diff --git a/master/.buildinfo b/master/.buildinfo index d3ecc97c6..7e68297b1 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 968a66b0473ab60595f0d504c1ee6a73 +config: 85adb3bca497ea50b6b3819dd434747f tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 5723bbe9e..af98b3e22 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index cefe2bfe2..273122f22 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 12b49e27a..6ecada7f5 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 203527028..643073815 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index f4d6ead44..4f21f8548 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 086e20a75..255d98ba7 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 64efad6ec..743f5adae 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 8287e335d..b2340ed68 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index a7c6e86d0..3b01b709e 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 0841dfccd..b784df6e5 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index f0008054a..dc4f89a47 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 5522e6194..0a2ba7231 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 649776641..9311bd98b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 72b82dcfc..bb11f4ae2 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index bd7611287..d9c4a27a1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 86353d945..8f29e468b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index a46ba56fb..2daccdcab 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index dd5e7ec59..4d8a8e5f4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index cddf198e2..1fc09502d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index e9cfe5d94..fc9e1ebc4 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index b9ddd10a3..744259b9c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index fa7786f74..e960c87d1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index e59b5003f..e41a47182 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 5904cfa62..580e98fec 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 8413d40dc..de87217d7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index dbb72a518..d86dd713c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index e6a9ab64f..72de12d06 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index e20c2c26a..3a36a0439 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 1fd18ee2b..a7458b185 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index cc09748e2..837822d08 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 9cfb1f2db..239335b14 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index b62cf2620..57b9e0d4a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index d0a2f81dd..7535367f8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index fdcd143eb..ceebe9248 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 6705cdf65..cfbb5b63b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index fe1dc9d35..abbaa60bc 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index c1bdefa67..51e5dcaf5 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 84dac0b98..1d31b5919 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index ade0fad74..be171d574 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index f51a5856b..8cdb93dcf 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 66c34812d..a061cde4d 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 3e944b144..4a3f318be 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 9641ba475..ef614e8b9 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 977f7dde6..69baeec9a 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 7824ae7a3..055b161a4 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 35e3f2ae9..6e9810594 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 5f3e093cf..c77e3bf48 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index a1d102b13..d9200c731 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index f470f53af..547417fb8 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 42eeb4c7c..5f301128f 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 18c2fe621..6fa63ddad 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 8335578f9..5afc94a4c 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 45c91b5a1..98607bbb2 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 2377c5d0b..928919bd4 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 2c9f68c7d..c610f67e1 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 1d403b20a..88fe2da90 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 387c816d6..da0f5101c 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 165bb7369..81121a09b 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index fbc8d2a47..ded2edb55 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index db36fce06..a29c8e165 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index f49abab63..058d0db27 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index d0ead2a82..f2607c704 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 5373ed4d3..f26e2e765 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 380f31b24..6da4a13cd 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index e948836c1..ee297eaca 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index c7b510abb..abcff73c4 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 711e6fea1..033bd91ce 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 5b51ef4ce..22e27fb62 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 538c13689..938d55f0e 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index fc260b1da..e24883610 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index a141d7521..8e549a488 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 01b9faa89..b22c80af2 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index e9c014809..08cac3460 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 9b290ac65..77369f7c2 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 1bc9dc8a4..366a2fdc9 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 95ac8f1dc..ac1ee2e64 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index e68cde301..a0843a03c 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 603b9e016..a9b54afdb 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 99c6efac3..c34ad8e0a 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 1a63803c0..fd265a01c 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 54364ec9b..2b70112a6 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 587e1feaf..b81c3f7aa 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index c009fe632..fe7dd6ced 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index a2be6914a..48f813a81 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 796aab398..56995e388 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index fe1ecf959..66ff9766a 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 3c767a52b..9203bd4c5 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:29.939561Z", - "iopub.status.busy": "2024-05-23T15:11:29.939078Z", - "iopub.status.idle": "2024-05-23T15:11:31.129872Z", - "shell.execute_reply": "2024-05-23T15:11:31.129360Z" + "iopub.execute_input": "2024-05-24T13:25:23.139397Z", + "iopub.status.busy": "2024-05-24T13:25:23.139224Z", + "iopub.status.idle": "2024-05-24T13:25:24.372742Z", + "shell.execute_reply": "2024-05-24T13:25:24.372183Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:31.132569Z", - "iopub.status.busy": "2024-05-23T15:11:31.132124Z", - "iopub.status.idle": "2024-05-23T15:11:31.150874Z", - "shell.execute_reply": "2024-05-23T15:11:31.150275Z" + "iopub.execute_input": "2024-05-24T13:25:24.375484Z", + "iopub.status.busy": "2024-05-24T13:25:24.375102Z", + "iopub.status.idle": "2024-05-24T13:25:24.393608Z", + "shell.execute_reply": "2024-05-24T13:25:24.393036Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:31.153402Z", - "iopub.status.busy": "2024-05-23T15:11:31.152891Z", - "iopub.status.idle": "2024-05-23T15:11:35.097490Z", - "shell.execute_reply": "2024-05-23T15:11:35.096917Z" + "iopub.execute_input": "2024-05-24T13:25:24.396129Z", + "iopub.status.busy": "2024-05-24T13:25:24.395647Z", + "iopub.status.idle": "2024-05-24T13:25:24.539897Z", + "shell.execute_reply": "2024-05-24T13:25:24.539294Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.127357Z", - "iopub.status.busy": "2024-05-23T15:11:35.126893Z", - "iopub.status.idle": "2024-05-23T15:11:35.130647Z", - "shell.execute_reply": "2024-05-23T15:11:35.130146Z" + "iopub.execute_input": "2024-05-24T13:25:24.571342Z", + "iopub.status.busy": "2024-05-24T13:25:24.570786Z", + "iopub.status.idle": "2024-05-24T13:25:24.574926Z", + "shell.execute_reply": "2024-05-24T13:25:24.574442Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.132706Z", - "iopub.status.busy": "2024-05-23T15:11:35.132528Z", - "iopub.status.idle": "2024-05-23T15:11:35.140756Z", - "shell.execute_reply": "2024-05-23T15:11:35.140328Z" + "iopub.execute_input": "2024-05-24T13:25:24.577093Z", + "iopub.status.busy": "2024-05-24T13:25:24.576766Z", + "iopub.status.idle": "2024-05-24T13:25:24.585651Z", + "shell.execute_reply": "2024-05-24T13:25:24.585142Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.142646Z", - "iopub.status.busy": "2024-05-23T15:11:35.142467Z", - "iopub.status.idle": "2024-05-23T15:11:35.145149Z", - "shell.execute_reply": "2024-05-23T15:11:35.144612Z" + "iopub.execute_input": "2024-05-24T13:25:24.587758Z", + "iopub.status.busy": "2024-05-24T13:25:24.587580Z", + "iopub.status.idle": "2024-05-24T13:25:24.590069Z", + "shell.execute_reply": "2024-05-24T13:25:24.589631Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.147384Z", - "iopub.status.busy": "2024-05-23T15:11:35.147087Z", - "iopub.status.idle": "2024-05-23T15:11:35.665353Z", - "shell.execute_reply": "2024-05-23T15:11:35.664730Z" + "iopub.execute_input": "2024-05-24T13:25:24.592021Z", + "iopub.status.busy": "2024-05-24T13:25:24.591723Z", + "iopub.status.idle": "2024-05-24T13:25:25.117485Z", + "shell.execute_reply": "2024-05-24T13:25:25.116865Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.667934Z", - "iopub.status.busy": "2024-05-23T15:11:35.667744Z", - "iopub.status.idle": "2024-05-23T15:11:37.304742Z", - "shell.execute_reply": "2024-05-23T15:11:37.304102Z" + "iopub.execute_input": "2024-05-24T13:25:25.119932Z", + "iopub.status.busy": "2024-05-24T13:25:25.119747Z", + "iopub.status.idle": "2024-05-24T13:25:26.819261Z", + "shell.execute_reply": "2024-05-24T13:25:26.818585Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.307449Z", - "iopub.status.busy": "2024-05-23T15:11:37.306895Z", - "iopub.status.idle": "2024-05-23T15:11:37.316988Z", - "shell.execute_reply": "2024-05-23T15:11:37.316560Z" + "iopub.execute_input": "2024-05-24T13:25:26.821849Z", + "iopub.status.busy": "2024-05-24T13:25:26.821280Z", + "iopub.status.idle": "2024-05-24T13:25:26.831564Z", + "shell.execute_reply": "2024-05-24T13:25:26.831082Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.319043Z", - "iopub.status.busy": "2024-05-23T15:11:37.318729Z", - "iopub.status.idle": "2024-05-23T15:11:37.322531Z", - "shell.execute_reply": "2024-05-23T15:11:37.322054Z" + "iopub.execute_input": "2024-05-24T13:25:26.833725Z", + "iopub.status.busy": "2024-05-24T13:25:26.833341Z", + "iopub.status.idle": "2024-05-24T13:25:26.837609Z", + "shell.execute_reply": "2024-05-24T13:25:26.837171Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.324416Z", - "iopub.status.busy": "2024-05-23T15:11:37.324160Z", - "iopub.status.idle": "2024-05-23T15:11:37.331172Z", - "shell.execute_reply": "2024-05-23T15:11:37.330632Z" + "iopub.execute_input": "2024-05-24T13:25:26.839785Z", + "iopub.status.busy": "2024-05-24T13:25:26.839346Z", + "iopub.status.idle": "2024-05-24T13:25:26.846776Z", + "shell.execute_reply": "2024-05-24T13:25:26.846151Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.333196Z", - "iopub.status.busy": "2024-05-23T15:11:37.332791Z", - "iopub.status.idle": "2024-05-23T15:11:37.444673Z", - "shell.execute_reply": "2024-05-23T15:11:37.444061Z" + "iopub.execute_input": "2024-05-24T13:25:26.848894Z", + "iopub.status.busy": "2024-05-24T13:25:26.848593Z", + "iopub.status.idle": "2024-05-24T13:25:26.963076Z", + "shell.execute_reply": "2024-05-24T13:25:26.962464Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.446962Z", - "iopub.status.busy": "2024-05-23T15:11:37.446654Z", - "iopub.status.idle": "2024-05-23T15:11:37.449408Z", - "shell.execute_reply": "2024-05-23T15:11:37.448965Z" + "iopub.execute_input": "2024-05-24T13:25:26.965477Z", + "iopub.status.busy": "2024-05-24T13:25:26.965008Z", + "iopub.status.idle": "2024-05-24T13:25:26.968092Z", + "shell.execute_reply": "2024-05-24T13:25:26.967527Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.451353Z", - "iopub.status.busy": "2024-05-23T15:11:37.451177Z", - "iopub.status.idle": "2024-05-23T15:11:39.353760Z", - "shell.execute_reply": "2024-05-23T15:11:39.353151Z" + "iopub.execute_input": "2024-05-24T13:25:26.970226Z", + "iopub.status.busy": "2024-05-24T13:25:26.969921Z", + "iopub.status.idle": "2024-05-24T13:25:28.942023Z", + "shell.execute_reply": "2024-05-24T13:25:28.941340Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:39.356604Z", - "iopub.status.busy": "2024-05-23T15:11:39.356057Z", - "iopub.status.idle": "2024-05-23T15:11:39.367226Z", - "shell.execute_reply": "2024-05-23T15:11:39.366744Z" + "iopub.execute_input": "2024-05-24T13:25:28.945042Z", + "iopub.status.busy": "2024-05-24T13:25:28.944331Z", + "iopub.status.idle": "2024-05-24T13:25:28.956087Z", + "shell.execute_reply": "2024-05-24T13:25:28.955507Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:39.369106Z", - "iopub.status.busy": "2024-05-23T15:11:39.368935Z", - "iopub.status.idle": "2024-05-23T15:11:39.401442Z", - "shell.execute_reply": "2024-05-23T15:11:39.400993Z" + "iopub.execute_input": "2024-05-24T13:25:28.958105Z", + "iopub.status.busy": "2024-05-24T13:25:28.957770Z", + "iopub.status.idle": "2024-05-24T13:25:29.003732Z", + "shell.execute_reply": "2024-05-24T13:25:29.003254Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index bed7bd792..a8bee74f1 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:42.361209Z", - "iopub.status.busy": "2024-05-23T15:11:42.360877Z", - "iopub.status.idle": "2024-05-23T15:11:45.186640Z", - "shell.execute_reply": "2024-05-23T15:11:45.186062Z" + "iopub.execute_input": "2024-05-24T13:25:31.916711Z", + "iopub.status.busy": "2024-05-24T13:25:31.916225Z", + "iopub.status.idle": "2024-05-24T13:25:34.668288Z", + "shell.execute_reply": "2024-05-24T13:25:34.667627Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.189175Z", - "iopub.status.busy": "2024-05-23T15:11:45.188733Z", - "iopub.status.idle": "2024-05-23T15:11:45.192058Z", - "shell.execute_reply": "2024-05-23T15:11:45.191634Z" + "iopub.execute_input": "2024-05-24T13:25:34.670891Z", + "iopub.status.busy": "2024-05-24T13:25:34.670577Z", + "iopub.status.idle": "2024-05-24T13:25:34.673923Z", + "shell.execute_reply": "2024-05-24T13:25:34.673475Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.193987Z", - "iopub.status.busy": "2024-05-23T15:11:45.193657Z", - "iopub.status.idle": "2024-05-23T15:11:45.196835Z", - "shell.execute_reply": "2024-05-23T15:11:45.196384Z" + "iopub.execute_input": "2024-05-24T13:25:34.676025Z", + "iopub.status.busy": "2024-05-24T13:25:34.675608Z", + "iopub.status.idle": "2024-05-24T13:25:34.678639Z", + "shell.execute_reply": "2024-05-24T13:25:34.678197Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.198907Z", - "iopub.status.busy": "2024-05-23T15:11:45.198523Z", - "iopub.status.idle": "2024-05-23T15:11:45.233893Z", - "shell.execute_reply": "2024-05-23T15:11:45.233417Z" + "iopub.execute_input": "2024-05-24T13:25:34.680799Z", + "iopub.status.busy": "2024-05-24T13:25:34.680405Z", + "iopub.status.idle": "2024-05-24T13:25:34.723437Z", + "shell.execute_reply": "2024-05-24T13:25:34.722875Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.235873Z", - "iopub.status.busy": "2024-05-23T15:11:45.235696Z", - "iopub.status.idle": "2024-05-23T15:11:45.239078Z", - "shell.execute_reply": "2024-05-23T15:11:45.238632Z" + "iopub.execute_input": "2024-05-24T13:25:34.725612Z", + "iopub.status.busy": "2024-05-24T13:25:34.725208Z", + "iopub.status.idle": "2024-05-24T13:25:34.728904Z", + "shell.execute_reply": "2024-05-24T13:25:34.728360Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.240844Z", - "iopub.status.busy": "2024-05-23T15:11:45.240674Z", - "iopub.status.idle": "2024-05-23T15:11:45.243892Z", - "shell.execute_reply": "2024-05-23T15:11:45.243401Z" + "iopub.execute_input": "2024-05-24T13:25:34.730982Z", + "iopub.status.busy": "2024-05-24T13:25:34.730669Z", + "iopub.status.idle": "2024-05-24T13:25:34.734013Z", + "shell.execute_reply": "2024-05-24T13:25:34.733483Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}\n" + "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.245830Z", - "iopub.status.busy": "2024-05-23T15:11:45.245507Z", - "iopub.status.idle": "2024-05-23T15:11:45.248696Z", - "shell.execute_reply": "2024-05-23T15:11:45.248239Z" + "iopub.execute_input": "2024-05-24T13:25:34.736065Z", + "iopub.status.busy": "2024-05-24T13:25:34.735756Z", + "iopub.status.idle": "2024-05-24T13:25:34.738889Z", + "shell.execute_reply": "2024-05-24T13:25:34.738371Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.250735Z", - "iopub.status.busy": "2024-05-23T15:11:45.250426Z", - "iopub.status.idle": "2024-05-23T15:11:45.253679Z", - "shell.execute_reply": "2024-05-23T15:11:45.253224Z" + "iopub.execute_input": "2024-05-24T13:25:34.741013Z", + "iopub.status.busy": "2024-05-24T13:25:34.740576Z", + "iopub.status.idle": "2024-05-24T13:25:34.744060Z", + "shell.execute_reply": "2024-05-24T13:25:34.743517Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.255640Z", - "iopub.status.busy": "2024-05-23T15:11:45.255321Z", - "iopub.status.idle": "2024-05-23T15:11:51.000423Z", - "shell.execute_reply": "2024-05-23T15:11:50.999865Z" + "iopub.execute_input": "2024-05-24T13:25:34.745994Z", + "iopub.status.busy": "2024-05-24T13:25:34.745815Z", + "iopub.status.idle": "2024-05-24T13:25:38.937684Z", + "shell.execute_reply": "2024-05-24T13:25:38.937077Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88db1ed782f3468fa38bac950d3092b7", + "model_id": "3cb0e9f432274062aebafb20a36cbad1", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b77e61e755d4f119937e03ca1485b9c", + "model_id": "78c431862e034985b20d87b523b649cb", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "27ff10056afe437197e80dcaa26d37ee", + "model_id": "95ad1d4029f7400c8d447943f1a72e3f", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1c8778b071f488d9b67876bc5569568", + "model_id": "3fa768a1593f4a8db667c924f9f15c65", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944db354360447dc908680f8480dcdc0", + "model_id": "64de1eed35fd4631922cf1eafa082f2f", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d17fd6a19048484d9d197a89d97ba550", + "model_id": "8e78dc7e5de8408a8b53fb5a666479c4", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fc93fb206df4074a67da4377661b97d", + "model_id": "5818044c7d3e495db1d4d3a4baa4d3a0", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.003086Z", - "iopub.status.busy": "2024-05-23T15:11:51.002708Z", - "iopub.status.idle": "2024-05-23T15:11:51.005623Z", - "shell.execute_reply": "2024-05-23T15:11:51.005128Z" + "iopub.execute_input": "2024-05-24T13:25:38.940466Z", + "iopub.status.busy": "2024-05-24T13:25:38.940076Z", + "iopub.status.idle": "2024-05-24T13:25:38.943052Z", + "shell.execute_reply": "2024-05-24T13:25:38.942547Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.007663Z", - "iopub.status.busy": "2024-05-23T15:11:51.007337Z", - "iopub.status.idle": "2024-05-23T15:11:51.009851Z", - "shell.execute_reply": "2024-05-23T15:11:51.009412Z" + "iopub.execute_input": "2024-05-24T13:25:38.945107Z", + "iopub.status.busy": "2024-05-24T13:25:38.944761Z", + "iopub.status.idle": "2024-05-24T13:25:38.947408Z", + "shell.execute_reply": "2024-05-24T13:25:38.946979Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.011732Z", - "iopub.status.busy": "2024-05-23T15:11:51.011553Z", - "iopub.status.idle": "2024-05-23T15:11:53.240372Z", - "shell.execute_reply": "2024-05-23T15:11:53.239743Z" + "iopub.execute_input": "2024-05-24T13:25:38.949449Z", + "iopub.status.busy": "2024-05-24T13:25:38.949126Z", + "iopub.status.idle": "2024-05-24T13:25:41.227887Z", + "shell.execute_reply": "2024-05-24T13:25:41.227258Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.243298Z", - "iopub.status.busy": "2024-05-23T15:11:53.242690Z", - "iopub.status.idle": "2024-05-23T15:11:53.251209Z", - "shell.execute_reply": "2024-05-23T15:11:53.250768Z" + "iopub.execute_input": "2024-05-24T13:25:41.230715Z", + "iopub.status.busy": "2024-05-24T13:25:41.230096Z", + "iopub.status.idle": "2024-05-24T13:25:41.237787Z", + "shell.execute_reply": "2024-05-24T13:25:41.237256Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.253349Z", - "iopub.status.busy": "2024-05-23T15:11:53.253040Z", - "iopub.status.idle": "2024-05-23T15:11:53.256877Z", - "shell.execute_reply": "2024-05-23T15:11:53.256443Z" + "iopub.execute_input": "2024-05-24T13:25:41.239878Z", + "iopub.status.busy": "2024-05-24T13:25:41.239563Z", + "iopub.status.idle": "2024-05-24T13:25:41.243552Z", + "shell.execute_reply": "2024-05-24T13:25:41.243009Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.258809Z", - "iopub.status.busy": "2024-05-23T15:11:53.258494Z", - "iopub.status.idle": "2024-05-23T15:11:53.261793Z", - "shell.execute_reply": "2024-05-23T15:11:53.261337Z" + "iopub.execute_input": "2024-05-24T13:25:41.245576Z", + "iopub.status.busy": "2024-05-24T13:25:41.245272Z", + "iopub.status.idle": "2024-05-24T13:25:41.248466Z", + "shell.execute_reply": "2024-05-24T13:25:41.247952Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.263814Z", - "iopub.status.busy": "2024-05-23T15:11:53.263498Z", - "iopub.status.idle": "2024-05-23T15:11:53.266484Z", - "shell.execute_reply": "2024-05-23T15:11:53.265996Z" + "iopub.execute_input": "2024-05-24T13:25:41.250604Z", + "iopub.status.busy": "2024-05-24T13:25:41.250284Z", + "iopub.status.idle": "2024-05-24T13:25:41.253133Z", + "shell.execute_reply": "2024-05-24T13:25:41.252701Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.268367Z", - "iopub.status.busy": "2024-05-23T15:11:53.268053Z", - "iopub.status.idle": "2024-05-23T15:11:53.276306Z", - "shell.execute_reply": "2024-05-23T15:11:53.275840Z" + "iopub.execute_input": "2024-05-24T13:25:41.255032Z", + "iopub.status.busy": "2024-05-24T13:25:41.254725Z", + "iopub.status.idle": "2024-05-24T13:25:41.262863Z", + "shell.execute_reply": "2024-05-24T13:25:41.262312Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.278297Z", - "iopub.status.busy": "2024-05-23T15:11:53.277985Z", - "iopub.status.idle": "2024-05-23T15:11:53.502080Z", - "shell.execute_reply": "2024-05-23T15:11:53.501482Z" + "iopub.execute_input": "2024-05-24T13:25:41.264879Z", + "iopub.status.busy": "2024-05-24T13:25:41.264578Z", + "iopub.status.idle": "2024-05-24T13:25:41.488553Z", + "shell.execute_reply": "2024-05-24T13:25:41.487980Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.505061Z", - "iopub.status.busy": "2024-05-23T15:11:53.504534Z", - "iopub.status.idle": "2024-05-23T15:11:53.679226Z", - "shell.execute_reply": "2024-05-23T15:11:53.678650Z" + "iopub.execute_input": "2024-05-24T13:25:41.491847Z", + "iopub.status.busy": "2024-05-24T13:25:41.490770Z", + "iopub.status.idle": "2024-05-24T13:25:41.666422Z", + "shell.execute_reply": "2024-05-24T13:25:41.665837Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.681807Z", - "iopub.status.busy": "2024-05-23T15:11:53.681402Z", - "iopub.status.idle": "2024-05-23T15:11:53.685379Z", - "shell.execute_reply": "2024-05-23T15:11:53.684896Z" + "iopub.execute_input": "2024-05-24T13:25:41.670374Z", + "iopub.status.busy": "2024-05-24T13:25:41.669354Z", + "iopub.status.idle": "2024-05-24T13:25:41.674497Z", + "shell.execute_reply": "2024-05-24T13:25:41.673952Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "057aa8cb2fca4d0a965488bc4b12c120": { + "027ef188174643a28b9a0af069033625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fe16b12eafd40d2bc397a4964c3d6f3", + "placeholder": "​", + "style": "IPY_MODEL_5f082da0930a44f3941b06992f229fd8", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "065ae855ee5e474f918436961e89e4f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0fe16b12eafd40d2bc397a4964c3d6f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "12851408c60b4af5b239848b6137b435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1166,7 +1260,7 @@ "width": null } }, - "07cffd6ee3cb4ee180c45f9e89a87081": { + "168a9b4c464445f49b17a63a9da09d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1219,7 +1313,7 @@ "width": null } }, - "0ac78e724f5a410091258100cbc42249": { + "20951700f4b54e65b988a14e96cd458e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1234,33 +1328,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", + "layout": "IPY_MODEL_12851408c60b4af5b239848b6137b435", "placeholder": "​", - "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", + "style": "IPY_MODEL_ad06e1d660e647489bdb53d696b097c7", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 31.3MB/s]" - } - }, - "108fa6774b4943129df006d3865c18a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "pytorch_model.bin: 100%" } }, - "13a4673a44e041a9be990dd279b14b81": { + "269ead8b597e4114b7b19debcaf48933": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,25 +1389,7 @@ "width": null } }, - "13bf594da49b4afba0315f15c19cb9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1433c4cd47e04df98a78f5175ceed725": { + "2a686edb938f48858ecd2fea6a63c1cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1384,7 +1442,53 @@ "width": null } }, - "15c367e37d544060a2483da64a2efc7d": { + "31a079d1c6034eda8e81d9cd2ac11187": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb6145fe27784c278be23968571b4af1", + "placeholder": "​", + "style": "IPY_MODEL_5e3dc4afc56744d99d1ab1f0c2a76d4d", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 7.29kB/s]" + } + }, + "32dacdb6859c4cd3bc2bd3987f24a59b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_168a9b4c464445f49b17a63a9da09d0d", + "placeholder": "​", + "style": "IPY_MODEL_3c8e44c6757e4a09a2cf9320c6b80c91", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "34630896975543deba6ccf79cfb95016": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1437,7 +1541,7 @@ "width": null } }, - "1c17efbeb5004a8da7fabc03d3d9585b": { + "365fd3942e7d409e8378f81fbf616131": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1490,7 +1594,7 @@ "width": null } }, - "21fceb25363d4a59a9cbd26b09f9c0f7": { + "3720f07155774146a89f6af3e5f0f2f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1508,7 +1612,7 @@ "text_color": null } }, - "251a6e7067ca496195a9b73f6af43a11": { + "380abffa48624dd3adf20cff64df9c75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1526,70 +1630,25 @@ "text_color": null } }, - "26b18199fe454bcfab7cbbd748debfbc": { + "3c8e44c6757e4a09a2cf9320c6b80c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27ff10056afe437197e80dcaa26d37ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_335cdeff3368490c9dacf86a1640f430", - "IPY_MODEL_aaabad1bacb84378bc109506930c4938", - "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83" - ], - "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", - "tabbable": null, - "tooltip": null - } - }, - "2ab61373d70f4432bc84390e3e6dc3af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", - "placeholder": "​", - "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2b77e61e755d4f119937e03ca1485b9c": { + "3cb0e9f432274062aebafb20a36cbad1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1604,16 +1663,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_696e69955b874e9e98bc2febed0ff152", - "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", - "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e" + "IPY_MODEL_478330577d8a4e2d8fd40af62619e804", + "IPY_MODEL_ca863a4788ac49d4b85c6e5692cd81e3", + "IPY_MODEL_d4186a7adc6847de9de2b7442468f39a" ], - "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", + "layout": "IPY_MODEL_6034bb425b9b4835af168f6a91c638e3", "tabbable": null, "tooltip": null } }, - "2d05eeda60f3453d8f85530225404b34": { + "3cc0fb5673684ccda341845d011c4024": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1666,41 +1725,57 @@ "width": null } }, - "2dffee1fe1774d419335ccdc19dc5d4a": { + "3fa768a1593f4a8db667c924f9f15c65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20951700f4b54e65b988a14e96cd458e", + "IPY_MODEL_413f59e9755340c69872445a262f92ae", + "IPY_MODEL_bd92a01ea14b4bb380af7b6c04441547" + ], + "layout": "IPY_MODEL_3cc0fb5673684ccda341845d011c4024", + "tabbable": null, + "tooltip": null } }, - "314a2fc932ee4e25a10a88ca2e4bd00f": { + "413f59e9755340c69872445a262f92ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebcf2076c43d487f9f6cbfc66abe952b", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c792163e92454f188483a10c33bc976f", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "335cdeff3368490c9dacf86a1640f430": { + "44b12be63bdb4cec91b5b3767ff58ab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1715,68 +1790,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", + "layout": "IPY_MODEL_9eea6c4256364cc2ae0c53b440cb07c0", "placeholder": "​", - "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", + "style": "IPY_MODEL_faafaa82bc2d45cbbe52651504361e5a", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 9.47MB/s]" } }, - "3c768fd273824ade906a50c7a96037a0": { - "model_module": "@jupyter-widgets/base", + "478330577d8a4e2d8fd40af62619e804": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_857184203e7b4e3b978a9344349e37cc", + "placeholder": "​", + "style": "IPY_MODEL_8711d1c36353447e84a411ef4ff353ed", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "4902e2a667314840ad29c3989fbc3d71": { + "4a360c874a264a1cbb444659756c92b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1791,15 +1836,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", + "layout": "IPY_MODEL_9dd805d9fad64ee984cad1a23ed02252", "placeholder": "​", - "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", + "style": "IPY_MODEL_e0a36ef0d0fe4f6aa7aedd9db2639ddb", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "README.md: 100%" + } + }, + "4aa0fbec022a49e79acfcf5da15a2e02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4e963d20d0d145efb61072037f1c0b5b": { + "4e3d1cca0a7b408ebf10c9f52c267f53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1815,60 +1878,41 @@ "description_width": "" } }, - "511cd8d51d574c77881256b004b9cdde": { - "model_module": "@jupyter-widgets/base", + "53497ca6db21429d9f2657103abf3e88": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "538f654d53464eec97241d62b8e91641": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "525dc09656fc4345922cbe2bab00c17f": { + "569bfe499eac4b2b909cb4ec4b6e9cde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1883,15 +1927,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", + "layout": "IPY_MODEL_ddfe4e491b4e4b89a9af38cb16f8e207", "placeholder": "​", - "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", + "style": "IPY_MODEL_538f654d53464eec97241d62b8e91641", "tabbable": null, "tooltip": null, "value": "vocab.txt: 100%" } }, - "550e485ddfb34ac48c7fa38fe4a55fdb": { + "5818044c7d3e495db1d4d3a4baa4d3a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_569bfe499eac4b2b909cb4ec4b6e9cde", + "IPY_MODEL_edb3404b66d243f0b025926216dd5bf6", + "IPY_MODEL_8a0d9021195b45d7bcfb7882352a9b06" + ], + "layout": "IPY_MODEL_6df67edeba6947a08ab241deddc39685", + "tabbable": null, + "tooltip": null + } + }, + "5e3dc4afc56744d99d1ab1f0c2a76d4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5f082da0930a44f3941b06992f229fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6034bb425b9b4835af168f6a91c638e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,33 +2048,70 @@ "width": null } }, - "55554045055240c583d2bc190faec835": { + "646d74a8a1704c50beaba20dee70980e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", + "layout": "IPY_MODEL_e14ee5f6aec543709b7a691e5bbf971c", + "placeholder": "​", + "style": "IPY_MODEL_380abffa48624dd3adf20cff64df9c75", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 2.21k/2.21k [00:00<00:00, 399kB/s]" + } + }, + "64de1eed35fd4631922cf1eafa082f2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_027ef188174643a28b9a0af069033625", + "IPY_MODEL_80600481f6e842ef8ba7a170d79fef69", + "IPY_MODEL_44b12be63bdb4cec91b5b3767ff58ab0" + ], + "layout": "IPY_MODEL_fd55c97d4fac4ba0b4f24c749f5e8ea6", + "tabbable": null, + "tooltip": null + } + }, + "6bdfc64601ec49cd89cdfd3eccd32c96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "57554a7bd18846b1a3d2611e7fe0ac3c": { + "6df67edeba6947a08ab241deddc39685": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2023,7 +2164,7 @@ "width": null } }, - "5783608143bf4c09bf36a32ccd6dda30": { + "70522f6fdc45419d99cb4d1c116761b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,33 +2217,30 @@ "width": null } }, - "5879886cc62b4e94a1d1396dd1a96b4f": { + "720256b69af74b3290fdfa3df131d214": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", + "layout": "IPY_MODEL_8077c9de67304456aff945e66aeee214", + "placeholder": "​", + "style": "IPY_MODEL_f22ffce686eb45c4b714814560ed38f9", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": "tokenizer_config.json: 100%" } }, - "58a72521dc064dc6b408d067598bf149": { + "7255859017d943888557201188a67acb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2120,10 +2258,76 @@ "text_color": null } }, - "5ed30cdd732748b89e88f596fe608d1d": { - "model_module": "@jupyter-widgets/base", + "7796c1ff6760477db39f42b1113ac1e5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "78c431862e034985b20d87b523b649cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a360c874a264a1cbb444659756c92b8", + "IPY_MODEL_c0d87caf7123468eb9c3bb0c92e7e57d", + "IPY_MODEL_646d74a8a1704c50beaba20dee70980e" + ], + "layout": "IPY_MODEL_8c7fc727d23d47d3b3c976fa38dab665", + "tabbable": null, + "tooltip": null + } + }, + "80600481f6e842ef8ba7a170d79fef69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3ea534b59344263b4ed88dc906dc1ca", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e3d1cca0a7b408ebf10c9f52c267f53", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "8077c9de67304456aff945e66aeee214": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2173,7 +2377,7 @@ "width": null } }, - "63031382547c4484b9d9576e44ec985c": { + "807d66bee3d449cfa7e69bc2fa31a471": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2226,25 +2430,7 @@ "width": null } }, - "657f32507c7b4163ba720b93d001fd5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67c70103916041eabd95c923cd979753": { + "857184203e7b4e3b978a9344349e37cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2297,30 +2483,7 @@ "width": null } }, - "696e69955b874e9e98bc2febed0ff152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", - "placeholder": "​", - "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "69f1d3e434ea4aae85d4d61f41a070a4": { + "8711d1c36353447e84a411ef4ff353ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2338,75 +2501,30 @@ "text_color": null } }, - "7091ee4e077b4c53b50d1acf076e85c4": { + "8a0d9021195b45d7bcfb7882352a9b06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "7a83da02a88f44559a8d04bbb0765ca8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7bb11e481b73456c9d4486df66b66d08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", + "layout": "IPY_MODEL_d97c8751e4e5438284d0051058676835", + "placeholder": "​", + "style": "IPY_MODEL_3720f07155774146a89f6af3e5f0f2f0", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 232k/232k [00:00<00:00, 21.9MB/s]" } }, - "7cd284403909488b9ca34ff7b8026738": { + "8c7fc727d23d47d3b3c976fa38dab665": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,122 +2577,7 @@ "width": null } }, - "7fc93fb206df4074a67da4377661b97d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", - "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", - "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af" - ], - "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", - "tabbable": null, - "tooltip": null - } - }, - "837385c4dbaa4cd0a99ec70f0f7fc1f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", - "placeholder": "​", - "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "84abfef1762a40e383897ea9056cfdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "853ceebd1a3c4b059848193e3dc49b97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "8614ab07e12c45f5a2696b92486eceda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "88db1ed782f3468fa38bac950d3092b7": { + "8e78dc7e5de8408a8b53fb5a666479c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2589,16 +2592,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", - "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", - "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e" + "IPY_MODEL_720256b69af74b3290fdfa3df131d214", + "IPY_MODEL_e025804a77f24078942a51cb0dde9351", + "IPY_MODEL_31a079d1c6034eda8e81d9cd2ac11187" ], - "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", + "layout": "IPY_MODEL_269ead8b597e4114b7b19debcaf48933", "tabbable": null, "tooltip": null } }, - "89530782f36a4825b5ea5fd6995f180e": { + "90026142736c44a4af52931df0a9eb81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2613,56 +2616,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", + "layout": "IPY_MODEL_2a686edb938f48858ecd2fea6a63c1cc", "placeholder": "​", - "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", + "style": "IPY_MODEL_065ae855ee5e474f918436961e89e4f0", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.5kB/s]" + "value": " 665/665 [00:00<00:00, 114kB/s]" } }, - "8d73703dab8845c4bb83aa8f21fd2ac0": { - "model_module": "@jupyter-widgets/controls", + "95070382706d43e69c6208df2ff9e118": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f5cb20b54134883910f7866203179cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", - "placeholder": "​", - "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 31.9MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "944db354360447dc908680f8480dcdc0": { + "95ad1d4029f7400c8d447943f1a72e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2677,34 +2692,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", - "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", - "IPY_MODEL_8f5cb20b54134883910f7866203179cc" + "IPY_MODEL_32dacdb6859c4cd3bc2bd3987f24a59b", + "IPY_MODEL_bdd1cd63904a40f382478b0979cfcb6c", + "IPY_MODEL_90026142736c44a4af52931df0a9eb81" ], - "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", + "layout": "IPY_MODEL_807d66bee3d449cfa7e69bc2fa31a471", "tabbable": null, "tooltip": null } }, - "94748dd75dfb42d3bb71113a0985ffa6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "972dbc96b65e45728767c91d7c18cb35": { + "9dd805d9fad64ee984cad1a23ed02252": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2757,30 +2754,7 @@ "width": null } }, - "982ef9e8f8b54273a6d8360202593e4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", - "placeholder": "​", - "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 423kB/s]" - } - }, - "9a788fe502f5407ba8e155ea5e5c2137": { + "9eea6c4256364cc2ae0c53b440cb07c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2833,25 +2807,7 @@ "width": null } }, - "a682da03fb684688a086b672241e96f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8269b5530b545c3851312f53bbb9eea": { + "a3ea534b59344263b4ed88dc906dc1ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2904,25 +2860,148 @@ "width": null } }, - "a8bea20f28ff40b38fdaa46b490e0c22": { + "ad06e1d660e647489bdb53d696b097c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc743ad3319b46968c2a6a60ae58790c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd92a01ea14b4bb380af7b6c04441547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f974da772d4346c1a8a56332722432b8", + "placeholder": "​", + "style": "IPY_MODEL_4aa0fbec022a49e79acfcf5da15a2e02", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 312MB/s]" + } + }, + "bdc9e21717c8426494724e7f521850c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bdd1cd63904a40f382478b0979cfcb6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34630896975543deba6ccf79cfb95016", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdc9e21717c8426494724e7f521850c4", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "c0d87caf7123468eb9c3bb0c92e7e57d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fea40d09c3c34b7c997753992dad3137", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc743ad3319b46968c2a6a60ae58790c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "c792163e92454f188483a10c33bc976f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "aaabad1bacb84378bc109506930c4938": { + "ca863a4788ac49d4b85c6e5692cd81e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2938,17 +3017,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", - "max": 665.0, + "layout": "IPY_MODEL_70522f6fdc45419d99cb4d1c116761b9", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", + "style": "IPY_MODEL_7796c1ff6760477db39f42b1113ac1e5", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 391.0 } }, - "ab4f6f76d3414e73abf4d8ec03d3516c": { + "cb6145fe27784c278be23968571b4af1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3001,23 +3080,7 @@ "width": null } }, - "b77b5193f60341b9b68a8057c0d957b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c97b51894b434f84aed8287f1282e791": { + "d00a1510c14b4a3885c5463e560b1c76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3070,7 +3133,30 @@ "width": null } }, - "cc88f3745d7b40f0be10b65f1a61c53b": { + "d4186a7adc6847de9de2b7442468f39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95070382706d43e69c6208df2ff9e118", + "placeholder": "​", + "style": "IPY_MODEL_7255859017d943888557201188a67acb", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 59.8kB/s]" + } + }, + "d97c8751e4e5438284d0051058676835": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,25 +3209,7 @@ "width": null } }, - "d03c3dd124ec48bdadbec94e624d97ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d11d777946f046dbb16da297cdd4ee7f": { + "ddfe4e491b4e4b89a9af38cb16f8e207": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3194,124 +3262,51 @@ "width": null } }, - "d17fd6a19048484d9d197a89d97ba550": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", - "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", - "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4" - ], - "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", - "tabbable": null, - "tooltip": null - } - }, - "d1c8778b071f488d9b67876bc5569568": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", - "IPY_MODEL_55554045055240c583d2bc190faec835", - "IPY_MODEL_0ac78e724f5a410091258100cbc42249" - ], - "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", - "tabbable": null, - "tooltip": null - } - }, - "d2cc47c0ea394ec5b04de2429472de83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", - "placeholder": "​", - "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 135kB/s]" - } - }, - "d5b00a2e85b84f9a95e07f055a14f61c": { + "e025804a77f24078942a51cb0dde9351": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", - "placeholder": "​", - "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", + "layout": "IPY_MODEL_d00a1510c14b4a3885c5463e560b1c76", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bdfc64601ec49cd89cdfd3eccd32c96", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 48.0 } }, - "d9306c6ebb1c4290a9bec26e8cb38294": { + "e0a36ef0d0fe4f6aa7aedd9db2639ddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", - "placeholder": "​", - "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dccaa0d8cd394fd8afea397dc79e672c": { + "e14ee5f6aec543709b7a691e5bbf971c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3364,30 +3359,7 @@ "width": null } }, - "eadcdb3fd3b14c399ff30a279a5333f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", - "placeholder": "​", - "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.97kB/s]" - } - }, - "eb88da38cb2a41768332b1e1818fbfd7": { + "ebcf2076c43d487f9f6cbfc66abe952b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,7 +3412,33 @@ "width": null } }, - "efc14db7cab848b8bc8de67706902202": { + "edb3404b66d243f0b025926216dd5bf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_365fd3942e7d409e8378f81fbf616131", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53497ca6db21429d9f2657103abf3e88", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f22ffce686eb45c4b714814560ed38f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3458,7 +3456,7 @@ "text_color": null } }, - "f141d248724e4b85bb038a3d25f1dda4": { + "f974da772d4346c1a8a56332722432b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3511,7 +3509,25 @@ "width": null } }, - "f69151cbba4448eab02794703220c674": { + "faafaa82bc2d45cbbe52651504361e5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd55c97d4fac4ba0b4f24c749f5e8ea6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3564,23 +3580,7 @@ "width": null } }, - "f7c71d10032c4b87875d3ef528a77f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fe605d7683594f159c812d6850fdeaf3": { + "fea40d09c3c34b7c997753992dad3137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 38316148d..f7e3b25ee 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:57.077586Z", - "iopub.status.busy": "2024-05-23T15:11:57.077376Z", - "iopub.status.idle": "2024-05-23T15:12:01.691041Z", - "shell.execute_reply": "2024-05-23T15:12:01.690485Z" + "iopub.execute_input": "2024-05-24T13:25:44.814354Z", + "iopub.status.busy": "2024-05-24T13:25:44.814143Z", + "iopub.status.idle": "2024-05-24T13:25:49.608547Z", + "shell.execute_reply": "2024-05-24T13:25:49.607981Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.693619Z", - "iopub.status.busy": "2024-05-23T15:12:01.693116Z", - "iopub.status.idle": "2024-05-23T15:12:01.696158Z", - "shell.execute_reply": "2024-05-23T15:12:01.695726Z" + "iopub.execute_input": "2024-05-24T13:25:49.611239Z", + "iopub.status.busy": "2024-05-24T13:25:49.610721Z", + "iopub.status.idle": "2024-05-24T13:25:49.614097Z", + "shell.execute_reply": "2024-05-24T13:25:49.613528Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.697971Z", - "iopub.status.busy": "2024-05-23T15:12:01.697795Z", - "iopub.status.idle": "2024-05-23T15:12:01.702135Z", - "shell.execute_reply": "2024-05-23T15:12:01.701698Z" + "iopub.execute_input": "2024-05-24T13:25:49.616091Z", + "iopub.status.busy": "2024-05-24T13:25:49.615818Z", + "iopub.status.idle": "2024-05-24T13:25:49.620646Z", + "shell.execute_reply": "2024-05-24T13:25:49.620095Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.704241Z", - "iopub.status.busy": "2024-05-23T15:12:01.703842Z", - "iopub.status.idle": "2024-05-23T15:12:03.459813Z", - "shell.execute_reply": "2024-05-23T15:12:03.459194Z" + "iopub.execute_input": "2024-05-24T13:25:49.622918Z", + "iopub.status.busy": "2024-05-24T13:25:49.622593Z", + "iopub.status.idle": "2024-05-24T13:25:51.148424Z", + "shell.execute_reply": "2024-05-24T13:25:51.147547Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.462186Z", - "iopub.status.busy": "2024-05-23T15:12:03.461990Z", - "iopub.status.idle": "2024-05-23T15:12:03.472497Z", - "shell.execute_reply": "2024-05-23T15:12:03.472070Z" + "iopub.execute_input": "2024-05-24T13:25:51.151792Z", + "iopub.status.busy": "2024-05-24T13:25:51.151396Z", + "iopub.status.idle": "2024-05-24T13:25:51.162960Z", + "shell.execute_reply": "2024-05-24T13:25:51.162371Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.474652Z", - "iopub.status.busy": "2024-05-23T15:12:03.474293Z", - "iopub.status.idle": "2024-05-23T15:12:03.479712Z", - "shell.execute_reply": "2024-05-23T15:12:03.479270Z" + "iopub.execute_input": "2024-05-24T13:25:51.165621Z", + "iopub.status.busy": "2024-05-24T13:25:51.165264Z", + "iopub.status.idle": "2024-05-24T13:25:51.171085Z", + "shell.execute_reply": "2024-05-24T13:25:51.170499Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.481710Z", - "iopub.status.busy": "2024-05-23T15:12:03.481395Z", - "iopub.status.idle": "2024-05-23T15:12:03.907353Z", - "shell.execute_reply": "2024-05-23T15:12:03.906794Z" + "iopub.execute_input": "2024-05-24T13:25:51.173744Z", + "iopub.status.busy": "2024-05-24T13:25:51.173314Z", + "iopub.status.idle": "2024-05-24T13:25:51.609181Z", + "shell.execute_reply": "2024-05-24T13:25:51.608610Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.909621Z", - "iopub.status.busy": "2024-05-23T15:12:03.909270Z", - "iopub.status.idle": "2024-05-23T15:12:04.477713Z", - "shell.execute_reply": "2024-05-23T15:12:04.477093Z" + "iopub.execute_input": "2024-05-24T13:25:51.611613Z", + "iopub.status.busy": "2024-05-24T13:25:51.611237Z", + "iopub.status.idle": "2024-05-24T13:25:52.736214Z", + "shell.execute_reply": "2024-05-24T13:25:52.735706Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.480200Z", - "iopub.status.busy": "2024-05-23T15:12:04.480017Z", - "iopub.status.idle": "2024-05-23T15:12:04.498410Z", - "shell.execute_reply": "2024-05-23T15:12:04.497909Z" + "iopub.execute_input": "2024-05-24T13:25:52.738649Z", + "iopub.status.busy": "2024-05-24T13:25:52.738419Z", + "iopub.status.idle": "2024-05-24T13:25:52.757009Z", + "shell.execute_reply": "2024-05-24T13:25:52.756536Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.500488Z", - "iopub.status.busy": "2024-05-23T15:12:04.500072Z", - "iopub.status.idle": "2024-05-23T15:12:04.503271Z", - "shell.execute_reply": "2024-05-23T15:12:04.502744Z" + "iopub.execute_input": "2024-05-24T13:25:52.759120Z", + "iopub.status.busy": "2024-05-24T13:25:52.758717Z", + "iopub.status.idle": "2024-05-24T13:25:52.761929Z", + "shell.execute_reply": "2024-05-24T13:25:52.761468Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.505105Z", - "iopub.status.busy": "2024-05-23T15:12:04.504929Z", - "iopub.status.idle": "2024-05-23T15:12:18.669352Z", - "shell.execute_reply": "2024-05-23T15:12:18.668813Z" + "iopub.execute_input": "2024-05-24T13:25:52.764136Z", + "iopub.status.busy": "2024-05-24T13:25:52.763732Z", + "iopub.status.idle": "2024-05-24T13:26:07.990549Z", + "shell.execute_reply": "2024-05-24T13:26:07.989962Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:18.672012Z", - "iopub.status.busy": "2024-05-23T15:12:18.671651Z", - "iopub.status.idle": "2024-05-23T15:12:18.675428Z", - "shell.execute_reply": "2024-05-23T15:12:18.674984Z" + "iopub.execute_input": "2024-05-24T13:26:07.993423Z", + "iopub.status.busy": "2024-05-24T13:26:07.993081Z", + "iopub.status.idle": "2024-05-24T13:26:07.997041Z", + "shell.execute_reply": "2024-05-24T13:26:07.996471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:18.677479Z", - "iopub.status.busy": "2024-05-23T15:12:18.677175Z", - "iopub.status.idle": "2024-05-23T15:12:19.390682Z", - "shell.execute_reply": "2024-05-23T15:12:19.390085Z" + "iopub.execute_input": "2024-05-24T13:26:07.999166Z", + "iopub.status.busy": "2024-05-24T13:26:07.998856Z", + "iopub.status.idle": "2024-05-24T13:26:08.715055Z", + "shell.execute_reply": "2024-05-24T13:26:08.714463Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.393443Z", - "iopub.status.busy": "2024-05-23T15:12:19.392934Z", - "iopub.status.idle": "2024-05-23T15:12:19.398027Z", - "shell.execute_reply": "2024-05-23T15:12:19.397517Z" + "iopub.execute_input": "2024-05-24T13:26:08.717983Z", + "iopub.status.busy": "2024-05-24T13:26:08.717574Z", + "iopub.status.idle": "2024-05-24T13:26:08.722432Z", + "shell.execute_reply": "2024-05-24T13:26:08.721918Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.400288Z", - "iopub.status.busy": "2024-05-23T15:12:19.399949Z", - "iopub.status.idle": "2024-05-23T15:12:19.494951Z", - "shell.execute_reply": "2024-05-23T15:12:19.494354Z" + "iopub.execute_input": "2024-05-24T13:26:08.724901Z", + "iopub.status.busy": "2024-05-24T13:26:08.724532Z", + "iopub.status.idle": "2024-05-24T13:26:08.821917Z", + "shell.execute_reply": "2024-05-24T13:26:08.821273Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.497459Z", - "iopub.status.busy": "2024-05-23T15:12:19.496990Z", - "iopub.status.idle": "2024-05-23T15:12:19.508906Z", - "shell.execute_reply": "2024-05-23T15:12:19.508370Z" + "iopub.execute_input": "2024-05-24T13:26:08.824494Z", + "iopub.status.busy": "2024-05-24T13:26:08.824094Z", + "iopub.status.idle": "2024-05-24T13:26:08.836363Z", + "shell.execute_reply": "2024-05-24T13:26:08.835892Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.510977Z", - "iopub.status.busy": "2024-05-23T15:12:19.510641Z", - "iopub.status.idle": "2024-05-23T15:12:19.518476Z", - "shell.execute_reply": "2024-05-23T15:12:19.517926Z" + "iopub.execute_input": "2024-05-24T13:26:08.838537Z", + "iopub.status.busy": "2024-05-24T13:26:08.838118Z", + "iopub.status.idle": "2024-05-24T13:26:08.845901Z", + "shell.execute_reply": "2024-05-24T13:26:08.845377Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.520438Z", - "iopub.status.busy": "2024-05-23T15:12:19.520119Z", - "iopub.status.idle": "2024-05-23T15:12:19.524289Z", - "shell.execute_reply": "2024-05-23T15:12:19.523824Z" + "iopub.execute_input": "2024-05-24T13:26:08.847826Z", + "iopub.status.busy": "2024-05-24T13:26:08.847649Z", + "iopub.status.idle": "2024-05-24T13:26:08.852157Z", + "shell.execute_reply": "2024-05-24T13:26:08.851655Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.526072Z", - "iopub.status.busy": "2024-05-23T15:12:19.525895Z", - "iopub.status.idle": "2024-05-23T15:12:19.531559Z", - "shell.execute_reply": "2024-05-23T15:12:19.531118Z" + "iopub.execute_input": "2024-05-24T13:26:08.854126Z", + "iopub.status.busy": "2024-05-24T13:26:08.853795Z", + "iopub.status.idle": "2024-05-24T13:26:08.859364Z", + "shell.execute_reply": "2024-05-24T13:26:08.858882Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.533406Z", - "iopub.status.busy": "2024-05-23T15:12:19.533232Z", - "iopub.status.idle": "2024-05-23T15:12:19.643411Z", - "shell.execute_reply": "2024-05-23T15:12:19.642854Z" + "iopub.execute_input": "2024-05-24T13:26:08.861432Z", + "iopub.status.busy": "2024-05-24T13:26:08.861031Z", + "iopub.status.idle": "2024-05-24T13:26:08.972076Z", + "shell.execute_reply": "2024-05-24T13:26:08.971575Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.645602Z", - "iopub.status.busy": "2024-05-23T15:12:19.645255Z", - "iopub.status.idle": "2024-05-23T15:12:19.749188Z", - "shell.execute_reply": "2024-05-23T15:12:19.748636Z" + "iopub.execute_input": "2024-05-24T13:26:08.974171Z", + "iopub.status.busy": "2024-05-24T13:26:08.973900Z", + "iopub.status.idle": "2024-05-24T13:26:09.079509Z", + "shell.execute_reply": "2024-05-24T13:26:09.078913Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.751353Z", - "iopub.status.busy": "2024-05-23T15:12:19.751022Z", - "iopub.status.idle": "2024-05-23T15:12:19.854178Z", - "shell.execute_reply": "2024-05-23T15:12:19.853570Z" + "iopub.execute_input": "2024-05-24T13:26:09.081705Z", + "iopub.status.busy": "2024-05-24T13:26:09.081435Z", + "iopub.status.idle": "2024-05-24T13:26:09.185181Z", + "shell.execute_reply": "2024-05-24T13:26:09.184590Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.856439Z", - "iopub.status.busy": "2024-05-23T15:12:19.856101Z", - "iopub.status.idle": "2024-05-23T15:12:20.171155Z", - "shell.execute_reply": "2024-05-23T15:12:20.170593Z" + "iopub.execute_input": "2024-05-24T13:26:09.187519Z", + "iopub.status.busy": "2024-05-24T13:26:09.187101Z", + "iopub.status.idle": "2024-05-24T13:26:09.510380Z", + "shell.execute_reply": "2024-05-24T13:26:09.509791Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:20.173386Z", - "iopub.status.busy": "2024-05-23T15:12:20.173067Z", - "iopub.status.idle": "2024-05-23T15:12:20.176285Z", - "shell.execute_reply": "2024-05-23T15:12:20.175735Z" + "iopub.execute_input": "2024-05-24T13:26:09.512823Z", + "iopub.status.busy": "2024-05-24T13:26:09.512454Z", + "iopub.status.idle": "2024-05-24T13:26:09.516917Z", + "shell.execute_reply": "2024-05-24T13:26:09.516436Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02d45ad38b8741448526432351d5eeec": { + "0775e503d875483e82a23fcc2a6b8faf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,96 +1450,49 @@ "width": null } }, - "039e147e0ab94a44ab511f0d44c48272": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "06d1c0dd633b4de893979238f4b41c33": { + "0941cd55cc3a45afa1dd2bde60479579": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "13d42abd327047e58607747246792659": { + "098594ab7b18438aa41a50ab301ec04d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_471d22d93f5f48a7a8ead8c6619a0747", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af75dced9e3349f9abd0df86d11d2fbc", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "17ab4bf2d800459b85facc79809c794c": { + "13d84cca83a94ddb90b97c7f2f2e6073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1554,15 +1507,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", + "layout": "IPY_MODEL_0775e503d875483e82a23fcc2a6b8faf", "placeholder": "​", - "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", + "style": "IPY_MODEL_b0af8f3c56c94bb097090ffeeee6782f", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 257MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1650e668e8ee41fea457a37281bee145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c09f9d8f8d0e425399f7b34772f3d268", + "IPY_MODEL_a673280a9dc54be7bfa6e5d4cb4859a2", + "IPY_MODEL_4746161ed9d2410ab04888e311c199ae" + ], + "layout": "IPY_MODEL_53c06eca94fc448c951c5d1957f475b3", + "tabbable": null, + "tooltip": null } }, - "1d7ba7f518794212a4ad3851d4767fb0": { + "196f9646c6a0480099ec80fde0f3ceae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1615,30 +1592,7 @@ "width": null } }, - "1f70dfa029cd4b0e9964d17d37bf54b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", - "placeholder": "​", - "style": "IPY_MODEL_13d42abd327047e58607747246792659", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "2a608f0281de446bb6b9d3e1f0fcc8ef": { + "1df017d340c143eca8a77bf534dae30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1645,31 @@ "width": null } }, - "32b0b882c64f444ca6b10422ad5a4dd9": { + "27252de5ebbd462db3142c23ddbb661f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de64003ecbdc4bfea9ff52df34babd05", + "IPY_MODEL_098594ab7b18438aa41a50ab301ec04d", + "IPY_MODEL_8896bf0ae52e4b8ba9e0d7bdec5f65f1" + ], + "layout": "IPY_MODEL_ae94f8338a7240ab935cc086942b5a20", + "tabbable": null, + "tooltip": null + } + }, + "2d94e12a612044e68c18613419e044ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,55 +1722,41 @@ "width": null } }, - "32f578baf4f54c46b4525cb49a0111a0": { + "33925f72e0614c2fa6257e4e96a64f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", - "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", - "IPY_MODEL_17ab4bf2d800459b85facc79809c794c" - ], - "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4846b29fb444480c8d270546730853ad": { + "3f2aa15bfb034feca771cb71be185749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", - "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", - "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e" - ], - "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4efbade6d6f449ac9b6167c892d8eaa9": { + "471d22d93f5f48a7a8ead8c6619a0747": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1845,7 +1809,7 @@ "width": null } }, - "4f6932ad623843a29fdfe07056c8c4ed": { + "4746161ed9d2410ab04888e311c199ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1860,68 +1824,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", + "layout": "IPY_MODEL_7b7a091dec134148a8e6eb01122cbdf1", "placeholder": "​", - "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", + "style": "IPY_MODEL_db6e31cca7334c5997fcc027001ba5e6", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 22.9MB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 493kB/s]" } }, - "53ba703ebe3f488bafb36ef1b5e1e15c": { - "model_module": "@jupyter-widgets/base", + "4e06a9baa2d8459ba40bba97de9e5259": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511b673caae640ceade4727133a5ba42", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0941cd55cc3a45afa1dd2bde60479579", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "5011ed7959224ec7a771af1234101560": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "53c425a26ebf4662857c4853c4b2cc66": { + "511b673caae640ceade4727133a5ba42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,7 +1929,7 @@ "width": null } }, - "5d1146ca200e41e0b87e8d02b7c0e568": { + "53071b9bd2ed4691a956cb7eb2226356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2027,7 +1982,7 @@ "width": null } }, - "61ee678dfe4f46cf99358cbd8893e136": { + "53c06eca94fc448c951c5d1957f475b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2080,7 +2035,7 @@ "width": null } }, - "62bfaf4591b648e09fdcaa3fedd50886": { + "59ed9f56b77c4bb3a72747164aee69fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2133,10 +2088,146 @@ "width": null } }, - "6692f3e1fecd4a5190e008265e83db9c": { - "model_module": "@jupyter-widgets/base", + "6139fa7a9c564ab1b8e0305679a32a84": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aafcc8cf05854d5a88bfcf6614643604", + "placeholder": "​", + "style": "IPY_MODEL_952cd00dc3314bc7aba95d7d6c37054e", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + } + }, + "639ccf95b10e4dccb7c945f9384ae8a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd637e0e948c4c9182d38872c9695cee", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f2aa15bfb034feca771cb71be185749", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "7126c64780ee430eabe5876c79127ecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d94e12a612044e68c18613419e044ec", + "placeholder": "​", + "style": "IPY_MODEL_5011ed7959224ec7a771af1234101560", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + } + }, + "726196b034e64997b37351e4538d717a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "742be4886f3a45c09196ac843f2e0a0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53071b9bd2ed4691a956cb7eb2226356", + "placeholder": "​", + "style": "IPY_MODEL_a93044806eed421f8456771ac7016a50", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "78be5d29afb947bebb8ef1036c1d0f70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb1988ce385f4de19a7dca2977f0c168", + "placeholder": "​", + "style": "IPY_MODEL_b32be9b577c54595bf7ea4435c542989", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 19.1MB/s]" + } + }, + "7b7a091dec134148a8e6eb01122cbdf1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2186,7 +2277,7 @@ "width": null } }, - "66e9a5e77f4547bb91e01a179df2918e": { + "8896bf0ae52e4b8ba9e0d7bdec5f65f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2292,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", + "layout": "IPY_MODEL_c75e3616bdeb44578059f7cdc1600420", "placeholder": "​", - "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", + "style": "IPY_MODEL_b432d923a3f54fe287ea531fe9266118", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 124MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 147MB/s]" } }, - "685e89f25f5d454fbc172a4feb2bd274": { + "8902bfb750204e5ca159d6e0e3ff1b2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2353,31 @@ "width": null } }, - "6b30ba8486c64a52a4712aeebe7baaaa": { + "8b87b9337b0d423a904d391d73e36b18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13d84cca83a94ddb90b97c7f2f2e6073", + "IPY_MODEL_639ccf95b10e4dccb7c945f9384ae8a5", + "IPY_MODEL_6139fa7a9c564ab1b8e0305679a32a84" + ], + "layout": "IPY_MODEL_8902bfb750204e5ca159d6e0e3ff1b2f", + "tabbable": null, + "tooltip": null + } + }, + "952cd00dc3314bc7aba95d7d6c37054e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2280,30 +2395,86 @@ "text_color": null } }, - "6e6baef0f88d4ea5ae627f599696f217": { + "a522fe173cb34caaaa446d13a2fd504b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a673280a9dc54be7bfa6e5d4cb4859a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", - "placeholder": "​", - "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", + "layout": "IPY_MODEL_59ed9f56b77c4bb3a72747164aee69fd", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8cea35b7cef4b0ab9b3da727557efd5", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 477kB/s]" + "value": 2041.0 } }, - "7624a5525cff4e6dbad04046d0d5ce3d": { + "a7800ea4f00743b1b736fe6e3c6dcddd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2318,31 +2489,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", + "layout": "IPY_MODEL_d9248232a14d4bc3aa6f1dffa11fd3b1", "placeholder": "​", - "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", + "style": "IPY_MODEL_bb6172cb249540c4a72e41717d7a8e2f", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "7df1120d6e804074ac9fc4c19ab2fe15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "classifier.ckpt: 100%" } }, - "80e543f701e445f38d8d20e7547bce68": { + "a93044806eed421f8456771ac7016a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2360,31 +2515,7 @@ "text_color": null } }, - "837d65d479144be3b4a954b3b3c7abf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4e5840479864b31b4eca15395813b4e", - "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", - "IPY_MODEL_f115a412241d4444a70d4927ce8721e1" - ], - "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", - "tabbable": null, - "tooltip": null - } - }, - "85ba5c722da4401683083354487e0f3c": { + "aafcc8cf05854d5a88bfcf6614643604": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2437,7 +2568,7 @@ "width": null } }, - "9122e918465a4b0d9f528507dbeecfe9": { + "ab6d9d81b4f74d0a8dc9f38aa062e25f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2453,17 +2584,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", - "max": 3201.0, + "layout": "IPY_MODEL_a522fe173cb34caaaa446d13a2fd504b", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", + "style": "IPY_MODEL_baeeda9d5eb7488f9b01610d5a450253", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 15856877.0 } }, - "926dd9b5c8c941ecabc5447d7cb20c1e": { + "acfb1f9cb3194cc8bcd424c8e097029b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2516,71 +2647,14 @@ "width": null } }, - "92f6ba2ae9f947a19198dcf64b912ae0": { - "model_module": "@jupyter-widgets/controls", + "ae94f8338a7240ab935cc086942b5a20": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95ae6715ec3c4ef9b3fc7b20cc78386b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", - "placeholder": "​", - "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "99b76a939b6946918c69bdda4a084bb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a0e190ac51e64c75896fe92a6ab8a413": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2626,7 +2700,23 @@ "width": null } }, - "a3aec95fbaca47888628b4cfc1607bd8": { + "af75dced9e3349f9abd0df86d11d2fbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0af8f3c56c94bb097090ffeeee6782f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2644,60 +2734,25 @@ "text_color": null } }, - "a3dafc711c4d41d2b4b3d300476cb52b": { - "model_module": "@jupyter-widgets/base", + "b32be9b577c54595bf7ea4435c542989": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a569eb9a5d5b4715946173b57080716f": { + "b432d923a3f54fe287ea531fe9266118": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2715,7 +2770,47 @@ "text_color": null } }, - "b6cb51a2809c464eb1c58ab8e31c96a1": { + "b58a12c543394878950957e5d67c0845": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a7800ea4f00743b1b736fe6e3c6dcddd", + "IPY_MODEL_ab6d9d81b4f74d0a8dc9f38aa062e25f", + "IPY_MODEL_7126c64780ee430eabe5876c79127ecb" + ], + "layout": "IPY_MODEL_acfb1f9cb3194cc8bcd424c8e097029b", + "tabbable": null, + "tooltip": null + } + }, + "baeeda9d5eb7488f9b01610d5a450253": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb6172cb249540c4a72e41717d7a8e2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2733,7 +2828,7 @@ "text_color": null } }, - "c05d6a595d7144ee94fa51f5f5133acc": { + "bcbab4361c90484192216a9d152a984e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2786,7 +2881,30 @@ "width": null } }, - "c2c972c18e9c4a679bd660253ada535a": { + "c09f9d8f8d0e425399f7b34772f3d268": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_196f9646c6a0480099ec80fde0f3ceae", + "placeholder": "​", + "style": "IPY_MODEL_33925f72e0614c2fa6257e4e96a64f69", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "c75e3616bdeb44578059f7cdc1600420": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2839,48 +2957,7 @@ "width": null } }, - "c6521ed9a1a34d1f8999049d2347b649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf1afa91f1eb40b2aba4dcef746f1a69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", - "placeholder": "​", - "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "d19d6b52b414436485e07ce221daa4dd": { + "c8cea35b7cef4b0ab9b3da727557efd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2896,83 +2973,7 @@ "description_width": "" } }, - "d4730f8c409d4618a70b0cbe8dc1772b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "db96495857dd41dca4b5a125ac1bddf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "e302a4ab69494dea93a7e2a5d582d2e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", - "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", - "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217" - ], - "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", - "tabbable": null, - "tooltip": null - } - }, - "e545e8fd06544a3fabc2df6ebd4c231e": { + "d9248232a14d4bc3aa6f1dffa11fd3b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3025,23 +3026,31 @@ "width": null } }, - "eae4c63447cd47b5ab13fc807579b9ba": { + "d99648098aa844e5a19a5fc67ab33ecf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_742be4886f3a45c09196ac843f2e0a0a", + "IPY_MODEL_4e06a9baa2d8459ba40bba97de9e5259", + "IPY_MODEL_78be5d29afb947bebb8ef1036c1d0f70" + ], + "layout": "IPY_MODEL_1df017d340c143eca8a77bf534dae30a", + "tabbable": null, + "tooltip": null } }, - "ec08a02c4bd6416185871e93828421ab": { + "db6e31cca7334c5997fcc027001ba5e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3059,56 +3068,60 @@ "text_color": null } }, - "f115a412241d4444a70d4927ce8721e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", - "placeholder": "​", - "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 853kB/s]" - } - }, - "f1d5848284b945bd8362d354f0edb9a5": { - "model_module": "@jupyter-widgets/controls", + "dd637e0e948c4c9182d38872c9695cee": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f4e5840479864b31b4eca15395813b4e": { + "de64003ecbdc4bfea9ff52df34babd05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3123,78 +3136,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", + "layout": "IPY_MODEL_bcbab4361c90484192216a9d152a984e", "placeholder": "​", - "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "f6a60d2b426e420d8d25abbca9fdfdaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", + "style": "IPY_MODEL_726196b034e64997b37351e4538d717a", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "f84662a791cf48ff8f1369f016420dd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", - "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", - "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed" - ], - "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", - "tabbable": null, - "tooltip": null + "value": "embedding_model.ckpt: 100%" } }, - "fc570a3eada6400ebe54bbc6311f3fdd": { - "model_module": "@jupyter-widgets/controls", + "eb1988ce385f4de19a7dca2977f0c168": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index e9f5b56aa..f55196f2a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:24.150546Z", - "iopub.status.busy": "2024-05-23T15:12:24.150120Z", - "iopub.status.idle": "2024-05-23T15:12:24.160819Z", - "shell.execute_reply": "2024-05-23T15:12:24.160377Z" + "iopub.execute_input": "2024-05-24T13:26:12.576160Z", + "iopub.status.busy": "2024-05-24T13:26:12.575730Z", + "iopub.status.idle": "2024-05-24T13:26:12.586869Z", + "shell.execute_reply": "2024-05-24T13:26:12.586363Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:24.163003Z", - "iopub.status.busy": "2024-05-23T15:12:24.162658Z", - "iopub.status.idle": "2024-05-23T15:12:25.340600Z", - "shell.execute_reply": "2024-05-23T15:12:25.339995Z" + "iopub.execute_input": "2024-05-24T13:26:12.589349Z", + "iopub.status.busy": "2024-05-24T13:26:12.589066Z", + "iopub.status.idle": "2024-05-24T13:26:13.815543Z", + "shell.execute_reply": "2024-05-24T13:26:13.815036Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.343043Z", - "iopub.status.busy": "2024-05-23T15:12:25.342752Z", - "iopub.status.idle": "2024-05-23T15:12:25.360826Z", - "shell.execute_reply": "2024-05-23T15:12:25.360279Z" + "iopub.execute_input": "2024-05-24T13:26:13.818235Z", + "iopub.status.busy": "2024-05-24T13:26:13.817636Z", + "iopub.status.idle": "2024-05-24T13:26:13.835859Z", + "shell.execute_reply": "2024-05-24T13:26:13.835434Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.363147Z", - "iopub.status.busy": "2024-05-23T15:12:25.362705Z", - "iopub.status.idle": "2024-05-23T15:12:25.381440Z", - "shell.execute_reply": "2024-05-23T15:12:25.380241Z" + "iopub.execute_input": "2024-05-24T13:26:13.837975Z", + "iopub.status.busy": "2024-05-24T13:26:13.837700Z", + "iopub.status.idle": "2024-05-24T13:26:13.857815Z", + "shell.execute_reply": "2024-05-24T13:26:13.857400Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.383401Z", - "iopub.status.busy": "2024-05-23T15:12:25.383143Z", - "iopub.status.idle": "2024-05-23T15:12:25.397293Z", - "shell.execute_reply": "2024-05-23T15:12:25.396833Z" + "iopub.execute_input": "2024-05-24T13:26:13.859945Z", + "iopub.status.busy": "2024-05-24T13:26:13.859615Z", + "iopub.status.idle": "2024-05-24T13:26:13.875347Z", + "shell.execute_reply": "2024-05-24T13:26:13.874924Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.399348Z", - "iopub.status.busy": "2024-05-23T15:12:25.398949Z", - "iopub.status.idle": "2024-05-23T15:12:25.411768Z", - "shell.execute_reply": "2024-05-23T15:12:25.411343Z" + "iopub.execute_input": "2024-05-24T13:26:13.877428Z", + "iopub.status.busy": "2024-05-24T13:26:13.877093Z", + "iopub.status.idle": "2024-05-24T13:26:13.891773Z", + "shell.execute_reply": "2024-05-24T13:26:13.891337Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.413965Z", - "iopub.status.busy": "2024-05-23T15:12:25.413529Z", - "iopub.status.idle": "2024-05-23T15:12:25.605551Z", - "shell.execute_reply": "2024-05-23T15:12:25.605075Z" + "iopub.execute_input": "2024-05-24T13:26:13.893832Z", + "iopub.status.busy": "2024-05-24T13:26:13.893653Z", + "iopub.status.idle": "2024-05-24T13:26:14.090424Z", + "shell.execute_reply": "2024-05-24T13:26:14.089885Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.607849Z", - "iopub.status.busy": "2024-05-23T15:12:25.607567Z", - "iopub.status.idle": "2024-05-23T15:12:25.969203Z", - "shell.execute_reply": "2024-05-23T15:12:25.968623Z" + "iopub.execute_input": "2024-05-24T13:26:14.092764Z", + "iopub.status.busy": "2024-05-24T13:26:14.092539Z", + "iopub.status.idle": "2024-05-24T13:26:14.453791Z", + "shell.execute_reply": "2024-05-24T13:26:14.453218Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.971556Z", - "iopub.status.busy": "2024-05-23T15:12:25.971185Z", - "iopub.status.idle": "2024-05-23T15:12:26.009329Z", - "shell.execute_reply": "2024-05-23T15:12:26.008805Z" + "iopub.execute_input": "2024-05-24T13:26:14.456094Z", + "iopub.status.busy": "2024-05-24T13:26:14.455662Z", + "iopub.status.idle": "2024-05-24T13:26:14.492988Z", + "shell.execute_reply": "2024-05-24T13:26:14.492390Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:26.011919Z", - "iopub.status.busy": "2024-05-23T15:12:26.011553Z", - "iopub.status.idle": "2024-05-23T15:12:27.692533Z", - "shell.execute_reply": "2024-05-23T15:12:27.691912Z" + "iopub.execute_input": "2024-05-24T13:26:14.495452Z", + "iopub.status.busy": "2024-05-24T13:26:14.495016Z", + "iopub.status.idle": "2024-05-24T13:26:16.224653Z", + "shell.execute_reply": "2024-05-24T13:26:16.224083Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.694950Z", - "iopub.status.busy": "2024-05-23T15:12:27.694635Z", - "iopub.status.idle": "2024-05-23T15:12:27.728895Z", - "shell.execute_reply": "2024-05-23T15:12:27.728320Z" + "iopub.execute_input": "2024-05-24T13:26:16.227236Z", + "iopub.status.busy": "2024-05-24T13:26:16.226633Z", + "iopub.status.idle": "2024-05-24T13:26:16.257823Z", + "shell.execute_reply": "2024-05-24T13:26:16.257373Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.731104Z", - "iopub.status.busy": "2024-05-23T15:12:27.730791Z", - "iopub.status.idle": "2024-05-23T15:12:27.762113Z", - "shell.execute_reply": "2024-05-23T15:12:27.761535Z" + "iopub.execute_input": "2024-05-24T13:26:16.260036Z", + "iopub.status.busy": "2024-05-24T13:26:16.259701Z", + "iopub.status.idle": "2024-05-24T13:26:16.293594Z", + "shell.execute_reply": "2024-05-24T13:26:16.293077Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.764435Z", - "iopub.status.busy": "2024-05-23T15:12:27.764018Z", - "iopub.status.idle": "2024-05-23T15:12:32.868685Z", - "shell.execute_reply": "2024-05-23T15:12:32.868098Z" + "iopub.execute_input": "2024-05-24T13:26:16.295982Z", + "iopub.status.busy": "2024-05-24T13:26:16.295615Z", + "iopub.status.idle": "2024-05-24T13:26:21.408316Z", + "shell.execute_reply": "2024-05-24T13:26:21.407683Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16691eefb97a44b9af842e7a3d10b82b", + "model_id": "1d9b23deee504e878bbd77e92d4c01fc", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:32.871153Z", - "iopub.status.busy": "2024-05-23T15:12:32.870821Z", - "iopub.status.idle": "2024-05-23T15:12:38.202836Z", - "shell.execute_reply": "2024-05-23T15:12:38.201810Z" + "iopub.execute_input": "2024-05-24T13:26:21.410706Z", + "iopub.status.busy": "2024-05-24T13:26:21.410273Z", + "iopub.status.idle": "2024-05-24T13:26:26.732199Z", + "shell.execute_reply": "2024-05-24T13:26:26.731568Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ac618b2d864a40b2a628802392854eab", + "model_id": "ad68b28a01564868921157d33a643817", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.206714Z", - "iopub.status.busy": "2024-05-23T15:12:38.206258Z", - "iopub.status.idle": "2024-05-23T15:12:38.247716Z", - "shell.execute_reply": "2024-05-23T15:12:38.247275Z" + "iopub.execute_input": "2024-05-24T13:26:26.734719Z", + "iopub.status.busy": "2024-05-24T13:26:26.734536Z", + "iopub.status.idle": "2024-05-24T13:26:26.770495Z", + "shell.execute_reply": "2024-05-24T13:26:26.770022Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.249766Z", - "iopub.status.busy": "2024-05-23T15:12:38.249356Z", - "iopub.status.idle": "2024-05-23T15:12:38.276705Z", - "shell.execute_reply": "2024-05-23T15:12:38.276176Z" + "iopub.execute_input": "2024-05-24T13:26:26.772705Z", + "iopub.status.busy": "2024-05-24T13:26:26.772369Z", + "iopub.status.idle": "2024-05-24T13:26:26.802636Z", + "shell.execute_reply": "2024-05-24T13:26:26.802009Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.278700Z", - "iopub.status.busy": "2024-05-23T15:12:38.278375Z", - "iopub.status.idle": "2024-05-23T15:12:38.318716Z", - "shell.execute_reply": "2024-05-23T15:12:38.318182Z" + "iopub.execute_input": "2024-05-24T13:26:26.804876Z", + "iopub.status.busy": "2024-05-24T13:26:26.804519Z", + "iopub.status.idle": "2024-05-24T13:26:26.849943Z", + "shell.execute_reply": "2024-05-24T13:26:26.849406Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.320892Z", - "iopub.status.busy": "2024-05-23T15:12:38.320378Z", - "iopub.status.idle": "2024-05-23T15:12:38.343980Z", - "shell.execute_reply": "2024-05-23T15:12:38.343554Z" + "iopub.execute_input": "2024-05-24T13:26:26.852198Z", + "iopub.status.busy": "2024-05-24T13:26:26.851865Z", + "iopub.status.idle": "2024-05-24T13:26:26.878286Z", + "shell.execute_reply": "2024-05-24T13:26:26.877801Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.346013Z", - "iopub.status.busy": "2024-05-23T15:12:38.345692Z", - "iopub.status.idle": "2024-05-23T15:12:38.368870Z", - "shell.execute_reply": "2024-05-23T15:12:38.368450Z" + "iopub.execute_input": "2024-05-24T13:26:26.880571Z", + "iopub.status.busy": "2024-05-24T13:26:26.880235Z", + "iopub.status.idle": "2024-05-24T13:26:26.907385Z", + "shell.execute_reply": "2024-05-24T13:26:26.906920Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.370823Z", - "iopub.status.busy": "2024-05-23T15:12:38.370500Z", - "iopub.status.idle": "2024-05-23T15:12:48.786078Z", - "shell.execute_reply": "2024-05-23T15:12:48.785492Z" + "iopub.execute_input": "2024-05-24T13:26:26.909725Z", + "iopub.status.busy": "2024-05-24T13:26:26.909383Z", + "iopub.status.idle": "2024-05-24T13:26:37.341793Z", + "shell.execute_reply": "2024-05-24T13:26:37.341168Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63e22013b11d44788247c2e6e6e71364", + "model_id": "7714aebbf0a047dfa90198bd9ac06a1d", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58e53eb1d3b74dbabdda9218003d290e", + "model_id": "e4611f9f9bba4f569b03df7465d56925", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.788230Z", - "iopub.status.busy": "2024-05-23T15:12:48.788052Z", - "iopub.status.idle": "2024-05-23T15:12:48.870592Z", - "shell.execute_reply": "2024-05-23T15:12:48.869978Z" + "iopub.execute_input": "2024-05-24T13:26:37.344231Z", + "iopub.status.busy": "2024-05-24T13:26:37.343885Z", + "iopub.status.idle": "2024-05-24T13:26:37.429262Z", + "shell.execute_reply": "2024-05-24T13:26:37.428706Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.872878Z", - "iopub.status.busy": "2024-05-23T15:12:48.872579Z", - "iopub.status.idle": "2024-05-23T15:12:48.902790Z", - "shell.execute_reply": "2024-05-23T15:12:48.902346Z" + "iopub.execute_input": "2024-05-24T13:26:37.431545Z", + "iopub.status.busy": "2024-05-24T13:26:37.431251Z", + "iopub.status.idle": "2024-05-24T13:26:37.462528Z", + "shell.execute_reply": "2024-05-24T13:26:37.461975Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.904859Z", - "iopub.status.busy": "2024-05-23T15:12:48.904523Z", - "iopub.status.idle": "2024-05-23T15:12:48.931284Z", - "shell.execute_reply": "2024-05-23T15:12:48.930855Z" + "iopub.execute_input": "2024-05-24T13:26:37.464978Z", + "iopub.status.busy": "2024-05-24T13:26:37.464631Z", + "iopub.status.idle": "2024-05-24T13:26:37.495280Z", + "shell.execute_reply": "2024-05-24T13:26:37.494774Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.933414Z", - "iopub.status.busy": "2024-05-23T15:12:48.933089Z", - "iopub.status.idle": "2024-05-23T15:12:59.401243Z", - "shell.execute_reply": "2024-05-23T15:12:59.400682Z" + "iopub.execute_input": "2024-05-24T13:26:37.497881Z", + "iopub.status.busy": "2024-05-24T13:26:37.497508Z", + "iopub.status.idle": "2024-05-24T13:26:47.983998Z", + "shell.execute_reply": "2024-05-24T13:26:47.983430Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b47b3587b294c218154475b1bd729d3", + "model_id": "94d12492ec214271aef0826aa425c0f6", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "690b859c431e478683cfa895855ea449", + "model_id": "c63605b6bcad4825b185e291ea155df6", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:59.404181Z", - "iopub.status.busy": "2024-05-23T15:12:59.403640Z", - "iopub.status.idle": "2024-05-23T15:12:59.432742Z", - "shell.execute_reply": "2024-05-23T15:12:59.432290Z" + "iopub.execute_input": "2024-05-24T13:26:47.986851Z", + "iopub.status.busy": "2024-05-24T13:26:47.986633Z", + "iopub.status.idle": "2024-05-24T13:26:48.023559Z", + "shell.execute_reply": "2024-05-24T13:26:48.022967Z" } }, "outputs": [ @@ -1863,30 +1863,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "003cda49480d4fd5aa4f036f5db5d6e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", - "placeholder": "​", - "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "01553c4cc5614aeb8415e2eb5ce5b8ed": { + "08d7df441541457a9aa9f3381dc7b3c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,7 +1916,7 @@ "width": null } }, - "023c7da18e424c3883eca2e16626ce7f": { + "098e7d186ae94bc1a7ca4d86de553d00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1992,7 +1969,7 @@ "width": null } }, - "05e15a781e20434888b29d4ed732f642": { + "0d18429aee6643b9b492ad2031919935": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2045,74 +2022,7 @@ "width": null } }, - "090b1de60819463abc3ad25011937af5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0934764f32164e9bbd42e10008a5d7dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", - "placeholder": "​", - "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.76it/s]" - } - }, - "09d5e7bc9eab49e9b97c5cdba0a1578b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "127fec0dcb96469c9c53edbd54936769": { + "1329969eb76f4cc39b4052caf4045f32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2165,31 +2075,7 @@ "width": null } }, - "16691eefb97a44b9af842e7a3d10b82b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", - "IPY_MODEL_6849590b787f421283202c404717945e", - "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5" - ], - "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", - "tabbable": null, - "tooltip": null - } - }, - "19a30519c45d41b799b40995f920775b": { + "178b259ccbd2483a9c57b75e4541d0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,7 +2128,7 @@ "width": null } }, - "2469412d11404237880733a58e502569": { + "1814395bd46645e7802aef371201ad6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2258,25 +2144,31 @@ "description_width": "" } }, - "24d4290400d543cca86065a4fbc5b9ba": { + "1d9b23deee504e878bbd77e92d4c01fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923a82724eb5404cb3677b25dce4baff", + "IPY_MODEL_b9505df103f84abb912dd7a59bb16625", + "IPY_MODEL_313582ddbeae4874ac162d6022ed7958" + ], + "layout": "IPY_MODEL_178b259ccbd2483a9c57b75e4541d0ce", + "tabbable": null, + "tooltip": null } }, - "3283aeca9a6a4cbcb0da1eb270e3d476": { + "1fe123ec579f4a12a0b8fe954b9270e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2329,7 +2221,7 @@ "width": null } }, - "349d6ee3fe994a77ad729d53b7f41ded": { + "21f3d1f830444ce19c3c3dc5f5c8b5b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2382,7 +2274,7 @@ "width": null } }, - "36a9b636abf14a37a602e2880614146a": { + "22573985b9854eaeafc18b8a48809226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2398,7 +2290,7 @@ "description_width": "" } }, - "3b1bb5bc9e73429d9d789f44a451bae2": { + "2c0340ff72bb414bacc39f18278cdb73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2416,7 +2308,56 @@ "text_color": null } }, - "3b8be4c541aa442592db2470b74e90ad": { + "2f21137fa87f4ec0a936e8cba65f6728": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d18429aee6643b9b492ad2031919935", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d46021988acc496197efec85024c1e88", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "30c35da68e7847a49b1c123f4b5fc456": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f072b26f47c24152ab42aa49e3b5872c", + "placeholder": "​", + "style": "IPY_MODEL_5586385d237f440aab5c246768bf9992", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.73it/s]" + } + }, + "313582ddbeae4874ac162d6022ed7958": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2431,15 +2372,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", + "layout": "IPY_MODEL_35efbb2bc5514809b958ce42a5b8dca2", "placeholder": "​", - "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", + "style": "IPY_MODEL_c4c4f7cdb8324e3b9d8834193b454c09", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.80it/s]" + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "3f135927f582409e967b53cb2f1d2042": { + "34bbe7ed3f07473b86feb04616e78c84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2492,30 +2433,25 @@ "width": null } }, - "432eb75da12a42acb337a242d19442d8": { + "3501e319e41d4a158fa82e1f96c25e3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", - "placeholder": "​", - "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "454fcdd9458e47bfa8fa5a44c206fcb3": { + "35efbb2bc5514809b958ce42a5b8dca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2568,33 +2504,7 @@ "width": null } }, - "482868b24e2444cab5ac1f0aa9f96ffc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "4dbc5fcd543f43feb30c155bf0f058e1": { + "3a22e0371cce4cf8b6bae4881e17b93a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2647,7 +2557,59 @@ "width": null } }, - "5409d2f49dca4cbeb4f317d8aa46ccf8": { + "47cc5b32bc2a42e2a18caa537f33d8f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08d7df441541457a9aa9f3381dc7b3c9", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d83ddeb12b794cd1a3ddc06054018bcf", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "515863bef8e24e318503fd8cbac38a1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_098e7d186ae94bc1a7ca4d86de553d00", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1814395bd46645e7802aef371201ad6e", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "5263a604f6734d16a1059a68b07a8456": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2700,81 +2662,16 @@ "width": null } }, - "54dd94e9fb8b40d99e3461d2b59a9fea": { + "5586385d237f440aab5c246768bf9992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", - "placeholder": "​", - "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "58e53eb1d3b74dbabdda9218003d290e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", - "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", - "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35" - ], - "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", - "tabbable": null, - "tooltip": null - } - }, - "5c9b2a8175b940b095b744707bcb01dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6263cf40fe84408a83ea1f274ebc1e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -2783,31 +2680,7 @@ "text_color": null } }, - "63e22013b11d44788247c2e6e6e71364": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", - "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", - "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad" - ], - "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", - "tabbable": null, - "tooltip": null - } - }, - "67aee0d1bdc241de942a18d250abde0d": { + "5c7264e405f243709e042e519cb2da5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2860,7 +2733,7 @@ "width": null } }, - "6849590b787f421283202c404717945e": { + "5f1ac5e486cf49bda0e8dec539e97547": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2876,41 +2749,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", - "max": 50.0, + "layout": "IPY_MODEL_9cc92f2b7309472f844d4ab57e3f280c", + "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", + "style": "IPY_MODEL_b82e7de7f9a04242ae8c6273d2f7618d", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": 7.0 } }, - "690b859c431e478683cfa895855ea449": { + "639ccf912bae421e8316c96ef1c017c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77ab1d685ee248379b335bb91dece74f", - "IPY_MODEL_a31f060f5f424533905faad58462bb52", - "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9" - ], - "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7f059f81d9747bb983a818c2af583ae", + "placeholder": "​", + "style": "IPY_MODEL_ad1988b7ff3b4e838a474c8cde55308f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "6430036b2f10421ab43e6f54760e1234": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77ab1d685ee248379b335bb91dece74f": { + "64fca6661b2a4a69a0dad49625b882f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2925,15 +2815,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", + "layout": "IPY_MODEL_7dd0c4650d174ac9888cda90abc58508", "placeholder": "​", - "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", + "style": "IPY_MODEL_7ffb33d0075c44159211b6ffed662165", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "7714aebbf0a047dfa90198bd9ac06a1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64fca6661b2a4a69a0dad49625b882f7", + "IPY_MODEL_515863bef8e24e318503fd8cbac38a1b", + "IPY_MODEL_bf1be5f76ae6466280c51519591d143a" + ], + "layout": "IPY_MODEL_21f3d1f830444ce19c3c3dc5f5c8b5b8", + "tabbable": null, + "tooltip": null } }, - "7acf9ef20737443e9b8dcbfc21a46927": { + "7dd0c4650d174ac9888cda90abc58508": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2986,75 +2900,7 @@ "width": null } }, - "7b47b3587b294c218154475b1bd729d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", - "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", - "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc" - ], - "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", - "tabbable": null, - "tooltip": null - } - }, - "84e85818360e404da06e1195aec4637e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "878599986c3e434797dc3d8347ec1b4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "8b926d8b87db4b57bd13370ea58cf1f6": { + "7e98c157d43845f586eb525e55600eb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3107,7 +2953,7 @@ "width": null } }, - "8ed5dece7b584ef88c91fe936768486d": { + "7ffb33d0075c44159211b6ffed662165": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3125,23 +2971,25 @@ "text_color": null } }, - "91311a9db9144b9aa10e558e189cd4a0": { + "81d7148760e34d66bc71520f4f8ab594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "931391719e964afa8404ae29bcf23864": { + "83118a31314048b9b30b3778522a6dd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3194,7 +3042,71 @@ "width": null } }, - "9cb24280dc444e898cf722661c9629ce": { + "8a75f9c5d993418ea30cfe4e2fc90cbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8c218859c8c54a95806ae04350faf771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5263a604f6734d16a1059a68b07a8456", + "placeholder": "​", + "style": "IPY_MODEL_2c0340ff72bb414bacc39f18278cdb73", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "923a82724eb5404cb3677b25dce4baff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc15ac9db8f14c0c8e948ff6681acdf0", + "placeholder": "​", + "style": "IPY_MODEL_3501e319e41d4a158fa82e1f96c25e3b", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "93852dc1883f412ab19e9196f34e4f88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3247,8 +3159,32 @@ "width": null } }, - "9ee5ebc7814c455baf26064aa901a494": { - "model_module": "@jupyter-widgets/base", + "94d12492ec214271aef0826aa425c0f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d7ae7dcf931c4963bd7e004d4fd68aba", + "IPY_MODEL_d9f4490f42774cdc83742b3eb44dd3e9", + "IPY_MODEL_30c35da68e7847a49b1c123f4b5fc456" + ], + "layout": "IPY_MODEL_83118a31314048b9b30b3778522a6dd0", + "tabbable": null, + "tooltip": null + } + }, + "95c8a696bd6b49b3996ed30638565021": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3300,7 +3236,7 @@ "width": null } }, - "a22782d28f2a480a8928d301da6604f4": { + "9cc92f2b7309472f844d4ab57e3f280c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3353,69 +3289,30 @@ "width": null } }, - "a31f060f5f424533905faad58462bb52": { + "a430d8eccec84d0d98b425513d281bc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", + "layout": "IPY_MODEL_34bbe7ed3f07473b86feb04616e78c84", + "placeholder": "​", + "style": "IPY_MODEL_f0a414d8cc5d47ae94f8c5924d9372fa", "tabbable": null, "tooltip": null, - "value": 7.0 - } - }, - "a405194e30d148a08eb08102914cbfba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a5ebf02f6559407a9eaca07852b1c427": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "a8c944d022ba4ffebddcb245c6c7d653": { + "a7f059f81d9747bb983a818c2af583ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3468,47 +3365,7 @@ "width": null } }, - "aa424e7743234229a020e325f31202fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ac618b2d864a40b2a628802392854eab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e840529660dd449d97ecde263592b8e3", - "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", - "IPY_MODEL_432eb75da12a42acb337a242d19442d8" - ], - "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", - "tabbable": null, - "tooltip": null - } - }, - "b4b2cb2adc6a4f9c9d99394dcdc7cebe": { + "a91d204648394c62b918d4b6c4bea71c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3418,7 @@ "width": null } }, - "b661eba4067d4e5ab460d8f26c8210e7": { + "aa813bb2fa9b4606b4fbb16a938d6284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3579,30 +3436,7 @@ "text_color": null } }, - "be0fc8f89d6a4b77a085888eb3b175d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", - "placeholder": "​", - "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.86it/s]" - } - }, - "c205a5c270d94b08b455596bb5a3f641": { + "ab78a286a4b048d5ba45502a6be850a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3655,7 +3489,91 @@ "width": null } }, - "c2c6cc0c4b9d4f02b9547d22829dc155": { + "ad1988b7ff3b4e838a474c8cde55308f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ad68b28a01564868921157d33a643817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c218859c8c54a95806ae04350faf771", + "IPY_MODEL_47cc5b32bc2a42e2a18caa537f33d8f0", + "IPY_MODEL_639ccf912bae421e8316c96ef1c017c8" + ], + "layout": "IPY_MODEL_1fe123ec579f4a12a0b8fe954b9270e4", + "tabbable": null, + "tooltip": null + } + }, + "b82e7de7f9a04242ae8c6273d2f7618d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9505df103f84abb912dd7a59bb16625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93852dc1883f412ab19e9196f34e4f88", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ed573db1068f4b2bac95c11551ed69d3", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "bc15ac9db8f14c0c8e948ff6681acdf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3708,7 +3626,30 @@ "width": null } }, - "c590be36d4954ecaa3b2bbc36e15f9cf": { + "bf1be5f76ae6466280c51519591d143a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a22e0371cce4cf8b6bae4881e17b93a", + "placeholder": "​", + "style": "IPY_MODEL_aa813bb2fa9b4606b4fbb16a938d6284", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.78it/s]" + } + }, + "c4c4f7cdb8324e3b9d8834193b454c09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3726,25 +3667,70 @@ "text_color": null } }, - "cceeb03436854c30bb382fe0c100c2bd": { + "c63605b6bcad4825b185e291ea155df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dee3a3def7444eaaabcf769093b28e4d", + "IPY_MODEL_2f21137fa87f4ec0a936e8cba65f6728", + "IPY_MODEL_cc9e4ee631624d629db2e3cbfcacf885" + ], + "layout": "IPY_MODEL_ab78a286a4b048d5ba45502a6be850a8", + "tabbable": null, + "tooltip": null + } + }, + "cc9e4ee631624d629db2e3cbfcacf885": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a91d204648394c62b918d4b6c4bea71c", + "placeholder": "​", + "style": "IPY_MODEL_81d7148760e34d66bc71520f4f8ab594", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "d46021988acc496197efec85024c1e88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd952c51c4cf4754ac8dbf022ed5da35": { + "d6e8f8faaace40eeb8f0b120a319b24c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3759,15 +3745,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", + "layout": "IPY_MODEL_f41796f0bf674af290189fa6b57efe25", "placeholder": "​", - "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", + "style": "IPY_MODEL_dae40d3267d9407abc8cc2bd301fc5a3", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "cda5c6f6caeb4f658082ad1c8880e076": { + "d7ae7dcf931c4963bd7e004d4fd68aba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3782,15 +3768,122 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", + "layout": "IPY_MODEL_5c7264e405f243709e042e519cb2da5d", "placeholder": "​", - "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", + "style": "IPY_MODEL_6430036b2f10421ab43e6f54760e1234", "tabbable": null, "tooltip": null, "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "d26b3b25dc8646deb7f7cbf24443577d": { + "d83ddeb12b794cd1a3ddc06054018bcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9f4490f42774cdc83742b3eb44dd3e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1329969eb76f4cc39b4052caf4045f32", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22573985b9854eaeafc18b8a48809226", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "dae40d3267d9407abc8cc2bd301fc5a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dee3a3def7444eaaabcf769093b28e4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95c8a696bd6b49b3996ed30638565021", + "placeholder": "​", + "style": "IPY_MODEL_8a75f9c5d993418ea30cfe4e2fc90cbc", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "e4611f9f9bba4f569b03df7465d56925": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d6e8f8faaace40eeb8f0b120a319b24c", + "IPY_MODEL_5f1ac5e486cf49bda0e8dec539e97547", + "IPY_MODEL_a430d8eccec84d0d98b425513d281bc3" + ], + "layout": "IPY_MODEL_7e98c157d43845f586eb525e55600eb6", + "tabbable": null, + "tooltip": null + } + }, + "ed573db1068f4b2bac95c11551ed69d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3806,7 +3899,7 @@ "description_width": "" } }, - "daec9da029354970886c65e48fae7895": { + "f072b26f47c24152ab42aa49e3b5872c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3859,23 +3952,25 @@ "width": null } }, - "ddf5a0d223314a2ea3a85f4929b8a021": { + "f0a414d8cc5d47ae94f8c5924d9372fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3e147ed2d574cfd9e0e8c16abc3ee75": { + "f41796f0bf674af290189fa6b57efe25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3927,101 +4022,6 @@ "visibility": null, "width": null } - }, - "e72581f3c51a4ebbbdf921e555ed5e2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", - "placeholder": "​", - "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "e840529660dd449d97ecde263592b8e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", - "placeholder": "​", - "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "ea87e8e0c79643a999c896710a7b8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", - "placeholder": "​", - "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "f61ae27fb96c4ac794367539d32aaee6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2469412d11404237880733a58e502569", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 8859494f0..305af44fa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:01.982363Z", - "iopub.status.busy": "2024-05-23T15:13:01.982194Z", - "iopub.status.idle": "2024-05-23T15:13:03.125623Z", - "shell.execute_reply": "2024-05-23T15:13:03.125077Z" + "iopub.execute_input": "2024-05-24T13:26:51.224289Z", + "iopub.status.busy": "2024-05-24T13:26:51.223785Z", + "iopub.status.idle": "2024-05-24T13:26:52.448828Z", + "shell.execute_reply": "2024-05-24T13:26:52.448212Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.128117Z", - "iopub.status.busy": "2024-05-23T15:13:03.127711Z", - "iopub.status.idle": "2024-05-23T15:13:03.130770Z", - "shell.execute_reply": "2024-05-23T15:13:03.130224Z" + "iopub.execute_input": "2024-05-24T13:26:52.451565Z", + "iopub.status.busy": "2024-05-24T13:26:52.451148Z", + "iopub.status.idle": "2024-05-24T13:26:52.454051Z", + "shell.execute_reply": "2024-05-24T13:26:52.453617Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.133141Z", - "iopub.status.busy": "2024-05-23T15:13:03.132751Z", - "iopub.status.idle": "2024-05-23T15:13:03.141674Z", - "shell.execute_reply": "2024-05-23T15:13:03.141124Z" + "iopub.execute_input": "2024-05-24T13:26:52.456076Z", + "iopub.status.busy": "2024-05-24T13:26:52.455829Z", + "iopub.status.idle": "2024-05-24T13:26:52.464555Z", + "shell.execute_reply": "2024-05-24T13:26:52.464123Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.143781Z", - "iopub.status.busy": "2024-05-23T15:13:03.143608Z", - "iopub.status.idle": "2024-05-23T15:13:03.148101Z", - "shell.execute_reply": "2024-05-23T15:13:03.147682Z" + "iopub.execute_input": "2024-05-24T13:26:52.466607Z", + "iopub.status.busy": "2024-05-24T13:26:52.466288Z", + "iopub.status.idle": "2024-05-24T13:26:52.470874Z", + "shell.execute_reply": "2024-05-24T13:26:52.470457Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.150235Z", - "iopub.status.busy": "2024-05-23T15:13:03.149900Z", - "iopub.status.idle": "2024-05-23T15:13:03.331294Z", - "shell.execute_reply": "2024-05-23T15:13:03.330683Z" + "iopub.execute_input": "2024-05-24T13:26:52.473032Z", + "iopub.status.busy": "2024-05-24T13:26:52.472704Z", + "iopub.status.idle": "2024-05-24T13:26:52.656765Z", + "shell.execute_reply": "2024-05-24T13:26:52.656151Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.333781Z", - "iopub.status.busy": "2024-05-23T15:13:03.333475Z", - "iopub.status.idle": "2024-05-23T15:13:03.700850Z", - "shell.execute_reply": "2024-05-23T15:13:03.700262Z" + "iopub.execute_input": "2024-05-24T13:26:52.659281Z", + "iopub.status.busy": "2024-05-24T13:26:52.659098Z", + "iopub.status.idle": "2024-05-24T13:26:52.979036Z", + "shell.execute_reply": "2024-05-24T13:26:52.978470Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.703132Z", - "iopub.status.busy": "2024-05-23T15:13:03.702776Z", - "iopub.status.idle": "2024-05-23T15:13:03.725692Z", - "shell.execute_reply": "2024-05-23T15:13:03.725125Z" + "iopub.execute_input": "2024-05-24T13:26:52.981365Z", + "iopub.status.busy": "2024-05-24T13:26:52.981053Z", + "iopub.status.idle": "2024-05-24T13:26:53.005031Z", + "shell.execute_reply": "2024-05-24T13:26:53.004539Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.727836Z", - "iopub.status.busy": "2024-05-23T15:13:03.727649Z", - "iopub.status.idle": "2024-05-23T15:13:03.738581Z", - "shell.execute_reply": "2024-05-23T15:13:03.738117Z" + "iopub.execute_input": "2024-05-24T13:26:53.007690Z", + "iopub.status.busy": "2024-05-24T13:26:53.007371Z", + "iopub.status.idle": "2024-05-24T13:26:53.019215Z", + "shell.execute_reply": "2024-05-24T13:26:53.018596Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.740471Z", - "iopub.status.busy": "2024-05-23T15:13:03.740299Z", - "iopub.status.idle": "2024-05-23T15:13:05.338002Z", - "shell.execute_reply": "2024-05-23T15:13:05.337455Z" + "iopub.execute_input": "2024-05-24T13:26:53.022027Z", + "iopub.status.busy": "2024-05-24T13:26:53.021577Z", + "iopub.status.idle": "2024-05-24T13:26:54.720316Z", + "shell.execute_reply": "2024-05-24T13:26:54.719562Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.340438Z", - "iopub.status.busy": "2024-05-23T15:13:05.339995Z", - "iopub.status.idle": "2024-05-23T15:13:05.361380Z", - "shell.execute_reply": "2024-05-23T15:13:05.360935Z" + "iopub.execute_input": "2024-05-24T13:26:54.722961Z", + "iopub.status.busy": "2024-05-24T13:26:54.722484Z", + "iopub.status.idle": "2024-05-24T13:26:54.744675Z", + "shell.execute_reply": "2024-05-24T13:26:54.744196Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.363324Z", - "iopub.status.busy": "2024-05-23T15:13:05.363151Z", - "iopub.status.idle": "2024-05-23T15:13:05.382736Z", - "shell.execute_reply": "2024-05-23T15:13:05.382085Z" + "iopub.execute_input": "2024-05-24T13:26:54.746853Z", + "iopub.status.busy": "2024-05-24T13:26:54.746546Z", + "iopub.status.idle": "2024-05-24T13:26:54.766575Z", + "shell.execute_reply": "2024-05-24T13:26:54.765992Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.384962Z", - "iopub.status.busy": "2024-05-23T15:13:05.384535Z", - "iopub.status.idle": "2024-05-23T15:13:05.399326Z", - "shell.execute_reply": "2024-05-23T15:13:05.398755Z" + "iopub.execute_input": "2024-05-24T13:26:54.768731Z", + "iopub.status.busy": "2024-05-24T13:26:54.768390Z", + "iopub.status.idle": "2024-05-24T13:26:54.782576Z", + "shell.execute_reply": "2024-05-24T13:26:54.782090Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.401526Z", - "iopub.status.busy": "2024-05-23T15:13:05.401345Z", - "iopub.status.idle": "2024-05-23T15:13:05.422119Z", - "shell.execute_reply": "2024-05-23T15:13:05.421562Z" + "iopub.execute_input": "2024-05-24T13:26:54.784639Z", + "iopub.status.busy": "2024-05-24T13:26:54.784461Z", + "iopub.status.idle": "2024-05-24T13:26:54.804403Z", + "shell.execute_reply": "2024-05-24T13:26:54.803828Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9c5b31081b541bebfd320d4af6df565", + "model_id": "e6e757954d7048b1bb62429815f9a67a", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.424552Z", - "iopub.status.busy": "2024-05-23T15:13:05.424228Z", - "iopub.status.idle": "2024-05-23T15:13:05.438967Z", - "shell.execute_reply": "2024-05-23T15:13:05.438497Z" + "iopub.execute_input": "2024-05-24T13:26:54.806550Z", + "iopub.status.busy": "2024-05-24T13:26:54.806330Z", + "iopub.status.idle": "2024-05-24T13:26:54.822396Z", + "shell.execute_reply": "2024-05-24T13:26:54.821789Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.440908Z", - "iopub.status.busy": "2024-05-23T15:13:05.440649Z", - "iopub.status.idle": "2024-05-23T15:13:05.446601Z", - "shell.execute_reply": "2024-05-23T15:13:05.446039Z" + "iopub.execute_input": "2024-05-24T13:26:54.825005Z", + "iopub.status.busy": "2024-05-24T13:26:54.824558Z", + "iopub.status.idle": "2024-05-24T13:26:54.830868Z", + "shell.execute_reply": "2024-05-24T13:26:54.830408Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.448807Z", - "iopub.status.busy": "2024-05-23T15:13:05.448375Z", - "iopub.status.idle": "2024-05-23T15:13:05.465730Z", - "shell.execute_reply": "2024-05-23T15:13:05.465285Z" + "iopub.execute_input": "2024-05-24T13:26:54.833020Z", + "iopub.status.busy": "2024-05-24T13:26:54.832695Z", + "iopub.status.idle": "2024-05-24T13:26:54.851281Z", + "shell.execute_reply": "2024-05-24T13:26:54.850707Z" } }, "outputs": [ @@ -1431,7 +1431,97 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11d9ffa3e26545198ac985101adedb46": { + "1cbe95f6473e45e1ad106d9479a7aa23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2152ed2aafd249fcbc6b7d5db17301ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87c7494c65f54a2a80ac5db9ad1dea05", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5949aba18ce49d6bee351ccf7080215", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "47ff311848c04eeeae7b228e14609896": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6f0830f7b604733ac51463be2ff158b", + "placeholder": "​", + "style": "IPY_MODEL_e10f7eff927e4c99ba20c9c7f64e59fe", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12610.43 examples/s]" + } + }, + "4cce7ec17f5c4e49983d243958233c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60536ff151ef44d3a35cdc2e470d80cd", + "placeholder": "​", + "style": "IPY_MODEL_1cbe95f6473e45e1ad106d9479a7aa23", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "60536ff151ef44d3a35cdc2e470d80cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1574,7 @@ "width": null } }, - "1a73aa9dfb644777affa0318eca169ca": { + "87c7494c65f54a2a80ac5db9ad1dea05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1537,43 +1627,23 @@ "width": null } }, - "20cd3afc55be420b9159cbb92ed1063b": { + "b5949aba18ce49d6bee351ccf7080215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2f295174d6fe4ef28a687af3f4612ef6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3ef4c5f05301418f8dea9f34b84003ab": { + "ca8260074ffb4f75b18753de9ae8af1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1626,7 +1696,49 @@ "width": null } }, - "6042ee3853834a3f98a77b4348678980": { + "e10f7eff927e4c99ba20c9c7f64e59fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6e757954d7048b1bb62429815f9a67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4cce7ec17f5c4e49983d243958233c0c", + "IPY_MODEL_2152ed2aafd249fcbc6b7d5db17301ec", + "IPY_MODEL_47ff311848c04eeeae7b228e14609896" + ], + "layout": "IPY_MODEL_ca8260074ffb4f75b18753de9ae8af1b", + "tabbable": null, + "tooltip": null + } + }, + "e6f0830f7b604733ac51463be2ff158b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1678,118 +1790,6 @@ "visibility": null, "width": null } - }, - "7fc223e421df4b63a990b1b51ad59e4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "b40e8b57c83c4b61a0e83f26f899863c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", - "placeholder": "​", - "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "b90cf3f03d374af08861ec5b4a4965fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", - "placeholder": "​", - "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 11909.48 examples/s]" - } - }, - "b9c5b31081b541bebfd320d4af6df565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", - "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", - "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc" - ], - "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", - "tabbable": null, - "tooltip": null - } - }, - "fd4dc630750649d5a99e28de873e2e58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 9d678dc59..b3d68d483 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:08.011863Z", - "iopub.status.busy": "2024-05-23T15:13:08.011451Z", - "iopub.status.idle": "2024-05-23T15:13:09.157928Z", - "shell.execute_reply": "2024-05-23T15:13:09.157381Z" + "iopub.execute_input": "2024-05-24T13:26:57.755215Z", + "iopub.status.busy": "2024-05-24T13:26:57.754731Z", + "iopub.status.idle": "2024-05-24T13:26:58.945831Z", + "shell.execute_reply": "2024-05-24T13:26:58.945288Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.160433Z", - "iopub.status.busy": "2024-05-23T15:13:09.160019Z", - "iopub.status.idle": "2024-05-23T15:13:09.163038Z", - "shell.execute_reply": "2024-05-23T15:13:09.162585Z" + "iopub.execute_input": "2024-05-24T13:26:58.948395Z", + "iopub.status.busy": "2024-05-24T13:26:58.947953Z", + "iopub.status.idle": "2024-05-24T13:26:58.950901Z", + "shell.execute_reply": "2024-05-24T13:26:58.950458Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.165342Z", - "iopub.status.busy": "2024-05-23T15:13:09.164920Z", - "iopub.status.idle": "2024-05-23T15:13:09.174292Z", - "shell.execute_reply": "2024-05-23T15:13:09.173734Z" + "iopub.execute_input": "2024-05-24T13:26:58.952979Z", + "iopub.status.busy": "2024-05-24T13:26:58.952707Z", + "iopub.status.idle": "2024-05-24T13:26:58.962211Z", + "shell.execute_reply": "2024-05-24T13:26:58.961732Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.176442Z", - "iopub.status.busy": "2024-05-23T15:13:09.176115Z", - "iopub.status.idle": "2024-05-23T15:13:09.180706Z", - "shell.execute_reply": "2024-05-23T15:13:09.180245Z" + "iopub.execute_input": "2024-05-24T13:26:58.964154Z", + "iopub.status.busy": "2024-05-24T13:26:58.963825Z", + "iopub.status.idle": "2024-05-24T13:26:58.968278Z", + "shell.execute_reply": "2024-05-24T13:26:58.967866Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.182843Z", - "iopub.status.busy": "2024-05-23T15:13:09.182524Z", - "iopub.status.idle": "2024-05-23T15:13:09.365121Z", - "shell.execute_reply": "2024-05-23T15:13:09.364638Z" + "iopub.execute_input": "2024-05-24T13:26:58.970350Z", + "iopub.status.busy": "2024-05-24T13:26:58.970005Z", + "iopub.status.idle": "2024-05-24T13:26:59.155905Z", + "shell.execute_reply": "2024-05-24T13:26:59.155339Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.367594Z", - "iopub.status.busy": "2024-05-23T15:13:09.367314Z", - "iopub.status.idle": "2024-05-23T15:13:09.737215Z", - "shell.execute_reply": "2024-05-23T15:13:09.736617Z" + "iopub.execute_input": "2024-05-24T13:26:59.158377Z", + "iopub.status.busy": "2024-05-24T13:26:59.158004Z", + "iopub.status.idle": "2024-05-24T13:26:59.528573Z", + "shell.execute_reply": "2024-05-24T13:26:59.527992Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.739491Z", - "iopub.status.busy": "2024-05-23T15:13:09.739138Z", - "iopub.status.idle": "2024-05-23T15:13:09.741973Z", - "shell.execute_reply": "2024-05-23T15:13:09.741505Z" + "iopub.execute_input": "2024-05-24T13:26:59.531041Z", + "iopub.status.busy": "2024-05-24T13:26:59.530695Z", + "iopub.status.idle": "2024-05-24T13:26:59.533544Z", + "shell.execute_reply": "2024-05-24T13:26:59.533095Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.744001Z", - "iopub.status.busy": "2024-05-23T15:13:09.743687Z", - "iopub.status.idle": "2024-05-23T15:13:09.778838Z", - "shell.execute_reply": "2024-05-23T15:13:09.778249Z" + "iopub.execute_input": "2024-05-24T13:26:59.535733Z", + "iopub.status.busy": "2024-05-24T13:26:59.535361Z", + "iopub.status.idle": "2024-05-24T13:26:59.570768Z", + "shell.execute_reply": "2024-05-24T13:26:59.570130Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.781000Z", - "iopub.status.busy": "2024-05-23T15:13:09.780574Z", - "iopub.status.idle": "2024-05-23T15:13:11.413802Z", - "shell.execute_reply": "2024-05-23T15:13:11.413175Z" + "iopub.execute_input": "2024-05-24T13:26:59.572905Z", + "iopub.status.busy": "2024-05-24T13:26:59.572571Z", + "iopub.status.idle": "2024-05-24T13:27:01.257032Z", + "shell.execute_reply": "2024-05-24T13:27:01.256317Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.416302Z", - "iopub.status.busy": "2024-05-23T15:13:11.415961Z", - "iopub.status.idle": "2024-05-23T15:13:11.435863Z", - "shell.execute_reply": "2024-05-23T15:13:11.435422Z" + "iopub.execute_input": "2024-05-24T13:27:01.259613Z", + "iopub.status.busy": "2024-05-24T13:27:01.259082Z", + "iopub.status.idle": "2024-05-24T13:27:01.277203Z", + "shell.execute_reply": "2024-05-24T13:27:01.276742Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.437904Z", - "iopub.status.busy": "2024-05-23T15:13:11.437569Z", - "iopub.status.idle": "2024-05-23T15:13:11.444686Z", - "shell.execute_reply": "2024-05-23T15:13:11.444155Z" + "iopub.execute_input": "2024-05-24T13:27:01.279192Z", + "iopub.status.busy": "2024-05-24T13:27:01.279013Z", + "iopub.status.idle": "2024-05-24T13:27:01.285630Z", + "shell.execute_reply": "2024-05-24T13:27:01.285118Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.446883Z", - "iopub.status.busy": "2024-05-23T15:13:11.446583Z", - "iopub.status.idle": "2024-05-23T15:13:11.452444Z", - "shell.execute_reply": "2024-05-23T15:13:11.451995Z" + "iopub.execute_input": "2024-05-24T13:27:01.287769Z", + "iopub.status.busy": "2024-05-24T13:27:01.287394Z", + "iopub.status.idle": "2024-05-24T13:27:01.293208Z", + "shell.execute_reply": "2024-05-24T13:27:01.292768Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.454548Z", - "iopub.status.busy": "2024-05-23T15:13:11.454242Z", - "iopub.status.idle": "2024-05-23T15:13:11.464811Z", - "shell.execute_reply": "2024-05-23T15:13:11.464363Z" + "iopub.execute_input": "2024-05-24T13:27:01.295095Z", + "iopub.status.busy": "2024-05-24T13:27:01.294922Z", + "iopub.status.idle": "2024-05-24T13:27:01.305469Z", + "shell.execute_reply": "2024-05-24T13:27:01.304920Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.466881Z", - "iopub.status.busy": "2024-05-23T15:13:11.466586Z", - "iopub.status.idle": "2024-05-23T15:13:11.475380Z", - "shell.execute_reply": "2024-05-23T15:13:11.474932Z" + "iopub.execute_input": "2024-05-24T13:27:01.307619Z", + "iopub.status.busy": "2024-05-24T13:27:01.307316Z", + "iopub.status.idle": "2024-05-24T13:27:01.316582Z", + "shell.execute_reply": "2024-05-24T13:27:01.316132Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.477419Z", - "iopub.status.busy": "2024-05-23T15:13:11.477115Z", - "iopub.status.idle": "2024-05-23T15:13:11.483852Z", - "shell.execute_reply": "2024-05-23T15:13:11.483370Z" + "iopub.execute_input": "2024-05-24T13:27:01.318722Z", + "iopub.status.busy": "2024-05-24T13:27:01.318316Z", + "iopub.status.idle": "2024-05-24T13:27:01.325126Z", + "shell.execute_reply": "2024-05-24T13:27:01.324684Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.485997Z", - "iopub.status.busy": "2024-05-23T15:13:11.485484Z", - "iopub.status.idle": "2024-05-23T15:13:11.495072Z", - "shell.execute_reply": "2024-05-23T15:13:11.494517Z" + "iopub.execute_input": "2024-05-24T13:27:01.327090Z", + "iopub.status.busy": "2024-05-24T13:27:01.326901Z", + "iopub.status.idle": "2024-05-24T13:27:01.336920Z", + "shell.execute_reply": "2024-05-24T13:27:01.336424Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.497098Z", - "iopub.status.busy": "2024-05-23T15:13:11.496841Z", - "iopub.status.idle": "2024-05-23T15:13:11.508854Z", - "shell.execute_reply": "2024-05-23T15:13:11.508425Z" + "iopub.execute_input": "2024-05-24T13:27:01.338941Z", + "iopub.status.busy": "2024-05-24T13:27:01.338763Z", + "iopub.status.idle": "2024-05-24T13:27:01.351636Z", + "shell.execute_reply": "2024-05-24T13:27:01.351217Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 46aed05bb..64c7825c5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:14.178877Z", - "iopub.status.busy": "2024-05-23T15:13:14.178703Z", - "iopub.status.idle": "2024-05-23T15:13:17.006136Z", - "shell.execute_reply": "2024-05-23T15:13:17.005566Z" + "iopub.execute_input": "2024-05-24T13:27:03.925986Z", + "iopub.status.busy": "2024-05-24T13:27:03.925807Z", + "iopub.status.idle": "2024-05-24T13:27:06.897954Z", + "shell.execute_reply": "2024-05-24T13:27:06.897371Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:17.008867Z", - "iopub.status.busy": "2024-05-23T15:13:17.008294Z", - "iopub.status.idle": "2024-05-23T15:13:17.012007Z", - "shell.execute_reply": "2024-05-23T15:13:17.011451Z" + "iopub.execute_input": "2024-05-24T13:27:06.900724Z", + "iopub.status.busy": "2024-05-24T13:27:06.900243Z", + "iopub.status.idle": "2024-05-24T13:27:06.903853Z", + "shell.execute_reply": "2024-05-24T13:27:06.903388Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:17.013953Z", - "iopub.status.busy": "2024-05-23T15:13:17.013687Z", - "iopub.status.idle": "2024-05-23T15:13:20.091774Z", - "shell.execute_reply": "2024-05-23T15:13:20.091313Z" + "iopub.execute_input": "2024-05-24T13:27:06.906049Z", + "iopub.status.busy": "2024-05-24T13:27:06.905711Z", + "iopub.status.idle": "2024-05-24T13:27:08.327163Z", + "shell.execute_reply": "2024-05-24T13:27:08.326669Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69d759b4cea445b9a973a55108546115", + "model_id": "bbc23f4933b64c3c8f937823ce999582", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a39fcf1c68242258be55654be94880e", + "model_id": "df8cda3a69044739be596b2aab1fe701", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9c2d308abf54d4d984ae58a82d5078e", + "model_id": "ef52d56d419a4e64999c9e66d0163ff0", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90681addb12b455a9ba630f4d68088b2", + "model_id": "4d16052127cb42a1b2d4e08eb8cad647", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:20.093846Z", - "iopub.status.busy": "2024-05-23T15:13:20.093654Z", - "iopub.status.idle": "2024-05-23T15:13:20.097621Z", - "shell.execute_reply": "2024-05-23T15:13:20.097181Z" + "iopub.execute_input": "2024-05-24T13:27:08.329311Z", + "iopub.status.busy": "2024-05-24T13:27:08.328997Z", + "iopub.status.idle": "2024-05-24T13:27:08.332669Z", + "shell.execute_reply": "2024-05-24T13:27:08.332250Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:20.099530Z", - "iopub.status.busy": "2024-05-23T15:13:20.099340Z", - "iopub.status.idle": "2024-05-23T15:13:31.423568Z", - "shell.execute_reply": "2024-05-23T15:13:31.423019Z" + "iopub.execute_input": "2024-05-24T13:27:08.334730Z", + "iopub.status.busy": "2024-05-24T13:27:08.334344Z", + "iopub.status.idle": "2024-05-24T13:27:19.485538Z", + "shell.execute_reply": "2024-05-24T13:27:19.485021Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "25487563f91749b897153d9eb325490d", + "model_id": "1488fdd2b30c4bb188eeb10c6bdc7673", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:31.426592Z", - "iopub.status.busy": "2024-05-23T15:13:31.426156Z", - "iopub.status.idle": "2024-05-23T15:13:49.813258Z", - "shell.execute_reply": "2024-05-23T15:13:49.812619Z" + "iopub.execute_input": "2024-05-24T13:27:19.488332Z", + "iopub.status.busy": "2024-05-24T13:27:19.487851Z", + "iopub.status.idle": "2024-05-24T13:27:38.306885Z", + "shell.execute_reply": "2024-05-24T13:27:38.306313Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.816008Z", - "iopub.status.busy": "2024-05-23T15:13:49.815622Z", - "iopub.status.idle": "2024-05-23T15:13:49.821547Z", - "shell.execute_reply": "2024-05-23T15:13:49.821047Z" + "iopub.execute_input": "2024-05-24T13:27:38.309667Z", + "iopub.status.busy": "2024-05-24T13:27:38.309284Z", + "iopub.status.idle": "2024-05-24T13:27:38.315104Z", + "shell.execute_reply": "2024-05-24T13:27:38.314647Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.823587Z", - "iopub.status.busy": "2024-05-23T15:13:49.823249Z", - "iopub.status.idle": "2024-05-23T15:13:49.827320Z", - "shell.execute_reply": "2024-05-23T15:13:49.826781Z" + "iopub.execute_input": "2024-05-24T13:27:38.317239Z", + "iopub.status.busy": "2024-05-24T13:27:38.316914Z", + "iopub.status.idle": "2024-05-24T13:27:38.320782Z", + "shell.execute_reply": "2024-05-24T13:27:38.320366Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.829689Z", - "iopub.status.busy": "2024-05-23T15:13:49.829257Z", - "iopub.status.idle": "2024-05-23T15:13:49.838222Z", - "shell.execute_reply": "2024-05-23T15:13:49.837683Z" + "iopub.execute_input": "2024-05-24T13:27:38.322781Z", + "iopub.status.busy": "2024-05-24T13:27:38.322484Z", + "iopub.status.idle": "2024-05-24T13:27:38.331713Z", + "shell.execute_reply": "2024-05-24T13:27:38.331133Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.840412Z", - "iopub.status.busy": "2024-05-23T15:13:49.839978Z", - "iopub.status.idle": "2024-05-23T15:13:49.867196Z", - "shell.execute_reply": "2024-05-23T15:13:49.866751Z" + "iopub.execute_input": "2024-05-24T13:27:38.334073Z", + "iopub.status.busy": "2024-05-24T13:27:38.333721Z", + "iopub.status.idle": "2024-05-24T13:27:38.361430Z", + "shell.execute_reply": "2024-05-24T13:27:38.360819Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.869201Z", - "iopub.status.busy": "2024-05-23T15:13:49.868895Z", - "iopub.status.idle": "2024-05-23T15:14:21.536235Z", - "shell.execute_reply": "2024-05-23T15:14:21.535644Z" + "iopub.execute_input": "2024-05-24T13:27:38.364223Z", + "iopub.status.busy": "2024-05-24T13:27:38.363809Z", + "iopub.status.idle": "2024-05-24T13:28:11.869820Z", + "shell.execute_reply": "2024-05-24T13:28:11.869231Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.787\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.948\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.446\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.859\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f14eebd8eb0d4e95bac3630f3fe6d0e9", + "model_id": "f154be759b8748d59ec51f312c142f92", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b56ff307f7824e6e9bcf6a01e2e13370", + "model_id": "7e71d9e912bc4e71825d9371ff503ba4", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.667\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.936\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.671\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.657\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "248049c7381c4c2ca21235e34a098f2d", + "model_id": "d5ddf85180fa4342aad62bb64cb000fa", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "657ef4ecc31347e6ba461199c77ccec4", + "model_id": "cd8abb05f12b4ffdb9ad78fe5d66edef", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.704\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.926\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.377\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.856\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fa980c5195b462fbcc67f69e5d79e5d", + "model_id": "663d915187f54f088432e11455a4e3e0", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "37c18899cb7a47beb783877d59772e95", + "model_id": "c20c6841e7d84aec90f410f2526cbc52", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:21.538695Z", - "iopub.status.busy": "2024-05-23T15:14:21.538451Z", - "iopub.status.idle": "2024-05-23T15:14:21.554756Z", - "shell.execute_reply": "2024-05-23T15:14:21.554303Z" + "iopub.execute_input": "2024-05-24T13:28:11.872695Z", + "iopub.status.busy": "2024-05-24T13:28:11.872278Z", + "iopub.status.idle": "2024-05-24T13:28:11.889488Z", + "shell.execute_reply": "2024-05-24T13:28:11.889023Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:21.556886Z", - "iopub.status.busy": "2024-05-23T15:14:21.556543Z", - "iopub.status.idle": "2024-05-23T15:14:22.004751Z", - "shell.execute_reply": "2024-05-23T15:14:22.004127Z" + "iopub.execute_input": "2024-05-24T13:28:11.891737Z", + "iopub.status.busy": "2024-05-24T13:28:11.891478Z", + "iopub.status.idle": "2024-05-24T13:28:12.364248Z", + "shell.execute_reply": "2024-05-24T13:28:12.363690Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:22.007264Z", - "iopub.status.busy": "2024-05-23T15:14:22.007091Z", - "iopub.status.idle": "2024-05-23T15:17:57.570513Z", - "shell.execute_reply": "2024-05-23T15:17:57.569864Z" + "iopub.execute_input": "2024-05-24T13:28:12.366730Z", + "iopub.status.busy": "2024-05-24T13:28:12.366382Z", + "iopub.status.idle": "2024-05-24T13:31:49.378929Z", + "shell.execute_reply": "2024-05-24T13:31:49.378285Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c6e9e2c8ad734cec8bbdd869c9f46951", + "model_id": "ec29a42edd9749e78968600e14cb5c99", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:57.573092Z", - "iopub.status.busy": "2024-05-23T15:17:57.572457Z", - "iopub.status.idle": "2024-05-23T15:17:58.023761Z", - "shell.execute_reply": "2024-05-23T15:17:58.023198Z" + "iopub.execute_input": "2024-05-24T13:31:49.381344Z", + "iopub.status.busy": "2024-05-24T13:31:49.380919Z", + "iopub.status.idle": "2024-05-24T13:31:49.853921Z", + "shell.execute_reply": "2024-05-24T13:31:49.853321Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.026606Z", - "iopub.status.busy": "2024-05-23T15:17:58.026079Z", - "iopub.status.idle": "2024-05-23T15:17:58.089095Z", - "shell.execute_reply": "2024-05-23T15:17:58.088523Z" + "iopub.execute_input": "2024-05-24T13:31:49.856869Z", + "iopub.status.busy": "2024-05-24T13:31:49.856445Z", + "iopub.status.idle": "2024-05-24T13:31:49.919396Z", + "shell.execute_reply": "2024-05-24T13:31:49.918713Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.091322Z", - "iopub.status.busy": "2024-05-23T15:17:58.090982Z", - "iopub.status.idle": "2024-05-23T15:17:58.099604Z", - "shell.execute_reply": "2024-05-23T15:17:58.099176Z" + "iopub.execute_input": "2024-05-24T13:31:49.921715Z", + "iopub.status.busy": "2024-05-24T13:31:49.921381Z", + "iopub.status.idle": "2024-05-24T13:31:49.930444Z", + "shell.execute_reply": "2024-05-24T13:31:49.929976Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.101628Z", - "iopub.status.busy": "2024-05-23T15:17:58.101449Z", - "iopub.status.idle": "2024-05-23T15:17:58.105968Z", - "shell.execute_reply": "2024-05-23T15:17:58.105548Z" + "iopub.execute_input": "2024-05-24T13:31:49.932523Z", + "iopub.status.busy": "2024-05-24T13:31:49.932224Z", + "iopub.status.idle": "2024-05-24T13:31:49.936958Z", + "shell.execute_reply": "2024-05-24T13:31:49.936414Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.107985Z", - "iopub.status.busy": "2024-05-23T15:17:58.107659Z", - "iopub.status.idle": "2024-05-23T15:17:58.618614Z", - "shell.execute_reply": "2024-05-23T15:17:58.617887Z" + "iopub.execute_input": "2024-05-24T13:31:49.939149Z", + "iopub.status.busy": "2024-05-24T13:31:49.938752Z", + "iopub.status.idle": "2024-05-24T13:31:50.471492Z", + "shell.execute_reply": "2024-05-24T13:31:50.470890Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.620891Z", - "iopub.status.busy": "2024-05-23T15:17:58.620541Z", - "iopub.status.idle": "2024-05-23T15:17:58.628720Z", - "shell.execute_reply": "2024-05-23T15:17:58.628291Z" + "iopub.execute_input": "2024-05-24T13:31:50.473905Z", + "iopub.status.busy": "2024-05-24T13:31:50.473560Z", + "iopub.status.idle": "2024-05-24T13:31:50.482596Z", + "shell.execute_reply": "2024-05-24T13:31:50.481995Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.630903Z", - "iopub.status.busy": "2024-05-23T15:17:58.630580Z", - "iopub.status.idle": "2024-05-23T15:17:58.637500Z", - "shell.execute_reply": "2024-05-23T15:17:58.637078Z" + "iopub.execute_input": "2024-05-24T13:31:50.484884Z", + "iopub.status.busy": "2024-05-24T13:31:50.484554Z", + "iopub.status.idle": "2024-05-24T13:31:50.491975Z", + "shell.execute_reply": "2024-05-24T13:31:50.491502Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.639392Z", - "iopub.status.busy": "2024-05-23T15:17:58.639091Z", - "iopub.status.idle": "2024-05-23T15:17:59.084952Z", - "shell.execute_reply": "2024-05-23T15:17:59.084352Z" + "iopub.execute_input": "2024-05-24T13:31:50.494367Z", + "iopub.status.busy": "2024-05-24T13:31:50.494029Z", + "iopub.status.idle": "2024-05-24T13:31:50.980281Z", + "shell.execute_reply": "2024-05-24T13:31:50.979660Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.087500Z", - "iopub.status.busy": "2024-05-23T15:17:59.087139Z", - "iopub.status.idle": "2024-05-23T15:17:59.102651Z", - "shell.execute_reply": "2024-05-23T15:17:59.102136Z" + "iopub.execute_input": "2024-05-24T13:31:50.982835Z", + "iopub.status.busy": "2024-05-24T13:31:50.982474Z", + "iopub.status.idle": "2024-05-24T13:31:50.998899Z", + "shell.execute_reply": "2024-05-24T13:31:50.998343Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.104738Z", - "iopub.status.busy": "2024-05-23T15:17:59.104405Z", - "iopub.status.idle": "2024-05-23T15:17:59.109761Z", - "shell.execute_reply": "2024-05-23T15:17:59.109326Z" + "iopub.execute_input": "2024-05-24T13:31:51.001315Z", + "iopub.status.busy": "2024-05-24T13:31:51.000971Z", + "iopub.status.idle": "2024-05-24T13:31:51.006574Z", + "shell.execute_reply": "2024-05-24T13:31:51.006119Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.111760Z", - "iopub.status.busy": "2024-05-23T15:17:59.111508Z", - "iopub.status.idle": "2024-05-23T15:17:59.495102Z", - "shell.execute_reply": "2024-05-23T15:17:59.494423Z" + "iopub.execute_input": "2024-05-24T13:31:51.008934Z", + "iopub.status.busy": "2024-05-24T13:31:51.008585Z", + "iopub.status.idle": "2024-05-24T13:31:51.497914Z", + "shell.execute_reply": "2024-05-24T13:31:51.496834Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.497653Z", - "iopub.status.busy": "2024-05-23T15:17:59.497219Z", - "iopub.status.idle": "2024-05-23T15:17:59.506079Z", - "shell.execute_reply": "2024-05-23T15:17:59.505422Z" + "iopub.execute_input": "2024-05-24T13:31:51.500532Z", + "iopub.status.busy": "2024-05-24T13:31:51.500298Z", + "iopub.status.idle": "2024-05-24T13:31:51.511340Z", + "shell.execute_reply": "2024-05-24T13:31:51.510771Z" } }, "outputs": [ @@ -2178,47 +2178,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.508583Z", - "iopub.status.busy": "2024-05-23T15:17:59.508111Z", - "iopub.status.idle": "2024-05-23T15:17:59.513464Z", - "shell.execute_reply": "2024-05-23T15:17:59.512886Z" + "iopub.execute_input": "2024-05-24T13:31:51.514099Z", + "iopub.status.busy": "2024-05-24T13:31:51.513630Z", + "iopub.status.idle": "2024-05-24T13:31:51.520132Z", + "shell.execute_reply": "2024-05-24T13:31:51.519519Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.515549Z", - "iopub.status.busy": "2024-05-23T15:17:59.515376Z", - "iopub.status.idle": "2024-05-23T15:17:59.688523Z", - "shell.execute_reply": "2024-05-23T15:17:59.687834Z" + "iopub.execute_input": "2024-05-24T13:31:51.522884Z", + "iopub.status.busy": "2024-05-24T13:31:51.522397Z", + "iopub.status.idle": "2024-05-24T13:31:51.730159Z", + "shell.execute_reply": "2024-05-24T13:31:51.729620Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.691135Z", - "iopub.status.busy": "2024-05-23T15:17:59.690737Z", - "iopub.status.idle": "2024-05-23T15:17:59.698702Z", - "shell.execute_reply": "2024-05-23T15:17:59.698153Z" + "iopub.execute_input": "2024-05-24T13:31:51.732692Z", + "iopub.status.busy": "2024-05-24T13:31:51.732321Z", + "iopub.status.idle": "2024-05-24T13:31:51.740768Z", + "shell.execute_reply": "2024-05-24T13:31:51.740253Z" } }, "outputs": [ @@ -2394,47 +2394,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.700721Z", - "iopub.status.busy": "2024-05-23T15:17:59.700339Z", - "iopub.status.idle": "2024-05-23T15:17:59.882402Z", - "shell.execute_reply": "2024-05-23T15:17:59.881857Z" + "iopub.execute_input": "2024-05-24T13:31:51.743197Z", + "iopub.status.busy": "2024-05-24T13:31:51.742747Z", + "iopub.status.idle": "2024-05-24T13:31:51.921004Z", + "shell.execute_reply": "2024-05-24T13:31:51.920432Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.884676Z", - "iopub.status.busy": "2024-05-23T15:17:59.884318Z", - "iopub.status.idle": "2024-05-23T15:17:59.889882Z", - "shell.execute_reply": "2024-05-23T15:17:59.889425Z" + "iopub.execute_input": "2024-05-24T13:31:51.923697Z", + "iopub.status.busy": "2024-05-24T13:31:51.923128Z", + "iopub.status.idle": "2024-05-24T13:31:51.928356Z", + "shell.execute_reply": "2024-05-24T13:31:51.927737Z" }, "nbsphinx": "hidden" }, @@ -2538,7 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "030ce355308a4ae19b32b1803b815312": { + "00f7b79a3cde4e2a9a20f653645d1c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,71 +2591,7 @@ "width": null } }, - "0667b778da0644e3bf432c6ed831b021": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0704c92cb83f453099a319c6760a3785": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "07bf3e196fd244339afe75d5bde48e3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "08653f32acef42e2b00105e4a07cceac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0be90ee02b694223bf88ee128a5982dd": { + "0144e93f27484842b05ac2e08b0f3b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2673,7 +2609,7 @@ "text_color": null } }, - "0d97ea1a5b604d47b3eae52595afaaa6": { + "016647c7324f4c9294fa2d6f5ff4ceab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2691,7 +2627,7 @@ "text_color": null } }, - "0ec33797bad14055a1de8a8f992c6134": { + "0196bff20c8547f3aa4d0b00aebd223b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2744,7 +2680,7 @@ "width": null } }, - "0f5ab466e4f646d38207b242988c32b4": { + "0230d674336240908fdb90154fe2a7a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2797,7 +2733,7 @@ "width": null } }, - "0fd3562f606b4206957d569480d562aa": { + "03bab8b4853b4c9ea6f1c16b67fc7382": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2812,15 +2748,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db184c07f55141f488cce3ec3fc3159d", + "layout": "IPY_MODEL_c14e7bb94c5641ff8b40f1fb0053bab1", "placeholder": "​", - "style": "IPY_MODEL_a1182345e3c5415db85095ad9e812fc0", + "style": "IPY_MODEL_b9fc7a3f1c2e490e95b4cd36add5f94b", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1b5b85bd29334520a5f30f257261210b": { + "06aafaaa2f5344feaaef02b6bc4cd627": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c10054fe28ca488cb19260d9072650e8", + "placeholder": "​", + "style": "IPY_MODEL_60da4d725f54466d99e397ec517c7244", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "0745b7ab5d8e469286f080de62528c2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ad6769ae82214e61b4efadb803ffca3b", + "placeholder": "​", + "style": "IPY_MODEL_7b0f4450726642f4a38cda35448dbf57", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 94.4MB/s]" + } + }, + "094b04e0b0b34a3ea812012a60f2830d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2838,7 +2820,7 @@ "text_color": null } }, - "1c9a0ec998694ab98f33e462be441b15": { + "0b929ce444ee49e19bacc8e08c316395": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2891,7 +2873,23 @@ "width": null } }, - "1d54ef60f40b42d894c0c93aa023f924": { + "0cc886a763554ccea5966cb8b3ba114b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d098b0f286b48408215c98f11b18bc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2909,7 +2907,7 @@ "text_color": null } }, - "1e824539d22548dea150f1f6eaac4b1b": { + "0e711f431b324e968de86b029303f0c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2924,68 +2922,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca7021afb6824ca39461db6224a967b1", + "layout": "IPY_MODEL_a0dd9e569dfe4ed986e7f91826b9413e", "placeholder": "​", - "style": "IPY_MODEL_ee5d7d4d67ff43599f10436b84389778", + "style": "IPY_MODEL_0144e93f27484842b05ac2e08b0f3b83", "tabbable": null, "tooltip": null, "value": "100%" } }, - "202b1a1d2d12458089afedd08ebd46e2": { - "model_module": "@jupyter-widgets/base", + "0e75b2feeec94b72b0f33ebfd4479b1a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_218db9a01a5b4174a4c836966d9cc227", + "placeholder": "​", + "style": "IPY_MODEL_a77d281066274273abe06607dd3d117d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.68it/s]" } }, - "208e6713136b4a069253f3c771aaba6b": { + "117ecc5c04a44d6b8834e199cc5efd89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3001,35 +2969,64 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030ce355308a4ae19b32b1803b815312", + "layout": "IPY_MODEL_d45963eadf6749d483d5e3aa39352c6c", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_35f3ccfabf0d49caac51395e757e280c", + "style": "IPY_MODEL_713902fd45f349b9aae0bb2d942b6c1e", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "21cccf8e4fcd4f2d94689e3eff05b437": { + "13e898819ae344fd9ea831b7397fc1c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6972a0932e494c43bcde46db541b3066", + "placeholder": "​", + "style": "IPY_MODEL_3c05b942e35740099eb7aec2fb979c40", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1488fdd2b30c4bb188eeb10c6bdc7673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5231594e5494ba9ba6f401322ad0bee", + "IPY_MODEL_6c90082500af4e8eb26db92f51e4c1e2", + "IPY_MODEL_e86ead3870124fccae23952e00b23250" + ], + "layout": "IPY_MODEL_eeeef3b2444c4ce09727af1785246d8e", + "tabbable": null, + "tooltip": null } }, - "224edd0c6d1f4706acb4172cafae63ed": { + "1aa37d05d9c34593bcd18ba24c7c926a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,25 +3079,7 @@ "width": null } }, - "22da545dee504e11be27c3f2e6f64a8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2340af9d58c945cf8f396b29d51c5971": { + "218db9a01a5b4174a4c836966d9cc227": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3153,102 +3132,10 @@ "width": null } }, - "248049c7381c4c2ca21235e34a098f2d": { - "model_module": "@jupyter-widgets/controls", + "24c945e5b29b44ae9f098554b1db4d04": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a580d919ecc46b788a811b3ead20ba7", - "IPY_MODEL_f886827e67fc4f5ebf2091c3e40b2145", - "IPY_MODEL_f8428265fb9b4bdf9292d5b2ca1bb430" - ], - "layout": "IPY_MODEL_7e8091f57a3e48f0beec85edfd7811da", - "tabbable": null, - "tooltip": null - } - }, - "24c7415f1d494854a1069f363af31ff8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "25487563f91749b897153d9eb325490d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9c0569b3288740e7957046e5602051ab", - "IPY_MODEL_bfd20dfe7ced4745b700d16343e6555b", - "IPY_MODEL_cf990872c7e342e89ab836f3533d98a2" - ], - "layout": "IPY_MODEL_7346b6312fb34127a555f3fec2151b56", - "tabbable": null, - "tooltip": null - } - }, - "25bb8e454c1b4f4d935e13896b5d8274": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0e7582bcb8d4e37a597d96f234740de", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdff082d070b4b489f5b4ea895722379", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "2600127ce03c42078c96ab55a769f409": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3298,7 +3185,7 @@ "width": null } }, - "2675c73049e44c728866da88db8c3923": { + "250f3bd0472e4789893b2d2d3b622692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3314,7 +3201,7 @@ "description_width": "" } }, - "26e2e4b700c047bab29090430c40724a": { + "2517cdec87a947d98de2d1884b79b2fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3332,33 +3219,25 @@ "text_color": null } }, - "2942fd8cccc94f7a8056af7f51912fc2": { + "2527caaef2b94e9981918052ae6b9ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acb5a4c79d044476b4db375a95477ab0", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0667b778da0644e3bf432c6ed831b021", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2bc382ab8e9c427dadfe8be93c514c5a": { + "257b7c3736c54eaf884d345c1bb0c000": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3373,15 +3252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e2e023f072f472ea9b18be5fada3997", + "layout": "IPY_MODEL_a04a0c7b2df74b9cbc5f2a00733d2734", "placeholder": "​", - "style": "IPY_MODEL_32d59b7fb1c4448fb76bc68f9d93bb7c", + "style": "IPY_MODEL_f53a489266ea49e2a24d62ece1bf0f26", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.30it/s]" + "value": " 40/40 [00:00<00:00, 61.20it/s]" } }, - "30a6fba3aeff40458e4522b8d25e2460": { + "2860104a06d6464a82be888ba22fb38b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3434,7 +3313,7 @@ "width": null } }, - "32baef6de51b4d538d24f5ba1bf84895": { + "28660dc64b8c42039ad276c3429360c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3449,131 +3328,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7fd0e9c45c74cb28ae53d1c9eafe1a8", + "layout": "IPY_MODEL_393bfe80bdc243b38cc781d008636a5e", "placeholder": "​", - "style": "IPY_MODEL_1b5b85bd29334520a5f30f257261210b", + "style": "IPY_MODEL_2517cdec87a947d98de2d1884b79b2fe", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "32d59b7fb1c4448fb76bc68f9d93bb7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "35f3ccfabf0d49caac51395e757e280c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "36aa2c3c5ff544af9a903931b09909d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "37c18899cb7a47beb783877d59772e95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6452086a008b42aebee332fbe33f0041", - "IPY_MODEL_b1709cfcfebd4e239b073b0f0613405e", - "IPY_MODEL_dca0375df0034c4fa92f2a4bb7144667" - ], - "layout": "IPY_MODEL_a68d6cb805e84e869e126049bf112c66", - "tabbable": null, - "tooltip": null - } - }, - "3a39fcf1c68242258be55654be94880e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8fdd33091014c4e9b0f4f4c80d77d9c", - "IPY_MODEL_abb587732c974d45aed41ed4bf011226", - "IPY_MODEL_491545bb08cf4760b4d10904c9b53df4" - ], - "layout": "IPY_MODEL_a356f17edce64e9f82872d52935fddbc", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 62.06it/s]" } }, - "3ba2af3e664b4c97bae98b5db800e998": { - "model_module": "@jupyter-widgets/controls", + "28e71a98dad04ef480705aed579239b0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e2e023f072f472ea9b18be5fada3997": { + "2bfca25dda494672bb6720ccd4b565f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3626,89 +3442,14 @@ "width": null } }, - "4245c182c418461089ff64122026cf89": { - "model_module": "@jupyter-widgets/controls", + "2c0f9af339374b0998a6bcd7df57b1c2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44ecddd2f63b459f93beee81622216a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "491545bb08cf4760b4d10904c9b53df4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_891e83dfcd8a4b29b5cf22c81f04f1e4", - "placeholder": "​", - "style": "IPY_MODEL_24c7415f1d494854a1069f363af31ff8", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 16.9MB/s]" - } - }, - "4c710b91c2f74b6ea9a645d14d858e69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c86ed0a29c94761b734a38448c453eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3754,7 +3495,69 @@ "width": null } }, - "4cb4b2dea30d4d719ce0cfc60436bd1b": { + "2e5059b821dd46ceab4d1d3a0cc09fa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4df9d549d04347f8b481d4560fd7100f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_250f3bd0472e4789893b2d2d3b622692", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "30ecb7dca6c2458e8d40d2e812ed07cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "32518465b7f14dfb948bc654d57c3a54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3426834a66414b7595279daad27f676e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3807,7 +3610,7 @@ "width": null } }, - "4d7f009af5c44671abfea28928c232a0": { + "393bfe80bdc243b38cc781d008636a5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3860,7 +3663,25 @@ "width": null } }, - "4fc726979875440198e98b47d8a460ac": { + "3c05b942e35740099eb7aec2fb979c40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4112a1008e75481b935c1a2f52e46007": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3913,7 +3734,7 @@ "width": null } }, - "507cadaf20704109acd37c5353daeec9": { + "426dedad66274fac9b2e484725f25c01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3966,7 +3787,7 @@ "width": null } }, - "52de047e28024acc9a8a1bcb2d119f80": { + "45c9925042e240978902575f87a4f39b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4019,71 +3840,23 @@ "width": null } }, - "58dbeddc86a84451839a6a06a29391e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aaeb70d3af9e48a9861025243e2b186a", - "placeholder": "​", - "style": "IPY_MODEL_0d97ea1a5b604d47b3eae52595afaaa6", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 631.48it/s]" - } - }, - "5affffa3c2c74016be203a330fa1116e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f5ab466e4f646d38207b242988c32b4", - "placeholder": "​", - "style": "IPY_MODEL_21cccf8e4fcd4f2d94689e3eff05b437", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5bb90a1b55c34a21bb9c4e5d6941cc93": { + "45d1054ac70947c085fab356cd8289eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5dec51715c864d82b748de330097bc61": { + "45d8a35677a348dbb2a6ad07a349c9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4101,60 +3874,7 @@ "text_color": null } }, - "62fa3ddadaff4c599654918619bbacdb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6452086a008b42aebee332fbe33f0041": { + "47090d25e2a5482b9eded49a22066c42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4169,39 +3889,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbe1888706b24d19b3a94a33c39fdd6e", + "layout": "IPY_MODEL_de1cde7df2e14852bce1f13d5d85b709", "placeholder": "​", - "style": "IPY_MODEL_4c710b91c2f74b6ea9a645d14d858e69", + "style": "IPY_MODEL_fbb837c13832462fab2809af630e3ef8", "tabbable": null, "tooltip": null, "value": "100%" } }, - "657ef4ecc31347e6ba461199c77ccec4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5affffa3c2c74016be203a330fa1116e", - "IPY_MODEL_66dd02178fdf464494297942ea811afe", - "IPY_MODEL_2bc382ab8e9c427dadfe8be93c514c5a" - ], - "layout": "IPY_MODEL_507cadaf20704109acd37c5353daeec9", - "tabbable": null, - "tooltip": null - } - }, - "65b0520e8f194be380ba3213c43130e3": { + "47fe53c396b8434bad5308c201b238bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4254,230 +3950,70 @@ "width": null } }, - "66dd02178fdf464494297942ea811afe": { + "49aa27f6455d409ca44bd59a03ad98fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d25407a4af2348529af54e69cb4cdb39", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2675c73049e44c728866da88db8c3923", + "layout": "IPY_MODEL_628507666bb24ceba66496e782e75c63", + "placeholder": "​", + "style": "IPY_MODEL_698127e9f592496fa385c2e444e816d2", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "69d759b4cea445b9a973a55108546115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8e061de7b414e0a8911b9b283456372", - "IPY_MODEL_d33300be1bc84be4a49bca8b8c925a8e", - "IPY_MODEL_a10372230a91463d91407f070f2e68fe" - ], - "layout": "IPY_MODEL_4d7f009af5c44671abfea28928c232a0", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "6a2f4cef88b74e1eba63c94bb2bd5412": { + "4babd65517484d1897194a4aa021ad78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b1f49b491524b529aec41aebcecd597": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b53ad2c3495a4380a386de2670df193c", - "placeholder": "​", - "style": "IPY_MODEL_36aa2c3c5ff544af9a903931b09909d1", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "bar_color": null, + "description_width": "" } }, - "6c492d495c854d4aaa733a6c4a69053a": { + "4d16052127cb42a1b2d4e08eb8cad647": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_887477fff78b408693fdfa4ab1646952", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c8d9f0fac0f64b38ac62e0a708d58948", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d738cd3650ed4d298173e32d6bc6c2dc", + "IPY_MODEL_db44c434f23048af998a723d37cefc80", + "IPY_MODEL_b2efe58609bc47f4a7688c1940dcc0c2" + ], + "layout": "IPY_MODEL_0230d674336240908fdb90154fe2a7a0", "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "6fd1907ecba34676ae3fd20801ef3e33": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7346b6312fb34127a555f3fec2151b56": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "7a513b0560ff4bf09146696eb95077ed": { + "4df9d549d04347f8b481d4560fd7100f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,33 +4066,30 @@ "width": null } }, - "7b0db4e438bd4cf0bbb0a609862c8652": { + "548e5cf360ee4614a2a12a94c0e79b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db53115a53044737bff7390360d41ed7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44ecddd2f63b459f93beee81622216a0", + "layout": "IPY_MODEL_804c4dcfaac04cbfbec486f3b530dc1f", + "placeholder": "​", + "style": "IPY_MODEL_e0c8c8645ca0495889fbc65fe0b87950", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:00<00:00, 295774.33 examples/s]" } }, - "7bbcbd023d9844fcb11c44b43fba9714": { + "5640121c317f4124bca171d99c5dd028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4609,25 +4142,23 @@ "width": null } }, - "7bd79c63938a4501be1f20daa3a69df5": { + "5c48ce274ef64239ba3832179b0795f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7e8091f57a3e48f0beec85edfd7811da": { + "60946dc033e94e6988681eafe3e0968e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4680,60 +4211,25 @@ "width": null } }, - "7edc557e66c5439ab5478477342fee93": { - "model_module": "@jupyter-widgets/base", + "60da4d725f54466d99e397ec517c7244": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fa980c5195b462fbcc67f69e5d79e5d": { + "621f842b85d54f87886d7cb5a2622086": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4748,16 +4244,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c91b1e88c68248b0ad788baa0d0e9287", - "IPY_MODEL_208e6713136b4a069253f3c771aaba6b", - "IPY_MODEL_a101c3b6225b4fff860482618c744fe2" + "IPY_MODEL_06aafaaa2f5344feaaef02b6bc4cd627", + "IPY_MODEL_968ef48414cd46e5bba8eefac02c2b1f", + "IPY_MODEL_690aebbb3b564b9b986389bea55a0296" ], - "layout": "IPY_MODEL_e8d62619eeaa49329fdd0d7210bf3d72", + "layout": "IPY_MODEL_f07f4af5492b4a739de78affbf30880a", "tabbable": null, "tooltip": null } }, - "80c194d7e8024776938ccc9ae9f9514b": { + "628507666bb24ceba66496e782e75c63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,7 +4306,7 @@ "width": null } }, - "8680cef6bcba41358f0b2245e3ad4f1f": { + "641fb507a3b24872b2387e531839feb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4863,7 +4359,77 @@ "width": null } }, - "86ffa2eef8bf4d15821cd2bdee074613": { + "663d915187f54f088432e11455a4e3e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e711f431b324e968de86b029303f0c6", + "IPY_MODEL_f7d9896b86014bfca6b21aa9fd355eb3", + "IPY_MODEL_28660dc64b8c42039ad276c3429360c1" + ], + "layout": "IPY_MODEL_641fb507a3b24872b2387e531839feb5", + "tabbable": null, + "tooltip": null + } + }, + "6857a39e2c3f4babae83a3986dc6b76a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28e71a98dad04ef480705aed579239b0", + "placeholder": "​", + "style": "IPY_MODEL_2527caaef2b94e9981918052ae6b9ca2", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "690aebbb3b564b9b986389bea55a0296": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c87c5b44dc094607a1e2536e0c76e57b", + "placeholder": "​", + "style": "IPY_MODEL_45d8a35677a348dbb2a6ad07a349c9a7", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 602.98it/s]" + } + }, + "6972a0932e494c43bcde46db541b3066": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4916,7 +4482,142 @@ "width": null } }, - "887477fff78b408693fdfa4ab1646952": { + "698127e9f592496fa385c2e444e816d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69add8dcfede4e1db3d037538ca277f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f96cd91660d34ef09f6defe0d16aca46", + "placeholder": "​", + "style": "IPY_MODEL_761f43f34813463fa36e8a776ee96b4d", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 84.2MB/s]" + } + }, + "6a99755dfe684f3b843e82558d4f8f0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6c90082500af4e8eb26db92f51e4c1e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9bcb548e7094af980664e2955df2492", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_be5dbc5e37d143aaa03470ba9d23f660", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "713902fd45f349b9aae0bb2d942b6c1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "761f43f34813463fa36e8a776ee96b4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b0f4450726642f4a38cda35448dbf57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7e0de3791e9847189ad45dff796c740e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4969,7 +4670,31 @@ "width": null } }, - "891e83dfcd8a4b29b5cf22c81f04f1e4": { + "7e71d9e912bc4e71825d9371ff503ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13e898819ae344fd9ea831b7397fc1c5", + "IPY_MODEL_e51ff13e68b748e78c21e0faf5f5fcff", + "IPY_MODEL_257b7c3736c54eaf884d345c1bb0c000" + ], + "layout": "IPY_MODEL_b2b3e4c08f99488ea5fa4725c420b867", + "tabbable": null, + "tooltip": null + } + }, + "804c4dcfaac04cbfbec486f3b530dc1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5022,54 +4747,59 @@ "width": null } }, - "8a580d919ecc46b788a811b3ead20ba7": { + "875c5afc59bb4613b36d4d243c9c4bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65b0520e8f194be380ba3213c43130e3", - "placeholder": "​", - "style": "IPY_MODEL_ed16178859c14aeb83a170a1252fd377", + "layout": "IPY_MODEL_a0700c68476c47678a7755d32b43cb64", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6a99755dfe684f3b843e82558d4f8f0a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 30931277.0 } }, - "90681addb12b455a9ba630f4d68088b2": { + "93daebb7421e450499169b3621d45354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa4a8769a3864fa1a03f6b7030801bdb", - "IPY_MODEL_25bb8e454c1b4f4d935e13896b5d8274", - "IPY_MODEL_b52804ea50ca497c9cf1e9c22fd05122" - ], - "layout": "IPY_MODEL_2600127ce03c42078c96ab55a769f409", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e89a07aee11b463da8f55172ca3e31ec", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c48ce274ef64239ba3832179b0795f7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "93da94005ed4434e8248172f689ff1a5": { + "9454eda087944ec8a005cded963a0032": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5085,7 +4815,69 @@ "description_width": "" } }, - "995a2a284fad415bbcb0e0ae2a0e6410": { + "968ef48414cd46e5bba8eefac02c2b1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2860104a06d6464a82be888ba22fb38b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4babd65517484d1897194a4aa021ad78", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "96fd5614729d466ba28c0af8d696c5d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9b9748f80edd425799d050d7bad3cbd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a04a0c7b2df74b9cbc5f2a00733d2734": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5138,30 +4930,60 @@ "width": null } }, - "9c0569b3288740e7957046e5602051ab": { - "model_module": "@jupyter-widgets/controls", + "a0700c68476c47678a7755d32b43cb64": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_995a2a284fad415bbcb0e0ae2a0e6410", - "placeholder": "​", - "style": "IPY_MODEL_5dec51715c864d82b748de330097bc61", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9d8693dbac0647dfb10c6d708f9f06c3": { + "a0afb276010e4b0080b2666033730b08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5179,30 +5001,60 @@ "text_color": null } }, - "a101c3b6225b4fff860482618c744fe2": { - "model_module": "@jupyter-widgets/controls", + "a0dd9e569dfe4ed986e7f91826b9413e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d2144843ccdf4afe910d3ee09d6225d4", - "placeholder": "​", - "style": "IPY_MODEL_d3982319220a4345b6b31f518ac67059", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.85it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a10372230a91463d91407f070f2e68fe": { + "a5231594e5494ba9ba6f401322ad0bee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5217,15 +5069,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_52de047e28024acc9a8a1bcb2d119f80", + "layout": "IPY_MODEL_f6be1a7114264c53a2224f2436ccc8a9", "placeholder": "​", - "style": "IPY_MODEL_0be90ee02b694223bf88ee128a5982dd", + "style": "IPY_MODEL_ff52d698e5e642de82aea3823a04a736", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 53.4MB/s]" + "value": "Map (num_proc=4): 100%" + } + }, + "a6a28d0f2b47401caf0cae21dddec24d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a1182345e3c5415db85095ad9e812fc0": { + "a77d281066274273abe06607dd3d117d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5243,23 +5148,7 @@ "text_color": null } }, - "a1a83560967d4d9086fc1ed8eb4022e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a26554ac0d4741ee8ce6d488ebdd9557": { + "a916124dc8c24ba58fd189b70bee4cc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5274,15 +5163,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be48e01365e04257a83f1b90333fb316", + "layout": "IPY_MODEL_7e0de3791e9847189ad45dff796c740e", "placeholder": "​", - "style": "IPY_MODEL_5bb90a1b55c34a21bb9c4e5d6941cc93", + "style": "IPY_MODEL_30ecb7dca6c2458e8d40d2e812ed07cc", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.80it/s]" + "value": "Downloading data: 100%" + } + }, + "a99840f110e646b7a55f40a01f51ea73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a356f17edce64e9f82872d52935fddbc": { + "ad6769ae82214e61b4efadb803ffca3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5335,7 +5240,7 @@ "width": null } }, - "a68d6cb805e84e869e126049bf112c66": { + "b1be6c847cf44eb18f5a7c185e709fd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5388,7 +5293,7 @@ "width": null } }, - "a71671406e95472faca260d5f99c99d3": { + "b2b3e4c08f99488ea5fa4725c420b867": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5441,7 +5346,113 @@ "width": null } }, - "aaeb70d3af9e48a9861025243e2b186a": { + "b2efe58609bc47f4a7688c1940dcc0c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24c945e5b29b44ae9f098554b1db4d04", + "placeholder": "​", + "style": "IPY_MODEL_9b9748f80edd425799d050d7bad3cbd5", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 261291.54 examples/s]" + } + }, + "b807d45c66d641ed8524c1f056539a0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b8bb2404aac1412b8bb46418102a55c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1be6c847cf44eb18f5a7c185e709fd4", + "placeholder": "​", + "style": "IPY_MODEL_fd286398065c47da8af497abbe84ddad", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:47<00:00, 1215.96it/s]" + } + }, + "b9fc7a3f1c2e490e95b4cd36add5f94b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbc23f4933b64c3c8f937823ce999582": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9668295b2514b209889c36969705059", + "IPY_MODEL_875c5afc59bb4613b36d4d243c9c4bb4", + "IPY_MODEL_0745b7ab5d8e469286f080de62528c2d" + ], + "layout": "IPY_MODEL_a6a28d0f2b47401caf0cae21dddec24d", + "tabbable": null, + "tooltip": null + } + }, + "bc8284239469466ebe2cfe2c7f6fada1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5494,33 +5505,23 @@ "width": null } }, - "abb587732c974d45aed41ed4bf011226": { + "be5dbc5e37d143aaa03470ba9d23f660": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80c194d7e8024776938ccc9ae9f9514b", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b46c85d1bf804de9bc4208ed2bdefad0", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "acb5a4c79d044476b4db375a95477ab0": { + "be91e2ab09e44661837660097bd73ef1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5573,90 +5574,60 @@ "width": null } }, - "add58a12ec0c41d7b7d2aa0c3b7c306d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1709cfcfebd4e239b073b0f0613405e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86ffa2eef8bf4d15821cd2bdee074613", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_93da94005ed4434e8248172f689ff1a5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "b46c85d1bf804de9bc4208ed2bdefad0": { - "model_module": "@jupyter-widgets/controls", + "c10054fe28ca488cb19260d9072650e8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b52804ea50ca497c9cf1e9c22fd05122": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_224edd0c6d1f4706acb4172cafae63ed", - "placeholder": "​", - "style": "IPY_MODEL_4245c182c418461089ff64122026cf89", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 253045.44 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b53ad2c3495a4380a386de2670df193c": { + "c14e7bb94c5641ff8b40f1fb0053bab1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5709,7 +5680,7 @@ "width": null } }, - "b56ff307f7824e6e9bcf6a01e2e13370": { + "c20c6841e7d84aec90f410f2526cbc52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5724,16 +5695,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c04808d07d0c4dd7a2e5a404e28c878e", - "IPY_MODEL_ec1d49c3e119490eb8f6631158151d2b", - "IPY_MODEL_d46b9e0cfa06424eb5df26a312b2f2b6" + "IPY_MODEL_e7573f109a134d36affd8a32d9e15e49", + "IPY_MODEL_117ecc5c04a44d6b8834e199cc5efd89", + "IPY_MODEL_e93cebe6ea7744d29488d6b491b62e97" ], - "layout": "IPY_MODEL_a71671406e95472faca260d5f99c99d3", + "layout": "IPY_MODEL_5640121c317f4124bca171d99c5dd028", "tabbable": null, "tooltip": null } }, - "b5b59795214044109b8c4485b1502f02": { + "c2261fb5be954775bac379250fceaf5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c337e7aa7894429ea65616b4164b8a0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5786,7 +5773,33 @@ "width": null } }, - "be48e01365e04257a83f1b90333fb316": { + "c427c8a3424d455ba0d8f61d063d88dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47fe53c396b8434bad5308c201b238bb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a99840f110e646b7a55f40a01f51ea73", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c87c5b44dc094607a1e2536e0c76e57b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5839,51 +5852,7 @@ "width": null } }, - "be80350116fb40b3bed12b0aff69e95d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfd20dfe7ced4745b700d16343e6555b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8680cef6bcba41358f0b2245e3ad4f1f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3ba2af3e664b4c97bae98b5db800e998", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c04808d07d0c4dd7a2e5a404e28c878e": { + "c9668295b2514b209889c36969705059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5898,15 +5867,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fd1907ecba34676ae3fd20801ef3e33", + "layout": "IPY_MODEL_d197455d96434cfeb84312d0f8d9f611", "placeholder": "​", - "style": "IPY_MODEL_9d8693dbac0647dfb10c6d708f9f06c3", + "style": "IPY_MODEL_32518465b7f14dfb948bc654d57c3a54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "c0873c29df7744be9aa5b33759f993e8": { + "c9bcb548e7094af980664e2955df2492": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5959,93 +5928,7 @@ "width": null } }, - "c6049231a5b448029b1cf256bd07e029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdf17e98637647809f634113c13917ca", - "placeholder": "​", - "style": "IPY_MODEL_6a2f4cef88b74e1eba63c94bb2bd5412", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:46<00:00, 1262.85it/s]" - } - }, - "c6e9e2c8ad734cec8bbdd869c9f46951": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e824539d22548dea150f1f6eaac4b1b", - "IPY_MODEL_6c492d495c854d4aaa733a6c4a69053a", - "IPY_MODEL_c6049231a5b448029b1cf256bd07e029" - ], - "layout": "IPY_MODEL_0ec33797bad14055a1de8a8f992c6134", - "tabbable": null, - "tooltip": null - } - }, - "c8d9f0fac0f64b38ac62e0a708d58948": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c91b1e88c68248b0ad788baa0d0e9287": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202b1a1d2d12458089afedd08ebd46e2", - "placeholder": "​", - "style": "IPY_MODEL_e5e080478dea430293650d0383c3b261", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ca7021afb6824ca39461db6224a967b1": { + "caf21311f0dc49ae89e78110e7572b32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,7 +5981,31 @@ "width": null } }, - "cdf17e98637647809f634113c13917ca": { + "cd8abb05f12b4ffdb9ad78fe5d66edef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5ce0138f3b5443a877fd14b45d0e289", + "IPY_MODEL_c427c8a3424d455ba0d8f61d063d88dc", + "IPY_MODEL_0e75b2feeec94b72b0f33ebfd4479b1a" + ], + "layout": "IPY_MODEL_bc8284239469466ebe2cfe2c7f6fada1", + "tabbable": null, + "tooltip": null + } + }, + "d197455d96434cfeb84312d0f8d9f611": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6151,72 +6058,60 @@ "width": null } }, - "cdff082d070b4b489f5b4ea895722379": { - "model_module": "@jupyter-widgets/controls", + "d1f5eb2b7e304db88bff33433945270d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ce3f6ddf3db34c9eb62018f9565b41b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2ada2a6c8424f7e844e74ae447501c5", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07bf3e196fd244339afe75d5bde48e3e", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cf990872c7e342e89ab836f3533d98a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4cb4b2dea30d4d719ce0cfc60436bd1b", - "placeholder": "​", - "style": "IPY_MODEL_add58a12ec0c41d7b7d2aa0c3b7c306d", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7664.09 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d2144843ccdf4afe910d3ee09d6225d4": { + "d45963eadf6749d483d5e3aa39352c6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6269,7 +6164,7 @@ "width": null } }, - "d25407a4af2348529af54e69cb4cdb39": { + "d491d0bc395f45a889658d7106159fd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6322,7 +6217,7 @@ "width": null } }, - "d33300be1bc84be4a49bca8b8c925a8e": { + "d54f16fa13ed48f8814a442710311015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6338,58 +6233,64 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30a6fba3aeff40458e4522b8d25e2460", - "max": 30931277.0, + "layout": "IPY_MODEL_3426834a66414b7595279daad27f676e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0704c92cb83f453099a319c6760a3785", + "style": "IPY_MODEL_9454eda087944ec8a005cded963a0032", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": 60000.0 } }, - "d3982319220a4345b6b31f518ac67059": { + "d569e18c67b643f9930787a828fc5b9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1aa37d05d9c34593bcd18ba24c7c926a", + "placeholder": "​", + "style": "IPY_MODEL_094b04e0b0b34a3ea812012a60f2830d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.94it/s]" } }, - "d3a8377a5ef14c2db6ec3506f0bea044": { + "d5ddf85180fa4342aad62bb64cb000fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2340af9d58c945cf8f396b29d51c5971", - "placeholder": "​", - "style": "IPY_MODEL_26e2e4b700c047bab29090430c40724a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49aa27f6455d409ca44bd59a03ad98fd", + "IPY_MODEL_2e5059b821dd46ceab4d1d3a0cc09fa8", + "IPY_MODEL_d569e18c67b643f9930787a828fc5b9d" + ], + "layout": "IPY_MODEL_0b929ce444ee49e19bacc8e08c316395", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 282603.20 examples/s]" + "tooltip": null } }, - "d46b9e0cfa06424eb5df26a312b2f2b6": { + "d738cd3650ed4d298173e32d6bc6c2dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6404,91 +6305,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a513b0560ff4bf09146696eb95077ed", + "layout": "IPY_MODEL_caf21311f0dc49ae89e78110e7572b32", "placeholder": "​", - "style": "IPY_MODEL_22da545dee504e11be27c3f2e6f64a8d", + "style": "IPY_MODEL_016647c7324f4c9294fa2d6f5ff4ceab", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.23it/s]" + "value": "Generating test split: 100%" } }, - "d8e061de7b414e0a8911b9b283456372": { + "db44c434f23048af998a723d37cefc80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e94804474bc641e3abf7d83273142c42", - "placeholder": "​", - "style": "IPY_MODEL_be80350116fb40b3bed12b0aff69e95d", + "layout": "IPY_MODEL_60946dc033e94e6988681eafe3e0968e", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef7da80bbfa94967b5824f7f98c2b326", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 10000.0 } }, - "db184c07f55141f488cce3ec3fc3159d": { - "model_module": "@jupyter-widgets/base", + "dc29227facda4017a8a1455ffc47dd8a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db53115a53044737bff7390360d41ed7": { + "de1cde7df2e14852bce1f13d5d85b709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6541,30 +6410,7 @@ "width": null } }, - "dca0375df0034c4fa92f2a4bb7144667": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7edc557e66c5439ab5478477342fee93", - "placeholder": "​", - "style": "IPY_MODEL_e0d6afceb63747c1a757d7fbdceb43f0", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.23it/s]" - } - }, - "e03047faf85347f99c053a2b8eaec19c": { + "df8cda3a69044739be596b2aab1fe701": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6579,16 +6425,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_32baef6de51b4d538d24f5ba1bf84895", - "IPY_MODEL_ce3f6ddf3db34c9eb62018f9565b41b6", - "IPY_MODEL_58dbeddc86a84451839a6a06a29391e3" + "IPY_MODEL_a916124dc8c24ba58fd189b70bee4cc0", + "IPY_MODEL_93daebb7421e450499169b3621d45354", + "IPY_MODEL_69add8dcfede4e1db3d037538ca277f5" ], - "layout": "IPY_MODEL_4c86ed0a29c94761b734a38448c453eb", + "layout": "IPY_MODEL_4112a1008e75481b935c1a2f52e46007", "tabbable": null, "tooltip": null } }, - "e0d6afceb63747c1a757d7fbdceb43f0": { + "e0c8c8645ca0495889fbc65fe0b87950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6606,60 +6452,49 @@ "text_color": null } }, - "e0e7582bcb8d4e37a597d96f234740de": { - "model_module": "@jupyter-widgets/base", + "e4b626817ae644f3be16e4c549fc4f5c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e51ff13e68b748e78c21e0faf5f5fcff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0196bff20c8547f3aa4d0b00aebd223b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45d1054ac70947c085fab356cd8289eb", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "e2ada2a6c8424f7e844e74ae447501c5": { + "e624f21e03c746299614de27f47c50c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6712,25 +6547,53 @@ "width": null } }, - "e5e080478dea430293650d0383c3b261": { + "e7573f109a134d36affd8a32d9e15e49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1f5eb2b7e304db88bff33433945270d", + "placeholder": "​", + "style": "IPY_MODEL_b807d45c66d641ed8524c1f056539a0e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "e86ead3870124fccae23952e00b23250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8cd1bb5f08346858918daa781eca7ef", + "placeholder": "​", + "style": "IPY_MODEL_dc29227facda4017a8a1455ffc47dd8a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7712.20 examples/s]" } }, - "e7fd0e9c45c74cb28ae53d1c9eafe1a8": { + "e89a07aee11b463da8f55172ca3e31ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6783,7 +6646,54 @@ "width": null } }, - "e8d62619eeaa49329fdd0d7210bf3d72": { + "e93cebe6ea7744d29488d6b491b62e97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_426dedad66274fac9b2e484725f25c01", + "placeholder": "​", + "style": "IPY_MODEL_a0afb276010e4b0080b2666033730b08", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.95it/s]" + } + }, + "ec29a42edd9749e78968600e14cb5c99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_03bab8b4853b4c9ea6f1c16b67fc7382", + "IPY_MODEL_d54f16fa13ed48f8814a442710311015", + "IPY_MODEL_b8bb2404aac1412b8bb46418102a55c3" + ], + "layout": "IPY_MODEL_2c0f9af339374b0998a6bcd7df57b1c2", + "tabbable": null, + "tooltip": null + } + }, + "eeeef3b2444c4ce09727af1785246d8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6836,30 +6746,47 @@ "width": null } }, - "e8fdd33091014c4e9b0f4f4c80d77d9c": { + "ef52d56d419a4e64999c9e66d0163ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c9a0ec998694ab98f33e462be441b15", - "placeholder": "​", - "style": "IPY_MODEL_f617831e108a4706bf348d7559e53793", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6857a39e2c3f4babae83a3986dc6b76a", + "IPY_MODEL_f3ccbc13507e4335b8f4460b6a726aef", + "IPY_MODEL_548e5cf360ee4614a2a12a94c0e79b25" + ], + "layout": "IPY_MODEL_be91e2ab09e44661837660097bd73ef1", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null + } + }, + "ef7da80bbfa94967b5824f7f98c2b326": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e94804474bc641e3abf7d83273142c42": { + "f07f4af5492b4a739de78affbf30880a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6912,7 +6839,7 @@ "width": null } }, - "e9c2d308abf54d4d984ae58a82d5078e": { + "f154be759b8748d59ec51f312c142f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6927,16 +6854,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b1f49b491524b529aec41aebcecd597", - "IPY_MODEL_7b0db4e438bd4cf0bbb0a609862c8652", - "IPY_MODEL_d3a8377a5ef14c2db6ec3506f0bea044" + "IPY_MODEL_47090d25e2a5482b9eded49a22066c42", + "IPY_MODEL_f3e91e87762b40809e560a440686e1cf", + "IPY_MODEL_fe7e1e8b0059436da427024e94e3dcd3" ], - "layout": "IPY_MODEL_4fc726979875440198e98b47d8a460ac", + "layout": "IPY_MODEL_c337e7aa7894429ea65616b4164b8a0c", "tabbable": null, "tooltip": null } }, - "ec1d49c3e119490eb8f6631158151d2b": { + "f3ccbc13507e4335b8f4460b6a726aef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6952,77 +6879,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b5b59795214044109b8c4485b1502f02", - "max": 40.0, + "layout": "IPY_MODEL_2bfca25dda494672bb6720ccd4b565f8", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a1a83560967d4d9086fc1ed8eb4022e1", + "style": "IPY_MODEL_e4b626817ae644f3be16e4c549fc4f5c", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "ed16178859c14aeb83a170a1252fd377": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee5d7d4d67ff43599f10436b84389778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "f14eebd8eb0d4e95bac3630f3fe6d0e9": { + "f3e91e87762b40809e560a440686e1cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0fd3562f606b4206957d569480d562aa", - "IPY_MODEL_2942fd8cccc94f7a8056af7f51912fc2", - "IPY_MODEL_a26554ac0d4741ee8ce6d488ebdd9557" - ], - "layout": "IPY_MODEL_f8781da8d96145e5a854e84da4344723", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d491d0bc395f45a889658d7106159fd2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2261fb5be954775bac379250fceaf5c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "f617831e108a4706bf348d7559e53793": { + "f53a489266ea49e2a24d62ece1bf0f26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7040,7 +6933,7 @@ "text_color": null } }, - "f8428265fb9b4bdf9292d5b2ca1bb430": { + "f5ce0138f3b5443a877fd14b45d0e289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7055,15 +6948,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7bbcbd023d9844fcb11c44b43fba9714", + "layout": "IPY_MODEL_45c9925042e240978902575f87a4f39b", "placeholder": "​", - "style": "IPY_MODEL_1d54ef60f40b42d894c0c93aa023f924", + "style": "IPY_MODEL_0d098b0f286b48408215c98f11b18bc2", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.79it/s]" + "value": "100%" } }, - "f8781da8d96145e5a854e84da4344723": { + "f6be1a7114264c53a2224f2436ccc8a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7116,7 +7009,7 @@ "width": null } }, - "f886827e67fc4f5ebf2091c3e40b2145": { + "f7d9896b86014bfca6b21aa9fd355eb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7132,40 +7025,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_62fa3ddadaff4c599654918619bbacdb", + "layout": "IPY_MODEL_e624f21e03c746299614de27f47c50c9", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_08653f32acef42e2b00105e4a07cceac", + "style": "IPY_MODEL_0cc886a763554ccea5966cb8b3ba114b", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "fa4a8769a3864fa1a03f6b7030801bdb": { - "model_module": "@jupyter-widgets/controls", + "f8cd1bb5f08346858918daa781eca7ef": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0873c29df7744be9aa5b33759f993e8", - "placeholder": "​", - "style": "IPY_MODEL_7bd79c63938a4501be1f20daa3a69df5", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbe1888706b24d19b3a94a33c39fdd6e": { + "f96cd91660d34ef09f6defe0d16aca46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,6 +7140,83 @@ "visibility": null, "width": null } + }, + "fbb837c13832462fab2809af630e3ef8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd286398065c47da8af497abbe84ddad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe7e1e8b0059436da427024e94e3dcd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00f7b79a3cde4e2a9a20f653645d1c70", + "placeholder": "​", + "style": "IPY_MODEL_96fd5614729d466ba28c0af8d696c5d2", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 66.19it/s]" + } + }, + "ff52d698e5e642de82aea3823a04a736": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 3c6819ed2..c7b24c151 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:03.329661Z", - "iopub.status.busy": "2024-05-23T15:18:03.329245Z", - "iopub.status.idle": "2024-05-23T15:18:04.461620Z", - "shell.execute_reply": "2024-05-23T15:18:04.461105Z" + "iopub.execute_input": "2024-05-24T13:31:56.530735Z", + "iopub.status.busy": "2024-05-24T13:31:56.530248Z", + "iopub.status.idle": "2024-05-24T13:31:57.704731Z", + "shell.execute_reply": "2024-05-24T13:31:57.704155Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.464258Z", - "iopub.status.busy": "2024-05-23T15:18:04.463889Z", - "iopub.status.idle": "2024-05-23T15:18:04.482775Z", - "shell.execute_reply": "2024-05-23T15:18:04.482289Z" + "iopub.execute_input": "2024-05-24T13:31:57.707424Z", + "iopub.status.busy": "2024-05-24T13:31:57.706946Z", + "iopub.status.idle": "2024-05-24T13:31:57.727367Z", + "shell.execute_reply": "2024-05-24T13:31:57.726745Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.485239Z", - "iopub.status.busy": "2024-05-23T15:18:04.484734Z", - "iopub.status.idle": "2024-05-23T15:18:04.507036Z", - "shell.execute_reply": "2024-05-23T15:18:04.506428Z" + "iopub.execute_input": "2024-05-24T13:31:57.730169Z", + "iopub.status.busy": "2024-05-24T13:31:57.729718Z", + "iopub.status.idle": "2024-05-24T13:31:57.753577Z", + "shell.execute_reply": "2024-05-24T13:31:57.752985Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.509357Z", - "iopub.status.busy": "2024-05-23T15:18:04.508917Z", - "iopub.status.idle": "2024-05-23T15:18:04.512565Z", - "shell.execute_reply": "2024-05-23T15:18:04.512120Z" + "iopub.execute_input": "2024-05-24T13:31:57.756078Z", + "iopub.status.busy": "2024-05-24T13:31:57.755530Z", + "iopub.status.idle": "2024-05-24T13:31:57.759492Z", + "shell.execute_reply": "2024-05-24T13:31:57.758938Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.514658Z", - "iopub.status.busy": "2024-05-23T15:18:04.514334Z", - "iopub.status.idle": "2024-05-23T15:18:04.522118Z", - "shell.execute_reply": "2024-05-23T15:18:04.521679Z" + "iopub.execute_input": "2024-05-24T13:31:57.761743Z", + "iopub.status.busy": "2024-05-24T13:31:57.761221Z", + "iopub.status.idle": "2024-05-24T13:31:57.769384Z", + "shell.execute_reply": "2024-05-24T13:31:57.768742Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.524308Z", - "iopub.status.busy": "2024-05-23T15:18:04.524005Z", - "iopub.status.idle": "2024-05-23T15:18:04.527061Z", - "shell.execute_reply": "2024-05-23T15:18:04.526631Z" + "iopub.execute_input": "2024-05-24T13:31:57.772086Z", + "iopub.status.busy": "2024-05-24T13:31:57.771586Z", + "iopub.status.idle": "2024-05-24T13:31:57.774538Z", + "shell.execute_reply": "2024-05-24T13:31:57.773955Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.529029Z", - "iopub.status.busy": "2024-05-23T15:18:04.528706Z", - "iopub.status.idle": "2024-05-23T15:18:07.442990Z", - "shell.execute_reply": "2024-05-23T15:18:07.442453Z" + "iopub.execute_input": "2024-05-24T13:31:57.776669Z", + "iopub.status.busy": "2024-05-24T13:31:57.776260Z", + "iopub.status.idle": "2024-05-24T13:32:00.719926Z", + "shell.execute_reply": "2024-05-24T13:32:00.719283Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:07.445702Z", - "iopub.status.busy": "2024-05-23T15:18:07.445319Z", - "iopub.status.idle": "2024-05-23T15:18:07.455041Z", - "shell.execute_reply": "2024-05-23T15:18:07.454557Z" + "iopub.execute_input": "2024-05-24T13:32:00.722658Z", + "iopub.status.busy": "2024-05-24T13:32:00.722419Z", + "iopub.status.idle": "2024-05-24T13:32:00.732235Z", + "shell.execute_reply": "2024-05-24T13:32:00.731782Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:07.457020Z", - "iopub.status.busy": "2024-05-23T15:18:07.456721Z", - "iopub.status.idle": "2024-05-23T15:18:09.213100Z", - "shell.execute_reply": "2024-05-23T15:18:09.212489Z" + "iopub.execute_input": "2024-05-24T13:32:00.734454Z", + "iopub.status.busy": "2024-05-24T13:32:00.734085Z", + "iopub.status.idle": "2024-05-24T13:32:02.574348Z", + "shell.execute_reply": "2024-05-24T13:32:02.573702Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.216724Z", - "iopub.status.busy": "2024-05-23T15:18:09.215605Z", - "iopub.status.idle": "2024-05-23T15:18:09.239920Z", - "shell.execute_reply": "2024-05-23T15:18:09.239435Z" + "iopub.execute_input": "2024-05-24T13:32:02.577264Z", + "iopub.status.busy": "2024-05-24T13:32:02.576731Z", + "iopub.status.idle": "2024-05-24T13:32:02.601061Z", + "shell.execute_reply": "2024-05-24T13:32:02.600535Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.243460Z", - "iopub.status.busy": "2024-05-23T15:18:09.242516Z", - "iopub.status.idle": "2024-05-23T15:18:09.253523Z", - "shell.execute_reply": "2024-05-23T15:18:09.253048Z" + "iopub.execute_input": "2024-05-24T13:32:02.603623Z", + "iopub.status.busy": "2024-05-24T13:32:02.603324Z", + "iopub.status.idle": "2024-05-24T13:32:02.616388Z", + "shell.execute_reply": "2024-05-24T13:32:02.615873Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.256935Z", - "iopub.status.busy": "2024-05-23T15:18:09.256029Z", - "iopub.status.idle": "2024-05-23T15:18:09.268500Z", - "shell.execute_reply": "2024-05-23T15:18:09.268019Z" + "iopub.execute_input": "2024-05-24T13:32:02.619996Z", + "iopub.status.busy": "2024-05-24T13:32:02.619064Z", + "iopub.status.idle": "2024-05-24T13:32:02.632690Z", + "shell.execute_reply": "2024-05-24T13:32:02.632153Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.271942Z", - "iopub.status.busy": "2024-05-23T15:18:09.271025Z", - "iopub.status.idle": "2024-05-23T15:18:09.282057Z", - "shell.execute_reply": "2024-05-23T15:18:09.281577Z" + "iopub.execute_input": "2024-05-24T13:32:02.636465Z", + "iopub.status.busy": "2024-05-24T13:32:02.635540Z", + "iopub.status.idle": "2024-05-24T13:32:02.647544Z", + "shell.execute_reply": "2024-05-24T13:32:02.647024Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.285490Z", - "iopub.status.busy": "2024-05-23T15:18:09.284583Z", - "iopub.status.idle": "2024-05-23T15:18:09.296961Z", - "shell.execute_reply": "2024-05-23T15:18:09.296430Z" + "iopub.execute_input": "2024-05-24T13:32:02.651348Z", + "iopub.status.busy": "2024-05-24T13:32:02.650408Z", + "iopub.status.idle": "2024-05-24T13:32:02.662021Z", + "shell.execute_reply": "2024-05-24T13:32:02.661578Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.299060Z", - "iopub.status.busy": "2024-05-23T15:18:09.298891Z", - "iopub.status.idle": "2024-05-23T15:18:09.305638Z", - "shell.execute_reply": "2024-05-23T15:18:09.305225Z" + "iopub.execute_input": "2024-05-24T13:32:02.664398Z", + "iopub.status.busy": "2024-05-24T13:32:02.664017Z", + "iopub.status.idle": "2024-05-24T13:32:02.670791Z", + "shell.execute_reply": "2024-05-24T13:32:02.670225Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.307578Z", - "iopub.status.busy": "2024-05-23T15:18:09.307398Z", - "iopub.status.idle": "2024-05-23T15:18:09.313578Z", - "shell.execute_reply": "2024-05-23T15:18:09.313081Z" + "iopub.execute_input": "2024-05-24T13:32:02.672967Z", + "iopub.status.busy": "2024-05-24T13:32:02.672615Z", + "iopub.status.idle": "2024-05-24T13:32:02.679381Z", + "shell.execute_reply": "2024-05-24T13:32:02.678852Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.315564Z", - "iopub.status.busy": "2024-05-23T15:18:09.315393Z", - "iopub.status.idle": "2024-05-23T15:18:09.321703Z", - "shell.execute_reply": "2024-05-23T15:18:09.321251Z" + "iopub.execute_input": "2024-05-24T13:32:02.681608Z", + "iopub.status.busy": "2024-05-24T13:32:02.681259Z", + "iopub.status.idle": "2024-05-24T13:32:02.688063Z", + "shell.execute_reply": "2024-05-24T13:32:02.687596Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index a3c570288..caf9e37a7 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:11.824777Z", - "iopub.status.busy": "2024-05-23T15:18:11.824605Z", - "iopub.status.idle": "2024-05-23T15:18:14.504599Z", - "shell.execute_reply": "2024-05-23T15:18:14.504085Z" + "iopub.execute_input": "2024-05-24T13:32:05.430249Z", + "iopub.status.busy": "2024-05-24T13:32:05.430031Z", + "iopub.status.idle": "2024-05-24T13:32:08.226508Z", + "shell.execute_reply": "2024-05-24T13:32:08.225908Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.507121Z", - "iopub.status.busy": "2024-05-23T15:18:14.506825Z", - "iopub.status.idle": "2024-05-23T15:18:14.510173Z", - "shell.execute_reply": "2024-05-23T15:18:14.509615Z" + "iopub.execute_input": "2024-05-24T13:32:08.229543Z", + "iopub.status.busy": "2024-05-24T13:32:08.228893Z", + "iopub.status.idle": "2024-05-24T13:32:08.232463Z", + "shell.execute_reply": "2024-05-24T13:32:08.232032Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.512403Z", - "iopub.status.busy": "2024-05-23T15:18:14.512093Z", - "iopub.status.idle": "2024-05-23T15:18:14.515209Z", - "shell.execute_reply": "2024-05-23T15:18:14.514655Z" + "iopub.execute_input": "2024-05-24T13:32:08.234432Z", + "iopub.status.busy": "2024-05-24T13:32:08.234237Z", + "iopub.status.idle": "2024-05-24T13:32:08.237361Z", + "shell.execute_reply": "2024-05-24T13:32:08.236902Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.517314Z", - "iopub.status.busy": "2024-05-23T15:18:14.517017Z", - "iopub.status.idle": "2024-05-23T15:18:14.537637Z", - "shell.execute_reply": "2024-05-23T15:18:14.537152Z" + "iopub.execute_input": "2024-05-24T13:32:08.239452Z", + "iopub.status.busy": "2024-05-24T13:32:08.239120Z", + "iopub.status.idle": "2024-05-24T13:32:08.262296Z", + "shell.execute_reply": "2024-05-24T13:32:08.261667Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.539828Z", - "iopub.status.busy": "2024-05-23T15:18:14.539419Z", - "iopub.status.idle": "2024-05-23T15:18:14.543260Z", - "shell.execute_reply": "2024-05-23T15:18:14.542814Z" + "iopub.execute_input": "2024-05-24T13:32:08.264519Z", + "iopub.status.busy": "2024-05-24T13:32:08.264314Z", + "iopub.status.idle": "2024-05-24T13:32:08.268231Z", + "shell.execute_reply": "2024-05-24T13:32:08.267695Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'apple_pay_or_google_pay', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.545089Z", - "iopub.status.busy": "2024-05-23T15:18:14.544915Z", - "iopub.status.idle": "2024-05-23T15:18:14.548143Z", - "shell.execute_reply": "2024-05-23T15:18:14.547673Z" + "iopub.execute_input": "2024-05-24T13:32:08.270366Z", + "iopub.status.busy": "2024-05-24T13:32:08.270164Z", + "iopub.status.idle": "2024-05-24T13:32:08.273265Z", + "shell.execute_reply": "2024-05-24T13:32:08.272724Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.550053Z", - "iopub.status.busy": "2024-05-23T15:18:14.549886Z", - "iopub.status.idle": "2024-05-23T15:18:18.166914Z", - "shell.execute_reply": "2024-05-23T15:18:18.166251Z" + "iopub.execute_input": "2024-05-24T13:32:08.275260Z", + "iopub.status.busy": "2024-05-24T13:32:08.275075Z", + "iopub.status.idle": "2024-05-24T13:32:11.912268Z", + "shell.execute_reply": "2024-05-24T13:32:11.911703Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:18.169601Z", - "iopub.status.busy": "2024-05-23T15:18:18.169376Z", - "iopub.status.idle": "2024-05-23T15:18:19.017896Z", - "shell.execute_reply": "2024-05-23T15:18:19.017318Z" + "iopub.execute_input": "2024-05-24T13:32:11.914918Z", + "iopub.status.busy": "2024-05-24T13:32:11.914674Z", + "iopub.status.idle": "2024-05-24T13:32:12.774441Z", + "shell.execute_reply": "2024-05-24T13:32:12.773821Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:19.020812Z", - "iopub.status.busy": "2024-05-23T15:18:19.020449Z", - "iopub.status.idle": "2024-05-23T15:18:19.023280Z", - "shell.execute_reply": "2024-05-23T15:18:19.022794Z" + "iopub.execute_input": "2024-05-24T13:32:12.777637Z", + "iopub.status.busy": "2024-05-24T13:32:12.777275Z", + "iopub.status.idle": "2024-05-24T13:32:12.780244Z", + "shell.execute_reply": "2024-05-24T13:32:12.779747Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:19.025587Z", - "iopub.status.busy": "2024-05-23T15:18:19.025228Z", - "iopub.status.idle": "2024-05-23T15:18:20.567743Z", - "shell.execute_reply": "2024-05-23T15:18:20.567101Z" + "iopub.execute_input": "2024-05-24T13:32:12.782733Z", + "iopub.status.busy": "2024-05-24T13:32:12.782339Z", + "iopub.status.idle": "2024-05-24T13:32:14.395635Z", + "shell.execute_reply": "2024-05-24T13:32:14.394989Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.572027Z", - "iopub.status.busy": "2024-05-23T15:18:20.570682Z", - "iopub.status.idle": "2024-05-23T15:18:20.596267Z", - "shell.execute_reply": "2024-05-23T15:18:20.595766Z" + "iopub.execute_input": "2024-05-24T13:32:14.399082Z", + "iopub.status.busy": "2024-05-24T13:32:14.398250Z", + "iopub.status.idle": "2024-05-24T13:32:14.423409Z", + "shell.execute_reply": "2024-05-24T13:32:14.422842Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.599843Z", - "iopub.status.busy": "2024-05-23T15:18:20.598765Z", - "iopub.status.idle": "2024-05-23T15:18:20.610446Z", - "shell.execute_reply": "2024-05-23T15:18:20.609941Z" + "iopub.execute_input": "2024-05-24T13:32:14.426962Z", + "iopub.status.busy": "2024-05-24T13:32:14.425854Z", + "iopub.status.idle": "2024-05-24T13:32:14.438089Z", + "shell.execute_reply": "2024-05-24T13:32:14.437583Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.613975Z", - "iopub.status.busy": "2024-05-23T15:18:20.612923Z", - "iopub.status.idle": "2024-05-23T15:18:20.619127Z", - "shell.execute_reply": "2024-05-23T15:18:20.618706Z" + "iopub.execute_input": "2024-05-24T13:32:14.441801Z", + "iopub.status.busy": "2024-05-24T13:32:14.440735Z", + "iopub.status.idle": "2024-05-24T13:32:14.447097Z", + "shell.execute_reply": "2024-05-24T13:32:14.446682Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.621375Z", - "iopub.status.busy": "2024-05-23T15:18:20.620885Z", - "iopub.status.idle": "2024-05-23T15:18:20.627546Z", - "shell.execute_reply": "2024-05-23T15:18:20.627080Z" + "iopub.execute_input": "2024-05-24T13:32:14.449998Z", + "iopub.status.busy": "2024-05-24T13:32:14.449099Z", + "iopub.status.idle": "2024-05-24T13:32:14.456718Z", + "shell.execute_reply": "2024-05-24T13:32:14.455970Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.629614Z", - "iopub.status.busy": "2024-05-23T15:18:20.629324Z", - "iopub.status.idle": "2024-05-23T15:18:20.635706Z", - "shell.execute_reply": "2024-05-23T15:18:20.635150Z" + "iopub.execute_input": "2024-05-24T13:32:14.459140Z", + "iopub.status.busy": "2024-05-24T13:32:14.458819Z", + "iopub.status.idle": "2024-05-24T13:32:14.466211Z", + "shell.execute_reply": "2024-05-24T13:32:14.465499Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.637695Z", - "iopub.status.busy": "2024-05-23T15:18:20.637387Z", - "iopub.status.idle": "2024-05-23T15:18:20.643049Z", - "shell.execute_reply": "2024-05-23T15:18:20.642501Z" + "iopub.execute_input": "2024-05-24T13:32:14.468451Z", + "iopub.status.busy": "2024-05-24T13:32:14.468143Z", + "iopub.status.idle": "2024-05-24T13:32:14.474478Z", + "shell.execute_reply": "2024-05-24T13:32:14.473992Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.644992Z", - "iopub.status.busy": "2024-05-23T15:18:20.644695Z", - "iopub.status.idle": "2024-05-23T15:18:20.653055Z", - "shell.execute_reply": "2024-05-23T15:18:20.652504Z" + "iopub.execute_input": "2024-05-24T13:32:14.476525Z", + "iopub.status.busy": "2024-05-24T13:32:14.476212Z", + "iopub.status.idle": "2024-05-24T13:32:14.485548Z", + "shell.execute_reply": "2024-05-24T13:32:14.484981Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.655060Z", - "iopub.status.busy": "2024-05-23T15:18:20.654763Z", - "iopub.status.idle": "2024-05-23T15:18:20.660041Z", - "shell.execute_reply": "2024-05-23T15:18:20.659490Z" + "iopub.execute_input": "2024-05-24T13:32:14.487725Z", + "iopub.status.busy": "2024-05-24T13:32:14.487319Z", + "iopub.status.idle": "2024-05-24T13:32:14.492914Z", + "shell.execute_reply": "2024-05-24T13:32:14.492385Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.661947Z", - "iopub.status.busy": "2024-05-23T15:18:20.661627Z", - "iopub.status.idle": "2024-05-23T15:18:20.666886Z", - "shell.execute_reply": "2024-05-23T15:18:20.666400Z" + "iopub.execute_input": "2024-05-24T13:32:14.495014Z", + "iopub.status.busy": "2024-05-24T13:32:14.494675Z", + "iopub.status.idle": "2024-05-24T13:32:14.500190Z", + "shell.execute_reply": "2024-05-24T13:32:14.499727Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.668902Z", - "iopub.status.busy": "2024-05-23T15:18:20.668602Z", - "iopub.status.idle": "2024-05-23T15:18:20.672008Z", - "shell.execute_reply": "2024-05-23T15:18:20.671583Z" + "iopub.execute_input": "2024-05-24T13:32:14.502338Z", + "iopub.status.busy": "2024-05-24T13:32:14.502009Z", + "iopub.status.idle": "2024-05-24T13:32:14.505747Z", + "shell.execute_reply": "2024-05-24T13:32:14.505292Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.674040Z", - "iopub.status.busy": "2024-05-23T15:18:20.673742Z", - "iopub.status.idle": "2024-05-23T15:18:20.678904Z", - "shell.execute_reply": "2024-05-23T15:18:20.678310Z" + "iopub.execute_input": "2024-05-24T13:32:14.507814Z", + "iopub.status.busy": "2024-05-24T13:32:14.507515Z", + "iopub.status.idle": "2024-05-24T13:32:14.512939Z", + "shell.execute_reply": "2024-05-24T13:32:14.512392Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index caba51307..9b8e261d9 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:23.569117Z", - "iopub.status.busy": "2024-05-23T15:18:23.568584Z", - "iopub.status.idle": "2024-05-23T15:18:24.680010Z", - "shell.execute_reply": "2024-05-23T15:18:24.679516Z" + "iopub.execute_input": "2024-05-24T13:32:18.756828Z", + "iopub.status.busy": "2024-05-24T13:32:18.756654Z", + "iopub.status.idle": "2024-05-24T13:32:19.924107Z", + "shell.execute_reply": "2024-05-24T13:32:19.923539Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.682646Z", - "iopub.status.busy": "2024-05-23T15:18:24.682170Z", - "iopub.status.idle": "2024-05-23T15:18:24.685078Z", - "shell.execute_reply": "2024-05-23T15:18:24.684631Z" + "iopub.execute_input": "2024-05-24T13:32:19.926790Z", + "iopub.status.busy": "2024-05-24T13:32:19.926348Z", + "iopub.status.idle": "2024-05-24T13:32:19.929293Z", + "shell.execute_reply": "2024-05-24T13:32:19.928744Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.687271Z", - "iopub.status.busy": "2024-05-23T15:18:24.686871Z", - "iopub.status.idle": "2024-05-23T15:18:24.698963Z", - "shell.execute_reply": "2024-05-23T15:18:24.698415Z" + "iopub.execute_input": "2024-05-24T13:32:19.931607Z", + "iopub.status.busy": "2024-05-24T13:32:19.931306Z", + "iopub.status.idle": "2024-05-24T13:32:19.944201Z", + "shell.execute_reply": "2024-05-24T13:32:19.943637Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.701032Z", - "iopub.status.busy": "2024-05-23T15:18:24.700708Z", - "iopub.status.idle": "2024-05-23T15:18:28.638009Z", - "shell.execute_reply": "2024-05-23T15:18:28.637529Z" + "iopub.execute_input": "2024-05-24T13:32:19.946405Z", + "iopub.status.busy": "2024-05-24T13:32:19.946079Z", + "iopub.status.idle": "2024-05-24T13:32:24.959545Z", + "shell.execute_reply": "2024-05-24T13:32:24.959070Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index bae5aecd3..66190e729 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:30.779423Z", - "iopub.status.busy": "2024-05-23T15:18:30.779082Z", - "iopub.status.idle": "2024-05-23T15:18:31.876497Z", - "shell.execute_reply": "2024-05-23T15:18:31.875906Z" + "iopub.execute_input": "2024-05-24T13:32:27.072274Z", + "iopub.status.busy": "2024-05-24T13:32:27.072096Z", + "iopub.status.idle": "2024-05-24T13:32:28.308978Z", + "shell.execute_reply": "2024-05-24T13:32:28.308319Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:31.879405Z", - "iopub.status.busy": "2024-05-23T15:18:31.878894Z", - "iopub.status.idle": "2024-05-23T15:18:31.882289Z", - "shell.execute_reply": "2024-05-23T15:18:31.881726Z" + "iopub.execute_input": "2024-05-24T13:32:28.311877Z", + "iopub.status.busy": "2024-05-24T13:32:28.311546Z", + "iopub.status.idle": "2024-05-24T13:32:28.315044Z", + "shell.execute_reply": "2024-05-24T13:32:28.314510Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:31.884374Z", - "iopub.status.busy": "2024-05-23T15:18:31.883963Z", - "iopub.status.idle": "2024-05-23T15:18:34.796466Z", - "shell.execute_reply": "2024-05-23T15:18:34.795858Z" + "iopub.execute_input": "2024-05-24T13:32:28.317063Z", + "iopub.status.busy": "2024-05-24T13:32:28.316794Z", + "iopub.status.idle": "2024-05-24T13:32:31.465640Z", + "shell.execute_reply": "2024-05-24T13:32:31.465005Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.799374Z", - "iopub.status.busy": "2024-05-23T15:18:34.798780Z", - "iopub.status.idle": "2024-05-23T15:18:34.835628Z", - "shell.execute_reply": "2024-05-23T15:18:34.834909Z" + "iopub.execute_input": "2024-05-24T13:32:31.468695Z", + "iopub.status.busy": "2024-05-24T13:32:31.468010Z", + "iopub.status.idle": "2024-05-24T13:32:31.509802Z", + "shell.execute_reply": "2024-05-24T13:32:31.509197Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.838156Z", - "iopub.status.busy": "2024-05-23T15:18:34.837914Z", - "iopub.status.idle": "2024-05-23T15:18:34.873183Z", - "shell.execute_reply": "2024-05-23T15:18:34.872483Z" + "iopub.execute_input": "2024-05-24T13:32:31.512351Z", + "iopub.status.busy": "2024-05-24T13:32:31.512038Z", + "iopub.status.idle": "2024-05-24T13:32:31.550301Z", + "shell.execute_reply": "2024-05-24T13:32:31.549561Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.875734Z", - "iopub.status.busy": "2024-05-23T15:18:34.875501Z", - "iopub.status.idle": "2024-05-23T15:18:34.878527Z", - "shell.execute_reply": "2024-05-23T15:18:34.877990Z" + "iopub.execute_input": "2024-05-24T13:32:31.553000Z", + "iopub.status.busy": "2024-05-24T13:32:31.552743Z", + "iopub.status.idle": "2024-05-24T13:32:31.556024Z", + "shell.execute_reply": "2024-05-24T13:32:31.555547Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.880733Z", - "iopub.status.busy": "2024-05-23T15:18:34.880290Z", - "iopub.status.idle": "2024-05-23T15:18:34.883061Z", - "shell.execute_reply": "2024-05-23T15:18:34.882603Z" + "iopub.execute_input": "2024-05-24T13:32:31.558515Z", + "iopub.status.busy": "2024-05-24T13:32:31.557989Z", + "iopub.status.idle": "2024-05-24T13:32:31.560873Z", + "shell.execute_reply": "2024-05-24T13:32:31.560400Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.885194Z", - "iopub.status.busy": "2024-05-23T15:18:34.884803Z", - "iopub.status.idle": "2024-05-23T15:18:34.910167Z", - "shell.execute_reply": "2024-05-23T15:18:34.909619Z" + "iopub.execute_input": "2024-05-24T13:32:31.563156Z", + "iopub.status.busy": "2024-05-24T13:32:31.562813Z", + "iopub.status.idle": "2024-05-24T13:32:31.588415Z", + "shell.execute_reply": "2024-05-24T13:32:31.587838Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f3c516252c74d63897fb8eee08617d7", + "model_id": "f6cc0ef61510499eaeaac7b1050c9d2e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "635547bff7444b9da4fab23636e0c719", + "model_id": "61435fdddb6a4375bec15e171982e5b1", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.915862Z", - "iopub.status.busy": "2024-05-23T15:18:34.915687Z", - "iopub.status.idle": "2024-05-23T15:18:34.921935Z", - "shell.execute_reply": "2024-05-23T15:18:34.921532Z" + "iopub.execute_input": "2024-05-24T13:32:31.594307Z", + "iopub.status.busy": "2024-05-24T13:32:31.593859Z", + "iopub.status.idle": "2024-05-24T13:32:31.601037Z", + "shell.execute_reply": "2024-05-24T13:32:31.600468Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.923818Z", - "iopub.status.busy": "2024-05-23T15:18:34.923646Z", - "iopub.status.idle": "2024-05-23T15:18:34.927144Z", - "shell.execute_reply": "2024-05-23T15:18:34.926700Z" + "iopub.execute_input": "2024-05-24T13:32:31.603634Z", + "iopub.status.busy": "2024-05-24T13:32:31.603168Z", + "iopub.status.idle": "2024-05-24T13:32:31.606740Z", + "shell.execute_reply": "2024-05-24T13:32:31.606268Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.929063Z", - "iopub.status.busy": "2024-05-23T15:18:34.928757Z", - "iopub.status.idle": "2024-05-23T15:18:34.934959Z", - "shell.execute_reply": "2024-05-23T15:18:34.934415Z" + "iopub.execute_input": "2024-05-24T13:32:31.608681Z", + "iopub.status.busy": "2024-05-24T13:32:31.608503Z", + "iopub.status.idle": "2024-05-24T13:32:31.615151Z", + "shell.execute_reply": "2024-05-24T13:32:31.614681Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.936789Z", - "iopub.status.busy": "2024-05-23T15:18:34.936503Z", - "iopub.status.idle": "2024-05-23T15:18:34.967120Z", - "shell.execute_reply": "2024-05-23T15:18:34.966451Z" + "iopub.execute_input": "2024-05-24T13:32:31.617025Z", + "iopub.status.busy": "2024-05-24T13:32:31.616852Z", + "iopub.status.idle": "2024-05-24T13:32:31.654339Z", + "shell.execute_reply": "2024-05-24T13:32:31.653602Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.969429Z", - "iopub.status.busy": "2024-05-23T15:18:34.969209Z", - "iopub.status.idle": "2024-05-23T15:18:34.997685Z", - "shell.execute_reply": "2024-05-23T15:18:34.997024Z" + "iopub.execute_input": "2024-05-24T13:32:31.657226Z", + "iopub.status.busy": "2024-05-24T13:32:31.656841Z", + "iopub.status.idle": "2024-05-24T13:32:31.695713Z", + "shell.execute_reply": "2024-05-24T13:32:31.695128Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:35.000316Z", - "iopub.status.busy": "2024-05-23T15:18:35.000083Z", - "iopub.status.idle": "2024-05-23T15:18:35.122194Z", - "shell.execute_reply": "2024-05-23T15:18:35.121656Z" + "iopub.execute_input": "2024-05-24T13:32:31.698394Z", + "iopub.status.busy": "2024-05-24T13:32:31.698081Z", + "iopub.status.idle": "2024-05-24T13:32:31.827413Z", + "shell.execute_reply": "2024-05-24T13:32:31.826735Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:35.124994Z", - "iopub.status.busy": "2024-05-23T15:18:35.124205Z", - "iopub.status.idle": "2024-05-23T15:18:38.166808Z", - "shell.execute_reply": "2024-05-23T15:18:38.166236Z" + "iopub.execute_input": "2024-05-24T13:32:31.830317Z", + "iopub.status.busy": "2024-05-24T13:32:31.829479Z", + "iopub.status.idle": "2024-05-24T13:32:34.895813Z", + "shell.execute_reply": "2024-05-24T13:32:34.895158Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.169245Z", - "iopub.status.busy": "2024-05-23T15:18:38.168893Z", - "iopub.status.idle": "2024-05-23T15:18:38.228886Z", - "shell.execute_reply": "2024-05-23T15:18:38.228321Z" + "iopub.execute_input": "2024-05-24T13:32:34.898486Z", + "iopub.status.busy": "2024-05-24T13:32:34.898019Z", + "iopub.status.idle": "2024-05-24T13:32:34.957326Z", + "shell.execute_reply": "2024-05-24T13:32:34.956728Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.231149Z", - "iopub.status.busy": "2024-05-23T15:18:38.230702Z", - "iopub.status.idle": "2024-05-23T15:18:38.270535Z", - "shell.execute_reply": "2024-05-23T15:18:38.269980Z" + "iopub.execute_input": "2024-05-24T13:32:34.959479Z", + "iopub.status.busy": "2024-05-24T13:32:34.959163Z", + "iopub.status.idle": "2024-05-24T13:32:35.001197Z", + "shell.execute_reply": "2024-05-24T13:32:35.000595Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "64b3b176", + "id": "b6a99385", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "1d010710", + "id": "29ea92da", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cb7b6ab8", + "id": "824b6be9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.272851Z", - "iopub.status.busy": "2024-05-23T15:18:38.272449Z", - "iopub.status.idle": "2024-05-23T15:18:38.348175Z", - "shell.execute_reply": "2024-05-23T15:18:38.347422Z" + "iopub.execute_input": "2024-05-24T13:32:35.003478Z", + "iopub.status.busy": "2024-05-24T13:32:35.003138Z", + "iopub.status.idle": "2024-05-24T13:32:35.082721Z", + "shell.execute_reply": "2024-05-24T13:32:35.082125Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "5bd5118b", + "id": "5a782095", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "9ad1e59f", + "id": "3194e42a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.350721Z", - "iopub.status.busy": "2024-05-23T15:18:38.350515Z", - "iopub.status.idle": "2024-05-23T15:18:38.427394Z", - "shell.execute_reply": "2024-05-23T15:18:38.426825Z" + "iopub.execute_input": "2024-05-24T13:32:35.085269Z", + "iopub.status.busy": "2024-05-24T13:32:35.085064Z", + "iopub.status.idle": "2024-05-24T13:32:35.155654Z", + "shell.execute_reply": "2024-05-24T13:32:35.155094Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "cb460bc2", + "id": "4c80363b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "851d8df8", + "id": "8507db53", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.429899Z", - "iopub.status.busy": "2024-05-23T15:18:38.429722Z", - "iopub.status.idle": "2024-05-23T15:18:38.437290Z", - "shell.execute_reply": "2024-05-23T15:18:38.436749Z" + "iopub.execute_input": "2024-05-24T13:32:35.158550Z", + "iopub.status.busy": "2024-05-24T13:32:35.158197Z", + "iopub.status.idle": "2024-05-24T13:32:35.166192Z", + "shell.execute_reply": "2024-05-24T13:32:35.165707Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "ef9850ad", + "id": "0a640490", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "7a2c4ea8", + "id": "f6c8c29c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.439334Z", - "iopub.status.busy": "2024-05-23T15:18:38.439036Z", - "iopub.status.idle": "2024-05-23T15:18:38.458605Z", - "shell.execute_reply": "2024-05-23T15:18:38.458047Z" + "iopub.execute_input": "2024-05-24T13:32:35.168293Z", + "iopub.status.busy": "2024-05-24T13:32:35.167861Z", + "iopub.status.idle": "2024-05-24T13:32:35.187684Z", + "shell.execute_reply": "2024-05-24T13:32:35.187180Z" } }, "outputs": [ @@ -1586,13 +1586,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding near_duplicate issues ...\n", "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1601,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7745/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7549/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "0458d311", + "id": "04b1a09e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.460516Z", - "iopub.status.busy": "2024-05-23T15:18:38.460219Z", - "iopub.status.idle": "2024-05-23T15:18:38.463420Z", - "shell.execute_reply": "2024-05-23T15:18:38.462900Z" + "iopub.execute_input": "2024-05-24T13:32:35.189723Z", + "iopub.status.busy": "2024-05-24T13:32:35.189406Z", + "iopub.status.idle": "2024-05-24T13:32:35.192611Z", + "shell.execute_reply": "2024-05-24T13:32:35.192048Z" } }, "outputs": [ @@ -1736,30 +1730,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08497646f0cb4f63a1c95644d108a07c": { + "009615c1f6124425b142687c157d820f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3467641639a94f99b2952095c9b6dd73", - "placeholder": "​", - "style": "IPY_MODEL_e343613b5e7f4c8c94ab71069d836c5a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0f6d3cd136594d1d98d49a8a1c90a774": { + "024a69f87c80431bbe82ea1626ed14fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1777,72 +1764,7 @@ "text_color": null } }, - "10fedb5640c646ada9ce6b7e377cf1fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5357e45aa1d84b08bc327a15224faeb8", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_28ace186259847d0967935e138b0fd99", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "28ace186259847d0967935e138b0fd99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "314b83f258234697a5cb4b62f93fcaba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7245cef08c6b4b708a5511ae12b2bb5e", - "placeholder": "​", - "style": "IPY_MODEL_6cf456ba92cb444aa203f05ede632b49", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1321290.32it/s]" - } - }, - "3467641639a94f99b2952095c9b6dd73": { + "4018f21622ee4728abff9ea4a5b1539c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,33 +1817,95 @@ "width": null } }, - "3c0cdd450a4b4118b695a96901d22dd2": { + "53d6d5b50318408dbc22795c1991c19b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dafd47e21af4e8d936705f31f7e87a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8229e5b2c5c6428eaaeed2221f8e2604", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f2f766355df4a4a851d76a58ee0cd03", + "layout": "IPY_MODEL_bd22783e102e4ef59b672db09b5fca60", + "placeholder": "​", + "style": "IPY_MODEL_024a69f87c80431bbe82ea1626ed14fd", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1432187.39it/s]" } }, - "4f2f766355df4a4a851d76a58ee0cd03": { + "5f59f7371b4b455eadf06579c094b275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72a6455387bc4343a7792679b9b40c14", + "placeholder": "​", + "style": "IPY_MODEL_dc6e89b91cba4295af6c1acf570e96a2", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "61435fdddb6a4375bec15e171982e5b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c64e7876d724f938445d4c16bd84eab", + "IPY_MODEL_c6001289cb0f4161acd0cc8cab741663", + "IPY_MODEL_5dafd47e21af4e8d936705f31f7e87a0" + ], + "layout": "IPY_MODEL_b0ac0da489d7411da06200cad014fdb9", + "tabbable": null, + "tooltip": null + } + }, + "62b13a41801d4d9487e134591cf03c4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1937,7 +1921,71 @@ "description_width": "" } }, - "5357e45aa1d84b08bc327a15224faeb8": { + "6bfb0c1983f04f6e95dbf558f339da7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6c64e7876d724f938445d4c16bd84eab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_adcd1f79a028438493e72a53aa230372", + "placeholder": "​", + "style": "IPY_MODEL_6bfb0c1983f04f6e95dbf558f339da7b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "705d3c825ab34c8ea7dc6c7cbf7c550a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bec74befa03a47c788b6f6ffba70d740", + "placeholder": "​", + "style": "IPY_MODEL_53d6d5b50318408dbc22795c1991c19b", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 996626.83it/s]" + } + }, + "72a6455387bc4343a7792679b9b40c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1990,7 +2038,7 @@ "width": null } }, - "550b0d066ae848f29e2fc0f3c630ba44": { + "87f520c867a74ed5802cc88503842af7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,67 +2091,33 @@ "width": null } }, - "5715ae6114ca4c89894e8c045de68727": { + "932a08be6dba4db0b168fb66268ce2a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "635547bff7444b9da4fab23636e0c719": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef3d01c63f3242188716dd65aefd758b", - "IPY_MODEL_3c0cdd450a4b4118b695a96901d22dd2", - "IPY_MODEL_314b83f258234697a5cb4b62f93fcaba" - ], - "layout": "IPY_MODEL_d707d64aa62b4524b3af277ba4f618f3", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63423afaeba416f8fd72b9283f8c24c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62b13a41801d4d9487e134591cf03c4c", "tabbable": null, - "tooltip": null - } - }, - "6cf456ba92cb444aa203f05ede632b49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 50.0 } }, - "7245cef08c6b4b708a5511ae12b2bb5e": { + "a63423afaeba416f8fd72b9283f8c24c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2156,7 +2170,7 @@ "width": null } }, - "8229e5b2c5c6428eaaeed2221f8e2604": { + "adcd1f79a028438493e72a53aa230372": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2209,54 +2223,7 @@ "width": null } }, - "8f3c516252c74d63897fb8eee08617d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08497646f0cb4f63a1c95644d108a07c", - "IPY_MODEL_10fedb5640c646ada9ce6b7e377cf1fa", - "IPY_MODEL_932ecfacb7ca4cf7b8a5442592bffda4" - ], - "layout": "IPY_MODEL_550b0d066ae848f29e2fc0f3c630ba44", - "tabbable": null, - "tooltip": null - } - }, - "932ecfacb7ca4cf7b8a5442592bffda4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99d7c922a5cf42859fa14f718fef0646", - "placeholder": "​", - "style": "IPY_MODEL_0f6d3cd136594d1d98d49a8a1c90a774", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1099654.97it/s]" - } - }, - "99d7c922a5cf42859fa14f718fef0646": { + "b0ac0da489d7411da06200cad014fdb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2309,7 +2276,7 @@ "width": null } }, - "b7bfe758d7da49789e7d13a74088bfdb": { + "bd22783e102e4ef59b672db09b5fca60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2362,7 +2329,7 @@ "width": null } }, - "d707d64aa62b4524b3af277ba4f618f3": { + "bec74befa03a47c788b6f6ffba70d740": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,7 +2382,33 @@ "width": null } }, - "e343613b5e7f4c8c94ab71069d836c5a": { + "c6001289cb0f4161acd0cc8cab741663": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87f520c867a74ed5802cc88503842af7", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_009615c1f6124425b142687c157d820f", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "dc6e89b91cba4295af6c1acf570e96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2433,27 +2426,28 @@ "text_color": null } }, - "ef3d01c63f3242188716dd65aefd758b": { + "f6cc0ef61510499eaeaac7b1050c9d2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b7bfe758d7da49789e7d13a74088bfdb", - "placeholder": "​", - "style": "IPY_MODEL_5715ae6114ca4c89894e8c045de68727", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5f59f7371b4b455eadf06579c094b275", + "IPY_MODEL_932a08be6dba4db0b168fb66268ce2a1", + "IPY_MODEL_705d3c825ab34c8ea7dc6c7cbf7c550a" + ], + "layout": "IPY_MODEL_4018f21622ee4728abff9ea4a5b1539c", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 633332eb4..d93288315 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:41.451137Z", - "iopub.status.busy": "2024-05-23T15:18:41.450666Z", - "iopub.status.idle": "2024-05-23T15:18:42.609707Z", - "shell.execute_reply": "2024-05-23T15:18:42.609088Z" + "iopub.execute_input": "2024-05-24T13:32:39.675833Z", + "iopub.status.busy": "2024-05-24T13:32:39.675659Z", + "iopub.status.idle": "2024-05-24T13:32:40.946726Z", + "shell.execute_reply": "2024-05-24T13:32:40.946096Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.612298Z", - "iopub.status.busy": "2024-05-23T15:18:42.612043Z", - "iopub.status.idle": "2024-05-23T15:18:42.790237Z", - "shell.execute_reply": "2024-05-23T15:18:42.789747Z" + "iopub.execute_input": "2024-05-24T13:32:40.949605Z", + "iopub.status.busy": "2024-05-24T13:32:40.949033Z", + "iopub.status.idle": "2024-05-24T13:32:41.134097Z", + "shell.execute_reply": "2024-05-24T13:32:41.133488Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.792842Z", - "iopub.status.busy": "2024-05-23T15:18:42.792502Z", - "iopub.status.idle": "2024-05-23T15:18:42.804185Z", - "shell.execute_reply": "2024-05-23T15:18:42.803753Z" + "iopub.execute_input": "2024-05-24T13:32:41.136774Z", + "iopub.status.busy": "2024-05-24T13:32:41.136421Z", + "iopub.status.idle": "2024-05-24T13:32:41.149353Z", + "shell.execute_reply": "2024-05-24T13:32:41.148875Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.806115Z", - "iopub.status.busy": "2024-05-23T15:18:42.805801Z", - "iopub.status.idle": "2024-05-23T15:18:43.038896Z", - "shell.execute_reply": "2024-05-23T15:18:43.038291Z" + "iopub.execute_input": "2024-05-24T13:32:41.151520Z", + "iopub.status.busy": "2024-05-24T13:32:41.151242Z", + "iopub.status.idle": "2024-05-24T13:32:41.391092Z", + "shell.execute_reply": "2024-05-24T13:32:41.390489Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:43.041290Z", - "iopub.status.busy": "2024-05-23T15:18:43.040897Z", - "iopub.status.idle": "2024-05-23T15:18:43.067459Z", - "shell.execute_reply": "2024-05-23T15:18:43.066880Z" + "iopub.execute_input": "2024-05-24T13:32:41.393288Z", + "iopub.status.busy": "2024-05-24T13:32:41.393094Z", + "iopub.status.idle": "2024-05-24T13:32:41.419385Z", + "shell.execute_reply": "2024-05-24T13:32:41.418899Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:43.069630Z", - "iopub.status.busy": "2024-05-23T15:18:43.069451Z", - "iopub.status.idle": "2024-05-23T15:18:44.703341Z", - "shell.execute_reply": "2024-05-23T15:18:44.702712Z" + "iopub.execute_input": "2024-05-24T13:32:41.421679Z", + "iopub.status.busy": "2024-05-24T13:32:41.421484Z", + "iopub.status.idle": "2024-05-24T13:32:43.184957Z", + "shell.execute_reply": "2024-05-24T13:32:43.184226Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:44.705621Z", - "iopub.status.busy": "2024-05-23T15:18:44.705268Z", - "iopub.status.idle": "2024-05-23T15:18:44.723382Z", - "shell.execute_reply": "2024-05-23T15:18:44.722908Z" + "iopub.execute_input": "2024-05-24T13:32:43.188098Z", + "iopub.status.busy": "2024-05-24T13:32:43.187421Z", + "iopub.status.idle": "2024-05-24T13:32:43.207108Z", + "shell.execute_reply": "2024-05-24T13:32:43.206504Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:44.725329Z", - "iopub.status.busy": "2024-05-23T15:18:44.725018Z", - "iopub.status.idle": "2024-05-23T15:18:46.105511Z", - "shell.execute_reply": "2024-05-23T15:18:46.104900Z" + "iopub.execute_input": "2024-05-24T13:32:43.209375Z", + "iopub.status.busy": "2024-05-24T13:32:43.208969Z", + "iopub.status.idle": "2024-05-24T13:32:44.659251Z", + "shell.execute_reply": "2024-05-24T13:32:44.658562Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.108458Z", - "iopub.status.busy": "2024-05-23T15:18:46.107728Z", - "iopub.status.idle": "2024-05-23T15:18:46.121958Z", - "shell.execute_reply": "2024-05-23T15:18:46.121504Z" + "iopub.execute_input": "2024-05-24T13:32:44.661987Z", + "iopub.status.busy": "2024-05-24T13:32:44.661332Z", + "iopub.status.idle": "2024-05-24T13:32:44.675557Z", + "shell.execute_reply": "2024-05-24T13:32:44.675007Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.123994Z", - "iopub.status.busy": "2024-05-23T15:18:46.123723Z", - "iopub.status.idle": "2024-05-23T15:18:46.197726Z", - "shell.execute_reply": "2024-05-23T15:18:46.197097Z" + "iopub.execute_input": "2024-05-24T13:32:44.677672Z", + "iopub.status.busy": "2024-05-24T13:32:44.677354Z", + "iopub.status.idle": "2024-05-24T13:32:44.753553Z", + "shell.execute_reply": "2024-05-24T13:32:44.752954Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.199868Z", - "iopub.status.busy": "2024-05-23T15:18:46.199644Z", - "iopub.status.idle": "2024-05-23T15:18:46.412530Z", - "shell.execute_reply": "2024-05-23T15:18:46.411911Z" + "iopub.execute_input": "2024-05-24T13:32:44.756040Z", + "iopub.status.busy": "2024-05-24T13:32:44.755592Z", + "iopub.status.idle": "2024-05-24T13:32:44.976868Z", + "shell.execute_reply": "2024-05-24T13:32:44.976241Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.414915Z", - "iopub.status.busy": "2024-05-23T15:18:46.414504Z", - "iopub.status.idle": "2024-05-23T15:18:46.431542Z", - "shell.execute_reply": "2024-05-23T15:18:46.431077Z" + "iopub.execute_input": "2024-05-24T13:32:44.979196Z", + "iopub.status.busy": "2024-05-24T13:32:44.978872Z", + "iopub.status.idle": "2024-05-24T13:32:44.996359Z", + "shell.execute_reply": "2024-05-24T13:32:44.995807Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.433461Z", - "iopub.status.busy": "2024-05-23T15:18:46.433290Z", - "iopub.status.idle": "2024-05-23T15:18:46.443460Z", - "shell.execute_reply": "2024-05-23T15:18:46.443031Z" + "iopub.execute_input": "2024-05-24T13:32:44.998831Z", + "iopub.status.busy": "2024-05-24T13:32:44.998473Z", + "iopub.status.idle": "2024-05-24T13:32:45.008641Z", + "shell.execute_reply": "2024-05-24T13:32:45.008185Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.445348Z", - "iopub.status.busy": "2024-05-23T15:18:46.445176Z", - "iopub.status.idle": "2024-05-23T15:18:46.530754Z", - "shell.execute_reply": "2024-05-23T15:18:46.530137Z" + "iopub.execute_input": "2024-05-24T13:32:45.010930Z", + "iopub.status.busy": "2024-05-24T13:32:45.010568Z", + "iopub.status.idle": "2024-05-24T13:32:45.101906Z", + "shell.execute_reply": "2024-05-24T13:32:45.101273Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.533006Z", - "iopub.status.busy": "2024-05-23T15:18:46.532769Z", - "iopub.status.idle": "2024-05-23T15:18:46.650360Z", - "shell.execute_reply": "2024-05-23T15:18:46.649795Z" + "iopub.execute_input": "2024-05-24T13:32:45.104398Z", + "iopub.status.busy": "2024-05-24T13:32:45.104016Z", + "iopub.status.idle": "2024-05-24T13:32:45.236534Z", + "shell.execute_reply": "2024-05-24T13:32:45.235902Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.652894Z", - "iopub.status.busy": "2024-05-23T15:18:46.652440Z", - "iopub.status.idle": "2024-05-23T15:18:46.656437Z", - "shell.execute_reply": "2024-05-23T15:18:46.655890Z" + "iopub.execute_input": "2024-05-24T13:32:45.239124Z", + "iopub.status.busy": "2024-05-24T13:32:45.238756Z", + "iopub.status.idle": "2024-05-24T13:32:45.242493Z", + "shell.execute_reply": "2024-05-24T13:32:45.241927Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.658319Z", - "iopub.status.busy": "2024-05-23T15:18:46.658153Z", - "iopub.status.idle": "2024-05-23T15:18:46.662043Z", - "shell.execute_reply": "2024-05-23T15:18:46.661576Z" + "iopub.execute_input": "2024-05-24T13:32:45.244582Z", + "iopub.status.busy": "2024-05-24T13:32:45.244186Z", + "iopub.status.idle": "2024-05-24T13:32:45.247992Z", + "shell.execute_reply": "2024-05-24T13:32:45.247452Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.663845Z", - "iopub.status.busy": "2024-05-23T15:18:46.663676Z", - "iopub.status.idle": "2024-05-23T15:18:46.699910Z", - "shell.execute_reply": "2024-05-23T15:18:46.699449Z" + "iopub.execute_input": "2024-05-24T13:32:45.250006Z", + "iopub.status.busy": "2024-05-24T13:32:45.249718Z", + "iopub.status.idle": "2024-05-24T13:32:45.287296Z", + "shell.execute_reply": "2024-05-24T13:32:45.286719Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.701773Z", - "iopub.status.busy": "2024-05-23T15:18:46.701598Z", - "iopub.status.idle": "2024-05-23T15:18:46.745873Z", - "shell.execute_reply": "2024-05-23T15:18:46.745298Z" + "iopub.execute_input": "2024-05-24T13:32:45.289405Z", + "iopub.status.busy": "2024-05-24T13:32:45.289221Z", + "iopub.status.idle": "2024-05-24T13:32:45.334850Z", + "shell.execute_reply": "2024-05-24T13:32:45.334255Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.748152Z", - "iopub.status.busy": "2024-05-23T15:18:46.747739Z", - "iopub.status.idle": "2024-05-23T15:18:46.841710Z", - "shell.execute_reply": "2024-05-23T15:18:46.841161Z" + "iopub.execute_input": "2024-05-24T13:32:45.337267Z", + "iopub.status.busy": "2024-05-24T13:32:45.336887Z", + "iopub.status.idle": "2024-05-24T13:32:45.435407Z", + "shell.execute_reply": "2024-05-24T13:32:45.434755Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.844254Z", - "iopub.status.busy": "2024-05-23T15:18:46.843958Z", - "iopub.status.idle": "2024-05-23T15:18:46.933588Z", - "shell.execute_reply": "2024-05-23T15:18:46.932983Z" + "iopub.execute_input": "2024-05-24T13:32:45.438158Z", + "iopub.status.busy": "2024-05-24T13:32:45.437756Z", + "iopub.status.idle": "2024-05-24T13:32:45.528949Z", + "shell.execute_reply": "2024-05-24T13:32:45.528274Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.935894Z", - "iopub.status.busy": "2024-05-23T15:18:46.935604Z", - "iopub.status.idle": "2024-05-23T15:18:47.143860Z", - "shell.execute_reply": "2024-05-23T15:18:47.143238Z" + "iopub.execute_input": "2024-05-24T13:32:45.531783Z", + "iopub.status.busy": "2024-05-24T13:32:45.531180Z", + "iopub.status.idle": "2024-05-24T13:32:45.751315Z", + "shell.execute_reply": "2024-05-24T13:32:45.750712Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.146260Z", - "iopub.status.busy": "2024-05-23T15:18:47.145919Z", - "iopub.status.idle": "2024-05-23T15:18:47.314614Z", - "shell.execute_reply": "2024-05-23T15:18:47.314036Z" + "iopub.execute_input": "2024-05-24T13:32:45.753538Z", + "iopub.status.busy": "2024-05-24T13:32:45.753185Z", + "iopub.status.idle": "2024-05-24T13:32:45.960828Z", + "shell.execute_reply": "2024-05-24T13:32:45.960131Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.316952Z", - "iopub.status.busy": "2024-05-23T15:18:47.316583Z", - "iopub.status.idle": "2024-05-23T15:18:47.322849Z", - "shell.execute_reply": "2024-05-23T15:18:47.322419Z" + "iopub.execute_input": "2024-05-24T13:32:45.963459Z", + "iopub.status.busy": "2024-05-24T13:32:45.963004Z", + "iopub.status.idle": "2024-05-24T13:32:45.969670Z", + "shell.execute_reply": "2024-05-24T13:32:45.969193Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.324901Z", - "iopub.status.busy": "2024-05-23T15:18:47.324478Z", - "iopub.status.idle": "2024-05-23T15:18:47.539512Z", - "shell.execute_reply": "2024-05-23T15:18:47.538921Z" + "iopub.execute_input": "2024-05-24T13:32:45.971900Z", + "iopub.status.busy": "2024-05-24T13:32:45.971566Z", + "iopub.status.idle": "2024-05-24T13:32:46.192097Z", + "shell.execute_reply": "2024-05-24T13:32:46.191494Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.541885Z", - "iopub.status.busy": "2024-05-23T15:18:47.541482Z", - "iopub.status.idle": "2024-05-23T15:18:48.632466Z", - "shell.execute_reply": "2024-05-23T15:18:48.631819Z" + "iopub.execute_input": "2024-05-24T13:32:46.194590Z", + "iopub.status.busy": "2024-05-24T13:32:46.194159Z", + "iopub.status.idle": "2024-05-24T13:32:47.269558Z", + "shell.execute_reply": "2024-05-24T13:32:47.268898Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 11ad22099..4be9f5e37 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:52.007579Z", - "iopub.status.busy": "2024-05-23T15:18:52.007414Z", - "iopub.status.idle": "2024-05-23T15:18:53.114524Z", - "shell.execute_reply": "2024-05-23T15:18:53.113948Z" + "iopub.execute_input": "2024-05-24T13:32:50.762779Z", + "iopub.status.busy": "2024-05-24T13:32:50.762361Z", + "iopub.status.idle": "2024-05-24T13:32:51.974980Z", + "shell.execute_reply": "2024-05-24T13:32:51.974449Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.117150Z", - "iopub.status.busy": "2024-05-23T15:18:53.116730Z", - "iopub.status.idle": "2024-05-23T15:18:53.119784Z", - "shell.execute_reply": "2024-05-23T15:18:53.119337Z" + "iopub.execute_input": "2024-05-24T13:32:51.977751Z", + "iopub.status.busy": "2024-05-24T13:32:51.977342Z", + "iopub.status.idle": "2024-05-24T13:32:51.980695Z", + "shell.execute_reply": "2024-05-24T13:32:51.980218Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.121897Z", - "iopub.status.busy": "2024-05-23T15:18:53.121580Z", - "iopub.status.idle": "2024-05-23T15:18:53.129492Z", - "shell.execute_reply": "2024-05-23T15:18:53.128916Z" + "iopub.execute_input": "2024-05-24T13:32:51.983069Z", + "iopub.status.busy": "2024-05-24T13:32:51.982789Z", + "iopub.status.idle": "2024-05-24T13:32:51.990615Z", + "shell.execute_reply": "2024-05-24T13:32:51.990115Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.131642Z", - "iopub.status.busy": "2024-05-23T15:18:53.131304Z", - "iopub.status.idle": "2024-05-23T15:18:53.183633Z", - "shell.execute_reply": "2024-05-23T15:18:53.183074Z" + "iopub.execute_input": "2024-05-24T13:32:51.992686Z", + "iopub.status.busy": "2024-05-24T13:32:51.992344Z", + "iopub.status.idle": "2024-05-24T13:32:52.041612Z", + "shell.execute_reply": "2024-05-24T13:32:52.041107Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.185644Z", - "iopub.status.busy": "2024-05-23T15:18:53.185466Z", - "iopub.status.idle": "2024-05-23T15:18:53.202072Z", - "shell.execute_reply": "2024-05-23T15:18:53.201584Z" + "iopub.execute_input": "2024-05-24T13:32:52.044177Z", + "iopub.status.busy": "2024-05-24T13:32:52.043842Z", + "iopub.status.idle": "2024-05-24T13:32:52.062090Z", + "shell.execute_reply": "2024-05-24T13:32:52.061456Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.203949Z", - "iopub.status.busy": "2024-05-23T15:18:53.203776Z", - "iopub.status.idle": "2024-05-23T15:18:53.207702Z", - "shell.execute_reply": "2024-05-23T15:18:53.207257Z" + "iopub.execute_input": "2024-05-24T13:32:52.064422Z", + "iopub.status.busy": "2024-05-24T13:32:52.064053Z", + "iopub.status.idle": "2024-05-24T13:32:52.068266Z", + "shell.execute_reply": "2024-05-24T13:32:52.067694Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.209671Z", - "iopub.status.busy": "2024-05-23T15:18:53.209500Z", - "iopub.status.idle": "2024-05-23T15:18:53.224174Z", - "shell.execute_reply": "2024-05-23T15:18:53.223736Z" + "iopub.execute_input": "2024-05-24T13:32:52.070570Z", + "iopub.status.busy": "2024-05-24T13:32:52.070140Z", + "iopub.status.idle": "2024-05-24T13:32:52.087394Z", + "shell.execute_reply": "2024-05-24T13:32:52.086801Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.226035Z", - "iopub.status.busy": "2024-05-23T15:18:53.225859Z", - "iopub.status.idle": "2024-05-23T15:18:53.252043Z", - "shell.execute_reply": "2024-05-23T15:18:53.251607Z" + "iopub.execute_input": "2024-05-24T13:32:52.089825Z", + "iopub.status.busy": "2024-05-24T13:32:52.089469Z", + "iopub.status.idle": "2024-05-24T13:32:52.116367Z", + "shell.execute_reply": "2024-05-24T13:32:52.115856Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.253917Z", - "iopub.status.busy": "2024-05-23T15:18:53.253738Z", - "iopub.status.idle": "2024-05-23T15:18:54.947724Z", - "shell.execute_reply": "2024-05-23T15:18:54.947173Z" + "iopub.execute_input": "2024-05-24T13:32:52.118941Z", + "iopub.status.busy": "2024-05-24T13:32:52.118510Z", + "iopub.status.idle": "2024-05-24T13:32:53.903144Z", + "shell.execute_reply": "2024-05-24T13:32:53.902489Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.950166Z", - "iopub.status.busy": "2024-05-23T15:18:54.949868Z", - "iopub.status.idle": "2024-05-23T15:18:54.956808Z", - "shell.execute_reply": "2024-05-23T15:18:54.956271Z" + "iopub.execute_input": "2024-05-24T13:32:53.906036Z", + "iopub.status.busy": "2024-05-24T13:32:53.905426Z", + "iopub.status.idle": "2024-05-24T13:32:53.912765Z", + "shell.execute_reply": "2024-05-24T13:32:53.912202Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.958969Z", - "iopub.status.busy": "2024-05-23T15:18:54.958598Z", - "iopub.status.idle": "2024-05-23T15:18:54.971034Z", - "shell.execute_reply": "2024-05-23T15:18:54.970497Z" + "iopub.execute_input": "2024-05-24T13:32:53.914987Z", + "iopub.status.busy": "2024-05-24T13:32:53.914581Z", + "iopub.status.idle": "2024-05-24T13:32:53.927842Z", + "shell.execute_reply": "2024-05-24T13:32:53.927274Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.973141Z", - "iopub.status.busy": "2024-05-23T15:18:54.972739Z", - "iopub.status.idle": "2024-05-23T15:18:54.979039Z", - "shell.execute_reply": "2024-05-23T15:18:54.978498Z" + "iopub.execute_input": "2024-05-24T13:32:53.930072Z", + "iopub.status.busy": "2024-05-24T13:32:53.929628Z", + "iopub.status.idle": "2024-05-24T13:32:53.936593Z", + "shell.execute_reply": "2024-05-24T13:32:53.936058Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.981149Z", - "iopub.status.busy": "2024-05-23T15:18:54.980730Z", - "iopub.status.idle": "2024-05-23T15:18:54.983319Z", - "shell.execute_reply": "2024-05-23T15:18:54.982883Z" + "iopub.execute_input": "2024-05-24T13:32:53.938872Z", + "iopub.status.busy": "2024-05-24T13:32:53.938463Z", + "iopub.status.idle": "2024-05-24T13:32:53.941409Z", + "shell.execute_reply": "2024-05-24T13:32:53.940850Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.985204Z", - "iopub.status.busy": "2024-05-23T15:18:54.985028Z", - "iopub.status.idle": "2024-05-23T15:18:54.988357Z", - "shell.execute_reply": "2024-05-23T15:18:54.987848Z" + "iopub.execute_input": "2024-05-24T13:32:53.943430Z", + "iopub.status.busy": "2024-05-24T13:32:53.943122Z", + "iopub.status.idle": "2024-05-24T13:32:53.946607Z", + "shell.execute_reply": "2024-05-24T13:32:53.946085Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.990306Z", - "iopub.status.busy": "2024-05-23T15:18:54.990135Z", - "iopub.status.idle": "2024-05-23T15:18:54.992657Z", - "shell.execute_reply": "2024-05-23T15:18:54.992238Z" + "iopub.execute_input": "2024-05-24T13:32:53.948633Z", + "iopub.status.busy": "2024-05-24T13:32:53.948456Z", + "iopub.status.idle": "2024-05-24T13:32:53.951140Z", + "shell.execute_reply": "2024-05-24T13:32:53.950707Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.994725Z", - "iopub.status.busy": "2024-05-23T15:18:54.994306Z", - "iopub.status.idle": "2024-05-23T15:18:54.998455Z", - "shell.execute_reply": "2024-05-23T15:18:54.998006Z" + "iopub.execute_input": "2024-05-24T13:32:53.953164Z", + "iopub.status.busy": "2024-05-24T13:32:53.952826Z", + "iopub.status.idle": "2024-05-24T13:32:53.957123Z", + "shell.execute_reply": "2024-05-24T13:32:53.956557Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:55.000343Z", - "iopub.status.busy": "2024-05-23T15:18:55.000170Z", - "iopub.status.idle": "2024-05-23T15:18:55.030450Z", - "shell.execute_reply": "2024-05-23T15:18:55.029992Z" + "iopub.execute_input": "2024-05-24T13:32:53.959309Z", + "iopub.status.busy": "2024-05-24T13:32:53.958980Z", + "iopub.status.idle": "2024-05-24T13:32:53.992012Z", + "shell.execute_reply": "2024-05-24T13:32:53.991446Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:55.032268Z", - "iopub.status.busy": "2024-05-23T15:18:55.032099Z", - "iopub.status.idle": "2024-05-23T15:18:55.036740Z", - "shell.execute_reply": "2024-05-23T15:18:55.036305Z" + "iopub.execute_input": "2024-05-24T13:32:53.994595Z", + "iopub.status.busy": "2024-05-24T13:32:53.994268Z", + "iopub.status.idle": "2024-05-24T13:32:53.999390Z", + "shell.execute_reply": "2024-05-24T13:32:53.998813Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 8e6835cb8..a6b14adec 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:57.808420Z", - "iopub.status.busy": "2024-05-23T15:18:57.808257Z", - "iopub.status.idle": "2024-05-23T15:18:58.960227Z", - "shell.execute_reply": "2024-05-23T15:18:58.959741Z" + "iopub.execute_input": "2024-05-24T13:32:56.921537Z", + "iopub.status.busy": "2024-05-24T13:32:56.921361Z", + "iopub.status.idle": "2024-05-24T13:32:58.175036Z", + "shell.execute_reply": "2024-05-24T13:32:58.174384Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:58.962688Z", - "iopub.status.busy": "2024-05-23T15:18:58.962364Z", - "iopub.status.idle": "2024-05-23T15:18:59.156572Z", - "shell.execute_reply": "2024-05-23T15:18:59.156070Z" + "iopub.execute_input": "2024-05-24T13:32:58.177803Z", + "iopub.status.busy": "2024-05-24T13:32:58.177494Z", + "iopub.status.idle": "2024-05-24T13:32:58.384261Z", + "shell.execute_reply": "2024-05-24T13:32:58.383683Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:59.159355Z", - "iopub.status.busy": "2024-05-23T15:18:59.158909Z", - "iopub.status.idle": "2024-05-23T15:18:59.171734Z", - "shell.execute_reply": "2024-05-23T15:18:59.171307Z" + "iopub.execute_input": "2024-05-24T13:32:58.387007Z", + "iopub.status.busy": "2024-05-24T13:32:58.386520Z", + "iopub.status.idle": "2024-05-24T13:32:58.400152Z", + "shell.execute_reply": "2024-05-24T13:32:58.399572Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:59.173764Z", - "iopub.status.busy": "2024-05-23T15:18:59.173435Z", - "iopub.status.idle": "2024-05-23T15:19:01.818860Z", - "shell.execute_reply": "2024-05-23T15:19:01.818253Z" + "iopub.execute_input": "2024-05-24T13:32:58.402493Z", + "iopub.status.busy": "2024-05-24T13:32:58.402124Z", + "iopub.status.idle": "2024-05-24T13:33:01.062435Z", + "shell.execute_reply": "2024-05-24T13:33:01.061714Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:01.821210Z", - "iopub.status.busy": "2024-05-23T15:19:01.820917Z", - "iopub.status.idle": "2024-05-23T15:19:03.152098Z", - "shell.execute_reply": "2024-05-23T15:19:03.151598Z" + "iopub.execute_input": "2024-05-24T13:33:01.064870Z", + "iopub.status.busy": "2024-05-24T13:33:01.064494Z", + "iopub.status.idle": "2024-05-24T13:33:02.431754Z", + "shell.execute_reply": "2024-05-24T13:33:02.431173Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:03.154639Z", - "iopub.status.busy": "2024-05-23T15:19:03.154293Z", - "iopub.status.idle": "2024-05-23T15:19:03.158008Z", - "shell.execute_reply": "2024-05-23T15:19:03.157505Z" + "iopub.execute_input": "2024-05-24T13:33:02.434402Z", + "iopub.status.busy": "2024-05-24T13:33:02.434020Z", + "iopub.status.idle": "2024-05-24T13:33:02.437944Z", + "shell.execute_reply": "2024-05-24T13:33:02.437415Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:03.160039Z", - "iopub.status.busy": "2024-05-23T15:19:03.159724Z", - "iopub.status.idle": "2024-05-23T15:19:04.925502Z", - "shell.execute_reply": "2024-05-23T15:19:04.924830Z" + "iopub.execute_input": "2024-05-24T13:33:02.440119Z", + "iopub.status.busy": "2024-05-24T13:33:02.439788Z", + "iopub.status.idle": "2024-05-24T13:33:04.344729Z", + "shell.execute_reply": "2024-05-24T13:33:04.344050Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:04.928071Z", - "iopub.status.busy": "2024-05-23T15:19:04.927589Z", - "iopub.status.idle": "2024-05-23T15:19:04.935028Z", - "shell.execute_reply": "2024-05-23T15:19:04.934522Z" + "iopub.execute_input": "2024-05-24T13:33:04.347353Z", + "iopub.status.busy": "2024-05-24T13:33:04.346920Z", + "iopub.status.idle": "2024-05-24T13:33:04.355516Z", + "shell.execute_reply": "2024-05-24T13:33:04.354930Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:04.937024Z", - "iopub.status.busy": "2024-05-23T15:19:04.936741Z", - "iopub.status.idle": "2024-05-23T15:19:07.521116Z", - "shell.execute_reply": "2024-05-23T15:19:07.520500Z" + "iopub.execute_input": "2024-05-24T13:33:04.357838Z", + "iopub.status.busy": "2024-05-24T13:33:04.357469Z", + "iopub.status.idle": "2024-05-24T13:33:06.961964Z", + "shell.execute_reply": "2024-05-24T13:33:06.961324Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.523476Z", - "iopub.status.busy": "2024-05-23T15:19:07.523126Z", - "iopub.status.idle": "2024-05-23T15:19:07.526728Z", - "shell.execute_reply": "2024-05-23T15:19:07.526192Z" + "iopub.execute_input": "2024-05-24T13:33:06.964413Z", + "iopub.status.busy": "2024-05-24T13:33:06.964018Z", + "iopub.status.idle": "2024-05-24T13:33:06.967839Z", + "shell.execute_reply": "2024-05-24T13:33:06.967301Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.528912Z", - "iopub.status.busy": "2024-05-23T15:19:07.528509Z", - "iopub.status.idle": "2024-05-23T15:19:07.531928Z", - "shell.execute_reply": "2024-05-23T15:19:07.531495Z" + "iopub.execute_input": "2024-05-24T13:33:06.970112Z", + "iopub.status.busy": "2024-05-24T13:33:06.969760Z", + "iopub.status.idle": "2024-05-24T13:33:06.973484Z", + "shell.execute_reply": "2024-05-24T13:33:06.973018Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.533817Z", - "iopub.status.busy": "2024-05-23T15:19:07.533644Z", - "iopub.status.idle": "2024-05-23T15:19:07.536853Z", - "shell.execute_reply": "2024-05-23T15:19:07.536396Z" + "iopub.execute_input": "2024-05-24T13:33:06.975667Z", + "iopub.status.busy": "2024-05-24T13:33:06.975320Z", + "iopub.status.idle": "2024-05-24T13:33:06.978664Z", + "shell.execute_reply": "2024-05-24T13:33:06.978165Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 02d948ced..613edc566 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:09.941298Z", - "iopub.status.busy": "2024-05-23T15:19:09.940829Z", - "iopub.status.idle": "2024-05-23T15:19:11.097022Z", - "shell.execute_reply": "2024-05-23T15:19:11.096453Z" + "iopub.execute_input": "2024-05-24T13:33:09.590354Z", + "iopub.status.busy": "2024-05-24T13:33:09.590155Z", + "iopub.status.idle": "2024-05-24T13:33:10.838596Z", + "shell.execute_reply": "2024-05-24T13:33:10.838035Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.099863Z", - "iopub.status.busy": "2024-05-23T15:19:11.099331Z", - "iopub.status.idle": "2024-05-23T15:19:11.953578Z", - "shell.execute_reply": "2024-05-23T15:19:11.952908Z" + "iopub.execute_input": "2024-05-24T13:33:10.841277Z", + "iopub.status.busy": "2024-05-24T13:33:10.840675Z", + "iopub.status.idle": "2024-05-24T13:33:11.886250Z", + "shell.execute_reply": "2024-05-24T13:33:11.885501Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.956193Z", - "iopub.status.busy": "2024-05-23T15:19:11.955987Z", - "iopub.status.idle": "2024-05-23T15:19:11.959380Z", - "shell.execute_reply": "2024-05-23T15:19:11.958907Z" + "iopub.execute_input": "2024-05-24T13:33:11.889281Z", + "iopub.status.busy": "2024-05-24T13:33:11.888856Z", + "iopub.status.idle": "2024-05-24T13:33:11.892413Z", + "shell.execute_reply": "2024-05-24T13:33:11.891914Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.961322Z", - "iopub.status.busy": "2024-05-23T15:19:11.960978Z", - "iopub.status.idle": "2024-05-23T15:19:11.968077Z", - "shell.execute_reply": "2024-05-23T15:19:11.967654Z" + "iopub.execute_input": "2024-05-24T13:33:11.894713Z", + "iopub.status.busy": "2024-05-24T13:33:11.894289Z", + "iopub.status.idle": "2024-05-24T13:33:11.901509Z", + "shell.execute_reply": "2024-05-24T13:33:11.900916Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.970208Z", - "iopub.status.busy": "2024-05-23T15:19:11.969865Z", - "iopub.status.idle": "2024-05-23T15:19:12.460372Z", - "shell.execute_reply": "2024-05-23T15:19:12.459806Z" + "iopub.execute_input": "2024-05-24T13:33:11.903993Z", + "iopub.status.busy": "2024-05-24T13:33:11.903631Z", + "iopub.status.idle": "2024-05-24T13:33:12.406677Z", + "shell.execute_reply": "2024-05-24T13:33:12.405999Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.463246Z", - "iopub.status.busy": "2024-05-23T15:19:12.462904Z", - "iopub.status.idle": "2024-05-23T15:19:12.468057Z", - "shell.execute_reply": "2024-05-23T15:19:12.467625Z" + "iopub.execute_input": "2024-05-24T13:33:12.409267Z", + "iopub.status.busy": "2024-05-24T13:33:12.408784Z", + "iopub.status.idle": "2024-05-24T13:33:12.414357Z", + "shell.execute_reply": "2024-05-24T13:33:12.413785Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.470124Z", - "iopub.status.busy": "2024-05-23T15:19:12.469807Z", - "iopub.status.idle": "2024-05-23T15:19:12.473501Z", - "shell.execute_reply": "2024-05-23T15:19:12.473056Z" + "iopub.execute_input": "2024-05-24T13:33:12.416359Z", + "iopub.status.busy": "2024-05-24T13:33:12.416054Z", + "iopub.status.idle": "2024-05-24T13:33:12.419828Z", + "shell.execute_reply": "2024-05-24T13:33:12.419389Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.475564Z", - "iopub.status.busy": "2024-05-23T15:19:12.475235Z", - "iopub.status.idle": "2024-05-23T15:19:13.338397Z", - "shell.execute_reply": "2024-05-23T15:19:13.337797Z" + "iopub.execute_input": "2024-05-24T13:33:12.421934Z", + "iopub.status.busy": "2024-05-24T13:33:12.421599Z", + "iopub.status.idle": "2024-05-24T13:33:13.314654Z", + "shell.execute_reply": "2024-05-24T13:33:13.314074Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.340873Z", - "iopub.status.busy": "2024-05-23T15:19:13.340423Z", - "iopub.status.idle": "2024-05-23T15:19:13.588209Z", - "shell.execute_reply": "2024-05-23T15:19:13.587617Z" + "iopub.execute_input": "2024-05-24T13:33:13.317137Z", + "iopub.status.busy": "2024-05-24T13:33:13.316782Z", + "iopub.status.idle": "2024-05-24T13:33:13.540701Z", + "shell.execute_reply": "2024-05-24T13:33:13.540111Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.590484Z", - "iopub.status.busy": "2024-05-23T15:19:13.590022Z", - "iopub.status.idle": "2024-05-23T15:19:13.594514Z", - "shell.execute_reply": "2024-05-23T15:19:13.593949Z" + "iopub.execute_input": "2024-05-24T13:33:13.542972Z", + "iopub.status.busy": "2024-05-24T13:33:13.542641Z", + "iopub.status.idle": "2024-05-24T13:33:13.547197Z", + "shell.execute_reply": "2024-05-24T13:33:13.546642Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.596553Z", - "iopub.status.busy": "2024-05-23T15:19:13.596160Z", - "iopub.status.idle": "2024-05-23T15:19:14.053043Z", - "shell.execute_reply": "2024-05-23T15:19:14.052450Z" + "iopub.execute_input": "2024-05-24T13:33:13.549312Z", + "iopub.status.busy": "2024-05-24T13:33:13.549006Z", + "iopub.status.idle": "2024-05-24T13:33:14.025526Z", + "shell.execute_reply": "2024-05-24T13:33:14.024872Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.056181Z", - "iopub.status.busy": "2024-05-23T15:19:14.055807Z", - "iopub.status.idle": "2024-05-23T15:19:14.361904Z", - "shell.execute_reply": "2024-05-23T15:19:14.361420Z" + "iopub.execute_input": "2024-05-24T13:33:14.028846Z", + "iopub.status.busy": "2024-05-24T13:33:14.028468Z", + "iopub.status.idle": "2024-05-24T13:33:14.366001Z", + "shell.execute_reply": "2024-05-24T13:33:14.365415Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.363951Z", - "iopub.status.busy": "2024-05-23T15:19:14.363772Z", - "iopub.status.idle": "2024-05-23T15:19:14.726648Z", - "shell.execute_reply": "2024-05-23T15:19:14.726007Z" + "iopub.execute_input": "2024-05-24T13:33:14.369130Z", + "iopub.status.busy": "2024-05-24T13:33:14.368736Z", + "iopub.status.idle": "2024-05-24T13:33:14.705993Z", + "shell.execute_reply": "2024-05-24T13:33:14.705395Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.729639Z", - "iopub.status.busy": "2024-05-23T15:19:14.729287Z", - "iopub.status.idle": "2024-05-23T15:19:15.170833Z", - "shell.execute_reply": "2024-05-23T15:19:15.170240Z" + "iopub.execute_input": "2024-05-24T13:33:14.709268Z", + "iopub.status.busy": "2024-05-24T13:33:14.708881Z", + "iopub.status.idle": "2024-05-24T13:33:15.152704Z", + "shell.execute_reply": "2024-05-24T13:33:15.152123Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.174851Z", - "iopub.status.busy": "2024-05-23T15:19:15.174514Z", - "iopub.status.idle": "2024-05-23T15:19:15.621270Z", - "shell.execute_reply": "2024-05-23T15:19:15.620652Z" + "iopub.execute_input": "2024-05-24T13:33:15.157215Z", + "iopub.status.busy": "2024-05-24T13:33:15.156805Z", + "iopub.status.idle": "2024-05-24T13:33:15.612592Z", + "shell.execute_reply": "2024-05-24T13:33:15.611980Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.624334Z", - "iopub.status.busy": "2024-05-23T15:19:15.624147Z", - "iopub.status.idle": "2024-05-23T15:19:15.840347Z", - "shell.execute_reply": "2024-05-23T15:19:15.839762Z" + "iopub.execute_input": "2024-05-24T13:33:15.615540Z", + "iopub.status.busy": "2024-05-24T13:33:15.615351Z", + "iopub.status.idle": "2024-05-24T13:33:15.810846Z", + "shell.execute_reply": "2024-05-24T13:33:15.810203Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.842651Z", - "iopub.status.busy": "2024-05-23T15:19:15.842224Z", - "iopub.status.idle": "2024-05-23T15:19:16.023798Z", - "shell.execute_reply": "2024-05-23T15:19:16.023243Z" + "iopub.execute_input": "2024-05-24T13:33:15.813534Z", + "iopub.status.busy": "2024-05-24T13:33:15.813051Z", + "iopub.status.idle": "2024-05-24T13:33:15.995429Z", + "shell.execute_reply": "2024-05-24T13:33:15.994830Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:16.026016Z", - "iopub.status.busy": "2024-05-23T15:19:16.025682Z", - "iopub.status.idle": "2024-05-23T15:19:16.028740Z", - "shell.execute_reply": "2024-05-23T15:19:16.028149Z" + "iopub.execute_input": "2024-05-24T13:33:15.998066Z", + "iopub.status.busy": "2024-05-24T13:33:15.997738Z", + "iopub.status.idle": "2024-05-24T13:33:16.000791Z", + "shell.execute_reply": "2024-05-24T13:33:16.000219Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:16.030740Z", - "iopub.status.busy": "2024-05-23T15:19:16.030424Z", - "iopub.status.idle": "2024-05-23T15:19:16.998382Z", - "shell.execute_reply": "2024-05-23T15:19:16.997802Z" + "iopub.execute_input": "2024-05-24T13:33:16.002909Z", + "iopub.status.busy": "2024-05-24T13:33:16.002571Z", + "iopub.status.idle": "2024-05-24T13:33:16.944043Z", + "shell.execute_reply": "2024-05-24T13:33:16.943427Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.001300Z", - "iopub.status.busy": "2024-05-23T15:19:17.000884Z", - "iopub.status.idle": "2024-05-23T15:19:17.176402Z", - "shell.execute_reply": "2024-05-23T15:19:17.175818Z" + "iopub.execute_input": "2024-05-24T13:33:16.947075Z", + "iopub.status.busy": "2024-05-24T13:33:16.946731Z", + "iopub.status.idle": "2024-05-24T13:33:17.094572Z", + "shell.execute_reply": "2024-05-24T13:33:17.093949Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.178618Z", - "iopub.status.busy": "2024-05-23T15:19:17.178262Z", - "iopub.status.idle": "2024-05-23T15:19:17.349438Z", - "shell.execute_reply": "2024-05-23T15:19:17.348931Z" + "iopub.execute_input": "2024-05-24T13:33:17.096793Z", + "iopub.status.busy": "2024-05-24T13:33:17.096436Z", + "iopub.status.idle": "2024-05-24T13:33:17.243920Z", + "shell.execute_reply": "2024-05-24T13:33:17.243404Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.351734Z", - "iopub.status.busy": "2024-05-23T15:19:17.351422Z", - "iopub.status.idle": "2024-05-23T15:19:18.093586Z", - "shell.execute_reply": "2024-05-23T15:19:18.092975Z" + "iopub.execute_input": "2024-05-24T13:33:17.245921Z", + "iopub.status.busy": "2024-05-24T13:33:17.245732Z", + "iopub.status.idle": "2024-05-24T13:33:18.013784Z", + "shell.execute_reply": "2024-05-24T13:33:18.013170Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:18.095774Z", - "iopub.status.busy": "2024-05-23T15:19:18.095421Z", - "iopub.status.idle": "2024-05-23T15:19:18.098960Z", - "shell.execute_reply": "2024-05-23T15:19:18.098495Z" + "iopub.execute_input": "2024-05-24T13:33:18.015875Z", + "iopub.status.busy": "2024-05-24T13:33:18.015687Z", + "iopub.status.idle": "2024-05-24T13:33:18.019572Z", + "shell.execute_reply": "2024-05-24T13:33:18.019100Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 864c4a675..1a2f12fb0 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:20.418050Z", - "iopub.status.busy": "2024-05-23T15:19:20.417645Z", - "iopub.status.idle": "2024-05-23T15:19:23.119265Z", - "shell.execute_reply": "2024-05-23T15:19:23.118765Z" + "iopub.execute_input": "2024-05-24T13:33:20.391399Z", + "iopub.status.busy": "2024-05-24T13:33:20.391209Z", + "iopub.status.idle": "2024-05-24T13:33:23.302222Z", + "shell.execute_reply": "2024-05-24T13:33:23.301533Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.121949Z", - "iopub.status.busy": "2024-05-23T15:19:23.121462Z", - "iopub.status.idle": "2024-05-23T15:19:23.439157Z", - "shell.execute_reply": "2024-05-23T15:19:23.438540Z" + "iopub.execute_input": "2024-05-24T13:33:23.305118Z", + "iopub.status.busy": "2024-05-24T13:33:23.304770Z", + "iopub.status.idle": "2024-05-24T13:33:23.649769Z", + "shell.execute_reply": "2024-05-24T13:33:23.649203Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.441889Z", - "iopub.status.busy": "2024-05-23T15:19:23.441445Z", - "iopub.status.idle": "2024-05-23T15:19:23.445687Z", - "shell.execute_reply": "2024-05-23T15:19:23.445138Z" + "iopub.execute_input": "2024-05-24T13:33:23.652244Z", + "iopub.status.busy": "2024-05-24T13:33:23.651916Z", + "iopub.status.idle": "2024-05-24T13:33:23.656718Z", + "shell.execute_reply": "2024-05-24T13:33:23.656289Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.447818Z", - "iopub.status.busy": "2024-05-23T15:19:23.447514Z", - "iopub.status.idle": "2024-05-23T15:19:27.910563Z", - "shell.execute_reply": "2024-05-23T15:19:27.909990Z" + "iopub.execute_input": "2024-05-24T13:33:23.659033Z", + "iopub.status.busy": "2024-05-24T13:33:23.658579Z", + "iopub.status.idle": "2024-05-24T13:33:28.996196Z", + "shell.execute_reply": "2024-05-24T13:33:28.995654Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1736704/170498071 [00:00<00:09, 17162140.37it/s]" + " 1%| | 1572864/170498071 [00:00<00:10, 15497575.12it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11501568/170498071 [00:00<00:02, 64155763.85it/s]" + " 4%|▍ | 6455296/170498071 [00:00<00:04, 34879744.55it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20086784/170498071 [00:00<00:02, 74015559.27it/s]" + " 7%|▋ | 11829248/170498071 [00:00<00:03, 43399948.17it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:01, 82879750.45it/s]" + " 10%|█ | 17727488/170498071 [00:00<00:03, 49412469.68it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 38567936/170498071 [00:00<00:01, 84511055.51it/s]" + " 13%|█▎ | 22806528/170498071 [00:00<00:02, 49742213.39it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 48037888/170498071 [00:00<00:01, 87861286.88it/s]" + " 16%|█▋ | 27918336/170498071 [00:00<00:02, 50079893.14it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57049088/170498071 [00:00<00:01, 88570456.06it/s]" + " 20%|█▉ | 33488896/170498071 [00:00<00:02, 51777460.64it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 66322432/170498071 [00:00<00:01, 89869881.39it/s]" + " 23%|██▎ | 38699008/170498071 [00:00<00:02, 51012623.58it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75792384/170498071 [00:00<00:01, 91369701.92it/s]" + " 26%|██▌ | 44269568/170498071 [00:00<00:02, 52371059.87it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 85098496/170498071 [00:01<00:00, 91824248.19it/s]" + " 29%|██▉ | 49512448/170498071 [00:01<00:02, 50924661.88it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94699520/170498071 [00:01<00:00, 93055008.97it/s]" + " 32%|███▏ | 54624256/170498071 [00:01<00:02, 48112437.68it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 104038400/170498071 [00:01<00:00, 91300067.76it/s]" + " 35%|███▍ | 59637760/170498071 [00:01<00:02, 48616676.78it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 113836032/170498071 [00:01<00:00, 93288047.22it/s]" + " 38%|███▊ | 64552960/170498071 [00:01<00:02, 48676821.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 123174912/170498071 [00:01<00:00, 90347951.48it/s]" + " 41%|████ | 69468160/170498071 [00:01<00:02, 47385489.07it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134283264/170498071 [00:01<00:00, 96381342.24it/s]" + " 44%|████▎ | 74416128/170498071 [00:01<00:02, 47983741.04it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143982592/170498071 [00:01<00:00, 93413218.25it/s]" + " 48%|████▊ | 81362944/170498071 [00:01<00:01, 54201185.57it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155516928/170498071 [00:01<00:00, 99643141.74it/s]" + " 52%|█████▏ | 88473600/170498071 [00:01<00:01, 59064037.60it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165543936/170498071 [00:01<00:00, 96481236.76it/s]" + " 55%|█████▌ | 94502912/170498071 [00:01<00:01, 59293777.03it/s]" ] }, { @@ -396,7 +396,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]" + " 59%|█████▉ | 100466688/170498071 [00:01<00:01, 58247025.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110002176/170498071 [00:02<00:00, 69074001.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 121044992/170498071 [00:02<00:00, 81259105.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131661824/170498071 [00:02<00:00, 88605421.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142245888/170498071 [00:02<00:00, 93703198.56it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152600576/170498071 [00:02<00:00, 96621095.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162463744/170498071 [00:02<00:00, 97203561.