "2024-06-25T23:19:49.033564Z",
- "shell.execute_reply": "2024-06-25T23:19:49.033138Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.884148Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.883831Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.891896Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.891360Z"
}
},
"outputs": [
@@ -883,10 +883,10 @@
"id": "9131d82d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.035573Z",
- "iopub.status.busy": "2024-06-25T23:19:49.035256Z",
- "iopub.status.idle": "2024-06-25T23:19:49.037707Z",
- "shell.execute_reply": "2024-06-25T23:19:49.037270Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.893931Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.893513Z",
+ "iopub.status.idle": "2024-06-27T15:46:26.896207Z",
+ "shell.execute_reply": "2024-06-27T15:46:26.895688Z"
},
"nbsphinx": "hidden"
},
@@ -921,10 +921,10 @@
"id": "31c704e7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.039639Z",
- "iopub.status.busy": "2024-06-25T23:19:49.039383Z",
- "iopub.status.idle": "2024-06-25T23:19:49.162747Z",
- "shell.execute_reply": "2024-06-25T23:19:49.162268Z"
+ "iopub.execute_input": "2024-06-27T15:46:26.898155Z",
+ "iopub.status.busy": "2024-06-27T15:46:26.897980Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.016942Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.016432Z"
}
},
"outputs": [
@@ -963,10 +963,10 @@
"id": "0bcc43db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.164799Z",
- "iopub.status.busy": "2024-06-25T23:19:49.164444Z",
- "iopub.status.idle": "2024-06-25T23:19:49.269361Z",
- "shell.execute_reply": "2024-06-25T23:19:49.268836Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.019091Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.018918Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.120975Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.120481Z"
}
},
"outputs": [
@@ -1022,10 +1022,10 @@
"id": "7021bd68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.271927Z",
- "iopub.status.busy": "2024-06-25T23:19:49.271573Z",
- "iopub.status.idle": "2024-06-25T23:19:49.761626Z",
- "shell.execute_reply": "2024-06-25T23:19:49.760979Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.123143Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.122879Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.608490Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.607880Z"
}
},
"outputs": [],
@@ -1041,10 +1041,10 @@
"id": "d49c990b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.764216Z",
- "iopub.status.busy": "2024-06-25T23:19:49.763834Z",
- "iopub.status.idle": "2024-06-25T23:19:49.843367Z",
- "shell.execute_reply": "2024-06-25T23:19:49.842743Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.611193Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.610715Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.686929Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.686299Z"
}
},
"outputs": [
@@ -1079,10 +1079,10 @@
"id": "dbab6fb3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.845464Z",
- "iopub.status.busy": "2024-06-25T23:19:49.845235Z",
- "iopub.status.idle": "2024-06-25T23:19:49.853788Z",
- "shell.execute_reply": "2024-06-25T23:19:49.853340Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.689393Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.688927Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.697939Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.697502Z"
}
},
"outputs": [
@@ -1189,10 +1189,10 @@
"id": "5b39b8b5",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.855684Z",
- "iopub.status.busy": "2024-06-25T23:19:49.855513Z",
- "iopub.status.idle": "2024-06-25T23:19:49.858498Z",
- "shell.execute_reply": "2024-06-25T23:19:49.857932Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.700034Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.699717Z",
+ "iopub.status.idle": "2024-06-27T15:46:27.702476Z",
+ "shell.execute_reply": "2024-06-27T15:46:27.701901Z"
},
"nbsphinx": "hidden"
},
@@ -1217,10 +1217,10 @@
"id": "df06525b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:49.860435Z",
- "iopub.status.busy": "2024-06-25T23:19:49.860125Z",
- "iopub.status.idle": "2024-06-25T23:19:55.315583Z",
- "shell.execute_reply": "2024-06-25T23:19:55.315005Z"
+ "iopub.execute_input": "2024-06-27T15:46:27.704489Z",
+ "iopub.status.busy": "2024-06-27T15:46:27.704077Z",
+ "iopub.status.idle": "2024-06-27T15:46:33.069416Z",
+ "shell.execute_reply": "2024-06-27T15:46:33.068814Z"
}
},
"outputs": [
@@ -1264,10 +1264,10 @@
"id": "05282559",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:55.317789Z",
- "iopub.status.busy": "2024-06-25T23:19:55.317611Z",
- "iopub.status.idle": "2024-06-25T23:19:55.326379Z",
- "shell.execute_reply": "2024-06-25T23:19:55.325834Z"
+ "iopub.execute_input": "2024-06-27T15:46:33.071900Z",
+ "iopub.status.busy": "2024-06-27T15:46:33.071501Z",
+ "iopub.status.idle": "2024-06-27T15:46:33.080090Z",
+ "shell.execute_reply": "2024-06-27T15:46:33.079649Z"
}
},
"outputs": [
@@ -1376,10 +1376,10 @@
"id": "95531cda",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:55.328528Z",
- "iopub.status.busy": "2024-06-25T23:19:55.328125Z",
- "iopub.status.idle": "2024-06-25T23:19:55.396039Z",
- "shell.execute_reply": "2024-06-25T23:19:55.395563Z"
+ "iopub.execute_input": "2024-06-27T15:46:33.082101Z",
+ "iopub.status.busy": "2024-06-27T15:46:33.081924Z",
+ "iopub.status.idle": "2024-06-27T15:46:33.150392Z",
+ "shell.execute_reply": "2024-06-27T15:46:33.149925Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
index d70cfaf4e..cae98b96a 100644
--- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
@@ -61,10 +61,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:58.399516Z",
- "iopub.status.busy": "2024-06-25T23:19:58.399339Z",
- "iopub.status.idle": "2024-06-25T23:19:59.729255Z",
- "shell.execute_reply": "2024-06-25T23:19:59.728521Z"
+ "iopub.execute_input": "2024-06-27T15:46:36.239038Z",
+ "iopub.status.busy": "2024-06-27T15:46:36.238550Z",
+ "iopub.status.idle": "2024-06-27T15:46:55.062132Z",
+ "shell.execute_reply": "2024-06-27T15:46:55.061471Z"
}
},
"outputs": [],
@@ -79,10 +79,10 @@
"id": "58fd4c55",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:19:59.731986Z",
- "iopub.status.busy": "2024-06-25T23:19:59.731605Z",
- "iopub.status.idle": "2024-06-25T23:20:48.710370Z",
- "shell.execute_reply": "2024-06-25T23:20:48.709721Z"
+ "iopub.execute_input": "2024-06-27T15:46:55.064797Z",
+ "iopub.status.busy": "2024-06-27T15:46:55.064588Z",
+ "iopub.status.idle": "2024-06-27T15:47:51.045666Z",
+ "shell.execute_reply": "2024-06-27T15:47:51.045022Z"
}
},
"outputs": [],
@@ -97,10 +97,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:48.712844Z",
- "iopub.status.busy": "2024-06-25T23:20:48.712648Z",
- "iopub.status.idle": "2024-06-25T23:20:49.819754Z",
- "shell.execute_reply": "2024-06-25T23:20:49.819207Z"
+ "iopub.execute_input": "2024-06-27T15:47:51.048381Z",
+ "iopub.status.busy": "2024-06-27T15:47:51.048003Z",
+ "iopub.status.idle": "2024-06-27T15:47:52.172865Z",
+ "shell.execute_reply": "2024-06-27T15:47:52.172316Z"
},
"nbsphinx": "hidden"
},
@@ -111,7 +111,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -137,10 +137,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:49.822551Z",
- "iopub.status.busy": "2024-06-25T23:20:49.821983Z",
- "iopub.status.idle": "2024-06-25T23:20:49.825360Z",
- "shell.execute_reply": "2024-06-25T23:20:49.824898Z"
+ "iopub.execute_input": "2024-06-27T15:47:52.175429Z",
+ "iopub.status.busy": "2024-06-27T15:47:52.175045Z",
+ "iopub.status.idle": "2024-06-27T15:47:52.178148Z",
+ "shell.execute_reply": "2024-06-27T15:47:52.177722Z"
}
},
"outputs": [],
@@ -203,10 +203,10 @@
"id": "07dc5678",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:49.827409Z",
- "iopub.status.busy": "2024-06-25T23:20:49.827081Z",
- "iopub.status.idle": "2024-06-25T23:20:49.830739Z",
- "shell.execute_reply": "2024-06-25T23:20:49.830321Z"
+ "iopub.execute_input": "2024-06-27T15:47:52.180268Z",
+ "iopub.status.busy": "2024-06-27T15:47:52.179988Z",
+ "iopub.status.idle": "2024-06-27T15:47:52.183739Z",
+ "shell.execute_reply": "2024-06-27T15:47:52.183313Z"
}
},
"outputs": [
@@ -247,10 +247,10 @@
"id": "25ebe22a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:49.832814Z",
- "iopub.status.busy": "2024-06-25T23:20:49.832481Z",
- "iopub.status.idle": "2024-06-25T23:20:49.835986Z",
- "shell.execute_reply": "2024-06-25T23:20:49.835546Z"
+ "iopub.execute_input": "2024-06-27T15:47:52.185671Z",
+ "iopub.status.busy": "2024-06-27T15:47:52.185493Z",
+ "iopub.status.idle": "2024-06-27T15:47:52.189156Z",
+ "shell.execute_reply": "2024-06-27T15:47:52.188640Z"
}
},
"outputs": [
@@ -290,10 +290,10 @@
"id": "3faedea9",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:49.837816Z",
- "iopub.status.busy": "2024-06-25T23:20:49.837650Z",
- "iopub.status.idle": "2024-06-25T23:20:49.841360Z",
- "shell.execute_reply": "2024-06-25T23:20:49.840870Z"
+ "iopub.execute_input": "2024-06-27T15:47:52.191280Z",
+ "iopub.status.busy": "2024-06-27T15:47:52.190962Z",
+ "iopub.status.idle": "2024-06-27T15:47:52.193884Z",
+ "shell.execute_reply": "2024-06-27T15:47:52.193311Z"
}
},
"outputs": [],
@@ -333,17 +333,17 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:20:49.843348Z",
- "iopub.status.busy": "2024-06-25T23:20:49.843045Z",
- "iopub.status.idle": "2024-06-25T23:21:23.312097Z",
- "shell.execute_reply": "2024-06-25T23:21:23.311395Z"
+ "iopub.execute_input": "2024-06-27T15:47:52.195916Z",
+ "iopub.status.busy": "2024-06-27T15:47:52.195507Z",
+ "iopub.status.idle": "2024-06-27T15:48:25.584743Z",
+ "shell.execute_reply": "2024-06-27T15:48:25.584154Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "198f978c68c04b42bb7f505400e75581",
+ "model_id": "7f71a5822c7846d0b034ab5b1a0b1c3f",
"version_major": 2,
"version_minor": 0
},
@@ -357,7 +357,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4b186141820047419c3ae004111754f6",
+ "model_id": "fe3d775f10d64239907ab79615645233",
"version_major": 2,
"version_minor": 0
},
@@ -400,10 +400,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:21:23.314740Z",
- "iopub.status.busy": "2024-06-25T23:21:23.314519Z",
- "iopub.status.idle": "2024-06-25T23:21:23.985247Z",
- "shell.execute_reply": "2024-06-25T23:21:23.984646Z"
+ "iopub.execute_input": "2024-06-27T15:48:25.587438Z",
+ "iopub.status.busy": "2024-06-27T15:48:25.587187Z",
+ "iopub.status.idle": "2024-06-27T15:48:26.263424Z",
+ "shell.execute_reply": "2024-06-27T15:48:26.262811Z"
}
},
"outputs": [
@@ -446,10 +446,10 @@
"id": "57fed473",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:21:23.987564Z",
- "iopub.status.busy": "2024-06-25T23:21:23.987136Z",
- "iopub.status.idle": "2024-06-25T23:21:26.705173Z",
- "shell.execute_reply": "2024-06-25T23:21:26.704585Z"
+ "iopub.execute_input": "2024-06-27T15:48:26.265887Z",
+ "iopub.status.busy": "2024-06-27T15:48:26.265299Z",
+ "iopub.status.idle": "2024-06-27T15:48:29.122069Z",
+ "shell.execute_reply": "2024-06-27T15:48:29.121432Z"
}
},
"outputs": [
@@ -519,17 +519,17 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:21:26.707473Z",
- "iopub.status.busy": "2024-06-25T23:21:26.707134Z",
- "iopub.status.idle": "2024-06-25T23:22:00.356055Z",
- "shell.execute_reply": "2024-06-25T23:22:00.355524Z"
+ "iopub.execute_input": "2024-06-27T15:48:29.124437Z",
+ "iopub.status.busy": "2024-06-27T15:48:29.124098Z",
+ "iopub.status.idle": "2024-06-27T15:49:01.676438Z",
+ "shell.execute_reply": "2024-06-27T15:49:01.675966Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "28a8baec191044f3831c5b052b050cba",
+ "model_id": "2fb9a6ee01114d78a25c11750bab0fa4",
"version_major": 2,
"version_minor": 0
},
@@ -769,10 +769,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:00.358322Z",
- "iopub.status.busy": "2024-06-25T23:22:00.357991Z",
- "iopub.status.idle": "2024-06-25T23:22:14.992649Z",
- "shell.execute_reply": "2024-06-25T23:22:14.992097Z"
+ "iopub.execute_input": "2024-06-27T15:49:01.678666Z",
+ "iopub.status.busy": "2024-06-27T15:49:01.678396Z",
+ "iopub.status.idle": "2024-06-27T15:49:16.046651Z",
+ "shell.execute_reply": "2024-06-27T15:49:16.046076Z"
}
},
"outputs": [],
@@ -786,10 +786,10 @@
"id": "716c74f3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:14.994920Z",
- "iopub.status.busy": "2024-06-25T23:22:14.994721Z",
- "iopub.status.idle": "2024-06-25T23:22:18.704345Z",
- "shell.execute_reply": "2024-06-25T23:22:18.703738Z"
+ "iopub.execute_input": "2024-06-27T15:49:16.049152Z",
+ "iopub.status.busy": "2024-06-27T15:49:16.048790Z",
+ "iopub.status.idle": "2024-06-27T15:49:19.862754Z",
+ "shell.execute_reply": "2024-06-27T15:49:19.862252Z"
}
},
"outputs": [
@@ -858,17 +858,17 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:18.706711Z",
- "iopub.status.busy": "2024-06-25T23:22:18.706375Z",
- "iopub.status.idle": "2024-06-25T23:22:20.102205Z",
- "shell.execute_reply": "2024-06-25T23:22:20.101646Z"
+ "iopub.execute_input": "2024-06-27T15:49:19.864888Z",
+ "iopub.status.busy": "2024-06-27T15:49:19.864606Z",
+ "iopub.status.idle": "2024-06-27T15:49:21.295523Z",
+ "shell.execute_reply": "2024-06-27T15:49:21.294940Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e9e7048a47b3430f853de8ee7bd0cedf",
+ "model_id": "9966e872d94e4ab68ef5398830e9b58d",
"version_major": 2,
"version_minor": 0
},
@@ -898,10 +898,10 @@
"id": "390780a1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:20.104725Z",
- "iopub.status.busy": "2024-06-25T23:22:20.104340Z",
- "iopub.status.idle": "2024-06-25T23:22:20.133203Z",
- "shell.execute_reply": "2024-06-25T23:22:20.132635Z"
+ "iopub.execute_input": "2024-06-27T15:49:21.297965Z",
+ "iopub.status.busy": "2024-06-27T15:49:21.297515Z",
+ "iopub.status.idle": "2024-06-27T15:49:21.326583Z",
+ "shell.execute_reply": "2024-06-27T15:49:21.325940Z"
}
},
"outputs": [],
@@ -915,10 +915,10 @@
"id": "933d6ef0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:20.135579Z",
- "iopub.status.busy": "2024-06-25T23:22:20.135375Z",
- "iopub.status.idle": "2024-06-25T23:22:26.135540Z",
- "shell.execute_reply": "2024-06-25T23:22:26.134957Z"
+ "iopub.execute_input": "2024-06-27T15:49:21.329255Z",
+ "iopub.status.busy": "2024-06-27T15:49:21.329047Z",
+ "iopub.status.idle": "2024-06-27T15:49:27.470286Z",
+ "shell.execute_reply": "2024-06-27T15:49:27.469668Z"
}
},
"outputs": [
@@ -991,10 +991,10 @@
"id": "86bac686",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:26.137624Z",
- "iopub.status.busy": "2024-06-25T23:22:26.137444Z",
- "iopub.status.idle": "2024-06-25T23:22:26.192958Z",
- "shell.execute_reply": "2024-06-25T23:22:26.192454Z"
+ "iopub.execute_input": "2024-06-27T15:49:27.472549Z",
+ "iopub.status.busy": "2024-06-27T15:49:27.472203Z",
+ "iopub.status.idle": "2024-06-27T15:49:27.528660Z",
+ "shell.execute_reply": "2024-06-27T15:49:27.528119Z"
},
"nbsphinx": "hidden"
},
@@ -1038,25 +1038,49 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0220fd3c35e849c1a03e5c8abca06016": {
+ "0b2a78f573f4407da6188c1b8228cb8d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0ea04d688cb04c499beca07d0f363342": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3a765c6558034298b00c1cf9f8501e00",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0b2a78f573f4407da6188c1b8228cb8d",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 30.0
}
},
- "0d5018ed1be44175807c78ce0ab57606": {
+ "0f89554eb6de4c90b33d0a6e7591af06": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1109,101 +1133,25 @@
"width": null
}
},
- "119e57b6fb1844baa93ee07fae718fb0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_d68c68f5e35245c4a160a0468811587d",
- "placeholder": "",
- "style": "IPY_MODEL_bf890124360a4567a82d5d03676272de",
- "tabbable": null,
- "tooltip": null,
- "value": " 30/30 [00:01<00:00, 21.82it/s]"
- }
- },
- "198f978c68c04b42bb7f505400e75581": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a772478a0f704e3fa3325fbef037b4cd",
- "IPY_MODEL_5777ae56d3c54e35b67a204b112139e6",
- "IPY_MODEL_3e183c14ae544e71b619db5e0b367992"
- ],
- "layout": "IPY_MODEL_c28b42730873450e95180653991778ed",
- "tabbable": null,
- "tooltip": null
- }
- },
- "1b5e7f7edd7e41a48c9ee3f889c53756": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_ca265e653b2b43779eb1e897adba0a8c",
- "placeholder": "",
- "style": "IPY_MODEL_4b05b13a08364b5d9d060ee36c605fd5",
- "tabbable": null,
- "tooltip": null,
- "value": " 30/30 [00:21<00:00, 1.42it/s]"
- }
- },
- "28a8baec191044f3831c5b052b050cba": {
+ "1259e17a1a9142a1b89422828429c6f6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_da3ca18af3434b998fd38fd9dc359605",
- "IPY_MODEL_8e863ef8f3304af0a1299abfe8ad02b8",
- "IPY_MODEL_f9315252473d439f95f4fd58000719ed"
- ],
- "layout": "IPY_MODEL_cb251166fe62454094fce22ed9bd897a",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "367bfe277ffe4be9b8bae4bdaaa320ae": {
+ "130aa15c48404f0999a8c032f32e1b8e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
@@ -1219,7 +1167,7 @@
"description_width": ""
}
},
- "3e183c14ae544e71b619db5e0b367992": {
+ "16cdbd54d044414c965de434073289ac": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -1234,73 +1182,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e8e80dd483054ca091488456a8397301",
+ "layout": "IPY_MODEL_fd85fe96d2fb4cc4a0624a0b92e16119",
"placeholder": "",
- "style": "IPY_MODEL_0220fd3c35e849c1a03e5c8abca06016",
+ "style": "IPY_MODEL_c59dab1e291d44f6a40a5f47a97bc5e2",
"tabbable": null,
"tooltip": null,
- "value": " 30/30 [00:00<00:00, 758.41it/s]"
- }
- },
- "42d0aa720c6e4a2ca9f245568eca8de9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4b05b13a08364b5d9d060ee36c605fd5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "4b186141820047419c3ae004111754f6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8a43127ec4fc484eb12e55de443c3a15",
- "IPY_MODEL_4ff8dfedbd2949a5bb4270735a77c539",
- "IPY_MODEL_1b5e7f7edd7e41a48c9ee3f889c53756"
- ],
- "layout": "IPY_MODEL_b3e446b4b0bf43d0806173baf332511b",
- "tabbable": null,
- "tooltip": null
+ "value": " 4997683/4997683 [00:32<00:00, 155068.54it/s]"
}
},
- "4bb96c22484d421c85c644ab03e8eb56": {
+ "18685f97e73341b8abf9d0b590933963": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1353,33 +1243,65 @@
"width": null
}
},
- "4ff8dfedbd2949a5bb4270735a77c539": {
+ "295df93e6cb34e1cb08bb6bb11b715d1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "2deed766ee764572a40c952825ebd962": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2fb9a6ee01114d78a25c11750bab0fa4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c9d9ec1dbde84cafb318173cee06bece",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e3c898e2f5ff4cd480ab8c04bffe7dfb",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4b2867644c26482b92fa75b7a6894113",
+ "IPY_MODEL_36f197ecb50647519bc0c8e0fcbfd941",
+ "IPY_MODEL_16cdbd54d044414c965de434073289ac"
+ ],
+ "layout": "IPY_MODEL_6b1734bd143d46ac9713f37c5d9480e3",
"tabbable": null,
- "tooltip": null,
- "value": 30.0
+ "tooltip": null
}
},
- "5777ae56d3c54e35b67a204b112139e6": {
+ "36f197ecb50647519bc0c8e0fcbfd941": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -1395,17 +1317,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_d8fb8c2405ca482185ac5e7c6f667650",
- "max": 30.0,
+ "layout": "IPY_MODEL_18685f97e73341b8abf9d0b590933963",
+ "max": 4997683.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_42d0aa720c6e4a2ca9f245568eca8de9",
+ "style": "IPY_MODEL_4449f12dbf594716b49097a752b9701e",
"tabbable": null,
"tooltip": null,
- "value": 30.0
+ "value": 4997683.0
}
},
- "5fe269722f6a4605a143155dac3bcd01": {
+ "3703605f41c047cf945328b7c9f95960": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1458,43 +1380,7 @@
"width": null
}
},
- "680f5ec724904dd1a968ede02eacb19b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "69f5479f692f4d43b82f5df028e467d7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "85982aca8cc345109d878dbd7bbe9828": {
+ "3a765c6558034298b00c1cf9f8501e00": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1547,162 +1433,7 @@
"width": null
}
},
- "8a43127ec4fc484eb12e55de443c3a15": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_eb1f2e4f38da4c9190ae6c4d6714e087",
- "placeholder": "",
- "style": "IPY_MODEL_f47a2b8a8ebb4314850e6e3193fcd946",