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64418107.35it/s]" ] }, { @@ -514,10 +570,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:27.912894Z", - "iopub.status.busy": "2024-05-23T15:19:27.912553Z", - "iopub.status.idle": "2024-05-23T15:19:27.917158Z", - "shell.execute_reply": "2024-05-23T15:19:27.916722Z" + "iopub.execute_input": "2024-05-24T13:33:28.998617Z", + "iopub.status.busy": "2024-05-24T13:33:28.998233Z", + "iopub.status.idle": "2024-05-24T13:33:29.003265Z", + "shell.execute_reply": "2024-05-24T13:33:29.002790Z" }, "nbsphinx": "hidden" }, @@ -568,10 +624,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:27.919088Z", - "iopub.status.busy": "2024-05-23T15:19:27.918790Z", - "iopub.status.idle": "2024-05-23T15:19:28.466696Z", - "shell.execute_reply": "2024-05-23T15:19:28.466159Z" + "iopub.execute_input": "2024-05-24T13:33:29.005209Z", + "iopub.status.busy": "2024-05-24T13:33:29.004876Z", + "iopub.status.idle": "2024-05-24T13:33:29.561473Z", + "shell.execute_reply": "2024-05-24T13:33:29.560904Z" } }, "outputs": [ @@ -604,10 +660,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.468957Z", - "iopub.status.busy": "2024-05-23T15:19:28.468602Z", - "iopub.status.idle": "2024-05-23T15:19:28.980865Z", - "shell.execute_reply": "2024-05-23T15:19:28.980281Z" + "iopub.execute_input": "2024-05-24T13:33:29.563543Z", + "iopub.status.busy": "2024-05-24T13:33:29.563318Z", + "iopub.status.idle": "2024-05-24T13:33:30.067196Z", + "shell.execute_reply": "2024-05-24T13:33:30.066609Z" } }, "outputs": [ @@ -645,10 +701,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.983104Z", - "iopub.status.busy": "2024-05-23T15:19:28.982884Z", - "iopub.status.idle": "2024-05-23T15:19:28.986615Z", - "shell.execute_reply": "2024-05-23T15:19:28.986093Z" + "iopub.execute_input": "2024-05-24T13:33:30.069485Z", + "iopub.status.busy": "2024-05-24T13:33:30.069106Z", + "iopub.status.idle": "2024-05-24T13:33:30.072627Z", + "shell.execute_reply": "2024-05-24T13:33:30.072179Z" } }, "outputs": [], @@ -671,17 +727,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.988717Z", - "iopub.status.busy": "2024-05-23T15:19:28.988399Z", - "iopub.status.idle": "2024-05-23T15:19:41.268144Z", - "shell.execute_reply": "2024-05-23T15:19:41.267376Z" + "iopub.execute_input": "2024-05-24T13:33:30.074767Z", + "iopub.status.busy": "2024-05-24T13:33:30.074423Z", + "iopub.status.idle": "2024-05-24T13:33:42.356714Z", + "shell.execute_reply": "2024-05-24T13:33:42.356070Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b8fb0a2765b451f98a1ac53ecb4e164", + "model_id": "0ff2fd33ab834c6aab79eab42b6573ca", "version_major": 2, "version_minor": 0 }, @@ -740,10 +796,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:41.270525Z", - "iopub.status.busy": "2024-05-23T15:19:41.270205Z", - "iopub.status.idle": "2024-05-23T15:19:42.992266Z", - "shell.execute_reply": "2024-05-23T15:19:42.991636Z" + "iopub.execute_input": "2024-05-24T13:33:42.359115Z", + "iopub.status.busy": "2024-05-24T13:33:42.358911Z", + "iopub.status.idle": "2024-05-24T13:33:44.102574Z", + "shell.execute_reply": "2024-05-24T13:33:44.101925Z" } }, "outputs": [ @@ -787,10 +843,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:42.994884Z", - "iopub.status.busy": "2024-05-23T15:19:42.994665Z", - "iopub.status.idle": "2024-05-23T15:19:43.223220Z", - "shell.execute_reply": "2024-05-23T15:19:43.222636Z" + "iopub.execute_input": "2024-05-24T13:33:44.105052Z", + "iopub.status.busy": "2024-05-24T13:33:44.104795Z", + "iopub.status.idle": "2024-05-24T13:33:44.331549Z", + "shell.execute_reply": "2024-05-24T13:33:44.330923Z" } }, "outputs": [ @@ -826,10 +882,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:43.225630Z", - "iopub.status.busy": "2024-05-23T15:19:43.225442Z", - "iopub.status.idle": "2024-05-23T15:19:43.863487Z", - "shell.execute_reply": "2024-05-23T15:19:43.863013Z" + "iopub.execute_input": "2024-05-24T13:33:44.334024Z", + "iopub.status.busy": "2024-05-24T13:33:44.333688Z", + "iopub.status.idle": "2024-05-24T13:33:45.001642Z", + "shell.execute_reply": "2024-05-24T13:33:45.000973Z" } }, "outputs": [ @@ -879,10 +935,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:43.866093Z", - "iopub.status.busy": "2024-05-23T15:19:43.865706Z", - "iopub.status.idle": "2024-05-23T15:19:44.203398Z", - "shell.execute_reply": "2024-05-23T15:19:44.202779Z" + "iopub.execute_input": "2024-05-24T13:33:45.004691Z", + "iopub.status.busy": "2024-05-24T13:33:45.004156Z", + "iopub.status.idle": "2024-05-24T13:33:45.343222Z", + "shell.execute_reply": "2024-05-24T13:33:45.342719Z" } }, "outputs": [ @@ -930,10 +986,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.205810Z", - "iopub.status.busy": "2024-05-23T15:19:44.205389Z", - "iopub.status.idle": "2024-05-23T15:19:44.439111Z", - "shell.execute_reply": "2024-05-23T15:19:44.438438Z" + "iopub.execute_input": "2024-05-24T13:33:45.345532Z", + "iopub.status.busy": "2024-05-24T13:33:45.345168Z", + "iopub.status.idle": "2024-05-24T13:33:45.587522Z", + "shell.execute_reply": "2024-05-24T13:33:45.586377Z" } }, "outputs": [ @@ -989,10 +1045,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.441833Z", - "iopub.status.busy": "2024-05-23T15:19:44.441368Z", - "iopub.status.idle": "2024-05-23T15:19:44.520211Z", - "shell.execute_reply": "2024-05-23T15:19:44.519728Z" + "iopub.execute_input": "2024-05-24T13:33:45.590777Z", + "iopub.status.busy": "2024-05-24T13:33:45.590338Z", + "iopub.status.idle": "2024-05-24T13:33:45.687618Z", + "shell.execute_reply": "2024-05-24T13:33:45.687004Z" } }, "outputs": [], @@ -1013,10 +1069,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.522662Z", - "iopub.status.busy": "2024-05-23T15:19:44.522298Z", - "iopub.status.idle": "2024-05-23T15:19:54.500962Z", - "shell.execute_reply": "2024-05-23T15:19:54.500349Z" + "iopub.execute_input": "2024-05-24T13:33:45.690233Z", + "iopub.status.busy": "2024-05-24T13:33:45.689769Z", + "iopub.status.idle": "2024-05-24T13:33:55.808319Z", + "shell.execute_reply": "2024-05-24T13:33:55.807714Z" } }, "outputs": [ @@ -1053,10 +1109,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:54.503513Z", - "iopub.status.busy": "2024-05-23T15:19:54.503062Z", - "iopub.status.idle": "2024-05-23T15:19:56.228078Z", - "shell.execute_reply": "2024-05-23T15:19:56.227474Z" + "iopub.execute_input": "2024-05-24T13:33:55.810788Z", + "iopub.status.busy": "2024-05-24T13:33:55.810406Z", + "iopub.status.idle": "2024-05-24T13:33:57.586605Z", + "shell.execute_reply": "2024-05-24T13:33:57.585917Z" } }, "outputs": [ @@ -1087,10 +1143,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.230773Z", - "iopub.status.busy": "2024-05-23T15:19:56.230243Z", - "iopub.status.idle": "2024-05-23T15:19:56.429163Z", - "shell.execute_reply": "2024-05-23T15:19:56.428662Z" + "iopub.execute_input": "2024-05-24T13:33:57.589829Z", + "iopub.status.busy": "2024-05-24T13:33:57.589164Z", + "iopub.status.idle": "2024-05-24T13:33:57.793303Z", + "shell.execute_reply": "2024-05-24T13:33:57.792691Z" } }, "outputs": [], @@ -1104,10 +1160,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.431632Z", - "iopub.status.busy": "2024-05-23T15:19:56.431214Z", - "iopub.status.idle": "2024-05-23T15:19:56.434445Z", - "shell.execute_reply": "2024-05-23T15:19:56.433868Z" + "iopub.execute_input": "2024-05-24T13:33:57.795779Z", + "iopub.status.busy": "2024-05-24T13:33:57.795599Z", + "iopub.status.idle": "2024-05-24T13:33:57.798815Z", + "shell.execute_reply": "2024-05-24T13:33:57.798359Z" } }, "outputs": [], @@ -1129,10 +1185,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.436613Z", - "iopub.status.busy": "2024-05-23T15:19:56.436227Z", - "iopub.status.idle": "2024-05-23T15:19:56.444314Z", - "shell.execute_reply": "2024-05-23T15:19:56.443752Z" + "iopub.execute_input": "2024-05-24T13:33:57.800956Z", + "iopub.status.busy": "2024-05-24T13:33:57.800647Z", + "iopub.status.idle": "2024-05-24T13:33:57.809008Z", + "shell.execute_reply": "2024-05-24T13:33:57.808408Z" }, "nbsphinx": "hidden" }, @@ -1177,49 +1233,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c081dc855c845ca806a2b2c12fb3457": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3b8fb0a2765b451f98a1ac53ecb4e164": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8ba87703fab416f9d70cbc709c4da3f", - "IPY_MODEL_9a7ed5c009c741478561e905be1672f7", - "IPY_MODEL_c1f97f79234649aabff0e34c04779f90" - ], - "layout": "IPY_MODEL_44294bba5289472bbfa0506434dfc622", - "tabbable": null, - "tooltip": null - } - }, - "44294bba5289472bbfa0506434dfc622": { + "0720336763d74d0a8a6a72f7cea9bc66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1272,67 +1286,7 @@ "width": null } }, - "4979f41862c14d879975f69b3a683d77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7bb947aefbf04918bd7f078ff36abde0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a7ed5c009c741478561e905be1672f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4a51d9305e142b69ea5800c787cf085", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7bb947aefbf04918bd7f078ff36abde0", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a4a51d9305e142b69ea5800c787cf085": { + "0d2862ca3dd5495ca968e715f711cc46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1385,7 +1339,31 @@ "width": null } }, - "b8ba87703fab416f9d70cbc709c4da3f": { + "0ff2fd33ab834c6aab79eab42b6573ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20daa135e186400d824d63d0df9022f2", + "IPY_MODEL_3f8c9c3534714a0e89eceff097855f8a", + "IPY_MODEL_9ad5db358f354fb5ae8a9691815eeed5" + ], + "layout": "IPY_MODEL_0720336763d74d0a8a6a72f7cea9bc66", + "tabbable": null, + "tooltip": null + } + }, + "20daa135e186400d824d63d0df9022f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,15 +1378,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4b8a16ee1de4b8d8f8c9618fd2fcb1d", + "layout": "IPY_MODEL_0d2862ca3dd5495ca968e715f711cc46", "placeholder": "​", - "style": "IPY_MODEL_4979f41862c14d879975f69b3a683d77", + "style": "IPY_MODEL_3cc55702b2da48a2a5eb73c11d363927", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c1f97f79234649aabff0e34c04779f90": { + "3cc55702b2da48a2a5eb73c11d363927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3f8c9c3534714a0e89eceff097855f8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b65561fb734445e18fd449d72865f477", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e1e87a8a048e47aeb0098093ff7c04df", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "84ab33210359463c8693e663e15a93b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ad5db358f354fb5ae8a9691815eeed5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1423,15 +1463,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c352ca37fa08488494329f472fcc29eb", + "layout": "IPY_MODEL_aa79e66d3c1d466ebb7311802e332825", "placeholder": "​", - "style": "IPY_MODEL_1c081dc855c845ca806a2b2c12fb3457", + "style": "IPY_MODEL_84ab33210359463c8693e663e15a93b5", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 319MB/s]" + "value": " 102M/102M [00:00<00:00, 352MB/s]" } }, - "c352ca37fa08488494329f472fcc29eb": { + "aa79e66d3c1d466ebb7311802e332825": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1524,7 @@ "width": null } }, - "f4b8a16ee1de4b8d8f8c9618fd2fcb1d": { + "b65561fb734445e18fd449d72865f477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1536,6 +1576,22 @@ "visibility": null, "width": null } + }, + "e1e87a8a048e47aeb0098093ff7c04df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 79ad29265..bec77574e 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:00.713888Z", - "iopub.status.busy": "2024-05-23T15:20:00.713712Z", - "iopub.status.idle": "2024-05-23T15:20:01.884137Z", - "shell.execute_reply": "2024-05-23T15:20:01.883522Z" + "iopub.execute_input": "2024-05-24T13:34:02.043960Z", + "iopub.status.busy": "2024-05-24T13:34:02.043782Z", + "iopub.status.idle": "2024-05-24T13:34:03.226380Z", + "shell.execute_reply": "2024-05-24T13:34:03.225811Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.886789Z", - "iopub.status.busy": "2024-05-23T15:20:01.886262Z", - "iopub.status.idle": "2024-05-23T15:20:01.903881Z", - "shell.execute_reply": "2024-05-23T15:20:01.903329Z" + "iopub.execute_input": "2024-05-24T13:34:03.228910Z", + "iopub.status.busy": "2024-05-24T13:34:03.228466Z", + "iopub.status.idle": "2024-05-24T13:34:03.246062Z", + "shell.execute_reply": "2024-05-24T13:34:03.245623Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.906014Z", - "iopub.status.busy": "2024-05-23T15:20:01.905623Z", - "iopub.status.idle": "2024-05-23T15:20:01.908690Z", - "shell.execute_reply": "2024-05-23T15:20:01.908171Z" + "iopub.execute_input": "2024-05-24T13:34:03.248226Z", + "iopub.status.busy": "2024-05-24T13:34:03.247951Z", + "iopub.status.idle": "2024-05-24T13:34:03.250873Z", + "shell.execute_reply": "2024-05-24T13:34:03.250439Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.910636Z", - "iopub.status.busy": "2024-05-23T15:20:01.910322Z", - "iopub.status.idle": "2024-05-23T15:20:01.976706Z", - "shell.execute_reply": "2024-05-23T15:20:01.976157Z" + "iopub.execute_input": "2024-05-24T13:34:03.252873Z", + "iopub.status.busy": "2024-05-24T13:34:03.252549Z", + "iopub.status.idle": "2024-05-24T13:34:03.314605Z", + "shell.execute_reply": "2024-05-24T13:34:03.314031Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.978980Z", - "iopub.status.busy": "2024-05-23T15:20:01.978658Z", - "iopub.status.idle": "2024-05-23T15:20:02.159140Z", - "shell.execute_reply": "2024-05-23T15:20:02.158508Z" + "iopub.execute_input": "2024-05-24T13:34:03.316854Z", + "iopub.status.busy": "2024-05-24T13:34:03.316656Z", + "iopub.status.idle": "2024-05-24T13:34:03.502752Z", + "shell.execute_reply": "2024-05-24T13:34:03.502194Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.161735Z", - "iopub.status.busy": "2024-05-23T15:20:02.161393Z", - "iopub.status.idle": "2024-05-23T15:20:02.408259Z", - "shell.execute_reply": "2024-05-23T15:20:02.407696Z" + "iopub.execute_input": "2024-05-24T13:34:03.505333Z", + "iopub.status.busy": "2024-05-24T13:34:03.504898Z", + "iopub.status.idle": "2024-05-24T13:34:03.750734Z", + "shell.execute_reply": "2024-05-24T13:34:03.750120Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.410508Z", - "iopub.status.busy": "2024-05-23T15:20:02.410129Z", - "iopub.status.idle": "2024-05-23T15:20:02.414877Z", - "shell.execute_reply": "2024-05-23T15:20:02.414404Z" + "iopub.execute_input": "2024-05-24T13:34:03.752894Z", + "iopub.status.busy": "2024-05-24T13:34:03.752692Z", + "iopub.status.idle": "2024-05-24T13:34:03.757482Z", + "shell.execute_reply": "2024-05-24T13:34:03.757022Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.416679Z", - "iopub.status.busy": "2024-05-23T15:20:02.416500Z", - "iopub.status.idle": "2024-05-23T15:20:02.422284Z", - "shell.execute_reply": "2024-05-23T15:20:02.421829Z" + "iopub.execute_input": "2024-05-24T13:34:03.759400Z", + "iopub.status.busy": "2024-05-24T13:34:03.759210Z", + "iopub.status.idle": "2024-05-24T13:34:03.765279Z", + "shell.execute_reply": "2024-05-24T13:34:03.764841Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.424407Z", - "iopub.status.busy": "2024-05-23T15:20:02.424109Z", - "iopub.status.idle": "2024-05-23T15:20:02.426792Z", - "shell.execute_reply": "2024-05-23T15:20:02.426231Z" + "iopub.execute_input": "2024-05-24T13:34:03.767382Z", + "iopub.status.busy": "2024-05-24T13:34:03.767200Z", + "iopub.status.idle": "2024-05-24T13:34:03.770348Z", + "shell.execute_reply": "2024-05-24T13:34:03.769886Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.428710Z", - "iopub.status.busy": "2024-05-23T15:20:02.428403Z", - "iopub.status.idle": "2024-05-23T15:20:10.585054Z", - "shell.execute_reply": "2024-05-23T15:20:10.584498Z" + "iopub.execute_input": "2024-05-24T13:34:03.772311Z", + "iopub.status.busy": "2024-05-24T13:34:03.771984Z", + "iopub.status.idle": "2024-05-24T13:34:12.153625Z", + "shell.execute_reply": "2024-05-24T13:34:12.152959Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.587881Z", - "iopub.status.busy": "2024-05-23T15:20:10.587316Z", - "iopub.status.idle": "2024-05-23T15:20:10.594690Z", - "shell.execute_reply": "2024-05-23T15:20:10.594103Z" + "iopub.execute_input": "2024-05-24T13:34:12.156634Z", + "iopub.status.busy": "2024-05-24T13:34:12.156006Z", + "iopub.status.idle": "2024-05-24T13:34:12.163657Z", + "shell.execute_reply": "2024-05-24T13:34:12.163174Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.596762Z", - "iopub.status.busy": "2024-05-23T15:20:10.596442Z", - "iopub.status.idle": "2024-05-23T15:20:10.600191Z", - "shell.execute_reply": "2024-05-23T15:20:10.599728Z" + "iopub.execute_input": "2024-05-24T13:34:12.165735Z", + "iopub.status.busy": "2024-05-24T13:34:12.165396Z", + "iopub.status.idle": "2024-05-24T13:34:12.169042Z", + "shell.execute_reply": "2024-05-24T13:34:12.168593Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.602274Z", - "iopub.status.busy": "2024-05-23T15:20:10.601848Z", - "iopub.status.idle": "2024-05-23T15:20:10.605475Z", - "shell.execute_reply": "2024-05-23T15:20:10.604912Z" + "iopub.execute_input": "2024-05-24T13:34:12.170970Z", + "iopub.status.busy": "2024-05-24T13:34:12.170645Z", + "iopub.status.idle": "2024-05-24T13:34:12.173994Z", + "shell.execute_reply": "2024-05-24T13:34:12.173541Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.607598Z", - "iopub.status.busy": "2024-05-23T15:20:10.607293Z", - "iopub.status.idle": "2024-05-23T15:20:10.610357Z", - "shell.execute_reply": "2024-05-23T15:20:10.609904Z" + "iopub.execute_input": "2024-05-24T13:34:12.176022Z", + "iopub.status.busy": "2024-05-24T13:34:12.175732Z", + "iopub.status.idle": "2024-05-24T13:34:12.178808Z", + "shell.execute_reply": "2024-05-24T13:34:12.178361Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.612134Z", - "iopub.status.busy": "2024-05-23T15:20:10.611960Z", - "iopub.status.idle": "2024-05-23T15:20:10.620107Z", - "shell.execute_reply": "2024-05-23T15:20:10.619583Z" + "iopub.execute_input": "2024-05-24T13:34:12.180704Z", + "iopub.status.busy": "2024-05-24T13:34:12.180383Z", + "iopub.status.idle": "2024-05-24T13:34:12.188415Z", + "shell.execute_reply": "2024-05-24T13:34:12.187942Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.622243Z", - "iopub.status.busy": "2024-05-23T15:20:10.621851Z", - "iopub.status.idle": "2024-05-23T15:20:10.624633Z", - "shell.execute_reply": "2024-05-23T15:20:10.624069Z" + "iopub.execute_input": "2024-05-24T13:34:12.190528Z", + "iopub.status.busy": "2024-05-24T13:34:12.190207Z", + "iopub.status.idle": "2024-05-24T13:34:12.193006Z", + "shell.execute_reply": "2024-05-24T13:34:12.192542Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.626725Z", - "iopub.status.busy": "2024-05-23T15:20:10.626413Z", - "iopub.status.idle": "2024-05-23T15:20:10.746726Z", - "shell.execute_reply": "2024-05-23T15:20:10.746183Z" + "iopub.execute_input": "2024-05-24T13:34:12.195060Z", + "iopub.status.busy": "2024-05-24T13:34:12.194729Z", + "iopub.status.idle": "2024-05-24T13:34:12.317926Z", + "shell.execute_reply": "2024-05-24T13:34:12.317311Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.748994Z", - "iopub.status.busy": "2024-05-23T15:20:10.748556Z", - "iopub.status.idle": "2024-05-23T15:20:10.851929Z", - "shell.execute_reply": "2024-05-23T15:20:10.851338Z" + "iopub.execute_input": "2024-05-24T13:34:12.320507Z", + "iopub.status.busy": "2024-05-24T13:34:12.320056Z", + "iopub.status.idle": "2024-05-24T13:34:12.426604Z", + "shell.execute_reply": "2024-05-24T13:34:12.425962Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.854241Z", - "iopub.status.busy": "2024-05-23T15:20:10.854025Z", - "iopub.status.idle": "2024-05-23T15:20:11.349402Z", - "shell.execute_reply": "2024-05-23T15:20:11.348855Z" + "iopub.execute_input": "2024-05-24T13:34:12.428907Z", + "iopub.status.busy": "2024-05-24T13:34:12.428713Z", + "iopub.status.idle": "2024-05-24T13:34:12.925080Z", + "shell.execute_reply": "2024-05-24T13:34:12.924541Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.352034Z", - "iopub.status.busy": "2024-05-23T15:20:11.351640Z", - "iopub.status.idle": "2024-05-23T15:20:11.429647Z", - "shell.execute_reply": "2024-05-23T15:20:11.429097Z" + "iopub.execute_input": "2024-05-24T13:34:12.927686Z", + "iopub.status.busy": "2024-05-24T13:34:12.927302Z", + "iopub.status.idle": "2024-05-24T13:34:13.006220Z", + "shell.execute_reply": "2024-05-24T13:34:13.005543Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.431986Z", - "iopub.status.busy": "2024-05-23T15:20:11.431616Z", - "iopub.status.idle": "2024-05-23T15:20:11.440050Z", - "shell.execute_reply": "2024-05-23T15:20:11.439597Z" + "iopub.execute_input": "2024-05-24T13:34:13.008649Z", + "iopub.status.busy": "2024-05-24T13:34:13.008211Z", + "iopub.status.idle": "2024-05-24T13:34:13.017161Z", + "shell.execute_reply": "2024-05-24T13:34:13.016590Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.441946Z", - "iopub.status.busy": "2024-05-23T15:20:11.441647Z", - "iopub.status.idle": "2024-05-23T15:20:11.444421Z", - "shell.execute_reply": "2024-05-23T15:20:11.443857Z" + "iopub.execute_input": "2024-05-24T13:34:13.019392Z", + "iopub.status.busy": "2024-05-24T13:34:13.019067Z", + "iopub.status.idle": "2024-05-24T13:34:13.021940Z", + "shell.execute_reply": "2024-05-24T13:34:13.021369Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.446342Z", - "iopub.status.busy": "2024-05-23T15:20:11.446041Z", - "iopub.status.idle": "2024-05-23T15:20:16.914965Z", - "shell.execute_reply": "2024-05-23T15:20:16.914270Z" + "iopub.execute_input": "2024-05-24T13:34:13.024205Z", + "iopub.status.busy": "2024-05-24T13:34:13.023873Z", + "iopub.status.idle": "2024-05-24T13:34:18.545242Z", + "shell.execute_reply": "2024-05-24T13:34:18.544592Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:16.917193Z", - "iopub.status.busy": "2024-05-23T15:20:16.917010Z", - "iopub.status.idle": "2024-05-23T15:20:16.925745Z", - "shell.execute_reply": "2024-05-23T15:20:16.925203Z" + "iopub.execute_input": "2024-05-24T13:34:18.547736Z", + "iopub.status.busy": "2024-05-24T13:34:18.547322Z", + "iopub.status.idle": "2024-05-24T13:34:18.556445Z", + "shell.execute_reply": "2024-05-24T13:34:18.555967Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:16.927764Z", - "iopub.status.busy": "2024-05-23T15:20:16.927451Z", - "iopub.status.idle": "2024-05-23T15:20:16.992676Z", - "shell.execute_reply": "2024-05-23T15:20:16.992057Z" + "iopub.execute_input": "2024-05-24T13:34:18.558799Z", + "iopub.status.busy": "2024-05-24T13:34:18.558415Z", + "iopub.status.idle": "2024-05-24T13:34:18.624616Z", + "shell.execute_reply": "2024-05-24T13:34:18.623965Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2b9c99bed..80b86ee13 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:20.082424Z", - "iopub.status.busy": "2024-05-23T15:20:20.082241Z", - "iopub.status.idle": "2024-05-23T15:20:21.026372Z", - "shell.execute_reply": "2024-05-23T15:20:21.025733Z" + "iopub.execute_input": "2024-05-24T13:34:21.727632Z", + "iopub.status.busy": "2024-05-24T13:34:21.727244Z", + "iopub.status.idle": "2024-05-24T13:34:23.047321Z", + "shell.execute_reply": "2024-05-24T13:34:23.046654Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:21.028777Z", - "iopub.status.busy": "2024-05-23T15:20:21.028598Z", - "iopub.status.idle": "2024-05-23T15:20:51.052547Z", - "shell.execute_reply": "2024-05-23T15:20:51.051972Z" + "iopub.execute_input": "2024-05-24T13:34:23.049983Z", + "iopub.status.busy": "2024-05-24T13:34:23.049590Z", + "iopub.status.idle": "2024-05-24T13:35:07.111047Z", + "shell.execute_reply": "2024-05-24T13:35:07.110387Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:51.055280Z", - "iopub.status.busy": "2024-05-23T15:20:51.054910Z", - "iopub.status.idle": "2024-05-23T15:20:52.162805Z", - "shell.execute_reply": "2024-05-23T15:20:52.162199Z" + "iopub.execute_input": "2024-05-24T13:35:07.113643Z", + "iopub.status.busy": "2024-05-24T13:35:07.113195Z", + "iopub.status.idle": "2024-05-24T13:35:08.248613Z", + "shell.execute_reply": "2024-05-24T13:35:08.248026Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.165202Z", - "iopub.status.busy": "2024-05-23T15:20:52.164895Z", - "iopub.status.idle": "2024-05-23T15:20:52.168235Z", - "shell.execute_reply": "2024-05-23T15:20:52.167701Z" + "iopub.execute_input": "2024-05-24T13:35:08.251164Z", + "iopub.status.busy": "2024-05-24T13:35:08.250703Z", + "iopub.status.idle": "2024-05-24T13:35:08.254105Z", + "shell.execute_reply": "2024-05-24T13:35:08.253616Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.170428Z", - "iopub.status.busy": "2024-05-23T15:20:52.170106Z", - "iopub.status.idle": "2024-05-23T15:20:52.174027Z", - "shell.execute_reply": "2024-05-23T15:20:52.173495Z" + "iopub.execute_input": "2024-05-24T13:35:08.256369Z", + "iopub.status.busy": "2024-05-24T13:35:08.256023Z", + "iopub.status.idle": "2024-05-24T13:35:08.260008Z", + "shell.execute_reply": "2024-05-24T13:35:08.259468Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.176309Z", - "iopub.status.busy": "2024-05-23T15:20:52.175863Z", - "iopub.status.idle": "2024-05-23T15:20:52.179639Z", - "shell.execute_reply": "2024-05-23T15:20:52.179192Z" + "iopub.execute_input": "2024-05-24T13:35:08.262032Z", + "iopub.status.busy": "2024-05-24T13:35:08.261730Z", + "iopub.status.idle": "2024-05-24T13:35:08.265505Z", + "shell.execute_reply": "2024-05-24T13:35:08.264973Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.181459Z", - "iopub.status.busy": "2024-05-23T15:20:52.181289Z", - "iopub.status.idle": "2024-05-23T15:20:52.184204Z", - "shell.execute_reply": "2024-05-23T15:20:52.183681Z" + "iopub.execute_input": "2024-05-24T13:35:08.267737Z", + "iopub.status.busy": "2024-05-24T13:35:08.267317Z", + "iopub.status.idle": "2024-05-24T13:35:08.270335Z", + "shell.execute_reply": "2024-05-24T13:35:08.269774Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.186170Z", - "iopub.status.busy": "2024-05-23T15:20:52.185853Z", - "iopub.status.idle": "2024-05-23T15:21:25.646178Z", - "shell.execute_reply": "2024-05-23T15:21:25.645603Z" + "iopub.execute_input": "2024-05-24T13:35:08.272448Z", + "iopub.status.busy": "2024-05-24T13:35:08.272051Z", + "iopub.status.idle": "2024-05-24T13:35:43.673550Z", + "shell.execute_reply": "2024-05-24T13:35:43.672919Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5ef5c47110ec4f59aeb856c6d3c341a6", + "model_id": "30aa668d13a141528737041a14596b18", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c79ebbfe831845c1a17b218fa7be7f95", + "model_id": "80809105a88e4ddfacefa46f1accc172", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:25.648967Z", - "iopub.status.busy": "2024-05-23T15:21:25.648546Z", - "iopub.status.idle": "2024-05-23T15:21:26.324304Z", - "shell.execute_reply": "2024-05-23T15:21:26.323688Z" + "iopub.execute_input": "2024-05-24T13:35:43.676230Z", + "iopub.status.busy": "2024-05-24T13:35:43.676014Z", + "iopub.status.idle": "2024-05-24T13:35:44.354221Z", + "shell.execute_reply": "2024-05-24T13:35:44.353651Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:26.326858Z", - "iopub.status.busy": "2024-05-23T15:21:26.326289Z", - "iopub.status.idle": "2024-05-23T15:21:28.965724Z", - "shell.execute_reply": "2024-05-23T15:21:28.965149Z" + "iopub.execute_input": "2024-05-24T13:35:44.356575Z", + "iopub.status.busy": "2024-05-24T13:35:44.356119Z", + "iopub.status.idle": "2024-05-24T13:35:47.036685Z", + "shell.execute_reply": "2024-05-24T13:35:47.036144Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:28.967904Z", - "iopub.status.busy": "2024-05-23T15:21:28.967720Z", - "iopub.status.idle": "2024-05-23T15:22:01.664155Z", - "shell.execute_reply": "2024-05-23T15:22:01.663577Z" + "iopub.execute_input": "2024-05-24T13:35:47.039064Z", + "iopub.status.busy": "2024-05-24T13:35:47.038727Z", + "iopub.status.idle": "2024-05-24T13:36:19.388283Z", + "shell.execute_reply": "2024-05-24T13:36:19.387772Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0411aabf4a7449b7b6097cf29c44f6be", + "model_id": "af00847acff049178ba763296b17adf6", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:01.666491Z", - "iopub.status.busy": "2024-05-23T15:22:01.666070Z", - "iopub.status.idle": "2024-05-23T15:22:16.254913Z", - "shell.execute_reply": "2024-05-23T15:22:16.254325Z" + "iopub.execute_input": "2024-05-24T13:36:19.390488Z", + "iopub.status.busy": "2024-05-24T13:36:19.390150Z", + "iopub.status.idle": "2024-05-24T13:36:34.201213Z", + "shell.execute_reply": "2024-05-24T13:36:34.200544Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:16.257597Z", - "iopub.status.busy": "2024-05-23T15:22:16.257232Z", - "iopub.status.idle": "2024-05-23T15:22:20.098267Z", - "shell.execute_reply": "2024-05-23T15:22:20.097650Z" + "iopub.execute_input": "2024-05-24T13:36:34.203768Z", + "iopub.status.busy": "2024-05-24T13:36:34.203566Z", + "iopub.status.idle": "2024-05-24T13:36:38.012210Z", + "shell.execute_reply": "2024-05-24T13:36:38.011589Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:20.101127Z", - "iopub.status.busy": "2024-05-23T15:22:20.100634Z", - "iopub.status.idle": "2024-05-23T15:22:21.546729Z", - "shell.execute_reply": "2024-05-23T15:22:21.546217Z" + "iopub.execute_input": "2024-05-24T13:36:38.014415Z", + "iopub.status.busy": "2024-05-24T13:36:38.014231Z", + "iopub.status.idle": "2024-05-24T13:36:39.484883Z", + "shell.execute_reply": "2024-05-24T13:36:39.484252Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d625e0de09de41e58013bd6ffd10ea65", + "model_id": "e7205e5270bc4f019d18e14dfafc43e7", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:21.549131Z", - "iopub.status.busy": "2024-05-23T15:22:21.548947Z", - "iopub.status.idle": "2024-05-23T15:22:21.579374Z", - "shell.execute_reply": "2024-05-23T15:22:21.578871Z" + "iopub.execute_input": "2024-05-24T13:36:39.487260Z", + "iopub.status.busy": "2024-05-24T13:36:39.486913Z", + "iopub.status.idle": "2024-05-24T13:36:39.516824Z", + "shell.execute_reply": "2024-05-24T13:36:39.516325Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:21.581712Z", - "iopub.status.busy": "2024-05-23T15:22:21.581514Z", - "iopub.status.idle": "2024-05-23T15:22:27.685973Z", - "shell.execute_reply": "2024-05-23T15:22:27.685386Z" + "iopub.execute_input": "2024-05-24T13:36:39.519308Z", + "iopub.status.busy": "2024-05-24T13:36:39.518942Z", + "iopub.status.idle": "2024-05-24T13:36:45.532135Z", + "shell.execute_reply": "2024-05-24T13:36:45.531521Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:27.688121Z", - "iopub.status.busy": "2024-05-23T15:22:27.687916Z", - "iopub.status.idle": "2024-05-23T15:22:27.744306Z", - "shell.execute_reply": "2024-05-23T15:22:27.743788Z" + "iopub.execute_input": "2024-05-24T13:36:45.534715Z", + "iopub.status.busy": "2024-05-24T13:36:45.534366Z", + "iopub.status.idle": "2024-05-24T13:36:45.592208Z", + "shell.execute_reply": "2024-05-24T13:36:45.591560Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0398887f1bfe40b0955c8abea4b49cd1": { + "0261d7a3bfcb40dfad7f6096092a7d7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,31 +1091,51 @@ "width": null } }, - "0411aabf4a7449b7b6097cf29c44f6be": { + "0864c08e4e2c4668940b89785d6762a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11f5f1fc98f445af8ce3fe8484951fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", - "IPY_MODEL_e8bac498633d4753ba3338a097659542", - "IPY_MODEL_63318ac9759641a697650e72ba3a1f71" - ], - "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e0fc634adce4af4b30285e176df8cf4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce3b2ffd12f1418bb324e2c9757367dc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "07ac41807a0b47a7b26d56207634fd82": { + "1b33db53bf4b4fd293810b608cf8fcfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1133,7 +1153,7 @@ "text_color": null } }, - "0b875393e6884f6da0d17965a84e7e3c": { + "1d0725c60b5848f79c36350f1f68cb91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1149,17 +1169,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", + "layout": "IPY_MODEL_ad82bfd5132d4ee7901222c284d7351e", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", + "style": "IPY_MODEL_fedbe6a4bc3b4b258a9a035f8c3c0309", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "0cb55221d04844998b3efd90659ba7d8": { + "2273d05fdb664e4e9a6110fea455398f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1174,41 +1194,108 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", + "layout": "IPY_MODEL_0261d7a3bfcb40dfad7f6096092a7d7f", "placeholder": "​", - "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", + "style": "IPY_MODEL_1b33db53bf4b4fd293810b608cf8fcfa", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 20.66it/s]" + } + }, + "29e18785bdad45fd9d7f1b5b792f5b83": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1564ff2b349245b98b6641d891bfd8b3": { + "2ad5effe04d04246b98241548e620b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30aa668d13a141528737041a14596b18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ea887082ac654040b2cba36a8a114a97", + "IPY_MODEL_1d0725c60b5848f79c36350f1f68cb91", + "IPY_MODEL_e83ffb1646c244ff81d4fa1531ca0ac4" + ], + "layout": "IPY_MODEL_ff536802d90f487eb14fc7b4bb83113c", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "1588d3dd602a4049b726fc99f066d0cc": { + "363aa5f9cdd8448fbe9ad206c8610053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1223,33 +1310,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", + "layout": "IPY_MODEL_4f0b25ae558b4b1cbee37f8629649bb3", "placeholder": "​", - "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", + "style": "IPY_MODEL_59ab83e8e35845afafce855aaa14687c", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:23<00:00,  1.33it/s]" } }, - "3cc4259329f74837bd19ac70f0bfd280": { + "3c863a46826d42f695ab3c0cb3320597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ca312b0a1414b0cbec6726b676b72c6", + "placeholder": "​", + "style": "IPY_MODEL_41a6aea0f918486a9ecd53b24d675390", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "3d8d61af332845c19a16f7f26036b979": { + "3ca312b0a1414b0cbec6726b676b72c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1394,66 @@ "width": null } }, - "3dad1b05b1624573b3133880eff2163f": { + "41a6aea0f918486a9ecd53b24d675390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41b0173f8922498a93731760f71f8b33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_594283c399474afab2a6480ac62188ce", + "placeholder": "​", + "style": "IPY_MODEL_47e4b23d1f0c4b7888407797ed64fad6", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "47e4b23d1f0c4b7888407797ed64fad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f0b25ae558b4b1cbee37f8629649bb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1355,7 +1506,25 @@ "width": null } }, - "41dc3879d71e491eb1cad2b61fd7f555": { + "5226c014cdfd4198aa5b46c053222386": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "594283c399474afab2a6480ac62188ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1408,7 +1577,25 @@ "width": null } }, - "556d7a96f68d404da1aceb865b5bcaa3": { + "59ab83e8e35845afafce855aaa14687c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5e0fc634adce4af4b30285e176df8cf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1648,7 @@ "width": null } }, - "5ccaa73ac723461c85d0fdfec6e4e9c9": { + "68d0d2fc836546ea83434678534cfd06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,15 +1663,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", + "layout": "IPY_MODEL_29e18785bdad45fd9d7f1b5b792f5b83", "placeholder": "​", - "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", + "style": "IPY_MODEL_ecbe88731b194de7a25a748f5f9bf2db", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": " 4997683/4997683 [00:32<00:00, 156719.44it/s]" + } + }, + "77696977004049a5ac5a76e3bfb07540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f54c7c836a064a6f92cfae9a3d578eb7", + "placeholder": "​", + "style": "IPY_MODEL_0864c08e4e2c4668940b89785d6762a3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "5ef5c47110ec4f59aeb856c6d3c341a6": { + "80809105a88e4ddfacefa46f1accc172": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1499,39 +1709,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", - "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", - "IPY_MODEL_7b39104787d44463885c0c905b63ba15" + "IPY_MODEL_3c863a46826d42f695ab3c0cb3320597", + "IPY_MODEL_902738c2bf2d489daf620e999663b6c7", + "IPY_MODEL_363aa5f9cdd8448fbe9ad206c8610053" ], - "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", + "layout": "IPY_MODEL_9c1991c189df41ccb515db38c1f3f079", "tabbable": null, "tooltip": null } }, - "63318ac9759641a697650e72ba3a1f71": { + "830c04b5583e41229e8389918ac4da0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", - "placeholder": "​", - "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154309.04it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68c50245c9504baf95dbb3963b43a8a0": { + "8f2733112de9425889e7994224ae2338": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1584,23 +1789,33 @@ "width": null } }, - "68c71bc1bad94d8d84e927f32499419b": { + "902738c2bf2d489daf620e999663b6c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_94231823fa724df7942ed338e2a645aa", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cb597553c7044b1996ef9e3d4d7ff9ef", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "6cbc832ae4344da0b4821023a5ef412e": { + "94231823fa724df7942ed338e2a645aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,7 +1868,7 @@ "width": null } }, - "7991601db8784f6c9e29101ffb67eadb": { + "9c1991c189df41ccb515db38c1f3f079": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1706,30 +1921,7 @@ "width": null } }, - "7b39104787d44463885c0c905b63ba15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", - "placeholder": "​", - "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.61it/s]" - } - }, - "7eb64e5ad90643f88016fb9ef67a93fc": { + "a4976dfc08b245fab02fa5f1f12c4a27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1782,7 +1974,7 @@ "width": null } }, - "910f5814751b4800aa309a91fcfb8c98": { + "ad82bfd5132d4ee7901222c284d7351e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1835,25 +2027,31 @@ "width": null } }, - "9b123db02fc04548acd586c0cf17798b": { + "af00847acff049178ba763296b17adf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77696977004049a5ac5a76e3bfb07540", + "IPY_MODEL_f6d7837d0966438dbb320a844ea4c121", + "IPY_MODEL_68d0d2fc836546ea83434678534cfd06" + ], + "layout": "IPY_MODEL_ef35f658cc9a4d79965ee0af9553b6d7", + "tabbable": null, + "tooltip": null } }, - "9f52119dcdce4e578fbef81f09977a4a": { + "bc0d50ae3b894c0082908c47c9092b1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1906,7 +2104,7 @@ "width": null } }, - "a45910e9f24846f4a8fd1dbae5f6f01e": { + "cb597553c7044b1996ef9e3d4d7ff9ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1922,79 +2120,23 @@ "description_width": "" } }, - "a570f95dbe384aaa96ee3013473e2ebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ace77f3dc6c149e1a69150e6d6932650": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", - "placeholder": "​", - "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.28it/s]" - } - }, - "adf75e7c04a8438588821d873887cc06": { + "ce3b2ffd12f1418bb324e2c9757367dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", - "placeholder": "​", - "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b1b566c302dd4797bc264e8362c45e1c": { + "d3509dc55c8e4dd6a38d89da06e88235": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2047,7 +2189,31 @@ "width": null } }, - "b2208a3f273849ab827fae9cd38132f3": { + "e7205e5270bc4f019d18e14dfafc43e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41b0173f8922498a93731760f71f8b33", + "IPY_MODEL_11f5f1fc98f445af8ce3fe8484951fd3", + "IPY_MODEL_2273d05fdb664e4e9a6110fea455398f" + ], + "layout": "IPY_MODEL_8f2733112de9425889e7994224ae2338", + "tabbable": null, + "tooltip": null + } + }, + "e83ffb1646c244ff81d4fa1531ca0ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2062,31 +2228,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", + "layout": "IPY_MODEL_a4976dfc08b245fab02fa5f1f12c4a27", "placeholder": "​", - "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", + "style": "IPY_MODEL_830c04b5583e41229e8389918ac4da0d", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 806.56it/s]" } }, - "b453cf1c85cc41e7a4698820cebb73cf": { + "ea887082ac654040b2cba36a8a114a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0d50ae3b894c0082908c47c9092b1f", + "placeholder": "​", + "style": "IPY_MODEL_5226c014cdfd4198aa5b46c053222386", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "b9943848dcb643c2a23f4e8cf52def5f": { + "ecbe88731b194de7a25a748f5f9bf2db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2104,23 +2277,7 @@ "text_color": null } }, - "b995012c5b064376b67bfc740cdab094": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ba13899638c54baebf4d5e9da65660b0": { + "ef35f658cc9a4d79965ee0af9553b6d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2173,43 +2330,7 @@ "width": null } }, - "bb51f26ffedf41cf941e7bf04717041c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bdd6e352fd8b4492b50d4a59e384a686": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfa54f2e76a94d408a32cd5e4451600f": { + "f54c7c836a064a6f92cfae9a3d578eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,126 +2383,49 @@ "width": null } }, - "c79ebbfe831845c1a17b218fa7be7f95": { + "f6d7837d0966438dbb320a844ea4c121": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", - "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", - "IPY_MODEL_adf75e7c04a8438588821d873887cc06" - ], - "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3509dc55c8e4dd6a38d89da06e88235", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2ad5effe04d04246b98241548e620b10", "tabbable": null, - "tooltip": null - } - }, - "ca3c6bba54884c01bd56c4cd91c8fd71": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": 4997683.0 } }, - "cbe48e3cba8a4185a380bca2613cfecb": { + "fedbe6a4bc3b4b258a9a035f8c3c0309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d625e0de09de41e58013bd6ffd10ea65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", - "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", - "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650" - ], - "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "d9bc553ff2a146208e83cfb4a65cd5aa": { + "ff536802d90f487eb14fc7b4bb83113c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2433,50 +2477,6 @@ "visibility": null, "width": null } - }, - "e2094383203b482c95ee7d5c103429ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e8bac498633d4753ba3338a097659542": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index ebb59b56a..efed37877 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:29.914518Z", - "iopub.status.busy": "2024-05-23T15:22:29.914322Z", - "iopub.status.idle": "2024-05-23T15:22:30.831231Z", - "shell.execute_reply": "2024-05-23T15:22:30.830644Z" + "iopub.execute_input": "2024-05-24T13:36:48.124643Z", + "iopub.status.busy": "2024-05-24T13:36:48.124472Z", + "iopub.status.idle": "2024-05-24T13:36:49.294229Z", + "shell.execute_reply": "2024-05-24T13:36:49.293601Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 15:22:29-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-24 13:36:48-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,14 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.100, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" + "185.93.1.247, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -124,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 15:22:30 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-24 13:36:48 (7.08 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 15:22:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.141, 52.216.32.209, 3.5.27.137, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.141|:443... connected.\r\n", + "--2024-05-24 13:36:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.233.73, 54.231.233.89, 3.5.29.119, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.233.73|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,9 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-05-23 15:22:30 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-24 13:36:49 (196 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:30.834158Z", - "iopub.status.busy": "2024-05-23T15:22:30.833771Z", - "iopub.status.idle": "2024-05-23T15:22:32.090862Z", - "shell.execute_reply": "2024-05-23T15:22:32.090338Z" + "iopub.execute_input": "2024-05-24T13:36:49.296919Z", + "iopub.status.busy": "2024-05-24T13:36:49.296552Z", + "iopub.status.idle": "2024-05-24T13:36:50.560173Z", + "shell.execute_reply": "2024-05-24T13:36:50.559602Z" }, "nbsphinx": "hidden" }, @@ -200,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.093433Z", - "iopub.status.busy": "2024-05-23T15:22:32.092981Z", - "iopub.status.idle": "2024-05-23T15:22:32.096296Z", - "shell.execute_reply": "2024-05-23T15:22:32.095875Z" + "iopub.execute_input": "2024-05-24T13:36:50.562877Z", + "iopub.status.busy": "2024-05-24T13:36:50.562407Z", + "iopub.status.idle": "2024-05-24T13:36:50.565963Z", + "shell.execute_reply": "2024-05-24T13:36:50.565421Z" } }, "outputs": [], @@ -279,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.098209Z", - "iopub.status.busy": "2024-05-23T15:22:32.098034Z", - "iopub.status.idle": "2024-05-23T15:22:32.100925Z", - "shell.execute_reply": "2024-05-23T15:22:32.100489Z" + "iopub.execute_input": "2024-05-24T13:36:50.568166Z", + "iopub.status.busy": "2024-05-24T13:36:50.567768Z", + "iopub.status.idle": "2024-05-24T13:36:50.570895Z", + "shell.execute_reply": "2024-05-24T13:36:50.570347Z" }, "nbsphinx": "hidden" }, @@ -300,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.102888Z", - "iopub.status.busy": "2024-05-23T15:22:32.102593Z", - "iopub.status.idle": "2024-05-23T15:22:41.080012Z", - "shell.execute_reply": "2024-05-23T15:22:41.079429Z" + "iopub.execute_input": "2024-05-24T13:36:50.573048Z", + "iopub.status.busy": "2024-05-24T13:36:50.572640Z", + "iopub.status.idle": "2024-05-24T13:36:59.672994Z", + "shell.execute_reply": "2024-05-24T13:36:59.672435Z" } }, "outputs": [], @@ -377,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.082669Z", - "iopub.status.busy": "2024-05-23T15:22:41.082424Z", - "iopub.status.idle": "2024-05-23T15:22:41.088197Z", - "shell.execute_reply": "2024-05-23T15:22:41.087741Z" + "iopub.execute_input": "2024-05-24T13:36:59.675558Z", + "iopub.status.busy": "2024-05-24T13:36:59.675168Z", + "iopub.status.idle": "2024-05-24T13:36:59.680821Z", + "shell.execute_reply": "2024-05-24T13:36:59.680370Z" }, "nbsphinx": "hidden" }, @@ -420,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.090445Z", - "iopub.status.busy": "2024-05-23T15:22:41.089999Z", - "iopub.status.idle": "2024-05-23T15:22:41.430405Z", - "shell.execute_reply": "2024-05-23T15:22:41.429873Z" + "iopub.execute_input": "2024-05-24T13:36:59.682980Z", + "iopub.status.busy": "2024-05-24T13:36:59.682647Z", + "iopub.status.idle": "2024-05-24T13:37:00.042497Z", + "shell.execute_reply": "2024-05-24T13:37:00.041914Z" } }, "outputs": [], @@ -460,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.432978Z", - "iopub.status.busy": "2024-05-23T15:22:41.432612Z", - "iopub.status.idle": "2024-05-23T15:22:41.437185Z", - "shell.execute_reply": "2024-05-23T15:22:41.436639Z" + "iopub.execute_input": "2024-05-24T13:37:00.044946Z", + "iopub.status.busy": "2024-05-24T13:37:00.044745Z", + "iopub.status.idle": "2024-05-24T13:37:00.049170Z", + "shell.execute_reply": "2024-05-24T13:37:00.048604Z" } }, "outputs": [ @@ -535,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.439393Z", - "iopub.status.busy": "2024-05-23T15:22:41.438929Z", - "iopub.status.idle": "2024-05-23T15:22:43.778516Z", - "shell.execute_reply": "2024-05-23T15:22:43.777714Z" + "iopub.execute_input": "2024-05-24T13:37:00.051189Z", + "iopub.status.busy": "2024-05-24T13:37:00.051012Z", + "iopub.status.idle": "2024-05-24T13:37:02.428971Z", + "shell.execute_reply": "2024-05-24T13:37:02.428329Z" } }, "outputs": [], @@ -560,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.781921Z", - "iopub.status.busy": "2024-05-23T15:22:43.781015Z", - "iopub.status.idle": "2024-05-23T15:22:43.785016Z", - "shell.execute_reply": "2024-05-23T15:22:43.784574Z" + "iopub.execute_input": "2024-05-24T13:37:02.431843Z", + "iopub.status.busy": "2024-05-24T13:37:02.431298Z", + "iopub.status.idle": "2024-05-24T13:37:02.435625Z", + "shell.execute_reply": "2024-05-24T13:37:02.435160Z" } }, "outputs": [ @@ -599,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.787064Z", - "iopub.status.busy": "2024-05-23T15:22:43.786747Z", - "iopub.status.idle": "2024-05-23T15:22:43.791712Z", - "shell.execute_reply": "2024-05-23T15:22:43.791166Z" + "iopub.execute_input": "2024-05-24T13:37:02.437468Z", + "iopub.status.busy": "2024-05-24T13:37:02.437295Z", + "iopub.status.idle": "2024-05-24T13:37:02.442698Z", + "shell.execute_reply": "2024-05-24T13:37:02.442165Z" } }, "outputs": [ @@ -780,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.793692Z", - "iopub.status.busy": "2024-05-23T15:22:43.793373Z", - "iopub.status.idle": "2024-05-23T15:22:43.819215Z", - "shell.execute_reply": "2024-05-23T15:22:43.818707Z" + "iopub.execute_input": "2024-05-24T13:37:02.444803Z", + "iopub.status.busy": "2024-05-24T13:37:02.444403Z", + "iopub.status.idle": "2024-05-24T13:37:02.470436Z", + "shell.execute_reply": "2024-05-24T13:37:02.469857Z" } }, "outputs": [ @@ -885,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.821421Z", - "iopub.status.busy": "2024-05-23T15:22:43.821097Z", - "iopub.status.idle": "2024-05-23T15:22:43.825769Z", - "shell.execute_reply": "2024-05-23T15:22:43.825258Z" + "iopub.execute_input": "2024-05-24T13:37:02.472943Z", + "iopub.status.busy": "2024-05-24T13:37:02.472480Z", + "iopub.status.idle": "2024-05-24T13:37:02.477962Z", + "shell.execute_reply": "2024-05-24T13:37:02.477506Z" } }, "outputs": [ @@ -962,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.827768Z", - "iopub.status.busy": "2024-05-23T15:22:43.827442Z", - "iopub.status.idle": "2024-05-23T15:22:45.254926Z", - "shell.execute_reply": "2024-05-23T15:22:45.254430Z" + "iopub.execute_input": "2024-05-24T13:37:02.480055Z", + "iopub.status.busy": "2024-05-24T13:37:02.479863Z", + "iopub.status.idle": "2024-05-24T13:37:03.890057Z", + "shell.execute_reply": "2024-05-24T13:37:03.889554Z" } }, "outputs": [ @@ -1137,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:45.257058Z", - "iopub.status.busy": "2024-05-23T15:22:45.256728Z", - "iopub.status.idle": "2024-05-23T15:22:45.260712Z", - "shell.execute_reply": "2024-05-23T15:22:45.260288Z" + "iopub.execute_input": "2024-05-24T13:37:03.892193Z", + "iopub.status.busy": "2024-05-24T13:37:03.892013Z", + "iopub.status.idle": "2024-05-24T13:37:03.895966Z", + "shell.execute_reply": "2024-05-24T13:37:03.895528Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 4c62f6dd5..75c12d5a0 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 068110e87..5d6052506 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index f41bd4939..ce106e07d 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 65164ee94..d78364e8e 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index 580ceb47b..3b3063418 100644 Binary files a/master/.doctrees/tutorials/datalab/data_monitor.doctree and b/master/.doctrees/tutorials/datalab/data_monitor.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 80ffa78cd..c4114617b 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index fba26c911..bcc0d057f 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 7bcce8172..2a4cc5312 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index c99984ef6..cf20dda72 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 91ce743aa..d1e3af920 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 064cf15c8..c0981b200 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 4b5d3687d..0f397b201 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index bd10042ee..e96f17020 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 5ee5e0e21..ee26de171 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index c59cd0881..b6075e1a3 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 3ac2c3997..8b9eb4681 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 6bf20e6d9..28ab32ea7 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index f53cd6d21..37134c6c0 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 6f4e5b287..0eddf5687 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 4d9994d17..665c3b9f8 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 2f706df6d..e3c40de1f 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 4f1ea4ea4..2033998d9 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index c79ae97f5..340ba90e0 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html index 6bb675dd5..73812f84d 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_finder.html +++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html @@ -636,15 +636,16 @@

Source code for cleanlab.datalab.internal.issue_finder

) from cleanlab.datalab.internal.model_outputs import ( MultiClassPredProbs, - RegressionPredictions, MultiLabelPredProbs, + RegressionPredictions, ) from cleanlab.datalab.internal.task import Task if TYPE_CHECKING: # pragma: no cover - import numpy.typing as npt from typing import Callable + import numpy.typing as npt + from cleanlab.datalab.datalab import Datalab @@ -653,6 +654,7 @@

Source code for cleanlab.datalab.internal.issue_finder

"outlier": ["pred_probs", "features", "knn_graph"], "near_duplicate": ["features", "knn_graph"], "non_iid": ["pred_probs", "features", "knn_graph"], + # The underperforming_group issue type requires a pair of inputs: (pred_probs, <any_of_the_other_three>) "underperforming_group": ["pred_probs", "features", "knn_graph", "cluster_ids"], "data_valuation": ["features", "knn_graph"], "class_imbalance": [], @@ -1077,6 +1079,18 @@

Source code for cleanlab.datalab.internal.issue_finder

if drop_class_imbalance_check: issue_types_copy.pop("class_imbalance") + required_pairs_for_underperforming_group = [ + ("pred_probs", "features"), + ("pred_probs", "knn_graph"), + ("pred_probs", "cluster_ids"), + ] + drop_underperforming_group_check = "underperforming_group" in issue_types_copy and not any( + all(key in kwargs and kwargs.get(key) is not None for key in pair) + for pair in required_pairs_for_underperforming_group + ) + if drop_underperforming_group_check: + issue_types_copy.pop("underperforming_group") + return issue_types_copy
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 047f4875f..52fba5c3d 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index bb6631ea1..ed7d1a41f 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 2a26c28cf..f7f933e90 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index dda017fc3..968446b85 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 6f17b8ec4..c7a64f2ec 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 6eab2afae..0aa48ea14 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 0d7c1baff..6a93bbe26 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 5a179d70d..f45665d0a 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 3069d919f..3d9c12b79 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index a4b5b0138..35da47b19 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 2a339e081..b7be17be3 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index da5110e6e..4ebb9664b 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index caabc561b..b4761672a 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 9fe0c2aa4..d6561733b 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index b83dc19a9..13b3781b7 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 18eee5e9c..3669c50cc 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index e6780d9a9..06a93fa43 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index 162ed3def..a1d7f2f63 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102, 107], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102, 103], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105, 107], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": 86, "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "lost_or_stolen_phon": [87, 95], "apple_pay_or_google_pai": [87, 95], "supported_cards_and_curr": [87, 95], "beneficiary_not_allow": [87, 95], "change_pin": [87, 95], "card_about_to_expir": [87, 95], "visa_or_mastercard": [87, 95], "card_payment_fee_charg": [87, 95], "getting_spare_card": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105, 107], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "4e2cafbc517f092cd088ca83bf49eef8767d363f": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": [89, 107], "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "787": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "446": 92, "493": 92, "060": 92, "667": 92, "330": [92, 102], "505": 92, "671": 92, "476": 92, "340": 92, "704": 92, "328": [92, 102], "310": 92, "377": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7745": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102, 107], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102, 107], "169": [98, 107], "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102, 107], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": 102, "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": 102, "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": [102, 107], "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": 102, "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "90289215": 103, "23it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": [105, 107], "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "1067": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "kb": 107, "mb": 107, "directori": 107, "inflat": 107, "137": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102, 103], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102, 107], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": [86, 107], "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "beneficiary_not_allow": [87, 95], "getting_spare_card": [87, 95], "visa_or_mastercard": [87, 95], "supported_cards_and_curr": [87, 95], "card_payment_fee_charg": [87, 95], "lost_or_stolen_phon": [87, 95], "card_about_to_expir": [87, 95], "change_pin": [87, 95], "apple_pay_or_google_pai": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105, 107], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105, 107], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "a043470e34dd8d14bd4e2b8cd3933e9bfc94010c": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102, 107], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102, 107], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "948": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "859": 92, "493": 92, "060": 92, "936": 92, "330": [92, 102], "505": 92, "657": [92, 105], "476": 92, "340": 92, "926": [92, 105], "328": [92, 102], "310": 92, "856": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105, 107], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7549": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102, 107], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102, 107], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": 98, "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": [102, 107], "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": [102, 107], "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": 102, "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "64418107": 103, "35it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "659": 105, "318": 105, "305": 105, "560": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "871": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "kb": 107, "mb": 107, "directori": 107, "inflat": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 3c767a52b..9203bd4c5 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:29.939561Z", - "iopub.status.busy": "2024-05-23T15:11:29.939078Z", - "iopub.status.idle": "2024-05-23T15:11:31.129872Z", - "shell.execute_reply": "2024-05-23T15:11:31.129360Z" + "iopub.execute_input": "2024-05-24T13:25:23.139397Z", + "iopub.status.busy": "2024-05-24T13:25:23.139224Z", + "iopub.status.idle": "2024-05-24T13:25:24.372742Z", + "shell.execute_reply": "2024-05-24T13:25:24.372183Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:31.132569Z", - "iopub.status.busy": "2024-05-23T15:11:31.132124Z", - "iopub.status.idle": "2024-05-23T15:11:31.150874Z", - "shell.execute_reply": "2024-05-23T15:11:31.150275Z" + "iopub.execute_input": "2024-05-24T13:25:24.375484Z", + "iopub.status.busy": "2024-05-24T13:25:24.375102Z", + "iopub.status.idle": "2024-05-24T13:25:24.393608Z", + "shell.execute_reply": "2024-05-24T13:25:24.393036Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:31.153402Z", - "iopub.status.busy": "2024-05-23T15:11:31.152891Z", - "iopub.status.idle": "2024-05-23T15:11:35.097490Z", - "shell.execute_reply": "2024-05-23T15:11:35.096917Z" + "iopub.execute_input": "2024-05-24T13:25:24.396129Z", + "iopub.status.busy": "2024-05-24T13:25:24.395647Z", + "iopub.status.idle": "2024-05-24T13:25:24.539897Z", + "shell.execute_reply": "2024-05-24T13:25:24.539294Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.127357Z", - "iopub.status.busy": "2024-05-23T15:11:35.126893Z", - "iopub.status.idle": "2024-05-23T15:11:35.130647Z", - "shell.execute_reply": "2024-05-23T15:11:35.130146Z" + "iopub.execute_input": "2024-05-24T13:25:24.571342Z", + "iopub.status.busy": "2024-05-24T13:25:24.570786Z", + "iopub.status.idle": "2024-05-24T13:25:24.574926Z", + "shell.execute_reply": "2024-05-24T13:25:24.574442Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.132706Z", - "iopub.status.busy": "2024-05-23T15:11:35.132528Z", - "iopub.status.idle": "2024-05-23T15:11:35.140756Z", - "shell.execute_reply": "2024-05-23T15:11:35.140328Z" + "iopub.execute_input": "2024-05-24T13:25:24.577093Z", + "iopub.status.busy": "2024-05-24T13:25:24.576766Z", + "iopub.status.idle": "2024-05-24T13:25:24.585651Z", + "shell.execute_reply": "2024-05-24T13:25:24.585142Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.142646Z", - "iopub.status.busy": "2024-05-23T15:11:35.142467Z", - "iopub.status.idle": "2024-05-23T15:11:35.145149Z", - "shell.execute_reply": "2024-05-23T15:11:35.144612Z" + "iopub.execute_input": "2024-05-24T13:25:24.587758Z", + "iopub.status.busy": "2024-05-24T13:25:24.587580Z", + "iopub.status.idle": "2024-05-24T13:25:24.590069Z", + "shell.execute_reply": "2024-05-24T13:25:24.589631Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.147384Z", - "iopub.status.busy": "2024-05-23T15:11:35.147087Z", - "iopub.status.idle": "2024-05-23T15:11:35.665353Z", - "shell.execute_reply": "2024-05-23T15:11:35.664730Z" + "iopub.execute_input": "2024-05-24T13:25:24.592021Z", + "iopub.status.busy": "2024-05-24T13:25:24.591723Z", + "iopub.status.idle": "2024-05-24T13:25:25.117485Z", + "shell.execute_reply": "2024-05-24T13:25:25.116865Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:35.667934Z", - "iopub.status.busy": "2024-05-23T15:11:35.667744Z", - "iopub.status.idle": "2024-05-23T15:11:37.304742Z", - "shell.execute_reply": "2024-05-23T15:11:37.304102Z" + "iopub.execute_input": "2024-05-24T13:25:25.119932Z", + "iopub.status.busy": "2024-05-24T13:25:25.119747Z", + "iopub.status.idle": "2024-05-24T13:25:26.819261Z", + "shell.execute_reply": "2024-05-24T13:25:26.818585Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.307449Z", - "iopub.status.busy": "2024-05-23T15:11:37.306895Z", - "iopub.status.idle": "2024-05-23T15:11:37.316988Z", - "shell.execute_reply": "2024-05-23T15:11:37.316560Z" + "iopub.execute_input": "2024-05-24T13:25:26.821849Z", + "iopub.status.busy": "2024-05-24T13:25:26.821280Z", + "iopub.status.idle": "2024-05-24T13:25:26.831564Z", + "shell.execute_reply": "2024-05-24T13:25:26.831082Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.319043Z", - "iopub.status.busy": "2024-05-23T15:11:37.318729Z", - "iopub.status.idle": "2024-05-23T15:11:37.322531Z", - "shell.execute_reply": "2024-05-23T15:11:37.322054Z" + "iopub.execute_input": "2024-05-24T13:25:26.833725Z", + "iopub.status.busy": "2024-05-24T13:25:26.833341Z", + "iopub.status.idle": "2024-05-24T13:25:26.837609Z", + "shell.execute_reply": "2024-05-24T13:25:26.837171Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.324416Z", - "iopub.status.busy": "2024-05-23T15:11:37.324160Z", - "iopub.status.idle": "2024-05-23T15:11:37.331172Z", - "shell.execute_reply": "2024-05-23T15:11:37.330632Z" + "iopub.execute_input": "2024-05-24T13:25:26.839785Z", + "iopub.status.busy": "2024-05-24T13:25:26.839346Z", + "iopub.status.idle": "2024-05-24T13:25:26.846776Z", + "shell.execute_reply": "2024-05-24T13:25:26.846151Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.333196Z", - "iopub.status.busy": "2024-05-23T15:11:37.332791Z", - "iopub.status.idle": "2024-05-23T15:11:37.444673Z", - "shell.execute_reply": "2024-05-23T15:11:37.444061Z" + "iopub.execute_input": "2024-05-24T13:25:26.848894Z", + "iopub.status.busy": "2024-05-24T13:25:26.848593Z", + "iopub.status.idle": "2024-05-24T13:25:26.963076Z", + "shell.execute_reply": "2024-05-24T13:25:26.962464Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.446962Z", - "iopub.status.busy": "2024-05-23T15:11:37.446654Z", - "iopub.status.idle": "2024-05-23T15:11:37.449408Z", - "shell.execute_reply": "2024-05-23T15:11:37.448965Z" + "iopub.execute_input": "2024-05-24T13:25:26.965477Z", + "iopub.status.busy": "2024-05-24T13:25:26.965008Z", + "iopub.status.idle": "2024-05-24T13:25:26.968092Z", + "shell.execute_reply": "2024-05-24T13:25:26.967527Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:37.451353Z", - "iopub.status.busy": "2024-05-23T15:11:37.451177Z", - "iopub.status.idle": "2024-05-23T15:11:39.353760Z", - "shell.execute_reply": "2024-05-23T15:11:39.353151Z" + "iopub.execute_input": "2024-05-24T13:25:26.970226Z", + "iopub.status.busy": "2024-05-24T13:25:26.969921Z", + "iopub.status.idle": "2024-05-24T13:25:28.942023Z", + "shell.execute_reply": "2024-05-24T13:25:28.941340Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:39.356604Z", - "iopub.status.busy": "2024-05-23T15:11:39.356057Z", - "iopub.status.idle": "2024-05-23T15:11:39.367226Z", - "shell.execute_reply": "2024-05-23T15:11:39.366744Z" + "iopub.execute_input": "2024-05-24T13:25:28.945042Z", + "iopub.status.busy": "2024-05-24T13:25:28.944331Z", + "iopub.status.idle": "2024-05-24T13:25:28.956087Z", + "shell.execute_reply": "2024-05-24T13:25:28.955507Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:39.369106Z", - "iopub.status.busy": "2024-05-23T15:11:39.368935Z", - "iopub.status.idle": "2024-05-23T15:11:39.401442Z", - "shell.execute_reply": "2024-05-23T15:11:39.400993Z" + "iopub.execute_input": "2024-05-24T13:25:28.958105Z", + "iopub.status.busy": "2024-05-24T13:25:28.957770Z", + "iopub.status.idle": "2024-05-24T13:25:29.003732Z", + "shell.execute_reply": "2024-05-24T13:25:29.003254Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 231062205..b713e0e7f 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -798,7 +798,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}
+Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

@@ -861,43 +861,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1196,7 +1196,7 @@

4. Train a more robust model from noisy labels -{"state": {"511cd8d51d574c77881256b004b9cdde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26b18199fe454bcfab7cbbd748debfbc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8614ab07e12c45f5a2696b92486eceda": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", "tabbable": null, "tooltip": null, "value": 391.0}}, "57554a7bd18846b1a3d2611e7fe0ac3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d73703dab8845c4bb83aa8f21fd2ac0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9306c6ebb1c4290a9bec26e8cb38294": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", "placeholder": "\u200b", "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f69151cbba4448eab02794703220c674": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94748dd75dfb42d3bb71113a0985ffa6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "89530782f36a4825b5ea5fd6995f180e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", "placeholder": "\u200b", "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200765.5kB/s]"}}, "cc88f3745d7b40f0be10b65f1a61c53b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88db1ed782f3468fa38bac950d3092b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e"], "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", "tabbable": null, "tooltip": null}}, "9a788fe502f5407ba8e155ea5e5c2137": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a83da02a88f44559a8d04bbb0765ca8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7bb11e481b73456c9d4486df66b66d08": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", "tabbable": null, "tooltip": null, "value": 2211.0}}, "550e485ddfb34ac48c7fa38fe4a55fdb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "657f32507c7b4163ba720b93d001fd5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "696e69955b874e9e98bc2febed0ff152": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", "placeholder": "\u200b", "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "fe605d7683594f159c812d6850fdeaf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58a72521dc064dc6b408d067598bf149": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "982ef9e8f8b54273a6d8360202593e4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", "placeholder": "\u200b", "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007423kB/s]"}}, "3c768fd273824ade906a50c7a96037a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b77e61e755d4f119937e03ca1485b9c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_696e69955b874e9e98bc2febed0ff152", "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e"], "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", "tabbable": null, "tooltip": null}}, "ab4f6f76d3414e73abf4d8ec03d3516c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2dffee1fe1774d419335ccdc19dc5d4a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aaabad1bacb84378bc109506930c4938": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", "tabbable": null, "tooltip": null, "value": 665.0}}, "1433c4cd47e04df98a78f5175ceed725": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21fceb25363d4a59a9cbd26b09f9c0f7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "335cdeff3368490c9dacf86a1640f430": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", "placeholder": "\u200b", "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "c97b51894b434f84aed8287f1282e791": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a682da03fb684688a086b672241e96f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2cc47c0ea394ec5b04de2429472de83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", "placeholder": "\u200b", "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007135kB/s]"}}, "972dbc96b65e45728767c91d7c18cb35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27ff10056afe437197e80dcaa26d37ee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_335cdeff3368490c9dacf86a1640f430", "IPY_MODEL_aaabad1bacb84378bc109506930c4938", "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83"], "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", "tabbable": null, "tooltip": null}}, "dccaa0d8cd394fd8afea397dc79e672c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e963d20d0d145efb61072037f1c0b5b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "55554045055240c583d2bc190faec835": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "5ed30cdd732748b89e88f596fe608d1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efc14db7cab848b8bc8de67706902202": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "837385c4dbaa4cd0a99ec70f0f7fc1f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", "placeholder": "\u200b", "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "13a4673a44e041a9be990dd279b14b81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "251a6e7067ca496195a9b73f6af43a11": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ac78e724f5a410091258100cbc42249": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", "placeholder": "\u200b", "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200731.3MB/s]"}}, "67c70103916041eabd95c923cd979753": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1c8778b071f488d9b67876bc5569568": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", "IPY_MODEL_55554045055240c583d2bc190faec835", "IPY_MODEL_0ac78e724f5a410091258100cbc42249"], "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", "tabbable": null, "tooltip": null}}, "5783608143bf4c09bf36a32ccd6dda30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84abfef1762a40e383897ea9056cfdfa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5879886cc62b4e94a1d1396dd1a96b4f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", "tabbable": null, "tooltip": null, "value": 466062.0}}, "63031382547c4484b9d9576e44ec985c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f1d3e434ea4aae85d4d61f41a070a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4902e2a667314840ad29c3989fbc3d71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", "placeholder": "\u200b", "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "eb88da38cb2a41768332b1e1818fbfd7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13bf594da49b4afba0315f15c19cb9b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f5cb20b54134883910f7866203179cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", "placeholder": "\u200b", "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200731.9MB/s]"}}, "07cffd6ee3cb4ee180c45f9e89a87081": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944db354360447dc908680f8480dcdc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", "IPY_MODEL_8f5cb20b54134883910f7866203179cc"], "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", "tabbable": null, "tooltip": null}}, "d11d777946f046dbb16da297cdd4ee7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b77b5193f60341b9b68a8057c0d957b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7091ee4e077b4c53b50d1acf076e85c4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", "tabbable": null, "tooltip": null, "value": 48.0}}, "7cd284403909488b9ca34ff7b8026738": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d03c3dd124ec48bdadbec94e624d97ec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5b00a2e85b84f9a95e07f055a14f61c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", "placeholder": "\u200b", "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "057aa8cb2fca4d0a965488bc4b12c120": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "314a2fc932ee4e25a10a88ca2e4bd00f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eadcdb3fd3b14c399ff30a279a5333f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", "placeholder": "\u200b", "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.97kB/s]"}}, "2d05eeda60f3453d8f85530225404b34": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d17fd6a19048484d9d197a89d97ba550": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4"], "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", "tabbable": null, "tooltip": null}}, "1c17efbeb5004a8da7fabc03d3d9585b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7c71d10032c4b87875d3ef528a77f2d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "853ceebd1a3c4b059848193e3dc49b97": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", "tabbable": null, "tooltip": null, "value": 231508.0}}, "f141d248724e4b85bb038a3d25f1dda4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8bea20f28ff40b38fdaa46b490e0c22": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "525dc09656fc4345922cbe2bab00c17f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", "placeholder": "\u200b", "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "15c367e37d544060a2483da64a2efc7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "108fa6774b4943129df006d3865c18a0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ab61373d70f4432bc84390e3e6dc3af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", "placeholder": "\u200b", "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.5MB/s]"}}, "a8269b5530b545c3851312f53bbb9eea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fc93fb206df4074a67da4377661b97d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af"], "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"70522f6fdc45419d99cb4d1c116761b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7796c1ff6760477db39f42b1113ac1e5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ca863a4788ac49d4b85c6e5692cd81e3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70522f6fdc45419d99cb4d1c116761b9", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7796c1ff6760477db39f42b1113ac1e5", "tabbable": null, "tooltip": null, "value": 391.0}}, "857184203e7b4e3b978a9344349e37cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8711d1c36353447e84a411ef4ff353ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "478330577d8a4e2d8fd40af62619e804": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_857184203e7b4e3b978a9344349e37cc", "placeholder": "\u200b", "style": "IPY_MODEL_8711d1c36353447e84a411ef4ff353ed", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "95070382706d43e69c6208df2ff9e118": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7255859017d943888557201188a67acb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d4186a7adc6847de9de2b7442468f39a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95070382706d43e69c6208df2ff9e118", "placeholder": "\u200b", "style": "IPY_MODEL_7255859017d943888557201188a67acb", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200759.8kB/s]"}}, "6034bb425b9b4835af168f6a91c638e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cb0e9f432274062aebafb20a36cbad1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_478330577d8a4e2d8fd40af62619e804", "IPY_MODEL_ca863a4788ac49d4b85c6e5692cd81e3", "IPY_MODEL_d4186a7adc6847de9de2b7442468f39a"], "layout": "IPY_MODEL_6034bb425b9b4835af168f6a91c638e3", "tabbable": null, "tooltip": null}}, "fea40d09c3c34b7c997753992dad3137": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc743ad3319b46968c2a6a60ae58790c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c0d87caf7123468eb9c3bb0c92e7e57d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fea40d09c3c34b7c997753992dad3137", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc743ad3319b46968c2a6a60ae58790c", "tabbable": null, "tooltip": null, "value": 2211.0}}, "9dd805d9fad64ee984cad1a23ed02252": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0a36ef0d0fe4f6aa7aedd9db2639ddb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a360c874a264a1cbb444659756c92b8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9dd805d9fad64ee984cad1a23ed02252", "placeholder": "\u200b", "style": "IPY_MODEL_e0a36ef0d0fe4f6aa7aedd9db2639ddb", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "e14ee5f6aec543709b7a691e5bbf971c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "380abffa48624dd3adf20cff64df9c75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "646d74a8a1704c50beaba20dee70980e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e14ee5f6aec543709b7a691e5bbf971c", "placeholder": "\u200b", "style": "IPY_MODEL_380abffa48624dd3adf20cff64df9c75", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007399kB/s]"}}, "8c7fc727d23d47d3b3c976fa38dab665": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78c431862e034985b20d87b523b649cb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4a360c874a264a1cbb444659756c92b8", "IPY_MODEL_c0d87caf7123468eb9c3bb0c92e7e57d", "IPY_MODEL_646d74a8a1704c50beaba20dee70980e"], "layout": "IPY_MODEL_8c7fc727d23d47d3b3c976fa38dab665", "tabbable": null, "tooltip": null}}, "34630896975543deba6ccf79cfb95016": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdc9e21717c8426494724e7f521850c4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bdd1cd63904a40f382478b0979cfcb6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34630896975543deba6ccf79cfb95016", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bdc9e21717c8426494724e7f521850c4", "tabbable": null, "tooltip": null, "value": 665.0}}, "168a9b4c464445f49b17a63a9da09d0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c8e44c6757e4a09a2cf9320c6b80c91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "32dacdb6859c4cd3bc2bd3987f24a59b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_168a9b4c464445f49b17a63a9da09d0d", "placeholder": "\u200b", "style": "IPY_MODEL_3c8e44c6757e4a09a2cf9320c6b80c91", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "2a686edb938f48858ecd2fea6a63c1cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "065ae855ee5e474f918436961e89e4f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "90026142736c44a4af52931df0a9eb81": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a686edb938f48858ecd2fea6a63c1cc", "placeholder": "\u200b", "style": "IPY_MODEL_065ae855ee5e474f918436961e89e4f0", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007114kB/s]"}}, "807d66bee3d449cfa7e69bc2fa31a471": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95ad1d4029f7400c8d447943f1a72e3f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_32dacdb6859c4cd3bc2bd3987f24a59b", "IPY_MODEL_bdd1cd63904a40f382478b0979cfcb6c", "IPY_MODEL_90026142736c44a4af52931df0a9eb81"], "layout": "IPY_MODEL_807d66bee3d449cfa7e69bc2fa31a471", "tabbable": null, "tooltip": null}}, "ebcf2076c43d487f9f6cbfc66abe952b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c792163e92454f188483a10c33bc976f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "413f59e9755340c69872445a262f92ae": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ebcf2076c43d487f9f6cbfc66abe952b", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c792163e92454f188483a10c33bc976f", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "12851408c60b4af5b239848b6137b435": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad06e1d660e647489bdb53d696b097c7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20951700f4b54e65b988a14e96cd458e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_12851408c60b4af5b239848b6137b435", "placeholder": "\u200b", "style": "IPY_MODEL_ad06e1d660e647489bdb53d696b097c7", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "f974da772d4346c1a8a56332722432b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4aa0fbec022a49e79acfcf5da15a2e02": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd92a01ea14b4bb380af7b6c04441547": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f974da772d4346c1a8a56332722432b8", "placeholder": "\u200b", "style": "IPY_MODEL_4aa0fbec022a49e79acfcf5da15a2e02", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007312MB/s]"}}, "3cc0fb5673684ccda341845d011c4024": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fa768a1593f4a8db667c924f9f15c65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20951700f4b54e65b988a14e96cd458e", "IPY_MODEL_413f59e9755340c69872445a262f92ae", "IPY_MODEL_bd92a01ea14b4bb380af7b6c04441547"], "layout": "IPY_MODEL_3cc0fb5673684ccda341845d011c4024", "tabbable": null, "tooltip": null}}, "a3ea534b59344263b4ed88dc906dc1ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e3d1cca0a7b408ebf10c9f52c267f53": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "80600481f6e842ef8ba7a170d79fef69": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3ea534b59344263b4ed88dc906dc1ca", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e3d1cca0a7b408ebf10c9f52c267f53", "tabbable": null, "tooltip": null, "value": 466062.0}}, "0fe16b12eafd40d2bc397a4964c3d6f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f082da0930a44f3941b06992f229fd8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "027ef188174643a28b9a0af069033625": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0fe16b12eafd40d2bc397a4964c3d6f3", "placeholder": "\u200b", "style": "IPY_MODEL_5f082da0930a44f3941b06992f229fd8", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "9eea6c4256364cc2ae0c53b440cb07c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "faafaa82bc2d45cbbe52651504361e5a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44b12be63bdb4cec91b5b3767ff58ab0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9eea6c4256364cc2ae0c53b440cb07c0", "placeholder": "\u200b", "style": "IPY_MODEL_faafaa82bc2d45cbbe52651504361e5a", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20079.47MB/s]"}}, "fd55c97d4fac4ba0b4f24c749f5e8ea6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64de1eed35fd4631922cf1eafa082f2f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_027ef188174643a28b9a0af069033625", "IPY_MODEL_80600481f6e842ef8ba7a170d79fef69", "IPY_MODEL_44b12be63bdb4cec91b5b3767ff58ab0"], "layout": "IPY_MODEL_fd55c97d4fac4ba0b4f24c749f5e8ea6", "tabbable": null, "tooltip": null}}, "d00a1510c14b4a3885c5463e560b1c76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bdfc64601ec49cd89cdfd3eccd32c96": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e025804a77f24078942a51cb0dde9351": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d00a1510c14b4a3885c5463e560b1c76", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6bdfc64601ec49cd89cdfd3eccd32c96", "tabbable": null, "tooltip": null, "value": 48.0}}, "8077c9de67304456aff945e66aeee214": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f22ffce686eb45c4b714814560ed38f9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "720256b69af74b3290fdfa3df131d214": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8077c9de67304456aff945e66aeee214", "placeholder": "\u200b", "style": "IPY_MODEL_f22ffce686eb45c4b714814560ed38f9", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "cb6145fe27784c278be23968571b4af1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e3dc4afc56744d99d1ab1f0c2a76d4d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31a079d1c6034eda8e81d9cd2ac11187": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb6145fe27784c278be23968571b4af1", "placeholder": "\u200b", "style": "IPY_MODEL_5e3dc4afc56744d99d1ab1f0c2a76d4d", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.29kB/s]"}}, "269ead8b597e4114b7b19debcaf48933": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e78dc7e5de8408a8b53fb5a666479c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_720256b69af74b3290fdfa3df131d214", "IPY_MODEL_e025804a77f24078942a51cb0dde9351", "IPY_MODEL_31a079d1c6034eda8e81d9cd2ac11187"], "layout": "IPY_MODEL_269ead8b597e4114b7b19debcaf48933", "tabbable": null, "tooltip": null}}, "365fd3942e7d409e8378f81fbf616131": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53497ca6db21429d9f2657103abf3e88": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "edb3404b66d243f0b025926216dd5bf6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_365fd3942e7d409e8378f81fbf616131", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_53497ca6db21429d9f2657103abf3e88", "tabbable": null, "tooltip": null, "value": 231508.0}}, "ddfe4e491b4e4b89a9af38cb16f8e207": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "538f654d53464eec97241d62b8e91641": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "569bfe499eac4b2b909cb4ec4b6e9cde": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ddfe4e491b4e4b89a9af38cb16f8e207", "placeholder": "\u200b", "style": "IPY_MODEL_538f654d53464eec97241d62b8e91641", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d97c8751e4e5438284d0051058676835": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3720f07155774146a89f6af3e5f0f2f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8a0d9021195b45d7bcfb7882352a9b06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d97c8751e4e5438284d0051058676835", "placeholder": "\u200b", "style": "IPY_MODEL_3720f07155774146a89f6af3e5f0f2f0", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200721.9MB/s]"}}, "6df67edeba6947a08ab241deddc39685": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5818044c7d3e495db1d4d3a4baa4d3a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_569bfe499eac4b2b909cb4ec4b6e9cde", "IPY_MODEL_edb3404b66d243f0b025926216dd5bf6", "IPY_MODEL_8a0d9021195b45d7bcfb7882352a9b06"], "layout": "IPY_MODEL_6df67edeba6947a08ab241deddc39685", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index