- "tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for checking labels: 100%"
- }
- },
- "8b038c68d122401fbb4e96c1ad051c9f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "8e863ef8f3304af0a1299abfe8ad02b8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0d5018ed1be44175807c78ce0ab57606",
- "max": 4997683.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_367bfe277ffe4be9b8bae4bdaaa320ae",
- "tabbable": null,
- "tooltip": null,
- "value": 4997683.0
- }
- },
- "96ab128e8fca4ba6874dc9eef5cf4ff3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "9da954de4d5f49119869cd8370e5e154": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_85982aca8cc345109d878dbd7bbe9828",
- "placeholder": "",
- "style": "IPY_MODEL_c5e54c3a78384206bc828910a703fec0",
- "tabbable": null,
- "tooltip": null,
- "value": "images processed using softmin: 100%"
- }
- },
- "a772478a0f704e3fa3325fbef037b4cd": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_5fe269722f6a4605a143155dac3bcd01",
- "placeholder": "",
- "style": "IPY_MODEL_680f5ec724904dd1a968ede02eacb19b",
- "tabbable": null,
- "tooltip": null,
- "value": "number of examples processed for estimating thresholds: 100%"
- }
- },
- "a9a87800c31f4b0c8cd52338e21b3cc8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f9477ce7cdc74a22959c387b134e9c01",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_96ab128e8fca4ba6874dc9eef5cf4ff3",
- "tabbable": null,
- "tooltip": null,
- "value": 30.0
- }
- },
- "b3e446b4b0bf43d0806173baf332511b": {
+ "3efe2d9ef365474cb70f28ca9cf9fc13": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1755,25 +1486,7 @@
"width": null
}
},
- "bf890124360a4567a82d5d03676272de": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c28b42730873450e95180653991778ed": {
+ "40edc3fdfa7a49a5b6679ab9e15fffb7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1826,7 +1539,95 @@
"width": null
}
},
- "c5e54c3a78384206bc828910a703fec0": {
+ "4449f12dbf594716b49097a752b9701e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4b2867644c26482b92fa75b7a6894113": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_74728e06701e4aaaaf081619bc0702a0",
+ "placeholder": "",
+ "style": "IPY_MODEL_295df93e6cb34e1cb08bb6bb11b715d1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "4c30478aca9e4dca80b8f62ba2e92709": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0f89554eb6de4c90b33d0a6e7591af06",
+ "placeholder": "",
+ "style": "IPY_MODEL_5515e6886fbf4a9182d906b715cc8d32",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "images processed using softmin: 100%"
+ }
+ },
+ "4e64ba415c594c219d53b6a40a7c2cc2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6888922cfd1d43a199c03c0cd9ac7c09",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_130aa15c48404f0999a8c032f32e1b8e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 30.0
+ }
+ },
+ "5515e6886fbf4a9182d906b715cc8d32": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -1844,7 +1645,7 @@
"text_color": null
}
},
- "c9d9ec1dbde84cafb318173cee06bece": {
+ "6888922cfd1d43a199c03c0cd9ac7c09": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1897,7 +1698,25 @@
"width": null
}
},
- "ca265e653b2b43779eb1e897adba0a8c": {
+ "698dd890707c43d8a7861c640265f7b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6b1734bd143d46ac9713f37c5d9480e3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -1950,7 +1769,48 @@
"width": null
}
},
- "cb251166fe62454094fce22ed9bd897a": {
+ "6c5ba82fd94a4feeb96e8c2534a1e244": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "6e5a49c0d7874db7a0125f0b6e3663d0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3703605f41c047cf945328b7c9f95960",
+ "placeholder": "",
+ "style": "IPY_MODEL_1259e17a1a9142a1b89422828429c6f6",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 30/30 [00:21<00:00, 1.43it/s]"
+ }
+ },
+ "74728e06701e4aaaaf081619bc0702a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2003,7 +1863,30 @@
"width": null
}
},
- "cf29f93a566f4e018c0e0d5c5ad96a05": {
+ "783e8860450a4b3a8a155cf010704f5b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_9ec4fe36e07941dba52fb339300d5693",
+ "placeholder": "",
+ "style": "IPY_MODEL_698dd890707c43d8a7861c640265f7b3",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "number of examples processed for estimating thresholds: 100%"
+ }
+ },
+ "7ebd05713ce941278b0f4752500c1088": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2056,7 +1939,31 @@
"width": null
}
},
- "d68c68f5e35245c4a160a0468811587d": {
+ "7f71a5822c7846d0b034ab5b1a0b1c3f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_783e8860450a4b3a8a155cf010704f5b",
+ "IPY_MODEL_4e64ba415c594c219d53b6a40a7c2cc2",
+ "IPY_MODEL_b32206216b7541cea1ea8e737cd4fd09"
+ ],
+ "layout": "IPY_MODEL_3efe2d9ef365474cb70f28ca9cf9fc13",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "844c6b22c23a4974bc130ccc32df57af": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2109,7 +2016,33 @@
"width": null
}
},
- "d8fb8c2405ca482185ac5e7c6f667650": {
+ "87972511da6749489a0a81d82dedf0db": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a73ba3c9a654424fbaa92e4a66818388",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2deed766ee764572a40c952825ebd962",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 30.0
+ }
+ },
+ "8eb499cfe37d4f4dbeacf234bbf50047": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2162,46 +2095,31 @@
"width": null
}
},
- "da3ca18af3434b998fd38fd9dc359605": {
+ "9966e872d94e4ab68ef5398830e9b58d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_fcba50827939420b83ea40b9e3507089",
- "placeholder": "",
- "style": "IPY_MODEL_69f5479f692f4d43b82f5df028e467d7",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4c30478aca9e4dca80b8f62ba2e92709",
+ "IPY_MODEL_87972511da6749489a0a81d82dedf0db",
+ "IPY_MODEL_d645a1c5a9ea451ab142d40d50ae7b72"
+ ],
+ "layout": "IPY_MODEL_c6aecd698a354d4fb62453b6c8e77cc3",
"tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "e3c898e2f5ff4cd480ab8c04bffe7dfb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "tooltip": null
}
},
- "e8e80dd483054ca091488456a8397301": {
+ "9ec4fe36e07941dba52fb339300d5693": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2254,31 +2172,7 @@
"width": null
}
},
- "e9e7048a47b3430f853de8ee7bd0cedf": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9da954de4d5f49119869cd8370e5e154",
- "IPY_MODEL_a9a87800c31f4b0c8cd52338e21b3cc8",
- "IPY_MODEL_119e57b6fb1844baa93ee07fae718fb0"
- ],
- "layout": "IPY_MODEL_4bb96c22484d421c85c644ab03e8eb56",
- "tabbable": null,
- "tooltip": null
- }
- },
- "eb1f2e4f38da4c9190ae6c4d6714e087": {
+ "a73ba3c9a654424fbaa92e4a66818388": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2331,7 +2225,7 @@
"width": null
}
},
- "f47a2b8a8ebb4314850e6e3193fcd946": {
+ "aba4ab0d3625455b8fbaf813744beeac": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2349,7 +2243,7 @@
"text_color": null
}
},
- "f9315252473d439f95f4fd58000719ed": {
+ "b32206216b7541cea1ea8e737cd4fd09": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2364,15 +2258,33 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_cf29f93a566f4e018c0e0d5c5ad96a05",
+ "layout": "IPY_MODEL_844c6b22c23a4974bc130ccc32df57af",
"placeholder": "",
- "style": "IPY_MODEL_8b038c68d122401fbb4e96c1ad051c9f",
+ "style": "IPY_MODEL_aba4ab0d3625455b8fbaf813744beeac",
"tabbable": null,
"tooltip": null,
- "value": " 4997683/4997683 [00:33<00:00, 150147.59it/s]"
+ "value": " 30/30 [00:00<00:00, 777.53it/s]"
+ }
+ },
+ "c59dab1e291d44f6a40a5f47a97bc5e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f9477ce7cdc74a22959c387b134e9c01": {
+ "c6aecd698a354d4fb62453b6c8e77cc3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2425,7 +2337,48 @@
"width": null
}
},
- "fcba50827939420b83ea40b9e3507089": {
+ "d645a1c5a9ea451ab142d40d50ae7b72": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_8eb499cfe37d4f4dbeacf234bbf50047",
+ "placeholder": "",
+ "style": "IPY_MODEL_6c5ba82fd94a4feeb96e8c2534a1e244",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 30/30 [00:01<00:00, 21.20it/s]"
+ }
+ },
+ "eb8570a875c54f7f869ad18961de3b4a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "fd85fe96d2fb4cc4a0624a0b92e16119": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2477,6 +2430,53 @@
"visibility": null,
"width": null
}
+ },
+ "fdad854896ed47cbbcba16c7a4b56bb4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7ebd05713ce941278b0f4752500c1088",
+ "placeholder": "",
+ "style": "IPY_MODEL_eb8570a875c54f7f869ad18961de3b4a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "number of examples processed for checking labels: 100%"
+ }
+ },
+ "fe3d775f10d64239907ab79615645233": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fdad854896ed47cbbcba16c7a4b56bb4",
+ "IPY_MODEL_0ea04d688cb04c499beca07d0f363342",
+ "IPY_MODEL_6e5a49c0d7874db7a0125f0b6e3663d0"
+ ],
+ "layout": "IPY_MODEL_40edc3fdfa7a49a5b6679ab9e15fffb7",
+ "tabbable": null,
+ "tooltip": null
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
index 28feac438..aae3879ef 100644
--- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:28.297877Z",
- "iopub.status.busy": "2024-06-25T23:22:28.297692Z",
- "iopub.status.idle": "2024-06-25T23:22:29.566144Z",
- "shell.execute_reply": "2024-06-25T23:22:29.565466Z"
+ "iopub.execute_input": "2024-06-27T15:49:29.640132Z",
+ "iopub.status.busy": "2024-06-27T15:49:29.639946Z",
+ "iopub.status.idle": "2024-06-27T15:49:31.619306Z",
+ "shell.execute_reply": "2024-06-27T15:49:31.618696Z"
}
},
"outputs": [
@@ -86,7 +86,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-06-25 23:22:28-- https://data.deepai.org/conll2003.zip\r\n",
+ "--2024-06-27 15:49:29-- https://data.deepai.org/conll2003.zip\r\n",
"Resolving data.deepai.org (data.deepai.org)... "
]
},
@@ -94,15 +94,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "185.93.1.250, 2400:52e0:1a00::1068:1\r\n",
- "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "connected.\r\n",
+ "143.244.49.180, 2400:52e0:1a01::998:1\r\n",
+ "Connecting to data.deepai.org (data.deepai.org)|143.244.49.180|:443... connected.\r\n",
"HTTP request sent, awaiting response... "
]
},
@@ -123,9 +116,9 @@
"output_type": "stream",
"text": [
"\r",
- "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n",
+ "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.06s \r\n",
"\r\n",
- "2024-06-25 23:22:28 (6.31 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+ "2024-06-27 15:49:30 (16.8 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
"\r\n",
"mkdir: cannot create directory ‘data’: File exists\r\n"
]
@@ -145,9 +138,29 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-06-25 23:22:29-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
- "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.25.196, 54.231.139.49, 52.216.48.57, ...\r\n",
- "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.25.196|:443... connected.\r\n",
+ "--2024-06-27 15:49:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+ "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "52.217.80.44, 3.5.27.43, 3.5.11.148, ...\r\n",
+ "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.80.44|:443... "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "connected.\r\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
"HTTP request sent, awaiting response... "
]
},
@@ -168,7 +181,15 @@
"output_type": "stream",
"text": [
"\r",
- "pred_probs.npz 58%[==========> ] 9.47M 47.3MB/s "
+ "pred_probs.npz 1%[ ] 312.11K 1.26MB/s "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\r",
+ "pred_probs.npz 31%[=====> ] 5.18M 10.7MB/s "
]
},
{
@@ -176,9 +197,9 @@
"output_type": "stream",
"text": [
"\r",
- "pred_probs.npz 100%[===================>] 16.26M 55.6MB/s in 0.3s \r\n",
+ "pred_probs.npz 100%[===================>] 16.26M 23.9MB/s in 0.7s \r\n",
"\r\n",
- "2024-06-25 23:22:29 (55.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+ "2024-06-27 15:49:31 (23.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
"\r\n"
]
}
@@ -195,10 +216,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:29.568875Z",
- "iopub.status.busy": "2024-06-25T23:22:29.568431Z",
- "iopub.status.idle": "2024-06-25T23:22:30.789853Z",
- "shell.execute_reply": "2024-06-25T23:22:30.789338Z"
+ "iopub.execute_input": "2024-06-27T15:49:31.621702Z",
+ "iopub.status.busy": "2024-06-27T15:49:31.621505Z",
+ "iopub.status.idle": "2024-06-27T15:49:32.918088Z",
+ "shell.execute_reply": "2024-06-27T15:49:32.917440Z"
},
"nbsphinx": "hidden"
},
@@ -209,7 +230,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -235,10 +256,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:30.792349Z",
- "iopub.status.busy": "2024-06-25T23:22:30.792077Z",
- "iopub.status.idle": "2024-06-25T23:22:30.795305Z",
- "shell.execute_reply": "2024-06-25T23:22:30.794873Z"
+ "iopub.execute_input": "2024-06-27T15:49:32.920910Z",
+ "iopub.status.busy": "2024-06-27T15:49:32.920272Z",
+ "iopub.status.idle": "2024-06-27T15:49:32.923938Z",
+ "shell.execute_reply": "2024-06-27T15:49:32.923418Z"
}
},
"outputs": [],
@@ -288,10 +309,10 @@
"id": "ab9d59a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:30.797547Z",
- "iopub.status.busy": "2024-06-25T23:22:30.797222Z",
- "iopub.status.idle": "2024-06-25T23:22:30.800066Z",
- "shell.execute_reply": "2024-06-25T23:22:30.799649Z"
+ "iopub.execute_input": "2024-06-27T15:49:32.925895Z",
+ "iopub.status.busy": "2024-06-27T15:49:32.925700Z",
+ "iopub.status.idle": "2024-06-27T15:49:32.928588Z",
+ "shell.execute_reply": "2024-06-27T15:49:32.928176Z"
},
"nbsphinx": "hidden"
},
@@ -309,10 +330,10 @@
"id": "519cb80c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:30.801968Z",
- "iopub.status.busy": "2024-06-25T23:22:30.801793Z",
- "iopub.status.idle": "2024-06-25T23:22:39.539487Z",
- "shell.execute_reply": "2024-06-25T23:22:39.538935Z"
+ "iopub.execute_input": "2024-06-27T15:49:32.930400Z",
+ "iopub.status.busy": "2024-06-27T15:49:32.930225Z",
+ "iopub.status.idle": "2024-06-27T15:49:41.990953Z",
+ "shell.execute_reply": "2024-06-27T15:49:41.990399Z"
}
},
"outputs": [],
@@ -386,10 +407,10 @@
"id": "202f1526",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:39.542320Z",
- "iopub.status.busy": "2024-06-25T23:22:39.541861Z",
- "iopub.status.idle": "2024-06-25T23:22:39.547429Z",
- "shell.execute_reply": "2024-06-25T23:22:39.546974Z"
+ "iopub.execute_input": "2024-06-27T15:49:41.993525Z",
+ "iopub.status.busy": "2024-06-27T15:49:41.993154Z",
+ "iopub.status.idle": "2024-06-27T15:49:41.998594Z",
+ "shell.execute_reply": "2024-06-27T15:49:41.998138Z"
},
"nbsphinx": "hidden"
},
@@ -429,10 +450,10 @@
"id": "a4381f03",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:39.549434Z",
- "iopub.status.busy": "2024-06-25T23:22:39.549088Z",
- "iopub.status.idle": "2024-06-25T23:22:39.886323Z",
- "shell.execute_reply": "2024-06-25T23:22:39.885773Z"
+ "iopub.execute_input": "2024-06-27T15:49:42.000606Z",
+ "iopub.status.busy": "2024-06-27T15:49:42.000287Z",
+ "iopub.status.idle": "2024-06-27T15:49:42.352443Z",
+ "shell.execute_reply": "2024-06-27T15:49:42.351803Z"
}
},
"outputs": [],
@@ -469,10 +490,10 @@
"id": "7842e4a3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:39.888760Z",
- "iopub.status.busy": "2024-06-25T23:22:39.888567Z",
- "iopub.status.idle": "2024-06-25T23:22:39.892822Z",
- "shell.execute_reply": "2024-06-25T23:22:39.892289Z"
+ "iopub.execute_input": "2024-06-27T15:49:42.354868Z",
+ "iopub.status.busy": "2024-06-27T15:49:42.354676Z",
+ "iopub.status.idle": "2024-06-27T15:49:42.358986Z",
+ "shell.execute_reply": "2024-06-27T15:49:42.358462Z"
}
},
"outputs": [
@@ -544,10 +565,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:39.894754Z",
- "iopub.status.busy": "2024-06-25T23:22:39.894582Z",
- "iopub.status.idle": "2024-06-25T23:22:42.439150Z",
- "shell.execute_reply": "2024-06-25T23:22:42.438377Z"
+ "iopub.execute_input": "2024-06-27T15:49:42.360910Z",
+ "iopub.status.busy": "2024-06-27T15:49:42.360734Z",
+ "iopub.status.idle": "2024-06-27T15:49:44.947322Z",
+ "shell.execute_reply": "2024-06-27T15:49:44.946542Z"
}
},
"outputs": [],
@@ -569,10 +590,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:42.442203Z",
- "iopub.status.busy": "2024-06-25T23:22:42.441641Z",
- "iopub.status.idle": "2024-06-25T23:22:42.445478Z",
- "shell.execute_reply": "2024-06-25T23:22:42.444915Z"
+ "iopub.execute_input": "2024-06-27T15:49:44.950509Z",
+ "iopub.status.busy": "2024-06-27T15:49:44.949955Z",
+ "iopub.status.idle": "2024-06-27T15:49:44.954069Z",
+ "shell.execute_reply": "2024-06-27T15:49:44.953529Z"
}
},
"outputs": [
@@ -608,10 +629,10 @@
"id": "e13de188",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:42.447472Z",
- "iopub.status.busy": "2024-06-25T23:22:42.447297Z",
- "iopub.status.idle": "2024-06-25T23:22:42.452716Z",
- "shell.execute_reply": "2024-06-25T23:22:42.452215Z"
+ "iopub.execute_input": "2024-06-27T15:49:44.956163Z",
+ "iopub.status.busy": "2024-06-27T15:49:44.955856Z",
+ "iopub.status.idle": "2024-06-27T15:49:44.961496Z",
+ "shell.execute_reply": "2024-06-27T15:49:44.960948Z"
}
},
"outputs": [
@@ -789,10 +810,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:42.454685Z",
- "iopub.status.busy": "2024-06-25T23:22:42.454421Z",
- "iopub.status.idle": "2024-06-25T23:22:42.480225Z",
- "shell.execute_reply": "2024-06-25T23:22:42.479796Z"
+ "iopub.execute_input": "2024-06-27T15:49:44.963667Z",
+ "iopub.status.busy": "2024-06-27T15:49:44.963243Z",
+ "iopub.status.idle": "2024-06-27T15:49:44.989856Z",
+ "shell.execute_reply": "2024-06-27T15:49:44.989282Z"
}
},
"outputs": [
@@ -894,10 +915,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:42.482279Z",
- "iopub.status.busy": "2024-06-25T23:22:42.481978Z",
- "iopub.status.idle": "2024-06-25T23:22:42.486286Z",
- "shell.execute_reply": "2024-06-25T23:22:42.485735Z"
+ "iopub.execute_input": "2024-06-27T15:49:44.991934Z",
+ "iopub.status.busy": "2024-06-27T15:49:44.991544Z",
+ "iopub.status.idle": "2024-06-27T15:49:44.995987Z",
+ "shell.execute_reply": "2024-06-27T15:49:44.995465Z"
}
},
"outputs": [
@@ -971,10 +992,10 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:42.488404Z",
- "iopub.status.busy": "2024-06-25T23:22:42.487905Z",
- "iopub.status.idle": "2024-06-25T23:22:43.900411Z",
- "shell.execute_reply": "2024-06-25T23:22:43.899904Z"
+ "iopub.execute_input": "2024-06-27T15:49:44.997969Z",
+ "iopub.status.busy": "2024-06-27T15:49:44.997628Z",
+ "iopub.status.idle": "2024-06-27T15:49:46.406945Z",
+ "shell.execute_reply": "2024-06-27T15:49:46.406319Z"
}
},
"outputs": [
@@ -1146,10 +1167,10 @@
"id": "a18795eb",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:22:43.902625Z",
- "iopub.status.busy": "2024-06-25T23:22:43.902291Z",
- "iopub.status.idle": "2024-06-25T23:22:43.906202Z",
- "shell.execute_reply": "2024-06-25T23:22:43.905768Z"
+ "iopub.execute_input": "2024-06-27T15:49:46.409049Z",
+ "iopub.status.busy": "2024-06-27T15:49:46.408845Z",
+ "iopub.status.idle": "2024-06-27T15:49:46.413172Z",
+ "shell.execute_reply": "2024-06-27T15:49:46.412698Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_0.png b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_0.png
new file mode 100644
index 000000000..a5c34f10e
Binary files /dev/null and b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_0.png differ
diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_1.png b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_1.png
new file mode 100644
index 000000000..1e508d945
Binary files /dev/null and b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_84_1.png differ
diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree
index a2c991a17..e48ceffff 100644
Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ
diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree
index 86cdf7b11..b1324836a 100644
Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree
index 0e303de35..6f0506be7 100644
Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree
index 602ecbbe6..74de81454 100644
Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree
index b0853cfee..dade7d121 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree
index 5ddac3a1f..18c7cfed3 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree
index 9dff83152..3d9b9f5d0 100644
Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree
index c98a3a970..5e1823ee6 100644
Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree
index ebaef2c8d..b86093485 100644
Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree
index cbd01578d..26c12ada4 100644
Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree
index d1b065683..04d4cb338 100644
Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ
diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree
index 934e2fe97..47bc89b5b 100644
Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ
diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree
index 8ec33956b..58f7c4d36 100644
Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ
diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree
index 25c2482f9..93e48bb10 100644
Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ
diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree
index 03ce8436d..9b2d42406 100644
Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ
diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree
index 55b5cb470..7e750b34c 100644
Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ
diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree
index 56a491016..f192f597a 100644
Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ
diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree
index 66fdc23a5..e2b0f54e1 100644
Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ
diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree
index 07fdc75ce..1251338b0 100644
Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ
diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree
index fab668fd2..9b315f832 100644
Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ
diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree
index 897d75f4e..0c1d080eb 100644
Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ
diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree
index 71a8bf5e2..98174b43f 100644
Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ
diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree
index a85278c82..2ebd1e2e4 100644
Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ
diff --git a/master/_images/tutorials_datalab_workflows_84_0.png b/master/_images/tutorials_datalab_workflows_84_0.png
new file mode 100644
index 000000000..a5c34f10e
Binary files /dev/null and b/master/_images/tutorials_datalab_workflows_84_0.png differ
diff --git a/master/_images/tutorials_datalab_workflows_84_1.png b/master/_images/tutorials_datalab_workflows_84_1.png
new file mode 100644
index 000000000..1e508d945
Binary files /dev/null and b/master/_images/tutorials_datalab_workflows_84_1.png differ
diff --git a/master/_modules/cleanlab/datalab/datalab.html b/master/_modules/cleanlab/datalab/datalab.html
index 83f0aa9aa..cb7ad7f14 100644
--- a/master/_modules/cleanlab/datalab/datalab.html
+++ b/master/_modules/cleanlab/datalab/datalab.html
@@ -657,6 +657,7 @@ Source code for cleanlab.datalab.datalab
)
from cleanlab.datalab.internal.serialize import _Serializer
from cleanlab.datalab.internal.task import Task
+from cleanlab.datalab.internal.spurious_correlation import SpuriousCorrelations
if TYPE_CHECKING : # pragma: no cover
import numpy.typing as npt
@@ -1248,7 +1249,60 @@ Source code for cleanlab.datalab.datalab
datalab = _Serializer . deserialize ( path = path , data = data )
load_message = f "Datalab loaded from folder: { path } "
print ( load_message )
- return datalab
+ return datalab
+
+ def _spurious_correlation ( self ) -> pd . DataFrame :
+ """
+ Assess potential spurious correlations in issue severity scores.
+
+ This method calculates scores indicating the likelihood of spurious correlations
+ for various issue severity scores in the dataset, as estimated by the `find_issues()` method.
+ Currently, it focuses on severity scores related to image attributes.
+ If `find_issues()` has not been called, it raises a ValueError.
+
+ Returns
+ -------
+ `correlations_df` : pandas.DataFrame
+ A DataFrame containing the calculated correlations for each property, excluding 'class_imbalance_score'.
+ The DataFrame includes:
+ - 'property' : str
+ The name of the property.
+ - 'score' : float
+ The spurious correlation score (between 0 and 1) for the property,
+ where a low score indicates a higher likelihood of spurious correlation,
+ and a high score indicates a lower likelihood.
+
+ Raises
+ ------
+ ValueError
+ If the issues have not been identified (i.e., `find_issues()` has not been called).
+
+ Notes
+ -----
+ This method currently focuses on image-related severity scores, with potential for future expansions.
+ """
+ try :
+ issues = self . get_issues ()
+ except ValueError :
+ raise ValueError (
+ "Please call find_issues() before proceeding with finding Spurious Correlations"
+ )
+
+ if not all (
+ default_cleanvision_issue + "_score" in issues . columns . tolist ()
+ for default_cleanvision_issue in DEFAULT_CLEANVISION_ISSUES . keys ()
+ ):
+ raise ValueError ( "All vision issue scores are not computed by get_issues() method" )
+
+ cleanvision_issues_columns = [
+ default_cleanvision_issue + "_score"
+ for default_cleanvision_issue in DEFAULT_CLEANVISION_ISSUES . keys ()
+ ]
+ issues_score_data = issues [ cleanvision_issues_columns ]
+ property_correlations = SpuriousCorrelations ( data = issues_score_data , labels = self . labels )
+ correlations_df = property_correlations . calculate_correlations ()
+
+ return correlations_df
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb
index 02da15562..44e8ac144 100644
--- a/master/_sources/tutorials/clean_learning/tabular.ipynb
+++ b/master/_sources/tutorials/clean_learning/tabular.ipynb
@@ -120,7 +120,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb
index 1d4643a4c..f6e30eaf3 100644
--- a/master/_sources/tutorials/clean_learning/text.ipynb
+++ b/master/_sources/tutorials/clean_learning/text.ipynb
@@ -129,7 +129,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb
index e7aadf6ca..679092720 100644
--- a/master/_sources/tutorials/datalab/audio.ipynb
+++ b/master/_sources/tutorials/datalab/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index 7eaeed6b0..d7ef7612a 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index c7ddd7477..301a03425 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 16a8a36cf..f364ab1d4 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -80,7 +80,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index b28ce2a19..03a4b164f 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/workflows.ipynb b/master/_sources/tutorials/datalab/workflows.ipynb
index 9abe7458d..9fbabadc7 100644
--- a/master/_sources/tutorials/datalab/workflows.ipynb
+++ b/master/_sources/tutorials/datalab/workflows.ipynb
@@ -1326,6 +1326,211 @@
"assert all(class_imbalance_issues.query(\"is_class_imbalance_issue\")[\"class_imbalance_score\"] == 0.02), \"Class imbalance issue scores are not as expected\"\n",
"assert all(class_imbalance_issues.query(\"not is_class_imbalance_issue\")[\"class_imbalance_score\"] == 1.0), \"Class imbalance issue scores are not as expected\""
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Find Spurious Correlation between Vision Dataset features and class labels\n",
+ "\n",
+ "In this section, we demonstrate how to identify spurious correlations in a vision dataset using the `cleanlab` library. Spurious correlations are unintended associations in the data that do not reflect the true underlying relationships, potentially leading to misleading model predictions and poor generalization.\n",
+ "\n",
+ "We will utilize the `Datalab` class from cleanlab with the `image_key` attribute to pinpoint vision-specific issues such as `dark_score`, `blurry_score`, `odd_aspect_ratio_score`, and more in the dataset. By analyzing these correlations, we can understand their impact on model performance and take steps to enhance the robustness and reliability of our machine learning models."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1. Load the dataset\n",
+ "\n",
+ "We will demonstrate this workflow using the CIFAR-10 dataset by selecting 100 images from two random classes. To illustrate the impact of spurious correlations between image features and class labels, we will showcase how altering all images of a class, such as darkening them, significantly reduces the `dark_score`. This demonstrates the strong correlation detection of darkness within the dataset.\n",
+ "\n",
+ "Similarly, we can observe significant reductions in `blurry_score` and `odd_aspect_ratio_score` when one of the classes contains images with corresponding characteristics such as blurriness or an unusual aspect ratio between width and height."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from cleanlab import Datalab\n",
+ "from torchvision.datasets import CIFAR10\n",
+ "from datasets import Dataset\n",
+ "import io\n",
+ "from PIL import Image, ImageEnhance\n",
+ "import random\n",
+ "import numpy as np\n",
+ "from IPython.display import display, Markdown\n",
+ "\n",
+ "# Download the CIFAR-10 test dataset\n",
+ "data = CIFAR10(root='./data', train=False, download=True)\n",
+ "\n",
+ "# Set seed for reproducibility\n",
+ "np.random.seed(0)\n",
+ "random.seed(0)\n",
+ "\n",
+ "# Randomly select two classes\n",
+ "classes = list(range(len(data.classes)))\n",
+ "selected_classes = random.sample(classes, 2)\n",
+ "\n",
+ "# Function to convert PIL object to PNG image to be passed to the Datalab object\n",
+ "def convert_to_png_image(image):\n",
+ " buffer = io.BytesIO()\n",
+ " image.save(buffer, format='PNG')\n",
+ " buffer.seek(0)\n",
+ " return Image.open(buffer)\n",
+ "\n",
+ "# Generating 100 ('max_num_images') images from each of the two chosen classes\n",
+ "max_num_images = 100\n",
+ "list_images, list_labels = [], []\n",
+ "num_images = {selected_classes[0]: 0, selected_classes[1]: 0}\n",
+ "\n",
+ "for img, label in data:\n",
+ " if num_images[selected_classes[0]] == max_num_images and num_images[selected_classes[1]] == max_num_images:\n",
+ " break\n",
+ " if label in selected_classes:\n",
+ " if num_images[label] == max_num_images:\n",
+ " continue\n",
+ " list_images.append(convert_to_png_image(img))\n",
+ " list_labels.append(label)\n",
+ " num_images[label] += 1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find vision-related issues"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create a datasets.Dataset object from list of images and their corresponding labels\n",
+ "dataset_dict = {'image': list_images, 'label': list_labels}\n",
+ "dataset = Dataset.from_dict(dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3. (Optional) Creating a transformed dataset using `ImageEnhance` to induce darkness"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Function to reduce brightness to 30%\n",
+ "def apply_dark(image):\n",
+ " \"\"\"Decreases brightness of the image.\"\"\"\n",
+ " enhancer = ImageEnhance.Brightness(image)\n",
+ " return enhancer.enhance(0.3)\n",
+ "\n",
+ "# Applying the darkness filter to one of the classes\n",
+ "transformed_list_images = [\n",
+ " apply_dark(img) if label == selected_classes[0] else img\n",
+ " for label, img in zip(list_labels, list_images)\n",
+ "]\n",
+ "\n",
+ "# Creating datasets.Dataset object from the transformed dataset\n",
+ "transformed_dataset_dict = {'image': transformed_list_images, 'label': list_labels}\n",
+ "transformed_dataset = Dataset.from_dict(transformed_dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 4. (Optional) Visualizing Images in the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "def plot_images(dataset_dict):\n",
+ " \"\"\"Plots the first 15 images from the dataset dictionary.\"\"\"\n",
+ " images = dataset_dict['image']\n",
+ " labels = dataset_dict['label']\n",
+ " \n",
+ " # Define the number of images to plot\n",
+ " num_images_to_plot = 15\n",
+ " num_cols = 5 # Number of columns in the plot grid\n",
+ " num_rows = (num_images_to_plot + num_cols - 1) // num_cols # Calculate rows needed\n",
+ " \n",
+ " # Create a figure\n",
+ " fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 6))\n",
+ " axes = axes.flatten()\n",
+ " \n",
+ " # Plot each image\n",
+ " for i in range(num_images_to_plot):\n",
+ " img = images[i]\n",
+ " label = labels[i]\n",
+ " axes[i].imshow(img)\n",
+ " axes[i].set_title(f'Label: {label}')\n",
+ " axes[i].axis('off')\n",
+ " \n",
+ " # Hide any remaining empty subplots\n",
+ " for i in range(num_images_to_plot, len(axes)):\n",
+ " axes[i].axis('off')\n",
+ " \n",
+ " # Show the plot\n",
+ " plt.tight_layout()\n",
+ " plt.show()\n",
+ "\n",
+ "plot_images(dataset_dict)\n",
+ "plot_images(transformed_dataset_dict)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5. Finding image-specific property scores"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Function to find image-specific property scores given the dataset object\n",
+ "def get_property_scores(dataset):\n",
+ " lab = Datalab(data=dataset, label_name=\"label\", image_key=\"image\")\n",
+ " lab.find_issues()\n",
+ " return lab._spurious_correlation()\n",
+ "\n",
+ "# Finds specific property score in the dataframe containing property scores \n",
+ "def get_specific_property_score(property_scores_df, property_name):\n",
+ " return property_scores_df[property_scores_df['property'] == property_name]['score'].iloc[0]\n",
+ "\n",
+ "# Finding scores in original and transformed dataset\n",
+ "standard_property_scores = get_property_scores(dataset)\n",
+ "transformed_property_scores = get_property_scores(transformed_dataset)\n",
+ "\n",
+ "# Displaying the scores dataframe\n",
+ "display(Markdown(\"### Vision-specific property scores in the original dataset\"))\n",
+ "display(standard_property_scores)\n",
+ "display(Markdown(\"### Vision-specific property scores in the transformed dataset\"))\n",
+ "display(transformed_property_scores)\n",
+ "\n",
+ "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n",
+ "assert get_specific_property_score(standard_property_scores, 'dark_score') > get_specific_property_score(transformed_property_scores, 'dark_score')"
+ ]
}
],
"metadata": {
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index e14cdce07..a8258d936 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -79,7 +79,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index aa12460c1..fe46ee941 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 2a6fe63a9..5e76a814e 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index 1ea329f55..836d2a8b5 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index b95a571a7..28042a60e 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 010ae4316..c68c7095e 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 04c5f0872..3d4b7275f 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -110,7 +110,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 1333c9749..09d35cc12 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 745c17b57..44a722d4c 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/objects.inv b/master/objects.inv
index fec4fd240..0a47f7ce7 100644
Binary files a/master/objects.inv and b/master/objects.inv differ
diff --git a/master/searchindex.js b/master/searchindex.js
index 04d4a7903..685506361 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 96, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 96, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 92, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 91, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 89, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 92, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 89, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 88, 90, 92, 95, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 96, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 88, 90, 91, 92, 95, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95, 96], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 95, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 91, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 91, 92, 94, 95, 96, 99], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 89, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 89, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 88, 91, 92, 95, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74, 98], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 96, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 91, 92, 94, 95, 96, 97, 98, 99, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 96, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 96, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 90, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 91, 92, 94, 95, 96, 97, 99], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 89, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 91, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 92, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 91, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 99, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 96, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 96, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 90, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 88, 89, 90, 92, 95, 98], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 92, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 91, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63, 88, 95], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 108], "blurri": [10, 92], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": 10, "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29, 90], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": [10, 92], "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34, 90], "issue_find": [12, 16, 96], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": [14, 92], "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 92, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 92, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 98, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90, 91], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": 37, "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39, 92], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 88, 89, 92, 95, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46, 88, 89, 95, 98], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 89, 92, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42, 89], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42, 88, 95], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103, 108], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 91, 92, 98, 103], "thread": [44, 64], "window": [44, 89, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 89, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": [62, 90, 91, 92, 94, 95, 96, 98, 99], "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": 74, "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103, 108], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106, 108], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_about_to_expir": [88, 95], "supported_cards_and_curr": [88, 95], "apple_pay_or_google_pai": [88, 95], "beneficiary_not_allow": [88, 95], "getting_spare_card": [88, 95], "visa_or_mastercard": [88, 95], "lost_or_stolen_phon": [88, 95], "change_pin": [88, 95], "card_payment_fee_charg": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 90, 91, 95, 96, 97], "runner": [88, 90, 91, 95, 96], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "opt": [88, 89, 91, 92, 94, 95, 96, 99], "hostedtoolcach": [88, 89, 91, 92, 94, 95, 96, 99], "x64": [88, 89, 91, 92, 94, 95, 96, 99], "lib": [88, 89, 91, 92, 94, 95, 96, 99], "python3": [88, 89, 91, 92, 94, 95, 96, 99], "site": [88, 89, 91, 92, 94, 95, 96, 99], "_util": [88, 95], "831": [88, 95], "userwarn": [88, 89, 90, 91, 95, 96], "typedstorag": [88, 95], "untypedstorag": [88, 95], "untyped_storag": [88, 95], "fget": [88, 95], "__get__": [88, 95], "owner": [88, 95], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": [88, 89], "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 104], "gz": [89, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": 89, "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "650": 89, "stft": 89, "return_complex": 89, "view_as_r": 89, "recov": 89, "trigger": 89, "aten": 89, "src": 89, "nativ": 89, "spectralop": 89, "cpp": 89, "_vf": 89, "n_fft": 89, "hop_length": 89, "win_length": 89, "attr": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106, 108], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 104], "set_titl": [90, 91, 92, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 97, 99, 101, 103, 108], "54": [90, 96, 97, 99, 103, 108], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103, 108], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 96, 99], "246": [91, 92, 94, 95, 96, 99, 103], "efficiencywarn": [91, 92, 94, 95, 96, 99], "sort_graph_by_row_valu": [91, 92, 94, 95, 96, 99], "warn_when_not_sort": [91, 92, 94, 95, 96, 99], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "1486": 92, "futurewarn": 92, "hf": 92, "messag": 92, "trust_remote_cod": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "649": 92, "329": [92, 94, 103], "88": [92, 97, 98, 99, 102, 103, 106], "195": 92, "481": [92, 95], "493": 92, "060": 92, "663": 92, "330": [92, 103], "505": 92, "476": 92, "340": 92, "680": 92, "328": [92, 103], "310": 92, "450": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 97, 103, 108], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103, 108], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "50000": 96, "116": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": [96, 108], "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99, 108], "california": 96, "59": [96, 97, 103], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "bytesio": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "from_dict": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "tmp": 98, "ipykernel_7878": 98, "1995098996": 98, "deprecationwarn": 98, "dataframegroupbi": 98, "include_group": 98, "silenc": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "alter": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "enhanc": [99, 101, 103], "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103, 108], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": [102, 108], "143": [102, 103], "216": [102, 103, 108], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "295": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "root": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "107997102": 104, "42it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "img": [104, 106], "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "6mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 104], "specif": [10, 22, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": 92, "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 90, 91, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 90, 91, 96, 97, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 95, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 96, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 90, 92, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 90, 91, 92, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 91, 92, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 96, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 96, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 96, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 94, 96], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 96, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 92, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 96, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 96, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 96, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 91, 92, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 97], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 96, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 96, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 96, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 96, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 96, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92, 96], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92, 96], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 96, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 90, 95], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 96, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 96, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 96, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 96, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 96, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 96, 108], "blurri": [10, 92, 96], "lack": [10, 61, 96], "unusu": [10, 96, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": [10, 96], "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": [10, 96], "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 96, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92, 96], "odd_aspect_ratio": [10, 92, 96], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92, 96], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 96, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": [37, 96], "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": [37, 96], "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 96, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 89, 92, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42, 96], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 96, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 96, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 98, 103], "thread": [44, 64], "window": [44, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 96, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 96, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 96, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": [62, 96], "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": 62, "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 96, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": [74, 96], "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 96, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 96, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103], "03": [82, 94, 96, 97, 99, 103, 104, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 96, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_about_to_expir": [88, 95], "beneficiary_not_allow": [88, 95], "apple_pay_or_google_pai": [88, 95], "change_pin": [88, 95], "visa_or_mastercard": [88, 95], "getting_spare_card": [88, 95], "supported_cards_and_curr": [88, 95], "card_payment_fee_charg": [88, 95], "lost_or_stolen_phon": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 95, 97], "runner": [88, 95], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103, 108], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": 88, "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 96, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 96, 104], "gz": [89, 96, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": [89, 96], "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106, 108], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 96, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 96, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 96, 104], "set_titl": [90, 91, 92, 96, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 96, 103, 108], "label_err": [90, 91], "180": [90, 91, 103, 108], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103, 108], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103, 108], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "thoroughli": 91, "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 96, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "num_row": [92, 96], "60000": 92, "transformed_dataset": [92, 96], "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": [92, 96], "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "871": 92, "329": [92, 94, 103], "88": [92, 97, 99, 102, 103, 106], "195": 92, "594": 92, "493": 92, "060": 92, "845": 92, "330": [92, 103], "505": 92, "415": [92, 96], "476": 92, "340": 92, "936": 92, "328": [92, 103], "310": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": [92, 96], "max_preval": [92, 96], "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 96, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": [92, 96], "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": [92, 96], "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95, 96], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": [95, 108], "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103, 108], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "sort_graph_by_row_valu": 96, "warn_when_not_sort": 96, "50000": 96, "524": 96, "991400": 96, "356925": 96, "363": 96, "619581": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "34": [96, 97, 99, 101, 103, 108], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "mislead": 96, "pinpoint": 96, "blurry_scor": 96, "odd_aspect_ratio_scor": 96, "enhanc": [96, 99, 101, 103], "alter": [96, 98], "darken": 96, "reduct": 96, "aspect": 96, "cifar10": 96, "markdown": 96, "root": [96, 104], "selected_class": 96, "convert_to_png_imag": 96, "bytesio": [96, 97], "seek": 96, "max_num_imag": 96, "list_imag": 96, "list_label": 96, "num_imag": 96, "img": [96, 104, 106], "toronto": [96, 104], "edu": [96, 104], "kriz": [96, 104], "170498071": [96, 104], "42480288": 96, "68it": 96, "dataset_dict": 96, "from_dict": [96, 98], "apply_dark": 96, "transformed_list_imag": 96, "transformed_dataset_dict": 96, "plot_imag": [96, 104], "num_images_to_plot": 96, "num_col": 96, "hide": 96, "get_property_scor": 96, "_spurious_correl": 96, "get_specific_property_scor": 96, "property_scores_df": 96, "property_nam": 96, "standard_property_scor": 96, "transformed_property_scor": 96, "295": [96, 103], "light_scor": 96, "325": 96, "odd_size_scor": 96, "grayscale_scor": 96, "015": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103, 108], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103, 108], "216": [102, 103], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "42685946": 104, "86it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "998": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "9mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 96, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 96, 104], "specif": [10, 22, 96, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 96, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 96, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": [92, 96], "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "spuriou": 96, "correl": 96, "between": 96, "vision": 96, "pass": 96, "relat": 96, "transform": 96, "imageenh": 96, "induc": 96, "properti": 96, "origin": 96, "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Find Spurious Correlation between Vision Dataset features and class labels": [[96, "Find-Spurious-Correlation-between-Vision-Dataset-features-and-class-labels"]], "1. Load the dataset": [[96, "1.-Load-the-dataset"]], "2. Creating Dataset object to be passed to the Datalab object to find vision-related issues": [[96, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-vision-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[96, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[96, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[96, "5.-Finding-image-specific-property-scores"]], "Vision-specific property scores in the original dataset": [[96, "Vision-specific-property-scores-in-the-original-dataset"]], "Vision-specific property scores in the transformed dataset": [[96, "Vision-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb
index f3d888536..cea7ddcbf 100644
--- a/master/tutorials/clean_learning/tabular.ipynb
+++ b/master/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:19.683650Z",
- "iopub.status.busy": "2024-06-25T23:13:19.683483Z",
- "iopub.status.idle": "2024-06-25T23:13:20.876411Z",
- "shell.execute_reply": "2024-06-25T23:13:20.875863Z"
+ "iopub.execute_input": "2024-06-27T15:39:08.585179Z",
+ "iopub.status.busy": "2024-06-27T15:39:08.584836Z",
+ "iopub.status.idle": "2024-06-27T15:39:09.813243Z",
+ "shell.execute_reply": "2024-06-27T15:39:09.812668Z"
},
"nbsphinx": "hidden"
},
@@ -126,7 +126,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@bd550980fa8b7af85d37f375e0cc0e3ff9ced23e\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@d3fd6280f438718567230bde1dfb2db271e3c0c5\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -151,10 +151,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:20.879016Z",
- "iopub.status.busy": "2024-06-25T23:13:20.878582Z",
- "iopub.status.idle": "2024-06-25T23:13:20.895831Z",
- "shell.execute_reply": "2024-06-25T23:13:20.895402Z"
+ "iopub.execute_input": "2024-06-27T15:39:09.815976Z",
+ "iopub.status.busy": "2024-06-27T15:39:09.815484Z",
+ "iopub.status.idle": "2024-06-27T15:39:09.833810Z",
+ "shell.execute_reply": "2024-06-27T15:39:09.833360Z"
}
},
"outputs": [],
@@ -195,10 +195,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:20.897855Z",
- "iopub.status.busy": "2024-06-25T23:13:20.897628Z",
- "iopub.status.idle": "2024-06-25T23:13:21.010572Z",
- "shell.execute_reply": "2024-06-25T23:13:21.009996Z"
+ "iopub.execute_input": "2024-06-27T15:39:09.836247Z",
+ "iopub.status.busy": "2024-06-27T15:39:09.835762Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.211400Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.210811Z"
}
},
"outputs": [
@@ -305,10 +305,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.037181Z",
- "iopub.status.busy": "2024-06-25T23:13:21.036568Z",
- "iopub.status.idle": "2024-06-25T23:13:21.040405Z",
- "shell.execute_reply": "2024-06-25T23:13:21.039967Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.241419Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.241204Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.245054Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.244590Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.042333Z",
- "iopub.status.busy": "2024-06-25T23:13:21.042161Z",
- "iopub.status.idle": "2024-06-25T23:13:21.050408Z",
- "shell.execute_reply": "2024-06-25T23:13:21.049993Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.247265Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.246832Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.255149Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.254595Z"
}
},
"outputs": [],
@@ -384,10 +384,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.052411Z",
- "iopub.status.busy": "2024-06-25T23:13:21.052111Z",
- "iopub.status.idle": "2024-06-25T23:13:21.054810Z",
- "shell.execute_reply": "2024-06-25T23:13:21.054263Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.257365Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.257091Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.259655Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.259220Z"
}
},
"outputs": [],
@@ -409,10 +409,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.056799Z",
- "iopub.status.busy": "2024-06-25T23:13:21.056479Z",
- "iopub.status.idle": "2024-06-25T23:13:21.584928Z",
- "shell.execute_reply": "2024-06-25T23:13:21.584385Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.261511Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.261339Z",
+ "iopub.status.idle": "2024-06-27T15:39:10.790397Z",
+ "shell.execute_reply": "2024-06-27T15:39:10.789846Z"
}
},
"outputs": [],
@@ -446,10 +446,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:21.587427Z",
- "iopub.status.busy": "2024-06-25T23:13:21.587080Z",
- "iopub.status.idle": "2024-06-25T23:13:23.402116Z",
- "shell.execute_reply": "2024-06-25T23:13:23.401472Z"
+ "iopub.execute_input": "2024-06-27T15:39:10.792795Z",
+ "iopub.status.busy": "2024-06-27T15:39:10.792563Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.690033Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.689420Z"
}
},
"outputs": [
@@ -481,10 +481,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.404837Z",
- "iopub.status.busy": "2024-06-25T23:13:23.404191Z",
- "iopub.status.idle": "2024-06-25T23:13:23.414068Z",
- "shell.execute_reply": "2024-06-25T23:13:23.413559Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.692713Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.692162Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.702272Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.701680Z"
}
},
"outputs": [
@@ -605,10 +605,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.416257Z",
- "iopub.status.busy": "2024-06-25T23:13:23.415941Z",
- "iopub.status.idle": "2024-06-25T23:13:23.420056Z",
- "shell.execute_reply": "2024-06-25T23:13:23.419521Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.704223Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.703971Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.707870Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.707432Z"
}
},
"outputs": [],
@@ -633,10 +633,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.422287Z",
- "iopub.status.busy": "2024-06-25T23:13:23.421904Z",
- "iopub.status.idle": "2024-06-25T23:13:23.429186Z",
- "shell.execute_reply": "2024-06-25T23:13:23.428630Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.709806Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.709531Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.716529Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.716076Z"
}
},
"outputs": [],
@@ -658,10 +658,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.431342Z",
- "iopub.status.busy": "2024-06-25T23:13:23.431023Z",
- "iopub.status.idle": "2024-06-25T23:13:23.542534Z",
- "shell.execute_reply": "2024-06-25T23:13:23.542044Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.718621Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.718222Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.830714Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.830147Z"
}
},
"outputs": [
@@ -691,10 +691,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.544624Z",
- "iopub.status.busy": "2024-06-25T23:13:23.544286Z",
- "iopub.status.idle": "2024-06-25T23:13:23.546943Z",
- "shell.execute_reply": "2024-06-25T23:13:23.546515Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.832837Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.832513Z",
+ "iopub.status.idle": "2024-06-27T15:39:12.835427Z",
+ "shell.execute_reply": "2024-06-27T15:39:12.834878Z"
}
},
"outputs": [],
@@ -715,10 +715,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:23.548943Z",
- "iopub.status.busy": "2024-06-25T23:13:23.548635Z",
- "iopub.status.idle": "2024-06-25T23:13:25.510005Z",
- "shell.execute_reply": "2024-06-25T23:13:25.509395Z"
+ "iopub.execute_input": "2024-06-27T15:39:12.837277Z",
+ "iopub.status.busy": "2024-06-27T15:39:12.837102Z",
+ "iopub.status.idle": "2024-06-27T15:39:14.822404Z",
+ "shell.execute_reply": "2024-06-27T15:39:14.821784Z"
}
},
"outputs": [],
@@ -738,10 +738,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:25.513097Z",
- "iopub.status.busy": "2024-06-25T23:13:25.512371Z",
- "iopub.status.idle": "2024-06-25T23:13:25.523496Z",
- "shell.execute_reply": "2024-06-25T23:13:25.522944Z"
+ "iopub.execute_input": "2024-06-27T15:39:14.825471Z",
+ "iopub.status.busy": "2024-06-27T15:39:14.824704Z",
+ "iopub.status.idle": "2024-06-27T15:39:14.836113Z",
+ "shell.execute_reply": "2024-06-27T15:39:14.835678Z"
}
},
"outputs": [
@@ -771,10 +771,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:13:25.525641Z",
- "iopub.status.busy": "2024-06-25T23:13:25.525323Z",
- "iopub.status.idle": "2024-06-25T23:13:25.545176Z",
- "shell.execute_reply": "2024-06-25T23:13:25.544739Z"
+ "iopub.execute_input": "2024-06-27T15:39:14.838261Z",
+ "iopub.status.busy": "2024-06-27T15:39:14.837937Z",
+ "iopub.status.idle": "2024-06-27T15:39:15.011888Z",
+ "shell.execute_reply": "2024-06-27T15:39:15.011390Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html
index bab4e39b3..e29404df2 100644
--- a/master/tutorials/clean_learning/text.html
+++ b/master/tutorials/clean_learning/text.html
@@ -817,7 +817,7 @@ 2. Load and format the text dataset
@@ -2135,7 +2115,7 @@ Easy Mode which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data
issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!
diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb
index da3ecdeb8..38aca061f 100644
--- a/master/tutorials/datalab/image.ipynb
+++ b/master/tutorials/datalab/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:22.349033Z",
- "iopub.status.busy": "2024-06-25T23:14:22.348862Z",
- "iopub.status.idle": "2024-06-25T23:14:25.155777Z",
- "shell.execute_reply": "2024-06-25T23:14:25.155231Z"
+ "iopub.execute_input": "2024-06-27T15:40:25.001578Z",
+ "iopub.status.busy": "2024-06-27T15:40:25.001401Z",
+ "iopub.status.idle": "2024-06-27T15:40:27.866577Z",
+ "shell.execute_reply": "2024-06-27T15:40:27.866047Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:25.158288Z",
- "iopub.status.busy": "2024-06-25T23:14:25.158017Z",
- "iopub.status.idle": "2024-06-25T23:14:25.161499Z",
- "shell.execute_reply": "2024-06-25T23:14:25.161043Z"
+ "iopub.execute_input": "2024-06-27T15:40:27.869664Z",
+ "iopub.status.busy": "2024-06-27T15:40:27.869112Z",
+ "iopub.status.idle": "2024-06-27T15:40:27.873387Z",
+ "shell.execute_reply": "2024-06-27T15:40:27.872879Z"
}
},
"outputs": [],
@@ -152,27 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:25.163549Z",
- "iopub.status.busy": "2024-06-25T23:14:25.163223Z",
- "iopub.status.idle": "2024-06-25T23:14:35.757240Z",
- "shell.execute_reply": "2024-06-25T23:14:35.756685Z"
+ "iopub.execute_input": "2024-06-27T15:40:27.875682Z",
+ "iopub.status.busy": "2024-06-27T15:40:27.875354Z",
+ "iopub.status.idle": "2024-06-27T15:40:42.283432Z",
+ "shell.execute_reply": "2024-06-27T15:40:42.282878Z"
}
},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/datasets/load.py:1486: FutureWarning: The repository for fashion_mnist contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/fashion_mnist\n",
- "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
- "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "99fb59566db2452bab382261d05e2879",
+ "model_id": "f6bff3421ffe4305b801978e8849eb8c",
"version_major": 2,
"version_minor": 0
},
@@ -186,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cacaca4358c34e93a46a3e2019d188d4",
+ "model_id": "32a70da0aa9b42359a5f17bf665b81ad",
"version_major": 2,
"version_minor": 0
},
@@ -200,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "46c5f1e4a9ca403d83a2aa33da63b600",
+ "model_id": "126a726b8a0445da91b339235e96dcad",
"version_major": 2,
"version_minor": 0
},
@@ -214,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "cc7010cd50844e48a3db713a6ea5f850",
+ "model_id": "5692b6450179456c853c8bda7c713903",
"version_major": 2,
"version_minor": 0
},
@@ -228,7 +218,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1e806f052f23419ba6ec80aa76644ed5",
+ "model_id": "570e337efa4b4edea75f724a0413e1eb",
"version_major": 2,
"version_minor": 0
},
@@ -242,7 +232,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "3590fcc9756749e0b9130b8809114216",
+ "model_id": "acd955b18cd54e8e9525c5e97b625466",
"version_major": 2,
"version_minor": 0
},
@@ -256,7 +246,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "489746a2a7db4406b7ebfd5f2a155361",
+ "model_id": "40ca0cd146da417fb9d146f6a0460568",
"version_major": 2,
"version_minor": 0
},
@@ -270,7 +260,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "b9c41de7ac0442aabfb15bbf3b5308c8",
+ "model_id": "9a62dbed8c0e414aba4d919f9a3b1266",
"version_major": 2,
"version_minor": 0
},
@@ -312,10 +302,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:35.759372Z",
- "iopub.status.busy": "2024-06-25T23:14:35.759148Z",
- "iopub.status.idle": "2024-06-25T23:14:35.763037Z",
- "shell.execute_reply": "2024-06-25T23:14:35.762503Z"
+ "iopub.execute_input": "2024-06-27T15:40:42.285586Z",
+ "iopub.status.busy": "2024-06-27T15:40:42.285388Z",
+ "iopub.status.idle": "2024-06-27T15:40:42.289192Z",
+ "shell.execute_reply": "2024-06-27T15:40:42.288724Z"
}
},
"outputs": [
@@ -340,17 +330,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:35.765199Z",
- "iopub.status.busy": "2024-06-25T23:14:35.764868Z",
- "iopub.status.idle": "2024-06-25T23:14:46.667044Z",
- "shell.execute_reply": "2024-06-25T23:14:46.666518Z"
+ "iopub.execute_input": "2024-06-27T15:40:42.291329Z",
+ "iopub.status.busy": "2024-06-27T15:40:42.290912Z",
+ "iopub.status.idle": "2024-06-27T15:40:53.511736Z",
+ "shell.execute_reply": "2024-06-27T15:40:53.511208Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e075f5bd416a447eb67433e0d225370f",
+ "model_id": "e616ea91cf69498784ed469d8d9c5d56",
"version_major": 2,
"version_minor": 0
},
@@ -388,10 +378,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:14:46.669519Z",
- "iopub.status.busy": "2024-06-25T23:14:46.669228Z",
- "iopub.status.idle": "2024-06-25T23:15:05.072765Z",
- "shell.execute_reply": "2024-06-25T23:15:05.072224Z"
+ "iopub.execute_input": "2024-06-27T15:40:53.514345Z",
+ "iopub.status.busy": "2024-06-27T15:40:53.514047Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.376798Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.376239Z"
}
},
"outputs": [],
@@ -424,10 +414,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.075378Z",
- "iopub.status.busy": "2024-06-25T23:15:05.075000Z",
- "iopub.status.idle": "2024-06-25T23:15:05.080668Z",
- "shell.execute_reply": "2024-06-25T23:15:05.080229Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.379517Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.379127Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.384918Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.384491Z"
}
},
"outputs": [],
@@ -465,10 +455,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.082696Z",
- "iopub.status.busy": "2024-06-25T23:15:05.082377Z",
- "iopub.status.idle": "2024-06-25T23:15:05.086277Z",
- "shell.execute_reply": "2024-06-25T23:15:05.085865Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.386874Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.386562Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.390744Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.390228Z"
},
"nbsphinx": "hidden"
},
@@ -605,10 +595,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.088252Z",
- "iopub.status.busy": "2024-06-25T23:15:05.087933Z",
- "iopub.status.idle": "2024-06-25T23:15:05.096769Z",
- "shell.execute_reply": "2024-06-25T23:15:05.096319Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.392789Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.392619Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.401333Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.400906Z"
},
"nbsphinx": "hidden"
},
@@ -733,10 +723,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.098773Z",
- "iopub.status.busy": "2024-06-25T23:15:05.098471Z",
- "iopub.status.idle": "2024-06-25T23:15:05.125306Z",
- "shell.execute_reply": "2024-06-25T23:15:05.124855Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.403336Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.403016Z",
+ "iopub.status.idle": "2024-06-27T15:41:11.431428Z",
+ "shell.execute_reply": "2024-06-27T15:41:11.430968Z"
}
},
"outputs": [],
@@ -773,10 +763,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:05.127482Z",
- "iopub.status.busy": "2024-06-25T23:15:05.127151Z",
- "iopub.status.idle": "2024-06-25T23:15:37.033092Z",
- "shell.execute_reply": "2024-06-25T23:15:37.032511Z"
+ "iopub.execute_input": "2024-06-27T15:41:11.433579Z",
+ "iopub.status.busy": "2024-06-27T15:41:11.433263Z",
+ "iopub.status.idle": "2024-06-27T15:41:43.942353Z",
+ "shell.execute_reply": "2024-06-27T15:41:43.941537Z"
}
},
"outputs": [
@@ -792,21 +782,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.649\n"
+ "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.871\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.481\n",
+ "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.594\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8835da69dbeb4826a96baa0561232a18",
+ "model_id": "68e3d0ba542f4dbeb8c6a0825b907d49",
"version_major": 2,
"version_minor": 0
},
@@ -827,7 +817,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "1141e88c1cd549c1ad36f5867b926978",
+ "model_id": "43d72b9736c74a1ca37c68dd80b5fda9",
"version_major": 2,
"version_minor": 0
},
@@ -850,21 +840,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.663\n"
+ "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.845\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.663\n",
+ "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.415\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2a3f5349b34148209445198c9ae64559",
+ "model_id": "d204f6cd3d4946408d7f8da6c520e7d5",
"version_major": 2,
"version_minor": 0
},
@@ -885,7 +875,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2c1834764c78450699f4a69ba292fe8e",
+ "model_id": "5a7640261eb640c6adc4bf358876b135",
"version_major": 2,
"version_minor": 0
},
@@ -908,21 +898,21 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.680\n"
+ "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.936\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.450\n",
+ "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.512\n",
"Computing feature embeddings ...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "02ef28fe5e5647e49f15e9889ac88c8f",
+ "model_id": "e3b81984ecf6429d82760070b58a79a2",
"version_major": 2,
"version_minor": 0
},
@@ -943,7 +933,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ebc081ac7cef42f58f0c46bdca672b27",
+ "model_id": "fa5b88ba2d5f4e2890a86a132006ee49",
"version_major": 2,
"version_minor": 0
},
@@ -1022,10 +1012,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.035751Z",
- "iopub.status.busy": "2024-06-25T23:15:37.035236Z",
- "iopub.status.idle": "2024-06-25T23:15:37.049525Z",
- "shell.execute_reply": "2024-06-25T23:15:37.049035Z"
+ "iopub.execute_input": "2024-06-27T15:41:43.944871Z",
+ "iopub.status.busy": "2024-06-27T15:41:43.944476Z",
+ "iopub.status.idle": "2024-06-27T15:41:43.958369Z",
+ "shell.execute_reply": "2024-06-27T15:41:43.957946Z"
}
},
"outputs": [],
@@ -1050,10 +1040,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.051460Z",
- "iopub.status.busy": "2024-06-25T23:15:37.051284Z",
- "iopub.status.idle": "2024-06-25T23:15:37.533678Z",
- "shell.execute_reply": "2024-06-25T23:15:37.533181Z"
+ "iopub.execute_input": "2024-06-27T15:41:43.960372Z",
+ "iopub.status.busy": "2024-06-27T15:41:43.959983Z",
+ "iopub.status.idle": "2024-06-27T15:41:44.421845Z",
+ "shell.execute_reply": "2024-06-27T15:41:44.421194Z"
}
},
"outputs": [],
@@ -1073,10 +1063,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:15:37.536010Z",
- "iopub.status.busy": "2024-06-25T23:15:37.535826Z",
- "iopub.status.idle": "2024-06-25T23:17:13.081610Z",
- "shell.execute_reply": "2024-06-25T23:17:13.080989Z"
+ "iopub.execute_input": "2024-06-27T15:41:44.424353Z",
+ "iopub.status.busy": "2024-06-27T15:41:44.424167Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.061556Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.060943Z"
}
},
"outputs": [
@@ -1112,18 +1102,10 @@
"Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n"
]
},
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n",
- " warnings.warn(\n"
- ]
- },
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "55c0a386d760485f92009bb75259396b",
+ "model_id": "bcbd871e719b4ad2aabe57836da305b9",
"version_major": 2,
"version_minor": 0
},
@@ -1162,10 +1144,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.084039Z",
- "iopub.status.busy": "2024-06-25T23:17:13.083667Z",
- "iopub.status.idle": "2024-06-25T23:17:13.530568Z",
- "shell.execute_reply": "2024-06-25T23:17:13.530038Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.064200Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.063532Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.524964Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.524405Z"
}
},
"outputs": [
@@ -1311,10 +1293,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.532958Z",
- "iopub.status.busy": "2024-06-25T23:17:13.532616Z",
- "iopub.status.idle": "2024-06-25T23:17:13.595525Z",
- "shell.execute_reply": "2024-06-25T23:17:13.594969Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.527621Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.527216Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.589216Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.588613Z"
}
},
"outputs": [
@@ -1418,10 +1400,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.597922Z",
- "iopub.status.busy": "2024-06-25T23:17:13.597476Z",
- "iopub.status.idle": "2024-06-25T23:17:13.606785Z",
- "shell.execute_reply": "2024-06-25T23:17:13.606218Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.591599Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.591201Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.600770Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.600354Z"
}
},
"outputs": [
@@ -1551,10 +1533,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.609099Z",
- "iopub.status.busy": "2024-06-25T23:17:13.608903Z",
- "iopub.status.idle": "2024-06-25T23:17:13.613602Z",
- "shell.execute_reply": "2024-06-25T23:17:13.613147Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.602892Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.602563Z",
+ "iopub.status.idle": "2024-06-27T15:43:21.607362Z",
+ "shell.execute_reply": "2024-06-27T15:43:21.606903Z"
},
"nbsphinx": "hidden"
},
@@ -1600,10 +1582,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:13.615408Z",
- "iopub.status.busy": "2024-06-25T23:17:13.615233Z",
- "iopub.status.idle": "2024-06-25T23:17:14.118370Z",
- "shell.execute_reply": "2024-06-25T23:17:14.117787Z"
+ "iopub.execute_input": "2024-06-27T15:43:21.609426Z",
+ "iopub.status.busy": "2024-06-27T15:43:21.608985Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.081442Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.080884Z"
}
},
"outputs": [
@@ -1638,10 +1620,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.120491Z",
- "iopub.status.busy": "2024-06-25T23:17:14.120304Z",
- "iopub.status.idle": "2024-06-25T23:17:14.128885Z",
- "shell.execute_reply": "2024-06-25T23:17:14.128442Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.083743Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.083562Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.092122Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.091588Z"
}
},
"outputs": [
@@ -1808,10 +1790,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.131053Z",
- "iopub.status.busy": "2024-06-25T23:17:14.130639Z",
- "iopub.status.idle": "2024-06-25T23:17:14.433754Z",
- "shell.execute_reply": "2024-06-25T23:17:14.433138Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.094350Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.093931Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.101089Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.100516Z"
},
"nbsphinx": "hidden"
},
@@ -1887,10 +1869,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.437185Z",
- "iopub.status.busy": "2024-06-25T23:17:14.436581Z",
- "iopub.status.idle": "2024-06-25T23:17:14.910179Z",
- "shell.execute_reply": "2024-06-25T23:17:14.909590Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.103083Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.102690Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.862069Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.861441Z"
}
},
"outputs": [
@@ -1927,10 +1909,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.912393Z",
- "iopub.status.busy": "2024-06-25T23:17:14.912024Z",
- "iopub.status.idle": "2024-06-25T23:17:14.927515Z",
- "shell.execute_reply": "2024-06-25T23:17:14.926933Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.864339Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.864043Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.879510Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.879007Z"
}
},
"outputs": [
@@ -2087,10 +2069,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.929547Z",
- "iopub.status.busy": "2024-06-25T23:17:14.929372Z",
- "iopub.status.idle": "2024-06-25T23:17:14.935923Z",
- "shell.execute_reply": "2024-06-25T23:17:14.935427Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.881757Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.881295Z",
+ "iopub.status.idle": "2024-06-27T15:43:22.886969Z",
+ "shell.execute_reply": "2024-06-27T15:43:22.886435Z"
},
"nbsphinx": "hidden"
},
@@ -2135,10 +2117,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:14.937944Z",
- "iopub.status.busy": "2024-06-25T23:17:14.937612Z",
- "iopub.status.idle": "2024-06-25T23:17:15.400691Z",
- "shell.execute_reply": "2024-06-25T23:17:15.399712Z"
+ "iopub.execute_input": "2024-06-27T15:43:22.888928Z",
+ "iopub.status.busy": "2024-06-27T15:43:22.888635Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.356645Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.355700Z"
}
},
"outputs": [
@@ -2220,10 +2202,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.403380Z",
- "iopub.status.busy": "2024-06-25T23:17:15.403170Z",
- "iopub.status.idle": "2024-06-25T23:17:15.412375Z",
- "shell.execute_reply": "2024-06-25T23:17:15.411801Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.359134Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.358923Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.368538Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.367969Z"
}
},
"outputs": [
@@ -2351,10 +2333,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.414938Z",
- "iopub.status.busy": "2024-06-25T23:17:15.414744Z",
- "iopub.status.idle": "2024-06-25T23:17:15.420451Z",
- "shell.execute_reply": "2024-06-25T23:17:15.419881Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.370975Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.370626Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.376432Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.375942Z"
},
"nbsphinx": "hidden"
},
@@ -2391,10 +2373,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.422902Z",
- "iopub.status.busy": "2024-06-25T23:17:15.422710Z",
- "iopub.status.idle": "2024-06-25T23:17:15.624779Z",
- "shell.execute_reply": "2024-06-25T23:17:15.624291Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.378787Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.378307Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.579346Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.578743Z"
}
},
"outputs": [
@@ -2436,10 +2418,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.627227Z",
- "iopub.status.busy": "2024-06-25T23:17:15.626865Z",
- "iopub.status.idle": "2024-06-25T23:17:15.634605Z",
- "shell.execute_reply": "2024-06-25T23:17:15.634166Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.581679Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.581319Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.589513Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.589053Z"
}
},
"outputs": [
@@ -2464,47 +2446,47 @@
" \n",
" \n",
" \n",
- " low_information_score \n",
" is_low_information_issue \n",
+ " low_information_score \n",
" \n",
" \n",
" \n",
" \n",
" 53050 \n",
- " 0.067975 \n",
" True \n",
+ " 0.067975 \n",
" \n",
" \n",
" 40875 \n",
- " 0.089929 \n",
" True \n",
+ " 0.089929 \n",
" \n",
" \n",
" 9594 \n",
- " 0.092601 \n",
" True \n",
+ " 0.092601 \n",
" \n",
" \n",
" 34825 \n",
- " 0.107744 \n",
" True \n",
+ " 0.107744 \n",
" \n",
" \n",
" 37530 \n",
- " 0.108516 \n",
" True \n",
+ " 0.108516 \n",
" \n",
" \n",
"\n",
""
],
"text/plain": [
- " low_information_score is_low_information_issue\n",
- "53050 0.067975 True\n",
- "40875 0.089929 True\n",
- "9594 0.092601 True\n",
- "34825 0.107744 True\n",
- "37530 0.108516 True"
+ " is_low_information_issue low_information_score\n",
+ "53050 True 0.067975\n",
+ "40875 True 0.089929\n",
+ "9594 True 0.092601\n",
+ "34825 True 0.107744\n",
+ "37530 True 0.108516"
]
},
"execution_count": 29,
@@ -2525,10 +2507,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.636681Z",
- "iopub.status.busy": "2024-06-25T23:17:15.636363Z",
- "iopub.status.idle": "2024-06-25T23:17:15.834587Z",
- "shell.execute_reply": "2024-06-25T23:17:15.834003Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.591459Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.591165Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.764728Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.764122Z"