bed7bd792..a8bee74f1 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:42.361209Z", - "iopub.status.busy": "2024-05-23T15:11:42.360877Z", - "iopub.status.idle": "2024-05-23T15:11:45.186640Z", - "shell.execute_reply": "2024-05-23T15:11:45.186062Z" + "iopub.execute_input": "2024-05-24T13:25:31.916711Z", + "iopub.status.busy": "2024-05-24T13:25:31.916225Z", + "iopub.status.idle": "2024-05-24T13:25:34.668288Z", + "shell.execute_reply": "2024-05-24T13:25:34.667627Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.189175Z", - "iopub.status.busy": "2024-05-23T15:11:45.188733Z", - "iopub.status.idle": "2024-05-23T15:11:45.192058Z", - "shell.execute_reply": "2024-05-23T15:11:45.191634Z" + "iopub.execute_input": "2024-05-24T13:25:34.670891Z", + "iopub.status.busy": "2024-05-24T13:25:34.670577Z", + "iopub.status.idle": "2024-05-24T13:25:34.673923Z", + "shell.execute_reply": "2024-05-24T13:25:34.673475Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.193987Z", - "iopub.status.busy": "2024-05-23T15:11:45.193657Z", - "iopub.status.idle": "2024-05-23T15:11:45.196835Z", - "shell.execute_reply": "2024-05-23T15:11:45.196384Z" + "iopub.execute_input": "2024-05-24T13:25:34.676025Z", + "iopub.status.busy": "2024-05-24T13:25:34.675608Z", + "iopub.status.idle": "2024-05-24T13:25:34.678639Z", + "shell.execute_reply": "2024-05-24T13:25:34.678197Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.198907Z", - "iopub.status.busy": "2024-05-23T15:11:45.198523Z", - "iopub.status.idle": "2024-05-23T15:11:45.233893Z", - "shell.execute_reply": "2024-05-23T15:11:45.233417Z" + "iopub.execute_input": "2024-05-24T13:25:34.680799Z", + "iopub.status.busy": "2024-05-24T13:25:34.680405Z", + "iopub.status.idle": "2024-05-24T13:25:34.723437Z", + "shell.execute_reply": "2024-05-24T13:25:34.722875Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.235873Z", - "iopub.status.busy": "2024-05-23T15:11:45.235696Z", - "iopub.status.idle": "2024-05-23T15:11:45.239078Z", - "shell.execute_reply": "2024-05-23T15:11:45.238632Z" + "iopub.execute_input": "2024-05-24T13:25:34.725612Z", + "iopub.status.busy": "2024-05-24T13:25:34.725208Z", + "iopub.status.idle": "2024-05-24T13:25:34.728904Z", + "shell.execute_reply": "2024-05-24T13:25:34.728360Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.240844Z", - "iopub.status.busy": "2024-05-23T15:11:45.240674Z", - "iopub.status.idle": "2024-05-23T15:11:45.243892Z", - "shell.execute_reply": "2024-05-23T15:11:45.243401Z" + "iopub.execute_input": "2024-05-24T13:25:34.730982Z", + "iopub.status.busy": "2024-05-24T13:25:34.730669Z", + "iopub.status.idle": "2024-05-24T13:25:34.734013Z", + "shell.execute_reply": "2024-05-24T13:25:34.733483Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}\n" + "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'change_pin', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.245830Z", - "iopub.status.busy": "2024-05-23T15:11:45.245507Z", - "iopub.status.idle": "2024-05-23T15:11:45.248696Z", - "shell.execute_reply": "2024-05-23T15:11:45.248239Z" + "iopub.execute_input": "2024-05-24T13:25:34.736065Z", + "iopub.status.busy": "2024-05-24T13:25:34.735756Z", + "iopub.status.idle": "2024-05-24T13:25:34.738889Z", + "shell.execute_reply": "2024-05-24T13:25:34.738371Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.250735Z", - "iopub.status.busy": "2024-05-23T15:11:45.250426Z", - "iopub.status.idle": "2024-05-23T15:11:45.253679Z", - "shell.execute_reply": "2024-05-23T15:11:45.253224Z" + "iopub.execute_input": "2024-05-24T13:25:34.741013Z", + "iopub.status.busy": "2024-05-24T13:25:34.740576Z", + "iopub.status.idle": "2024-05-24T13:25:34.744060Z", + "shell.execute_reply": "2024-05-24T13:25:34.743517Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:45.255640Z", - "iopub.status.busy": "2024-05-23T15:11:45.255321Z", - "iopub.status.idle": "2024-05-23T15:11:51.000423Z", - "shell.execute_reply": "2024-05-23T15:11:50.999865Z" + "iopub.execute_input": "2024-05-24T13:25:34.745994Z", + "iopub.status.busy": "2024-05-24T13:25:34.745815Z", + "iopub.status.idle": "2024-05-24T13:25:38.937684Z", + "shell.execute_reply": "2024-05-24T13:25:38.937077Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88db1ed782f3468fa38bac950d3092b7", + "model_id": "3cb0e9f432274062aebafb20a36cbad1", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b77e61e755d4f119937e03ca1485b9c", + "model_id": "78c431862e034985b20d87b523b649cb", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "27ff10056afe437197e80dcaa26d37ee", + "model_id": "95ad1d4029f7400c8d447943f1a72e3f", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1c8778b071f488d9b67876bc5569568", + "model_id": "3fa768a1593f4a8db667c924f9f15c65", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944db354360447dc908680f8480dcdc0", + "model_id": "64de1eed35fd4631922cf1eafa082f2f", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d17fd6a19048484d9d197a89d97ba550", + "model_id": "8e78dc7e5de8408a8b53fb5a666479c4", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fc93fb206df4074a67da4377661b97d", + "model_id": "5818044c7d3e495db1d4d3a4baa4d3a0", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.003086Z", - "iopub.status.busy": "2024-05-23T15:11:51.002708Z", - "iopub.status.idle": "2024-05-23T15:11:51.005623Z", - "shell.execute_reply": "2024-05-23T15:11:51.005128Z" + "iopub.execute_input": "2024-05-24T13:25:38.940466Z", + "iopub.status.busy": "2024-05-24T13:25:38.940076Z", + "iopub.status.idle": "2024-05-24T13:25:38.943052Z", + "shell.execute_reply": "2024-05-24T13:25:38.942547Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.007663Z", - "iopub.status.busy": "2024-05-23T15:11:51.007337Z", - "iopub.status.idle": "2024-05-23T15:11:51.009851Z", - "shell.execute_reply": "2024-05-23T15:11:51.009412Z" + "iopub.execute_input": "2024-05-24T13:25:38.945107Z", + "iopub.status.busy": "2024-05-24T13:25:38.944761Z", + "iopub.status.idle": "2024-05-24T13:25:38.947408Z", + "shell.execute_reply": "2024-05-24T13:25:38.946979Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:51.011732Z", - "iopub.status.busy": "2024-05-23T15:11:51.011553Z", - "iopub.status.idle": "2024-05-23T15:11:53.240372Z", - "shell.execute_reply": "2024-05-23T15:11:53.239743Z" + "iopub.execute_input": "2024-05-24T13:25:38.949449Z", + "iopub.status.busy": "2024-05-24T13:25:38.949126Z", + "iopub.status.idle": "2024-05-24T13:25:41.227887Z", + "shell.execute_reply": "2024-05-24T13:25:41.227258Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.243298Z", - "iopub.status.busy": "2024-05-23T15:11:53.242690Z", - "iopub.status.idle": "2024-05-23T15:11:53.251209Z", - "shell.execute_reply": "2024-05-23T15:11:53.250768Z" + "iopub.execute_input": "2024-05-24T13:25:41.230715Z", + "iopub.status.busy": "2024-05-24T13:25:41.230096Z", + "iopub.status.idle": "2024-05-24T13:25:41.237787Z", + "shell.execute_reply": "2024-05-24T13:25:41.237256Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.253349Z", - "iopub.status.busy": "2024-05-23T15:11:53.253040Z", - "iopub.status.idle": "2024-05-23T15:11:53.256877Z", - "shell.execute_reply": "2024-05-23T15:11:53.256443Z" + "iopub.execute_input": "2024-05-24T13:25:41.239878Z", + "iopub.status.busy": "2024-05-24T13:25:41.239563Z", + "iopub.status.idle": "2024-05-24T13:25:41.243552Z", + "shell.execute_reply": "2024-05-24T13:25:41.243009Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.258809Z", - "iopub.status.busy": "2024-05-23T15:11:53.258494Z", - "iopub.status.idle": "2024-05-23T15:11:53.261793Z", - "shell.execute_reply": "2024-05-23T15:11:53.261337Z" + "iopub.execute_input": "2024-05-24T13:25:41.245576Z", + "iopub.status.busy": "2024-05-24T13:25:41.245272Z", + "iopub.status.idle": "2024-05-24T13:25:41.248466Z", + "shell.execute_reply": "2024-05-24T13:25:41.247952Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.263814Z", - "iopub.status.busy": "2024-05-23T15:11:53.263498Z", - "iopub.status.idle": "2024-05-23T15:11:53.266484Z", - "shell.execute_reply": "2024-05-23T15:11:53.265996Z" + "iopub.execute_input": "2024-05-24T13:25:41.250604Z", + "iopub.status.busy": "2024-05-24T13:25:41.250284Z", + "iopub.status.idle": "2024-05-24T13:25:41.253133Z", + "shell.execute_reply": "2024-05-24T13:25:41.252701Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.268367Z", - "iopub.status.busy": "2024-05-23T15:11:53.268053Z", - "iopub.status.idle": "2024-05-23T15:11:53.276306Z", - "shell.execute_reply": "2024-05-23T15:11:53.275840Z" + "iopub.execute_input": "2024-05-24T13:25:41.255032Z", + "iopub.status.busy": "2024-05-24T13:25:41.254725Z", + "iopub.status.idle": "2024-05-24T13:25:41.262863Z", + "shell.execute_reply": "2024-05-24T13:25:41.262312Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.278297Z", - "iopub.status.busy": "2024-05-23T15:11:53.277985Z", - "iopub.status.idle": "2024-05-23T15:11:53.502080Z", - "shell.execute_reply": "2024-05-23T15:11:53.501482Z" + "iopub.execute_input": "2024-05-24T13:25:41.264879Z", + "iopub.status.busy": "2024-05-24T13:25:41.264578Z", + "iopub.status.idle": "2024-05-24T13:25:41.488553Z", + "shell.execute_reply": "2024-05-24T13:25:41.487980Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.505061Z", - "iopub.status.busy": "2024-05-23T15:11:53.504534Z", - "iopub.status.idle": "2024-05-23T15:11:53.679226Z", - "shell.execute_reply": "2024-05-23T15:11:53.678650Z" + "iopub.execute_input": "2024-05-24T13:25:41.491847Z", + "iopub.status.busy": "2024-05-24T13:25:41.490770Z", + "iopub.status.idle": "2024-05-24T13:25:41.666422Z", + "shell.execute_reply": "2024-05-24T13:25:41.665837Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:53.681807Z", - "iopub.status.busy": "2024-05-23T15:11:53.681402Z", - "iopub.status.idle": "2024-05-23T15:11:53.685379Z", - "shell.execute_reply": "2024-05-23T15:11:53.684896Z" + "iopub.execute_input": "2024-05-24T13:25:41.670374Z", + "iopub.status.busy": "2024-05-24T13:25:41.669354Z", + "iopub.status.idle": "2024-05-24T13:25:41.674497Z", + "shell.execute_reply": "2024-05-24T13:25:41.673952Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "057aa8cb2fca4d0a965488bc4b12c120": { + "027ef188174643a28b9a0af069033625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fe16b12eafd40d2bc397a4964c3d6f3", + "placeholder": "​", + "style": "IPY_MODEL_5f082da0930a44f3941b06992f229fd8", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "065ae855ee5e474f918436961e89e4f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0fe16b12eafd40d2bc397a4964c3d6f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "12851408c60b4af5b239848b6137b435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1166,7 +1260,7 @@ "width": null } }, - "07cffd6ee3cb4ee180c45f9e89a87081": { + "168a9b4c464445f49b17a63a9da09d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1219,7 +1313,7 @@ "width": null } }, - "0ac78e724f5a410091258100cbc42249": { + "20951700f4b54e65b988a14e96cd458e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1234,33 +1328,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", + "layout": "IPY_MODEL_12851408c60b4af5b239848b6137b435", "placeholder": "​", - "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", + "style": "IPY_MODEL_ad06e1d660e647489bdb53d696b097c7", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 31.3MB/s]" - } - }, - "108fa6774b4943129df006d3865c18a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "pytorch_model.bin: 100%" } }, - "13a4673a44e041a9be990dd279b14b81": { + "269ead8b597e4114b7b19debcaf48933": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,25 +1389,7 @@ "width": null } }, - "13bf594da49b4afba0315f15c19cb9b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1433c4cd47e04df98a78f5175ceed725": { + "2a686edb938f48858ecd2fea6a63c1cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1384,7 +1442,53 @@ "width": null } }, - "15c367e37d544060a2483da64a2efc7d": { + "31a079d1c6034eda8e81d9cd2ac11187": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb6145fe27784c278be23968571b4af1", + "placeholder": "​", + "style": "IPY_MODEL_5e3dc4afc56744d99d1ab1f0c2a76d4d", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 7.29kB/s]" + } + }, + "32dacdb6859c4cd3bc2bd3987f24a59b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_168a9b4c464445f49b17a63a9da09d0d", + "placeholder": "​", + "style": "IPY_MODEL_3c8e44c6757e4a09a2cf9320c6b80c91", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "34630896975543deba6ccf79cfb95016": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1437,7 +1541,7 @@ "width": null } }, - "1c17efbeb5004a8da7fabc03d3d9585b": { + "365fd3942e7d409e8378f81fbf616131": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1490,7 +1594,7 @@ "width": null } }, - "21fceb25363d4a59a9cbd26b09f9c0f7": { + "3720f07155774146a89f6af3e5f0f2f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1508,7 +1612,7 @@ "text_color": null } }, - "251a6e7067ca496195a9b73f6af43a11": { + "380abffa48624dd3adf20cff64df9c75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1526,70 +1630,25 @@ "text_color": null } }, - "26b18199fe454bcfab7cbbd748debfbc": { + "3c8e44c6757e4a09a2cf9320c6b80c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27ff10056afe437197e80dcaa26d37ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_335cdeff3368490c9dacf86a1640f430", - "IPY_MODEL_aaabad1bacb84378bc109506930c4938", - "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83" - ], - "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", - "tabbable": null, - "tooltip": null - } - }, - "2ab61373d70f4432bc84390e3e6dc3af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", - "placeholder": "​", - "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2b77e61e755d4f119937e03ca1485b9c": { + "3cb0e9f432274062aebafb20a36cbad1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1604,16 +1663,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_696e69955b874e9e98bc2febed0ff152", - "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", - "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e" + "IPY_MODEL_478330577d8a4e2d8fd40af62619e804", + "IPY_MODEL_ca863a4788ac49d4b85c6e5692cd81e3", + "IPY_MODEL_d4186a7adc6847de9de2b7442468f39a" ], - "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", + "layout": "IPY_MODEL_6034bb425b9b4835af168f6a91c638e3", "tabbable": null, "tooltip": null } }, - "2d05eeda60f3453d8f85530225404b34": { + "3cc0fb5673684ccda341845d011c4024": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1666,41 +1725,57 @@ "width": null } }, - "2dffee1fe1774d419335ccdc19dc5d4a": { + "3fa768a1593f4a8db667c924f9f15c65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20951700f4b54e65b988a14e96cd458e", + "IPY_MODEL_413f59e9755340c69872445a262f92ae", + "IPY_MODEL_bd92a01ea14b4bb380af7b6c04441547" + ], + "layout": "IPY_MODEL_3cc0fb5673684ccda341845d011c4024", + "tabbable": null, + "tooltip": null } }, - "314a2fc932ee4e25a10a88ca2e4bd00f": { + "413f59e9755340c69872445a262f92ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebcf2076c43d487f9f6cbfc66abe952b", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c792163e92454f188483a10c33bc976f", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "335cdeff3368490c9dacf86a1640f430": { + "44b12be63bdb4cec91b5b3767ff58ab0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1715,68 +1790,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", + "layout": "IPY_MODEL_9eea6c4256364cc2ae0c53b440cb07c0", "placeholder": "​", - "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", + "style": "IPY_MODEL_faafaa82bc2d45cbbe52651504361e5a", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 9.47MB/s]" } }, - "3c768fd273824ade906a50c7a96037a0": { - "model_module": "@jupyter-widgets/base", + "478330577d8a4e2d8fd40af62619e804": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_857184203e7b4e3b978a9344349e37cc", + "placeholder": "​", + "style": "IPY_MODEL_8711d1c36353447e84a411ef4ff353ed", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "4902e2a667314840ad29c3989fbc3d71": { + "4a360c874a264a1cbb444659756c92b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1791,15 +1836,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", + "layout": "IPY_MODEL_9dd805d9fad64ee984cad1a23ed02252", "placeholder": "​", - "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", + "style": "IPY_MODEL_e0a36ef0d0fe4f6aa7aedd9db2639ddb", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "README.md: 100%" + } + }, + "4aa0fbec022a49e79acfcf5da15a2e02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4e963d20d0d145efb61072037f1c0b5b": { + "4e3d1cca0a7b408ebf10c9f52c267f53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1815,60 +1878,41 @@ "description_width": "" } }, - "511cd8d51d574c77881256b004b9cdde": { - "model_module": "@jupyter-widgets/base", + "53497ca6db21429d9f2657103abf3e88": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "538f654d53464eec97241d62b8e91641": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "525dc09656fc4345922cbe2bab00c17f": { + "569bfe499eac4b2b909cb4ec4b6e9cde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1883,15 +1927,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", + "layout": "IPY_MODEL_ddfe4e491b4e4b89a9af38cb16f8e207", "placeholder": "​", - "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", + "style": "IPY_MODEL_538f654d53464eec97241d62b8e91641", "tabbable": null, "tooltip": null, "value": "vocab.txt: 100%" } }, - "550e485ddfb34ac48c7fa38fe4a55fdb": { + "5818044c7d3e495db1d4d3a4baa4d3a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_569bfe499eac4b2b909cb4ec4b6e9cde", + "IPY_MODEL_edb3404b66d243f0b025926216dd5bf6", + "IPY_MODEL_8a0d9021195b45d7bcfb7882352a9b06" + ], + "layout": "IPY_MODEL_6df67edeba6947a08ab241deddc39685", + "tabbable": null, + "tooltip": null + } + }, + "5e3dc4afc56744d99d1ab1f0c2a76d4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5f082da0930a44f3941b06992f229fd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6034bb425b9b4835af168f6a91c638e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1944,33 +2048,70 @@ "width": null } }, - "55554045055240c583d2bc190faec835": { + "646d74a8a1704c50beaba20dee70980e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", + "layout": "IPY_MODEL_e14ee5f6aec543709b7a691e5bbf971c", + "placeholder": "​", + "style": "IPY_MODEL_380abffa48624dd3adf20cff64df9c75", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 2.21k/2.21k [00:00<00:00, 399kB/s]" + } + }, + "64de1eed35fd4631922cf1eafa082f2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_027ef188174643a28b9a0af069033625", + "IPY_MODEL_80600481f6e842ef8ba7a170d79fef69", + "IPY_MODEL_44b12be63bdb4cec91b5b3767ff58ab0" + ], + "layout": "IPY_MODEL_fd55c97d4fac4ba0b4f24c749f5e8ea6", + "tabbable": null, + "tooltip": null + } + }, + "6bdfc64601ec49cd89cdfd3eccd32c96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "57554a7bd18846b1a3d2611e7fe0ac3c": { + "6df67edeba6947a08ab241deddc39685": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2023,7 +2164,7 @@ "width": null } }, - "5783608143bf4c09bf36a32ccd6dda30": { + "70522f6fdc45419d99cb4d1c116761b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,33 +2217,30 @@ "width": null } }, - "5879886cc62b4e94a1d1396dd1a96b4f": { + "720256b69af74b3290fdfa3df131d214": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", + "layout": "IPY_MODEL_8077c9de67304456aff945e66aeee214", + "placeholder": "​", + "style": "IPY_MODEL_f22ffce686eb45c4b714814560ed38f9", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": "tokenizer_config.json: 100%" } }, - "58a72521dc064dc6b408d067598bf149": { + "7255859017d943888557201188a67acb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2120,10 +2258,76 @@ "text_color": null } }, - "5ed30cdd732748b89e88f596fe608d1d": { - "model_module": "@jupyter-widgets/base", + "7796c1ff6760477db39f42b1113ac1e5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "78c431862e034985b20d87b523b649cb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a360c874a264a1cbb444659756c92b8", + "IPY_MODEL_c0d87caf7123468eb9c3bb0c92e7e57d", + "IPY_MODEL_646d74a8a1704c50beaba20dee70980e" + ], + "layout": "IPY_MODEL_8c7fc727d23d47d3b3c976fa38dab665", + "tabbable": null, + "tooltip": null + } + }, + "80600481f6e842ef8ba7a170d79fef69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3ea534b59344263b4ed88dc906dc1ca", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e3d1cca0a7b408ebf10c9f52c267f53", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "8077c9de67304456aff945e66aeee214": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2173,7 +2377,7 @@ "width": null } }, - "63031382547c4484b9d9576e44ec985c": { + "807d66bee3d449cfa7e69bc2fa31a471": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2226,25 +2430,7 @@ "width": null } }, - "657f32507c7b4163ba720b93d001fd5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67c70103916041eabd95c923cd979753": { + "857184203e7b4e3b978a9344349e37cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2297,30 +2483,7 @@ "width": null } }, - "696e69955b874e9e98bc2febed0ff152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", - "placeholder": "​", - "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "69f1d3e434ea4aae85d4d61f41a070a4": { + "8711d1c36353447e84a411ef4ff353ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2338,75 +2501,30 @@ "text_color": null } }, - "7091ee4e077b4c53b50d1acf076e85c4": { + "8a0d9021195b45d7bcfb7882352a9b06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "7a83da02a88f44559a8d04bbb0765ca8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7bb11e481b73456c9d4486df66b66d08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", + "layout": "IPY_MODEL_d97c8751e4e5438284d0051058676835", + "placeholder": "​", + "style": "IPY_MODEL_3720f07155774146a89f6af3e5f0f2f0", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": " 232k/232k [00:00<00:00, 21.9MB/s]" } }, - "7cd284403909488b9ca34ff7b8026738": { + "8c7fc727d23d47d3b3c976fa38dab665": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2459,122 +2577,7 @@ "width": null } }, - "7fc93fb206df4074a67da4377661b97d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", - "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", - "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af" - ], - "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", - "tabbable": null, - "tooltip": null - } - }, - "837385c4dbaa4cd0a99ec70f0f7fc1f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", - "placeholder": "​", - "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "84abfef1762a40e383897ea9056cfdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "853ceebd1a3c4b059848193e3dc49b97": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "8614ab07e12c45f5a2696b92486eceda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "88db1ed782f3468fa38bac950d3092b7": { + "8e78dc7e5de8408a8b53fb5a666479c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2589,16 +2592,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", - "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", - "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e" + "IPY_MODEL_720256b69af74b3290fdfa3df131d214", + "IPY_MODEL_e025804a77f24078942a51cb0dde9351", + "IPY_MODEL_31a079d1c6034eda8e81d9cd2ac11187" ], - "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", + "layout": "IPY_MODEL_269ead8b597e4114b7b19debcaf48933", "tabbable": null, "tooltip": null } }, - "89530782f36a4825b5ea5fd6995f180e": { + "90026142736c44a4af52931df0a9eb81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2613,56 +2616,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", + "layout": "IPY_MODEL_2a686edb938f48858ecd2fea6a63c1cc", "placeholder": "​", - "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", + "style": "IPY_MODEL_065ae855ee5e474f918436961e89e4f0", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.5kB/s]" + "value": " 665/665 [00:00<00:00, 114kB/s]" } }, - "8d73703dab8845c4bb83aa8f21fd2ac0": { - "model_module": "@jupyter-widgets/controls", + "95070382706d43e69c6208df2ff9e118": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f5cb20b54134883910f7866203179cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", - "placeholder": "​", - "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 31.9MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "944db354360447dc908680f8480dcdc0": { + "95ad1d4029f7400c8d447943f1a72e3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2677,34 +2692,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", - "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", - "IPY_MODEL_8f5cb20b54134883910f7866203179cc" + "IPY_MODEL_32dacdb6859c4cd3bc2bd3987f24a59b", + "IPY_MODEL_bdd1cd63904a40f382478b0979cfcb6c", + "IPY_MODEL_90026142736c44a4af52931df0a9eb81" ], - "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", + "layout": "IPY_MODEL_807d66bee3d449cfa7e69bc2fa31a471", "tabbable": null, "tooltip": null } }, - "94748dd75dfb42d3bb71113a0985ffa6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "972dbc96b65e45728767c91d7c18cb35": { + "9dd805d9fad64ee984cad1a23ed02252": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2757,30 +2754,7 @@ "width": null } }, - "982ef9e8f8b54273a6d8360202593e4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", - "placeholder": "​", - "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 423kB/s]" - } - }, - "9a788fe502f5407ba8e155ea5e5c2137": { + "9eea6c4256364cc2ae0c53b440cb07c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2833,25 +2807,7 @@ "width": null } }, - "a682da03fb684688a086b672241e96f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8269b5530b545c3851312f53bbb9eea": { + "a3ea534b59344263b4ed88dc906dc1ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2904,25 +2860,148 @@ "width": null } }, - "a8bea20f28ff40b38fdaa46b490e0c22": { + "ad06e1d660e647489bdb53d696b097c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bc743ad3319b46968c2a6a60ae58790c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd92a01ea14b4bb380af7b6c04441547": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f974da772d4346c1a8a56332722432b8", + "placeholder": "​", + "style": "IPY_MODEL_4aa0fbec022a49e79acfcf5da15a2e02", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 312MB/s]" + } + }, + "bdc9e21717c8426494724e7f521850c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bdd1cd63904a40f382478b0979cfcb6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_34630896975543deba6ccf79cfb95016", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdc9e21717c8426494724e7f521850c4", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "c0d87caf7123468eb9c3bb0c92e7e57d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fea40d09c3c34b7c997753992dad3137", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bc743ad3319b46968c2a6a60ae58790c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "c792163e92454f188483a10c33bc976f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "aaabad1bacb84378bc109506930c4938": { + "ca863a4788ac49d4b85c6e5692cd81e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2938,17 +3017,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", - "max": 665.0, + "layout": "IPY_MODEL_70522f6fdc45419d99cb4d1c116761b9", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", + "style": "IPY_MODEL_7796c1ff6760477db39f42b1113ac1e5", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 391.0 } }, - "ab4f6f76d3414e73abf4d8ec03d3516c": { + "cb6145fe27784c278be23968571b4af1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3001,23 +3080,7 @@ "width": null } }, - "b77b5193f60341b9b68a8057c0d957b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c97b51894b434f84aed8287f1282e791": { + "d00a1510c14b4a3885c5463e560b1c76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3070,7 +3133,30 @@ "width": null } }, - "cc88f3745d7b40f0be10b65f1a61c53b": { + "d4186a7adc6847de9de2b7442468f39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95070382706d43e69c6208df2ff9e118", + "placeholder": "​", + "style": "IPY_MODEL_7255859017d943888557201188a67acb", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 59.8kB/s]" + } + }, + "d97c8751e4e5438284d0051058676835": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,25 +3209,7 @@ "width": null } }, - "d03c3dd124ec48bdadbec94e624d97ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d11d777946f046dbb16da297cdd4ee7f": { + "ddfe4e491b4e4b89a9af38cb16f8e207": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3194,124 +3262,51 @@ "width": null } }, - "d17fd6a19048484d9d197a89d97ba550": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", - "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", - "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4" - ], - "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", - "tabbable": null, - "tooltip": null - } - }, - "d1c8778b071f488d9b67876bc5569568": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", - "IPY_MODEL_55554045055240c583d2bc190faec835", - "IPY_MODEL_0ac78e724f5a410091258100cbc42249" - ], - "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", - "tabbable": null, - "tooltip": null - } - }, - "d2cc47c0ea394ec5b04de2429472de83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", - "placeholder": "​", - "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 135kB/s]" - } - }, - "d5b00a2e85b84f9a95e07f055a14f61c": { + "e025804a77f24078942a51cb0dde9351": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", - "placeholder": "​", - "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", + "layout": "IPY_MODEL_d00a1510c14b4a3885c5463e560b1c76", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bdfc64601ec49cd89cdfd3eccd32c96", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": 48.0 } }, - "d9306c6ebb1c4290a9bec26e8cb38294": { + "e0a36ef0d0fe4f6aa7aedd9db2639ddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", - "placeholder": "​", - "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dccaa0d8cd394fd8afea397dc79e672c": { + "e14ee5f6aec543709b7a691e5bbf971c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3364,30 +3359,7 @@ "width": null } }, - "eadcdb3fd3b14c399ff30a279a5333f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", - "placeholder": "​", - "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.97kB/s]" - } - }, - "eb88da38cb2a41768332b1e1818fbfd7": { + "ebcf2076c43d487f9f6cbfc66abe952b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3440,7 +3412,33 @@ "width": null } }, - "efc14db7cab848b8bc8de67706902202": { + "edb3404b66d243f0b025926216dd5bf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_365fd3942e7d409e8378f81fbf616131", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53497ca6db21429d9f2657103abf3e88", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f22ffce686eb45c4b714814560ed38f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3458,7 +3456,7 @@ "text_color": null } }, - "f141d248724e4b85bb038a3d25f1dda4": { + "f974da772d4346c1a8a56332722432b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3511,7 +3509,25 @@ "width": null } }, - "f69151cbba4448eab02794703220c674": { + "faafaa82bc2d45cbbe52651504361e5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd55c97d4fac4ba0b4f24c749f5e8ea6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3564,23 +3580,7 @@ "width": null } }, - "f7c71d10032c4b87875d3ef528a77f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fe605d7683594f159c812d6850fdeaf3": { + "fea40d09c3c34b7c997753992dad3137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index c6e0c5aba..b2fd6e4bf 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1333,7 +1333,7 @@

5. Use cleanlab to find label issues -{"state": {"53ba703ebe3f488bafb36ef1b5e1e15c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d19d6b52b414436485e07ce221daa4dd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db96495857dd41dca4b5a125ac1bddf1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1d7ba7f518794212a4ad3851d4767fb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d42abd327047e58607747246792659": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f70dfa029cd4b0e9964d17d37bf54b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", "placeholder": "\u200b", "style": "IPY_MODEL_13d42abd327047e58607747246792659", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "e545e8fd06544a3fabc2df6ebd4c231e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6cb51a2809c464eb1c58ab8e31c96a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e6baef0f88d4ea5ae627f599696f217": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", "placeholder": "\u200b", "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007477kB/s]"}}, "85ba5c722da4401683083354487e0f3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e302a4ab69494dea93a7e2a5d582d2e2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217"], "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", "tabbable": null, "tooltip": null}}, "a3dafc711c4d41d2b4b3d300476cb52b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eae4c63447cd47b5ab13fc807579b9ba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6a60d2b426e420d8d25abbca9fdfdaf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "039e147e0ab94a44ab511f0d44c48272": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec08a02c4bd6416185871e93828421ab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf1afa91f1eb40b2aba4dcef746f1a69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", "placeholder": "\u200b", "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "c2c972c18e9c4a679bd660253ada535a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92f6ba2ae9f947a19198dcf64b912ae0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "17ab4bf2d800459b85facc79809c794c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", "placeholder": "\u200b", "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007257MB/s]"}}, "6692f3e1fecd4a5190e008265e83db9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32f578baf4f54c46b4525cb49a0111a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", "IPY_MODEL_17ab4bf2d800459b85facc79809c794c"], "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", "tabbable": null, "tooltip": null}}, "02d45ad38b8741448526432351d5eeec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99b76a939b6946918c69bdda4a084bb0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9122e918465a4b0d9f528507dbeecfe9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", "tabbable": null, "tooltip": null, "value": 3201.0}}, "5d1146ca200e41e0b87e8d02b7c0e568": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80e543f701e445f38d8d20e7547bce68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4e5840479864b31b4eca15395813b4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", "placeholder": "\u200b", "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "2a608f0281de446bb6b9d3e1f0fcc8ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a3aec95fbaca47888628b4cfc1607bd8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f115a412241d4444a70d4927ce8721e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", "placeholder": "\u200b", "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007853kB/s]"}}, "c05d6a595d7144ee94fa51f5f5133acc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "837d65d479144be3b4a954b3b3c7abf1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f4e5840479864b31b4eca15395813b4e", "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", "IPY_MODEL_f115a412241d4444a70d4927ce8721e1"], "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", "tabbable": null, "tooltip": null}}, "a0e190ac51e64c75896fe92a6ab8a413": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc570a3eada6400ebe54bbc6311f3fdd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d4730f8c409d4618a70b0cbe8dc1772b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "32b0b882c64f444ca6b10422ad5a4dd9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a569eb9a5d5b4715946173b57080716f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95ae6715ec3c4ef9b3fc7b20cc78386b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", "placeholder": "\u200b", "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "926dd9b5c8c941ecabc5447d7cb20c1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06d1c0dd633b4de893979238f4b41c33": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66e9a5e77f4547bb91e01a179df2918e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", "placeholder": "\u200b", "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007124MB/s]"}}, "62bfaf4591b648e09fdcaa3fedd50886": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4846b29fb444480c8d270546730853ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e"], "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", "tabbable": null, "tooltip": null}}, "53c425a26ebf4662857c4853c4b2cc66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7df1120d6e804074ac9fc4c19ab2fe15": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f1d5848284b945bd8362d354f0edb9a5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", "tabbable": null, "tooltip": null, "value": 128619.0}}, "4efbade6d6f449ac9b6167c892d8eaa9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b30ba8486c64a52a4712aeebe7baaaa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7624a5525cff4e6dbad04046d0d5ce3d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", "placeholder": "\u200b", "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "61ee678dfe4f46cf99358cbd8893e136": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6521ed9a1a34d1f8999049d2347b649": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f6932ad623843a29fdfe07056c8c4ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", "placeholder": "\u200b", "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200722.9MB/s]"}}, "685e89f25f5d454fbc172a4feb2bd274": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f84662a791cf48ff8f1369f016420dd5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed"], "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"59ed9f56b77c4bb3a72747164aee69fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8cea35b7cef4b0ab9b3da727557efd5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a673280a9dc54be7bfa6e5d4cb4859a2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59ed9f56b77c4bb3a72747164aee69fd", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c8cea35b7cef4b0ab9b3da727557efd5", "tabbable": null, "tooltip": null, "value": 2041.0}}, "196f9646c6a0480099ec80fde0f3ceae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33925f72e0614c2fa6257e4e96a64f69": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c09f9d8f8d0e425399f7b34772f3d268": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_196f9646c6a0480099ec80fde0f3ceae", "placeholder": "\u200b", "style": "IPY_MODEL_33925f72e0614c2fa6257e4e96a64f69", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "7b7a091dec134148a8e6eb01122cbdf1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db6e31cca7334c5997fcc027001ba5e6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4746161ed9d2410ab04888e311c199ae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b7a091dec134148a8e6eb01122cbdf1", "placeholder": "\u200b", "style": "IPY_MODEL_db6e31cca7334c5997fcc027001ba5e6", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007493kB/s]"}}, "53c06eca94fc448c951c5d1957f475b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1650e668e8ee41fea457a37281bee145": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c09f9d8f8d0e425399f7b34772f3d268", "IPY_MODEL_a673280a9dc54be7bfa6e5d4cb4859a2", "IPY_MODEL_4746161ed9d2410ab04888e311c199ae"], "layout": "IPY_MODEL_53c06eca94fc448c951c5d1957f475b3", "tabbable": null, "tooltip": null}}, "471d22d93f5f48a7a8ead8c6619a0747": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af75dced9e3349f9abd0df86d11d2fbc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "098594ab7b18438aa41a50ab301ec04d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_471d22d93f5f48a7a8ead8c6619a0747", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_af75dced9e3349f9abd0df86d11d2fbc", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bcbab4361c90484192216a9d152a984e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "726196b034e64997b37351e4538d717a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de64003ecbdc4bfea9ff52df34babd05": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcbab4361c90484192216a9d152a984e", "placeholder": "\u200b", "style": "IPY_MODEL_726196b034e64997b37351e4538d717a", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "c75e3616bdeb44578059f7cdc1600420": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b432d923a3f54fe287ea531fe9266118": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8896bf0ae52e4b8ba9e0d7bdec5f65f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c75e3616bdeb44578059f7cdc1600420", "placeholder": "\u200b", "style": "IPY_MODEL_b432d923a3f54fe287ea531fe9266118", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007147MB/s]"}}, "ae94f8338a7240ab935cc086942b5a20": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27252de5ebbd462db3142c23ddbb661f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_de64003ecbdc4bfea9ff52df34babd05", "IPY_MODEL_098594ab7b18438aa41a50ab301ec04d", "IPY_MODEL_8896bf0ae52e4b8ba9e0d7bdec5f65f1"], "layout": "IPY_MODEL_ae94f8338a7240ab935cc086942b5a20", "tabbable": null, "tooltip": null}}, "dd637e0e948c4c9182d38872c9695cee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f2aa15bfb034feca771cb71be185749": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "639ccf95b10e4dccb7c945f9384ae8a5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd637e0e948c4c9182d38872c9695cee", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3f2aa15bfb034feca771cb71be185749", "tabbable": null, "tooltip": null, "value": 3201.0}}, "0775e503d875483e82a23fcc2a6b8faf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0af8f3c56c94bb097090ffeeee6782f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "13d84cca83a94ddb90b97c7f2f2e6073": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0775e503d875483e82a23fcc2a6b8faf", "placeholder": "\u200b", "style": "IPY_MODEL_b0af8f3c56c94bb097090ffeeee6782f", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "aafcc8cf05854d5a88bfcf6614643604": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "952cd00dc3314bc7aba95d7d6c37054e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6139fa7a9c564ab1b8e0305679a32a84": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aafcc8cf05854d5a88bfcf6614643604", "placeholder": "\u200b", "style": "IPY_MODEL_952cd00dc3314bc7aba95d7d6c37054e", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007783kB/s]"}}, "8902bfb750204e5ca159d6e0e3ff1b2f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b87b9337b0d423a904d391d73e36b18": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_13d84cca83a94ddb90b97c7f2f2e6073", "IPY_MODEL_639ccf95b10e4dccb7c945f9384ae8a5", "IPY_MODEL_6139fa7a9c564ab1b8e0305679a32a84"], "layout": "IPY_MODEL_8902bfb750204e5ca159d6e0e3ff1b2f", "tabbable": null, "tooltip": null}}, "a522fe173cb34caaaa446d13a2fd504b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "baeeda9d5eb7488f9b01610d5a450253": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ab6d9d81b4f74d0a8dc9f38aa062e25f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a522fe173cb34caaaa446d13a2fd504b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_baeeda9d5eb7488f9b01610d5a450253", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d9248232a14d4bc3aa6f1dffa11fd3b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb6172cb249540c4a72e41717d7a8e2f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a7800ea4f00743b1b736fe6e3c6dcddd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9248232a14d4bc3aa6f1dffa11fd3b1", "placeholder": "\u200b", "style": "IPY_MODEL_bb6172cb249540c4a72e41717d7a8e2f", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "2d94e12a612044e68c18613419e044ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5011ed7959224ec7a771af1234101560": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7126c64780ee430eabe5876c79127ecb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d94e12a612044e68c18613419e044ec", "placeholder": "\u200b", "style": "IPY_MODEL_5011ed7959224ec7a771af1234101560", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007137MB/s]"}}, "acfb1f9cb3194cc8bcd424c8e097029b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b58a12c543394878950957e5d67c0845": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a7800ea4f00743b1b736fe6e3c6dcddd", "IPY_MODEL_ab6d9d81b4f74d0a8dc9f38aa062e25f", "IPY_MODEL_7126c64780ee430eabe5876c79127ecb"], "layout": "IPY_MODEL_acfb1f9cb3194cc8bcd424c8e097029b", "tabbable": null, "tooltip": null}}, "511b673caae640ceade4727133a5ba42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0941cd55cc3a45afa1dd2bde60479579": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4e06a9baa2d8459ba40bba97de9e5259": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_511b673caae640ceade4727133a5ba42", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0941cd55cc3a45afa1dd2bde60479579", "tabbable": null, "tooltip": null, "value": 128619.0}}, "53071b9bd2ed4691a956cb7eb2226356": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a93044806eed421f8456771ac7016a50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "742be4886f3a45c09196ac843f2e0a0a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53071b9bd2ed4691a956cb7eb2226356", "placeholder": "\u200b", "style": "IPY_MODEL_a93044806eed421f8456771ac7016a50", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "eb1988ce385f4de19a7dca2977f0c168": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b32be9b577c54595bf7ea4435c542989": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "78be5d29afb947bebb8ef1036c1d0f70": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb1988ce385f4de19a7dca2977f0c168", "placeholder": "\u200b", "style": "IPY_MODEL_b32be9b577c54595bf7ea4435c542989", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200719.1MB/s]"}}, "1df017d340c143eca8a77bf534dae30a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d99648098aa844e5a19a5fc67ab33ecf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_742be4886f3a45c09196ac843f2e0a0a", "IPY_MODEL_4e06a9baa2d8459ba40bba97de9e5259", "IPY_MODEL_78be5d29afb947bebb8ef1036c1d0f70"], "layout": "IPY_MODEL_1df017d340c143eca8a77bf534dae30a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 38316148d..f7e3b25ee 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:11:57.077586Z", - "iopub.status.busy": "2024-05-23T15:11:57.077376Z", - "iopub.status.idle": "2024-05-23T15:12:01.691041Z", - "shell.execute_reply": "2024-05-23T15:12:01.690485Z" + "iopub.execute_input": "2024-05-24T13:25:44.814354Z", + "iopub.status.busy": "2024-05-24T13:25:44.814143Z", + "iopub.status.idle": "2024-05-24T13:25:49.608547Z", + "shell.execute_reply": "2024-05-24T13:25:49.607981Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.693619Z", - "iopub.status.busy": "2024-05-23T15:12:01.693116Z", - "iopub.status.idle": "2024-05-23T15:12:01.696158Z", - "shell.execute_reply": "2024-05-23T15:12:01.695726Z" + "iopub.execute_input": "2024-05-24T13:25:49.611239Z", + "iopub.status.busy": "2024-05-24T13:25:49.610721Z", + "iopub.status.idle": "2024-05-24T13:25:49.614097Z", + "shell.execute_reply": "2024-05-24T13:25:49.613528Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.697971Z", - "iopub.status.busy": "2024-05-23T15:12:01.697795Z", - "iopub.status.idle": "2024-05-23T15:12:01.702135Z", - "shell.execute_reply": "2024-05-23T15:12:01.701698Z" + "iopub.execute_input": "2024-05-24T13:25:49.616091Z", + "iopub.status.busy": "2024-05-24T13:25:49.615818Z", + "iopub.status.idle": "2024-05-24T13:25:49.620646Z", + "shell.execute_reply": "2024-05-24T13:25:49.620095Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:01.704241Z", - "iopub.status.busy": "2024-05-23T15:12:01.703842Z", - "iopub.status.idle": "2024-05-23T15:12:03.459813Z", - "shell.execute_reply": "2024-05-23T15:12:03.459194Z" + "iopub.execute_input": "2024-05-24T13:25:49.622918Z", + "iopub.status.busy": "2024-05-24T13:25:49.622593Z", + "iopub.status.idle": "2024-05-24T13:25:51.148424Z", + "shell.execute_reply": "2024-05-24T13:25:51.147547Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.462186Z", - "iopub.status.busy": "2024-05-23T15:12:03.461990Z", - "iopub.status.idle": "2024-05-23T15:12:03.472497Z", - "shell.execute_reply": "2024-05-23T15:12:03.472070Z" + "iopub.execute_input": "2024-05-24T13:25:51.151792Z", + "iopub.status.busy": "2024-05-24T13:25:51.151396Z", + "iopub.status.idle": "2024-05-24T13:25:51.162960Z", + "shell.execute_reply": "2024-05-24T13:25:51.162371Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.474652Z", - "iopub.status.busy": "2024-05-23T15:12:03.474293Z", - "iopub.status.idle": "2024-05-23T15:12:03.479712Z", - "shell.execute_reply": "2024-05-23T15:12:03.479270Z" + "iopub.execute_input": "2024-05-24T13:25:51.165621Z", + "iopub.status.busy": "2024-05-24T13:25:51.165264Z", + "iopub.status.idle": "2024-05-24T13:25:51.171085Z", + "shell.execute_reply": "2024-05-24T13:25:51.170499Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.481710Z", - "iopub.status.busy": "2024-05-23T15:12:03.481395Z", - "iopub.status.idle": "2024-05-23T15:12:03.907353Z", - "shell.execute_reply": "2024-05-23T15:12:03.906794Z" + "iopub.execute_input": "2024-05-24T13:25:51.173744Z", + "iopub.status.busy": "2024-05-24T13:25:51.173314Z", + "iopub.status.idle": "2024-05-24T13:25:51.609181Z", + "shell.execute_reply": "2024-05-24T13:25:51.608610Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:03.909621Z", - "iopub.status.busy": "2024-05-23T15:12:03.909270Z", - "iopub.status.idle": "2024-05-23T15:12:04.477713Z", - "shell.execute_reply": "2024-05-23T15:12:04.477093Z" + "iopub.execute_input": "2024-05-24T13:25:51.611613Z", + "iopub.status.busy": "2024-05-24T13:25:51.611237Z", + "iopub.status.idle": "2024-05-24T13:25:52.736214Z", + "shell.execute_reply": "2024-05-24T13:25:52.735706Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.480200Z", - "iopub.status.busy": "2024-05-23T15:12:04.480017Z", - "iopub.status.idle": "2024-05-23T15:12:04.498410Z", - "shell.execute_reply": "2024-05-23T15:12:04.497909Z" + "iopub.execute_input": "2024-05-24T13:25:52.738649Z", + "iopub.status.busy": "2024-05-24T13:25:52.738419Z", + "iopub.status.idle": "2024-05-24T13:25:52.757009Z", + "shell.execute_reply": "2024-05-24T13:25:52.756536Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.500488Z", - "iopub.status.busy": "2024-05-23T15:12:04.500072Z", - "iopub.status.idle": "2024-05-23T15:12:04.503271Z", - "shell.execute_reply": "2024-05-23T15:12:04.502744Z" + "iopub.execute_input": "2024-05-24T13:25:52.759120Z", + "iopub.status.busy": "2024-05-24T13:25:52.758717Z", + "iopub.status.idle": "2024-05-24T13:25:52.761929Z", + "shell.execute_reply": "2024-05-24T13:25:52.761468Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:04.505105Z", - "iopub.status.busy": "2024-05-23T15:12:04.504929Z", - "iopub.status.idle": "2024-05-23T15:12:18.669352Z", - "shell.execute_reply": "2024-05-23T15:12:18.668813Z" + "iopub.execute_input": "2024-05-24T13:25:52.764136Z", + "iopub.status.busy": "2024-05-24T13:25:52.763732Z", + "iopub.status.idle": "2024-05-24T13:26:07.990549Z", + "shell.execute_reply": "2024-05-24T13:26:07.989962Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:18.672012Z", - "iopub.status.busy": "2024-05-23T15:12:18.671651Z", - "iopub.status.idle": "2024-05-23T15:12:18.675428Z", - "shell.execute_reply": "2024-05-23T15:12:18.674984Z" + "iopub.execute_input": "2024-05-24T13:26:07.993423Z", + "iopub.status.busy": "2024-05-24T13:26:07.993081Z", + "iopub.status.idle": "2024-05-24T13:26:07.997041Z", + "shell.execute_reply": "2024-05-24T13:26:07.996471Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:18.677479Z", - "iopub.status.busy": "2024-05-23T15:12:18.677175Z", - "iopub.status.idle": "2024-05-23T15:12:19.390682Z", - "shell.execute_reply": "2024-05-23T15:12:19.390085Z" + "iopub.execute_input": "2024-05-24T13:26:07.999166Z", + "iopub.status.busy": "2024-05-24T13:26:07.998856Z", + "iopub.status.idle": "2024-05-24T13:26:08.715055Z", + "shell.execute_reply": "2024-05-24T13:26:08.714463Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.393443Z", - "iopub.status.busy": "2024-05-23T15:12:19.392934Z", - "iopub.status.idle": "2024-05-23T15:12:19.398027Z", - "shell.execute_reply": "2024-05-23T15:12:19.397517Z" + "iopub.execute_input": "2024-05-24T13:26:08.717983Z", + "iopub.status.busy": "2024-05-24T13:26:08.717574Z", + "iopub.status.idle": "2024-05-24T13:26:08.722432Z", + "shell.execute_reply": "2024-05-24T13:26:08.721918Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.400288Z", - "iopub.status.busy": "2024-05-23T15:12:19.399949Z", - "iopub.status.idle": "2024-05-23T15:12:19.494951Z", - "shell.execute_reply": "2024-05-23T15:12:19.494354Z" + "iopub.execute_input": "2024-05-24T13:26:08.724901Z", + "iopub.status.busy": "2024-05-24T13:26:08.724532Z", + "iopub.status.idle": "2024-05-24T13:26:08.821917Z", + "shell.execute_reply": "2024-05-24T13:26:08.821273Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.497459Z", - "iopub.status.busy": "2024-05-23T15:12:19.496990Z", - "iopub.status.idle": "2024-05-23T15:12:19.508906Z", - "shell.execute_reply": "2024-05-23T15:12:19.508370Z" + "iopub.execute_input": "2024-05-24T13:26:08.824494Z", + "iopub.status.busy": "2024-05-24T13:26:08.824094Z", + "iopub.status.idle": "2024-05-24T13:26:08.836363Z", + "shell.execute_reply": "2024-05-24T13:26:08.835892Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.510977Z", - "iopub.status.busy": "2024-05-23T15:12:19.510641Z", - "iopub.status.idle": "2024-05-23T15:12:19.518476Z", - "shell.execute_reply": "2024-05-23T15:12:19.517926Z" + "iopub.execute_input": "2024-05-24T13:26:08.838537Z", + "iopub.status.busy": "2024-05-24T13:26:08.838118Z", + "iopub.status.idle": "2024-05-24T13:26:08.845901Z", + "shell.execute_reply": "2024-05-24T13:26:08.845377Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.520438Z", - "iopub.status.busy": "2024-05-23T15:12:19.520119Z", - "iopub.status.idle": "2024-05-23T15:12:19.524289Z", - "shell.execute_reply": "2024-05-23T15:12:19.523824Z" + "iopub.execute_input": "2024-05-24T13:26:08.847826Z", + "iopub.status.busy": "2024-05-24T13:26:08.847649Z", + "iopub.status.idle": "2024-05-24T13:26:08.852157Z", + "shell.execute_reply": "2024-05-24T13:26:08.851655Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.526072Z", - "iopub.status.busy": "2024-05-23T15:12:19.525895Z", - "iopub.status.idle": "2024-05-23T15:12:19.531559Z", - "shell.execute_reply": "2024-05-23T15:12:19.531118Z" + "iopub.execute_input": "2024-05-24T13:26:08.854126Z", + "iopub.status.busy": "2024-05-24T13:26:08.853795Z", + "iopub.status.idle": "2024-05-24T13:26:08.859364Z", + "shell.execute_reply": "2024-05-24T13:26:08.858882Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.533406Z", - "iopub.status.busy": "2024-05-23T15:12:19.533232Z", - "iopub.status.idle": "2024-05-23T15:12:19.643411Z", - "shell.execute_reply": "2024-05-23T15:12:19.642854Z" + "iopub.execute_input": "2024-05-24T13:26:08.861432Z", + "iopub.status.busy": "2024-05-24T13:26:08.861031Z", + "iopub.status.idle": "2024-05-24T13:26:08.972076Z", + "shell.execute_reply": "2024-05-24T13:26:08.971575Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.645602Z", - "iopub.status.busy": "2024-05-23T15:12:19.645255Z", - "iopub.status.idle": "2024-05-23T15:12:19.749188Z", - "shell.execute_reply": "2024-05-23T15:12:19.748636Z" + "iopub.execute_input": "2024-05-24T13:26:08.974171Z", + "iopub.status.busy": "2024-05-24T13:26:08.973900Z", + "iopub.status.idle": "2024-05-24T13:26:09.079509Z", + "shell.execute_reply": "2024-05-24T13:26:09.078913Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.751353Z", - "iopub.status.busy": "2024-05-23T15:12:19.751022Z", - "iopub.status.idle": "2024-05-23T15:12:19.854178Z", - "shell.execute_reply": "2024-05-23T15:12:19.853570Z" + "iopub.execute_input": "2024-05-24T13:26:09.081705Z", + "iopub.status.busy": "2024-05-24T13:26:09.081435Z", + "iopub.status.idle": "2024-05-24T13:26:09.185181Z", + "shell.execute_reply": "2024-05-24T13:26:09.184590Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:19.856439Z", - "iopub.status.busy": "2024-05-23T15:12:19.856101Z", - "iopub.status.idle": "2024-05-23T15:12:20.171155Z", - "shell.execute_reply": "2024-05-23T15:12:20.170593Z" + "iopub.execute_input": "2024-05-24T13:26:09.187519Z", + "iopub.status.busy": "2024-05-24T13:26:09.187101Z", + "iopub.status.idle": "2024-05-24T13:26:09.510380Z", + "shell.execute_reply": "2024-05-24T13:26:09.509791Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:20.173386Z", - "iopub.status.busy": "2024-05-23T15:12:20.173067Z", - "iopub.status.idle": "2024-05-23T15:12:20.176285Z", - "shell.execute_reply": "2024-05-23T15:12:20.175735Z" + "iopub.execute_input": "2024-05-24T13:26:09.512823Z", + "iopub.status.busy": "2024-05-24T13:26:09.512454Z", + "iopub.status.idle": "2024-05-24T13:26:09.516917Z", + "shell.execute_reply": "2024-05-24T13:26:09.516436Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02d45ad38b8741448526432351d5eeec": { + "0775e503d875483e82a23fcc2a6b8faf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,96 +1450,49 @@ "width": null } }, - "039e147e0ab94a44ab511f0d44c48272": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "06d1c0dd633b4de893979238f4b41c33": { + "0941cd55cc3a45afa1dd2bde60479579": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "13d42abd327047e58607747246792659": { + "098594ab7b18438aa41a50ab301ec04d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_471d22d93f5f48a7a8ead8c6619a0747", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_af75dced9e3349f9abd0df86d11d2fbc", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "17ab4bf2d800459b85facc79809c794c": { + "13d84cca83a94ddb90b97c7f2f2e6073": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1554,15 +1507,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", + "layout": "IPY_MODEL_0775e503d875483e82a23fcc2a6b8faf", "placeholder": "​", - "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", + "style": "IPY_MODEL_b0af8f3c56c94bb097090ffeeee6782f", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 257MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1650e668e8ee41fea457a37281bee145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c09f9d8f8d0e425399f7b34772f3d268", + "IPY_MODEL_a673280a9dc54be7bfa6e5d4cb4859a2", + "IPY_MODEL_4746161ed9d2410ab04888e311c199ae" + ], + "layout": "IPY_MODEL_53c06eca94fc448c951c5d1957f475b3", + "tabbable": null, + "tooltip": null } }, - "1d7ba7f518794212a4ad3851d4767fb0": { + "196f9646c6a0480099ec80fde0f3ceae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1615,30 +1592,7 @@ "width": null } }, - "1f70dfa029cd4b0e9964d17d37bf54b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", - "placeholder": "​", - "style": "IPY_MODEL_13d42abd327047e58607747246792659", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "2a608f0281de446bb6b9d3e1f0fcc8ef": { + "1df017d340c143eca8a77bf534dae30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,7 +1645,31 @@ "width": null } }, - "32b0b882c64f444ca6b10422ad5a4dd9": { + "27252de5ebbd462db3142c23ddbb661f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de64003ecbdc4bfea9ff52df34babd05", + "IPY_MODEL_098594ab7b18438aa41a50ab301ec04d", + "IPY_MODEL_8896bf0ae52e4b8ba9e0d7bdec5f65f1" + ], + "layout": "IPY_MODEL_ae94f8338a7240ab935cc086942b5a20", + "tabbable": null, + "tooltip": null + } + }, + "2d94e12a612044e68c18613419e044ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1744,55 +1722,41 @@ "width": null } }, - "32f578baf4f54c46b4525cb49a0111a0": { + "33925f72e0614c2fa6257e4e96a64f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", - "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", - "IPY_MODEL_17ab4bf2d800459b85facc79809c794c" - ], - "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4846b29fb444480c8d270546730853ad": { + "3f2aa15bfb034feca771cb71be185749": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", - "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", - "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e" - ], - "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4efbade6d6f449ac9b6167c892d8eaa9": { + "471d22d93f5f48a7a8ead8c6619a0747": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1845,7 +1809,7 @@ "width": null } }, - "4f6932ad623843a29fdfe07056c8c4ed": { + "4746161ed9d2410ab04888e311c199ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1860,68 +1824,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", + "layout": "IPY_MODEL_7b7a091dec134148a8e6eb01122cbdf1", "placeholder": "​", - "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", + "style": "IPY_MODEL_db6e31cca7334c5997fcc027001ba5e6", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 22.9MB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 493kB/s]" } }, - "53ba703ebe3f488bafb36ef1b5e1e15c": { - "model_module": "@jupyter-widgets/base", + "4e06a9baa2d8459ba40bba97de9e5259": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511b673caae640ceade4727133a5ba42", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0941cd55cc3a45afa1dd2bde60479579", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "5011ed7959224ec7a771af1234101560": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "53c425a26ebf4662857c4853c4b2cc66": { + "511b673caae640ceade4727133a5ba42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,7 +1929,7 @@ "width": null } }, - "5d1146ca200e41e0b87e8d02b7c0e568": { + "53071b9bd2ed4691a956cb7eb2226356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2027,7 +1982,7 @@ "width": null } }, - "61ee678dfe4f46cf99358cbd8893e136": { + "53c06eca94fc448c951c5d1957f475b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2080,7 +2035,7 @@ "width": null } }, - "62bfaf4591b648e09fdcaa3fedd50886": { + "59ed9f56b77c4bb3a72747164aee69fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2133,10 +2088,146 @@ "width": null } }, - "6692f3e1fecd4a5190e008265e83db9c": { - "model_module": "@jupyter-widgets/base", + "6139fa7a9c564ab1b8e0305679a32a84": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aafcc8cf05854d5a88bfcf6614643604", + "placeholder": "​", + "style": "IPY_MODEL_952cd00dc3314bc7aba95d7d6c37054e", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + } + }, + "639ccf95b10e4dccb7c945f9384ae8a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd637e0e948c4c9182d38872c9695cee", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f2aa15bfb034feca771cb71be185749", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "7126c64780ee430eabe5876c79127ecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d94e12a612044e68c18613419e044ec", + "placeholder": "​", + "style": "IPY_MODEL_5011ed7959224ec7a771af1234101560", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 137MB/s]" + } + }, + "726196b034e64997b37351e4538d717a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "742be4886f3a45c09196ac843f2e0a0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53071b9bd2ed4691a956cb7eb2226356", + "placeholder": "​", + "style": "IPY_MODEL_a93044806eed421f8456771ac7016a50", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "78be5d29afb947bebb8ef1036c1d0f70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eb1988ce385f4de19a7dca2977f0c168", + "placeholder": "​", + "style": "IPY_MODEL_b32be9b577c54595bf7ea4435c542989", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 19.1MB/s]" + } + }, + "7b7a091dec134148a8e6eb01122cbdf1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2186,7 +2277,7 @@ "width": null } }, - "66e9a5e77f4547bb91e01a179df2918e": { + "8896bf0ae52e4b8ba9e0d7bdec5f65f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2201,15 +2292,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", + "layout": "IPY_MODEL_c75e3616bdeb44578059f7cdc1600420", "placeholder": "​", - "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", + "style": "IPY_MODEL_b432d923a3f54fe287ea531fe9266118", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 124MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 147MB/s]" } }, - "685e89f25f5d454fbc172a4feb2bd274": { + "8902bfb750204e5ca159d6e0e3ff1b2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,7 +2353,31 @@ "width": null } }, - "6b30ba8486c64a52a4712aeebe7baaaa": { + "8b87b9337b0d423a904d391d73e36b18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13d84cca83a94ddb90b97c7f2f2e6073", + "IPY_MODEL_639ccf95b10e4dccb7c945f9384ae8a5", + "IPY_MODEL_6139fa7a9c564ab1b8e0305679a32a84" + ], + "layout": "IPY_MODEL_8902bfb750204e5ca159d6e0e3ff1b2f", + "tabbable": null, + "tooltip": null + } + }, + "952cd00dc3314bc7aba95d7d6c37054e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2280,30 +2395,86 @@ "text_color": null } }, - "6e6baef0f88d4ea5ae627f599696f217": { + "a522fe173cb34caaaa446d13a2fd504b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a673280a9dc54be7bfa6e5d4cb4859a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", - "placeholder": "​", - "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", + "layout": "IPY_MODEL_59ed9f56b77c4bb3a72747164aee69fd", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8cea35b7cef4b0ab9b3da727557efd5", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 477kB/s]" + "value": 2041.0 } }, - "7624a5525cff4e6dbad04046d0d5ce3d": { + "a7800ea4f00743b1b736fe6e3c6dcddd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2318,31 +2489,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", + "layout": "IPY_MODEL_d9248232a14d4bc3aa6f1dffa11fd3b1", "placeholder": "​", - "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", + "style": "IPY_MODEL_bb6172cb249540c4a72e41717d7a8e2f", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "7df1120d6e804074ac9fc4c19ab2fe15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "classifier.ckpt: 100%" } }, - "80e543f701e445f38d8d20e7547bce68": { + "a93044806eed421f8456771ac7016a50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2360,31 +2515,7 @@ "text_color": null } }, - "837d65d479144be3b4a954b3b3c7abf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4e5840479864b31b4eca15395813b4e", - "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", - "IPY_MODEL_f115a412241d4444a70d4927ce8721e1" - ], - "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", - "tabbable": null, - "tooltip": null - } - }, - "85ba5c722da4401683083354487e0f3c": { + "aafcc8cf05854d5a88bfcf6614643604": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2437,7 +2568,7 @@ "width": null } }, - "9122e918465a4b0d9f528507dbeecfe9": { + "ab6d9d81b4f74d0a8dc9f38aa062e25f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2453,17 +2584,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", - "max": 3201.0, + "layout": "IPY_MODEL_a522fe173cb34caaaa446d13a2fd504b", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", + "style": "IPY_MODEL_baeeda9d5eb7488f9b01610d5a450253", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": 15856877.0 } }, - "926dd9b5c8c941ecabc5447d7cb20c1e": { + "acfb1f9cb3194cc8bcd424c8e097029b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2516,71 +2647,14 @@ "width": null } }, - "92f6ba2ae9f947a19198dcf64b912ae0": { - "model_module": "@jupyter-widgets/controls", + "ae94f8338a7240ab935cc086942b5a20": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95ae6715ec3c4ef9b3fc7b20cc78386b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", - "placeholder": "​", - "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "99b76a939b6946918c69bdda4a084bb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a0e190ac51e64c75896fe92a6ab8a413": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2626,7 +2700,23 @@ "width": null } }, - "a3aec95fbaca47888628b4cfc1607bd8": { + "af75dced9e3349f9abd0df86d11d2fbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b0af8f3c56c94bb097090ffeeee6782f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2644,60 +2734,25 @@ "text_color": null } }, - "a3dafc711c4d41d2b4b3d300476cb52b": { - "model_module": "@jupyter-widgets/base", + "b32be9b577c54595bf7ea4435c542989": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a569eb9a5d5b4715946173b57080716f": { + "b432d923a3f54fe287ea531fe9266118": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2715,7 +2770,47 @@ "text_color": null } }, - "b6cb51a2809c464eb1c58ab8e31c96a1": { + "b58a12c543394878950957e5d67c0845": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a7800ea4f00743b1b736fe6e3c6dcddd", + "IPY_MODEL_ab6d9d81b4f74d0a8dc9f38aa062e25f", + "IPY_MODEL_7126c64780ee430eabe5876c79127ecb" + ], + "layout": "IPY_MODEL_acfb1f9cb3194cc8bcd424c8e097029b", + "tabbable": null, + "tooltip": null + } + }, + "baeeda9d5eb7488f9b01610d5a450253": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bb6172cb249540c4a72e41717d7a8e2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2733,7 +2828,7 @@ "text_color": null } }, - "c05d6a595d7144ee94fa51f5f5133acc": { + "bcbab4361c90484192216a9d152a984e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2786,7 +2881,30 @@ "width": null } }, - "c2c972c18e9c4a679bd660253ada535a": { + "c09f9d8f8d0e425399f7b34772f3d268": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_196f9646c6a0480099ec80fde0f3ceae", + "placeholder": "​", + "style": "IPY_MODEL_33925f72e0614c2fa6257e4e96a64f69", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "c75e3616bdeb44578059f7cdc1600420": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2839,48 +2957,7 @@ "width": null } }, - "c6521ed9a1a34d1f8999049d2347b649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf1afa91f1eb40b2aba4dcef746f1a69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", - "placeholder": "​", - "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "d19d6b52b414436485e07ce221daa4dd": { + "c8cea35b7cef4b0ab9b3da727557efd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2896,83 +2973,7 @@ "description_width": "" } }, - "d4730f8c409d4618a70b0cbe8dc1772b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "db96495857dd41dca4b5a125ac1bddf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "e302a4ab69494dea93a7e2a5d582d2e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", - "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", - "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217" - ], - "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", - "tabbable": null, - "tooltip": null - } - }, - "e545e8fd06544a3fabc2df6ebd4c231e": { + "d9248232a14d4bc3aa6f1dffa11fd3b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3025,23 +3026,31 @@ "width": null } }, - "eae4c63447cd47b5ab13fc807579b9ba": { + "d99648098aa844e5a19a5fc67ab33ecf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_742be4886f3a45c09196ac843f2e0a0a", + "IPY_MODEL_4e06a9baa2d8459ba40bba97de9e5259", + "IPY_MODEL_78be5d29afb947bebb8ef1036c1d0f70" + ], + "layout": "IPY_MODEL_1df017d340c143eca8a77bf534dae30a", + "tabbable": null, + "tooltip": null } }, - "ec08a02c4bd6416185871e93828421ab": { + "db6e31cca7334c5997fcc027001ba5e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3059,56 +3068,60 @@ "text_color": null } }, - "f115a412241d4444a70d4927ce8721e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", - "placeholder": "​", - "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 853kB/s]" - } - }, - "f1d5848284b945bd8362d354f0edb9a5": { - "model_module": "@jupyter-widgets/controls", + "dd637e0e948c4c9182d38872c9695cee": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f4e5840479864b31b4eca15395813b4e": { + "de64003ecbdc4bfea9ff52df34babd05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3123,78 +3136,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", + "layout": "IPY_MODEL_bcbab4361c90484192216a9d152a984e", "placeholder": "​", - "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "f6a60d2b426e420d8d25abbca9fdfdaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", + "style": "IPY_MODEL_726196b034e64997b37351e4538d717a", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "f84662a791cf48ff8f1369f016420dd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", - "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", - "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed" - ], - "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", - "tabbable": null, - "tooltip": null + "value": "embedding_model.ckpt: 100%" } }, - "fc570a3eada6400ebe54bbc6311f3fdd": { - "model_module": "@jupyter-widgets/controls", + "eb1988ce385f4de19a7dca2977f0c168": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 4b6d14a47..359688b35 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -686,7 +686,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f + %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1169,7 +1169,7 @@

5. Use DataMonitor to find issues in new data

-
+
@@ -1908,7 +1908,7 @@

8. Looking for both label issues and outliers -{"state": {"5409d2f49dca4cbeb4f317d8aa46ccf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91311a9db9144b9aa10e558e189cd4a0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6849590b787f421283202c404717945e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", "tabbable": null, "tooltip": null, "value": 50.0}}, "127fec0dcb96469c9c53edbd54936769": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6263cf40fe84408a83ea1f274ebc1e60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cda5c6f6caeb4f658082ad1c8880e076": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", "placeholder": "\u200b", "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "7acf9ef20737443e9b8dcbfc21a46927": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c590be36d4954ecaa3b2bbc36e15f9cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "be0fc8f89d6a4b77a085888eb3b175d5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", "placeholder": "\u200b", "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "05e15a781e20434888b29d4ed732f642": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16691eefb97a44b9af842e7a3d10b82b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", "IPY_MODEL_6849590b787f421283202c404717945e", "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5"], "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", "tabbable": null, "tooltip": null}}, "023c7da18e424c3883eca2e16626ce7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa424e7743234229a020e325f31202fb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "482868b24e2444cab5ac1f0aa9f96ffc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", "tabbable": null, "tooltip": null, "value": 7.0}}, "a22782d28f2a480a8928d301da6604f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cceeb03436854c30bb382fe0c100c2bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e840529660dd449d97ecde263592b8e3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", "placeholder": "\u200b", "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "daec9da029354970886c65e48fae7895": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5ebf02f6559407a9eaca07852b1c427": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "432eb75da12a42acb337a242d19442d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", "placeholder": "\u200b", "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "a8c944d022ba4ffebddcb245c6c7d653": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac618b2d864a40b2a628802392854eab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e840529660dd449d97ecde263592b8e3", "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", "IPY_MODEL_432eb75da12a42acb337a242d19442d8"], "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", "tabbable": null, "tooltip": null}}, "931391719e964afa8404ae29bcf23864": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d26b3b25dc8646deb7f7cbf24443577d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "09d5e7bc9eab49e9b97c5cdba0a1578b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", "tabbable": null, "tooltip": null, "value": 50.0}}, "4dbc5fcd543f43feb30c155bf0f058e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a405194e30d148a08eb08102914cbfba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e72581f3c51a4ebbbdf921e555ed5e2e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", "placeholder": "\u200b", "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "67aee0d1bdc241de942a18d250abde0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "090b1de60819463abc3ad25011937af5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b8be4c541aa442592db2470b74e90ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", "placeholder": "\u200b", "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.80it/s]"}}, "3f135927f582409e967b53cb2f1d2042": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63e22013b11d44788247c2e6e6e71364": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad"], "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", "tabbable": null, "tooltip": null}}, "e3e147ed2d574cfd9e0e8c16abc3ee75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36a9b636abf14a37a602e2880614146a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "878599986c3e434797dc3d8347ec1b4a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", "tabbable": null, "tooltip": null, "value": 7.0}}, "454fcdd9458e47bfa8fa5a44c206fcb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ed5dece7b584ef88c91fe936768486d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea87e8e0c79643a999c896710a7b8792": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", "placeholder": "\u200b", "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8b926d8b87db4b57bd13370ea58cf1f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b661eba4067d4e5ab460d8f26c8210e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cd952c51c4cf4754ac8dbf022ed5da35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", "placeholder": "\u200b", "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "3283aeca9a6a4cbcb0da1eb270e3d476": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58e53eb1d3b74dbabdda9218003d290e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35"], "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", "tabbable": null, "tooltip": null}}, "9ee5ebc7814c455baf26064aa901a494": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2469412d11404237880733a58e502569": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f61ae27fb96c4ac794367539d32aaee6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2469412d11404237880733a58e502569", "tabbable": null, "tooltip": null, "value": 50.0}}, "9cb24280dc444e898cf722661c9629ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24d4290400d543cca86065a4fbc5b9ba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54dd94e9fb8b40d99e3461d2b59a9fea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", "placeholder": "\u200b", "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "c205a5c270d94b08b455596bb5a3f641": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84e85818360e404da06e1195aec4637e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0934764f32164e9bbd42e10008a5d7dc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", "placeholder": "\u200b", "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.76it/s]"}}, "c2c6cc0c4b9d4f02b9547d22829dc155": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b47b3587b294c218154475b1bd729d3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc"], "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", "tabbable": null, "tooltip": null}}, "349d6ee3fe994a77ad729d53b7f41ded": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ddf5a0d223314a2ea3a85f4929b8a021": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a31f060f5f424533905faad58462bb52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", "tabbable": null, "tooltip": null, "value": 7.0}}, "01553c4cc5614aeb8415e2eb5ce5b8ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b1bb5bc9e73429d9d789f44a451bae2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77ab1d685ee248379b335bb91dece74f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", "placeholder": "\u200b", "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "19a30519c45d41b799b40995f920775b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c9b2a8175b940b095b744707bcb01dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "003cda49480d4fd5aa4f036f5db5d6e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", "placeholder": "\u200b", "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "b4b2cb2adc6a4f9c9d99394dcdc7cebe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "690b859c431e478683cfa895855ea449": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_77ab1d685ee248379b335bb91dece74f", "IPY_MODEL_a31f060f5f424533905faad58462bb52", "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9"], "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"93852dc1883f412ab19e9196f34e4f88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed573db1068f4b2bac95c11551ed69d3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b9505df103f84abb912dd7a59bb16625": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_93852dc1883f412ab19e9196f34e4f88", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ed573db1068f4b2bac95c11551ed69d3", "tabbable": null, "tooltip": null, "value": 50.0}}, "bc15ac9db8f14c0c8e948ff6681acdf0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3501e319e41d4a158fa82e1f96c25e3b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "923a82724eb5404cb3677b25dce4baff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc15ac9db8f14c0c8e948ff6681acdf0", "placeholder": "\u200b", "style": "IPY_MODEL_3501e319e41d4a158fa82e1f96c25e3b", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "35efbb2bc5514809b958ce42a5b8dca2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4c4f7cdb8324e3b9d8834193b454c09": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "313582ddbeae4874ac162d6022ed7958": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35efbb2bc5514809b958ce42a5b8dca2", "placeholder": "\u200b", "style": "IPY_MODEL_c4c4f7cdb8324e3b9d8834193b454c09", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "178b259ccbd2483a9c57b75e4541d0ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d9b23deee504e878bbd77e92d4c01fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_923a82724eb5404cb3677b25dce4baff", "IPY_MODEL_b9505df103f84abb912dd7a59bb16625", "IPY_MODEL_313582ddbeae4874ac162d6022ed7958"], "layout": "IPY_MODEL_178b259ccbd2483a9c57b75e4541d0ce", "tabbable": null, "tooltip": null}}, "08d7df441541457a9aa9f3381dc7b3c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d83ddeb12b794cd1a3ddc06054018bcf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "47cc5b32bc2a42e2a18caa537f33d8f0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08d7df441541457a9aa9f3381dc7b3c9", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d83ddeb12b794cd1a3ddc06054018bcf", "tabbable": null, "tooltip": null, "value": 7.0}}, "5263a604f6734d16a1059a68b07a8456": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c0340ff72bb414bacc39f18278cdb73": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8c218859c8c54a95806ae04350faf771": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5263a604f6734d16a1059a68b07a8456", "placeholder": "\u200b", "style": "IPY_MODEL_2c0340ff72bb414bacc39f18278cdb73", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "a7f059f81d9747bb983a818c2af583ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad1988b7ff3b4e838a474c8cde55308f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "639ccf912bae421e8316c96ef1c017c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7f059f81d9747bb983a818c2af583ae", "placeholder": "\u200b", "style": "IPY_MODEL_ad1988b7ff3b4e838a474c8cde55308f", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "1fe123ec579f4a12a0b8fe954b9270e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad68b28a01564868921157d33a643817": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8c218859c8c54a95806ae04350faf771", "IPY_MODEL_47cc5b32bc2a42e2a18caa537f33d8f0", "IPY_MODEL_639ccf912bae421e8316c96ef1c017c8"], "layout": "IPY_MODEL_1fe123ec579f4a12a0b8fe954b9270e4", "tabbable": null, "tooltip": null}}, "098e7d186ae94bc1a7ca4d86de553d00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1814395bd46645e7802aef371201ad6e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "515863bef8e24e318503fd8cbac38a1b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_098e7d186ae94bc1a7ca4d86de553d00", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1814395bd46645e7802aef371201ad6e", "tabbable": null, "tooltip": null, "value": 50.0}}, "7dd0c4650d174ac9888cda90abc58508": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ffb33d0075c44159211b6ffed662165": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "64fca6661b2a4a69a0dad49625b882f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7dd0c4650d174ac9888cda90abc58508", "placeholder": "\u200b", "style": "IPY_MODEL_7ffb33d0075c44159211b6ffed662165", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "3a22e0371cce4cf8b6bae4881e17b93a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa813bb2fa9b4606b4fbb16a938d6284": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf1be5f76ae6466280c51519591d143a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a22e0371cce4cf8b6bae4881e17b93a", "placeholder": "\u200b", "style": "IPY_MODEL_aa813bb2fa9b4606b4fbb16a938d6284", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.78it/s]"}}, "21f3d1f830444ce19c3c3dc5f5c8b5b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7714aebbf0a047dfa90198bd9ac06a1d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_64fca6661b2a4a69a0dad49625b882f7", "IPY_MODEL_515863bef8e24e318503fd8cbac38a1b", "IPY_MODEL_bf1be5f76ae6466280c51519591d143a"], "layout": "IPY_MODEL_21f3d1f830444ce19c3c3dc5f5c8b5b8", "tabbable": null, "tooltip": null}}, "9cc92f2b7309472f844d4ab57e3f280c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b82e7de7f9a04242ae8c6273d2f7618d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f1ac5e486cf49bda0e8dec539e97547": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cc92f2b7309472f844d4ab57e3f280c", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b82e7de7f9a04242ae8c6273d2f7618d", "tabbable": null, "tooltip": null, "value": 7.0}}, "f41796f0bf674af290189fa6b57efe25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dae40d3267d9407abc8cc2bd301fc5a3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6e8f8faaace40eeb8f0b120a319b24c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f41796f0bf674af290189fa6b57efe25", "placeholder": "\u200b", "style": "IPY_MODEL_dae40d3267d9407abc8cc2bd301fc5a3", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "34bbe7ed3f07473b86feb04616e78c84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0a414d8cc5d47ae94f8c5924d9372fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a430d8eccec84d0d98b425513d281bc3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34bbe7ed3f07473b86feb04616e78c84", "placeholder": "\u200b", "style": "IPY_MODEL_f0a414d8cc5d47ae94f8c5924d9372fa", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "7e98c157d43845f586eb525e55600eb6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4611f9f9bba4f569b03df7465d56925": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d6e8f8faaace40eeb8f0b120a319b24c", "IPY_MODEL_5f1ac5e486cf49bda0e8dec539e97547", "IPY_MODEL_a430d8eccec84d0d98b425513d281bc3"], "layout": "IPY_MODEL_7e98c157d43845f586eb525e55600eb6", "tabbable": null, "tooltip": null}}, "1329969eb76f4cc39b4052caf4045f32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22573985b9854eaeafc18b8a48809226": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d9f4490f42774cdc83742b3eb44dd3e9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1329969eb76f4cc39b4052caf4045f32", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_22573985b9854eaeafc18b8a48809226", "tabbable": null, "tooltip": null, "value": 50.0}}, "5c7264e405f243709e042e519cb2da5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6430036b2f10421ab43e6f54760e1234": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7ae7dcf931c4963bd7e004d4fd68aba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c7264e405f243709e042e519cb2da5d", "placeholder": "\u200b", "style": "IPY_MODEL_6430036b2f10421ab43e6f54760e1234", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "f072b26f47c24152ab42aa49e3b5872c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5586385d237f440aab5c246768bf9992": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "30c35da68e7847a49b1c123f4b5fc456": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f072b26f47c24152ab42aa49e3b5872c", "placeholder": "\u200b", "style": "IPY_MODEL_5586385d237f440aab5c246768bf9992", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.73it/s]"}}, "83118a31314048b9b30b3778522a6dd0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94d12492ec214271aef0826aa425c0f6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d7ae7dcf931c4963bd7e004d4fd68aba", "IPY_MODEL_d9f4490f42774cdc83742b3eb44dd3e9", "IPY_MODEL_30c35da68e7847a49b1c123f4b5fc456"], "layout": "IPY_MODEL_83118a31314048b9b30b3778522a6dd0", "tabbable": null, "tooltip": null}}, "0d18429aee6643b9b492ad2031919935": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d46021988acc496197efec85024c1e88": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2f21137fa87f4ec0a936e8cba65f6728": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d18429aee6643b9b492ad2031919935", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d46021988acc496197efec85024c1e88", "tabbable": null, "tooltip": null, "value": 7.0}}, "95c8a696bd6b49b3996ed30638565021": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a75f9c5d993418ea30cfe4e2fc90cbc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dee3a3def7444eaaabcf769093b28e4d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95c8a696bd6b49b3996ed30638565021", "placeholder": "\u200b", "style": "IPY_MODEL_8a75f9c5d993418ea30cfe4e2fc90cbc", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "a91d204648394c62b918d4b6c4bea71c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "81d7148760e34d66bc71520f4f8ab594": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc9e4ee631624d629db2e3cbfcacf885": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a91d204648394c62b918d4b6c4bea71c", "placeholder": "\u200b", "style": "IPY_MODEL_81d7148760e34d66bc71520f4f8ab594", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "ab78a286a4b048d5ba45502a6be850a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c63605b6bcad4825b185e291ea155df6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dee3a3def7444eaaabcf769093b28e4d", "IPY_MODEL_2f21137fa87f4ec0a936e8cba65f6728", "IPY_MODEL_cc9e4ee631624d629db2e3cbfcacf885"], "layout": "IPY_MODEL_ab78a286a4b048d5ba45502a6be850a8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index e9f5b56aa..f55196f2a 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:24.150546Z", - "iopub.status.busy": "2024-05-23T15:12:24.150120Z", - "iopub.status.idle": "2024-05-23T15:12:24.160819Z", - "shell.execute_reply": "2024-05-23T15:12:24.160377Z" + "iopub.execute_input": "2024-05-24T13:26:12.576160Z", + "iopub.status.busy": "2024-05-24T13:26:12.575730Z", + "iopub.status.idle": "2024-05-24T13:26:12.586869Z", + "shell.execute_reply": "2024-05-24T13:26:12.586363Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:24.163003Z", - "iopub.status.busy": "2024-05-23T15:12:24.162658Z", - "iopub.status.idle": "2024-05-23T15:12:25.340600Z", - "shell.execute_reply": "2024-05-23T15:12:25.339995Z" + "iopub.execute_input": "2024-05-24T13:26:12.589349Z", + "iopub.status.busy": "2024-05-24T13:26:12.589066Z", + "iopub.status.idle": "2024-05-24T13:26:13.815543Z", + "shell.execute_reply": "2024-05-24T13:26:13.815036Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.343043Z", - "iopub.status.busy": "2024-05-23T15:12:25.342752Z", - "iopub.status.idle": "2024-05-23T15:12:25.360826Z", - "shell.execute_reply": "2024-05-23T15:12:25.360279Z" + "iopub.execute_input": "2024-05-24T13:26:13.818235Z", + "iopub.status.busy": "2024-05-24T13:26:13.817636Z", + "iopub.status.idle": "2024-05-24T13:26:13.835859Z", + "shell.execute_reply": "2024-05-24T13:26:13.835434Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.363147Z", - "iopub.status.busy": "2024-05-23T15:12:25.362705Z", - "iopub.status.idle": "2024-05-23T15:12:25.381440Z", - "shell.execute_reply": "2024-05-23T15:12:25.380241Z" + "iopub.execute_input": "2024-05-24T13:26:13.837975Z", + "iopub.status.busy": "2024-05-24T13:26:13.837700Z", + "iopub.status.idle": "2024-05-24T13:26:13.857815Z", + "shell.execute_reply": "2024-05-24T13:26:13.857400Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.383401Z", - "iopub.status.busy": "2024-05-23T15:12:25.383143Z", - "iopub.status.idle": "2024-05-23T15:12:25.397293Z", - "shell.execute_reply": "2024-05-23T15:12:25.396833Z" + "iopub.execute_input": "2024-05-24T13:26:13.859945Z", + "iopub.status.busy": "2024-05-24T13:26:13.859615Z", + "iopub.status.idle": "2024-05-24T13:26:13.875347Z", + "shell.execute_reply": "2024-05-24T13:26:13.874924Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.399348Z", - "iopub.status.busy": "2024-05-23T15:12:25.398949Z", - "iopub.status.idle": "2024-05-23T15:12:25.411768Z", - "shell.execute_reply": "2024-05-23T15:12:25.411343Z" + "iopub.execute_input": "2024-05-24T13:26:13.877428Z", + "iopub.status.busy": "2024-05-24T13:26:13.877093Z", + "iopub.status.idle": "2024-05-24T13:26:13.891773Z", + "shell.execute_reply": "2024-05-24T13:26:13.891337Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.413965Z", - "iopub.status.busy": "2024-05-23T15:12:25.413529Z", - "iopub.status.idle": "2024-05-23T15:12:25.605551Z", - "shell.execute_reply": "2024-05-23T15:12:25.605075Z" + "iopub.execute_input": "2024-05-24T13:26:13.893832Z", + "iopub.status.busy": "2024-05-24T13:26:13.893653Z", + "iopub.status.idle": "2024-05-24T13:26:14.090424Z", + "shell.execute_reply": "2024-05-24T13:26:14.089885Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.607849Z", - "iopub.status.busy": "2024-05-23T15:12:25.607567Z", - "iopub.status.idle": "2024-05-23T15:12:25.969203Z", - "shell.execute_reply": "2024-05-23T15:12:25.968623Z" + "iopub.execute_input": "2024-05-24T13:26:14.092764Z", + "iopub.status.busy": "2024-05-24T13:26:14.092539Z", + "iopub.status.idle": "2024-05-24T13:26:14.453791Z", + "shell.execute_reply": "2024-05-24T13:26:14.453218Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:25.971556Z", - "iopub.status.busy": "2024-05-23T15:12:25.971185Z", - "iopub.status.idle": "2024-05-23T15:12:26.009329Z", - "shell.execute_reply": "2024-05-23T15:12:26.008805Z" + "iopub.execute_input": "2024-05-24T13:26:14.456094Z", + "iopub.status.busy": "2024-05-24T13:26:14.455662Z", + "iopub.status.idle": "2024-05-24T13:26:14.492988Z", + "shell.execute_reply": "2024-05-24T13:26:14.492390Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:26.011919Z", - "iopub.status.busy": "2024-05-23T15:12:26.011553Z", - "iopub.status.idle": "2024-05-23T15:12:27.692533Z", - "shell.execute_reply": "2024-05-23T15:12:27.691912Z" + "iopub.execute_input": "2024-05-24T13:26:14.495452Z", + "iopub.status.busy": "2024-05-24T13:26:14.495016Z", + "iopub.status.idle": "2024-05-24T13:26:16.224653Z", + "shell.execute_reply": "2024-05-24T13:26:16.224083Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.694950Z", - "iopub.status.busy": "2024-05-23T15:12:27.694635Z", - "iopub.status.idle": "2024-05-23T15:12:27.728895Z", - "shell.execute_reply": "2024-05-23T15:12:27.728320Z" + "iopub.execute_input": "2024-05-24T13:26:16.227236Z", + "iopub.status.busy": "2024-05-24T13:26:16.226633Z", + "iopub.status.idle": "2024-05-24T13:26:16.257823Z", + "shell.execute_reply": "2024-05-24T13:26:16.257373Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.731104Z", - "iopub.status.busy": "2024-05-23T15:12:27.730791Z", - "iopub.status.idle": "2024-05-23T15:12:27.762113Z", - "shell.execute_reply": "2024-05-23T15:12:27.761535Z" + "iopub.execute_input": "2024-05-24T13:26:16.260036Z", + "iopub.status.busy": "2024-05-24T13:26:16.259701Z", + "iopub.status.idle": "2024-05-24T13:26:16.293594Z", + "shell.execute_reply": "2024-05-24T13:26:16.293077Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:27.764435Z", - "iopub.status.busy": "2024-05-23T15:12:27.764018Z", - "iopub.status.idle": "2024-05-23T15:12:32.868685Z", - "shell.execute_reply": "2024-05-23T15:12:32.868098Z" + "iopub.execute_input": "2024-05-24T13:26:16.295982Z", + "iopub.status.busy": "2024-05-24T13:26:16.295615Z", + "iopub.status.idle": "2024-05-24T13:26:21.408316Z", + "shell.execute_reply": "2024-05-24T13:26:21.407683Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16691eefb97a44b9af842e7a3d10b82b", + "model_id": "1d9b23deee504e878bbd77e92d4c01fc", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:32.871153Z", - "iopub.status.busy": "2024-05-23T15:12:32.870821Z", - "iopub.status.idle": "2024-05-23T15:12:38.202836Z", - "shell.execute_reply": "2024-05-23T15:12:38.201810Z" + "iopub.execute_input": "2024-05-24T13:26:21.410706Z", + "iopub.status.busy": "2024-05-24T13:26:21.410273Z", + "iopub.status.idle": "2024-05-24T13:26:26.732199Z", + "shell.execute_reply": "2024-05-24T13:26:26.731568Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ac618b2d864a40b2a628802392854eab", + "model_id": "ad68b28a01564868921157d33a643817", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.206714Z", - "iopub.status.busy": "2024-05-23T15:12:38.206258Z", - "iopub.status.idle": "2024-05-23T15:12:38.247716Z", - "shell.execute_reply": "2024-05-23T15:12:38.247275Z" + "iopub.execute_input": "2024-05-24T13:26:26.734719Z", + "iopub.status.busy": "2024-05-24T13:26:26.734536Z", + "iopub.status.idle": "2024-05-24T13:26:26.770495Z", + "shell.execute_reply": "2024-05-24T13:26:26.770022Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.249766Z", - "iopub.status.busy": "2024-05-23T15:12:38.249356Z", - "iopub.status.idle": "2024-05-23T15:12:38.276705Z", - "shell.execute_reply": "2024-05-23T15:12:38.276176Z" + "iopub.execute_input": "2024-05-24T13:26:26.772705Z", + "iopub.status.busy": "2024-05-24T13:26:26.772369Z", + "iopub.status.idle": "2024-05-24T13:26:26.802636Z", + "shell.execute_reply": "2024-05-24T13:26:26.802009Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.278700Z", - "iopub.status.busy": "2024-05-23T15:12:38.278375Z", - "iopub.status.idle": "2024-05-23T15:12:38.318716Z", - "shell.execute_reply": "2024-05-23T15:12:38.318182Z" + "iopub.execute_input": "2024-05-24T13:26:26.804876Z", + "iopub.status.busy": "2024-05-24T13:26:26.804519Z", + "iopub.status.idle": "2024-05-24T13:26:26.849943Z", + "shell.execute_reply": "2024-05-24T13:26:26.849406Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.320892Z", - "iopub.status.busy": "2024-05-23T15:12:38.320378Z", - "iopub.status.idle": "2024-05-23T15:12:38.343980Z", - "shell.execute_reply": "2024-05-23T15:12:38.343554Z" + "iopub.execute_input": "2024-05-24T13:26:26.852198Z", + "iopub.status.busy": "2024-05-24T13:26:26.851865Z", + "iopub.status.idle": "2024-05-24T13:26:26.878286Z", + "shell.execute_reply": "2024-05-24T13:26:26.877801Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.346013Z", - "iopub.status.busy": "2024-05-23T15:12:38.345692Z", - "iopub.status.idle": "2024-05-23T15:12:38.368870Z", - "shell.execute_reply": "2024-05-23T15:12:38.368450Z" + "iopub.execute_input": "2024-05-24T13:26:26.880571Z", + "iopub.status.busy": "2024-05-24T13:26:26.880235Z", + "iopub.status.idle": "2024-05-24T13:26:26.907385Z", + "shell.execute_reply": "2024-05-24T13:26:26.906920Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:38.370823Z", - "iopub.status.busy": "2024-05-23T15:12:38.370500Z", - "iopub.status.idle": "2024-05-23T15:12:48.786078Z", - "shell.execute_reply": "2024-05-23T15:12:48.785492Z" + "iopub.execute_input": "2024-05-24T13:26:26.909725Z", + "iopub.status.busy": "2024-05-24T13:26:26.909383Z", + "iopub.status.idle": "2024-05-24T13:26:37.341793Z", + "shell.execute_reply": "2024-05-24T13:26:37.341168Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63e22013b11d44788247c2e6e6e71364", + "model_id": "7714aebbf0a047dfa90198bd9ac06a1d", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58e53eb1d3b74dbabdda9218003d290e", + "model_id": "e4611f9f9bba4f569b03df7465d56925", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.788230Z", - "iopub.status.busy": "2024-05-23T15:12:48.788052Z", - "iopub.status.idle": "2024-05-23T15:12:48.870592Z", - "shell.execute_reply": "2024-05-23T15:12:48.869978Z" + "iopub.execute_input": "2024-05-24T13:26:37.344231Z", + "iopub.status.busy": "2024-05-24T13:26:37.343885Z", + "iopub.status.idle": "2024-05-24T13:26:37.429262Z", + "shell.execute_reply": "2024-05-24T13:26:37.428706Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.872878Z", - "iopub.status.busy": "2024-05-23T15:12:48.872579Z", - "iopub.status.idle": "2024-05-23T15:12:48.902790Z", - "shell.execute_reply": "2024-05-23T15:12:48.902346Z" + "iopub.execute_input": "2024-05-24T13:26:37.431545Z", + "iopub.status.busy": "2024-05-24T13:26:37.431251Z", + "iopub.status.idle": "2024-05-24T13:26:37.462528Z", + "shell.execute_reply": "2024-05-24T13:26:37.461975Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.904859Z", - "iopub.status.busy": "2024-05-23T15:12:48.904523Z", - "iopub.status.idle": "2024-05-23T15:12:48.931284Z", - "shell.execute_reply": "2024-05-23T15:12:48.930855Z" + "iopub.execute_input": "2024-05-24T13:26:37.464978Z", + "iopub.status.busy": "2024-05-24T13:26:37.464631Z", + "iopub.status.idle": "2024-05-24T13:26:37.495280Z", + "shell.execute_reply": "2024-05-24T13:26:37.494774Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:48.933414Z", - "iopub.status.busy": "2024-05-23T15:12:48.933089Z", - "iopub.status.idle": "2024-05-23T15:12:59.401243Z", - "shell.execute_reply": "2024-05-23T15:12:59.400682Z" + "iopub.execute_input": "2024-05-24T13:26:37.497881Z", + "iopub.status.busy": "2024-05-24T13:26:37.497508Z", + "iopub.status.idle": "2024-05-24T13:26:47.983998Z", + "shell.execute_reply": "2024-05-24T13:26:47.983430Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b47b3587b294c218154475b1bd729d3", + "model_id": "94d12492ec214271aef0826aa425c0f6", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "690b859c431e478683cfa895855ea449", + "model_id": "c63605b6bcad4825b185e291ea155df6", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:12:59.404181Z", - "iopub.status.busy": "2024-05-23T15:12:59.403640Z", - "iopub.status.idle": "2024-05-23T15:12:59.432742Z", - "shell.execute_reply": "2024-05-23T15:12:59.432290Z" + "iopub.execute_input": "2024-05-24T13:26:47.986851Z", + "iopub.status.busy": "2024-05-24T13:26:47.986633Z", + "iopub.status.idle": "2024-05-24T13:26:48.023559Z", + "shell.execute_reply": "2024-05-24T13:26:48.022967Z" } }, "outputs": [ @@ -1863,30 +1863,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "003cda49480d4fd5aa4f036f5db5d6e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", - "placeholder": "​", - "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "01553c4cc5614aeb8415e2eb5ce5b8ed": { + "08d7df441541457a9aa9f3381dc7b3c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,7 +1916,7 @@ "width": null } }, - "023c7da18e424c3883eca2e16626ce7f": { + "098e7d186ae94bc1a7ca4d86de553d00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1992,7 +1969,7 @@ "width": null } }, - "05e15a781e20434888b29d4ed732f642": { + "0d18429aee6643b9b492ad2031919935": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2045,74 +2022,7 @@ "width": null } }, - "090b1de60819463abc3ad25011937af5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0934764f32164e9bbd42e10008a5d7dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", - "placeholder": "​", - "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.76it/s]" - } - }, - "09d5e7bc9eab49e9b97c5cdba0a1578b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "127fec0dcb96469c9c53edbd54936769": { + "1329969eb76f4cc39b4052caf4045f32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2165,31 +2075,7 @@ "width": null } }, - "16691eefb97a44b9af842e7a3d10b82b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", - "IPY_MODEL_6849590b787f421283202c404717945e", - "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5" - ], - "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", - "tabbable": null, - "tooltip": null - } - }, - "19a30519c45d41b799b40995f920775b": { + "178b259ccbd2483a9c57b75e4541d0ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,7 +2128,7 @@ "width": null } }, - "2469412d11404237880733a58e502569": { + "1814395bd46645e7802aef371201ad6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2258,25 +2144,31 @@ "description_width": "" } }, - "24d4290400d543cca86065a4fbc5b9ba": { + "1d9b23deee504e878bbd77e92d4c01fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_923a82724eb5404cb3677b25dce4baff", + "IPY_MODEL_b9505df103f84abb912dd7a59bb16625", + "IPY_MODEL_313582ddbeae4874ac162d6022ed7958" + ], + "layout": "IPY_MODEL_178b259ccbd2483a9c57b75e4541d0ce", + "tabbable": null, + "tooltip": null } }, - "3283aeca9a6a4cbcb0da1eb270e3d476": { + "1fe123ec579f4a12a0b8fe954b9270e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2329,7 +2221,7 @@ "width": null } }, - "349d6ee3fe994a77ad729d53b7f41ded": { + "21f3d1f830444ce19c3c3dc5f5c8b5b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2382,7 +2274,7 @@ "width": null } }, - "36a9b636abf14a37a602e2880614146a": { + "22573985b9854eaeafc18b8a48809226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2398,7 +2290,7 @@ "description_width": "" } }, - "3b1bb5bc9e73429d9d789f44a451bae2": { + "2c0340ff72bb414bacc39f18278cdb73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2416,7 +2308,56 @@ "text_color": null } }, - "3b8be4c541aa442592db2470b74e90ad": { + "2f21137fa87f4ec0a936e8cba65f6728": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0d18429aee6643b9b492ad2031919935", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d46021988acc496197efec85024c1e88", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "30c35da68e7847a49b1c123f4b5fc456": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f072b26f47c24152ab42aa49e3b5872c", + "placeholder": "​", + "style": "IPY_MODEL_5586385d237f440aab5c246768bf9992", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.73it/s]" + } + }, + "313582ddbeae4874ac162d6022ed7958": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2431,15 +2372,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", + "layout": "IPY_MODEL_35efbb2bc5514809b958ce42a5b8dca2", "placeholder": "​", - "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", + "style": "IPY_MODEL_c4c4f7cdb8324e3b9d8834193b454c09", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.80it/s]" + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "3f135927f582409e967b53cb2f1d2042": { + "34bbe7ed3f07473b86feb04616e78c84": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2492,30 +2433,25 @@ "width": null } }, - "432eb75da12a42acb337a242d19442d8": { + "3501e319e41d4a158fa82e1f96c25e3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", - "placeholder": "​", - "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "454fcdd9458e47bfa8fa5a44c206fcb3": { + "35efbb2bc5514809b958ce42a5b8dca2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2568,33 +2504,7 @@ "width": null } }, - "482868b24e2444cab5ac1f0aa9f96ffc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "4dbc5fcd543f43feb30c155bf0f058e1": { + "3a22e0371cce4cf8b6bae4881e17b93a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2647,7 +2557,59 @@ "width": null } }, - "5409d2f49dca4cbeb4f317d8aa46ccf8": { + "47cc5b32bc2a42e2a18caa537f33d8f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08d7df441541457a9aa9f3381dc7b3c9", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d83ddeb12b794cd1a3ddc06054018bcf", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "515863bef8e24e318503fd8cbac38a1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_098e7d186ae94bc1a7ca4d86de553d00", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1814395bd46645e7802aef371201ad6e", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "5263a604f6734d16a1059a68b07a8456": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2700,81 +2662,16 @@ "width": null } }, - "54dd94e9fb8b40d99e3461d2b59a9fea": { + "5586385d237f440aab5c246768bf9992": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", - "placeholder": "​", - "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "58e53eb1d3b74dbabdda9218003d290e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", - "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", - "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35" - ], - "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", - "tabbable": null, - "tooltip": null - } - }, - "5c9b2a8175b940b095b744707bcb01dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6263cf40fe84408a83ea1f274ebc1e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, @@ -2783,31 +2680,7 @@ "text_color": null } }, - "63e22013b11d44788247c2e6e6e71364": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", - "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", - "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad" - ], - "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", - "tabbable": null, - "tooltip": null - } - }, - "67aee0d1bdc241de942a18d250abde0d": { + "5c7264e405f243709e042e519cb2da5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2860,7 +2733,7 @@ "width": null } }, - "6849590b787f421283202c404717945e": { + "5f1ac5e486cf49bda0e8dec539e97547": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2876,41 +2749,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", - "max": 50.0, + "layout": "IPY_MODEL_9cc92f2b7309472f844d4ab57e3f280c", + "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", + "style": "IPY_MODEL_b82e7de7f9a04242ae8c6273d2f7618d", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": 7.0 } }, - "690b859c431e478683cfa895855ea449": { + "639ccf912bae421e8316c96ef1c017c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77ab1d685ee248379b335bb91dece74f", - "IPY_MODEL_a31f060f5f424533905faad58462bb52", - "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9" - ], - "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7f059f81d9747bb983a818c2af583ae", + "placeholder": "​", + "style": "IPY_MODEL_ad1988b7ff3b4e838a474c8cde55308f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "6430036b2f10421ab43e6f54760e1234": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77ab1d685ee248379b335bb91dece74f": { + "64fca6661b2a4a69a0dad49625b882f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2925,15 +2815,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", + "layout": "IPY_MODEL_7dd0c4650d174ac9888cda90abc58508", "placeholder": "​", - "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", + "style": "IPY_MODEL_7ffb33d0075c44159211b6ffed662165", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "7714aebbf0a047dfa90198bd9ac06a1d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64fca6661b2a4a69a0dad49625b882f7", + "IPY_MODEL_515863bef8e24e318503fd8cbac38a1b", + "IPY_MODEL_bf1be5f76ae6466280c51519591d143a" + ], + "layout": "IPY_MODEL_21f3d1f830444ce19c3c3dc5f5c8b5b8", + "tabbable": null, + "tooltip": null } }, - "7acf9ef20737443e9b8dcbfc21a46927": { + "7dd0c4650d174ac9888cda90abc58508": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2986,75 +2900,7 @@ "width": null } }, - "7b47b3587b294c218154475b1bd729d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", - "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", - "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc" - ], - "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", - "tabbable": null, - "tooltip": null - } - }, - "84e85818360e404da06e1195aec4637e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "878599986c3e434797dc3d8347ec1b4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "8b926d8b87db4b57bd13370ea58cf1f6": { + "7e98c157d43845f586eb525e55600eb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3107,7 +2953,7 @@ "width": null } }, - "8ed5dece7b584ef88c91fe936768486d": { + "7ffb33d0075c44159211b6ffed662165": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3125,23 +2971,25 @@ "text_color": null } }, - "91311a9db9144b9aa10e558e189cd4a0": { + "81d7148760e34d66bc71520f4f8ab594": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "931391719e964afa8404ae29bcf23864": { + "83118a31314048b9b30b3778522a6dd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3194,7 +3042,71 @@ "width": null } }, - "9cb24280dc444e898cf722661c9629ce": { + "8a75f9c5d993418ea30cfe4e2fc90cbc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8c218859c8c54a95806ae04350faf771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5263a604f6734d16a1059a68b07a8456", + "placeholder": "​", + "style": "IPY_MODEL_2c0340ff72bb414bacc39f18278cdb73", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "923a82724eb5404cb3677b25dce4baff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc15ac9db8f14c0c8e948ff6681acdf0", + "placeholder": "​", + "style": "IPY_MODEL_3501e319e41d4a158fa82e1f96c25e3b", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "93852dc1883f412ab19e9196f34e4f88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3247,8 +3159,32 @@ "width": null } }, - "9ee5ebc7814c455baf26064aa901a494": { - "model_module": "@jupyter-widgets/base", + "94d12492ec214271aef0826aa425c0f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d7ae7dcf931c4963bd7e004d4fd68aba", + "IPY_MODEL_d9f4490f42774cdc83742b3eb44dd3e9", + "IPY_MODEL_30c35da68e7847a49b1c123f4b5fc456" + ], + "layout": "IPY_MODEL_83118a31314048b9b30b3778522a6dd0", + "tabbable": null, + "tooltip": null + } + }, + "95c8a696bd6b49b3996ed30638565021": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3300,7 +3236,7 @@ "width": null } }, - "a22782d28f2a480a8928d301da6604f4": { + "9cc92f2b7309472f844d4ab57e3f280c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3353,69 +3289,30 @@ "width": null } }, - "a31f060f5f424533905faad58462bb52": { + "a430d8eccec84d0d98b425513d281bc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", + "layout": "IPY_MODEL_34bbe7ed3f07473b86feb04616e78c84", + "placeholder": "​", + "style": "IPY_MODEL_f0a414d8cc5d47ae94f8c5924d9372fa", "tabbable": null, "tooltip": null, - "value": 7.0 - } - }, - "a405194e30d148a08eb08102914cbfba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a5ebf02f6559407a9eaca07852b1c427": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "a8c944d022ba4ffebddcb245c6c7d653": { + "a7f059f81d9747bb983a818c2af583ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3468,47 +3365,7 @@ "width": null } }, - "aa424e7743234229a020e325f31202fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ac618b2d864a40b2a628802392854eab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e840529660dd449d97ecde263592b8e3", - "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", - "IPY_MODEL_432eb75da12a42acb337a242d19442d8" - ], - "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", - "tabbable": null, - "tooltip": null - } - }, - "b4b2cb2adc6a4f9c9d99394dcdc7cebe": { + "a91d204648394c62b918d4b6c4bea71c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,7 +3418,7 @@ "width": null } }, - "b661eba4067d4e5ab460d8f26c8210e7": { + "aa813bb2fa9b4606b4fbb16a938d6284": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3579,30 +3436,7 @@ "text_color": null } }, - "be0fc8f89d6a4b77a085888eb3b175d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", - "placeholder": "​", - "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.86it/s]" - } - }, - "c205a5c270d94b08b455596bb5a3f641": { + "ab78a286a4b048d5ba45502a6be850a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3655,7 +3489,91 @@ "width": null } }, - "c2c6cc0c4b9d4f02b9547d22829dc155": { + "ad1988b7ff3b4e838a474c8cde55308f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ad68b28a01564868921157d33a643817": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8c218859c8c54a95806ae04350faf771", + "IPY_MODEL_47cc5b32bc2a42e2a18caa537f33d8f0", + "IPY_MODEL_639ccf912bae421e8316c96ef1c017c8" + ], + "layout": "IPY_MODEL_1fe123ec579f4a12a0b8fe954b9270e4", + "tabbable": null, + "tooltip": null + } + }, + "b82e7de7f9a04242ae8c6273d2f7618d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9505df103f84abb912dd7a59bb16625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_93852dc1883f412ab19e9196f34e4f88", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ed573db1068f4b2bac95c11551ed69d3", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "bc15ac9db8f14c0c8e948ff6681acdf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3708,7 +3626,30 @@ "width": null } }, - "c590be36d4954ecaa3b2bbc36e15f9cf": { + "bf1be5f76ae6466280c51519591d143a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3a22e0371cce4cf8b6bae4881e17b93a", + "placeholder": "​", + "style": "IPY_MODEL_aa813bb2fa9b4606b4fbb16a938d6284", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.78it/s]" + } + }, + "c4c4f7cdb8324e3b9d8834193b454c09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3726,25 +3667,70 @@ "text_color": null } }, - "cceeb03436854c30bb382fe0c100c2bd": { + "c63605b6bcad4825b185e291ea155df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dee3a3def7444eaaabcf769093b28e4d", + "IPY_MODEL_2f21137fa87f4ec0a936e8cba65f6728", + "IPY_MODEL_cc9e4ee631624d629db2e3cbfcacf885" + ], + "layout": "IPY_MODEL_ab78a286a4b048d5ba45502a6be850a8", + "tabbable": null, + "tooltip": null + } + }, + "cc9e4ee631624d629db2e3cbfcacf885": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a91d204648394c62b918d4b6c4bea71c", + "placeholder": "​", + "style": "IPY_MODEL_81d7148760e34d66bc71520f4f8ab594", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "d46021988acc496197efec85024c1e88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "cd952c51c4cf4754ac8dbf022ed5da35": { + "d6e8f8faaace40eeb8f0b120a319b24c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3759,15 +3745,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", + "layout": "IPY_MODEL_f41796f0bf674af290189fa6b57efe25", "placeholder": "​", - "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", + "style": "IPY_MODEL_dae40d3267d9407abc8cc2bd301fc5a3", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "cda5c6f6caeb4f658082ad1c8880e076": { + "d7ae7dcf931c4963bd7e004d4fd68aba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3782,15 +3768,122 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", + "layout": "IPY_MODEL_5c7264e405f243709e042e519cb2da5d", "placeholder": "​", - "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", + "style": "IPY_MODEL_6430036b2f10421ab43e6f54760e1234", "tabbable": null, "tooltip": null, "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "d26b3b25dc8646deb7f7cbf24443577d": { + "d83ddeb12b794cd1a3ddc06054018bcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9f4490f42774cdc83742b3eb44dd3e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1329969eb76f4cc39b4052caf4045f32", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_22573985b9854eaeafc18b8a48809226", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "dae40d3267d9407abc8cc2bd301fc5a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dee3a3def7444eaaabcf769093b28e4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95c8a696bd6b49b3996ed30638565021", + "placeholder": "​", + "style": "IPY_MODEL_8a75f9c5d993418ea30cfe4e2fc90cbc", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "e4611f9f9bba4f569b03df7465d56925": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d6e8f8faaace40eeb8f0b120a319b24c", + "IPY_MODEL_5f1ac5e486cf49bda0e8dec539e97547", + "IPY_MODEL_a430d8eccec84d0d98b425513d281bc3" + ], + "layout": "IPY_MODEL_7e98c157d43845f586eb525e55600eb6", + "tabbable": null, + "tooltip": null + } + }, + "ed573db1068f4b2bac95c11551ed69d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3806,7 +3899,7 @@ "description_width": "" } }, - "daec9da029354970886c65e48fae7895": { + "f072b26f47c24152ab42aa49e3b5872c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3859,23 +3952,25 @@ "width": null } }, - "ddf5a0d223314a2ea3a85f4929b8a021": { + "f0a414d8cc5d47ae94f8c5924d9372fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e3e147ed2d574cfd9e0e8c16abc3ee75": { + "f41796f0bf674af290189fa6b57efe25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3927,101 +4022,6 @@ "visibility": null, "width": null } - }, - "e72581f3c51a4ebbbdf921e555ed5e2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", - "placeholder": "​", - "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "e840529660dd449d97ecde263592b8e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", - "placeholder": "​", - "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "ea87e8e0c79643a999c896710a7b8792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", - "placeholder": "​", - "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "f61ae27fb96c4ac794367539d32aaee6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2469412d11404237880733a58e502569", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index f55a91905..0850cfc9d 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1267,7 +1267,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1532,7 +1532,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"6042ee3853834a3f98a77b4348678980": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd4dc630750649d5a99e28de873e2e58": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7fc223e421df4b63a990b1b51ad59e4a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", "tabbable": null, "tooltip": null, "value": 132.0}}, "11d9ffa3e26545198ac985101adedb46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20cd3afc55be420b9159cbb92ed1063b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b40e8b57c83c4b61a0e83f26f899863c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", "placeholder": "\u200b", "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "3ef4c5f05301418f8dea9f34b84003ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f295174d6fe4ef28a687af3f4612ef6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b90cf3f03d374af08861ec5b4a4965fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", "placeholder": "\u200b", "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711909.48\u2007examples/s]"}}, "1a73aa9dfb644777affa0318eca169ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9c5b31081b541bebfd320d4af6df565": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc"], "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"87c7494c65f54a2a80ac5db9ad1dea05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5949aba18ce49d6bee351ccf7080215": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2152ed2aafd249fcbc6b7d5db17301ec": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_87c7494c65f54a2a80ac5db9ad1dea05", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b5949aba18ce49d6bee351ccf7080215", "tabbable": null, "tooltip": null, "value": 132.0}}, "60536ff151ef44d3a35cdc2e470d80cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1cbe95f6473e45e1ad106d9479a7aa23": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4cce7ec17f5c4e49983d243958233c0c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60536ff151ef44d3a35cdc2e470d80cd", "placeholder": "\u200b", "style": "IPY_MODEL_1cbe95f6473e45e1ad106d9479a7aa23", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "e6f0830f7b604733ac51463be2ff158b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e10f7eff927e4c99ba20c9c7f64e59fe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47ff311848c04eeeae7b228e14609896": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6f0830f7b604733ac51463be2ff158b", "placeholder": "\u200b", "style": "IPY_MODEL_e10f7eff927e4c99ba20c9c7f64e59fe", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712610.43\u2007examples/s]"}}, "ca8260074ffb4f75b18753de9ae8af1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6e757954d7048b1bb62429815f9a67a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4cce7ec17f5c4e49983d243958233c0c", "IPY_MODEL_2152ed2aafd249fcbc6b7d5db17301ec", "IPY_MODEL_47ff311848c04eeeae7b228e14609896"], "layout": "IPY_MODEL_ca8260074ffb4f75b18753de9ae8af1b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 8859494f0..305af44fa 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:01.982363Z", - "iopub.status.busy": "2024-05-23T15:13:01.982194Z", - "iopub.status.idle": "2024-05-23T15:13:03.125623Z", - "shell.execute_reply": "2024-05-23T15:13:03.125077Z" + "iopub.execute_input": "2024-05-24T13:26:51.224289Z", + "iopub.status.busy": "2024-05-24T13:26:51.223785Z", + "iopub.status.idle": "2024-05-24T13:26:52.448828Z", + "shell.execute_reply": "2024-05-24T13:26:52.448212Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.128117Z", - "iopub.status.busy": "2024-05-23T15:13:03.127711Z", - "iopub.status.idle": "2024-05-23T15:13:03.130770Z", - "shell.execute_reply": "2024-05-23T15:13:03.130224Z" + "iopub.execute_input": "2024-05-24T13:26:52.451565Z", + "iopub.status.busy": "2024-05-24T13:26:52.451148Z", + "iopub.status.idle": "2024-05-24T13:26:52.454051Z", + "shell.execute_reply": "2024-05-24T13:26:52.453617Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.133141Z", - "iopub.status.busy": "2024-05-23T15:13:03.132751Z", - "iopub.status.idle": "2024-05-23T15:13:03.141674Z", - "shell.execute_reply": "2024-05-23T15:13:03.141124Z" + "iopub.execute_input": "2024-05-24T13:26:52.456076Z", + "iopub.status.busy": "2024-05-24T13:26:52.455829Z", + "iopub.status.idle": "2024-05-24T13:26:52.464555Z", + "shell.execute_reply": "2024-05-24T13:26:52.464123Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.143781Z", - "iopub.status.busy": "2024-05-23T15:13:03.143608Z", - "iopub.status.idle": "2024-05-23T15:13:03.148101Z", - "shell.execute_reply": "2024-05-23T15:13:03.147682Z" + "iopub.execute_input": "2024-05-24T13:26:52.466607Z", + "iopub.status.busy": "2024-05-24T13:26:52.466288Z", + "iopub.status.idle": "2024-05-24T13:26:52.470874Z", + "shell.execute_reply": "2024-05-24T13:26:52.470457Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.150235Z", - "iopub.status.busy": "2024-05-23T15:13:03.149900Z", - "iopub.status.idle": "2024-05-23T15:13:03.331294Z", - "shell.execute_reply": "2024-05-23T15:13:03.330683Z" + "iopub.execute_input": "2024-05-24T13:26:52.473032Z", + "iopub.status.busy": "2024-05-24T13:26:52.472704Z", + "iopub.status.idle": "2024-05-24T13:26:52.656765Z", + "shell.execute_reply": "2024-05-24T13:26:52.656151Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.333781Z", - "iopub.status.busy": "2024-05-23T15:13:03.333475Z", - "iopub.status.idle": "2024-05-23T15:13:03.700850Z", - "shell.execute_reply": "2024-05-23T15:13:03.700262Z" + "iopub.execute_input": "2024-05-24T13:26:52.659281Z", + "iopub.status.busy": "2024-05-24T13:26:52.659098Z", + "iopub.status.idle": "2024-05-24T13:26:52.979036Z", + "shell.execute_reply": "2024-05-24T13:26:52.978470Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.703132Z", - "iopub.status.busy": "2024-05-23T15:13:03.702776Z", - "iopub.status.idle": "2024-05-23T15:13:03.725692Z", - "shell.execute_reply": "2024-05-23T15:13:03.725125Z" + "iopub.execute_input": "2024-05-24T13:26:52.981365Z", + "iopub.status.busy": "2024-05-24T13:26:52.981053Z", + "iopub.status.idle": "2024-05-24T13:26:53.005031Z", + "shell.execute_reply": "2024-05-24T13:26:53.004539Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.727836Z", - "iopub.status.busy": "2024-05-23T15:13:03.727649Z", - "iopub.status.idle": "2024-05-23T15:13:03.738581Z", - "shell.execute_reply": "2024-05-23T15:13:03.738117Z" + "iopub.execute_input": "2024-05-24T13:26:53.007690Z", + "iopub.status.busy": "2024-05-24T13:26:53.007371Z", + "iopub.status.idle": "2024-05-24T13:26:53.019215Z", + "shell.execute_reply": "2024-05-24T13:26:53.018596Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:03.740471Z", - "iopub.status.busy": "2024-05-23T15:13:03.740299Z", - "iopub.status.idle": "2024-05-23T15:13:05.338002Z", - "shell.execute_reply": "2024-05-23T15:13:05.337455Z" + "iopub.execute_input": "2024-05-24T13:26:53.022027Z", + "iopub.status.busy": "2024-05-24T13:26:53.021577Z", + "iopub.status.idle": "2024-05-24T13:26:54.720316Z", + "shell.execute_reply": "2024-05-24T13:26:54.719562Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.340438Z", - "iopub.status.busy": "2024-05-23T15:13:05.339995Z", - "iopub.status.idle": "2024-05-23T15:13:05.361380Z", - "shell.execute_reply": "2024-05-23T15:13:05.360935Z" + "iopub.execute_input": "2024-05-24T13:26:54.722961Z", + "iopub.status.busy": "2024-05-24T13:26:54.722484Z", + "iopub.status.idle": "2024-05-24T13:26:54.744675Z", + "shell.execute_reply": "2024-05-24T13:26:54.744196Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.363324Z", - "iopub.status.busy": "2024-05-23T15:13:05.363151Z", - "iopub.status.idle": "2024-05-23T15:13:05.382736Z", - "shell.execute_reply": "2024-05-23T15:13:05.382085Z" + "iopub.execute_input": "2024-05-24T13:26:54.746853Z", + "iopub.status.busy": "2024-05-24T13:26:54.746546Z", + "iopub.status.idle": "2024-05-24T13:26:54.766575Z", + "shell.execute_reply": "2024-05-24T13:26:54.765992Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.384962Z", - "iopub.status.busy": "2024-05-23T15:13:05.384535Z", - "iopub.status.idle": "2024-05-23T15:13:05.399326Z", - "shell.execute_reply": "2024-05-23T15:13:05.398755Z" + "iopub.execute_input": "2024-05-24T13:26:54.768731Z", + "iopub.status.busy": "2024-05-24T13:26:54.768390Z", + "iopub.status.idle": "2024-05-24T13:26:54.782576Z", + "shell.execute_reply": "2024-05-24T13:26:54.782090Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.401526Z", - "iopub.status.busy": "2024-05-23T15:13:05.401345Z", - "iopub.status.idle": "2024-05-23T15:13:05.422119Z", - "shell.execute_reply": "2024-05-23T15:13:05.421562Z" + "iopub.execute_input": "2024-05-24T13:26:54.784639Z", + "iopub.status.busy": "2024-05-24T13:26:54.784461Z", + "iopub.status.idle": "2024-05-24T13:26:54.804403Z", + "shell.execute_reply": "2024-05-24T13:26:54.803828Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9c5b31081b541bebfd320d4af6df565", + "model_id": "e6e757954d7048b1bb62429815f9a67a", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.424552Z", - "iopub.status.busy": "2024-05-23T15:13:05.424228Z", - "iopub.status.idle": "2024-05-23T15:13:05.438967Z", - "shell.execute_reply": "2024-05-23T15:13:05.438497Z" + "iopub.execute_input": "2024-05-24T13:26:54.806550Z", + "iopub.status.busy": "2024-05-24T13:26:54.806330Z", + "iopub.status.idle": "2024-05-24T13:26:54.822396Z", + "shell.execute_reply": "2024-05-24T13:26:54.821789Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.440908Z", - "iopub.status.busy": "2024-05-23T15:13:05.440649Z", - "iopub.status.idle": "2024-05-23T15:13:05.446601Z", - "shell.execute_reply": "2024-05-23T15:13:05.446039Z" + "iopub.execute_input": "2024-05-24T13:26:54.825005Z", + "iopub.status.busy": "2024-05-24T13:26:54.824558Z", + "iopub.status.idle": "2024-05-24T13:26:54.830868Z", + "shell.execute_reply": "2024-05-24T13:26:54.830408Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:05.448807Z", - "iopub.status.busy": "2024-05-23T15:13:05.448375Z", - "iopub.status.idle": "2024-05-23T15:13:05.465730Z", - "shell.execute_reply": "2024-05-23T15:13:05.465285Z" + "iopub.execute_input": "2024-05-24T13:26:54.833020Z", + "iopub.status.busy": "2024-05-24T13:26:54.832695Z", + "iopub.status.idle": "2024-05-24T13:26:54.851281Z", + "shell.execute_reply": "2024-05-24T13:26:54.850707Z" } }, "outputs": [ @@ -1431,7 +1431,97 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11d9ffa3e26545198ac985101adedb46": { + "1cbe95f6473e45e1ad106d9479a7aa23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2152ed2aafd249fcbc6b7d5db17301ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87c7494c65f54a2a80ac5db9ad1dea05", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5949aba18ce49d6bee351ccf7080215", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "47ff311848c04eeeae7b228e14609896": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6f0830f7b604733ac51463be2ff158b", + "placeholder": "​", + "style": "IPY_MODEL_e10f7eff927e4c99ba20c9c7f64e59fe", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12610.43 examples/s]" + } + }, + "4cce7ec17f5c4e49983d243958233c0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60536ff151ef44d3a35cdc2e470d80cd", + "placeholder": "​", + "style": "IPY_MODEL_1cbe95f6473e45e1ad106d9479a7aa23", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "60536ff151ef44d3a35cdc2e470d80cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1574,7 @@ "width": null } }, - "1a73aa9dfb644777affa0318eca169ca": { + "87c7494c65f54a2a80ac5db9ad1dea05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1537,43 +1627,23 @@ "width": null } }, - "20cd3afc55be420b9159cbb92ed1063b": { + "b5949aba18ce49d6bee351ccf7080215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2f295174d6fe4ef28a687af3f4612ef6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3ef4c5f05301418f8dea9f34b84003ab": { + "ca8260074ffb4f75b18753de9ae8af1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1626,7 +1696,49 @@ "width": null } }, - "6042ee3853834a3f98a77b4348678980": { + "e10f7eff927e4c99ba20c9c7f64e59fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6e757954d7048b1bb62429815f9a67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4cce7ec17f5c4e49983d243958233c0c", + "IPY_MODEL_2152ed2aafd249fcbc6b7d5db17301ec", + "IPY_MODEL_47ff311848c04eeeae7b228e14609896" + ], + "layout": "IPY_MODEL_ca8260074ffb4f75b18753de9ae8af1b", + "tabbable": null, + "tooltip": null + } + }, + "e6f0830f7b604733ac51463be2ff158b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1678,118 +1790,6 @@ "visibility": null, "width": null } - }, - "7fc223e421df4b63a990b1b51ad59e4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "b40e8b57c83c4b61a0e83f26f899863c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", - "placeholder": "​", - "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "b90cf3f03d374af08861ec5b4a4965fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", - "placeholder": "​", - "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 11909.48 examples/s]" - } - }, - "b9c5b31081b541bebfd320d4af6df565": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", - "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", - "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc" - ], - "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", - "tabbable": null, - "tooltip": null - } - }, - "fd4dc630750649d5a99e28de873e2e58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 9d678dc59..b3d68d483 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:08.011863Z", - "iopub.status.busy": "2024-05-23T15:13:08.011451Z", - "iopub.status.idle": "2024-05-23T15:13:09.157928Z", - "shell.execute_reply": "2024-05-23T15:13:09.157381Z" + "iopub.execute_input": "2024-05-24T13:26:57.755215Z", + "iopub.status.busy": "2024-05-24T13:26:57.754731Z", + "iopub.status.idle": "2024-05-24T13:26:58.945831Z", + "shell.execute_reply": "2024-05-24T13:26:58.945288Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.160433Z", - "iopub.status.busy": "2024-05-23T15:13:09.160019Z", - "iopub.status.idle": "2024-05-23T15:13:09.163038Z", - "shell.execute_reply": "2024-05-23T15:13:09.162585Z" + "iopub.execute_input": "2024-05-24T13:26:58.948395Z", + "iopub.status.busy": "2024-05-24T13:26:58.947953Z", + "iopub.status.idle": "2024-05-24T13:26:58.950901Z", + "shell.execute_reply": "2024-05-24T13:26:58.950458Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.165342Z", - "iopub.status.busy": "2024-05-23T15:13:09.164920Z", - "iopub.status.idle": "2024-05-23T15:13:09.174292Z", - "shell.execute_reply": "2024-05-23T15:13:09.173734Z" + "iopub.execute_input": "2024-05-24T13:26:58.952979Z", + "iopub.status.busy": "2024-05-24T13:26:58.952707Z", + "iopub.status.idle": "2024-05-24T13:26:58.962211Z", + "shell.execute_reply": "2024-05-24T13:26:58.961732Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.176442Z", - "iopub.status.busy": "2024-05-23T15:13:09.176115Z", - "iopub.status.idle": "2024-05-23T15:13:09.180706Z", - "shell.execute_reply": "2024-05-23T15:13:09.180245Z" + "iopub.execute_input": "2024-05-24T13:26:58.964154Z", + "iopub.status.busy": "2024-05-24T13:26:58.963825Z", + "iopub.status.idle": "2024-05-24T13:26:58.968278Z", + "shell.execute_reply": "2024-05-24T13:26:58.967866Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.182843Z", - "iopub.status.busy": "2024-05-23T15:13:09.182524Z", - "iopub.status.idle": "2024-05-23T15:13:09.365121Z", - "shell.execute_reply": "2024-05-23T15:13:09.364638Z" + "iopub.execute_input": "2024-05-24T13:26:58.970350Z", + "iopub.status.busy": "2024-05-24T13:26:58.970005Z", + "iopub.status.idle": "2024-05-24T13:26:59.155905Z", + "shell.execute_reply": "2024-05-24T13:26:59.155339Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.367594Z", - "iopub.status.busy": "2024-05-23T15:13:09.367314Z", - "iopub.status.idle": "2024-05-23T15:13:09.737215Z", - "shell.execute_reply": "2024-05-23T15:13:09.736617Z" + "iopub.execute_input": "2024-05-24T13:26:59.158377Z", + "iopub.status.busy": "2024-05-24T13:26:59.158004Z", + "iopub.status.idle": "2024-05-24T13:26:59.528573Z", + "shell.execute_reply": "2024-05-24T13:26:59.527992Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.739491Z", - "iopub.status.busy": "2024-05-23T15:13:09.739138Z", - "iopub.status.idle": "2024-05-23T15:13:09.741973Z", - "shell.execute_reply": "2024-05-23T15:13:09.741505Z" + "iopub.execute_input": "2024-05-24T13:26:59.531041Z", + "iopub.status.busy": "2024-05-24T13:26:59.530695Z", + "iopub.status.idle": "2024-05-24T13:26:59.533544Z", + "shell.execute_reply": "2024-05-24T13:26:59.533095Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.744001Z", - "iopub.status.busy": "2024-05-23T15:13:09.743687Z", - "iopub.status.idle": "2024-05-23T15:13:09.778838Z", - "shell.execute_reply": "2024-05-23T15:13:09.778249Z" + "iopub.execute_input": "2024-05-24T13:26:59.535733Z", + "iopub.status.busy": "2024-05-24T13:26:59.535361Z", + "iopub.status.idle": "2024-05-24T13:26:59.570768Z", + "shell.execute_reply": "2024-05-24T13:26:59.570130Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:09.781000Z", - "iopub.status.busy": "2024-05-23T15:13:09.780574Z", - "iopub.status.idle": "2024-05-23T15:13:11.413802Z", - "shell.execute_reply": "2024-05-23T15:13:11.413175Z" + "iopub.execute_input": "2024-05-24T13:26:59.572905Z", + "iopub.status.busy": "2024-05-24T13:26:59.572571Z", + "iopub.status.idle": "2024-05-24T13:27:01.257032Z", + "shell.execute_reply": "2024-05-24T13:27:01.256317Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.416302Z", - "iopub.status.busy": "2024-05-23T15:13:11.415961Z", - "iopub.status.idle": "2024-05-23T15:13:11.435863Z", - "shell.execute_reply": "2024-05-23T15:13:11.435422Z" + "iopub.execute_input": "2024-05-24T13:27:01.259613Z", + "iopub.status.busy": "2024-05-24T13:27:01.259082Z", + "iopub.status.idle": "2024-05-24T13:27:01.277203Z", + "shell.execute_reply": "2024-05-24T13:27:01.276742Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.437904Z", - "iopub.status.busy": "2024-05-23T15:13:11.437569Z", - "iopub.status.idle": "2024-05-23T15:13:11.444686Z", - "shell.execute_reply": "2024-05-23T15:13:11.444155Z" + "iopub.execute_input": "2024-05-24T13:27:01.279192Z", + "iopub.status.busy": "2024-05-24T13:27:01.279013Z", + "iopub.status.idle": "2024-05-24T13:27:01.285630Z", + "shell.execute_reply": "2024-05-24T13:27:01.285118Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.446883Z", - "iopub.status.busy": "2024-05-23T15:13:11.446583Z", - "iopub.status.idle": "2024-05-23T15:13:11.452444Z", - "shell.execute_reply": "2024-05-23T15:13:11.451995Z" + "iopub.execute_input": "2024-05-24T13:27:01.287769Z", + "iopub.status.busy": "2024-05-24T13:27:01.287394Z", + "iopub.status.idle": "2024-05-24T13:27:01.293208Z", + "shell.execute_reply": "2024-05-24T13:27:01.292768Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.454548Z", - "iopub.status.busy": "2024-05-23T15:13:11.454242Z", - "iopub.status.idle": "2024-05-23T15:13:11.464811Z", - "shell.execute_reply": "2024-05-23T15:13:11.464363Z" + "iopub.execute_input": "2024-05-24T13:27:01.295095Z", + "iopub.status.busy": "2024-05-24T13:27:01.294922Z", + "iopub.status.idle": "2024-05-24T13:27:01.305469Z", + "shell.execute_reply": "2024-05-24T13:27:01.304920Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.466881Z", - "iopub.status.busy": "2024-05-23T15:13:11.466586Z", - "iopub.status.idle": "2024-05-23T15:13:11.475380Z", - "shell.execute_reply": "2024-05-23T15:13:11.474932Z" + "iopub.execute_input": "2024-05-24T13:27:01.307619Z", + "iopub.status.busy": "2024-05-24T13:27:01.307316Z", + "iopub.status.idle": "2024-05-24T13:27:01.316582Z", + "shell.execute_reply": "2024-05-24T13:27:01.316132Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.477419Z", - "iopub.status.busy": "2024-05-23T15:13:11.477115Z", - "iopub.status.idle": "2024-05-23T15:13:11.483852Z", - "shell.execute_reply": "2024-05-23T15:13:11.483370Z" + "iopub.execute_input": "2024-05-24T13:27:01.318722Z", + "iopub.status.busy": "2024-05-24T13:27:01.318316Z", + "iopub.status.idle": "2024-05-24T13:27:01.325126Z", + "shell.execute_reply": "2024-05-24T13:27:01.324684Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.485997Z", - "iopub.status.busy": "2024-05-23T15:13:11.485484Z", - "iopub.status.idle": "2024-05-23T15:13:11.495072Z", - "shell.execute_reply": "2024-05-23T15:13:11.494517Z" + "iopub.execute_input": "2024-05-24T13:27:01.327090Z", + "iopub.status.busy": "2024-05-24T13:27:01.326901Z", + "iopub.status.idle": "2024-05-24T13:27:01.336920Z", + "shell.execute_reply": "2024-05-24T13:27:01.336424Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:11.497098Z", - "iopub.status.busy": "2024-05-23T15:13:11.496841Z", - "iopub.status.idle": "2024-05-23T15:13:11.508854Z", - "shell.execute_reply": "2024-05-23T15:13:11.508425Z" + "iopub.execute_input": "2024-05-24T13:27:01.338941Z", + "iopub.status.busy": "2024-05-24T13:27:01.338763Z", + "iopub.status.idle": "2024-05-24T13:27:01.351636Z", + "shell.execute_reply": "2024-05-24T13:27:01.351217Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index d81fd641f..55f425174 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -708,25 +708,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1039,7 +1039,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1071,7 +1071,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1103,7 +1103,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1899,35 +1899,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2021,35 +2021,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2077,7 +2077,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 46aed05bb..64c7825c5 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:14.178877Z", - "iopub.status.busy": "2024-05-23T15:13:14.178703Z", - "iopub.status.idle": "2024-05-23T15:13:17.006136Z", - "shell.execute_reply": "2024-05-23T15:13:17.005566Z" + "iopub.execute_input": "2024-05-24T13:27:03.925986Z", + "iopub.status.busy": "2024-05-24T13:27:03.925807Z", + "iopub.status.idle": "2024-05-24T13:27:06.897954Z", + "shell.execute_reply": "2024-05-24T13:27:06.897371Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:17.008867Z", - "iopub.status.busy": "2024-05-23T15:13:17.008294Z", - "iopub.status.idle": "2024-05-23T15:13:17.012007Z", - "shell.execute_reply": "2024-05-23T15:13:17.011451Z" + "iopub.execute_input": "2024-05-24T13:27:06.900724Z", + "iopub.status.busy": "2024-05-24T13:27:06.900243Z", + "iopub.status.idle": "2024-05-24T13:27:06.903853Z", + "shell.execute_reply": "2024-05-24T13:27:06.903388Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:17.013953Z", - "iopub.status.busy": "2024-05-23T15:13:17.013687Z", - "iopub.status.idle": "2024-05-23T15:13:20.091774Z", - "shell.execute_reply": "2024-05-23T15:13:20.091313Z" + "iopub.execute_input": "2024-05-24T13:27:06.906049Z", + "iopub.status.busy": "2024-05-24T13:27:06.905711Z", + "iopub.status.idle": "2024-05-24T13:27:08.327163Z", + "shell.execute_reply": "2024-05-24T13:27:08.326669Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "69d759b4cea445b9a973a55108546115", + "model_id": "bbc23f4933b64c3c8f937823ce999582", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a39fcf1c68242258be55654be94880e", + "model_id": "df8cda3a69044739be596b2aab1fe701", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e9c2d308abf54d4d984ae58a82d5078e", + "model_id": "ef52d56d419a4e64999c9e66d0163ff0", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90681addb12b455a9ba630f4d68088b2", + "model_id": "4d16052127cb42a1b2d4e08eb8cad647", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:20.093846Z", - "iopub.status.busy": "2024-05-23T15:13:20.093654Z", - "iopub.status.idle": "2024-05-23T15:13:20.097621Z", - "shell.execute_reply": "2024-05-23T15:13:20.097181Z" + "iopub.execute_input": "2024-05-24T13:27:08.329311Z", + "iopub.status.busy": "2024-05-24T13:27:08.328997Z", + "iopub.status.idle": "2024-05-24T13:27:08.332669Z", + "shell.execute_reply": "2024-05-24T13:27:08.332250Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:20.099530Z", - "iopub.status.busy": "2024-05-23T15:13:20.099340Z", - "iopub.status.idle": "2024-05-23T15:13:31.423568Z", - "shell.execute_reply": "2024-05-23T15:13:31.423019Z" + "iopub.execute_input": "2024-05-24T13:27:08.334730Z", + "iopub.status.busy": "2024-05-24T13:27:08.334344Z", + "iopub.status.idle": "2024-05-24T13:27:19.485538Z", + "shell.execute_reply": "2024-05-24T13:27:19.485021Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "25487563f91749b897153d9eb325490d", + "model_id": "1488fdd2b30c4bb188eeb10c6bdc7673", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:31.426592Z", - "iopub.status.busy": "2024-05-23T15:13:31.426156Z", - "iopub.status.idle": "2024-05-23T15:13:49.813258Z", - "shell.execute_reply": "2024-05-23T15:13:49.812619Z" + "iopub.execute_input": "2024-05-24T13:27:19.488332Z", + "iopub.status.busy": "2024-05-24T13:27:19.487851Z", + "iopub.status.idle": "2024-05-24T13:27:38.306885Z", + "shell.execute_reply": "2024-05-24T13:27:38.306313Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.816008Z", - "iopub.status.busy": "2024-05-23T15:13:49.815622Z", - "iopub.status.idle": "2024-05-23T15:13:49.821547Z", - "shell.execute_reply": "2024-05-23T15:13:49.821047Z" + "iopub.execute_input": "2024-05-24T13:27:38.309667Z", + "iopub.status.busy": "2024-05-24T13:27:38.309284Z", + "iopub.status.idle": "2024-05-24T13:27:38.315104Z", + "shell.execute_reply": "2024-05-24T13:27:38.314647Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.823587Z", - "iopub.status.busy": "2024-05-23T15:13:49.823249Z", - "iopub.status.idle": "2024-05-23T15:13:49.827320Z", - "shell.execute_reply": "2024-05-23T15:13:49.826781Z" + "iopub.execute_input": "2024-05-24T13:27:38.317239Z", + "iopub.status.busy": "2024-05-24T13:27:38.316914Z", + "iopub.status.idle": "2024-05-24T13:27:38.320782Z", + "shell.execute_reply": "2024-05-24T13:27:38.320366Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.829689Z", - "iopub.status.busy": "2024-05-23T15:13:49.829257Z", - "iopub.status.idle": "2024-05-23T15:13:49.838222Z", - "shell.execute_reply": "2024-05-23T15:13:49.837683Z" + "iopub.execute_input": "2024-05-24T13:27:38.322781Z", + "iopub.status.busy": "2024-05-24T13:27:38.322484Z", + "iopub.status.idle": "2024-05-24T13:27:38.331713Z", + "shell.execute_reply": "2024-05-24T13:27:38.331133Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.840412Z", - "iopub.status.busy": "2024-05-23T15:13:49.839978Z", - "iopub.status.idle": "2024-05-23T15:13:49.867196Z", - "shell.execute_reply": "2024-05-23T15:13:49.866751Z" + "iopub.execute_input": "2024-05-24T13:27:38.334073Z", + "iopub.status.busy": "2024-05-24T13:27:38.333721Z", + "iopub.status.idle": "2024-05-24T13:27:38.361430Z", + "shell.execute_reply": "2024-05-24T13:27:38.360819Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:13:49.869201Z", - "iopub.status.busy": "2024-05-23T15:13:49.868895Z", - "iopub.status.idle": "2024-05-23T15:14:21.536235Z", - "shell.execute_reply": "2024-05-23T15:14:21.535644Z" + "iopub.execute_input": "2024-05-24T13:27:38.364223Z", + "iopub.status.busy": "2024-05-24T13:27:38.363809Z", + "iopub.status.idle": "2024-05-24T13:28:11.869820Z", + "shell.execute_reply": "2024-05-24T13:28:11.869231Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.787\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.948\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.446\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.859\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f14eebd8eb0d4e95bac3630f3fe6d0e9", + "model_id": "f154be759b8748d59ec51f312c142f92", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b56ff307f7824e6e9bcf6a01e2e13370", + "model_id": "7e71d9e912bc4e71825d9371ff503ba4", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.667\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.936\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.671\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.657\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "248049c7381c4c2ca21235e34a098f2d", + "model_id": "d5ddf85180fa4342aad62bb64cb000fa", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "657ef4ecc31347e6ba461199c77ccec4", + "model_id": "cd8abb05f12b4ffdb9ad78fe5d66edef", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.704\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.926\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.377\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.856\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fa980c5195b462fbcc67f69e5d79e5d", + "model_id": "663d915187f54f088432e11455a4e3e0", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "37c18899cb7a47beb783877d59772e95", + "model_id": "c20c6841e7d84aec90f410f2526cbc52", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:21.538695Z", - "iopub.status.busy": "2024-05-23T15:14:21.538451Z", - "iopub.status.idle": "2024-05-23T15:14:21.554756Z", - "shell.execute_reply": "2024-05-23T15:14:21.554303Z" + "iopub.execute_input": "2024-05-24T13:28:11.872695Z", + "iopub.status.busy": "2024-05-24T13:28:11.872278Z", + "iopub.status.idle": "2024-05-24T13:28:11.889488Z", + "shell.execute_reply": "2024-05-24T13:28:11.889023Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:21.556886Z", - "iopub.status.busy": "2024-05-23T15:14:21.556543Z", - "iopub.status.idle": "2024-05-23T15:14:22.004751Z", - "shell.execute_reply": "2024-05-23T15:14:22.004127Z" + "iopub.execute_input": "2024-05-24T13:28:11.891737Z", + "iopub.status.busy": "2024-05-24T13:28:11.891478Z", + "iopub.status.idle": "2024-05-24T13:28:12.364248Z", + "shell.execute_reply": "2024-05-24T13:28:12.363690Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:14:22.007264Z", - "iopub.status.busy": "2024-05-23T15:14:22.007091Z", - "iopub.status.idle": "2024-05-23T15:17:57.570513Z", - "shell.execute_reply": "2024-05-23T15:17:57.569864Z" + "iopub.execute_input": "2024-05-24T13:28:12.366730Z", + "iopub.status.busy": "2024-05-24T13:28:12.366382Z", + "iopub.status.idle": "2024-05-24T13:31:49.378929Z", + "shell.execute_reply": "2024-05-24T13:31:49.378285Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c6e9e2c8ad734cec8bbdd869c9f46951", + "model_id": "ec29a42edd9749e78968600e14cb5c99", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:57.573092Z", - "iopub.status.busy": "2024-05-23T15:17:57.572457Z", - "iopub.status.idle": "2024-05-23T15:17:58.023761Z", - "shell.execute_reply": "2024-05-23T15:17:58.023198Z" + "iopub.execute_input": "2024-05-24T13:31:49.381344Z", + "iopub.status.busy": "2024-05-24T13:31:49.380919Z", + "iopub.status.idle": "2024-05-24T13:31:49.853921Z", + "shell.execute_reply": "2024-05-24T13:31:49.853321Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.026606Z", - "iopub.status.busy": "2024-05-23T15:17:58.026079Z", - "iopub.status.idle": "2024-05-23T15:17:58.089095Z", - "shell.execute_reply": "2024-05-23T15:17:58.088523Z" + "iopub.execute_input": "2024-05-24T13:31:49.856869Z", + "iopub.status.busy": "2024-05-24T13:31:49.856445Z", + "iopub.status.idle": "2024-05-24T13:31:49.919396Z", + "shell.execute_reply": "2024-05-24T13:31:49.918713Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.091322Z", - "iopub.status.busy": "2024-05-23T15:17:58.090982Z", - "iopub.status.idle": "2024-05-23T15:17:58.099604Z", - "shell.execute_reply": "2024-05-23T15:17:58.099176Z" + "iopub.execute_input": "2024-05-24T13:31:49.921715Z", + "iopub.status.busy": "2024-05-24T13:31:49.921381Z", + "iopub.status.idle": "2024-05-24T13:31:49.930444Z", + "shell.execute_reply": "2024-05-24T13:31:49.929976Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.101628Z", - "iopub.status.busy": "2024-05-23T15:17:58.101449Z", - "iopub.status.idle": "2024-05-23T15:17:58.105968Z", - "shell.execute_reply": "2024-05-23T15:17:58.105548Z" + "iopub.execute_input": "2024-05-24T13:31:49.932523Z", + "iopub.status.busy": "2024-05-24T13:31:49.932224Z", + "iopub.status.idle": "2024-05-24T13:31:49.936958Z", + "shell.execute_reply": "2024-05-24T13:31:49.936414Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.107985Z", - "iopub.status.busy": "2024-05-23T15:17:58.107659Z", - "iopub.status.idle": "2024-05-23T15:17:58.618614Z", - "shell.execute_reply": "2024-05-23T15:17:58.617887Z" + "iopub.execute_input": "2024-05-24T13:31:49.939149Z", + "iopub.status.busy": "2024-05-24T13:31:49.938752Z", + "iopub.status.idle": "2024-05-24T13:31:50.471492Z", + "shell.execute_reply": "2024-05-24T13:31:50.470890Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.620891Z", - "iopub.status.busy": "2024-05-23T15:17:58.620541Z", - "iopub.status.idle": "2024-05-23T15:17:58.628720Z", - "shell.execute_reply": "2024-05-23T15:17:58.628291Z" + "iopub.execute_input": "2024-05-24T13:31:50.473905Z", + "iopub.status.busy": "2024-05-24T13:31:50.473560Z", + "iopub.status.idle": "2024-05-24T13:31:50.482596Z", + "shell.execute_reply": "2024-05-24T13:31:50.481995Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.630903Z", - "iopub.status.busy": "2024-05-23T15:17:58.630580Z", - "iopub.status.idle": "2024-05-23T15:17:58.637500Z", - "shell.execute_reply": "2024-05-23T15:17:58.637078Z" + "iopub.execute_input": "2024-05-24T13:31:50.484884Z", + "iopub.status.busy": "2024-05-24T13:31:50.484554Z", + "iopub.status.idle": "2024-05-24T13:31:50.491975Z", + "shell.execute_reply": "2024-05-24T13:31:50.491502Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:58.639392Z", - "iopub.status.busy": "2024-05-23T15:17:58.639091Z", - "iopub.status.idle": "2024-05-23T15:17:59.084952Z", - "shell.execute_reply": "2024-05-23T15:17:59.084352Z" + "iopub.execute_input": "2024-05-24T13:31:50.494367Z", + "iopub.status.busy": "2024-05-24T13:31:50.494029Z", + "iopub.status.idle": "2024-05-24T13:31:50.980281Z", + "shell.execute_reply": "2024-05-24T13:31:50.979660Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.087500Z", - "iopub.status.busy": "2024-05-23T15:17:59.087139Z", - "iopub.status.idle": "2024-05-23T15:17:59.102651Z", - "shell.execute_reply": "2024-05-23T15:17:59.102136Z" + "iopub.execute_input": "2024-05-24T13:31:50.982835Z", + "iopub.status.busy": "2024-05-24T13:31:50.982474Z", + "iopub.status.idle": "2024-05-24T13:31:50.998899Z", + "shell.execute_reply": "2024-05-24T13:31:50.998343Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.104738Z", - "iopub.status.busy": "2024-05-23T15:17:59.104405Z", - "iopub.status.idle": "2024-05-23T15:17:59.109761Z", - "shell.execute_reply": "2024-05-23T15:17:59.109326Z" + "iopub.execute_input": "2024-05-24T13:31:51.001315Z", + "iopub.status.busy": "2024-05-24T13:31:51.000971Z", + "iopub.status.idle": "2024-05-24T13:31:51.006574Z", + "shell.execute_reply": "2024-05-24T13:31:51.006119Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.111760Z", - "iopub.status.busy": "2024-05-23T15:17:59.111508Z", - "iopub.status.idle": "2024-05-23T15:17:59.495102Z", - "shell.execute_reply": "2024-05-23T15:17:59.494423Z" + "iopub.execute_input": "2024-05-24T13:31:51.008934Z", + "iopub.status.busy": "2024-05-24T13:31:51.008585Z", + "iopub.status.idle": "2024-05-24T13:31:51.497914Z", + "shell.execute_reply": "2024-05-24T13:31:51.496834Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.497653Z", - "iopub.status.busy": "2024-05-23T15:17:59.497219Z", - "iopub.status.idle": "2024-05-23T15:17:59.506079Z", - "shell.execute_reply": "2024-05-23T15:17:59.505422Z" + "iopub.execute_input": "2024-05-24T13:31:51.500532Z", + "iopub.status.busy": "2024-05-24T13:31:51.500298Z", + "iopub.status.idle": "2024-05-24T13:31:51.511340Z", + "shell.execute_reply": "2024-05-24T13:31:51.510771Z" } }, "outputs": [ @@ -2178,47 +2178,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.508583Z", - "iopub.status.busy": "2024-05-23T15:17:59.508111Z", - "iopub.status.idle": "2024-05-23T15:17:59.513464Z", - "shell.execute_reply": "2024-05-23T15:17:59.512886Z" + "iopub.execute_input": "2024-05-24T13:31:51.514099Z", + "iopub.status.busy": "2024-05-24T13:31:51.513630Z", + "iopub.status.idle": "2024-05-24T13:31:51.520132Z", + "shell.execute_reply": "2024-05-24T13:31:51.519519Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.515549Z", - "iopub.status.busy": "2024-05-23T15:17:59.515376Z", - "iopub.status.idle": "2024-05-23T15:17:59.688523Z", - "shell.execute_reply": "2024-05-23T15:17:59.687834Z" + "iopub.execute_input": "2024-05-24T13:31:51.522884Z", + "iopub.status.busy": "2024-05-24T13:31:51.522397Z", + "iopub.status.idle": "2024-05-24T13:31:51.730159Z", + "shell.execute_reply": "2024-05-24T13:31:51.729620Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.691135Z", - "iopub.status.busy": "2024-05-23T15:17:59.690737Z", - "iopub.status.idle": "2024-05-23T15:17:59.698702Z", - "shell.execute_reply": "2024-05-23T15:17:59.698153Z" + "iopub.execute_input": "2024-05-24T13:31:51.732692Z", + "iopub.status.busy": "2024-05-24T13:31:51.732321Z", + "iopub.status.idle": "2024-05-24T13:31:51.740768Z", + "shell.execute_reply": "2024-05-24T13:31:51.740253Z" } }, "outputs": [ @@ -2394,47 +2394,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.700721Z", - "iopub.status.busy": "2024-05-23T15:17:59.700339Z", - "iopub.status.idle": "2024-05-23T15:17:59.882402Z", - "shell.execute_reply": "2024-05-23T15:17:59.881857Z" + "iopub.execute_input": "2024-05-24T13:31:51.743197Z", + "iopub.status.busy": "2024-05-24T13:31:51.742747Z", + "iopub.status.idle": "2024-05-24T13:31:51.921004Z", + "shell.execute_reply": "2024-05-24T13:31:51.920432Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:17:59.884676Z", - "iopub.status.busy": "2024-05-23T15:17:59.884318Z", - "iopub.status.idle": "2024-05-23T15:17:59.889882Z", - "shell.execute_reply": "2024-05-23T15:17:59.889425Z" + "iopub.execute_input": "2024-05-24T13:31:51.923697Z", + "iopub.status.busy": "2024-05-24T13:31:51.923128Z", + "iopub.status.idle": "2024-05-24T13:31:51.928356Z", + "shell.execute_reply": "2024-05-24T13:31:51.927737Z" }, "nbsphinx": "hidden" }, @@ -2538,7 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "030ce355308a4ae19b32b1803b815312": { + "00f7b79a3cde4e2a9a20f653645d1c70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,71 +2591,7 @@ "width": null } }, - "0667b778da0644e3bf432c6ed831b021": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0704c92cb83f453099a319c6760a3785": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "07bf3e196fd244339afe75d5bde48e3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "08653f32acef42e2b00105e4a07cceac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0be90ee02b694223bf88ee128a5982dd": { + "0144e93f27484842b05ac2e08b0f3b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2673,7 +2609,7 @@ "text_color": null } }, - "0d97ea1a5b604d47b3eae52595afaaa6": { + "016647c7324f4c9294fa2d6f5ff4ceab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2691,7 +2627,7 @@ "text_color": null } }, - "0ec33797bad14055a1de8a8f992c6134": { + "0196bff20c8547f3aa4d0b00aebd223b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2744,7 +2680,7 @@ "width": null } }, - "0f5ab466e4f646d38207b242988c32b4": { + "0230d674336240908fdb90154fe2a7a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2797,7 +2733,7 @@ "width": null } }, - "0fd3562f606b4206957d569480d562aa": { + "03bab8b4853b4c9ea6f1c16b67fc7382": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2812,15 +2748,61 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db184c07f55141f488cce3ec3fc3159d", + "layout": "IPY_MODEL_c14e7bb94c5641ff8b40f1fb0053bab1", "placeholder": "​", - "style": "IPY_MODEL_a1182345e3c5415db85095ad9e812fc0", + "style": "IPY_MODEL_b9fc7a3f1c2e490e95b4cd36add5f94b", "tabbable": null, "tooltip": null, "value": "100%" } }, - "1b5b85bd29334520a5f30f257261210b": { + "06aafaaa2f5344feaaef02b6bc4cd627": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c10054fe28ca488cb19260d9072650e8", + "placeholder": "​", + "style": "IPY_MODEL_60da4d725f54466d99e397ec517c7244", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "0745b7ab5d8e469286f080de62528c2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ad6769ae82214e61b4efadb803ffca3b", + "placeholder": "​", + "style": "IPY_MODEL_7b0f4450726642f4a38cda35448dbf57", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 94.4MB/s]" + } + }, + "094b04e0b0b34a3ea812012a60f2830d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2838,7 +2820,7 @@ "text_color": null } }, - "1c9a0ec998694ab98f33e462be441b15": { + "0b929ce444ee49e19bacc8e08c316395": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2891,7 +2873,23 @@ "width": null } }, - "1d54ef60f40b42d894c0c93aa023f924": { + "0cc886a763554ccea5966cb8b3ba114b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0d098b0f286b48408215c98f11b18bc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2909,7 +2907,7 @@ "text_color": null } }, - "1e824539d22548dea150f1f6eaac4b1b": { + "0e711f431b324e968de86b029303f0c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2924,68 +2922,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca7021afb6824ca39461db6224a967b1", + "layout": "IPY_MODEL_a0dd9e569dfe4ed986e7f91826b9413e", "placeholder": "​", - "style": "IPY_MODEL_ee5d7d4d67ff43599f10436b84389778", + "style": "IPY_MODEL_0144e93f27484842b05ac2e08b0f3b83", "tabbable": null, "tooltip": null, "value": "100%" } }, - "202b1a1d2d12458089afedd08ebd46e2": { - "model_module": "@jupyter-widgets/base", + "0e75b2feeec94b72b0f33ebfd4479b1a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_218db9a01a5b4174a4c836966d9cc227", + "placeholder": "​", + "style": "IPY_MODEL_a77d281066274273abe06607dd3d117d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.68it/s]" } }, - "208e6713136b4a069253f3c771aaba6b": { + "117ecc5c04a44d6b8834e199cc5efd89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3001,35 +2969,64 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_030ce355308a4ae19b32b1803b815312", + "layout": "IPY_MODEL_d45963eadf6749d483d5e3aa39352c6c", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_35f3ccfabf0d49caac51395e757e280c", + "style": "IPY_MODEL_713902fd45f349b9aae0bb2d942b6c1e", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "21cccf8e4fcd4f2d94689e3eff05b437": { + "13e898819ae344fd9ea831b7397fc1c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6972a0932e494c43bcde46db541b3066", + "placeholder": "​", + "style": "IPY_MODEL_3c05b942e35740099eb7aec2fb979c40", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1488fdd2b30c4bb188eeb10c6bdc7673": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5231594e5494ba9ba6f401322ad0bee", + "IPY_MODEL_6c90082500af4e8eb26db92f51e4c1e2", + "IPY_MODEL_e86ead3870124fccae23952e00b23250" + ], + "layout": "IPY_MODEL_eeeef3b2444c4ce09727af1785246d8e", + "tabbable": null, + "tooltip": null } }, - "224edd0c6d1f4706acb4172cafae63ed": { + "1aa37d05d9c34593bcd18ba24c7c926a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,25 +3079,7 @@ "width": null } }, - "22da545dee504e11be27c3f2e6f64a8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2340af9d58c945cf8f396b29d51c5971": { + "218db9a01a5b4174a4c836966d9cc227": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3153,102 +3132,10 @@ "width": null } }, - "248049c7381c4c2ca21235e34a098f2d": { - "model_module": "@jupyter-widgets/controls", + "24c945e5b29b44ae9f098554b1db4d04": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a580d919ecc46b788a811b3ead20ba7", - "IPY_MODEL_f886827e67fc4f5ebf2091c3e40b2145", - "IPY_MODEL_f8428265fb9b4bdf9292d5b2ca1bb430" - ], - "layout": "IPY_MODEL_7e8091f57a3e48f0beec85edfd7811da", - "tabbable": null, - "tooltip": null - } - }, - "24c7415f1d494854a1069f363af31ff8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "25487563f91749b897153d9eb325490d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9c0569b3288740e7957046e5602051ab", - "IPY_MODEL_bfd20dfe7ced4745b700d16343e6555b", - "IPY_MODEL_cf990872c7e342e89ab836f3533d98a2" - ], - "layout": "IPY_MODEL_7346b6312fb34127a555f3fec2151b56", - "tabbable": null, - "tooltip": null - } - }, - "25bb8e454c1b4f4d935e13896b5d8274": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0e7582bcb8d4e37a597d96f234740de", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdff082d070b4b489f5b4ea895722379", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "2600127ce03c42078c96ab55a769f409": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3298,7 +3185,7 @@ "width": null } }, - "2675c73049e44c728866da88db8c3923": { + "250f3bd0472e4789893b2d2d3b622692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3314,7 +3201,7 @@ "description_width": "" } }, - "26e2e4b700c047bab29090430c40724a": { + "2517cdec87a947d98de2d1884b79b2fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3332,33 +3219,25 @@ "text_color": null } }, - "2942fd8cccc94f7a8056af7f51912fc2": { + "2527caaef2b94e9981918052ae6b9ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_acb5a4c79d044476b4db375a95477ab0", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0667b778da0644e3bf432c6ed831b021", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2bc382ab8e9c427dadfe8be93c514c5a": { + "257b7c3736c54eaf884d345c1bb0c000": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3373,15 +3252,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e2e023f072f472ea9b18be5fada3997", + "layout": "IPY_MODEL_a04a0c7b2df74b9cbc5f2a00733d2734", "placeholder": "​", - "style": "IPY_MODEL_32d59b7fb1c4448fb76bc68f9d93bb7c", + "style": "IPY_MODEL_f53a489266ea49e2a24d62ece1bf0f26", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.30it/s]" + "value": " 40/40 [00:00<00:00, 61.20it/s]" } }, - "30a6fba3aeff40458e4522b8d25e2460": { + "2860104a06d6464a82be888ba22fb38b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3434,7 +3313,7 @@ "width": null } }, - "32baef6de51b4d538d24f5ba1bf84895": { + "28660dc64b8c42039ad276c3429360c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3449,131 +3328,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e7fd0e9c45c74cb28ae53d1c9eafe1a8", + "layout": "IPY_MODEL_393bfe80bdc243b38cc781d008636a5e", "placeholder": "​", - "style": "IPY_MODEL_1b5b85bd29334520a5f30f257261210b", + "style": "IPY_MODEL_2517cdec87a947d98de2d1884b79b2fe", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "32d59b7fb1c4448fb76bc68f9d93bb7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "35f3ccfabf0d49caac51395e757e280c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "36aa2c3c5ff544af9a903931b09909d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "37c18899cb7a47beb783877d59772e95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6452086a008b42aebee332fbe33f0041", - "IPY_MODEL_b1709cfcfebd4e239b073b0f0613405e", - "IPY_MODEL_dca0375df0034c4fa92f2a4bb7144667" - ], - "layout": "IPY_MODEL_a68d6cb805e84e869e126049bf112c66", - "tabbable": null, - "tooltip": null - } - }, - "3a39fcf1c68242258be55654be94880e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8fdd33091014c4e9b0f4f4c80d77d9c", - "IPY_MODEL_abb587732c974d45aed41ed4bf011226", - "IPY_MODEL_491545bb08cf4760b4d10904c9b53df4" - ], - "layout": "IPY_MODEL_a356f17edce64e9f82872d52935fddbc", - "tabbable": null, - "tooltip": null + "value": " 40/40 [00:00<00:00, 62.06it/s]" } }, - "3ba2af3e664b4c97bae98b5db800e998": { - "model_module": "@jupyter-widgets/controls", + "28e71a98dad04ef480705aed579239b0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3e2e023f072f472ea9b18be5fada3997": { + "2bfca25dda494672bb6720ccd4b565f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3626,89 +3442,14 @@ "width": null } }, - "4245c182c418461089ff64122026cf89": { - "model_module": "@jupyter-widgets/controls", + "2c0f9af339374b0998a6bcd7df57b1c2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "44ecddd2f63b459f93beee81622216a0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "491545bb08cf4760b4d10904c9b53df4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_891e83dfcd8a4b29b5cf22c81f04f1e4", - "placeholder": "​", - "style": "IPY_MODEL_24c7415f1d494854a1069f363af31ff8", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 16.9MB/s]" - } - }, - "4c710b91c2f74b6ea9a645d14d858e69": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4c86ed0a29c94761b734a38448c453eb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3754,7 +3495,69 @@ "width": null } }, - "4cb4b2dea30d4d719ce0cfc60436bd1b": { + "2e5059b821dd46ceab4d1d3a0cc09fa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4df9d549d04347f8b481d4560fd7100f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_250f3bd0472e4789893b2d2d3b622692", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "30ecb7dca6c2458e8d40d2e812ed07cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "32518465b7f14dfb948bc654d57c3a54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3426834a66414b7595279daad27f676e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3807,7 +3610,7 @@ "width": null } }, - "4d7f009af5c44671abfea28928c232a0": { + "393bfe80bdc243b38cc781d008636a5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3860,7 +3663,25 @@ "width": null } }, - "4fc726979875440198e98b47d8a460ac": { + "3c05b942e35740099eb7aec2fb979c40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4112a1008e75481b935c1a2f52e46007": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3913,7 +3734,7 @@ "width": null } }, - "507cadaf20704109acd37c5353daeec9": { + "426dedad66274fac9b2e484725f25c01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3966,7 +3787,7 @@ "width": null } }, - "52de047e28024acc9a8a1bcb2d119f80": { + "45c9925042e240978902575f87a4f39b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4019,71 +3840,23 @@ "width": null } }, - "58dbeddc86a84451839a6a06a29391e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aaeb70d3af9e48a9861025243e2b186a", - "placeholder": "​", - "style": "IPY_MODEL_0d97ea1a5b604d47b3eae52595afaaa6", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 631.48it/s]" - } - }, - "5affffa3c2c74016be203a330fa1116e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f5ab466e4f646d38207b242988c32b4", - "placeholder": "​", - "style": "IPY_MODEL_21cccf8e4fcd4f2d94689e3eff05b437", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5bb90a1b55c34a21bb9c4e5d6941cc93": { + "45d1054ac70947c085fab356cd8289eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "5dec51715c864d82b748de330097bc61": { + "45d8a35677a348dbb2a6ad07a349c9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4101,60 +3874,7 @@ "text_color": null } }, - "62fa3ddadaff4c599654918619bbacdb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6452086a008b42aebee332fbe33f0041": { + "47090d25e2a5482b9eded49a22066c42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4169,39 +3889,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbe1888706b24d19b3a94a33c39fdd6e", + "layout": "IPY_MODEL_de1cde7df2e14852bce1f13d5d85b709", "placeholder": "​", - "style": "IPY_MODEL_4c710b91c2f74b6ea9a645d14d858e69", + "style": "IPY_MODEL_fbb837c13832462fab2809af630e3ef8", "tabbable": null, "tooltip": null, "value": "100%" } }, - "657ef4ecc31347e6ba461199c77ccec4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5affffa3c2c74016be203a330fa1116e", - "IPY_MODEL_66dd02178fdf464494297942ea811afe", - "IPY_MODEL_2bc382ab8e9c427dadfe8be93c514c5a" - ], - "layout": "IPY_MODEL_507cadaf20704109acd37c5353daeec9", - "tabbable": null, - "tooltip": null - } - }, - "65b0520e8f194be380ba3213c43130e3": { + "47fe53c396b8434bad5308c201b238bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4254,230 +3950,70 @@ "width": null } }, - "66dd02178fdf464494297942ea811afe": { + "49aa27f6455d409ca44bd59a03ad98fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d25407a4af2348529af54e69cb4cdb39", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2675c73049e44c728866da88db8c3923", + "layout": "IPY_MODEL_628507666bb24ceba66496e782e75c63", + "placeholder": "​", + "style": "IPY_MODEL_698127e9f592496fa385c2e444e816d2", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "69d759b4cea445b9a973a55108546115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8e061de7b414e0a8911b9b283456372", - "IPY_MODEL_d33300be1bc84be4a49bca8b8c925a8e", - "IPY_MODEL_a10372230a91463d91407f070f2e68fe" - ], - "layout": "IPY_MODEL_4d7f009af5c44671abfea28928c232a0", - "tabbable": null, - "tooltip": null + "value": "100%" } }, - "6a2f4cef88b74e1eba63c94bb2bd5412": { + "4babd65517484d1897194a4aa021ad78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6b1f49b491524b529aec41aebcecd597": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b53ad2c3495a4380a386de2670df193c", - "placeholder": "​", - "style": "IPY_MODEL_36aa2c3c5ff544af9a903931b09909d1", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "bar_color": null, + "description_width": "" } }, - "6c492d495c854d4aaa733a6c4a69053a": { + "4d16052127cb42a1b2d4e08eb8cad647": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_887477fff78b408693fdfa4ab1646952", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c8d9f0fac0f64b38ac62e0a708d58948", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d738cd3650ed4d298173e32d6bc6c2dc", + "IPY_MODEL_db44c434f23048af998a723d37cefc80", + "IPY_MODEL_b2efe58609bc47f4a7688c1940dcc0c2" + ], + "layout": "IPY_MODEL_0230d674336240908fdb90154fe2a7a0", "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "6fd1907ecba34676ae3fd20801ef3e33": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7346b6312fb34127a555f3fec2151b56": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "7a513b0560ff4bf09146696eb95077ed": { + "4df9d549d04347f8b481d4560fd7100f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,33 +4066,30 @@ "width": null } }, - "7b0db4e438bd4cf0bbb0a609862c8652": { + "548e5cf360ee4614a2a12a94c0e79b25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db53115a53044737bff7390360d41ed7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44ecddd2f63b459f93beee81622216a0", + "layout": "IPY_MODEL_804c4dcfaac04cbfbec486f3b530dc1f", + "placeholder": "​", + "style": "IPY_MODEL_e0c8c8645ca0495889fbc65fe0b87950", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 60000/60000 [00:00<00:00, 295774.33 examples/s]" } }, - "7bbcbd023d9844fcb11c44b43fba9714": { + "5640121c317f4124bca171d99c5dd028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4609,25 +4142,23 @@ "width": null } }, - "7bd79c63938a4501be1f20daa3a69df5": { + "5c48ce274ef64239ba3832179b0795f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "7e8091f57a3e48f0beec85edfd7811da": { + "60946dc033e94e6988681eafe3e0968e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4680,60 +4211,25 @@ "width": null } }, - "7edc557e66c5439ab5478477342fee93": { - "model_module": "@jupyter-widgets/base", + "60da4d725f54466d99e397ec517c7244": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fa980c5195b462fbcc67f69e5d79e5d": { + "621f842b85d54f87886d7cb5a2622086": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4748,16 +4244,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c91b1e88c68248b0ad788baa0d0e9287", - "IPY_MODEL_208e6713136b4a069253f3c771aaba6b", - "IPY_MODEL_a101c3b6225b4fff860482618c744fe2" + "IPY_MODEL_06aafaaa2f5344feaaef02b6bc4cd627", + "IPY_MODEL_968ef48414cd46e5bba8eefac02c2b1f", + "IPY_MODEL_690aebbb3b564b9b986389bea55a0296" ], - "layout": "IPY_MODEL_e8d62619eeaa49329fdd0d7210bf3d72", + "layout": "IPY_MODEL_f07f4af5492b4a739de78affbf30880a", "tabbable": null, "tooltip": null } }, - "80c194d7e8024776938ccc9ae9f9514b": { + "628507666bb24ceba66496e782e75c63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4810,7 +4306,7 @@ "width": null } }, - "8680cef6bcba41358f0b2245e3ad4f1f": { + "641fb507a3b24872b2387e531839feb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4863,7 +4359,77 @@ "width": null } }, - "86ffa2eef8bf4d15821cd2bdee074613": { + "663d915187f54f088432e11455a4e3e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e711f431b324e968de86b029303f0c6", + "IPY_MODEL_f7d9896b86014bfca6b21aa9fd355eb3", + "IPY_MODEL_28660dc64b8c42039ad276c3429360c1" + ], + "layout": "IPY_MODEL_641fb507a3b24872b2387e531839feb5", + "tabbable": null, + "tooltip": null + } + }, + "6857a39e2c3f4babae83a3986dc6b76a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_28e71a98dad04ef480705aed579239b0", + "placeholder": "​", + "style": "IPY_MODEL_2527caaef2b94e9981918052ae6b9ca2", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "690aebbb3b564b9b986389bea55a0296": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c87c5b44dc094607a1e2536e0c76e57b", + "placeholder": "​", + "style": "IPY_MODEL_45d8a35677a348dbb2a6ad07a349c9a7", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 602.98it/s]" + } + }, + "6972a0932e494c43bcde46db541b3066": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4916,7 +4482,142 @@ "width": null } }, - "887477fff78b408693fdfa4ab1646952": { + "698127e9f592496fa385c2e444e816d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "69add8dcfede4e1db3d037538ca277f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f96cd91660d34ef09f6defe0d16aca46", + "placeholder": "​", + "style": "IPY_MODEL_761f43f34813463fa36e8a776ee96b4d", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 84.2MB/s]" + } + }, + "6a99755dfe684f3b843e82558d4f8f0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6c90082500af4e8eb26db92f51e4c1e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9bcb548e7094af980664e2955df2492", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_be5dbc5e37d143aaa03470ba9d23f660", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "713902fd45f349b9aae0bb2d942b6c1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "761f43f34813463fa36e8a776ee96b4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b0f4450726642f4a38cda35448dbf57": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7e0de3791e9847189ad45dff796c740e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4969,7 +4670,31 @@ "width": null } }, - "891e83dfcd8a4b29b5cf22c81f04f1e4": { + "7e71d9e912bc4e71825d9371ff503ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_13e898819ae344fd9ea831b7397fc1c5", + "IPY_MODEL_e51ff13e68b748e78c21e0faf5f5fcff", + "IPY_MODEL_257b7c3736c54eaf884d345c1bb0c000" + ], + "layout": "IPY_MODEL_b2b3e4c08f99488ea5fa4725c420b867", + "tabbable": null, + "tooltip": null + } + }, + "804c4dcfaac04cbfbec486f3b530dc1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5022,54 +4747,59 @@ "width": null } }, - "8a580d919ecc46b788a811b3ead20ba7": { + "875c5afc59bb4613b36d4d243c9c4bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65b0520e8f194be380ba3213c43130e3", - "placeholder": "​", - "style": "IPY_MODEL_ed16178859c14aeb83a170a1252fd377", + "layout": "IPY_MODEL_a0700c68476c47678a7755d32b43cb64", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6a99755dfe684f3b843e82558d4f8f0a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 30931277.0 } }, - "90681addb12b455a9ba630f4d68088b2": { + "93daebb7421e450499169b3621d45354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa4a8769a3864fa1a03f6b7030801bdb", - "IPY_MODEL_25bb8e454c1b4f4d935e13896b5d8274", - "IPY_MODEL_b52804ea50ca497c9cf1e9c22fd05122" - ], - "layout": "IPY_MODEL_2600127ce03c42078c96ab55a769f409", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e89a07aee11b463da8f55172ca3e31ec", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c48ce274ef64239ba3832179b0795f7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 5175617.0 } }, - "93da94005ed4434e8248172f689ff1a5": { + "9454eda087944ec8a005cded963a0032": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5085,7 +4815,69 @@ "description_width": "" } }, - "995a2a284fad415bbcb0e0ae2a0e6410": { + "968ef48414cd46e5bba8eefac02c2b1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2860104a06d6464a82be888ba22fb38b", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4babd65517484d1897194a4aa021ad78", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "96fd5614729d466ba28c0af8d696c5d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9b9748f80edd425799d050d7bad3cbd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a04a0c7b2df74b9cbc5f2a00733d2734": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5138,30 +4930,60 @@ "width": null } }, - "9c0569b3288740e7957046e5602051ab": { - "model_module": "@jupyter-widgets/controls", + "a0700c68476c47678a7755d32b43cb64": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_995a2a284fad415bbcb0e0ae2a0e6410", - "placeholder": "​", - "style": "IPY_MODEL_5dec51715c864d82b748de330097bc61", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9d8693dbac0647dfb10c6d708f9f06c3": { + "a0afb276010e4b0080b2666033730b08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5179,30 +5001,60 @@ "text_color": null } }, - "a101c3b6225b4fff860482618c744fe2": { - "model_module": "@jupyter-widgets/controls", + "a0dd9e569dfe4ed986e7f91826b9413e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d2144843ccdf4afe910d3ee09d6225d4", - "placeholder": "​", - "style": "IPY_MODEL_d3982319220a4345b6b31f518ac67059", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 66.85it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a10372230a91463d91407f070f2e68fe": { + "a5231594e5494ba9ba6f401322ad0bee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5217,15 +5069,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_52de047e28024acc9a8a1bcb2d119f80", + "layout": "IPY_MODEL_f6be1a7114264c53a2224f2436ccc8a9", "placeholder": "​", - "style": "IPY_MODEL_0be90ee02b694223bf88ee128a5982dd", + "style": "IPY_MODEL_ff52d698e5e642de82aea3823a04a736", "tabbable": null, "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 53.4MB/s]" + "value": "Map (num_proc=4): 100%" + } + }, + "a6a28d0f2b47401caf0cae21dddec24d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a1182345e3c5415db85095ad9e812fc0": { + "a77d281066274273abe06607dd3d117d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5243,23 +5148,7 @@ "text_color": null } }, - "a1a83560967d4d9086fc1ed8eb4022e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a26554ac0d4741ee8ce6d488ebdd9557": { + "a916124dc8c24ba58fd189b70bee4cc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5274,15 +5163,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be48e01365e04257a83f1b90333fb316", + "layout": "IPY_MODEL_7e0de3791e9847189ad45dff796c740e", "placeholder": "​", - "style": "IPY_MODEL_5bb90a1b55c34a21bb9c4e5d6941cc93", + "style": "IPY_MODEL_30ecb7dca6c2458e8d40d2e812ed07cc", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.80it/s]" + "value": "Downloading data: 100%" + } + }, + "a99840f110e646b7a55f40a01f51ea73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a356f17edce64e9f82872d52935fddbc": { + "ad6769ae82214e61b4efadb803ffca3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5335,7 +5240,7 @@ "width": null } }, - "a68d6cb805e84e869e126049bf112c66": { + "b1be6c847cf44eb18f5a7c185e709fd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5388,7 +5293,7 @@ "width": null } }, - "a71671406e95472faca260d5f99c99d3": { + "b2b3e4c08f99488ea5fa4725c420b867": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5441,7 +5346,113 @@ "width": null } }, - "aaeb70d3af9e48a9861025243e2b186a": { + "b2efe58609bc47f4a7688c1940dcc0c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24c945e5b29b44ae9f098554b1db4d04", + "placeholder": "​", + "style": "IPY_MODEL_9b9748f80edd425799d050d7bad3cbd5", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 261291.54 examples/s]" + } + }, + "b807d45c66d641ed8524c1f056539a0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b8bb2404aac1412b8bb46418102a55c3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1be6c847cf44eb18f5a7c185e709fd4", + "placeholder": "​", + "style": "IPY_MODEL_fd286398065c47da8af497abbe84ddad", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:47<00:00, 1215.96it/s]" + } + }, + "b9fc7a3f1c2e490e95b4cd36add5f94b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbc23f4933b64c3c8f937823ce999582": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9668295b2514b209889c36969705059", + "IPY_MODEL_875c5afc59bb4613b36d4d243c9c4bb4", + "IPY_MODEL_0745b7ab5d8e469286f080de62528c2d" + ], + "layout": "IPY_MODEL_a6a28d0f2b47401caf0cae21dddec24d", + "tabbable": null, + "tooltip": null + } + }, + "bc8284239469466ebe2cfe2c7f6fada1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5494,33 +5505,23 @@ "width": null } }, - "abb587732c974d45aed41ed4bf011226": { + "be5dbc5e37d143aaa03470ba9d23f660": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_80c194d7e8024776938ccc9ae9f9514b", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b46c85d1bf804de9bc4208ed2bdefad0", - "tabbable": null, - "tooltip": null, - "value": 5175617.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "acb5a4c79d044476b4db375a95477ab0": { + "be91e2ab09e44661837660097bd73ef1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5573,90 +5574,60 @@ "width": null } }, - "add58a12ec0c41d7b7d2aa0c3b7c306d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b1709cfcfebd4e239b073b0f0613405e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86ffa2eef8bf4d15821cd2bdee074613", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_93da94005ed4434e8248172f689ff1a5", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "b46c85d1bf804de9bc4208ed2bdefad0": { - "model_module": "@jupyter-widgets/controls", + "c10054fe28ca488cb19260d9072650e8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b52804ea50ca497c9cf1e9c22fd05122": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_224edd0c6d1f4706acb4172cafae63ed", - "placeholder": "​", - "style": "IPY_MODEL_4245c182c418461089ff64122026cf89", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 253045.44 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b53ad2c3495a4380a386de2670df193c": { + "c14e7bb94c5641ff8b40f1fb0053bab1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5709,7 +5680,7 @@ "width": null } }, - "b56ff307f7824e6e9bcf6a01e2e13370": { + "c20c6841e7d84aec90f410f2526cbc52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5724,16 +5695,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c04808d07d0c4dd7a2e5a404e28c878e", - "IPY_MODEL_ec1d49c3e119490eb8f6631158151d2b", - "IPY_MODEL_d46b9e0cfa06424eb5df26a312b2f2b6" + "IPY_MODEL_e7573f109a134d36affd8a32d9e15e49", + "IPY_MODEL_117ecc5c04a44d6b8834e199cc5efd89", + "IPY_MODEL_e93cebe6ea7744d29488d6b491b62e97" ], - "layout": "IPY_MODEL_a71671406e95472faca260d5f99c99d3", + "layout": "IPY_MODEL_5640121c317f4124bca171d99c5dd028", "tabbable": null, "tooltip": null } }, - "b5b59795214044109b8c4485b1502f02": { + "c2261fb5be954775bac379250fceaf5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c337e7aa7894429ea65616b4164b8a0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5786,7 +5773,33 @@ "width": null } }, - "be48e01365e04257a83f1b90333fb316": { + "c427c8a3424d455ba0d8f61d063d88dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47fe53c396b8434bad5308c201b238bb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a99840f110e646b7a55f40a01f51ea73", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c87c5b44dc094607a1e2536e0c76e57b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5839,51 +5852,7 @@ "width": null } }, - "be80350116fb40b3bed12b0aff69e95d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfd20dfe7ced4745b700d16343e6555b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8680cef6bcba41358f0b2245e3ad4f1f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3ba2af3e664b4c97bae98b5db800e998", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c04808d07d0c4dd7a2e5a404e28c878e": { + "c9668295b2514b209889c36969705059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5898,15 +5867,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fd1907ecba34676ae3fd20801ef3e33", + "layout": "IPY_MODEL_d197455d96434cfeb84312d0f8d9f611", "placeholder": "​", - "style": "IPY_MODEL_9d8693dbac0647dfb10c6d708f9f06c3", + "style": "IPY_MODEL_32518465b7f14dfb948bc654d57c3a54", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "c0873c29df7744be9aa5b33759f993e8": { + "c9bcb548e7094af980664e2955df2492": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5959,93 +5928,7 @@ "width": null } }, - "c6049231a5b448029b1cf256bd07e029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cdf17e98637647809f634113c13917ca", - "placeholder": "​", - "style": "IPY_MODEL_6a2f4cef88b74e1eba63c94bb2bd5412", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:46<00:00, 1262.85it/s]" - } - }, - "c6e9e2c8ad734cec8bbdd869c9f46951": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e824539d22548dea150f1f6eaac4b1b", - "IPY_MODEL_6c492d495c854d4aaa733a6c4a69053a", - "IPY_MODEL_c6049231a5b448029b1cf256bd07e029" - ], - "layout": "IPY_MODEL_0ec33797bad14055a1de8a8f992c6134", - "tabbable": null, - "tooltip": null - } - }, - "c8d9f0fac0f64b38ac62e0a708d58948": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c91b1e88c68248b0ad788baa0d0e9287": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_202b1a1d2d12458089afedd08ebd46e2", - "placeholder": "​", - "style": "IPY_MODEL_e5e080478dea430293650d0383c3b261", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ca7021afb6824ca39461db6224a967b1": { + "caf21311f0dc49ae89e78110e7572b32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6098,7 +5981,31 @@ "width": null } }, - "cdf17e98637647809f634113c13917ca": { + "cd8abb05f12b4ffdb9ad78fe5d66edef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5ce0138f3b5443a877fd14b45d0e289", + "IPY_MODEL_c427c8a3424d455ba0d8f61d063d88dc", + "IPY_MODEL_0e75b2feeec94b72b0f33ebfd4479b1a" + ], + "layout": "IPY_MODEL_bc8284239469466ebe2cfe2c7f6fada1", + "tabbable": null, + "tooltip": null + } + }, + "d197455d96434cfeb84312d0f8d9f611": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6151,72 +6058,60 @@ "width": null } }, - "cdff082d070b4b489f5b4ea895722379": { - "model_module": "@jupyter-widgets/controls", + "d1f5eb2b7e304db88bff33433945270d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ce3f6ddf3db34c9eb62018f9565b41b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2ada2a6c8424f7e844e74ae447501c5", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_07bf3e196fd244339afe75d5bde48e3e", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "cf990872c7e342e89ab836f3533d98a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4cb4b2dea30d4d719ce0cfc60436bd1b", - "placeholder": "​", - "style": "IPY_MODEL_add58a12ec0c41d7b7d2aa0c3b7c306d", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7664.09 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d2144843ccdf4afe910d3ee09d6225d4": { + "d45963eadf6749d483d5e3aa39352c6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6269,7 +6164,7 @@ "width": null } }, - "d25407a4af2348529af54e69cb4cdb39": { + "d491d0bc395f45a889658d7106159fd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6322,7 +6217,7 @@ "width": null } }, - "d33300be1bc84be4a49bca8b8c925a8e": { + "d54f16fa13ed48f8814a442710311015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6338,58 +6233,64 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30a6fba3aeff40458e4522b8d25e2460", - "max": 30931277.0, + "layout": "IPY_MODEL_3426834a66414b7595279daad27f676e", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0704c92cb83f453099a319c6760a3785", + "style": "IPY_MODEL_9454eda087944ec8a005cded963a0032", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": 60000.0 } }, - "d3982319220a4345b6b31f518ac67059": { + "d569e18c67b643f9930787a828fc5b9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1aa37d05d9c34593bcd18ba24c7c926a", + "placeholder": "​", + "style": "IPY_MODEL_094b04e0b0b34a3ea812012a60f2830d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.94it/s]" } }, - "d3a8377a5ef14c2db6ec3506f0bea044": { + "d5ddf85180fa4342aad62bb64cb000fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2340af9d58c945cf8f396b29d51c5971", - "placeholder": "​", - "style": "IPY_MODEL_26e2e4b700c047bab29090430c40724a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49aa27f6455d409ca44bd59a03ad98fd", + "IPY_MODEL_2e5059b821dd46ceab4d1d3a0cc09fa8", + "IPY_MODEL_d569e18c67b643f9930787a828fc5b9d" + ], + "layout": "IPY_MODEL_0b929ce444ee49e19bacc8e08c316395", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 282603.20 examples/s]" + "tooltip": null } }, - "d46b9e0cfa06424eb5df26a312b2f2b6": { + "d738cd3650ed4d298173e32d6bc6c2dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6404,91 +6305,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a513b0560ff4bf09146696eb95077ed", + "layout": "IPY_MODEL_caf21311f0dc49ae89e78110e7572b32", "placeholder": "​", - "style": "IPY_MODEL_22da545dee504e11be27c3f2e6f64a8d", + "style": "IPY_MODEL_016647c7324f4c9294fa2d6f5ff4ceab", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.23it/s]" + "value": "Generating test split: 100%" } }, - "d8e061de7b414e0a8911b9b283456372": { + "db44c434f23048af998a723d37cefc80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e94804474bc641e3abf7d83273142c42", - "placeholder": "​", - "style": "IPY_MODEL_be80350116fb40b3bed12b0aff69e95d", + "layout": "IPY_MODEL_60946dc033e94e6988681eafe3e0968e", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef7da80bbfa94967b5824f7f98c2b326", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 10000.0 } }, - "db184c07f55141f488cce3ec3fc3159d": { - "model_module": "@jupyter-widgets/base", + "dc29227facda4017a8a1455ffc47dd8a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db53115a53044737bff7390360d41ed7": { + "de1cde7df2e14852bce1f13d5d85b709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6541,30 +6410,7 @@ "width": null } }, - "dca0375df0034c4fa92f2a4bb7144667": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7edc557e66c5439ab5478477342fee93", - "placeholder": "​", - "style": "IPY_MODEL_e0d6afceb63747c1a757d7fbdceb43f0", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.23it/s]" - } - }, - "e03047faf85347f99c053a2b8eaec19c": { + "df8cda3a69044739be596b2aab1fe701": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6579,16 +6425,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_32baef6de51b4d538d24f5ba1bf84895", - "IPY_MODEL_ce3f6ddf3db34c9eb62018f9565b41b6", - "IPY_MODEL_58dbeddc86a84451839a6a06a29391e3" + "IPY_MODEL_a916124dc8c24ba58fd189b70bee4cc0", + "IPY_MODEL_93daebb7421e450499169b3621d45354", + "IPY_MODEL_69add8dcfede4e1db3d037538ca277f5" ], - "layout": "IPY_MODEL_4c86ed0a29c94761b734a38448c453eb", + "layout": "IPY_MODEL_4112a1008e75481b935c1a2f52e46007", "tabbable": null, "tooltip": null } }, - "e0d6afceb63747c1a757d7fbdceb43f0": { + "e0c8c8645ca0495889fbc65fe0b87950": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6606,60 +6452,49 @@ "text_color": null } }, - "e0e7582bcb8d4e37a597d96f234740de": { - "model_module": "@jupyter-widgets/base", + "e4b626817ae644f3be16e4c549fc4f5c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e51ff13e68b748e78c21e0faf5f5fcff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0196bff20c8547f3aa4d0b00aebd223b", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45d1054ac70947c085fab356cd8289eb", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "e2ada2a6c8424f7e844e74ae447501c5": { + "e624f21e03c746299614de27f47c50c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6712,25 +6547,53 @@ "width": null } }, - "e5e080478dea430293650d0383c3b261": { + "e7573f109a134d36affd8a32d9e15e49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1f5eb2b7e304db88bff33433945270d", + "placeholder": "​", + "style": "IPY_MODEL_b807d45c66d641ed8524c1f056539a0e", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "e86ead3870124fccae23952e00b23250": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8cd1bb5f08346858918daa781eca7ef", + "placeholder": "​", + "style": "IPY_MODEL_dc29227facda4017a8a1455ffc47dd8a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7712.20 examples/s]" } }, - "e7fd0e9c45c74cb28ae53d1c9eafe1a8": { + "e89a07aee11b463da8f55172ca3e31ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6783,7 +6646,54 @@ "width": null } }, - "e8d62619eeaa49329fdd0d7210bf3d72": { + "e93cebe6ea7744d29488d6b491b62e97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_426dedad66274fac9b2e484725f25c01", + "placeholder": "​", + "style": "IPY_MODEL_a0afb276010e4b0080b2666033730b08", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.95it/s]" + } + }, + "ec29a42edd9749e78968600e14cb5c99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_03bab8b4853b4c9ea6f1c16b67fc7382", + "IPY_MODEL_d54f16fa13ed48f8814a442710311015", + "IPY_MODEL_b8bb2404aac1412b8bb46418102a55c3" + ], + "layout": "IPY_MODEL_2c0f9af339374b0998a6bcd7df57b1c2", + "tabbable": null, + "tooltip": null + } + }, + "eeeef3b2444c4ce09727af1785246d8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6836,30 +6746,47 @@ "width": null } }, - "e8fdd33091014c4e9b0f4f4c80d77d9c": { + "ef52d56d419a4e64999c9e66d0163ff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c9a0ec998694ab98f33e462be441b15", - "placeholder": "​", - "style": "IPY_MODEL_f617831e108a4706bf348d7559e53793", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6857a39e2c3f4babae83a3986dc6b76a", + "IPY_MODEL_f3ccbc13507e4335b8f4460b6a726aef", + "IPY_MODEL_548e5cf360ee4614a2a12a94c0e79b25" + ], + "layout": "IPY_MODEL_be91e2ab09e44661837660097bd73ef1", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null + } + }, + "ef7da80bbfa94967b5824f7f98c2b326": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e94804474bc641e3abf7d83273142c42": { + "f07f4af5492b4a739de78affbf30880a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6912,7 +6839,7 @@ "width": null } }, - "e9c2d308abf54d4d984ae58a82d5078e": { + "f154be759b8748d59ec51f312c142f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6927,16 +6854,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b1f49b491524b529aec41aebcecd597", - "IPY_MODEL_7b0db4e438bd4cf0bbb0a609862c8652", - "IPY_MODEL_d3a8377a5ef14c2db6ec3506f0bea044" + "IPY_MODEL_47090d25e2a5482b9eded49a22066c42", + "IPY_MODEL_f3e91e87762b40809e560a440686e1cf", + "IPY_MODEL_fe7e1e8b0059436da427024e94e3dcd3" ], - "layout": "IPY_MODEL_4fc726979875440198e98b47d8a460ac", + "layout": "IPY_MODEL_c337e7aa7894429ea65616b4164b8a0c", "tabbable": null, "tooltip": null } }, - "ec1d49c3e119490eb8f6631158151d2b": { + "f3ccbc13507e4335b8f4460b6a726aef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6952,77 +6879,43 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b5b59795214044109b8c4485b1502f02", - "max": 40.0, + "layout": "IPY_MODEL_2bfca25dda494672bb6720ccd4b565f8", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a1a83560967d4d9086fc1ed8eb4022e1", + "style": "IPY_MODEL_e4b626817ae644f3be16e4c549fc4f5c", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "ed16178859c14aeb83a170a1252fd377": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee5d7d4d67ff43599f10436b84389778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "f14eebd8eb0d4e95bac3630f3fe6d0e9": { + "f3e91e87762b40809e560a440686e1cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0fd3562f606b4206957d569480d562aa", - "IPY_MODEL_2942fd8cccc94f7a8056af7f51912fc2", - "IPY_MODEL_a26554ac0d4741ee8ce6d488ebdd9557" - ], - "layout": "IPY_MODEL_f8781da8d96145e5a854e84da4344723", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d491d0bc395f45a889658d7106159fd2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2261fb5be954775bac379250fceaf5c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "f617831e108a4706bf348d7559e53793": { + "f53a489266ea49e2a24d62ece1bf0f26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7040,7 +6933,7 @@ "text_color": null } }, - "f8428265fb9b4bdf9292d5b2ca1bb430": { + "f5ce0138f3b5443a877fd14b45d0e289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7055,15 +6948,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7bbcbd023d9844fcb11c44b43fba9714", + "layout": "IPY_MODEL_45c9925042e240978902575f87a4f39b", "placeholder": "​", - "style": "IPY_MODEL_1d54ef60f40b42d894c0c93aa023f924", + "style": "IPY_MODEL_0d098b0f286b48408215c98f11b18bc2", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.79it/s]" + "value": "100%" } }, - "f8781da8d96145e5a854e84da4344723": { + "f6be1a7114264c53a2224f2436ccc8a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7116,7 +7009,7 @@ "width": null } }, - "f886827e67fc4f5ebf2091c3e40b2145": { + "f7d9896b86014bfca6b21aa9fd355eb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7132,40 +7025,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_62fa3ddadaff4c599654918619bbacdb", + "layout": "IPY_MODEL_e624f21e03c746299614de27f47c50c9", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_08653f32acef42e2b00105e4a07cceac", + "style": "IPY_MODEL_0cc886a763554ccea5966cb8b3ba114b", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "fa4a8769a3864fa1a03f6b7030801bdb": { - "model_module": "@jupyter-widgets/controls", + "f8cd1bb5f08346858918daa781eca7ef": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0873c29df7744be9aa5b33759f993e8", - "placeholder": "​", - "style": "IPY_MODEL_7bd79c63938a4501be1f20daa3a69df5", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbe1888706b24d19b3a94a33c39fdd6e": { + "f96cd91660d34ef09f6defe0d16aca46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7217,6 +7140,83 @@ "visibility": null, "width": null } + }, + "fbb837c13832462fab2809af630e3ef8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd286398065c47da8af497abbe84ddad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fe7e1e8b0059436da427024e94e3dcd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00f7b79a3cde4e2a9a20f653645d1c70", + "placeholder": "​", + "style": "IPY_MODEL_96fd5614729d466ba28c0af8d696c5d2", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 66.19it/s]" + } + }, + "ff52d698e5e642de82aea3823a04a736": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 3c6819ed2..c7b24c151 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:03.329661Z", - "iopub.status.busy": "2024-05-23T15:18:03.329245Z", - "iopub.status.idle": "2024-05-23T15:18:04.461620Z", - "shell.execute_reply": "2024-05-23T15:18:04.461105Z" + "iopub.execute_input": "2024-05-24T13:31:56.530735Z", + "iopub.status.busy": "2024-05-24T13:31:56.530248Z", + "iopub.status.idle": "2024-05-24T13:31:57.704731Z", + "shell.execute_reply": "2024-05-24T13:31:57.704155Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.464258Z", - "iopub.status.busy": "2024-05-23T15:18:04.463889Z", - "iopub.status.idle": "2024-05-23T15:18:04.482775Z", - "shell.execute_reply": "2024-05-23T15:18:04.482289Z" + "iopub.execute_input": "2024-05-24T13:31:57.707424Z", + "iopub.status.busy": "2024-05-24T13:31:57.706946Z", + "iopub.status.idle": "2024-05-24T13:31:57.727367Z", + "shell.execute_reply": "2024-05-24T13:31:57.726745Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.485239Z", - "iopub.status.busy": "2024-05-23T15:18:04.484734Z", - "iopub.status.idle": "2024-05-23T15:18:04.507036Z", - "shell.execute_reply": "2024-05-23T15:18:04.506428Z" + "iopub.execute_input": "2024-05-24T13:31:57.730169Z", + "iopub.status.busy": "2024-05-24T13:31:57.729718Z", + "iopub.status.idle": "2024-05-24T13:31:57.753577Z", + "shell.execute_reply": "2024-05-24T13:31:57.752985Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.509357Z", - "iopub.status.busy": "2024-05-23T15:18:04.508917Z", - "iopub.status.idle": "2024-05-23T15:18:04.512565Z", - "shell.execute_reply": "2024-05-23T15:18:04.512120Z" + "iopub.execute_input": "2024-05-24T13:31:57.756078Z", + "iopub.status.busy": "2024-05-24T13:31:57.755530Z", + "iopub.status.idle": "2024-05-24T13:31:57.759492Z", + "shell.execute_reply": "2024-05-24T13:31:57.758938Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.514658Z", - "iopub.status.busy": "2024-05-23T15:18:04.514334Z", - "iopub.status.idle": "2024-05-23T15:18:04.522118Z", - "shell.execute_reply": "2024-05-23T15:18:04.521679Z" + "iopub.execute_input": "2024-05-24T13:31:57.761743Z", + "iopub.status.busy": "2024-05-24T13:31:57.761221Z", + "iopub.status.idle": "2024-05-24T13:31:57.769384Z", + "shell.execute_reply": "2024-05-24T13:31:57.768742Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.524308Z", - "iopub.status.busy": "2024-05-23T15:18:04.524005Z", - "iopub.status.idle": "2024-05-23T15:18:04.527061Z", - "shell.execute_reply": "2024-05-23T15:18:04.526631Z" + "iopub.execute_input": "2024-05-24T13:31:57.772086Z", + "iopub.status.busy": "2024-05-24T13:31:57.771586Z", + "iopub.status.idle": "2024-05-24T13:31:57.774538Z", + "shell.execute_reply": "2024-05-24T13:31:57.773955Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:04.529029Z", - "iopub.status.busy": "2024-05-23T15:18:04.528706Z", - "iopub.status.idle": "2024-05-23T15:18:07.442990Z", - "shell.execute_reply": "2024-05-23T15:18:07.442453Z" + "iopub.execute_input": "2024-05-24T13:31:57.776669Z", + "iopub.status.busy": "2024-05-24T13:31:57.776260Z", + "iopub.status.idle": "2024-05-24T13:32:00.719926Z", + "shell.execute_reply": "2024-05-24T13:32:00.719283Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:07.445702Z", - "iopub.status.busy": "2024-05-23T15:18:07.445319Z", - "iopub.status.idle": "2024-05-23T15:18:07.455041Z", - "shell.execute_reply": "2024-05-23T15:18:07.454557Z" + "iopub.execute_input": "2024-05-24T13:32:00.722658Z", + "iopub.status.busy": "2024-05-24T13:32:00.722419Z", + "iopub.status.idle": "2024-05-24T13:32:00.732235Z", + "shell.execute_reply": "2024-05-24T13:32:00.731782Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:07.457020Z", - "iopub.status.busy": "2024-05-23T15:18:07.456721Z", - "iopub.status.idle": "2024-05-23T15:18:09.213100Z", - "shell.execute_reply": "2024-05-23T15:18:09.212489Z" + "iopub.execute_input": "2024-05-24T13:32:00.734454Z", + "iopub.status.busy": "2024-05-24T13:32:00.734085Z", + "iopub.status.idle": "2024-05-24T13:32:02.574348Z", + "shell.execute_reply": "2024-05-24T13:32:02.573702Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.216724Z", - "iopub.status.busy": "2024-05-23T15:18:09.215605Z", - "iopub.status.idle": "2024-05-23T15:18:09.239920Z", - "shell.execute_reply": "2024-05-23T15:18:09.239435Z" + "iopub.execute_input": "2024-05-24T13:32:02.577264Z", + "iopub.status.busy": "2024-05-24T13:32:02.576731Z", + "iopub.status.idle": "2024-05-24T13:32:02.601061Z", + "shell.execute_reply": "2024-05-24T13:32:02.600535Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.243460Z", - "iopub.status.busy": "2024-05-23T15:18:09.242516Z", - "iopub.status.idle": "2024-05-23T15:18:09.253523Z", - "shell.execute_reply": "2024-05-23T15:18:09.253048Z" + "iopub.execute_input": "2024-05-24T13:32:02.603623Z", + "iopub.status.busy": "2024-05-24T13:32:02.603324Z", + "iopub.status.idle": "2024-05-24T13:32:02.616388Z", + "shell.execute_reply": "2024-05-24T13:32:02.615873Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.256935Z", - "iopub.status.busy": "2024-05-23T15:18:09.256029Z", - "iopub.status.idle": "2024-05-23T15:18:09.268500Z", - "shell.execute_reply": "2024-05-23T15:18:09.268019Z" + "iopub.execute_input": "2024-05-24T13:32:02.619996Z", + "iopub.status.busy": "2024-05-24T13:32:02.619064Z", + "iopub.status.idle": "2024-05-24T13:32:02.632690Z", + "shell.execute_reply": "2024-05-24T13:32:02.632153Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.271942Z", - "iopub.status.busy": "2024-05-23T15:18:09.271025Z", - "iopub.status.idle": "2024-05-23T15:18:09.282057Z", - "shell.execute_reply": "2024-05-23T15:18:09.281577Z" + "iopub.execute_input": "2024-05-24T13:32:02.636465Z", + "iopub.status.busy": "2024-05-24T13:32:02.635540Z", + "iopub.status.idle": "2024-05-24T13:32:02.647544Z", + "shell.execute_reply": "2024-05-24T13:32:02.647024Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.285490Z", - "iopub.status.busy": "2024-05-23T15:18:09.284583Z", - "iopub.status.idle": "2024-05-23T15:18:09.296961Z", - "shell.execute_reply": "2024-05-23T15:18:09.296430Z" + "iopub.execute_input": "2024-05-24T13:32:02.651348Z", + "iopub.status.busy": "2024-05-24T13:32:02.650408Z", + "iopub.status.idle": "2024-05-24T13:32:02.662021Z", + "shell.execute_reply": "2024-05-24T13:32:02.661578Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.299060Z", - "iopub.status.busy": "2024-05-23T15:18:09.298891Z", - "iopub.status.idle": "2024-05-23T15:18:09.305638Z", - "shell.execute_reply": "2024-05-23T15:18:09.305225Z" + "iopub.execute_input": "2024-05-24T13:32:02.664398Z", + "iopub.status.busy": "2024-05-24T13:32:02.664017Z", + "iopub.status.idle": "2024-05-24T13:32:02.670791Z", + "shell.execute_reply": "2024-05-24T13:32:02.670225Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.307578Z", - "iopub.status.busy": "2024-05-23T15:18:09.307398Z", - "iopub.status.idle": "2024-05-23T15:18:09.313578Z", - "shell.execute_reply": "2024-05-23T15:18:09.313081Z" + "iopub.execute_input": "2024-05-24T13:32:02.672967Z", + "iopub.status.busy": "2024-05-24T13:32:02.672615Z", + "iopub.status.idle": "2024-05-24T13:32:02.679381Z", + "shell.execute_reply": "2024-05-24T13:32:02.678852Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:09.315564Z", - "iopub.status.busy": "2024-05-23T15:18:09.315393Z", - "iopub.status.idle": "2024-05-23T15:18:09.321703Z", - "shell.execute_reply": "2024-05-23T15:18:09.321251Z" + "iopub.execute_input": "2024-05-24T13:32:02.681608Z", + "iopub.status.busy": "2024-05-24T13:32:02.681259Z", + "iopub.status.idle": "2024-05-24T13:32:02.688063Z", + "shell.execute_reply": "2024-05-24T13:32:02.687596Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 7ce5ef921..510fe9573 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -772,7 +772,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
+Classes: {'apple_pay_or_google_pay', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index a3c570288..caf9e37a7 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:11.824777Z", - "iopub.status.busy": "2024-05-23T15:18:11.824605Z", - "iopub.status.idle": "2024-05-23T15:18:14.504599Z", - "shell.execute_reply": "2024-05-23T15:18:14.504085Z" + "iopub.execute_input": "2024-05-24T13:32:05.430249Z", + "iopub.status.busy": "2024-05-24T13:32:05.430031Z", + "iopub.status.idle": "2024-05-24T13:32:08.226508Z", + "shell.execute_reply": "2024-05-24T13:32:08.225908Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.507121Z", - "iopub.status.busy": "2024-05-23T15:18:14.506825Z", - "iopub.status.idle": "2024-05-23T15:18:14.510173Z", - "shell.execute_reply": "2024-05-23T15:18:14.509615Z" + "iopub.execute_input": "2024-05-24T13:32:08.229543Z", + "iopub.status.busy": "2024-05-24T13:32:08.228893Z", + "iopub.status.idle": "2024-05-24T13:32:08.232463Z", + "shell.execute_reply": "2024-05-24T13:32:08.232032Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.512403Z", - "iopub.status.busy": "2024-05-23T15:18:14.512093Z", - "iopub.status.idle": "2024-05-23T15:18:14.515209Z", - "shell.execute_reply": "2024-05-23T15:18:14.514655Z" + "iopub.execute_input": "2024-05-24T13:32:08.234432Z", + "iopub.status.busy": "2024-05-24T13:32:08.234237Z", + "iopub.status.idle": "2024-05-24T13:32:08.237361Z", + "shell.execute_reply": "2024-05-24T13:32:08.236902Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.517314Z", - "iopub.status.busy": "2024-05-23T15:18:14.517017Z", - "iopub.status.idle": "2024-05-23T15:18:14.537637Z", - "shell.execute_reply": "2024-05-23T15:18:14.537152Z" + "iopub.execute_input": "2024-05-24T13:32:08.239452Z", + "iopub.status.busy": "2024-05-24T13:32:08.239120Z", + "iopub.status.idle": "2024-05-24T13:32:08.262296Z", + "shell.execute_reply": "2024-05-24T13:32:08.261667Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.539828Z", - "iopub.status.busy": "2024-05-23T15:18:14.539419Z", - "iopub.status.idle": "2024-05-23T15:18:14.543260Z", - "shell.execute_reply": "2024-05-23T15:18:14.542814Z" + "iopub.execute_input": "2024-05-24T13:32:08.264519Z", + "iopub.status.busy": "2024-05-24T13:32:08.264314Z", + "iopub.status.idle": "2024-05-24T13:32:08.268231Z", + "shell.execute_reply": "2024-05-24T13:32:08.267695Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" + "Classes: {'apple_pay_or_google_pay', 'card_payment_fee_charged', 'visa_or_mastercard', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.545089Z", - "iopub.status.busy": "2024-05-23T15:18:14.544915Z", - "iopub.status.idle": "2024-05-23T15:18:14.548143Z", - "shell.execute_reply": "2024-05-23T15:18:14.547673Z" + "iopub.execute_input": "2024-05-24T13:32:08.270366Z", + "iopub.status.busy": "2024-05-24T13:32:08.270164Z", + "iopub.status.idle": "2024-05-24T13:32:08.273265Z", + "shell.execute_reply": "2024-05-24T13:32:08.272724Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:14.550053Z", - "iopub.status.busy": "2024-05-23T15:18:14.549886Z", - "iopub.status.idle": "2024-05-23T15:18:18.166914Z", - "shell.execute_reply": "2024-05-23T15:18:18.166251Z" + "iopub.execute_input": "2024-05-24T13:32:08.275260Z", + "iopub.status.busy": "2024-05-24T13:32:08.275075Z", + "iopub.status.idle": "2024-05-24T13:32:11.912268Z", + "shell.execute_reply": "2024-05-24T13:32:11.911703Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:18.169601Z", - "iopub.status.busy": "2024-05-23T15:18:18.169376Z", - "iopub.status.idle": "2024-05-23T15:18:19.017896Z", - "shell.execute_reply": "2024-05-23T15:18:19.017318Z" + "iopub.execute_input": "2024-05-24T13:32:11.914918Z", + "iopub.status.busy": "2024-05-24T13:32:11.914674Z", + "iopub.status.idle": "2024-05-24T13:32:12.774441Z", + "shell.execute_reply": "2024-05-24T13:32:12.773821Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:19.020812Z", - "iopub.status.busy": "2024-05-23T15:18:19.020449Z", - "iopub.status.idle": "2024-05-23T15:18:19.023280Z", - "shell.execute_reply": "2024-05-23T15:18:19.022794Z" + "iopub.execute_input": "2024-05-24T13:32:12.777637Z", + "iopub.status.busy": "2024-05-24T13:32:12.777275Z", + "iopub.status.idle": "2024-05-24T13:32:12.780244Z", + "shell.execute_reply": "2024-05-24T13:32:12.779747Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:19.025587Z", - "iopub.status.busy": "2024-05-23T15:18:19.025228Z", - "iopub.status.idle": "2024-05-23T15:18:20.567743Z", - "shell.execute_reply": "2024-05-23T15:18:20.567101Z" + "iopub.execute_input": "2024-05-24T13:32:12.782733Z", + "iopub.status.busy": "2024-05-24T13:32:12.782339Z", + "iopub.status.idle": "2024-05-24T13:32:14.395635Z", + "shell.execute_reply": "2024-05-24T13:32:14.394989Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.572027Z", - "iopub.status.busy": "2024-05-23T15:18:20.570682Z", - "iopub.status.idle": "2024-05-23T15:18:20.596267Z", - "shell.execute_reply": "2024-05-23T15:18:20.595766Z" + "iopub.execute_input": "2024-05-24T13:32:14.399082Z", + "iopub.status.busy": "2024-05-24T13:32:14.398250Z", + "iopub.status.idle": "2024-05-24T13:32:14.423409Z", + "shell.execute_reply": "2024-05-24T13:32:14.422842Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.599843Z", - "iopub.status.busy": "2024-05-23T15:18:20.598765Z", - "iopub.status.idle": "2024-05-23T15:18:20.610446Z", - "shell.execute_reply": "2024-05-23T15:18:20.609941Z" + "iopub.execute_input": "2024-05-24T13:32:14.426962Z", + "iopub.status.busy": "2024-05-24T13:32:14.425854Z", + "iopub.status.idle": "2024-05-24T13:32:14.438089Z", + "shell.execute_reply": "2024-05-24T13:32:14.437583Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.613975Z", - "iopub.status.busy": "2024-05-23T15:18:20.612923Z", - "iopub.status.idle": "2024-05-23T15:18:20.619127Z", - "shell.execute_reply": "2024-05-23T15:18:20.618706Z" + "iopub.execute_input": "2024-05-24T13:32:14.441801Z", + "iopub.status.busy": "2024-05-24T13:32:14.440735Z", + "iopub.status.idle": "2024-05-24T13:32:14.447097Z", + "shell.execute_reply": "2024-05-24T13:32:14.446682Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.621375Z", - "iopub.status.busy": "2024-05-23T15:18:20.620885Z", - "iopub.status.idle": "2024-05-23T15:18:20.627546Z", - "shell.execute_reply": "2024-05-23T15:18:20.627080Z" + "iopub.execute_input": "2024-05-24T13:32:14.449998Z", + "iopub.status.busy": "2024-05-24T13:32:14.449099Z", + "iopub.status.idle": "2024-05-24T13:32:14.456718Z", + "shell.execute_reply": "2024-05-24T13:32:14.455970Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.629614Z", - "iopub.status.busy": "2024-05-23T15:18:20.629324Z", - "iopub.status.idle": "2024-05-23T15:18:20.635706Z", - "shell.execute_reply": "2024-05-23T15:18:20.635150Z" + "iopub.execute_input": "2024-05-24T13:32:14.459140Z", + "iopub.status.busy": "2024-05-24T13:32:14.458819Z", + "iopub.status.idle": "2024-05-24T13:32:14.466211Z", + "shell.execute_reply": "2024-05-24T13:32:14.465499Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.637695Z", - "iopub.status.busy": "2024-05-23T15:18:20.637387Z", - "iopub.status.idle": "2024-05-23T15:18:20.643049Z", - "shell.execute_reply": "2024-05-23T15:18:20.642501Z" + "iopub.execute_input": "2024-05-24T13:32:14.468451Z", + "iopub.status.busy": "2024-05-24T13:32:14.468143Z", + "iopub.status.idle": "2024-05-24T13:32:14.474478Z", + "shell.execute_reply": "2024-05-24T13:32:14.473992Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.644992Z", - "iopub.status.busy": "2024-05-23T15:18:20.644695Z", - "iopub.status.idle": "2024-05-23T15:18:20.653055Z", - "shell.execute_reply": "2024-05-23T15:18:20.652504Z" + "iopub.execute_input": "2024-05-24T13:32:14.476525Z", + "iopub.status.busy": "2024-05-24T13:32:14.476212Z", + "iopub.status.idle": "2024-05-24T13:32:14.485548Z", + "shell.execute_reply": "2024-05-24T13:32:14.484981Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.655060Z", - "iopub.status.busy": "2024-05-23T15:18:20.654763Z", - "iopub.status.idle": "2024-05-23T15:18:20.660041Z", - "shell.execute_reply": "2024-05-23T15:18:20.659490Z" + "iopub.execute_input": "2024-05-24T13:32:14.487725Z", + "iopub.status.busy": "2024-05-24T13:32:14.487319Z", + "iopub.status.idle": "2024-05-24T13:32:14.492914Z", + "shell.execute_reply": "2024-05-24T13:32:14.492385Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.661947Z", - "iopub.status.busy": "2024-05-23T15:18:20.661627Z", - "iopub.status.idle": "2024-05-23T15:18:20.666886Z", - "shell.execute_reply": "2024-05-23T15:18:20.666400Z" + "iopub.execute_input": "2024-05-24T13:32:14.495014Z", + "iopub.status.busy": "2024-05-24T13:32:14.494675Z", + "iopub.status.idle": "2024-05-24T13:32:14.500190Z", + "shell.execute_reply": "2024-05-24T13:32:14.499727Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.668902Z", - "iopub.status.busy": "2024-05-23T15:18:20.668602Z", - "iopub.status.idle": "2024-05-23T15:18:20.672008Z", - "shell.execute_reply": "2024-05-23T15:18:20.671583Z" + "iopub.execute_input": "2024-05-24T13:32:14.502338Z", + "iopub.status.busy": "2024-05-24T13:32:14.502009Z", + "iopub.status.idle": "2024-05-24T13:32:14.505747Z", + "shell.execute_reply": "2024-05-24T13:32:14.505292Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:20.674040Z", - "iopub.status.busy": "2024-05-23T15:18:20.673742Z", - "iopub.status.idle": "2024-05-23T15:18:20.678904Z", - "shell.execute_reply": "2024-05-23T15:18:20.678310Z" + "iopub.execute_input": "2024-05-24T13:32:14.507814Z", + "iopub.status.busy": "2024-05-24T13:32:14.507515Z", + "iopub.status.idle": "2024-05-24T13:32:14.512939Z", + "shell.execute_reply": "2024-05-24T13:32:14.512392Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index caba51307..9b8e261d9 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:23.569117Z", - "iopub.status.busy": "2024-05-23T15:18:23.568584Z", - "iopub.status.idle": "2024-05-23T15:18:24.680010Z", - "shell.execute_reply": "2024-05-23T15:18:24.679516Z" + "iopub.execute_input": "2024-05-24T13:32:18.756828Z", + "iopub.status.busy": "2024-05-24T13:32:18.756654Z", + "iopub.status.idle": "2024-05-24T13:32:19.924107Z", + "shell.execute_reply": "2024-05-24T13:32:19.923539Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.682646Z", - "iopub.status.busy": "2024-05-23T15:18:24.682170Z", - "iopub.status.idle": "2024-05-23T15:18:24.685078Z", - "shell.execute_reply": "2024-05-23T15:18:24.684631Z" + "iopub.execute_input": "2024-05-24T13:32:19.926790Z", + "iopub.status.busy": "2024-05-24T13:32:19.926348Z", + "iopub.status.idle": "2024-05-24T13:32:19.929293Z", + "shell.execute_reply": "2024-05-24T13:32:19.928744Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.687271Z", - "iopub.status.busy": "2024-05-23T15:18:24.686871Z", - "iopub.status.idle": "2024-05-23T15:18:24.698963Z", - "shell.execute_reply": "2024-05-23T15:18:24.698415Z" + "iopub.execute_input": "2024-05-24T13:32:19.931607Z", + "iopub.status.busy": "2024-05-24T13:32:19.931306Z", + "iopub.status.idle": "2024-05-24T13:32:19.944201Z", + "shell.execute_reply": "2024-05-24T13:32:19.943637Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:24.701032Z", - "iopub.status.busy": "2024-05-23T15:18:24.700708Z", - "iopub.status.idle": "2024-05-23T15:18:28.638009Z", - "shell.execute_reply": "2024-05-23T15:18:28.637529Z" + "iopub.execute_input": "2024-05-24T13:32:19.946405Z", + "iopub.status.busy": "2024-05-24T13:32:19.946079Z", + "iopub.status.idle": "2024-05-24T13:32:24.959545Z", + "shell.execute_reply": "2024-05-24T13:32:24.959070Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 658a6499c..e34e86131 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -812,13 +812,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1763,7 +1763,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index bae5aecd3..66190e729 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:30.779423Z", - "iopub.status.busy": "2024-05-23T15:18:30.779082Z", - "iopub.status.idle": "2024-05-23T15:18:31.876497Z", - "shell.execute_reply": "2024-05-23T15:18:31.875906Z" + "iopub.execute_input": "2024-05-24T13:32:27.072274Z", + "iopub.status.busy": "2024-05-24T13:32:27.072096Z", + "iopub.status.idle": "2024-05-24T13:32:28.308978Z", + "shell.execute_reply": "2024-05-24T13:32:28.308319Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:31.879405Z", - "iopub.status.busy": "2024-05-23T15:18:31.878894Z", - "iopub.status.idle": "2024-05-23T15:18:31.882289Z", - "shell.execute_reply": "2024-05-23T15:18:31.881726Z" + "iopub.execute_input": "2024-05-24T13:32:28.311877Z", + "iopub.status.busy": "2024-05-24T13:32:28.311546Z", + "iopub.status.idle": "2024-05-24T13:32:28.315044Z", + "shell.execute_reply": "2024-05-24T13:32:28.314510Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:31.884374Z", - "iopub.status.busy": "2024-05-23T15:18:31.883963Z", - "iopub.status.idle": "2024-05-23T15:18:34.796466Z", - "shell.execute_reply": "2024-05-23T15:18:34.795858Z" + "iopub.execute_input": "2024-05-24T13:32:28.317063Z", + "iopub.status.busy": "2024-05-24T13:32:28.316794Z", + "iopub.status.idle": "2024-05-24T13:32:31.465640Z", + "shell.execute_reply": "2024-05-24T13:32:31.465005Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.799374Z", - "iopub.status.busy": "2024-05-23T15:18:34.798780Z", - "iopub.status.idle": "2024-05-23T15:18:34.835628Z", - "shell.execute_reply": "2024-05-23T15:18:34.834909Z" + "iopub.execute_input": "2024-05-24T13:32:31.468695Z", + "iopub.status.busy": "2024-05-24T13:32:31.468010Z", + "iopub.status.idle": "2024-05-24T13:32:31.509802Z", + "shell.execute_reply": "2024-05-24T13:32:31.509197Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.838156Z", - "iopub.status.busy": "2024-05-23T15:18:34.837914Z", - "iopub.status.idle": "2024-05-23T15:18:34.873183Z", - "shell.execute_reply": "2024-05-23T15:18:34.872483Z" + "iopub.execute_input": "2024-05-24T13:32:31.512351Z", + "iopub.status.busy": "2024-05-24T13:32:31.512038Z", + "iopub.status.idle": "2024-05-24T13:32:31.550301Z", + "shell.execute_reply": "2024-05-24T13:32:31.549561Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.875734Z", - "iopub.status.busy": "2024-05-23T15:18:34.875501Z", - "iopub.status.idle": "2024-05-23T15:18:34.878527Z", - "shell.execute_reply": "2024-05-23T15:18:34.877990Z" + "iopub.execute_input": "2024-05-24T13:32:31.553000Z", + "iopub.status.busy": "2024-05-24T13:32:31.552743Z", + "iopub.status.idle": "2024-05-24T13:32:31.556024Z", + "shell.execute_reply": "2024-05-24T13:32:31.555547Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.880733Z", - "iopub.status.busy": "2024-05-23T15:18:34.880290Z", - "iopub.status.idle": "2024-05-23T15:18:34.883061Z", - "shell.execute_reply": "2024-05-23T15:18:34.882603Z" + "iopub.execute_input": "2024-05-24T13:32:31.558515Z", + "iopub.status.busy": "2024-05-24T13:32:31.557989Z", + "iopub.status.idle": "2024-05-24T13:32:31.560873Z", + "shell.execute_reply": "2024-05-24T13:32:31.560400Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.885194Z", - "iopub.status.busy": "2024-05-23T15:18:34.884803Z", - "iopub.status.idle": "2024-05-23T15:18:34.910167Z", - "shell.execute_reply": "2024-05-23T15:18:34.909619Z" + "iopub.execute_input": "2024-05-24T13:32:31.563156Z", + "iopub.status.busy": "2024-05-24T13:32:31.562813Z", + "iopub.status.idle": "2024-05-24T13:32:31.588415Z", + "shell.execute_reply": "2024-05-24T13:32:31.587838Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f3c516252c74d63897fb8eee08617d7", + "model_id": "f6cc0ef61510499eaeaac7b1050c9d2e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "635547bff7444b9da4fab23636e0c719", + "model_id": "61435fdddb6a4375bec15e171982e5b1", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.915862Z", - "iopub.status.busy": "2024-05-23T15:18:34.915687Z", - "iopub.status.idle": "2024-05-23T15:18:34.921935Z", - "shell.execute_reply": "2024-05-23T15:18:34.921532Z" + "iopub.execute_input": "2024-05-24T13:32:31.594307Z", + "iopub.status.busy": "2024-05-24T13:32:31.593859Z", + "iopub.status.idle": "2024-05-24T13:32:31.601037Z", + "shell.execute_reply": "2024-05-24T13:32:31.600468Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.923818Z", - "iopub.status.busy": "2024-05-23T15:18:34.923646Z", - "iopub.status.idle": "2024-05-23T15:18:34.927144Z", - "shell.execute_reply": "2024-05-23T15:18:34.926700Z" + "iopub.execute_input": "2024-05-24T13:32:31.603634Z", + "iopub.status.busy": "2024-05-24T13:32:31.603168Z", + "iopub.status.idle": "2024-05-24T13:32:31.606740Z", + "shell.execute_reply": "2024-05-24T13:32:31.606268Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.929063Z", - "iopub.status.busy": "2024-05-23T15:18:34.928757Z", - "iopub.status.idle": "2024-05-23T15:18:34.934959Z", - "shell.execute_reply": "2024-05-23T15:18:34.934415Z" + "iopub.execute_input": "2024-05-24T13:32:31.608681Z", + "iopub.status.busy": "2024-05-24T13:32:31.608503Z", + "iopub.status.idle": "2024-05-24T13:32:31.615151Z", + "shell.execute_reply": "2024-05-24T13:32:31.614681Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.936789Z", - "iopub.status.busy": "2024-05-23T15:18:34.936503Z", - "iopub.status.idle": "2024-05-23T15:18:34.967120Z", - "shell.execute_reply": "2024-05-23T15:18:34.966451Z" + "iopub.execute_input": "2024-05-24T13:32:31.617025Z", + "iopub.status.busy": "2024-05-24T13:32:31.616852Z", + "iopub.status.idle": "2024-05-24T13:32:31.654339Z", + "shell.execute_reply": "2024-05-24T13:32:31.653602Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:34.969429Z", - "iopub.status.busy": "2024-05-23T15:18:34.969209Z", - "iopub.status.idle": "2024-05-23T15:18:34.997685Z", - "shell.execute_reply": "2024-05-23T15:18:34.997024Z" + "iopub.execute_input": "2024-05-24T13:32:31.657226Z", + "iopub.status.busy": "2024-05-24T13:32:31.656841Z", + "iopub.status.idle": "2024-05-24T13:32:31.695713Z", + "shell.execute_reply": "2024-05-24T13:32:31.695128Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:35.000316Z", - "iopub.status.busy": "2024-05-23T15:18:35.000083Z", - "iopub.status.idle": "2024-05-23T15:18:35.122194Z", - "shell.execute_reply": "2024-05-23T15:18:35.121656Z" + "iopub.execute_input": "2024-05-24T13:32:31.698394Z", + "iopub.status.busy": "2024-05-24T13:32:31.698081Z", + "iopub.status.idle": "2024-05-24T13:32:31.827413Z", + "shell.execute_reply": "2024-05-24T13:32:31.826735Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:35.124994Z", - "iopub.status.busy": "2024-05-23T15:18:35.124205Z", - "iopub.status.idle": "2024-05-23T15:18:38.166808Z", - "shell.execute_reply": "2024-05-23T15:18:38.166236Z" + "iopub.execute_input": "2024-05-24T13:32:31.830317Z", + "iopub.status.busy": "2024-05-24T13:32:31.829479Z", + "iopub.status.idle": "2024-05-24T13:32:34.895813Z", + "shell.execute_reply": "2024-05-24T13:32:34.895158Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.169245Z", - "iopub.status.busy": "2024-05-23T15:18:38.168893Z", - "iopub.status.idle": "2024-05-23T15:18:38.228886Z", - "shell.execute_reply": "2024-05-23T15:18:38.228321Z" + "iopub.execute_input": "2024-05-24T13:32:34.898486Z", + "iopub.status.busy": "2024-05-24T13:32:34.898019Z", + "iopub.status.idle": "2024-05-24T13:32:34.957326Z", + "shell.execute_reply": "2024-05-24T13:32:34.956728Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.231149Z", - "iopub.status.busy": "2024-05-23T15:18:38.230702Z", - "iopub.status.idle": "2024-05-23T15:18:38.270535Z", - "shell.execute_reply": "2024-05-23T15:18:38.269980Z" + "iopub.execute_input": "2024-05-24T13:32:34.959479Z", + "iopub.status.busy": "2024-05-24T13:32:34.959163Z", + "iopub.status.idle": "2024-05-24T13:32:35.001197Z", + "shell.execute_reply": "2024-05-24T13:32:35.000595Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "64b3b176", + "id": "b6a99385", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "1d010710", + "id": "29ea92da", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "cb7b6ab8", + "id": "824b6be9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.272851Z", - "iopub.status.busy": "2024-05-23T15:18:38.272449Z", - "iopub.status.idle": "2024-05-23T15:18:38.348175Z", - "shell.execute_reply": "2024-05-23T15:18:38.347422Z" + "iopub.execute_input": "2024-05-24T13:32:35.003478Z", + "iopub.status.busy": "2024-05-24T13:32:35.003138Z", + "iopub.status.idle": "2024-05-24T13:32:35.082721Z", + "shell.execute_reply": "2024-05-24T13:32:35.082125Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "5bd5118b", + "id": "5a782095", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "9ad1e59f", + "id": "3194e42a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.350721Z", - "iopub.status.busy": "2024-05-23T15:18:38.350515Z", - "iopub.status.idle": "2024-05-23T15:18:38.427394Z", - "shell.execute_reply": "2024-05-23T15:18:38.426825Z" + "iopub.execute_input": "2024-05-24T13:32:35.085269Z", + "iopub.status.busy": "2024-05-24T13:32:35.085064Z", + "iopub.status.idle": "2024-05-24T13:32:35.155654Z", + "shell.execute_reply": "2024-05-24T13:32:35.155094Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "cb460bc2", + "id": "4c80363b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "851d8df8", + "id": "8507db53", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.429899Z", - "iopub.status.busy": "2024-05-23T15:18:38.429722Z", - "iopub.status.idle": "2024-05-23T15:18:38.437290Z", - "shell.execute_reply": "2024-05-23T15:18:38.436749Z" + "iopub.execute_input": "2024-05-24T13:32:35.158550Z", + "iopub.status.busy": "2024-05-24T13:32:35.158197Z", + "iopub.status.idle": "2024-05-24T13:32:35.166192Z", + "shell.execute_reply": "2024-05-24T13:32:35.165707Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "ef9850ad", + "id": "0a640490", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "7a2c4ea8", + "id": "f6c8c29c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.439334Z", - "iopub.status.busy": "2024-05-23T15:18:38.439036Z", - "iopub.status.idle": "2024-05-23T15:18:38.458605Z", - "shell.execute_reply": "2024-05-23T15:18:38.458047Z" + "iopub.execute_input": "2024-05-24T13:32:35.168293Z", + "iopub.status.busy": "2024-05-24T13:32:35.167861Z", + "iopub.status.idle": "2024-05-24T13:32:35.187684Z", + "shell.execute_reply": "2024-05-24T13:32:35.187180Z" } }, "outputs": [ @@ -1586,13 +1586,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding near_duplicate issues ...\n", "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1601,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7745/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7549/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "0458d311", + "id": "04b1a09e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:38.460516Z", - "iopub.status.busy": "2024-05-23T15:18:38.460219Z", - "iopub.status.idle": "2024-05-23T15:18:38.463420Z", - "shell.execute_reply": "2024-05-23T15:18:38.462900Z" + "iopub.execute_input": "2024-05-24T13:32:35.189723Z", + "iopub.status.busy": "2024-05-24T13:32:35.189406Z", + "iopub.status.idle": "2024-05-24T13:32:35.192611Z", + "shell.execute_reply": "2024-05-24T13:32:35.192048Z" } }, "outputs": [ @@ -1736,30 +1730,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08497646f0cb4f63a1c95644d108a07c": { + "009615c1f6124425b142687c157d820f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3467641639a94f99b2952095c9b6dd73", - "placeholder": "​", - "style": "IPY_MODEL_e343613b5e7f4c8c94ab71069d836c5a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0f6d3cd136594d1d98d49a8a1c90a774": { + "024a69f87c80431bbe82ea1626ed14fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1777,72 +1764,7 @@ "text_color": null } }, - "10fedb5640c646ada9ce6b7e377cf1fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5357e45aa1d84b08bc327a15224faeb8", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_28ace186259847d0967935e138b0fd99", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "28ace186259847d0967935e138b0fd99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "314b83f258234697a5cb4b62f93fcaba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7245cef08c6b4b708a5511ae12b2bb5e", - "placeholder": "​", - "style": "IPY_MODEL_6cf456ba92cb444aa203f05ede632b49", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1321290.32it/s]" - } - }, - "3467641639a94f99b2952095c9b6dd73": { + "4018f21622ee4728abff9ea4a5b1539c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1895,33 +1817,95 @@ "width": null } }, - "3c0cdd450a4b4118b695a96901d22dd2": { + "53d6d5b50318408dbc22795c1991c19b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dafd47e21af4e8d936705f31f7e87a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8229e5b2c5c6428eaaeed2221f8e2604", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4f2f766355df4a4a851d76a58ee0cd03", + "layout": "IPY_MODEL_bd22783e102e4ef59b672db09b5fca60", + "placeholder": "​", + "style": "IPY_MODEL_024a69f87c80431bbe82ea1626ed14fd", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1432187.39it/s]" } }, - "4f2f766355df4a4a851d76a58ee0cd03": { + "5f59f7371b4b455eadf06579c094b275": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_72a6455387bc4343a7792679b9b40c14", + "placeholder": "​", + "style": "IPY_MODEL_dc6e89b91cba4295af6c1acf570e96a2", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "61435fdddb6a4375bec15e171982e5b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c64e7876d724f938445d4c16bd84eab", + "IPY_MODEL_c6001289cb0f4161acd0cc8cab741663", + "IPY_MODEL_5dafd47e21af4e8d936705f31f7e87a0" + ], + "layout": "IPY_MODEL_b0ac0da489d7411da06200cad014fdb9", + "tabbable": null, + "tooltip": null + } + }, + "62b13a41801d4d9487e134591cf03c4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1937,7 +1921,71 @@ "description_width": "" } }, - "5357e45aa1d84b08bc327a15224faeb8": { + "6bfb0c1983f04f6e95dbf558f339da7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6c64e7876d724f938445d4c16bd84eab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_adcd1f79a028438493e72a53aa230372", + "placeholder": "​", + "style": "IPY_MODEL_6bfb0c1983f04f6e95dbf558f339da7b", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "705d3c825ab34c8ea7dc6c7cbf7c550a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bec74befa03a47c788b6f6ffba70d740", + "placeholder": "​", + "style": "IPY_MODEL_53d6d5b50318408dbc22795c1991c19b", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 996626.83it/s]" + } + }, + "72a6455387bc4343a7792679b9b40c14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1990,7 +2038,7 @@ "width": null } }, - "550b0d066ae848f29e2fc0f3c630ba44": { + "87f520c867a74ed5802cc88503842af7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2043,67 +2091,33 @@ "width": null } }, - "5715ae6114ca4c89894e8c045de68727": { + "932a08be6dba4db0b168fb66268ce2a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "635547bff7444b9da4fab23636e0c719": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef3d01c63f3242188716dd65aefd758b", - "IPY_MODEL_3c0cdd450a4b4118b695a96901d22dd2", - "IPY_MODEL_314b83f258234697a5cb4b62f93fcaba" - ], - "layout": "IPY_MODEL_d707d64aa62b4524b3af277ba4f618f3", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63423afaeba416f8fd72b9283f8c24c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62b13a41801d4d9487e134591cf03c4c", "tabbable": null, - "tooltip": null - } - }, - "6cf456ba92cb444aa203f05ede632b49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 50.0 } }, - "7245cef08c6b4b708a5511ae12b2bb5e": { + "a63423afaeba416f8fd72b9283f8c24c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2156,7 +2170,7 @@ "width": null } }, - "8229e5b2c5c6428eaaeed2221f8e2604": { + "adcd1f79a028438493e72a53aa230372": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2209,54 +2223,7 @@ "width": null } }, - "8f3c516252c74d63897fb8eee08617d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08497646f0cb4f63a1c95644d108a07c", - "IPY_MODEL_10fedb5640c646ada9ce6b7e377cf1fa", - "IPY_MODEL_932ecfacb7ca4cf7b8a5442592bffda4" - ], - "layout": "IPY_MODEL_550b0d066ae848f29e2fc0f3c630ba44", - "tabbable": null, - "tooltip": null - } - }, - "932ecfacb7ca4cf7b8a5442592bffda4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99d7c922a5cf42859fa14f718fef0646", - "placeholder": "​", - "style": "IPY_MODEL_0f6d3cd136594d1d98d49a8a1c90a774", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1099654.97it/s]" - } - }, - "99d7c922a5cf42859fa14f718fef0646": { + "b0ac0da489d7411da06200cad014fdb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2309,7 +2276,7 @@ "width": null } }, - "b7bfe758d7da49789e7d13a74088bfdb": { + "bd22783e102e4ef59b672db09b5fca60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2362,7 +2329,7 @@ "width": null } }, - "d707d64aa62b4524b3af277ba4f618f3": { + "bec74befa03a47c788b6f6ffba70d740": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2415,7 +2382,33 @@ "width": null } }, - "e343613b5e7f4c8c94ab71069d836c5a": { + "c6001289cb0f4161acd0cc8cab741663": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87f520c867a74ed5802cc88503842af7", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_009615c1f6124425b142687c157d820f", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "dc6e89b91cba4295af6c1acf570e96a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2433,27 +2426,28 @@ "text_color": null } }, - "ef3d01c63f3242188716dd65aefd758b": { + "f6cc0ef61510499eaeaac7b1050c9d2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b7bfe758d7da49789e7d13a74088bfdb", - "placeholder": "​", - "style": "IPY_MODEL_5715ae6114ca4c89894e8c045de68727", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5f59f7371b4b455eadf06579c094b275", + "IPY_MODEL_932a08be6dba4db0b168fb66268ce2a1", + "IPY_MODEL_705d3c825ab34c8ea7dc6c7cbf7c550a" + ], + "layout": "IPY_MODEL_4018f21622ee4728abff9ea4a5b1539c", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " + "tooltip": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 633332eb4..d93288315 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:41.451137Z", - "iopub.status.busy": "2024-05-23T15:18:41.450666Z", - "iopub.status.idle": "2024-05-23T15:18:42.609707Z", - "shell.execute_reply": "2024-05-23T15:18:42.609088Z" + "iopub.execute_input": "2024-05-24T13:32:39.675833Z", + "iopub.status.busy": "2024-05-24T13:32:39.675659Z", + "iopub.status.idle": "2024-05-24T13:32:40.946726Z", + "shell.execute_reply": "2024-05-24T13:32:40.946096Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.612298Z", - "iopub.status.busy": "2024-05-23T15:18:42.612043Z", - "iopub.status.idle": "2024-05-23T15:18:42.790237Z", - "shell.execute_reply": "2024-05-23T15:18:42.789747Z" + "iopub.execute_input": "2024-05-24T13:32:40.949605Z", + "iopub.status.busy": "2024-05-24T13:32:40.949033Z", + "iopub.status.idle": "2024-05-24T13:32:41.134097Z", + "shell.execute_reply": "2024-05-24T13:32:41.133488Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.792842Z", - "iopub.status.busy": "2024-05-23T15:18:42.792502Z", - "iopub.status.idle": "2024-05-23T15:18:42.804185Z", - "shell.execute_reply": "2024-05-23T15:18:42.803753Z" + "iopub.execute_input": "2024-05-24T13:32:41.136774Z", + "iopub.status.busy": "2024-05-24T13:32:41.136421Z", + "iopub.status.idle": "2024-05-24T13:32:41.149353Z", + "shell.execute_reply": "2024-05-24T13:32:41.148875Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:42.806115Z", - "iopub.status.busy": "2024-05-23T15:18:42.805801Z", - "iopub.status.idle": "2024-05-23T15:18:43.038896Z", - "shell.execute_reply": "2024-05-23T15:18:43.038291Z" + "iopub.execute_input": "2024-05-24T13:32:41.151520Z", + "iopub.status.busy": "2024-05-24T13:32:41.151242Z", + "iopub.status.idle": "2024-05-24T13:32:41.391092Z", + "shell.execute_reply": "2024-05-24T13:32:41.390489Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:43.041290Z", - "iopub.status.busy": "2024-05-23T15:18:43.040897Z", - "iopub.status.idle": "2024-05-23T15:18:43.067459Z", - "shell.execute_reply": "2024-05-23T15:18:43.066880Z" + "iopub.execute_input": "2024-05-24T13:32:41.393288Z", + "iopub.status.busy": "2024-05-24T13:32:41.393094Z", + "iopub.status.idle": "2024-05-24T13:32:41.419385Z", + "shell.execute_reply": "2024-05-24T13:32:41.418899Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:43.069630Z", - "iopub.status.busy": "2024-05-23T15:18:43.069451Z", - "iopub.status.idle": "2024-05-23T15:18:44.703341Z", - "shell.execute_reply": "2024-05-23T15:18:44.702712Z" + "iopub.execute_input": "2024-05-24T13:32:41.421679Z", + "iopub.status.busy": "2024-05-24T13:32:41.421484Z", + "iopub.status.idle": "2024-05-24T13:32:43.184957Z", + "shell.execute_reply": "2024-05-24T13:32:43.184226Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:44.705621Z", - "iopub.status.busy": "2024-05-23T15:18:44.705268Z", - "iopub.status.idle": "2024-05-23T15:18:44.723382Z", - "shell.execute_reply": "2024-05-23T15:18:44.722908Z" + "iopub.execute_input": "2024-05-24T13:32:43.188098Z", + "iopub.status.busy": "2024-05-24T13:32:43.187421Z", + "iopub.status.idle": "2024-05-24T13:32:43.207108Z", + "shell.execute_reply": "2024-05-24T13:32:43.206504Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:44.725329Z", - "iopub.status.busy": "2024-05-23T15:18:44.725018Z", - "iopub.status.idle": "2024-05-23T15:18:46.105511Z", - "shell.execute_reply": "2024-05-23T15:18:46.104900Z" + "iopub.execute_input": "2024-05-24T13:32:43.209375Z", + "iopub.status.busy": "2024-05-24T13:32:43.208969Z", + "iopub.status.idle": "2024-05-24T13:32:44.659251Z", + "shell.execute_reply": "2024-05-24T13:32:44.658562Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.108458Z", - "iopub.status.busy": "2024-05-23T15:18:46.107728Z", - "iopub.status.idle": "2024-05-23T15:18:46.121958Z", - "shell.execute_reply": "2024-05-23T15:18:46.121504Z" + "iopub.execute_input": "2024-05-24T13:32:44.661987Z", + "iopub.status.busy": "2024-05-24T13:32:44.661332Z", + "iopub.status.idle": "2024-05-24T13:32:44.675557Z", + "shell.execute_reply": "2024-05-24T13:32:44.675007Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.123994Z", - "iopub.status.busy": "2024-05-23T15:18:46.123723Z", - "iopub.status.idle": "2024-05-23T15:18:46.197726Z", - "shell.execute_reply": "2024-05-23T15:18:46.197097Z" + "iopub.execute_input": "2024-05-24T13:32:44.677672Z", + "iopub.status.busy": "2024-05-24T13:32:44.677354Z", + "iopub.status.idle": "2024-05-24T13:32:44.753553Z", + "shell.execute_reply": "2024-05-24T13:32:44.752954Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.199868Z", - "iopub.status.busy": "2024-05-23T15:18:46.199644Z", - "iopub.status.idle": "2024-05-23T15:18:46.412530Z", - "shell.execute_reply": "2024-05-23T15:18:46.411911Z" + "iopub.execute_input": "2024-05-24T13:32:44.756040Z", + "iopub.status.busy": "2024-05-24T13:32:44.755592Z", + "iopub.status.idle": "2024-05-24T13:32:44.976868Z", + "shell.execute_reply": "2024-05-24T13:32:44.976241Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.414915Z", - "iopub.status.busy": "2024-05-23T15:18:46.414504Z", - "iopub.status.idle": "2024-05-23T15:18:46.431542Z", - "shell.execute_reply": "2024-05-23T15:18:46.431077Z" + "iopub.execute_input": "2024-05-24T13:32:44.979196Z", + "iopub.status.busy": "2024-05-24T13:32:44.978872Z", + "iopub.status.idle": "2024-05-24T13:32:44.996359Z", + "shell.execute_reply": "2024-05-24T13:32:44.995807Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.433461Z", - "iopub.status.busy": "2024-05-23T15:18:46.433290Z", - "iopub.status.idle": "2024-05-23T15:18:46.443460Z", - "shell.execute_reply": "2024-05-23T15:18:46.443031Z" + "iopub.execute_input": "2024-05-24T13:32:44.998831Z", + "iopub.status.busy": "2024-05-24T13:32:44.998473Z", + "iopub.status.idle": "2024-05-24T13:32:45.008641Z", + "shell.execute_reply": "2024-05-24T13:32:45.008185Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.445348Z", - "iopub.status.busy": "2024-05-23T15:18:46.445176Z", - "iopub.status.idle": "2024-05-23T15:18:46.530754Z", - "shell.execute_reply": "2024-05-23T15:18:46.530137Z" + "iopub.execute_input": "2024-05-24T13:32:45.010930Z", + "iopub.status.busy": "2024-05-24T13:32:45.010568Z", + "iopub.status.idle": "2024-05-24T13:32:45.101906Z", + "shell.execute_reply": "2024-05-24T13:32:45.101273Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.533006Z", - "iopub.status.busy": "2024-05-23T15:18:46.532769Z", - "iopub.status.idle": "2024-05-23T15:18:46.650360Z", - "shell.execute_reply": "2024-05-23T15:18:46.649795Z" + "iopub.execute_input": "2024-05-24T13:32:45.104398Z", + "iopub.status.busy": "2024-05-24T13:32:45.104016Z", + "iopub.status.idle": "2024-05-24T13:32:45.236534Z", + "shell.execute_reply": "2024-05-24T13:32:45.235902Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.652894Z", - "iopub.status.busy": "2024-05-23T15:18:46.652440Z", - "iopub.status.idle": "2024-05-23T15:18:46.656437Z", - "shell.execute_reply": "2024-05-23T15:18:46.655890Z" + "iopub.execute_input": "2024-05-24T13:32:45.239124Z", + "iopub.status.busy": "2024-05-24T13:32:45.238756Z", + "iopub.status.idle": "2024-05-24T13:32:45.242493Z", + "shell.execute_reply": "2024-05-24T13:32:45.241927Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.658319Z", - "iopub.status.busy": "2024-05-23T15:18:46.658153Z", - "iopub.status.idle": "2024-05-23T15:18:46.662043Z", - "shell.execute_reply": "2024-05-23T15:18:46.661576Z" + "iopub.execute_input": "2024-05-24T13:32:45.244582Z", + "iopub.status.busy": "2024-05-24T13:32:45.244186Z", + "iopub.status.idle": "2024-05-24T13:32:45.247992Z", + "shell.execute_reply": "2024-05-24T13:32:45.247452Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.663845Z", - "iopub.status.busy": "2024-05-23T15:18:46.663676Z", - "iopub.status.idle": "2024-05-23T15:18:46.699910Z", - "shell.execute_reply": "2024-05-23T15:18:46.699449Z" + "iopub.execute_input": "2024-05-24T13:32:45.250006Z", + "iopub.status.busy": "2024-05-24T13:32:45.249718Z", + "iopub.status.idle": "2024-05-24T13:32:45.287296Z", + "shell.execute_reply": "2024-05-24T13:32:45.286719Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.701773Z", - "iopub.status.busy": "2024-05-23T15:18:46.701598Z", - "iopub.status.idle": "2024-05-23T15:18:46.745873Z", - "shell.execute_reply": "2024-05-23T15:18:46.745298Z" + "iopub.execute_input": "2024-05-24T13:32:45.289405Z", + "iopub.status.busy": "2024-05-24T13:32:45.289221Z", + "iopub.status.idle": "2024-05-24T13:32:45.334850Z", + "shell.execute_reply": "2024-05-24T13:32:45.334255Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.748152Z", - "iopub.status.busy": "2024-05-23T15:18:46.747739Z", - "iopub.status.idle": "2024-05-23T15:18:46.841710Z", - "shell.execute_reply": "2024-05-23T15:18:46.841161Z" + "iopub.execute_input": "2024-05-24T13:32:45.337267Z", + "iopub.status.busy": "2024-05-24T13:32:45.336887Z", + "iopub.status.idle": "2024-05-24T13:32:45.435407Z", + "shell.execute_reply": "2024-05-24T13:32:45.434755Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.844254Z", - "iopub.status.busy": "2024-05-23T15:18:46.843958Z", - "iopub.status.idle": "2024-05-23T15:18:46.933588Z", - "shell.execute_reply": "2024-05-23T15:18:46.932983Z" + "iopub.execute_input": "2024-05-24T13:32:45.438158Z", + "iopub.status.busy": "2024-05-24T13:32:45.437756Z", + "iopub.status.idle": "2024-05-24T13:32:45.528949Z", + "shell.execute_reply": "2024-05-24T13:32:45.528274Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:46.935894Z", - "iopub.status.busy": "2024-05-23T15:18:46.935604Z", - "iopub.status.idle": "2024-05-23T15:18:47.143860Z", - "shell.execute_reply": "2024-05-23T15:18:47.143238Z" + "iopub.execute_input": "2024-05-24T13:32:45.531783Z", + "iopub.status.busy": "2024-05-24T13:32:45.531180Z", + "iopub.status.idle": "2024-05-24T13:32:45.751315Z", + "shell.execute_reply": "2024-05-24T13:32:45.750712Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.146260Z", - "iopub.status.busy": "2024-05-23T15:18:47.145919Z", - "iopub.status.idle": "2024-05-23T15:18:47.314614Z", - "shell.execute_reply": "2024-05-23T15:18:47.314036Z" + "iopub.execute_input": "2024-05-24T13:32:45.753538Z", + "iopub.status.busy": "2024-05-24T13:32:45.753185Z", + "iopub.status.idle": "2024-05-24T13:32:45.960828Z", + "shell.execute_reply": "2024-05-24T13:32:45.960131Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.316952Z", - "iopub.status.busy": "2024-05-23T15:18:47.316583Z", - "iopub.status.idle": "2024-05-23T15:18:47.322849Z", - "shell.execute_reply": "2024-05-23T15:18:47.322419Z" + "iopub.execute_input": "2024-05-24T13:32:45.963459Z", + "iopub.status.busy": "2024-05-24T13:32:45.963004Z", + "iopub.status.idle": "2024-05-24T13:32:45.969670Z", + "shell.execute_reply": "2024-05-24T13:32:45.969193Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.324901Z", - "iopub.status.busy": "2024-05-23T15:18:47.324478Z", - "iopub.status.idle": "2024-05-23T15:18:47.539512Z", - "shell.execute_reply": "2024-05-23T15:18:47.538921Z" + "iopub.execute_input": "2024-05-24T13:32:45.971900Z", + "iopub.status.busy": "2024-05-24T13:32:45.971566Z", + "iopub.status.idle": "2024-05-24T13:32:46.192097Z", + "shell.execute_reply": "2024-05-24T13:32:46.191494Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:47.541885Z", - "iopub.status.busy": "2024-05-23T15:18:47.541482Z", - "iopub.status.idle": "2024-05-23T15:18:48.632466Z", - "shell.execute_reply": "2024-05-23T15:18:48.631819Z" + "iopub.execute_input": "2024-05-24T13:32:46.194590Z", + "iopub.status.busy": "2024-05-24T13:32:46.194159Z", + "iopub.status.idle": "2024-05-24T13:32:47.269558Z", + "shell.execute_reply": "2024-05-24T13:32:47.268898Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 11ad22099..4be9f5e37 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:52.007579Z", - "iopub.status.busy": "2024-05-23T15:18:52.007414Z", - "iopub.status.idle": "2024-05-23T15:18:53.114524Z", - "shell.execute_reply": "2024-05-23T15:18:53.113948Z" + "iopub.execute_input": "2024-05-24T13:32:50.762779Z", + "iopub.status.busy": "2024-05-24T13:32:50.762361Z", + "iopub.status.idle": "2024-05-24T13:32:51.974980Z", + "shell.execute_reply": "2024-05-24T13:32:51.974449Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.117150Z", - "iopub.status.busy": "2024-05-23T15:18:53.116730Z", - "iopub.status.idle": "2024-05-23T15:18:53.119784Z", - "shell.execute_reply": "2024-05-23T15:18:53.119337Z" + "iopub.execute_input": "2024-05-24T13:32:51.977751Z", + "iopub.status.busy": "2024-05-24T13:32:51.977342Z", + "iopub.status.idle": "2024-05-24T13:32:51.980695Z", + "shell.execute_reply": "2024-05-24T13:32:51.980218Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.121897Z", - "iopub.status.busy": "2024-05-23T15:18:53.121580Z", - "iopub.status.idle": "2024-05-23T15:18:53.129492Z", - "shell.execute_reply": "2024-05-23T15:18:53.128916Z" + "iopub.execute_input": "2024-05-24T13:32:51.983069Z", + "iopub.status.busy": "2024-05-24T13:32:51.982789Z", + "iopub.status.idle": "2024-05-24T13:32:51.990615Z", + "shell.execute_reply": "2024-05-24T13:32:51.990115Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.131642Z", - "iopub.status.busy": "2024-05-23T15:18:53.131304Z", - "iopub.status.idle": "2024-05-23T15:18:53.183633Z", - "shell.execute_reply": "2024-05-23T15:18:53.183074Z" + "iopub.execute_input": "2024-05-24T13:32:51.992686Z", + "iopub.status.busy": "2024-05-24T13:32:51.992344Z", + "iopub.status.idle": "2024-05-24T13:32:52.041612Z", + "shell.execute_reply": "2024-05-24T13:32:52.041107Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.185644Z", - "iopub.status.busy": "2024-05-23T15:18:53.185466Z", - "iopub.status.idle": "2024-05-23T15:18:53.202072Z", - "shell.execute_reply": "2024-05-23T15:18:53.201584Z" + "iopub.execute_input": "2024-05-24T13:32:52.044177Z", + "iopub.status.busy": "2024-05-24T13:32:52.043842Z", + "iopub.status.idle": "2024-05-24T13:32:52.062090Z", + "shell.execute_reply": "2024-05-24T13:32:52.061456Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.203949Z", - "iopub.status.busy": "2024-05-23T15:18:53.203776Z", - "iopub.status.idle": "2024-05-23T15:18:53.207702Z", - "shell.execute_reply": "2024-05-23T15:18:53.207257Z" + "iopub.execute_input": "2024-05-24T13:32:52.064422Z", + "iopub.status.busy": "2024-05-24T13:32:52.064053Z", + "iopub.status.idle": "2024-05-24T13:32:52.068266Z", + "shell.execute_reply": "2024-05-24T13:32:52.067694Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.209671Z", - "iopub.status.busy": "2024-05-23T15:18:53.209500Z", - "iopub.status.idle": "2024-05-23T15:18:53.224174Z", - "shell.execute_reply": "2024-05-23T15:18:53.223736Z" + "iopub.execute_input": "2024-05-24T13:32:52.070570Z", + "iopub.status.busy": "2024-05-24T13:32:52.070140Z", + "iopub.status.idle": "2024-05-24T13:32:52.087394Z", + "shell.execute_reply": "2024-05-24T13:32:52.086801Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.226035Z", - "iopub.status.busy": "2024-05-23T15:18:53.225859Z", - "iopub.status.idle": "2024-05-23T15:18:53.252043Z", - "shell.execute_reply": "2024-05-23T15:18:53.251607Z" + "iopub.execute_input": "2024-05-24T13:32:52.089825Z", + "iopub.status.busy": "2024-05-24T13:32:52.089469Z", + "iopub.status.idle": "2024-05-24T13:32:52.116367Z", + "shell.execute_reply": "2024-05-24T13:32:52.115856Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:53.253917Z", - "iopub.status.busy": "2024-05-23T15:18:53.253738Z", - "iopub.status.idle": "2024-05-23T15:18:54.947724Z", - "shell.execute_reply": "2024-05-23T15:18:54.947173Z" + "iopub.execute_input": "2024-05-24T13:32:52.118941Z", + "iopub.status.busy": "2024-05-24T13:32:52.118510Z", + "iopub.status.idle": "2024-05-24T13:32:53.903144Z", + "shell.execute_reply": "2024-05-24T13:32:53.902489Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.950166Z", - "iopub.status.busy": "2024-05-23T15:18:54.949868Z", - "iopub.status.idle": "2024-05-23T15:18:54.956808Z", - "shell.execute_reply": "2024-05-23T15:18:54.956271Z" + "iopub.execute_input": "2024-05-24T13:32:53.906036Z", + "iopub.status.busy": "2024-05-24T13:32:53.905426Z", + "iopub.status.idle": "2024-05-24T13:32:53.912765Z", + "shell.execute_reply": "2024-05-24T13:32:53.912202Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.958969Z", - "iopub.status.busy": "2024-05-23T15:18:54.958598Z", - "iopub.status.idle": "2024-05-23T15:18:54.971034Z", - "shell.execute_reply": "2024-05-23T15:18:54.970497Z" + "iopub.execute_input": "2024-05-24T13:32:53.914987Z", + "iopub.status.busy": "2024-05-24T13:32:53.914581Z", + "iopub.status.idle": "2024-05-24T13:32:53.927842Z", + "shell.execute_reply": "2024-05-24T13:32:53.927274Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.973141Z", - "iopub.status.busy": "2024-05-23T15:18:54.972739Z", - "iopub.status.idle": "2024-05-23T15:18:54.979039Z", - "shell.execute_reply": "2024-05-23T15:18:54.978498Z" + "iopub.execute_input": "2024-05-24T13:32:53.930072Z", + "iopub.status.busy": "2024-05-24T13:32:53.929628Z", + "iopub.status.idle": "2024-05-24T13:32:53.936593Z", + "shell.execute_reply": "2024-05-24T13:32:53.936058Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.981149Z", - "iopub.status.busy": "2024-05-23T15:18:54.980730Z", - "iopub.status.idle": "2024-05-23T15:18:54.983319Z", - "shell.execute_reply": "2024-05-23T15:18:54.982883Z" + "iopub.execute_input": "2024-05-24T13:32:53.938872Z", + "iopub.status.busy": "2024-05-24T13:32:53.938463Z", + "iopub.status.idle": "2024-05-24T13:32:53.941409Z", + "shell.execute_reply": "2024-05-24T13:32:53.940850Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.985204Z", - "iopub.status.busy": "2024-05-23T15:18:54.985028Z", - "iopub.status.idle": "2024-05-23T15:18:54.988357Z", - "shell.execute_reply": "2024-05-23T15:18:54.987848Z" + "iopub.execute_input": "2024-05-24T13:32:53.943430Z", + "iopub.status.busy": "2024-05-24T13:32:53.943122Z", + "iopub.status.idle": "2024-05-24T13:32:53.946607Z", + "shell.execute_reply": "2024-05-24T13:32:53.946085Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.990306Z", - "iopub.status.busy": "2024-05-23T15:18:54.990135Z", - "iopub.status.idle": "2024-05-23T15:18:54.992657Z", - "shell.execute_reply": "2024-05-23T15:18:54.992238Z" + "iopub.execute_input": "2024-05-24T13:32:53.948633Z", + "iopub.status.busy": "2024-05-24T13:32:53.948456Z", + "iopub.status.idle": "2024-05-24T13:32:53.951140Z", + "shell.execute_reply": "2024-05-24T13:32:53.950707Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:54.994725Z", - "iopub.status.busy": "2024-05-23T15:18:54.994306Z", - "iopub.status.idle": "2024-05-23T15:18:54.998455Z", - "shell.execute_reply": "2024-05-23T15:18:54.998006Z" + "iopub.execute_input": "2024-05-24T13:32:53.953164Z", + "iopub.status.busy": "2024-05-24T13:32:53.952826Z", + "iopub.status.idle": "2024-05-24T13:32:53.957123Z", + "shell.execute_reply": "2024-05-24T13:32:53.956557Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:55.000343Z", - "iopub.status.busy": "2024-05-23T15:18:55.000170Z", - "iopub.status.idle": "2024-05-23T15:18:55.030450Z", - "shell.execute_reply": "2024-05-23T15:18:55.029992Z" + "iopub.execute_input": "2024-05-24T13:32:53.959309Z", + "iopub.status.busy": "2024-05-24T13:32:53.958980Z", + "iopub.status.idle": "2024-05-24T13:32:53.992012Z", + "shell.execute_reply": "2024-05-24T13:32:53.991446Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:55.032268Z", - "iopub.status.busy": "2024-05-23T15:18:55.032099Z", - "iopub.status.idle": "2024-05-23T15:18:55.036740Z", - "shell.execute_reply": "2024-05-23T15:18:55.036305Z" + "iopub.execute_input": "2024-05-24T13:32:53.994595Z", + "iopub.status.busy": "2024-05-24T13:32:53.994268Z", + "iopub.status.idle": "2024-05-24T13:32:53.999390Z", + "shell.execute_reply": "2024-05-24T13:32:53.998813Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 