}
},
"outputs": [
@@ -2568,10 +2550,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-06-25T23:17:15.836769Z",
- "iopub.status.busy": "2024-06-25T23:17:15.836460Z",
- "iopub.status.idle": "2024-06-25T23:17:15.840847Z",
- "shell.execute_reply": "2024-06-25T23:17:15.840296Z"
+ "iopub.execute_input": "2024-06-27T15:43:23.767171Z",
+ "iopub.status.busy": "2024-06-27T15:43:23.766766Z",
+ "iopub.status.idle": "2024-06-27T15:43:23.771152Z",
+ "shell.execute_reply": "2024-06-27T15:43:23.770672Z"
},
"nbsphinx": "hidden"
},
@@ -2608,7 +2590,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "003b69c44f834dd6bd767bd85d0282c1": {
+ "011860ddb3ad4e8ba884381518d5ced9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -2626,7 +2608,30 @@
"text_color": null
}
},
- "01e9581b8f904ce9bd99cf2093d8e0b6": {
+ "01500d66e7b5462b8986e7913e3bab3d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_92aac12715174e618aadd2413a571bb3",
+ "placeholder": "",
+ "style": "IPY_MODEL_fd27525b063140d5a2b812b1f7f7f8a4",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "01fb1528960642ed98a41c018ebf8642": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2679,49 +2684,97 @@
"width": null
}
},
- "02ef28fe5e5647e49f15e9889ac88c8f": {
+ "02448502779f4704854c84633e322959": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "05e8e7e59e104979b50df89bbe1f0520": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_17898a71a5eb4556a9c02c78df55aeb3",
- "IPY_MODEL_aae89dad290345f5acc2526904d6d4e5",
- "IPY_MODEL_18560e45d46d48bf99bbf1a153e2502c"
- ],
- "layout": "IPY_MODEL_22708ad181354289ac5fa640bd1c4121",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_ff30ce297fbf40a3b41354d9b5c04b47",
+ "max": 5148.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2796655d79604ef6bee5962ec1d1e105",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": 5148.0
}
},
- "0302bede64084627a211292664570913": {
+ "07cd1625edcd4511ac422becaaae8150": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_3e2d23b1b97446248a24202ea05b23f6",
+ "placeholder": "",
+ "style": "IPY_MODEL_fef9aeeb677745ee8a6954bb2c1e4439",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
}
},
- "040097e76c3b414292ef486207e132ee": {
+ "095830ecc6f342039c39260fd8b58715": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d1224d938d764efb951228670f63da06",
+ "placeholder": "",
+ "style": "IPY_MODEL_be12ecac68ba48ef9803433668eda3d1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "0a8f9d83f59f4dfbaa92bafedd8123c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2774,23 +2827,7 @@
"width": null
}
},
- "04bfeccaeea6416e98641eb5e663ae0b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "08971fe179644eda8bcd42e21d601e92": {
+ "0b40cdefc96a418498d22347f69b2092": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2843,7 +2880,23 @@
"width": null
}
},
- "08fa3b07fef4433e8a950677af858234": {
+ "0ba1c1e2af9e41f18556ca413d689f43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0dd2109ac6524d679b387d10fc63ae01": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -2858,31 +2911,56 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_72b19493a1ca42c793bcda945b230961",
+ "layout": "IPY_MODEL_2e534a63ed884097b02dcd1326d0d76a",
"placeholder": "",
- "style": "IPY_MODEL_afdd5bafd5ba49909abaaef0bb7f6038",
+ "style": "IPY_MODEL_b21e560941054bc0b6909b7888124953",
"tabbable": null,
"tooltip": null,
- "value": " 26.4M/26.4M [00:00<00:00, 114MB/s]"
+ "value": "100%"
}
},
- "0ada4c3d2a88412599516fae13401849": {
+ "0e682a87f84f4712a692fa44c8c31485": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "0efd5977745c4fefa5ef1133064de182": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_67937a09a0154aeeb9c67f27216be315",
+ "placeholder": "",
+ "style": "IPY_MODEL_7fe5095bccf34852ad3afebc0775804a",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 5.15k/5.15k [00:00<00:00, 579kB/s]"
}
},
- "0fc5778c044d4fcd9e8f745663d100c5": {
+ "0f5a34f2adfd4113ac57aa6e15e3d1a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2935,7 +3013,56 @@
"width": null
}
},
- "103b52da5fd24c24a14b4605ba5c3120": {
+ "0fb5933b90914a79b5531b97e21435ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6b615e4298d04a0790509b0bfe85a900",
+ "max": 26421880.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_415a1b6f4e32422b801128715782265e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 26421880.0
+ }
+ },
+ "121a97bb29964dcebd075045c33d81fc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_b4e407ab490340eabf317fd1b6b958ce",
+ "placeholder": "",
+ "style": "IPY_MODEL_011860ddb3ad4e8ba884381518d5ced9",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating train split: 100%"
+ }
+ },
+ "125e980bd8bd4808978c016c6551b9a0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -2988,7 +3115,31 @@
"width": null
}
},
- "10833dd9b558436e8141086cd6457744": {
+ "126a726b8a0445da91b339235e96dcad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_095830ecc6f342039c39260fd8b58715",
+ "IPY_MODEL_0fb5933b90914a79b5531b97e21435ea",
+ "IPY_MODEL_50353795eab74f10aa38a4d1996c3c16"
+ ],
+ "layout": "IPY_MODEL_c6861786e92c40328df1b1530c387ae3",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "14554b96acc44ee89164205dfa3f35de": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3041,49 +3192,46 @@
"width": null
}
},
- "1141e88c1cd549c1ad36f5867b926978": {
+ "15981f3a373742b788d47c1658d356d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7a70b6d736914713b75013fd280cd1fb",
- "IPY_MODEL_233edc846cd2411699f747246a5c017b",
- "IPY_MODEL_9b8b5db0d4ec47ae8f14fbae0720d3e0"
- ],
- "layout": "IPY_MODEL_32715003f9374a25a98d8e94a71e934d",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "11828cd7a97146ac81748612b0601834": {
+ "15ca594059d34b768c0d561ea6f825d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_fe13f2bdaafe4bd09546de6cf5e55c4f",
+ "placeholder": "",
+ "style": "IPY_MODEL_3eacc86ac54d435eb62e463374eff9de",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading readme: 100%"
}
},
- "11e93782fa6f464e9f6900e0c646f5cf": {
+ "1709639a246d43619f500f188e197fd6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3136,7 +3284,7 @@
"width": null
}
},
- "1232a69e4cd748539b2d4cdde35b417c": {
+ "1a73a20c7710418884500f2e000462ff": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3189,7 +3337,74 @@
"width": null
}
},
- "12fb080c89ea44b788b8036e7c269e2e": {
+ "1bc0adbfdc5a4373ad732ec4d2969795": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_8bd1494dfee649f88fa53da595105080",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d880c7278ba344aca21a81dfa7bf8061",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "1f2da7f8744547fe843e252764b428d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "229fd1bb4d404e579aa8deba0d11f45d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2375fe4daa3a48058f208bb2018db708",
+ "placeholder": "",
+ "style": "IPY_MODEL_fed1e24975764ce4a8e5c16384c09605",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 68.74it/s]"
+ }
+ },
+ "2375fe4daa3a48058f208bb2018db708": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3242,7 +3457,23 @@
"width": null
}
},
- "176f4fe537ab44709eed5f4771e5a748": {
+ "2796655d79604ef6bee5962ec1d1e105": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2abf6850738b4582a8f693aa3faa6025": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3295,97 +3526,7 @@
"width": null
}
},
- "17898a71a5eb4556a9c02c78df55aeb3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_a805af9f6458409cbfcf1ef1829794dc",
- "placeholder": "",
- "style": "IPY_MODEL_7f159f23ebfd44699351ad51261161f4",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "17af51078a0c4c0f92db9850c8c773d7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "18560e45d46d48bf99bbf1a153e2502c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_040097e76c3b414292ef486207e132ee",
- "placeholder": "",
- "style": "IPY_MODEL_0302bede64084627a211292664570913",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 60.88it/s]"
- }
- },
- "18e5b3625d2a4b3abbfea651a20eef56": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_01e9581b8f904ce9bd99cf2093d8e0b6",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_293b9b52ffaa471e9c10ec006eefc31e",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "1a2ffe0f3d68433d9fc120a9b894e762": {
+ "2ad511699c5c40eea0c01730a536be37": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3438,30 +3579,23 @@
"width": null
}
},
- "1cdb544e05fe49e5b616044f82615b00": {
+ "2bc8b75b851e42a28606dadd908b0654": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_12fb080c89ea44b788b8036e7c269e2e",
- "placeholder": "",
- "style": "IPY_MODEL_2b67454e45604716a3d08831b42d274a",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "1e4148a5a5464b22b94684bad558cbec": {
+ "2e534a63ed884097b02dcd1326d0d76a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3514,49 +3648,7 @@
"width": null
}
},
- "1e806f052f23419ba6ec80aa76644ed5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1cdb544e05fe49e5b616044f82615b00",
- "IPY_MODEL_b602e59393ab410ba774d7c2419c556d",
- "IPY_MODEL_d6337601ed54490eb0d452da36303706"
- ],
- "layout": "IPY_MODEL_1a2ffe0f3d68433d9fc120a9b894e762",
- "tabbable": null,
- "tooltip": null
- }
- },
- "1f7f1fac2dd34d07b7fc07f799729df6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "20376214a3ff45e29c894539ac53a963": {
+ "2f3443b8d3394acab17170bfaf11851a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3609,30 +3701,49 @@
"width": null
}
},
- "20aa2cb116fa42218107305be2c9121a": {
+ "2fc4852506de448a95aeacc64083cb80": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "32a70da0aa9b42359a5f17bf665b81ad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_dd549dafe96d457a9f3e32fa6dda0ce5",
- "placeholder": "",
- "style": "IPY_MODEL_6f6e9c74347e4652b414406bd4c67238",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_15ca594059d34b768c0d561ea6f825d9",
+ "IPY_MODEL_94885e6cf17b418dad9d0a2507c50be0",
+ "IPY_MODEL_f98b94bfe32c4565a73c98a0212942f6"
+ ],
+ "layout": "IPY_MODEL_c6366076b6b543b9b666f246bf21490b",
"tabbable": null,
- "tooltip": null,
- "value": " 29.5k/29.5k [00:00<00:00, 4.38MB/s]"
+ "tooltip": null
}
},
- "20e8c6a9ab644e3da69655bfbc794894": {
+ "333938291ad5441294b505d53007d891": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3685,33 +3796,64 @@
"width": null
}
},
- "2253900d1539484ea6c5fb5f87e34fae": {
+ "3550ca0469f54d71b0069a2653195407": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_8b39eaec8f5843a3942f7b65e5320363",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_e675357d5efc42b3968d61c273ca5f7f",
+ "layout": "IPY_MODEL_5fe1cd072cb942f0bdfef19cb5e3dd5a",
+ "placeholder": "",
+ "style": "IPY_MODEL_5c4b2393d2484cea8b933e01b505d429",
"tabbable": null,
"tooltip": null,
- "value": 60000.0
+ "value": " 60000/60000 [00:06<00:00, 8817.27 examples/s]"
+ }
+ },
+ "364261b66000475fa65f731235e8e4c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "38bc71e1a4f54479a7c61228eb6683a1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "22708ad181354289ac5fa640bd1c4121": {
+ "39e31f74f079463c92b570a68aecaf8a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3764,7 +3906,7 @@
"width": null
}
},
- "22e4e1da97fe49e290e9dac292880148": {
+ "3c3363fd27ee42a7b1d48f723bf24487": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3817,25 +3959,86 @@
"width": null
}
},
- "22ece7076054425f8784c9f44cd9c512": {
+ "3e22606fb1304c8782eb409c6223c206": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cceebb830e9f49ee9ba123a5e09eedef",
+ "max": 4.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ff007de4777147b0bb0ee154b5c66868",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 4.0
+ }
+ },
+ "3e2d23b1b97446248a24202ea05b23f6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "231c040b6a13479f944b5bef41c9994a": {
+ "3eacc86ac54d435eb62e463374eff9de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -3853,49 +4056,30 @@
"text_color": null
}
},
- "233edc846cd2411699f747246a5c017b": {
+ "3eb604ce48144ab1a89860772d648c21": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_816719582fe14c11a648b648bb9e2cbb",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_474d936989bb4423af34fd74a8db3b23",
+ "layout": "IPY_MODEL_7347d6a09b3d4009ad5f859699f35e0c",
+ "placeholder": "",
+ "style": "IPY_MODEL_5384a23c08bc4c4c8ed05b003a727a7f",
"tabbable": null,
"tooltip": null,
- "value": 40.0
- }
- },
- "293b9b52ffaa471e9c10ec006eefc31e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": " 40/40 [00:00<00:00, 62.79it/s]"
}
},
- "2a3f5349b34148209445198c9ae64559": {
+ "40ca0cd146da417fb9d146f6a0460568": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -3910,34 +4094,32 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_bf0ad0d606f04b7aa5013f43b6f32049",
- "IPY_MODEL_5788b965507d455ca17eabfc155de530",
- "IPY_MODEL_453bcb1f0a7e4e41aa72dab72cbeed75"
+ "IPY_MODEL_121a97bb29964dcebd075045c33d81fc",
+ "IPY_MODEL_d8ecc3d7fedb4e9f919bf30f5fad4516",
+ "IPY_MODEL_3550ca0469f54d71b0069a2653195407"
],
- "layout": "IPY_MODEL_10833dd9b558436e8141086cd6457744",
+ "layout": "IPY_MODEL_14554b96acc44ee89164205dfa3f35de",
"tabbable": null,
"tooltip": null
}
},
- "2b67454e45604716a3d08831b42d274a": {
+ "415a1b6f4e32422b801128715782265e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "2bf71c3624ce4413bc347a20e07c26d5": {
+ "41d3221410464ffab0bd38d1e798b2c0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -3990,31 +4172,7 @@
"width": null
}
},
- "2c1834764c78450699f4a69ba292fe8e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_c6eb4afdd2a54d899795e4359d8c989d",
- "IPY_MODEL_caabab78e31d438eb521e9c3f2e1c0a6",
- "IPY_MODEL_e9b9c9bbe0374dd9b98a3a4c1553822f"
- ],
- "layout": "IPY_MODEL_20376214a3ff45e29c894539ac53a963",
- "tabbable": null,
- "tooltip": null
- }
- },
- "2d69655ca2a545e9a4b05f6865cdf2a8": {
+ "4262488a413446cca70bc24a050a64ac": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4067,7 +4225,75 @@
"width": null
}
},
- "307355aaf24e41138019598af025ac1b": {
+ "43426f230f894b57ae7975d364de7791": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2abf6850738b4582a8f693aa3faa6025",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ab7bb1edc23e4793808776a776524446",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "43d72b9736c74a1ca37c68dd80b5fda9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_59055224006b483282cc2c0156831282",
+ "IPY_MODEL_91801bc3fac74275b18087b654252e00",
+ "IPY_MODEL_ce4cdcdbb0fb42d583236c9d7dab8e10"
+ ],
+ "layout": "IPY_MODEL_125e980bd8bd4808978c016c6551b9a0",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "44007c0808df4ead8edb28f0e244a3dc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "4501ea081e5a40f38e06180d6447fe2e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4082,15 +4308,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_715dab8821f5465eade13b7f8765ed47",
+ "layout": "IPY_MODEL_333938291ad5441294b505d53007d891",
"placeholder": "",
- "style": "IPY_MODEL_71217b3eed354f73861bde4bfaf66ffd",
+ "style": "IPY_MODEL_a0cb1af6e06a458fa7479a68ae7c2382",
"tabbable": null,
"tooltip": null,
- "value": " 60000/60000 [00:36<00:00, 1535.58it/s]"
+ "value": " 4/4 [00:00<00:00, 1345.73it/s]"
}
},
- "311422b25c3d435280a7ae2e6c1b5cbc": {
+ "46934565459f444fbec76d736ee3c65a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4105,15 +4331,38 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_485dd48b720d4e1dbfce8f76953b154e",
+ "layout": "IPY_MODEL_f43b69d6c4c84e62adfd01c967a90fa3",
"placeholder": "",
- "style": "IPY_MODEL_8c6b20c613cf48bd9f826dbeb5124369",
+ "style": "IPY_MODEL_da3c6d236847473ca2befd4bbbe118c6",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": " 60000/60000 [00:11<00:00, 5863.43 examples/s]"
+ }
+ },
+ "485dc9cf3a6a4b8a9b63dcaa1c648c14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_4c1426a1bdf947fc881b6182cd0b2f62",
+ "placeholder": "",
+ "style": "IPY_MODEL_92c72b44e8f94f7bb2e100c9f2da6463",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
}
},
- "32715003f9374a25a98d8e94a71e934d": {
+ "4c1426a1bdf947fc881b6182cd0b2f62": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4166,13 +4415,88 @@
"width": null
}
},
- "32d10bf33ee54d2bac909d0748596dac": {
- "model_module": "@jupyter-widgets/base",
+ "50353795eab74f10aa38a4d1996c3c16": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c88560d3040045e0a3c7af07b0582ef4",
+ "placeholder": "",
+ "style": "IPY_MODEL_b9f6e6d8add04fb3b54c5049e476874c",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]"
+ }
+ },
+ "52a385af17b044b190124cefc696f61a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "52d6513593de40afb10d3b1ac14e91e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5384a23c08bc4c4c8ed05b003a727a7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "5416f069966d47fba5e50a2f2d633d2c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
@@ -4219,54 +4543,7 @@
"width": null
}
},
- "3590fcc9756749e0b9130b8809114216": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_9c8e988dcc76462ea4a6543f9f1dd759",
- "IPY_MODEL_61530f93052c4966a3ed9c90ec90c547",
- "IPY_MODEL_3c58f7da1e954e5f85811b8c931dddf3"
- ],
- "layout": "IPY_MODEL_839cc7aeb6cf41cba2328b772dda1354",
- "tabbable": null,
- "tooltip": null
- }
- },
- "37059badcffc423fbad95494b9745859": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_50aef71653f04eb49e220d1870cbf7ff",
- "placeholder": "",
- "style": "IPY_MODEL_eb33301487694b0f9f4a664fce743134",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:06<00:00, 8813.66 examples/s]"
- }
- },
- "373768b5fd4c42118d61459d55c65ad2": {
+ "55146f26e23c4922b73a9a1914de5a8b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4319,23 +4596,55 @@
"width": null
}
},
- "3764b604f5ba43288217fe3f4372b542": {
+ "5692b6450179456c853c8bda7c713903": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fdb9730e58fc4db8b34379709a24eedd",
+ "IPY_MODEL_95a24876f94b4a55b3f46d3b35b1db76",
+ "IPY_MODEL_d0422596105541058e10c255c9ca3c08"
+ ],
+ "layout": "IPY_MODEL_95778f2bc9f54690a56f99f57c409f35",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "570e337efa4b4edea75f724a0413e1eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_01500d66e7b5462b8986e7913e3bab3d",
+ "IPY_MODEL_78fac203adcf488999ba8fa1febaef8f",
+ "IPY_MODEL_9d6fc5b62c6f44eb919cd2a90b3124a3"
+ ],
+ "layout": "IPY_MODEL_846437eb94bc4024b126855256420dd5",
+ "tabbable": null,
+ "tooltip": null
}
},
- "3779e0b1881642b8b80007dfa03126bb": {
+ "59055224006b483282cc2c0156831282": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4350,15 +4659,39 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_1e4148a5a5464b22b94684bad558cbec",
+ "layout": "IPY_MODEL_5416f069966d47fba5e50a2f2d633d2c",
"placeholder": "",
- "style": "IPY_MODEL_885a1c18bad74f47ae49ef86de2c3a67",
+ "style": "IPY_MODEL_ff6918e846af4011afbcb1224c990aea",
"tabbable": null,
"tooltip": null,
- "value": "Generating test split: 100%"
+ "value": "100%"
+ }
+ },
+ "5a7640261eb640c6adc4bf358876b135": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9126d732f72c4e01822a3de4376a1cf7",
+ "IPY_MODEL_43426f230f894b57ae7975d364de7791",
+ "IPY_MODEL_f3c6cde529c44282837ed44228f6eb41"
+ ],
+ "layout": "IPY_MODEL_dc597e46ad7f4943a92756168a68d962",
+ "tabbable": null,
+ "tooltip": null
}
},
- "38bd0231f7c34338a8ccd2536adb5809": {
+ "5afb9ec5b208411896d3b39484fd57fa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4411,7 +4744,7 @@
"width": null
}
},
- "3c58f7da1e954e5f85811b8c931dddf3": {
+ "5bd3521095b04a7cb2122373f9addb51": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -4426,15 +4759,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_d8441cb494324dad83d4a88dd3c805e6",
+ "layout": "IPY_MODEL_1a73a20c7710418884500f2e000462ff",
"placeholder": "",
- "style": "IPY_MODEL_3e99f4f8639445f0810c65d14dccca89",
+ "style": "IPY_MODEL_90131643dfdd4afe89bc4e2aa2801e89",
"tabbable": null,
"tooltip": null,
- "value": " 5.15k/5.15k [00:00<00:00, 906kB/s]"
+ "value": "Computing checksums: 100%"
}
},
- "3c76ee6a2244430cbb3e8e8416d1a23c": {
+ "5c4b2393d2484cea8b933e01b505d429": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -4452,7 +4785,30 @@
"text_color": null
}
},
- "3e86a20ac6b044d4adccfeaba4245d25": {
+ "5f8d7abf69784dba85b33d715612d968": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_625e62d09de64c4ba5c32df2fa49ee0d",
+ "placeholder": "",
+ "style": "IPY_MODEL_0e682a87f84f4712a692fa44c8c31485",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Downloading data: 100%"
+ }
+ },
+ "5fe1cd072cb942f0bdfef19cb5e3dd5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4505,77 +4861,49 @@
"width": null
}
},
- "3e99f4f8639445f0810c65d14dccca89": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "40e314c496664e698c489a3f5c279e1c": {
+ "60005588c4d04479a121c8b95b0e4b8f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_08971fe179644eda8bcd42e21d601e92",
- "max": 10000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0ada4c3d2a88412599516fae13401849",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5bd3521095b04a7cb2122373f9addb51",
+ "IPY_MODEL_3e22606fb1304c8782eb409c6223c206",
+ "IPY_MODEL_4501ea081e5a40f38e06180d6447fe2e"
+ ],
+ "layout": "IPY_MODEL_ff7d28ca3d77451c938e3d05c9d35bd5",
"tabbable": null,
- "tooltip": null,
- "value": 10000.0
+ "tooltip": null
}
},
- "41aa359adc6640ab9d5ea2369493623a": {
+ "60428097cbe14bb1a09686342a8903f7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4ae6fd916d6d470190a53d061fb0b02f",
- "max": 8845.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_63f97e8188cb4370abab083114492da0",
- "tabbable": null,
- "tooltip": null,
- "value": 8845.0
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "4251756ae8d344e8923025afa5b3be9a": {
+ "611c028f3a1a4f18a03f9c01fad5af77": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4628,30 +4956,14 @@
"width": null
}
},
- "42c5eeb19b2a4542b4159e63110273e4": {
- "model_module": "@jupyter-widgets/controls",
+ "625e62d09de64c4ba5c32df2fa49ee0d": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "42f688e5fa0a4f698ca681a4433e115d": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
@@ -4697,7 +5009,95 @@
"width": null
}
},
- "431d46eafa8c450b8c8f1bf1f7883cf3": {
+ "6311d00053b444f98100b24bfd194457": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_d06f5a2e7a6b4ff28e75e0ed13e49fd2",
+ "placeholder": "",
+ "style": "IPY_MODEL_2fc4852506de448a95aeacc64083cb80",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "660a237d926d49899ac17b9e92223c1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c8e23efb73c54b54807be50d0f941204",
+ "max": 4833.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b3a0b24dcdd4452da2055e8a4cf03d89",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 4833.0
+ }
+ },
+ "6682d6f94b9d4842b43984c0b13189ae": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "66ff793507e445d4b2305d46ecb0cdd8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_987ed537eee4416d9b055dc46e2acafd",
+ "placeholder": "",
+ "style": "IPY_MODEL_e59874221f9f4d51bb63e23f8bea8e22",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 64.95it/s]"
+ }
+ },
+ "67937a09a0154aeeb9c67f27216be315": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4750,7 +5150,31 @@
"width": null
}
},
- "4536c7080de841acaaec729cdf955c0a": {
+ "68e3d0ba542f4dbeb8c6a0825b907d49": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_485dc9cf3a6a4b8a9b63dcaa1c648c14",
+ "IPY_MODEL_95e47994d42745dd991db48086a47985",
+ "IPY_MODEL_66ff793507e445d4b2305d46ecb0cdd8"
+ ],
+ "layout": "IPY_MODEL_8d5bae096ebe4a15bb8b69add371c657",
+ "tabbable": null,
+ "tooltip": null
+ }
+ },
+ "6b615e4298d04a0790509b0bfe85a900": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4803,70 +5227,7 @@
"width": null
}
},
- "453bcb1f0a7e4e41aa72dab72cbeed75": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_103b52da5fd24c24a14b4605ba5c3120",
- "placeholder": "",
- "style": "IPY_MODEL_9d8907e922884b4c98182bd90146f805",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 60.08it/s]"
- }
- },
- "46c5f1e4a9ca403d83a2aa33da63b600": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_667ac6e91c614fc09ad352122a696161",
- "IPY_MODEL_59358b3c018e40c1b73065b80810af12",
- "IPY_MODEL_08fa3b07fef4433e8a950677af858234"
- ],
- "layout": "IPY_MODEL_4251756ae8d344e8923025afa5b3be9a",
- "tabbable": null,
- "tooltip": null
- }
- },
- "474d936989bb4423af34fd74a8db3b23": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "485dd48b720d4e1dbfce8f76953b154e": {
+ "6bf8c919cc1c4f53989f3eb67720dded": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -4919,49 +5280,33 @@
"width": null
}
},
- "489746a2a7db4406b7ebfd5f2a155361": {
+ "705e340973a94fde9d31bddb187be0f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ae4bdbf2d6494345acc4f7003fcd9cd9",
- "IPY_MODEL_dd4b960c1fc54808ac7ec7abfbe1ccbc",
- "IPY_MODEL_37059badcffc423fbad95494b9745859"
- ],
- "layout": "IPY_MODEL_73593795a4ac4b21a0677dccf1a525cb",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_feb23f7712944922882bc91b4b7dd179",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aaf5da7291584abd97bd0ab0ccf4fe37",
"tabbable": null,
- "tooltip": null
- }
- },
- "4a74983359df462095cf64e3c2706a4b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "tooltip": null,
+ "value": 40.0
}
},
- "4ae6fd916d6d470190a53d061fb0b02f": {
+ "71407435bce6442596615f552be60494": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5014,23 +5359,7 @@
"width": null
}
},
- "4d2f1756b094437bb3ff9f30ea93cbb2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "4de2163b87c545ed89dfc257d6a7e304": {
+ "7347d6a09b3d4009ad5f859699f35e0c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5083,7 +5412,7 @@
"width": null
}
},
- "50aef71653f04eb49e220d1870cbf7ff": {
+ "747383714a754016b00b74ce13e738ed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5136,54 +5465,69 @@
"width": null
}
},
- "52638684784d4b5fb05e436a7f614243": {
+ "775244380ff94929b23d4c0eecc21177": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "78fac203adcf488999ba8fa1febaef8f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_ed7068ef4b08440eaae3bd1ba5cca147",
- "placeholder": "",
- "style": "IPY_MODEL_91c032ac4bfb4eceba18d1021672143e",
+ "layout": "IPY_MODEL_a2794dbf2ec140dea8dd7460ddc7e8aa",
+ "max": 4422102.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_364261b66000475fa65f731235e8e4c4",
"tabbable": null,
"tooltip": null,
- "value": " 4.83k/4.83k [00:00<00:00, 586kB/s]"
+ "value": 4422102.0
}
},
- "55c0a386d760485f92009bb75259396b": {
+ "7a62182e1a1f495e934de1b0fb6f6766": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ed6f311b0f784e268d2c2f765d55a94a",
- "IPY_MODEL_9e8ad22d82bc455da31ccd997a15763c",
- "IPY_MODEL_307355aaf24e41138019598af025ac1b"
- ],
- "layout": "IPY_MODEL_1232a69e4cd748539b2d4cdde35b417c",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "5788b965507d455ca17eabfc155de530": {
+ "7b56a4227706477eb522308c9a7c494d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
@@ -5199,59 +5543,17 @@
"bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_b37bca5ee3994510a0c5bf88495f1a10",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6c1210fd37c047b69d6bb77d7a585576",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "59358b3c018e40c1b73065b80810af12": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_6b3ea7da7caf4dc294c20842ed8cac54",
- "max": 26421880.0,
+ "layout": "IPY_MODEL_41d3221410464ffab0bd38d1e798b2c0",
+ "max": 10000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_3764b604f5ba43288217fe3f4372b542",
+ "style": "IPY_MODEL_2bc8b75b851e42a28606dadd908b0654",
"tabbable": null,
"tooltip": null,
- "value": 26421880.0
- }
- },
- "5a5ab3c1640f48e7953b2212cf787f29": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "value": 10000.0
}
},
- "5aed3d8999204da4abd99966f9859da8": {
+ "7cea0715899b45bd93041c98335201b8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5304,7 +5606,25 @@
"width": null
}
},
- "5c2cc530fc7746919e9df959510c6dc7": {
+ "7fe5095bccf34852ad3afebc0775804a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "846437eb94bc4024b126855256420dd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5357,51 +5677,7 @@
"width": null
}
},
- "5cbd075f38af4a35bd49255f7c6854c3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "61530f93052c4966a3ed9c90ec90c547": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_0fc5778c044d4fcd9e8f745663d100c5",
- "max": 5148.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_bbcf2512f0a048e99a7d2ad46cb7b594",
- "tabbable": null,
- "tooltip": null,
- "value": 5148.0
- }
- },
- "629ccac58fe74198b172012097674576": {
+ "862abdd9f64b4459bb95a0484365db13": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5454,87 +5730,7 @@
"width": null
}
},
- "63e3c00666534cf78aef58362ab798ef": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_8abe4aff024b461ea93d3d85dd84f1f7",
- "placeholder": "",
- "style": "IPY_MODEL_5cbd075f38af4a35bd49255f7c6854c3",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading builder script: 100%"
- }
- },
- "63f97e8188cb4370abab083114492da0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "667ac6e91c614fc09ad352122a696161": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f8852f488ece4717923d24f0f949869a",
- "placeholder": "",
- "style": "IPY_MODEL_11828cd7a97146ac81748612b0601834",
- "tabbable": null,
- "tooltip": null,
- "value": "Downloading data: 100%"
- }
- },
- "6a96595df722450495b69e3d9407c566": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6b3ea7da7caf4dc294c20842ed8cac54": {
+ "868a58720b8f42378b614845928b3aaa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5587,75 +5783,7 @@
"width": null
}
},
- "6c1210fd37c047b69d6bb77d7a585576": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6c53714694714ec184a3175a51eca22d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6f6e9c74347e4652b414406bd4c67238": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "6fa798d1f46540b9bd3e051f98c21430": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "71217b3eed354f73861bde4bfaf66ffd": {
+ "8763c24da05f45f1a31655c1448a4718": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -5673,7 +5801,7 @@
"text_color": null
}
},
- "715dab8821f5465eade13b7f8765ed47": {
+ "89bf1005dcdb41e4a3d969647eaf4a10": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5726,7 +5854,25 @@
"width": null
}
},
- "72b19493a1ca42c793bcda945b230961": {
+ "8b6b0f86849c43d88b1496cb4909efee": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "8bd1494dfee649f88fa53da595105080": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5779,7 +5925,7 @@
"width": null
}
},
- "73593795a4ac4b21a0677dccf1a525cb": {
+ "8d5bae096ebe4a15bb8b69add371c657": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5832,14 +5978,37 @@
"width": null
}
},
- "7439b162e309483580266f93e7ac4add": {
+ "8e7bd1246350476188909a1c70bd98e5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_0a8f9d83f59f4dfbaa92bafedd8123c1",
+ "placeholder": "",
+ "style": "IPY_MODEL_8b6b0f86849c43d88b1496cb4909efee",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "Generating test split: 100%"
+ }
+ },
+ "90131643dfdd4afe89bc4e2aa2801e89": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
@@ -5850,7 +6019,72 @@
"text_color": null
}
},
- "7461d590e55e4b9389cb1fa4b8b01858": {
+ "9126d732f72c4e01822a3de4376a1cf7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_2f3443b8d3394acab17170bfaf11851a",
+ "placeholder": "",
+ "style": "IPY_MODEL_bc30f0e39a8641a8bb22ab899643c60e",
+ "tabbable": null,
+ "tooltip": null,
+ "value": "100%"
+ }
+ },
+ "9131d71850c343d78a5365693d850e75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "91801bc3fac74275b18087b654252e00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c9f331343a804b1ca29dff6a5773145a",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6682d6f94b9d4842b43984c0b13189ae",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "92aac12715174e618aadd2413a571bb3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -5903,7 +6137,25 @@
"width": null
}
},
- "7a70b6d736914713b75013fd280cd1fb": {
+ "92c72b44e8f94f7bb2e100c9f2da6463": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "93223ec843da40588ff01a9e1ff7f446": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -5918,38 +6170,41 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5aed3d8999204da4abd99966f9859da8",
+ "layout": "IPY_MODEL_5afb9ec5b208411896d3b39484fd57fa",
"placeholder": "",
- "style": "IPY_MODEL_003b69c44f834dd6bd767bd85d0282c1",
+ "style": "IPY_MODEL_d05c0cfc9b9341049ecfc014c4d30b7a",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": " 4.83k/4.83k [00:00<00:00, 615kB/s]"
}
},
- "7b9f6a000ece4e85bd677afa0c44a483": {
+ "94885e6cf17b418dad9d0a2507c50be0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_a261db39bdb34321bc03d5b7cdb18bd6",
- "placeholder": "",
- "style": "IPY_MODEL_4a74983359df462095cf64e3c2706a4b",
+ "layout": "IPY_MODEL_4262488a413446cca70bc24a050a64ac",
+ "max": 8845.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f3dbc819150243c8b46c185ca1842360",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 61.37it/s]"
+ "value": 8845.0
}
},
- "7ba456d195e144f7ba05947f8e466206": {
+ "95778f2bc9f54690a56f99f57c409f35": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6002,30 +6257,33 @@
"width": null
}
},
- "7c3c537f030046e892febf09fbb3953f": {
+ "95a24876f94b4a55b3f46d3b35b1db76": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_42f688e5fa0a4f698ca681a4433e115d",
- "placeholder": "",
- "style": "IPY_MODEL_a034a2ade0914168baff132569eeeb46",
+ "layout": "IPY_MODEL_2ad511699c5c40eea0c01730a536be37",
+ "max": 29515.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d6e072ffe3b442d58132225a18a4702a",
"tabbable": null,
"tooltip": null,
- "value": "Downloading readme: 100%"
+ "value": 29515.0
}
},
- "7defd4db8e0e4d9d806b06b0ad18bad9": {
+ "95ac51ee93224cefb099d98ab4eea45b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6078,25 +6336,109 @@
"width": null
}
},
- "7f159f23ebfd44699351ad51261161f4": {
+ "95e47994d42745dd991db48086a47985": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_6bf8c919cc1c4f53989f3eb67720dded",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_15981f3a373742b788d47c1658d356d8",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "977d496d29e64500aa96bd0650d141b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_39e31f74f079463c92b570a68aecaf8a",
+ "placeholder": "",
+ "style": "IPY_MODEL_60428097cbe14bb1a09686342a8903f7",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 60000/60000 [00:37<00:00, 1643.67it/s]"
+ }
+ },
+ "9872b9de9ec147fe9a77e4fc3c7b7a91": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "2.0.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "816719582fe14c11a648b648bb9e2cbb": {
+ "987ed537eee4416d9b055dc46e2acafd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6149,7 +6491,7 @@
"width": null
}
},
- "839cc7aeb6cf41cba2328b772dda1354": {
+ "98cfdc0c50404f04a587a0b4a250580e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6202,7 +6544,7 @@
"width": null
}
},
- "83fe2423c4494c2b9394412c402eca60": {
+ "9a4e1702bcee482fa266f9d72caa68b0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6220,54 +6562,54 @@
"text_color": null
}
},
- "865a8adbaefe44eb930f2df86dcd3a25": {
+ "9a62dbed8c0e414aba4d919f9a3b1266": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_f35f77b3dc2d4f87b2f6435eb17b5f51",
- "placeholder": "",
- "style": "IPY_MODEL_231c040b6a13479f944b5bef41c9994a",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8e7bd1246350476188909a1c70bd98e5",
+ "IPY_MODEL_7b56a4227706477eb522308c9a7c494d",
+ "IPY_MODEL_a5d9d50b048d47f38b0d59f0e92065d6"
+ ],
+ "layout": "IPY_MODEL_55146f26e23c4922b73a9a1914de5a8b",
"tabbable": null,
- "tooltip": null,
- "value": "Map (num_proc=4): 100%"
+ "tooltip": null
}
},
- "8835da69dbeb4826a96baa0561232a18": {
+ "9d6fc5b62c6f44eb919cd2a90b3124a3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_f99e5e0dbb254dd0a57ef096794a0277",
- "IPY_MODEL_9444514d4589415d940c94d2a40f0c7a",
- "IPY_MODEL_7b9f6a000ece4e85bd677afa0c44a483"
- ],
- "layout": "IPY_MODEL_8a730989a49141659124fe8758fe6b9f",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_7cea0715899b45bd93041c98335201b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_f5ded18337834f7a9dbd8390a89b501e",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 4.42M/4.42M [00:00<00:00, 63.9MB/s]"
}
},
- "885a1c18bad74f47ae49ef86de2c3a67": {
+ "a0cb1af6e06a458fa7479a68ae7c2382": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6285,7 +6627,7 @@
"text_color": null
}
},
- "8a730989a49141659124fe8758fe6b9f": {
+ "a0fcbc8073a04dc3b3d50f64b4a77c05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6338,7 +6680,7 @@
"width": null
}
},
- "8abe4aff024b461ea93d3d85dd84f1f7": {
+ "a2794dbf2ec140dea8dd7460ddc7e8aa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6391,78 +6733,53 @@
"width": null
}
},
- "8b39eaec8f5843a3942f7b65e5320363": {
- "model_module": "@jupyter-widgets/base",
+ "a34e73d14fc04cf2923d3e2c3a13f4d2": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_89bf1005dcdb41e4a3d969647eaf4a10",
+ "placeholder": "",
+ "style": "IPY_MODEL_8763c24da05f45f1a31655c1448a4718",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 40/40 [00:00<00:00, 67.65it/s]"
}
},
- "8c6b20c613cf48bd9f826dbeb5124369": {
+ "a5d9d50b048d47f38b0d59f0e92065d6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_95ac51ee93224cefb099d98ab4eea45b",
+ "placeholder": "",
+ "style": "IPY_MODEL_38bc71e1a4f54479a7c61228eb6683a1",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 10000/10000 [00:01<00:00, 8915.28 examples/s]"
}
},
- "8ce5df9efdba4fd1bad996ee729dec94": {
+ "a7f628b7566f4c50a41d60c0c29b635d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6515,25 +6832,49 @@
"width": null
}
},
- "91c032ac4bfb4eceba18d1021672143e": {
+ "aa6090d12f9547aa838e8d1365aebece": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "2.0.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_cf6554f388a8461fb889947d04abaf85",
+ "max": 40.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0ba1c1e2af9e41f18556ca413d689f43",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 40.0
+ }
+ },
+ "aaf5da7291584abd97bd0ab0ccf4fe37": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "bar_color": null,
+ "description_width": ""
}
},
- "91e935457d624042a2d02c107985c146": {
+ "ab4d075c34534c19a1bbc155e5546698": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -6548,41 +6889,89 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_3e86a20ac6b044d4adccfeaba4245d25",
+ "layout": "IPY_MODEL_71407435bce6442596615f552be60494",
"placeholder": "",
- "style": "IPY_MODEL_e522f4fa76294f30ae3dc6a49425837b",
+ "style": "IPY_MODEL_fda2c399539b430987fc114befcc2f59",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 65.93it/s]"
+ "value": "Downloading builder script: 100%"
}
},
- "92f49f3012f849ceaece9962b9690310": {
+ "ab7bb1edc23e4793808776a776524446": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "acd955b18cd54e8e9525c5e97b625466": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_373768b5fd4c42118d61459d55c65ad2",
- "max": 29515.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d3230f794b7e47c9beebfa7400ee3522",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5f8d7abf69784dba85b33d715612d968",
+ "IPY_MODEL_05e8e7e59e104979b50df89bbe1f0520",
+ "IPY_MODEL_0efd5977745c4fefa5ef1133064de182"
+ ],
+ "layout": "IPY_MODEL_9872b9de9ec147fe9a77e4fc3c7b7a91",
"tabbable": null,
- "tooltip": null,
- "value": 29515.0
+ "tooltip": null
+ }
+ },
+ "b21e560941054bc0b6909b7888124953": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b3a0b24dcdd4452da2055e8a4cf03d89": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "92fcc9156b2a48328c1fb11582bdbb81": {
+ "b4e407ab490340eabf317fd1b6b958ce": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6635,57 +7024,30 @@
"width": null
}
},
- "9444514d4589415d940c94d2a40f0c7a": {
+ "b71ed5e5d009421aa9071fa417747aa2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_7ba456d195e144f7ba05947f8e466206",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_d837ff833a594ea2b02ce7f7523c9dcd",
+ "layout": "IPY_MODEL_98cfdc0c50404f04a587a0b4a250580e",
+ "placeholder": "",