8e6835cb8..a6b14adec 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:57.808420Z", - "iopub.status.busy": "2024-05-23T15:18:57.808257Z", - "iopub.status.idle": "2024-05-23T15:18:58.960227Z", - "shell.execute_reply": "2024-05-23T15:18:58.959741Z" + "iopub.execute_input": "2024-05-24T13:32:56.921537Z", + "iopub.status.busy": "2024-05-24T13:32:56.921361Z", + "iopub.status.idle": "2024-05-24T13:32:58.175036Z", + "shell.execute_reply": "2024-05-24T13:32:58.174384Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:58.962688Z", - "iopub.status.busy": "2024-05-23T15:18:58.962364Z", - "iopub.status.idle": "2024-05-23T15:18:59.156572Z", - "shell.execute_reply": "2024-05-23T15:18:59.156070Z" + "iopub.execute_input": "2024-05-24T13:32:58.177803Z", + "iopub.status.busy": "2024-05-24T13:32:58.177494Z", + "iopub.status.idle": "2024-05-24T13:32:58.384261Z", + "shell.execute_reply": "2024-05-24T13:32:58.383683Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:59.159355Z", - "iopub.status.busy": "2024-05-23T15:18:59.158909Z", - "iopub.status.idle": "2024-05-23T15:18:59.171734Z", - "shell.execute_reply": "2024-05-23T15:18:59.171307Z" + "iopub.execute_input": "2024-05-24T13:32:58.387007Z", + "iopub.status.busy": "2024-05-24T13:32:58.386520Z", + "iopub.status.idle": "2024-05-24T13:32:58.400152Z", + "shell.execute_reply": "2024-05-24T13:32:58.399572Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:18:59.173764Z", - "iopub.status.busy": "2024-05-23T15:18:59.173435Z", - "iopub.status.idle": "2024-05-23T15:19:01.818860Z", - "shell.execute_reply": "2024-05-23T15:19:01.818253Z" + "iopub.execute_input": "2024-05-24T13:32:58.402493Z", + "iopub.status.busy": "2024-05-24T13:32:58.402124Z", + "iopub.status.idle": "2024-05-24T13:33:01.062435Z", + "shell.execute_reply": "2024-05-24T13:33:01.061714Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:01.821210Z", - "iopub.status.busy": "2024-05-23T15:19:01.820917Z", - "iopub.status.idle": "2024-05-23T15:19:03.152098Z", - "shell.execute_reply": "2024-05-23T15:19:03.151598Z" + "iopub.execute_input": "2024-05-24T13:33:01.064870Z", + "iopub.status.busy": "2024-05-24T13:33:01.064494Z", + "iopub.status.idle": "2024-05-24T13:33:02.431754Z", + "shell.execute_reply": "2024-05-24T13:33:02.431173Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:03.154639Z", - "iopub.status.busy": "2024-05-23T15:19:03.154293Z", - "iopub.status.idle": "2024-05-23T15:19:03.158008Z", - "shell.execute_reply": "2024-05-23T15:19:03.157505Z" + "iopub.execute_input": "2024-05-24T13:33:02.434402Z", + "iopub.status.busy": "2024-05-24T13:33:02.434020Z", + "iopub.status.idle": "2024-05-24T13:33:02.437944Z", + "shell.execute_reply": "2024-05-24T13:33:02.437415Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:03.160039Z", - "iopub.status.busy": "2024-05-23T15:19:03.159724Z", - "iopub.status.idle": "2024-05-23T15:19:04.925502Z", - "shell.execute_reply": "2024-05-23T15:19:04.924830Z" + "iopub.execute_input": "2024-05-24T13:33:02.440119Z", + "iopub.status.busy": "2024-05-24T13:33:02.439788Z", + "iopub.status.idle": "2024-05-24T13:33:04.344729Z", + "shell.execute_reply": "2024-05-24T13:33:04.344050Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:04.928071Z", - "iopub.status.busy": "2024-05-23T15:19:04.927589Z", - "iopub.status.idle": "2024-05-23T15:19:04.935028Z", - "shell.execute_reply": "2024-05-23T15:19:04.934522Z" + "iopub.execute_input": "2024-05-24T13:33:04.347353Z", + "iopub.status.busy": "2024-05-24T13:33:04.346920Z", + "iopub.status.idle": "2024-05-24T13:33:04.355516Z", + "shell.execute_reply": "2024-05-24T13:33:04.354930Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:04.937024Z", - "iopub.status.busy": "2024-05-23T15:19:04.936741Z", - "iopub.status.idle": "2024-05-23T15:19:07.521116Z", - "shell.execute_reply": "2024-05-23T15:19:07.520500Z" + "iopub.execute_input": "2024-05-24T13:33:04.357838Z", + "iopub.status.busy": "2024-05-24T13:33:04.357469Z", + "iopub.status.idle": "2024-05-24T13:33:06.961964Z", + "shell.execute_reply": "2024-05-24T13:33:06.961324Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.523476Z", - "iopub.status.busy": "2024-05-23T15:19:07.523126Z", - "iopub.status.idle": "2024-05-23T15:19:07.526728Z", - "shell.execute_reply": "2024-05-23T15:19:07.526192Z" + "iopub.execute_input": "2024-05-24T13:33:06.964413Z", + "iopub.status.busy": "2024-05-24T13:33:06.964018Z", + "iopub.status.idle": "2024-05-24T13:33:06.967839Z", + "shell.execute_reply": "2024-05-24T13:33:06.967301Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.528912Z", - "iopub.status.busy": "2024-05-23T15:19:07.528509Z", - "iopub.status.idle": "2024-05-23T15:19:07.531928Z", - "shell.execute_reply": "2024-05-23T15:19:07.531495Z" + "iopub.execute_input": "2024-05-24T13:33:06.970112Z", + "iopub.status.busy": "2024-05-24T13:33:06.969760Z", + "iopub.status.idle": "2024-05-24T13:33:06.973484Z", + "shell.execute_reply": "2024-05-24T13:33:06.973018Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:07.533817Z", - "iopub.status.busy": "2024-05-23T15:19:07.533644Z", - "iopub.status.idle": "2024-05-23T15:19:07.536853Z", - "shell.execute_reply": "2024-05-23T15:19:07.536396Z" + "iopub.execute_input": "2024-05-24T13:33:06.975667Z", + "iopub.status.busy": "2024-05-24T13:33:06.975320Z", + "iopub.status.idle": "2024-05-24T13:33:06.978664Z", + "shell.execute_reply": "2024-05-24T13:33:06.978165Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 02d948ced..613edc566 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:09.941298Z", - "iopub.status.busy": "2024-05-23T15:19:09.940829Z", - "iopub.status.idle": "2024-05-23T15:19:11.097022Z", - "shell.execute_reply": "2024-05-23T15:19:11.096453Z" + "iopub.execute_input": "2024-05-24T13:33:09.590354Z", + "iopub.status.busy": "2024-05-24T13:33:09.590155Z", + "iopub.status.idle": "2024-05-24T13:33:10.838596Z", + "shell.execute_reply": "2024-05-24T13:33:10.838035Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.099863Z", - "iopub.status.busy": "2024-05-23T15:19:11.099331Z", - "iopub.status.idle": "2024-05-23T15:19:11.953578Z", - "shell.execute_reply": "2024-05-23T15:19:11.952908Z" + "iopub.execute_input": "2024-05-24T13:33:10.841277Z", + "iopub.status.busy": "2024-05-24T13:33:10.840675Z", + "iopub.status.idle": "2024-05-24T13:33:11.886250Z", + "shell.execute_reply": "2024-05-24T13:33:11.885501Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.956193Z", - "iopub.status.busy": "2024-05-23T15:19:11.955987Z", - "iopub.status.idle": "2024-05-23T15:19:11.959380Z", - "shell.execute_reply": "2024-05-23T15:19:11.958907Z" + "iopub.execute_input": "2024-05-24T13:33:11.889281Z", + "iopub.status.busy": "2024-05-24T13:33:11.888856Z", + "iopub.status.idle": "2024-05-24T13:33:11.892413Z", + "shell.execute_reply": "2024-05-24T13:33:11.891914Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.961322Z", - "iopub.status.busy": "2024-05-23T15:19:11.960978Z", - "iopub.status.idle": "2024-05-23T15:19:11.968077Z", - "shell.execute_reply": "2024-05-23T15:19:11.967654Z" + "iopub.execute_input": "2024-05-24T13:33:11.894713Z", + "iopub.status.busy": "2024-05-24T13:33:11.894289Z", + "iopub.status.idle": "2024-05-24T13:33:11.901509Z", + "shell.execute_reply": "2024-05-24T13:33:11.900916Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:11.970208Z", - "iopub.status.busy": "2024-05-23T15:19:11.969865Z", - "iopub.status.idle": "2024-05-23T15:19:12.460372Z", - "shell.execute_reply": "2024-05-23T15:19:12.459806Z" + "iopub.execute_input": "2024-05-24T13:33:11.903993Z", + "iopub.status.busy": "2024-05-24T13:33:11.903631Z", + "iopub.status.idle": "2024-05-24T13:33:12.406677Z", + "shell.execute_reply": "2024-05-24T13:33:12.405999Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.463246Z", - "iopub.status.busy": "2024-05-23T15:19:12.462904Z", - "iopub.status.idle": "2024-05-23T15:19:12.468057Z", - "shell.execute_reply": "2024-05-23T15:19:12.467625Z" + "iopub.execute_input": "2024-05-24T13:33:12.409267Z", + "iopub.status.busy": "2024-05-24T13:33:12.408784Z", + "iopub.status.idle": "2024-05-24T13:33:12.414357Z", + "shell.execute_reply": "2024-05-24T13:33:12.413785Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.470124Z", - "iopub.status.busy": "2024-05-23T15:19:12.469807Z", - "iopub.status.idle": "2024-05-23T15:19:12.473501Z", - "shell.execute_reply": "2024-05-23T15:19:12.473056Z" + "iopub.execute_input": "2024-05-24T13:33:12.416359Z", + "iopub.status.busy": "2024-05-24T13:33:12.416054Z", + "iopub.status.idle": "2024-05-24T13:33:12.419828Z", + "shell.execute_reply": "2024-05-24T13:33:12.419389Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:12.475564Z", - "iopub.status.busy": "2024-05-23T15:19:12.475235Z", - "iopub.status.idle": "2024-05-23T15:19:13.338397Z", - "shell.execute_reply": "2024-05-23T15:19:13.337797Z" + "iopub.execute_input": "2024-05-24T13:33:12.421934Z", + "iopub.status.busy": "2024-05-24T13:33:12.421599Z", + "iopub.status.idle": "2024-05-24T13:33:13.314654Z", + "shell.execute_reply": "2024-05-24T13:33:13.314074Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.340873Z", - "iopub.status.busy": "2024-05-23T15:19:13.340423Z", - "iopub.status.idle": "2024-05-23T15:19:13.588209Z", - "shell.execute_reply": "2024-05-23T15:19:13.587617Z" + "iopub.execute_input": "2024-05-24T13:33:13.317137Z", + "iopub.status.busy": "2024-05-24T13:33:13.316782Z", + "iopub.status.idle": "2024-05-24T13:33:13.540701Z", + "shell.execute_reply": "2024-05-24T13:33:13.540111Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.590484Z", - "iopub.status.busy": "2024-05-23T15:19:13.590022Z", - "iopub.status.idle": "2024-05-23T15:19:13.594514Z", - "shell.execute_reply": "2024-05-23T15:19:13.593949Z" + "iopub.execute_input": "2024-05-24T13:33:13.542972Z", + "iopub.status.busy": "2024-05-24T13:33:13.542641Z", + "iopub.status.idle": "2024-05-24T13:33:13.547197Z", + "shell.execute_reply": "2024-05-24T13:33:13.546642Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:13.596553Z", - "iopub.status.busy": "2024-05-23T15:19:13.596160Z", - "iopub.status.idle": "2024-05-23T15:19:14.053043Z", - "shell.execute_reply": "2024-05-23T15:19:14.052450Z" + "iopub.execute_input": "2024-05-24T13:33:13.549312Z", + "iopub.status.busy": "2024-05-24T13:33:13.549006Z", + "iopub.status.idle": "2024-05-24T13:33:14.025526Z", + "shell.execute_reply": "2024-05-24T13:33:14.024872Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.056181Z", - "iopub.status.busy": "2024-05-23T15:19:14.055807Z", - "iopub.status.idle": "2024-05-23T15:19:14.361904Z", - "shell.execute_reply": "2024-05-23T15:19:14.361420Z" + "iopub.execute_input": "2024-05-24T13:33:14.028846Z", + "iopub.status.busy": "2024-05-24T13:33:14.028468Z", + "iopub.status.idle": "2024-05-24T13:33:14.366001Z", + "shell.execute_reply": "2024-05-24T13:33:14.365415Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.363951Z", - "iopub.status.busy": "2024-05-23T15:19:14.363772Z", - "iopub.status.idle": "2024-05-23T15:19:14.726648Z", - "shell.execute_reply": "2024-05-23T15:19:14.726007Z" + "iopub.execute_input": "2024-05-24T13:33:14.369130Z", + "iopub.status.busy": "2024-05-24T13:33:14.368736Z", + "iopub.status.idle": "2024-05-24T13:33:14.705993Z", + "shell.execute_reply": "2024-05-24T13:33:14.705395Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:14.729639Z", - "iopub.status.busy": "2024-05-23T15:19:14.729287Z", - "iopub.status.idle": "2024-05-23T15:19:15.170833Z", - "shell.execute_reply": "2024-05-23T15:19:15.170240Z" + "iopub.execute_input": "2024-05-24T13:33:14.709268Z", + "iopub.status.busy": "2024-05-24T13:33:14.708881Z", + "iopub.status.idle": "2024-05-24T13:33:15.152704Z", + "shell.execute_reply": "2024-05-24T13:33:15.152123Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.174851Z", - "iopub.status.busy": "2024-05-23T15:19:15.174514Z", - "iopub.status.idle": "2024-05-23T15:19:15.621270Z", - "shell.execute_reply": "2024-05-23T15:19:15.620652Z" + "iopub.execute_input": "2024-05-24T13:33:15.157215Z", + "iopub.status.busy": "2024-05-24T13:33:15.156805Z", + "iopub.status.idle": "2024-05-24T13:33:15.612592Z", + "shell.execute_reply": "2024-05-24T13:33:15.611980Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.624334Z", - "iopub.status.busy": "2024-05-23T15:19:15.624147Z", - "iopub.status.idle": "2024-05-23T15:19:15.840347Z", - "shell.execute_reply": "2024-05-23T15:19:15.839762Z" + "iopub.execute_input": "2024-05-24T13:33:15.615540Z", + "iopub.status.busy": "2024-05-24T13:33:15.615351Z", + "iopub.status.idle": "2024-05-24T13:33:15.810846Z", + "shell.execute_reply": "2024-05-24T13:33:15.810203Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:15.842651Z", - "iopub.status.busy": "2024-05-23T15:19:15.842224Z", - "iopub.status.idle": "2024-05-23T15:19:16.023798Z", - "shell.execute_reply": "2024-05-23T15:19:16.023243Z" + "iopub.execute_input": "2024-05-24T13:33:15.813534Z", + "iopub.status.busy": "2024-05-24T13:33:15.813051Z", + "iopub.status.idle": "2024-05-24T13:33:15.995429Z", + "shell.execute_reply": "2024-05-24T13:33:15.994830Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:16.026016Z", - "iopub.status.busy": "2024-05-23T15:19:16.025682Z", - "iopub.status.idle": "2024-05-23T15:19:16.028740Z", - "shell.execute_reply": "2024-05-23T15:19:16.028149Z" + "iopub.execute_input": "2024-05-24T13:33:15.998066Z", + "iopub.status.busy": "2024-05-24T13:33:15.997738Z", + "iopub.status.idle": "2024-05-24T13:33:16.000791Z", + "shell.execute_reply": "2024-05-24T13:33:16.000219Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:16.030740Z", - "iopub.status.busy": "2024-05-23T15:19:16.030424Z", - "iopub.status.idle": "2024-05-23T15:19:16.998382Z", - "shell.execute_reply": "2024-05-23T15:19:16.997802Z" + "iopub.execute_input": "2024-05-24T13:33:16.002909Z", + "iopub.status.busy": "2024-05-24T13:33:16.002571Z", + "iopub.status.idle": "2024-05-24T13:33:16.944043Z", + "shell.execute_reply": "2024-05-24T13:33:16.943427Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.001300Z", - "iopub.status.busy": "2024-05-23T15:19:17.000884Z", - "iopub.status.idle": "2024-05-23T15:19:17.176402Z", - "shell.execute_reply": "2024-05-23T15:19:17.175818Z" + "iopub.execute_input": "2024-05-24T13:33:16.947075Z", + "iopub.status.busy": "2024-05-24T13:33:16.946731Z", + "iopub.status.idle": "2024-05-24T13:33:17.094572Z", + "shell.execute_reply": "2024-05-24T13:33:17.093949Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.178618Z", - "iopub.status.busy": "2024-05-23T15:19:17.178262Z", - "iopub.status.idle": "2024-05-23T15:19:17.349438Z", - "shell.execute_reply": "2024-05-23T15:19:17.348931Z" + "iopub.execute_input": "2024-05-24T13:33:17.096793Z", + "iopub.status.busy": "2024-05-24T13:33:17.096436Z", + "iopub.status.idle": "2024-05-24T13:33:17.243920Z", + "shell.execute_reply": "2024-05-24T13:33:17.243404Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:17.351734Z", - "iopub.status.busy": "2024-05-23T15:19:17.351422Z", - "iopub.status.idle": "2024-05-23T15:19:18.093586Z", - "shell.execute_reply": "2024-05-23T15:19:18.092975Z" + "iopub.execute_input": "2024-05-24T13:33:17.245921Z", + "iopub.status.busy": "2024-05-24T13:33:17.245732Z", + "iopub.status.idle": "2024-05-24T13:33:18.013784Z", + "shell.execute_reply": "2024-05-24T13:33:18.013170Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:18.095774Z", - "iopub.status.busy": "2024-05-23T15:19:18.095421Z", - "iopub.status.idle": "2024-05-23T15:19:18.098960Z", - "shell.execute_reply": "2024-05-23T15:19:18.098495Z" + "iopub.execute_input": "2024-05-24T13:33:18.015875Z", + "iopub.status.busy": "2024-05-24T13:33:18.015687Z", + "iopub.status.idle": "2024-05-24T13:33:18.019572Z", + "shell.execute_reply": "2024-05-24T13:33:18.019100Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 42c000b6b..661d87389 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -761,7 +761,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]
+100%|██████████| 170498071/170498071 [00:02<00:00, 64418107.35it/s]
 
-
+
@@ -1105,7 +1105,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 864c4a675..1a2f12fb0 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:20.418050Z", - "iopub.status.busy": "2024-05-23T15:19:20.417645Z", - "iopub.status.idle": "2024-05-23T15:19:23.119265Z", - "shell.execute_reply": "2024-05-23T15:19:23.118765Z" + "iopub.execute_input": "2024-05-24T13:33:20.391399Z", + "iopub.status.busy": "2024-05-24T13:33:20.391209Z", + "iopub.status.idle": "2024-05-24T13:33:23.302222Z", + "shell.execute_reply": "2024-05-24T13:33:23.301533Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.121949Z", - "iopub.status.busy": "2024-05-23T15:19:23.121462Z", - "iopub.status.idle": "2024-05-23T15:19:23.439157Z", - "shell.execute_reply": "2024-05-23T15:19:23.438540Z" + "iopub.execute_input": "2024-05-24T13:33:23.305118Z", + "iopub.status.busy": "2024-05-24T13:33:23.304770Z", + "iopub.status.idle": "2024-05-24T13:33:23.649769Z", + "shell.execute_reply": "2024-05-24T13:33:23.649203Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.441889Z", - "iopub.status.busy": "2024-05-23T15:19:23.441445Z", - "iopub.status.idle": "2024-05-23T15:19:23.445687Z", - "shell.execute_reply": "2024-05-23T15:19:23.445138Z" + "iopub.execute_input": "2024-05-24T13:33:23.652244Z", + "iopub.status.busy": "2024-05-24T13:33:23.651916Z", + "iopub.status.idle": "2024-05-24T13:33:23.656718Z", + "shell.execute_reply": "2024-05-24T13:33:23.656289Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:23.447818Z", - "iopub.status.busy": "2024-05-23T15:19:23.447514Z", - "iopub.status.idle": "2024-05-23T15:19:27.910563Z", - "shell.execute_reply": "2024-05-23T15:19:27.909990Z" + "iopub.execute_input": "2024-05-24T13:33:23.659033Z", + "iopub.status.busy": "2024-05-24T13:33:23.658579Z", + "iopub.status.idle": "2024-05-24T13:33:28.996196Z", + "shell.execute_reply": "2024-05-24T13:33:28.995654Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1736704/170498071 [00:00<00:09, 17162140.37it/s]" + " 1%| | 1572864/170498071 [00:00<00:10, 15497575.12it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11501568/170498071 [00:00<00:02, 64155763.85it/s]" + " 4%|▍ | 6455296/170498071 [00:00<00:04, 34879744.55it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20086784/170498071 [00:00<00:02, 74015559.27it/s]" + " 7%|▋ | 11829248/170498071 [00:00<00:03, 43399948.17it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:01, 82879750.45it/s]" + " 10%|█ | 17727488/170498071 [00:00<00:03, 49412469.68it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 38567936/170498071 [00:00<00:01, 84511055.51it/s]" + " 13%|█▎ | 22806528/170498071 [00:00<00:02, 49742213.39it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 48037888/170498071 [00:00<00:01, 87861286.88it/s]" + " 16%|█▋ | 27918336/170498071 [00:00<00:02, 50079893.14it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57049088/170498071 [00:00<00:01, 88570456.06it/s]" + " 20%|█▉ | 33488896/170498071 [00:00<00:02, 51777460.64it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 66322432/170498071 [00:00<00:01, 89869881.39it/s]" + " 23%|██▎ | 38699008/170498071 [00:00<00:02, 51012623.58it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75792384/170498071 [00:00<00:01, 91369701.92it/s]" + " 26%|██▌ | 44269568/170498071 [00:00<00:02, 52371059.87it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 85098496/170498071 [00:01<00:00, 91824248.19it/s]" + " 29%|██▉ | 49512448/170498071 [00:01<00:02, 50924661.88it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94699520/170498071 [00:01<00:00, 93055008.97it/s]" + " 32%|███▏ | 54624256/170498071 [00:01<00:02, 48112437.68it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 104038400/170498071 [00:01<00:00, 91300067.76it/s]" + " 35%|███▍ | 59637760/170498071 [00:01<00:02, 48616676.78it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 113836032/170498071 [00:01<00:00, 93288047.22it/s]" + " 38%|███▊ | 64552960/170498071 [00:01<00:02, 48676821.62it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 123174912/170498071 [00:01<00:00, 90347951.48it/s]" + " 41%|████ | 69468160/170498071 [00:01<00:02, 47385489.07it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134283264/170498071 [00:01<00:00, 96381342.24it/s]" + " 44%|████▎ | 74416128/170498071 [00:01<00:02, 47983741.04it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143982592/170498071 [00:01<00:00, 93413218.25it/s]" + " 48%|████▊ | 81362944/170498071 [00:01<00:01, 54201185.57it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155516928/170498071 [00:01<00:00, 99643141.74it/s]" + " 52%|█████▏ | 88473600/170498071 [00:01<00:01, 59064037.60it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 165543936/170498071 [00:01<00:00, 96481236.76it/s]" + " 55%|█████▌ | 94502912/170498071 [00:01<00:01, 59293777.03it/s]" ] }, { @@ -396,7 +396,63 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]" + " 59%|█████▉ | 100466688/170498071 [00:01<00:01, 58247025.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▍ | 110002176/170498071 [00:02<00:00, 69074001.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████ | 121044992/170498071 [00:02<00:00, 81259105.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131661824/170498071 [00:02<00:00, 88605421.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 142245888/170498071 [00:02<00:00, 93703198.56it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152600576/170498071 [00:02<00:00, 96621095.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162463744/170498071 [00:02<00:00, 97203561.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 64418107.35it/s]" ] }, { @@ -514,10 +570,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:27.912894Z", - "iopub.status.busy": "2024-05-23T15:19:27.912553Z", - "iopub.status.idle": "2024-05-23T15:19:27.917158Z", - "shell.execute_reply": "2024-05-23T15:19:27.916722Z" + "iopub.execute_input": "2024-05-24T13:33:28.998617Z", + "iopub.status.busy": "2024-05-24T13:33:28.998233Z", + "iopub.status.idle": "2024-05-24T13:33:29.003265Z", + "shell.execute_reply": "2024-05-24T13:33:29.002790Z" }, "nbsphinx": "hidden" }, @@ -568,10 +624,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:27.919088Z", - "iopub.status.busy": "2024-05-23T15:19:27.918790Z", - "iopub.status.idle": "2024-05-23T15:19:28.466696Z", - "shell.execute_reply": "2024-05-23T15:19:28.466159Z" + "iopub.execute_input": "2024-05-24T13:33:29.005209Z", + "iopub.status.busy": "2024-05-24T13:33:29.004876Z", + "iopub.status.idle": "2024-05-24T13:33:29.561473Z", + "shell.execute_reply": "2024-05-24T13:33:29.560904Z" } }, "outputs": [ @@ -604,10 +660,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.468957Z", - "iopub.status.busy": "2024-05-23T15:19:28.468602Z", - "iopub.status.idle": "2024-05-23T15:19:28.980865Z", - "shell.execute_reply": "2024-05-23T15:19:28.980281Z" + "iopub.execute_input": "2024-05-24T13:33:29.563543Z", + "iopub.status.busy": "2024-05-24T13:33:29.563318Z", + "iopub.status.idle": "2024-05-24T13:33:30.067196Z", + "shell.execute_reply": "2024-05-24T13:33:30.066609Z" } }, "outputs": [ @@ -645,10 +701,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.983104Z", - "iopub.status.busy": "2024-05-23T15:19:28.982884Z", - "iopub.status.idle": "2024-05-23T15:19:28.986615Z", - "shell.execute_reply": "2024-05-23T15:19:28.986093Z" + "iopub.execute_input": "2024-05-24T13:33:30.069485Z", + "iopub.status.busy": "2024-05-24T13:33:30.069106Z", + "iopub.status.idle": "2024-05-24T13:33:30.072627Z", + "shell.execute_reply": "2024-05-24T13:33:30.072179Z" } }, "outputs": [], @@ -671,17 +727,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:28.988717Z", - "iopub.status.busy": "2024-05-23T15:19:28.988399Z", - "iopub.status.idle": "2024-05-23T15:19:41.268144Z", - "shell.execute_reply": "2024-05-23T15:19:41.267376Z" + "iopub.execute_input": "2024-05-24T13:33:30.074767Z", + "iopub.status.busy": "2024-05-24T13:33:30.074423Z", + "iopub.status.idle": "2024-05-24T13:33:42.356714Z", + "shell.execute_reply": "2024-05-24T13:33:42.356070Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b8fb0a2765b451f98a1ac53ecb4e164", + "model_id": "0ff2fd33ab834c6aab79eab42b6573ca", "version_major": 2, "version_minor": 0 }, @@ -740,10 +796,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:41.270525Z", - "iopub.status.busy": "2024-05-23T15:19:41.270205Z", - "iopub.status.idle": "2024-05-23T15:19:42.992266Z", - "shell.execute_reply": "2024-05-23T15:19:42.991636Z" + "iopub.execute_input": "2024-05-24T13:33:42.359115Z", + "iopub.status.busy": "2024-05-24T13:33:42.358911Z", + "iopub.status.idle": "2024-05-24T13:33:44.102574Z", + "shell.execute_reply": "2024-05-24T13:33:44.101925Z" } }, "outputs": [ @@ -787,10 +843,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:42.994884Z", - "iopub.status.busy": "2024-05-23T15:19:42.994665Z", - "iopub.status.idle": "2024-05-23T15:19:43.223220Z", - "shell.execute_reply": "2024-05-23T15:19:43.222636Z" + "iopub.execute_input": "2024-05-24T13:33:44.105052Z", + "iopub.status.busy": "2024-05-24T13:33:44.104795Z", + "iopub.status.idle": "2024-05-24T13:33:44.331549Z", + "shell.execute_reply": "2024-05-24T13:33:44.330923Z" } }, "outputs": [ @@ -826,10 +882,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:43.225630Z", - "iopub.status.busy": "2024-05-23T15:19:43.225442Z", - "iopub.status.idle": "2024-05-23T15:19:43.863487Z", - "shell.execute_reply": "2024-05-23T15:19:43.863013Z" + "iopub.execute_input": "2024-05-24T13:33:44.334024Z", + "iopub.status.busy": "2024-05-24T13:33:44.333688Z", + "iopub.status.idle": "2024-05-24T13:33:45.001642Z", + "shell.execute_reply": "2024-05-24T13:33:45.000973Z" } }, "outputs": [ @@ -879,10 +935,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:43.866093Z", - "iopub.status.busy": "2024-05-23T15:19:43.865706Z", - "iopub.status.idle": "2024-05-23T15:19:44.203398Z", - "shell.execute_reply": "2024-05-23T15:19:44.202779Z" + "iopub.execute_input": "2024-05-24T13:33:45.004691Z", + "iopub.status.busy": "2024-05-24T13:33:45.004156Z", + "iopub.status.idle": "2024-05-24T13:33:45.343222Z", + "shell.execute_reply": "2024-05-24T13:33:45.342719Z" } }, "outputs": [ @@ -930,10 +986,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.205810Z", - "iopub.status.busy": "2024-05-23T15:19:44.205389Z", - "iopub.status.idle": "2024-05-23T15:19:44.439111Z", - "shell.execute_reply": "2024-05-23T15:19:44.438438Z" + "iopub.execute_input": "2024-05-24T13:33:45.345532Z", + "iopub.status.busy": "2024-05-24T13:33:45.345168Z", + "iopub.status.idle": "2024-05-24T13:33:45.587522Z", + "shell.execute_reply": "2024-05-24T13:33:45.586377Z" } }, "outputs": [ @@ -989,10 +1045,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.441833Z", - "iopub.status.busy": "2024-05-23T15:19:44.441368Z", - "iopub.status.idle": "2024-05-23T15:19:44.520211Z", - "shell.execute_reply": "2024-05-23T15:19:44.519728Z" + "iopub.execute_input": "2024-05-24T13:33:45.590777Z", + "iopub.status.busy": "2024-05-24T13:33:45.590338Z", + "iopub.status.idle": "2024-05-24T13:33:45.687618Z", + "shell.execute_reply": "2024-05-24T13:33:45.687004Z" } }, "outputs": [], @@ -1013,10 +1069,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:44.522662Z", - "iopub.status.busy": "2024-05-23T15:19:44.522298Z", - "iopub.status.idle": "2024-05-23T15:19:54.500962Z", - "shell.execute_reply": "2024-05-23T15:19:54.500349Z" + "iopub.execute_input": "2024-05-24T13:33:45.690233Z", + "iopub.status.busy": "2024-05-24T13:33:45.689769Z", + "iopub.status.idle": "2024-05-24T13:33:55.808319Z", + "shell.execute_reply": "2024-05-24T13:33:55.807714Z" } }, "outputs": [ @@ -1053,10 +1109,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:54.503513Z", - "iopub.status.busy": "2024-05-23T15:19:54.503062Z", - "iopub.status.idle": "2024-05-23T15:19:56.228078Z", - "shell.execute_reply": "2024-05-23T15:19:56.227474Z" + "iopub.execute_input": "2024-05-24T13:33:55.810788Z", + "iopub.status.busy": "2024-05-24T13:33:55.810406Z", + "iopub.status.idle": "2024-05-24T13:33:57.586605Z", + "shell.execute_reply": "2024-05-24T13:33:57.585917Z" } }, "outputs": [ @@ -1087,10 +1143,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.230773Z", - "iopub.status.busy": "2024-05-23T15:19:56.230243Z", - "iopub.status.idle": "2024-05-23T15:19:56.429163Z", - "shell.execute_reply": "2024-05-23T15:19:56.428662Z" + "iopub.execute_input": "2024-05-24T13:33:57.589829Z", + "iopub.status.busy": "2024-05-24T13:33:57.589164Z", + "iopub.status.idle": "2024-05-24T13:33:57.793303Z", + "shell.execute_reply": "2024-05-24T13:33:57.792691Z" } }, "outputs": [], @@ -1104,10 +1160,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.431632Z", - "iopub.status.busy": "2024-05-23T15:19:56.431214Z", - "iopub.status.idle": "2024-05-23T15:19:56.434445Z", - "shell.execute_reply": "2024-05-23T15:19:56.433868Z" + "iopub.execute_input": "2024-05-24T13:33:57.795779Z", + "iopub.status.busy": "2024-05-24T13:33:57.795599Z", + "iopub.status.idle": "2024-05-24T13:33:57.798815Z", + "shell.execute_reply": "2024-05-24T13:33:57.798359Z" } }, "outputs": [], @@ -1129,10 +1185,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:19:56.436613Z", - "iopub.status.busy": "2024-05-23T15:19:56.436227Z", - "iopub.status.idle": "2024-05-23T15:19:56.444314Z", - "shell.execute_reply": "2024-05-23T15:19:56.443752Z" + "iopub.execute_input": "2024-05-24T13:33:57.800956Z", + "iopub.status.busy": "2024-05-24T13:33:57.800647Z", + "iopub.status.idle": "2024-05-24T13:33:57.809008Z", + "shell.execute_reply": "2024-05-24T13:33:57.808408Z" }, "nbsphinx": "hidden" }, @@ -1177,49 +1233,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1c081dc855c845ca806a2b2c12fb3457": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3b8fb0a2765b451f98a1ac53ecb4e164": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8ba87703fab416f9d70cbc709c4da3f", - "IPY_MODEL_9a7ed5c009c741478561e905be1672f7", - "IPY_MODEL_c1f97f79234649aabff0e34c04779f90" - ], - "layout": "IPY_MODEL_44294bba5289472bbfa0506434dfc622", - "tabbable": null, - "tooltip": null - } - }, - "44294bba5289472bbfa0506434dfc622": { + "0720336763d74d0a8a6a72f7cea9bc66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1272,67 +1286,7 @@ "width": null } }, - "4979f41862c14d879975f69b3a683d77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7bb947aefbf04918bd7f078ff36abde0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a7ed5c009c741478561e905be1672f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4a51d9305e142b69ea5800c787cf085", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7bb947aefbf04918bd7f078ff36abde0", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a4a51d9305e142b69ea5800c787cf085": { + "0d2862ca3dd5495ca968e715f711cc46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1385,7 +1339,31 @@ "width": null } }, - "b8ba87703fab416f9d70cbc709c4da3f": { + "0ff2fd33ab834c6aab79eab42b6573ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20daa135e186400d824d63d0df9022f2", + "IPY_MODEL_3f8c9c3534714a0e89eceff097855f8a", + "IPY_MODEL_9ad5db358f354fb5ae8a9691815eeed5" + ], + "layout": "IPY_MODEL_0720336763d74d0a8a6a72f7cea9bc66", + "tabbable": null, + "tooltip": null + } + }, + "20daa135e186400d824d63d0df9022f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,15 +1378,77 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4b8a16ee1de4b8d8f8c9618fd2fcb1d", + "layout": "IPY_MODEL_0d2862ca3dd5495ca968e715f711cc46", "placeholder": "​", - "style": "IPY_MODEL_4979f41862c14d879975f69b3a683d77", + "style": "IPY_MODEL_3cc55702b2da48a2a5eb73c11d363927", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c1f97f79234649aabff0e34c04779f90": { + "3cc55702b2da48a2a5eb73c11d363927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3f8c9c3534714a0e89eceff097855f8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b65561fb734445e18fd449d72865f477", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e1e87a8a048e47aeb0098093ff7c04df", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "84ab33210359463c8693e663e15a93b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ad5db358f354fb5ae8a9691815eeed5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1423,15 +1463,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c352ca37fa08488494329f472fcc29eb", + "layout": "IPY_MODEL_aa79e66d3c1d466ebb7311802e332825", "placeholder": "​", - "style": "IPY_MODEL_1c081dc855c845ca806a2b2c12fb3457", + "style": "IPY_MODEL_84ab33210359463c8693e663e15a93b5", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 319MB/s]" + "value": " 102M/102M [00:00<00:00, 352MB/s]" } }, - "c352ca37fa08488494329f472fcc29eb": { + "aa79e66d3c1d466ebb7311802e332825": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,7 +1524,7 @@ "width": null } }, - "f4b8a16ee1de4b8d8f8c9618fd2fcb1d": { + "b65561fb734445e18fd449d72865f477": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1536,6 +1576,22 @@ "visibility": null, "width": null } + }, + "e1e87a8a048e47aeb0098093ff7c04df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 79ad29265..bec77574e 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:00.713888Z", - "iopub.status.busy": "2024-05-23T15:20:00.713712Z", - "iopub.status.idle": "2024-05-23T15:20:01.884137Z", - "shell.execute_reply": "2024-05-23T15:20:01.883522Z" + "iopub.execute_input": "2024-05-24T13:34:02.043960Z", + "iopub.status.busy": "2024-05-24T13:34:02.043782Z", + "iopub.status.idle": "2024-05-24T13:34:03.226380Z", + "shell.execute_reply": "2024-05-24T13:34:03.225811Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.886789Z", - "iopub.status.busy": "2024-05-23T15:20:01.886262Z", - "iopub.status.idle": "2024-05-23T15:20:01.903881Z", - "shell.execute_reply": "2024-05-23T15:20:01.903329Z" + "iopub.execute_input": "2024-05-24T13:34:03.228910Z", + "iopub.status.busy": "2024-05-24T13:34:03.228466Z", + "iopub.status.idle": "2024-05-24T13:34:03.246062Z", + "shell.execute_reply": "2024-05-24T13:34:03.245623Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.906014Z", - "iopub.status.busy": "2024-05-23T15:20:01.905623Z", - "iopub.status.idle": "2024-05-23T15:20:01.908690Z", - "shell.execute_reply": "2024-05-23T15:20:01.908171Z" + "iopub.execute_input": "2024-05-24T13:34:03.248226Z", + "iopub.status.busy": "2024-05-24T13:34:03.247951Z", + "iopub.status.idle": "2024-05-24T13:34:03.250873Z", + "shell.execute_reply": "2024-05-24T13:34:03.250439Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.910636Z", - "iopub.status.busy": "2024-05-23T15:20:01.910322Z", - "iopub.status.idle": "2024-05-23T15:20:01.976706Z", - "shell.execute_reply": "2024-05-23T15:20:01.976157Z" + "iopub.execute_input": "2024-05-24T13:34:03.252873Z", + "iopub.status.busy": "2024-05-24T13:34:03.252549Z", + "iopub.status.idle": "2024-05-24T13:34:03.314605Z", + "shell.execute_reply": "2024-05-24T13:34:03.314031Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:01.978980Z", - "iopub.status.busy": "2024-05-23T15:20:01.978658Z", - "iopub.status.idle": "2024-05-23T15:20:02.159140Z", - "shell.execute_reply": "2024-05-23T15:20:02.158508Z" + "iopub.execute_input": "2024-05-24T13:34:03.316854Z", + "iopub.status.busy": "2024-05-24T13:34:03.316656Z", + "iopub.status.idle": "2024-05-24T13:34:03.502752Z", + "shell.execute_reply": "2024-05-24T13:34:03.502194Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.161735Z", - "iopub.status.busy": "2024-05-23T15:20:02.161393Z", - "iopub.status.idle": "2024-05-23T15:20:02.408259Z", - "shell.execute_reply": "2024-05-23T15:20:02.407696Z" + "iopub.execute_input": "2024-05-24T13:34:03.505333Z", + "iopub.status.busy": "2024-05-24T13:34:03.504898Z", + "iopub.status.idle": "2024-05-24T13:34:03.750734Z", + "shell.execute_reply": "2024-05-24T13:34:03.750120Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.410508Z", - "iopub.status.busy": "2024-05-23T15:20:02.410129Z", - "iopub.status.idle": "2024-05-23T15:20:02.414877Z", - "shell.execute_reply": "2024-05-23T15:20:02.414404Z" + "iopub.execute_input": "2024-05-24T13:34:03.752894Z", + "iopub.status.busy": "2024-05-24T13:34:03.752692Z", + "iopub.status.idle": "2024-05-24T13:34:03.757482Z", + "shell.execute_reply": "2024-05-24T13:34:03.757022Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.416679Z", - "iopub.status.busy": "2024-05-23T15:20:02.416500Z", - "iopub.status.idle": "2024-05-23T15:20:02.422284Z", - "shell.execute_reply": "2024-05-23T15:20:02.421829Z" + "iopub.execute_input": "2024-05-24T13:34:03.759400Z", + "iopub.status.busy": "2024-05-24T13:34:03.759210Z", + "iopub.status.idle": "2024-05-24T13:34:03.765279Z", + "shell.execute_reply": "2024-05-24T13:34:03.764841Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.424407Z", - "iopub.status.busy": "2024-05-23T15:20:02.424109Z", - "iopub.status.idle": "2024-05-23T15:20:02.426792Z", - "shell.execute_reply": "2024-05-23T15:20:02.426231Z" + "iopub.execute_input": "2024-05-24T13:34:03.767382Z", + "iopub.status.busy": "2024-05-24T13:34:03.767200Z", + "iopub.status.idle": "2024-05-24T13:34:03.770348Z", + "shell.execute_reply": "2024-05-24T13:34:03.769886Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:02.428710Z", - "iopub.status.busy": "2024-05-23T15:20:02.428403Z", - "iopub.status.idle": "2024-05-23T15:20:10.585054Z", - "shell.execute_reply": "2024-05-23T15:20:10.584498Z" + "iopub.execute_input": "2024-05-24T13:34:03.772311Z", + "iopub.status.busy": "2024-05-24T13:34:03.771984Z", + "iopub.status.idle": "2024-05-24T13:34:12.153625Z", + "shell.execute_reply": "2024-05-24T13:34:12.152959Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.587881Z", - "iopub.status.busy": "2024-05-23T15:20:10.587316Z", - "iopub.status.idle": "2024-05-23T15:20:10.594690Z", - "shell.execute_reply": "2024-05-23T15:20:10.594103Z" + "iopub.execute_input": "2024-05-24T13:34:12.156634Z", + "iopub.status.busy": "2024-05-24T13:34:12.156006Z", + "iopub.status.idle": "2024-05-24T13:34:12.163657Z", + "shell.execute_reply": "2024-05-24T13:34:12.163174Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.596762Z", - "iopub.status.busy": "2024-05-23T15:20:10.596442Z", - "iopub.status.idle": "2024-05-23T15:20:10.600191Z", - "shell.execute_reply": "2024-05-23T15:20:10.599728Z" + "iopub.execute_input": "2024-05-24T13:34:12.165735Z", + "iopub.status.busy": "2024-05-24T13:34:12.165396Z", + "iopub.status.idle": "2024-05-24T13:34:12.169042Z", + "shell.execute_reply": "2024-05-24T13:34:12.168593Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.602274Z", - "iopub.status.busy": "2024-05-23T15:20:10.601848Z", - "iopub.status.idle": "2024-05-23T15:20:10.605475Z", - "shell.execute_reply": "2024-05-23T15:20:10.604912Z" + "iopub.execute_input": "2024-05-24T13:34:12.170970Z", + "iopub.status.busy": "2024-05-24T13:34:12.170645Z", + "iopub.status.idle": "2024-05-24T13:34:12.173994Z", + "shell.execute_reply": "2024-05-24T13:34:12.173541Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.607598Z", - "iopub.status.busy": "2024-05-23T15:20:10.607293Z", - "iopub.status.idle": "2024-05-23T15:20:10.610357Z", - "shell.execute_reply": "2024-05-23T15:20:10.609904Z" + "iopub.execute_input": "2024-05-24T13:34:12.176022Z", + "iopub.status.busy": "2024-05-24T13:34:12.175732Z", + "iopub.status.idle": "2024-05-24T13:34:12.178808Z", + "shell.execute_reply": "2024-05-24T13:34:12.178361Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.612134Z", - "iopub.status.busy": "2024-05-23T15:20:10.611960Z", - "iopub.status.idle": "2024-05-23T15:20:10.620107Z", - "shell.execute_reply": "2024-05-23T15:20:10.619583Z" + "iopub.execute_input": "2024-05-24T13:34:12.180704Z", + "iopub.status.busy": "2024-05-24T13:34:12.180383Z", + "iopub.status.idle": "2024-05-24T13:34:12.188415Z", + "shell.execute_reply": "2024-05-24T13:34:12.187942Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.622243Z", - "iopub.status.busy": "2024-05-23T15:20:10.621851Z", - "iopub.status.idle": "2024-05-23T15:20:10.624633Z", - "shell.execute_reply": "2024-05-23T15:20:10.624069Z" + "iopub.execute_input": "2024-05-24T13:34:12.190528Z", + "iopub.status.busy": "2024-05-24T13:34:12.190207Z", + "iopub.status.idle": "2024-05-24T13:34:12.193006Z", + "shell.execute_reply": "2024-05-24T13:34:12.192542Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.626725Z", - "iopub.status.busy": "2024-05-23T15:20:10.626413Z", - "iopub.status.idle": "2024-05-23T15:20:10.746726Z", - "shell.execute_reply": "2024-05-23T15:20:10.746183Z" + "iopub.execute_input": "2024-05-24T13:34:12.195060Z", + "iopub.status.busy": "2024-05-24T13:34:12.194729Z", + "iopub.status.idle": "2024-05-24T13:34:12.317926Z", + "shell.execute_reply": "2024-05-24T13:34:12.317311Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.748994Z", - "iopub.status.busy": "2024-05-23T15:20:10.748556Z", - "iopub.status.idle": "2024-05-23T15:20:10.851929Z", - "shell.execute_reply": "2024-05-23T15:20:10.851338Z" + "iopub.execute_input": "2024-05-24T13:34:12.320507Z", + "iopub.status.busy": "2024-05-24T13:34:12.320056Z", + "iopub.status.idle": "2024-05-24T13:34:12.426604Z", + "shell.execute_reply": "2024-05-24T13:34:12.425962Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:10.854241Z", - "iopub.status.busy": "2024-05-23T15:20:10.854025Z", - "iopub.status.idle": "2024-05-23T15:20:11.349402Z", - "shell.execute_reply": "2024-05-23T15:20:11.348855Z" + "iopub.execute_input": "2024-05-24T13:34:12.428907Z", + "iopub.status.busy": "2024-05-24T13:34:12.428713Z", + "iopub.status.idle": "2024-05-24T13:34:12.925080Z", + "shell.execute_reply": "2024-05-24T13:34:12.924541Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.352034Z", - "iopub.status.busy": "2024-05-23T15:20:11.351640Z", - "iopub.status.idle": "2024-05-23T15:20:11.429647Z", - "shell.execute_reply": "2024-05-23T15:20:11.429097Z" + "iopub.execute_input": "2024-05-24T13:34:12.927686Z", + "iopub.status.busy": "2024-05-24T13:34:12.927302Z", + "iopub.status.idle": "2024-05-24T13:34:13.006220Z", + "shell.execute_reply": "2024-05-24T13:34:13.005543Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.431986Z", - "iopub.status.busy": "2024-05-23T15:20:11.431616Z", - "iopub.status.idle": "2024-05-23T15:20:11.440050Z", - "shell.execute_reply": "2024-05-23T15:20:11.439597Z" + "iopub.execute_input": "2024-05-24T13:34:13.008649Z", + "iopub.status.busy": "2024-05-24T13:34:13.008211Z", + "iopub.status.idle": "2024-05-24T13:34:13.017161Z", + "shell.execute_reply": "2024-05-24T13:34:13.016590Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.441946Z", - "iopub.status.busy": "2024-05-23T15:20:11.441647Z", - "iopub.status.idle": "2024-05-23T15:20:11.444421Z", - "shell.execute_reply": "2024-05-23T15:20:11.443857Z" + "iopub.execute_input": "2024-05-24T13:34:13.019392Z", + "iopub.status.busy": "2024-05-24T13:34:13.019067Z", + "iopub.status.idle": "2024-05-24T13:34:13.021940Z", + "shell.execute_reply": "2024-05-24T13:34:13.021369Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:11.446342Z", - "iopub.status.busy": "2024-05-23T15:20:11.446041Z", - "iopub.status.idle": "2024-05-23T15:20:16.914965Z", - "shell.execute_reply": "2024-05-23T15:20:16.914270Z" + "iopub.execute_input": "2024-05-24T13:34:13.024205Z", + "iopub.status.busy": "2024-05-24T13:34:13.023873Z", + "iopub.status.idle": "2024-05-24T13:34:18.545242Z", + "shell.execute_reply": "2024-05-24T13:34:18.544592Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:16.917193Z", - "iopub.status.busy": "2024-05-23T15:20:16.917010Z", - "iopub.status.idle": "2024-05-23T15:20:16.925745Z", - "shell.execute_reply": "2024-05-23T15:20:16.925203Z" + "iopub.execute_input": "2024-05-24T13:34:18.547736Z", + "iopub.status.busy": "2024-05-24T13:34:18.547322Z", + "iopub.status.idle": "2024-05-24T13:34:18.556445Z", + "shell.execute_reply": "2024-05-24T13:34:18.555967Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:16.927764Z", - "iopub.status.busy": "2024-05-23T15:20:16.927451Z", - "iopub.status.idle": "2024-05-23T15:20:16.992676Z", - "shell.execute_reply": "2024-05-23T15:20:16.992057Z" + "iopub.execute_input": "2024-05-24T13:34:18.558799Z", + "iopub.status.busy": "2024-05-24T13:34:18.558415Z", + "iopub.status.idle": "2024-05-24T13:34:18.624616Z", + "shell.execute_reply": "2024-05-24T13:34:18.623965Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index fc2ec5138..b1bab9ba8 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -781,13 +781,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1177,7 +1177,7 @@

Get label quality scores -{"state": {"3dad1b05b1624573b3133880eff2163f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b453cf1c85cc41e7a4698820cebb73cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a570f95dbe384aaa96ee3013473e2ebe": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", "tabbable": null, "tooltip": null, "value": 30.0}}, "ba13899638c54baebf4d5e9da65660b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9943848dcb643c2a23f4e8cf52def5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ccaa73ac723461c85d0fdfec6e4e9c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", "placeholder": "\u200b", "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ca3c6bba54884c01bd56c4cd91c8fd71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cc4259329f74837bd19ac70f0bfd280": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b39104787d44463885c0c905b63ba15": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", "placeholder": "\u200b", "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007816.61it/s]"}}, "9f52119dcdce4e578fbef81f09977a4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ef5c47110ec4f59aeb856c6d3c341a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", "IPY_MODEL_7b39104787d44463885c0c905b63ba15"], "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", "tabbable": null, "tooltip": null}}, "7991601db8784f6c9e29101ffb67eadb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68c71bc1bad94d8d84e927f32499419b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1564ff2b349245b98b6641d891bfd8b3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", "tabbable": null, "tooltip": null, "value": 30.0}}, "b1b566c302dd4797bc264e8362c45e1c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdd6e352fd8b4492b50d4a59e384a686": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0cb55221d04844998b3efd90659ba7d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", "placeholder": "\u200b", "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "6cbc832ae4344da0b4821023a5ef412e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbe48e3cba8a4185a380bca2613cfecb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "adf75e7c04a8438588821d873887cc06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", "placeholder": "\u200b", "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.46it/s]"}}, "3d8d61af332845c19a16f7f26036b979": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c79ebbfe831845c1a17b218fa7be7f95": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", "IPY_MODEL_adf75e7c04a8438588821d873887cc06"], "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", "tabbable": null, "tooltip": null}}, "7eb64e5ad90643f88016fb9ef67a93fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b995012c5b064376b67bfc740cdab094": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e8bac498633d4753ba3338a097659542": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "68c50245c9504baf95dbb3963b43a8a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b123db02fc04548acd586c0cf17798b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b2208a3f273849ab827fae9cd38132f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", "placeholder": "\u200b", "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", "tabbable": null, "tooltip": null, "value": "100%"}}, "d9bc553ff2a146208e83cfb4a65cd5aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb51f26ffedf41cf941e7bf04717041c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "63318ac9759641a697650e72ba3a1f71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", "placeholder": "\u200b", "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154309.04it/s]"}}, "41dc3879d71e491eb1cad2b61fd7f555": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0411aabf4a7449b7b6097cf29c44f6be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", "IPY_MODEL_e8bac498633d4753ba3338a097659542", "IPY_MODEL_63318ac9759641a697650e72ba3a1f71"], "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", "tabbable": null, "tooltip": null}}, "556d7a96f68d404da1aceb865b5bcaa3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a45910e9f24846f4a8fd1dbae5f6f01e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0b875393e6884f6da0d17965a84e7e3c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", "tabbable": null, "tooltip": null, "value": 30.0}}, "0398887f1bfe40b0955c8abea4b49cd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2094383203b482c95ee7d5c103429ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1588d3dd602a4049b726fc99f066d0cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", "placeholder": "\u200b", "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "bfa54f2e76a94d408a32cd5e4451600f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07ac41807a0b47a7b26d56207634fd82": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ace77f3dc6c149e1a69150e6d6932650": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", "placeholder": "\u200b", "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.28it/s]"}}, "910f5814751b4800aa309a91fcfb8c98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d625e0de09de41e58013bd6ffd10ea65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650"], "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"ad82bfd5132d4ee7901222c284d7351e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fedbe6a4bc3b4b258a9a035f8c3c0309": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d0725c60b5848f79c36350f1f68cb91": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ad82bfd5132d4ee7901222c284d7351e", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fedbe6a4bc3b4b258a9a035f8c3c0309", "tabbable": null, "tooltip": null, "value": 30.0}}, "bc0d50ae3b894c0082908c47c9092b1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5226c014cdfd4198aa5b46c053222386": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea887082ac654040b2cba36a8a114a97": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc0d50ae3b894c0082908c47c9092b1f", "placeholder": "\u200b", "style": "IPY_MODEL_5226c014cdfd4198aa5b46c053222386", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "a4976dfc08b245fab02fa5f1f12c4a27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "830c04b5583e41229e8389918ac4da0d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e83ffb1646c244ff81d4fa1531ca0ac4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a4976dfc08b245fab02fa5f1f12c4a27", "placeholder": "\u200b", "style": "IPY_MODEL_830c04b5583e41229e8389918ac4da0d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007806.56it/s]"}}, "ff536802d90f487eb14fc7b4bb83113c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30aa668d13a141528737041a14596b18": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ea887082ac654040b2cba36a8a114a97", "IPY_MODEL_1d0725c60b5848f79c36350f1f68cb91", "IPY_MODEL_e83ffb1646c244ff81d4fa1531ca0ac4"], "layout": "IPY_MODEL_ff536802d90f487eb14fc7b4bb83113c", "tabbable": null, "tooltip": null}}, "94231823fa724df7942ed338e2a645aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb597553c7044b1996ef9e3d4d7ff9ef": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "902738c2bf2d489daf620e999663b6c7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_94231823fa724df7942ed338e2a645aa", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cb597553c7044b1996ef9e3d4d7ff9ef", "tabbable": null, "tooltip": null, "value": 30.0}}, "3ca312b0a1414b0cbec6726b676b72c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41a6aea0f918486a9ecd53b24d675390": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c863a46826d42f695ab3c0cb3320597": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ca312b0a1414b0cbec6726b676b72c6", "placeholder": "\u200b", "style": "IPY_MODEL_41a6aea0f918486a9ecd53b24d675390", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "4f0b25ae558b4b1cbee37f8629649bb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59ab83e8e35845afafce855aaa14687c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "363aa5f9cdd8448fbe9ad206c8610053": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f0b25ae558b4b1cbee37f8629649bb3", "placeholder": "\u200b", "style": "IPY_MODEL_59ab83e8e35845afafce855aaa14687c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:23<00:00,\u2007\u20071.33it/s]"}}, "9c1991c189df41ccb515db38c1f3f079": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80809105a88e4ddfacefa46f1accc172": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c863a46826d42f695ab3c0cb3320597", "IPY_MODEL_902738c2bf2d489daf620e999663b6c7", "IPY_MODEL_363aa5f9cdd8448fbe9ad206c8610053"], "layout": "IPY_MODEL_9c1991c189df41ccb515db38c1f3f079", "tabbable": null, "tooltip": null}}, "d3509dc55c8e4dd6a38d89da06e88235": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ad5effe04d04246b98241548e620b10": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6d7837d0966438dbb320a844ea4c121": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3509dc55c8e4dd6a38d89da06e88235", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ad5effe04d04246b98241548e620b10", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f54c7c836a064a6f92cfae9a3d578eb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0864c08e4e2c4668940b89785d6762a3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77696977004049a5ac5a76e3bfb07540": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f54c7c836a064a6f92cfae9a3d578eb7", "placeholder": "\u200b", "style": "IPY_MODEL_0864c08e4e2c4668940b89785d6762a3", "tabbable": null, "tooltip": null, "value": "100%"}}, "29e18785bdad45fd9d7f1b5b792f5b83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ecbe88731b194de7a25a748f5f9bf2db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68d0d2fc836546ea83434678534cfd06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_29e18785bdad45fd9d7f1b5b792f5b83", "placeholder": "\u200b", "style": "IPY_MODEL_ecbe88731b194de7a25a748f5f9bf2db", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007156719.44it/s]"}}, "ef35f658cc9a4d79965ee0af9553b6d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af00847acff049178ba763296b17adf6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_77696977004049a5ac5a76e3bfb07540", "IPY_MODEL_f6d7837d0966438dbb320a844ea4c121", "IPY_MODEL_68d0d2fc836546ea83434678534cfd06"], "layout": "IPY_MODEL_ef35f658cc9a4d79965ee0af9553b6d7", "tabbable": null, "tooltip": null}}, "5e0fc634adce4af4b30285e176df8cf4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce3b2ffd12f1418bb324e2c9757367dc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "11f5f1fc98f445af8ce3fe8484951fd3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e0fc634adce4af4b30285e176df8cf4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce3b2ffd12f1418bb324e2c9757367dc", "tabbable": null, "tooltip": null, "value": 30.0}}, "594283c399474afab2a6480ac62188ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47e4b23d1f0c4b7888407797ed64fad6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "41b0173f8922498a93731760f71f8b33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_594283c399474afab2a6480ac62188ce", "placeholder": "\u200b", "style": "IPY_MODEL_47e4b23d1f0c4b7888407797ed64fad6", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "0261d7a3bfcb40dfad7f6096092a7d7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b33db53bf4b4fd293810b608cf8fcfa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2273d05fdb664e4e9a6110fea455398f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0261d7a3bfcb40dfad7f6096092a7d7f", "placeholder": "\u200b", "style": "IPY_MODEL_1b33db53bf4b4fd293810b608cf8fcfa", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.66it/s]"}}, "8f2733112de9425889e7994224ae2338": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7205e5270bc4f019d18e14dfafc43e7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_41b0173f8922498a93731760f71f8b33", "IPY_MODEL_11f5f1fc98f445af8ce3fe8484951fd3", "IPY_MODEL_2273d05fdb664e4e9a6110fea455398f"], "layout": "IPY_MODEL_8f2733112de9425889e7994224ae2338", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2b9c99bed..80b86ee13 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:20.082424Z", - "iopub.status.busy": "2024-05-23T15:20:20.082241Z", - "iopub.status.idle": "2024-05-23T15:20:21.026372Z", - "shell.execute_reply": "2024-05-23T15:20:21.025733Z" + "iopub.execute_input": "2024-05-24T13:34:21.727632Z", + "iopub.status.busy": "2024-05-24T13:34:21.727244Z", + "iopub.status.idle": "2024-05-24T13:34:23.047321Z", + "shell.execute_reply": "2024-05-24T13:34:23.046654Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:21.028777Z", - "iopub.status.busy": "2024-05-23T15:20:21.028598Z", - "iopub.status.idle": "2024-05-23T15:20:51.052547Z", - "shell.execute_reply": "2024-05-23T15:20:51.051972Z" + "iopub.execute_input": "2024-05-24T13:34:23.049983Z", + "iopub.status.busy": "2024-05-24T13:34:23.049590Z", + "iopub.status.idle": "2024-05-24T13:35:07.111047Z", + "shell.execute_reply": "2024-05-24T13:35:07.110387Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:51.055280Z", - "iopub.status.busy": "2024-05-23T15:20:51.054910Z", - "iopub.status.idle": "2024-05-23T15:20:52.162805Z", - "shell.execute_reply": "2024-05-23T15:20:52.162199Z" + "iopub.execute_input": "2024-05-24T13:35:07.113643Z", + "iopub.status.busy": "2024-05-24T13:35:07.113195Z", + "iopub.status.idle": "2024-05-24T13:35:08.248613Z", + "shell.execute_reply": "2024-05-24T13:35:08.248026Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.165202Z", - "iopub.status.busy": "2024-05-23T15:20:52.164895Z", - "iopub.status.idle": "2024-05-23T15:20:52.168235Z", - "shell.execute_reply": "2024-05-23T15:20:52.167701Z" + "iopub.execute_input": "2024-05-24T13:35:08.251164Z", + "iopub.status.busy": "2024-05-24T13:35:08.250703Z", + "iopub.status.idle": "2024-05-24T13:35:08.254105Z", + "shell.execute_reply": "2024-05-24T13:35:08.253616Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.170428Z", - "iopub.status.busy": "2024-05-23T15:20:52.170106Z", - "iopub.status.idle": "2024-05-23T15:20:52.174027Z", - "shell.execute_reply": "2024-05-23T15:20:52.173495Z" + "iopub.execute_input": "2024-05-24T13:35:08.256369Z", + "iopub.status.busy": "2024-05-24T13:35:08.256023Z", + "iopub.status.idle": "2024-05-24T13:35:08.260008Z", + "shell.execute_reply": "2024-05-24T13:35:08.259468Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.176309Z", - "iopub.status.busy": "2024-05-23T15:20:52.175863Z", - "iopub.status.idle": "2024-05-23T15:20:52.179639Z", - "shell.execute_reply": "2024-05-23T15:20:52.179192Z" + "iopub.execute_input": "2024-05-24T13:35:08.262032Z", + "iopub.status.busy": "2024-05-24T13:35:08.261730Z", + "iopub.status.idle": "2024-05-24T13:35:08.265505Z", + "shell.execute_reply": "2024-05-24T13:35:08.264973Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.181459Z", - "iopub.status.busy": "2024-05-23T15:20:52.181289Z", - "iopub.status.idle": "2024-05-23T15:20:52.184204Z", - "shell.execute_reply": "2024-05-23T15:20:52.183681Z" + "iopub.execute_input": "2024-05-24T13:35:08.267737Z", + "iopub.status.busy": "2024-05-24T13:35:08.267317Z", + "iopub.status.idle": "2024-05-24T13:35:08.270335Z", + "shell.execute_reply": "2024-05-24T13:35:08.269774Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:20:52.186170Z", - "iopub.status.busy": "2024-05-23T15:20:52.185853Z", - "iopub.status.idle": "2024-05-23T15:21:25.646178Z", - "shell.execute_reply": "2024-05-23T15:21:25.645603Z" + "iopub.execute_input": "2024-05-24T13:35:08.272448Z", + "iopub.status.busy": "2024-05-24T13:35:08.272051Z", + "iopub.status.idle": "2024-05-24T13:35:43.673550Z", + "shell.execute_reply": "2024-05-24T13:35:43.672919Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5ef5c47110ec4f59aeb856c6d3c341a6", + "model_id": "30aa668d13a141528737041a14596b18", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c79ebbfe831845c1a17b218fa7be7f95", + "model_id": "80809105a88e4ddfacefa46f1accc172", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:25.648967Z", - "iopub.status.busy": "2024-05-23T15:21:25.648546Z", - "iopub.status.idle": "2024-05-23T15:21:26.324304Z", - "shell.execute_reply": "2024-05-23T15:21:26.323688Z" + "iopub.execute_input": "2024-05-24T13:35:43.676230Z", + "iopub.status.busy": "2024-05-24T13:35:43.676014Z", + "iopub.status.idle": "2024-05-24T13:35:44.354221Z", + "shell.execute_reply": "2024-05-24T13:35:44.353651Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:26.326858Z", - "iopub.status.busy": "2024-05-23T15:21:26.326289Z", - "iopub.status.idle": "2024-05-23T15:21:28.965724Z", - "shell.execute_reply": "2024-05-23T15:21:28.965149Z" + "iopub.execute_input": "2024-05-24T13:35:44.356575Z", + "iopub.status.busy": "2024-05-24T13:35:44.356119Z", + "iopub.status.idle": "2024-05-24T13:35:47.036685Z", + "shell.execute_reply": "2024-05-24T13:35:47.036144Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:21:28.967904Z", - "iopub.status.busy": "2024-05-23T15:21:28.967720Z", - "iopub.status.idle": "2024-05-23T15:22:01.664155Z", - "shell.execute_reply": "2024-05-23T15:22:01.663577Z" + "iopub.execute_input": "2024-05-24T13:35:47.039064Z", + "iopub.status.busy": "2024-05-24T13:35:47.038727Z", + "iopub.status.idle": "2024-05-24T13:36:19.388283Z", + "shell.execute_reply": "2024-05-24T13:36:19.387772Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0411aabf4a7449b7b6097cf29c44f6be", + "model_id": "af00847acff049178ba763296b17adf6", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:01.666491Z", - "iopub.status.busy": "2024-05-23T15:22:01.666070Z", - "iopub.status.idle": "2024-05-23T15:22:16.254913Z", - "shell.execute_reply": "2024-05-23T15:22:16.254325Z" + "iopub.execute_input": "2024-05-24T13:36:19.390488Z", + "iopub.status.busy": "2024-05-24T13:36:19.390150Z", + "iopub.status.idle": "2024-05-24T13:36:34.201213Z", + "shell.execute_reply": "2024-05-24T13:36:34.200544Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:16.257597Z", - "iopub.status.busy": "2024-05-23T15:22:16.257232Z", - "iopub.status.idle": "2024-05-23T15:22:20.098267Z", - "shell.execute_reply": "2024-05-23T15:22:20.097650Z" + "iopub.execute_input": "2024-05-24T13:36:34.203768Z", + "iopub.status.busy": "2024-05-24T13:36:34.203566Z", + "iopub.status.idle": "2024-05-24T13:36:38.012210Z", + "shell.execute_reply": "2024-05-24T13:36:38.011589Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:20.101127Z", - "iopub.status.busy": "2024-05-23T15:22:20.100634Z", - "iopub.status.idle": "2024-05-23T15:22:21.546729Z", - "shell.execute_reply": "2024-05-23T15:22:21.546217Z" + "iopub.execute_input": "2024-05-24T13:36:38.014415Z", + "iopub.status.busy": "2024-05-24T13:36:38.014231Z", + "iopub.status.idle": "2024-05-24T13:36:39.484883Z", + "shell.execute_reply": "2024-05-24T13:36:39.484252Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d625e0de09de41e58013bd6ffd10ea65", + "model_id": "e7205e5270bc4f019d18e14dfafc43e7", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:21.549131Z", - "iopub.status.busy": "2024-05-23T15:22:21.548947Z", - "iopub.status.idle": "2024-05-23T15:22:21.579374Z", - "shell.execute_reply": "2024-05-23T15:22:21.578871Z" + "iopub.execute_input": "2024-05-24T13:36:39.487260Z", + "iopub.status.busy": "2024-05-24T13:36:39.486913Z", + "iopub.status.idle": "2024-05-24T13:36:39.516824Z", + "shell.execute_reply": "2024-05-24T13:36:39.516325Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:21.581712Z", - "iopub.status.busy": "2024-05-23T15:22:21.581514Z", - "iopub.status.idle": "2024-05-23T15:22:27.685973Z", - "shell.execute_reply": "2024-05-23T15:22:27.685386Z" + "iopub.execute_input": "2024-05-24T13:36:39.519308Z", + "iopub.status.busy": "2024-05-24T13:36:39.518942Z", + "iopub.status.idle": "2024-05-24T13:36:45.532135Z", + "shell.execute_reply": "2024-05-24T13:36:45.531521Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:27.688121Z", - "iopub.status.busy": "2024-05-23T15:22:27.687916Z", - "iopub.status.idle": "2024-05-23T15:22:27.744306Z", - "shell.execute_reply": "2024-05-23T15:22:27.743788Z" + "iopub.execute_input": "2024-05-24T13:36:45.534715Z", + "iopub.status.busy": "2024-05-24T13:36:45.534366Z", + "iopub.status.idle": "2024-05-24T13:36:45.592208Z", + "shell.execute_reply": "2024-05-24T13:36:45.591560Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0398887f1bfe40b0955c8abea4b49cd1": { + "0261d7a3bfcb40dfad7f6096092a7d7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,31 +1091,51 @@ "width": null } }, - "0411aabf4a7449b7b6097cf29c44f6be": { + "0864c08e4e2c4668940b89785d6762a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "11f5f1fc98f445af8ce3fe8484951fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", - "IPY_MODEL_e8bac498633d4753ba3338a097659542", - "IPY_MODEL_63318ac9759641a697650e72ba3a1f71" - ], - "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e0fc634adce4af4b30285e176df8cf4", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ce3b2ffd12f1418bb324e2c9757367dc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "07ac41807a0b47a7b26d56207634fd82": { + "1b33db53bf4b4fd293810b608cf8fcfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1133,7 +1153,7 @@ "text_color": null } }, - "0b875393e6884f6da0d17965a84e7e3c": { + "1d0725c60b5848f79c36350f1f68cb91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1149,17 +1169,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", + "layout": "IPY_MODEL_ad82bfd5132d4ee7901222c284d7351e", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", + "style": "IPY_MODEL_fedbe6a4bc3b4b258a9a035f8c3c0309", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "0cb55221d04844998b3efd90659ba7d8": { + "2273d05fdb664e4e9a6110fea455398f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1174,41 +1194,108 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", + "layout": "IPY_MODEL_0261d7a3bfcb40dfad7f6096092a7d7f", "placeholder": "​", - "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", + "style": "IPY_MODEL_1b33db53bf4b4fd293810b608cf8fcfa", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 20.66it/s]" + } + }, + "29e18785bdad45fd9d7f1b5b792f5b83": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1564ff2b349245b98b6641d891bfd8b3": { + "2ad5effe04d04246b98241548e620b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30aa668d13a141528737041a14596b18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ea887082ac654040b2cba36a8a114a97", + "IPY_MODEL_1d0725c60b5848f79c36350f1f68cb91", + "IPY_MODEL_e83ffb1646c244ff81d4fa1531ca0ac4" + ], + "layout": "IPY_MODEL_ff536802d90f487eb14fc7b4bb83113c", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "1588d3dd602a4049b726fc99f066d0cc": { + "363aa5f9cdd8448fbe9ad206c8610053": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1223,33 +1310,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", + "layout": "IPY_MODEL_4f0b25ae558b4b1cbee37f8629649bb3", "placeholder": "​", - "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", + "style": "IPY_MODEL_59ab83e8e35845afafce855aaa14687c", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": " 30/30 [00:23<00:00,  1.33it/s]" } }, - "3cc4259329f74837bd19ac70f0bfd280": { + "3c863a46826d42f695ab3c0cb3320597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ca312b0a1414b0cbec6726b676b72c6", + "placeholder": "​", + "style": "IPY_MODEL_41a6aea0f918486a9ecd53b24d675390", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "3d8d61af332845c19a16f7f26036b979": { + "3ca312b0a1414b0cbec6726b676b72c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1394,66 @@ "width": null } }, - "3dad1b05b1624573b3133880eff2163f": { + "41a6aea0f918486a9ecd53b24d675390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41b0173f8922498a93731760f71f8b33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_594283c399474afab2a6480ac62188ce", + "placeholder": "​", + "style": "IPY_MODEL_47e4b23d1f0c4b7888407797ed64fad6", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "47e4b23d1f0c4b7888407797ed64fad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f0b25ae558b4b1cbee37f8629649bb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1355,7 +1506,25 @@ "width": null } }, - "41dc3879d71e491eb1cad2b61fd7f555": { + "5226c014cdfd4198aa5b46c053222386": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "594283c399474afab2a6480ac62188ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1408,7 +1577,25 @@ "width": null } }, - "556d7a96f68d404da1aceb865b5bcaa3": { + "59ab83e8e35845afafce855aaa14687c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5e0fc634adce4af4b30285e176df8cf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1648,7 @@ "width": null } }, - "5ccaa73ac723461c85d0fdfec6e4e9c9": { + "68d0d2fc836546ea83434678534cfd06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,15 +1663,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", + "layout": "IPY_MODEL_29e18785bdad45fd9d7f1b5b792f5b83", "placeholder": "​", - "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", + "style": "IPY_MODEL_ecbe88731b194de7a25a748f5f9bf2db", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": " 4997683/4997683 [00:32<00:00, 156719.44it/s]" + } + }, + "77696977004049a5ac5a76e3bfb07540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f54c7c836a064a6f92cfae9a3d578eb7", + "placeholder": "​", + "style": "IPY_MODEL_0864c08e4e2c4668940b89785d6762a3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "5ef5c47110ec4f59aeb856c6d3c341a6": { + "80809105a88e4ddfacefa46f1accc172": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1499,39 +1709,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", - "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", - "IPY_MODEL_7b39104787d44463885c0c905b63ba15" + "IPY_MODEL_3c863a46826d42f695ab3c0cb3320597", + "IPY_MODEL_902738c2bf2d489daf620e999663b6c7", + "IPY_MODEL_363aa5f9cdd8448fbe9ad206c8610053" ], - "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", + "layout": "IPY_MODEL_9c1991c189df41ccb515db38c1f3f079", "tabbable": null, "tooltip": null } }, - "63318ac9759641a697650e72ba3a1f71": { + "830c04b5583e41229e8389918ac4da0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", - "placeholder": "​", - "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154309.04it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68c50245c9504baf95dbb3963b43a8a0": { + "8f2733112de9425889e7994224ae2338": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1584,23 +1789,33 @@ "width": null } }, - "68c71bc1bad94d8d84e927f32499419b": { + "902738c2bf2d489daf620e999663b6c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_94231823fa724df7942ed338e2a645aa", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cb597553c7044b1996ef9e3d4d7ff9ef", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "6cbc832ae4344da0b4821023a5ef412e": { + "94231823fa724df7942ed338e2a645aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1653,7 +1868,7 @@ "width": null } }, - "7991601db8784f6c9e29101ffb67eadb": { + "9c1991c189df41ccb515db38c1f3f079": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1706,30 +1921,7 @@ "width": null } }, - "7b39104787d44463885c0c905b63ba15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", - "placeholder": "​", - "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.61it/s]" - } - }, - "7eb64e5ad90643f88016fb9ef67a93fc": { + "a4976dfc08b245fab02fa5f1f12c4a27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1782,7 +1974,7 @@ "width": null } }, - "910f5814751b4800aa309a91fcfb8c98": { + "ad82bfd5132d4ee7901222c284d7351e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1835,25 +2027,31 @@ "width": null } }, - "9b123db02fc04548acd586c0cf17798b": { + "af00847acff049178ba763296b17adf6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77696977004049a5ac5a76e3bfb07540", + "IPY_MODEL_f6d7837d0966438dbb320a844ea4c121", + "IPY_MODEL_68d0d2fc836546ea83434678534cfd06" + ], + "layout": "IPY_MODEL_ef35f658cc9a4d79965ee0af9553b6d7", + "tabbable": null, + "tooltip": null } }, - "9f52119dcdce4e578fbef81f09977a4a": { + "bc0d50ae3b894c0082908c47c9092b1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1906,7 +2104,7 @@ "width": null } }, - "a45910e9f24846f4a8fd1dbae5f6f01e": { + "cb597553c7044b1996ef9e3d4d7ff9ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1922,79 +2120,23 @@ "description_width": "" } }, - "a570f95dbe384aaa96ee3013473e2ebe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ace77f3dc6c149e1a69150e6d6932650": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", - "placeholder": "​", - "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.28it/s]" - } - }, - "adf75e7c04a8438588821d873887cc06": { + "ce3b2ffd12f1418bb324e2c9757367dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", - "placeholder": "​", - "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b1b566c302dd4797bc264e8362c45e1c": { + "d3509dc55c8e4dd6a38d89da06e88235": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2047,7 +2189,31 @@ "width": null } }, - "b2208a3f273849ab827fae9cd38132f3": { + "e7205e5270bc4f019d18e14dfafc43e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41b0173f8922498a93731760f71f8b33", + "IPY_MODEL_11f5f1fc98f445af8ce3fe8484951fd3", + "IPY_MODEL_2273d05fdb664e4e9a6110fea455398f" + ], + "layout": "IPY_MODEL_8f2733112de9425889e7994224ae2338", + "tabbable": null, + "tooltip": null + } + }, + "e83ffb1646c244ff81d4fa1531ca0ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2062,31 +2228,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", + "layout": "IPY_MODEL_a4976dfc08b245fab02fa5f1f12c4a27", "placeholder": "​", - "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", + "style": "IPY_MODEL_830c04b5583e41229e8389918ac4da0d", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 806.56it/s]" } }, - "b453cf1c85cc41e7a4698820cebb73cf": { + "ea887082ac654040b2cba36a8a114a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0d50ae3b894c0082908c47c9092b1f", + "placeholder": "​", + "style": "IPY_MODEL_5226c014cdfd4198aa5b46c053222386", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" } }, - "b9943848dcb643c2a23f4e8cf52def5f": { + "ecbe88731b194de7a25a748f5f9bf2db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2104,23 +2277,7 @@ "text_color": null } }, - "b995012c5b064376b67bfc740cdab094": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ba13899638c54baebf4d5e9da65660b0": { + "ef35f658cc9a4d79965ee0af9553b6d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2173,43 +2330,7 @@ "width": null } }, - "bb51f26ffedf41cf941e7bf04717041c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bdd6e352fd8b4492b50d4a59e384a686": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bfa54f2e76a94d408a32cd5e4451600f": { + "f54c7c836a064a6f92cfae9a3d578eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2262,126 +2383,49 @@ "width": null } }, - "c79ebbfe831845c1a17b218fa7be7f95": { + "f6d7837d0966438dbb320a844ea4c121": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", - "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", - "IPY_MODEL_adf75e7c04a8438588821d873887cc06" - ], - "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3509dc55c8e4dd6a38d89da06e88235", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2ad5effe04d04246b98241548e620b10", "tabbable": null, - "tooltip": null - } - }, - "ca3c6bba54884c01bd56c4cd91c8fd71": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": 4997683.0 } }, - "cbe48e3cba8a4185a380bca2613cfecb": { + "fedbe6a4bc3b4b258a9a035f8c3c0309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d625e0de09de41e58013bd6ffd10ea65": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", - "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", - "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650" - ], - "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "d9bc553ff2a146208e83cfb4a65cd5aa": { + "ff536802d90f487eb14fc7b4bb83113c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2433,50 +2477,6 @@ "visibility": null, "width": null } - }, - "e2094383203b482c95ee7d5c103429ea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e8bac498633d4753ba3338a097659542": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 8ee0907f4..27aa7a2be 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -691,16 +691,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index ebb59b56a..efed37877 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:29.914518Z", - "iopub.status.busy": "2024-05-23T15:22:29.914322Z", - "iopub.status.idle": "2024-05-23T15:22:30.831231Z", - "shell.execute_reply": "2024-05-23T15:22:30.830644Z" + "iopub.execute_input": "2024-05-24T13:36:48.124643Z", + "iopub.status.busy": "2024-05-24T13:36:48.124472Z", + "iopub.status.idle": "2024-05-24T13:36:49.294229Z", + "shell.execute_reply": "2024-05-24T13:36:49.293601Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 15:22:29-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-24 13:36:48-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,14 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.100, 2400:52e0:1a00::1067:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" + "185.93.1.247, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -124,7 +125,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 15:22:30 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-24 13:36:48 (7.08 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 15:22:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.141, 52.216.32.209, 3.5.27.137, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.141|:443... connected.\r\n", + "--2024-05-24 13:36:48-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.233.73, 54.231.233.89, 3.5.29.119, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.233.73|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,9 +168,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-05-23 15:22:30 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-24 13:36:49 (196 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:30.834158Z", - "iopub.status.busy": "2024-05-23T15:22:30.833771Z", - "iopub.status.idle": "2024-05-23T15:22:32.090862Z", - "shell.execute_reply": "2024-05-23T15:22:32.090338Z" + "iopub.execute_input": "2024-05-24T13:36:49.296919Z", + "iopub.status.busy": "2024-05-24T13:36:49.296552Z", + "iopub.status.idle": "2024-05-24T13:36:50.560173Z", + "shell.execute_reply": "2024-05-24T13:36:50.559602Z" }, "nbsphinx": "hidden" }, @@ -200,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@a043470e34dd8d14bd4e2b8cd3933e9bfc94010c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.093433Z", - "iopub.status.busy": "2024-05-23T15:22:32.092981Z", - "iopub.status.idle": "2024-05-23T15:22:32.096296Z", - "shell.execute_reply": "2024-05-23T15:22:32.095875Z" + "iopub.execute_input": "2024-05-24T13:36:50.562877Z", + "iopub.status.busy": "2024-05-24T13:36:50.562407Z", + "iopub.status.idle": "2024-05-24T13:36:50.565963Z", + "shell.execute_reply": "2024-05-24T13:36:50.565421Z" } }, "outputs": [], @@ -279,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.098209Z", - "iopub.status.busy": "2024-05-23T15:22:32.098034Z", - "iopub.status.idle": "2024-05-23T15:22:32.100925Z", - "shell.execute_reply": "2024-05-23T15:22:32.100489Z" + "iopub.execute_input": "2024-05-24T13:36:50.568166Z", + "iopub.status.busy": "2024-05-24T13:36:50.567768Z", + "iopub.status.idle": "2024-05-24T13:36:50.570895Z", + "shell.execute_reply": "2024-05-24T13:36:50.570347Z" }, "nbsphinx": "hidden" }, @@ -300,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:32.102888Z", - "iopub.status.busy": "2024-05-23T15:22:32.102593Z", - "iopub.status.idle": "2024-05-23T15:22:41.080012Z", - "shell.execute_reply": "2024-05-23T15:22:41.079429Z" + "iopub.execute_input": "2024-05-24T13:36:50.573048Z", + "iopub.status.busy": "2024-05-24T13:36:50.572640Z", + "iopub.status.idle": "2024-05-24T13:36:59.672994Z", + "shell.execute_reply": "2024-05-24T13:36:59.672435Z" } }, "outputs": [], @@ -377,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.082669Z", - "iopub.status.busy": "2024-05-23T15:22:41.082424Z", - "iopub.status.idle": "2024-05-23T15:22:41.088197Z", - "shell.execute_reply": "2024-05-23T15:22:41.087741Z" + "iopub.execute_input": "2024-05-24T13:36:59.675558Z", + "iopub.status.busy": "2024-05-24T13:36:59.675168Z", + "iopub.status.idle": "2024-05-24T13:36:59.680821Z", + "shell.execute_reply": "2024-05-24T13:36:59.680370Z" }, "nbsphinx": "hidden" }, @@ -420,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.090445Z", - "iopub.status.busy": "2024-05-23T15:22:41.089999Z", - "iopub.status.idle": "2024-05-23T15:22:41.430405Z", - "shell.execute_reply": "2024-05-23T15:22:41.429873Z" + "iopub.execute_input": "2024-05-24T13:36:59.682980Z", + "iopub.status.busy": "2024-05-24T13:36:59.682647Z", + "iopub.status.idle": "2024-05-24T13:37:00.042497Z", + "shell.execute_reply": "2024-05-24T13:37:00.041914Z" } }, "outputs": [], @@ -460,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.432978Z", - "iopub.status.busy": "2024-05-23T15:22:41.432612Z", - "iopub.status.idle": "2024-05-23T15:22:41.437185Z", - "shell.execute_reply": "2024-05-23T15:22:41.436639Z" + "iopub.execute_input": "2024-05-24T13:37:00.044946Z", + "iopub.status.busy": "2024-05-24T13:37:00.044745Z", + "iopub.status.idle": "2024-05-24T13:37:00.049170Z", + "shell.execute_reply": "2024-05-24T13:37:00.048604Z" } }, "outputs": [ @@ -535,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:41.439393Z", - "iopub.status.busy": "2024-05-23T15:22:41.438929Z", - "iopub.status.idle": "2024-05-23T15:22:43.778516Z", - "shell.execute_reply": "2024-05-23T15:22:43.777714Z" + "iopub.execute_input": "2024-05-24T13:37:00.051189Z", + "iopub.status.busy": "2024-05-24T13:37:00.051012Z", + "iopub.status.idle": "2024-05-24T13:37:02.428971Z", + "shell.execute_reply": "2024-05-24T13:37:02.428329Z" } }, "outputs": [], @@ -560,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.781921Z", - "iopub.status.busy": "2024-05-23T15:22:43.781015Z", - "iopub.status.idle": "2024-05-23T15:22:43.785016Z", - "shell.execute_reply": "2024-05-23T15:22:43.784574Z" + "iopub.execute_input": "2024-05-24T13:37:02.431843Z", + "iopub.status.busy": "2024-05-24T13:37:02.431298Z", + "iopub.status.idle": "2024-05-24T13:37:02.435625Z", + "shell.execute_reply": "2024-05-24T13:37:02.435160Z" } }, "outputs": [ @@ -599,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.787064Z", - "iopub.status.busy": "2024-05-23T15:22:43.786747Z", - "iopub.status.idle": "2024-05-23T15:22:43.791712Z", - "shell.execute_reply": "2024-05-23T15:22:43.791166Z" + "iopub.execute_input": "2024-05-24T13:37:02.437468Z", + "iopub.status.busy": "2024-05-24T13:37:02.437295Z", + "iopub.status.idle": "2024-05-24T13:37:02.442698Z", + "shell.execute_reply": "2024-05-24T13:37:02.442165Z" } }, "outputs": [ @@ -780,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.793692Z", - "iopub.status.busy": "2024-05-23T15:22:43.793373Z", - "iopub.status.idle": "2024-05-23T15:22:43.819215Z", - "shell.execute_reply": "2024-05-23T15:22:43.818707Z" + "iopub.execute_input": "2024-05-24T13:37:02.444803Z", + "iopub.status.busy": "2024-05-24T13:37:02.444403Z", + "iopub.status.idle": "2024-05-24T13:37:02.470436Z", + "shell.execute_reply": "2024-05-24T13:37:02.469857Z" } }, "outputs": [ @@ -885,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.821421Z", - "iopub.status.busy": "2024-05-23T15:22:43.821097Z", - "iopub.status.idle": "2024-05-23T15:22:43.825769Z", - "shell.execute_reply": "2024-05-23T15:22:43.825258Z" + "iopub.execute_input": "2024-05-24T13:37:02.472943Z", + "iopub.status.busy": "2024-05-24T13:37:02.472480Z", + "iopub.status.idle": "2024-05-24T13:37:02.477962Z", + "shell.execute_reply": "2024-05-24T13:37:02.477506Z" } }, "outputs": [ @@ -962,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:43.827768Z", - "iopub.status.busy": "2024-05-23T15:22:43.827442Z", - "iopub.status.idle": "2024-05-23T15:22:45.254926Z", - "shell.execute_reply": "2024-05-23T15:22:45.254430Z" + "iopub.execute_input": "2024-05-24T13:37:02.480055Z", + "iopub.status.busy": "2024-05-24T13:37:02.479863Z", + "iopub.status.idle": "2024-05-24T13:37:03.890057Z", + "shell.execute_reply": "2024-05-24T13:37:03.889554Z" } }, "outputs": [ @@ -1137,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T15:22:45.257058Z", - "iopub.status.busy": "2024-05-23T15:22:45.256728Z", - "iopub.status.idle": "2024-05-23T15:22:45.260712Z", - "shell.execute_reply": "2024-05-23T15:22:45.260288Z" + "iopub.execute_input": "2024-05-24T13:37:03.892193Z", + "iopub.status.busy": "2024-05-24T13:37:03.892013Z", + "iopub.status.idle": "2024-05-24T13:37:03.895966Z", + "shell.execute_reply": "2024-05-24T13:37:03.895528Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 2de38819f..615773680 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.4", - commit_hash: "4e2cafbc517f092cd088ca83bf49eef8767d363f", + commit_hash: "a043470e34dd8d14bd4e2b8cd3933e9bfc94010c", }; \ No newline at end of file