+ "style": "IPY_MODEL_52d6513593de40afb10d3b1ac14e91e2",
"tabbable": null,
"tooltip": null,
- "value": 40.0
- }
- },
- "99fb59566db2452bab382261d05e2879": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_63e3c00666534cf78aef58362ab798ef",
- "IPY_MODEL_bee58d3e475246fba7aa8b971564b1a7",
- "IPY_MODEL_52638684784d4b5fb05e436a7f614243"
- ],
- "layout": "IPY_MODEL_dbc28ec812a84d3f80f20f8fcab2939a",
- "tabbable": null,
- "tooltip": null
+ "value": "100%"
}
},
- "9b8b5db0d4ec47ae8f14fbae0720d3e0": {
+ "b8512ae9927e4d10b472de980750960a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -6700,38 +7062,41 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_d1333e62f1304c11beca8dd72e8aa9f9",
+ "layout": "IPY_MODEL_611c028f3a1a4f18a03f9c01fad5af77",
"placeholder": "",
- "style": "IPY_MODEL_c2680fc6a8544c869d7830d31ed37cea",
+ "style": "IPY_MODEL_02448502779f4704854c84633e322959",
"tabbable": null,
"tooltip": null,
- "value": " 40/40 [00:00<00:00, 59.41it/s]"
+ "value": "Map (num_proc=4): 100%"
}
},
- "9c8e988dcc76462ea4a6543f9f1dd759": {
+ "b8f2b21c88b04bb4b071ce6c50a878eb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_f08b9948f05248b3b3ef10bd15ffc7d8",
- "placeholder": "",
- "style": "IPY_MODEL_bcf73aedcb8442be80cd3903dca5729d",
+ "layout": "IPY_MODEL_868a58720b8f42378b614845928b3aaa",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fac4ff02cc5b457cab68f4a636edcdc8",
"tabbable": null,
"tooltip": null,
- "value": "Downloading data: 100%"
+ "value": 60000.0
}
},
- "9d8907e922884b4c98182bd90146f805": {
+ "b9f6e6d8add04fb3b54c5049e476874c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6749,75 +7114,49 @@
"text_color": null
}
},
- "9e8ad22d82bc455da31ccd997a15763c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b9a6301405d54fc48fe5e9c1fcb3ff2f",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4d2f1756b094437bb3ff9f30ea93cbb2",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
- }
- },
- "9f427bf1023e48e693afcd4ee468c279": {
+ "bc30f0e39a8641a8bb22ab899643c60e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "9f7de506f89c48b29c2cbb938a4e7210": {
+ "bcbd871e719b4ad2aabe57836da305b9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_7461d590e55e4b9389cb1fa4b8b01858",
- "max": 4.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_42c5eeb19b2a4542b4159e63110273e4",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_07cd1625edcd4511ac422becaaae8150",
+ "IPY_MODEL_b8f2b21c88b04bb4b071ce6c50a878eb",
+ "IPY_MODEL_977d496d29e64500aa96bd0650d141b1"
+ ],
+ "layout": "IPY_MODEL_caf2a178aab3449e83c8ea5db5d4b6ef",
"tabbable": null,
- "tooltip": null,
- "value": 4.0
+ "tooltip": null
}
},
- "a034a2ade0914168baff132569eeeb46": {
+ "be12ecac68ba48ef9803433668eda3d1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -6835,7 +7174,7 @@
"text_color": null
}
},
- "a261db39bdb34321bc03d5b7cdb18bd6": {
+ "c6366076b6b543b9b666f246bf21490b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6888,48 +7227,7 @@
"width": null
}
},
- "a3d6f09afbca4e6482b56fd6d71d9b25": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "a518055f2d994914bf1de3d11ea03a82": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c32f5e002a7a4c4ea804958d4deec82a",
- "placeholder": "",
- "style": "IPY_MODEL_f332684f2b70406ab76c95d24f2f40ed",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "a805af9f6458409cbfcf1ef1829794dc": {
+ "c6861786e92c40328df1b1530c387ae3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -6982,74 +7280,7 @@
"width": null
}
},
- "aae89dad290345f5acc2526904d6d4e5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_38bd0231f7c34338a8ccd2536adb5809",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c78a7456a9d940dd9a6d4e769ce24dc3",
- "tabbable": null,
- "tooltip": null,
- "value": 40.0
- }
- },
- "ae4bdbf2d6494345acc4f7003fcd9cd9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_32d10bf33ee54d2bac909d0748596dac",
- "placeholder": "",
- "style": "IPY_MODEL_bfc04f78f5024cc4b45fce30bcc4e7b2",
- "tabbable": null,
- "tooltip": null,
- "value": "Generating train split: 100%"
- }
- },
- "afdd5bafd5ba49909abaaef0bb7f6038": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b37bca5ee3994510a0c5bf88495f1a10": {
+ "c756f97ee26641b3ac1d738a98e7350a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7102,25 +7333,7 @@
"width": null
}
},
- "b45281dbfb444428b286e76808d4a658": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "b5852aa7675d4ad7ab4bb8a846b7eead": {
+ "c88560d3040045e0a3c7af07b0582ef4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7173,56 +7386,7 @@
"width": null
}
},
- "b602e59393ab410ba774d7c2419c556d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_2d69655ca2a545e9a4b05f6865cdf2a8",
- "max": 4422102.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_9f427bf1023e48e693afcd4ee468c279",
- "tabbable": null,
- "tooltip": null,
- "value": 4422102.0
- }
- },
- "b6bcf233e0084809823abddff92adea2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4de2163b87c545ed89dfc257d6a7e304",
- "placeholder": "",
- "style": "IPY_MODEL_7439b162e309483580266f93e7ac4add",
- "tabbable": null,
- "tooltip": null,
- "value": " 8.85k/8.85k [00:00<00:00, 1.46MB/s]"
- }
- },
- "b9a6301405d54fc48fe5e9c1fcb3ff2f": {
+ "c8e23efb73c54b54807be50d0f941204": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7275,132 +7439,60 @@
"width": null
}
},
- "b9c41de7ac0442aabfb15bbf3b5308c8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_3779e0b1881642b8b80007dfa03126bb",
- "IPY_MODEL_40e314c496664e698c489a3f5c279e1c",
- "IPY_MODEL_c6f60e04093c46f981b6f7b80f94e2d4"
- ],
- "layout": "IPY_MODEL_d6092c5dc4c74213a968d6db282bed10",
- "tabbable": null,
- "tooltip": null
- }
- },
- "bbcf2512f0a048e99a7d2ad46cb7b594": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "bcf73aedcb8442be80cd3903dca5729d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "bee58d3e475246fba7aa8b971564b1a7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_b5852aa7675d4ad7ab4bb8a846b7eead",
- "max": 4833.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5a5ab3c1640f48e7953b2212cf787f29",
- "tabbable": null,
- "tooltip": null,
- "value": 4833.0
- }
- },
- "bf0ad0d606f04b7aa5013f43b6f32049": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_4536c7080de841acaaec729cdf955c0a",
- "placeholder": "",
- "style": "IPY_MODEL_6a96595df722450495b69e3d9407c566",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
- }
- },
- "bfc04f78f5024cc4b45fce30bcc4e7b2": {
- "model_module": "@jupyter-widgets/controls",
+ "c9f331343a804b1ca29dff6a5773145a": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "c1f41731ec4247e3ab4c57371cd20bf3": {
+ "caf2a178aab3449e83c8ea5db5d4b6ef": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7453,25 +7545,7 @@
"width": null
}
},
- "c2680fc6a8544c869d7830d31ed37cea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
- }
- },
- "c32f5e002a7a4c4ea804958d4deec82a": {
+ "cceebb830e9f49ee9ba123a5e09eedef": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7524,7 +7598,7 @@
"width": null
}
},
- "c6eb4afdd2a54d899795e4359d8c989d": {
+ "ce4cdcdbb0fb42d583236c9d7dab8e10": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -7539,78 +7613,109 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_5c2cc530fc7746919e9df959510c6dc7",
+ "layout": "IPY_MODEL_a7f628b7566f4c50a41d60c0c29b635d",
"placeholder": "",
- "style": "IPY_MODEL_22ece7076054425f8784c9f44cd9c512",
+ "style": "IPY_MODEL_775244380ff94929b23d4c0eecc21177",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": " 40/40 [00:00<00:00, 58.62it/s]"
}
},
- "c6f60e04093c46f981b6f7b80f94e2d4": {
- "model_module": "@jupyter-widgets/controls",
+ "cf6554f388a8461fb889947d04abaf85": {
+ "model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_92fcc9156b2a48328c1fb11582bdbb81",
- "placeholder": "",
- "style": "IPY_MODEL_e06347bb350642c28c5755357c9f6b4f",
- "tabbable": null,
- "tooltip": null,
- "value": " 10000/10000 [00:01<00:00, 8738.82 examples/s]"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border_bottom": null,
+ "border_left": null,
+ "border_right": null,
+ "border_top": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "c75b1e8b04fc4bbe8b789d1cfa5fe576": {
+ "d0422596105541058e10c255c9ca3c08": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d8736cab840549168545a3a77aa8e714",
- "IPY_MODEL_9f7de506f89c48b29c2cbb938a4e7210",
- "IPY_MODEL_dc708bb2c5314b17862c251eeb9db099"
- ],
- "layout": "IPY_MODEL_22e4e1da97fe49e290e9dac292880148",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_c756f97ee26641b3ac1d738a98e7350a",
+ "placeholder": "",
+ "style": "IPY_MODEL_9a4e1702bcee482fa266f9d72caa68b0",
"tabbable": null,
- "tooltip": null
+ "tooltip": null,
+ "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]"
}
},
- "c78a7456a9d940dd9a6d4e769ce24dc3": {
+ "d05c0cfc9b9341049ecfc014c4d30b7a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "c82a1f05b0ec418a9670fcf0e44708f1": {
+ "d06f5a2e7a6b4ff28e75e0ed13e49fd2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7663,7 +7768,7 @@
"width": null
}
},
- "c8e6913e68754e7a9e614de447103505": {
+ "d1224d938d764efb951228670f63da06": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7716,150 +7821,107 @@
"width": null
}
},
- "caabab78e31d438eb521e9c3f2e1c0a6": {
+ "d204f6cd3d4946408d7f8da6c520e7d5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c1f41731ec4247e3ab4c57371cd20bf3",
- "max": 40.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6fa798d1f46540b9bd3e051f98c21430",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6311d00053b444f98100b24bfd194457",
+ "IPY_MODEL_705e340973a94fde9d31bddb187be0f1",
+ "IPY_MODEL_3eb604ce48144ab1a89860772d648c21"
+ ],
+ "layout": "IPY_MODEL_0f5a34f2adfd4113ac57aa6e15e3d1a0",
"tabbable": null,
- "tooltip": null,
- "value": 40.0
+ "tooltip": null
}
},
- "cacaca4358c34e93a46a3e2019d188d4": {
+ "d6e072ffe3b442d58132225a18a4702a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_7c3c537f030046e892febf09fbb3953f",
- "IPY_MODEL_41aa359adc6640ab9d5ea2369493623a",
- "IPY_MODEL_b6bcf233e0084809823abddff92adea2"
- ],
- "layout": "IPY_MODEL_fb9b135b97bd45978b3759750aac7be4",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "cc7010cd50844e48a3db713a6ea5f850": {
+ "d880c7278ba344aca21a81dfa7bf8061": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_311422b25c3d435280a7ae2e6c1b5cbc",
- "IPY_MODEL_92f49f3012f849ceaece9962b9690310",
- "IPY_MODEL_20aa2cb116fa42218107305be2c9121a"
- ],
- "layout": "IPY_MODEL_20e8c6a9ab644e3da69655bfbc794894",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "d1333e62f1304c11beca8dd72e8aa9f9": {
- "model_module": "@jupyter-widgets/base",
+ "d8ecc3d7fedb4e9f919bf30f5fad4516": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_862abdd9f64b4459bb95a0484365db13",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9131d71850c343d78a5365693d850e75",
+ "tabbable": null,
+ "tooltip": null,
+ "value": 60000.0
}
},
- "d3230f794b7e47c9beebfa7400ee3522": {
+ "da3c6d236847473ca2befd4bbbe118c6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "d6092c5dc4c74213a968d6db282bed10": {
+ "dc597e46ad7f4943a92756168a68d962": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -7912,46 +7974,73 @@
"width": null
}
},
- "d6337601ed54490eb0d452da36303706": {
+ "e3b81984ecf6429d82760070b58a79a2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_c8e6913e68754e7a9e614de447103505",
- "placeholder": "",
- "style": "IPY_MODEL_6c53714694714ec184a3175a51eca22d",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b71ed5e5d009421aa9071fa417747aa2",
+ "IPY_MODEL_1bc0adbfdc5a4373ad732ec4d2969795",
+ "IPY_MODEL_a34e73d14fc04cf2923d3e2c3a13f4d2"
+ ],
+ "layout": "IPY_MODEL_eb91bc2da0d0401aa97f87f238166f9e",
"tabbable": null,
- "tooltip": null,
- "value": " 4.42M/4.42M [00:00<00:00, 95.7MB/s]"
+ "tooltip": null
}
},
- "d837ff833a594ea2b02ce7f7523c9dcd": {
+ "e59874221f9f4d51bb63e23f8bea8e22": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "2.0.0",
+ "_model_name": "HTMLStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "2.0.0",
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "e616ea91cf69498784ed469d8d9c5d56": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b8512ae9927e4d10b472de980750960a",
+ "IPY_MODEL_ec0cfb5e96cd45659f2cf1688322801e",
+ "IPY_MODEL_46934565459f444fbec76d736ee3c65a"
+ ],
+ "layout": "IPY_MODEL_01fb1528960642ed98a41c018ebf8642",
+ "tabbable": null,
+ "tooltip": null
}
},
- "d8441cb494324dad83d4a88dd3c805e6": {
+ "eb91bc2da0d0401aa97f87f238166f9e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8004,30 +8093,33 @@
"width": null
}
},
- "d8736cab840549168545a3a77aa8e714": {
+ "ec0cfb5e96cd45659f2cf1688322801e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_11e93782fa6f464e9f6900e0c646f5cf",
- "placeholder": "",
- "style": "IPY_MODEL_83fe2423c4494c2b9394412c402eca60",
+ "layout": "IPY_MODEL_0b40cdefc96a418498d22347f69b2092",
+ "max": 60000.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52a385af17b044b190124cefc696f61a",
"tabbable": null,
"tooltip": null,
- "value": "Computing checksums: 100%"
+ "value": 60000.0
}
},
- "dbc28ec812a84d3f80f20f8fcab2939a": {
+ "f0ecfab0de304d19b81550b7de254646": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8080,7 +8172,7 @@
"width": null
}
},
- "dc708bb2c5314b17862c251eeb9db099": {
+ "f3c6cde529c44282837ed44228f6eb41": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -8095,41 +8187,31 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_c82a1f05b0ec418a9670fcf0e44708f1",
+ "layout": "IPY_MODEL_747383714a754016b00b74ce13e738ed",
"placeholder": "",
- "style": "IPY_MODEL_3c76ee6a2244430cbb3e8e8416d1a23c",
+ "style": "IPY_MODEL_44007c0808df4ead8edb28f0e244a3dc",
"tabbable": null,
"tooltip": null,
- "value": " 4/4 [00:00<00:00, 1332.58it/s]"
+ "value": " 40/40 [00:00<00:00, 55.94it/s]"
}
},
- "dd4b960c1fc54808ac7ec7abfbe1ccbc": {
+ "f3dbc819150243c8b46c185ca1842360": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_7defd4db8e0e4d9d806b06b0ad18bad9",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_04bfeccaeea6416e98641eb5e663ae0b",
- "tabbable": null,
- "tooltip": null,
- "value": 60000.0
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "dd549dafe96d457a9f3e32fa6dda0ce5": {
+ "f43b69d6c4c84e62adfd01c967a90fa3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8182,7 +8264,7 @@
"width": null
}
},
- "e06347bb350642c28c5755357c9f6b4f": {
+ "f5ded18337834f7a9dbd8390a89b501e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8200,7 +8282,7 @@
"text_color": null
}
},
- "e075f5bd416a447eb67433e0d225370f": {
+ "f6bff3421ffe4305b801978e8849eb8c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
@@ -8215,126 +8297,79 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_865a8adbaefe44eb930f2df86dcd3a25",
- "IPY_MODEL_2253900d1539484ea6c5fb5f87e34fae",
- "IPY_MODEL_f669341590db4e77b2110a49a3fa808c"
+ "IPY_MODEL_ab4d075c34534c19a1bbc155e5546698",
+ "IPY_MODEL_660a237d926d49899ac17b9e92223c1c",
+ "IPY_MODEL_93223ec843da40588ff01a9e1ff7f446"
],
- "layout": "IPY_MODEL_431d46eafa8c450b8c8f1bf1f7883cf3",
+ "layout": "IPY_MODEL_1709639a246d43619f500f188e197fd6",
"tabbable": null,
"tooltip": null
}
},
- "e522f4fa76294f30ae3dc6a49425837b": {
+ "f98b94bfe32c4565a73c98a0212942f6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "background": null,
- "description_width": "",
- "font_size": null,
- "text_color": null
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_allow_html": false,
+ "layout": "IPY_MODEL_a0fcbc8073a04dc3b3d50f64b4a77c05",
+ "placeholder": "",
+ "style": "IPY_MODEL_1f2da7f8744547fe843e252764b428d7",
+ "tabbable": null,
+ "tooltip": null,
+ "value": " 8.85k/8.85k [00:00<00:00, 1.40MB/s]"
}
},
- "e675357d5efc42b3968d61c273ca5f7f": {
+ "fa5b88ba2d5f4e2890a86a132006ee49": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "2.0.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "e7e60d48deb84f8681aa2b4aaa1ad387": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "2.0.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0dd2109ac6524d679b387d10fc63ae01",
+ "IPY_MODEL_aa6090d12f9547aa838e8d1365aebece",
+ "IPY_MODEL_229fd1bb4d404e579aa8deba0d11f45d"
+ ],
+ "layout": "IPY_MODEL_3c3363fd27ee42a7b1d48f723bf24487",
+ "tabbable": null,
+ "tooltip": null
}
},
- "e9b9c9bbe0374dd9b98a3a4c1553822f": {
+ "fac4ff02cc5b457cab68f4a636edcdc8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_629ccac58fe74198b172012097674576",
- "placeholder": "",
- "style": "IPY_MODEL_1f7f1fac2dd34d07b7fc07f799729df6",
- "tabbable": null,
- "tooltip": null,
- "value": " 40/40 [00:00<00:00, 59.81it/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "eb33301487694b0f9f4a664fce743134": {
+ "fd27525b063140d5a2b812b1f7f7f8a4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8352,31 +8387,25 @@
"text_color": null
}
},
- "ebc081ac7cef42f58f0c46bdca672b27": {
+ "fda2c399539b430987fc114befcc2f59": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a518055f2d994914bf1de3d11ea03a82",
- "IPY_MODEL_18e5b3625d2a4b3abbfea651a20eef56",
- "IPY_MODEL_91e935457d624042a2d02c107985c146"
- ],
- "layout": "IPY_MODEL_2bf71c3624ce4413bc347a20e07c26d5",
- "tabbable": null,
- "tooltip": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "ed6f311b0f784e268d2c2f765d55a94a": {
+ "fdb9730e58fc4db8b34379709a24eedd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
@@ -8391,15 +8420,15 @@
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
- "layout": "IPY_MODEL_e7e60d48deb84f8681aa2b4aaa1ad387",
+ "layout": "IPY_MODEL_f0ecfab0de304d19b81550b7de254646",
"placeholder": "",
- "style": "IPY_MODEL_17af51078a0c4c0f92db9850c8c773d7",
+ "style": "IPY_MODEL_7a62182e1a1f495e934de1b0fb6f6766",
"tabbable": null,
"tooltip": null,
- "value": "100%"
+ "value": "Downloading data: 100%"
}
},
- "ed7068ef4b08440eaae3bd1ba5cca147": {
+ "fe13f2bdaafe4bd09546de6cf5e55c4f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8452,7 +8481,7 @@
"width": null
}
},
- "f08b9948f05248b3b3ef10bd15ffc7d8": {
+ "feb23f7712944922882bc91b4b7dd179": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8505,7 +8534,7 @@
"width": null
}
},
- "f332684f2b70406ab76c95d24f2f40ed": {
+ "fed1e24975764ce4a8e5c16384c09605": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
@@ -8523,83 +8552,41 @@
"text_color": null
}
},
- "f35f77b3dc2d4f87b2f6435eb17b5f51": {
- "model_module": "@jupyter-widgets/base",
+ "fef9aeeb677745ee8a6954bb2c1e4439": {
+ "model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "LayoutModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "LayoutModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border_bottom": null,
- "border_left": null,
- "border_right": null,
- "border_top": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "f669341590db4e77b2110a49a3fa808c": {
+ "ff007de4777147b0bb0ee154b5c66868": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_8ce5df9efdba4fd1bad996ee729dec94",
- "placeholder": "",
- "style": "IPY_MODEL_a3d6f09afbca4e6482b56fd6d71d9b25",
- "tabbable": null,
- "tooltip": null,
- "value": " 60000/60000 [00:10<00:00, 5815.53 examples/s]"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "f8852f488ece4717923d24f0f949869a": {
+ "ff30ce297fbf40a3b41354d9b5c04b47": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
@@ -8652,30 +8639,25 @@
"width": null
}
},
- "f99e5e0dbb254dd0a57ef096794a0277": {
+ "ff6918e846af4011afbcb1224c990aea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
- "model_name": "HTMLModel",
+ "model_name": "HTMLStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HTMLStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_allow_html": false,
- "layout": "IPY_MODEL_176f4fe537ab44709eed5f4771e5a748",
- "placeholder": "",
- "style": "IPY_MODEL_b45281dbfb444428b286e76808d4a658",
- "tabbable": null,
- "tooltip": null,
- "value": "100%"
+ "_view_name": "StyleView",
+ "background": null,
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
}
},
- "fb9b135b97bd45978b3759750aac7be4": {
+ "ff7d28ca3d77451c938e3d05c9d35bd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html
index ebabd1eb7..a52b60acf 100644
--- a/master/tutorials/datalab/tabular.html
+++ b/master/tutorials/datalab/tabular.html
@@ -891,7 +891,7 @@ 5. Use cleanlab to find label issues