From 75efc9be2085b732018f1c910d85f50a8e4d29a0 Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 26 Sep 2024 14:58:29 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@82901442916cd9aa0a85cf88d058b89f5506a1fb --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 265656 -> 266308 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../datalab/internal/adapter/imagelab.doctree | Bin 159126 -> 159126 bytes .../datalab/internal/adapter/index.doctree | Bin 3624 -> 3624 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4620 -> 4620 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 116536 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 17050694 -> 17051372 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 132 +- .../tutorials/clean_learning/text.ipynb | 1908 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1174 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 354 +- .../datalab/datalab_quickstart.ipynb | 140 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3444 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 140 +- .../nbsphinx/tutorials/datalab/text.ipynb | 174 +- .../tutorials/datalab/workflows.ipynb | 1166 +++--- .../nbsphinx/tutorials/dataset_health.ipynb | 36 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 526 +-- .../tutorials/improving_ml_performance.ipynb | 308 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 212 +- .../nbsphinx/tutorials/multiannotator.ipynb | 148 +- .../tutorials/multilabel_classification.ipynb | 100 +- .../nbsphinx/tutorials/object_detection.ipynb | 197 +- .../nbsphinx/tutorials/outliers.ipynb | 450 ++- .../nbsphinx/tutorials/regression.ipynb | 204 +- .../nbsphinx/tutorials/segmentation.ipynb | 1030 ++--- .../tutorials/token_classification.ipynb | 184 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233888 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333649 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145956 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454840 -> 454838 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 413674 -> 413674 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199351 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107891 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176715 -> 176643 bytes .../datalab/guide/issue_type_description.rst | 10 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../datalab/guide/issue_type_description.html | 10 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 132 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1908 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1174 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 354 +- .../datalab/datalab_quickstart.ipynb | 140 +- master/tutorials/datalab/image.html | 52 +- master/tutorials/datalab/image.ipynb | 3444 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 140 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 174 +- master/tutorials/datalab/workflows.html | 424 +- master/tutorials/datalab/workflows.ipynb | 1166 +++--- master/tutorials/dataset_health.ipynb | 36 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 526 +-- .../tutorials/improving_ml_performance.ipynb | 308 +- master/tutorials/indepth_overview.ipynb | 212 +- master/tutorials/multiannotator.ipynb | 148 +- .../tutorials/multilabel_classification.ipynb | 100 +- master/tutorials/object_detection.ipynb | 197 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 450 ++- master/tutorials/regression.ipynb | 204 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1030 ++--- master/tutorials/token_classification.html | 18 +- master/tutorials/token_classification.ipynb | 184 +- versioning.js | 2 +- 184 files changed, 12351 insertions(+), 12305 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 130d6ba05..fe9891c8c 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 6c1b6ba46e7b82b74029d5189564c63b +config: 6aec967625063143b64e56727739db11 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 3787fc9c4b3217f68f324f26e6d3b4ab2f774c88..0c53b3ea4bd6125bc9bb03bd236bc14576b2f1ba 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^KS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) YNvff7Qj&?$<_^XHPBOG{axZ5D0A6h)LjV8( delta 117 zcmdlWxj}M6IHO@&W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Yl6jJ;xw&EL<_^XHPBOG{axZ5D0AU&;?EnA( diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index ed7d710812adeec8adafd0b0b3442093fb3f476e..314f3c3f32ba3b8ecabaad7804b1b8a6109c430e 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtelFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OMGJC7b=88A@ZWoi_R!wUhcCObNM{K=RNbD_neuD#mtGt z%*hs}MfQh!1D%x@9p&x84reGFa#bC0RfmJl_R3J8qr&CXf*o3*x;$JF)?C40MY%D| zJ_54n?fF`L{j6+>R$J1IWj^YSAHD6te0`9-!C3XJa7-Fq_1PXSDMo(_Pl6npUkAU~ zA*Ig<_qSn--e&l2#+3M}dcG=adToj9iN=PUhCC1e_&ZH%FJ0>ibrqC3`mRLGC+^nU zwliWwk<;-PB^u~W{3?AamxYbl&%Mc*w%eHh`anXp%2FZFux93NW9G+6m^-<=0BehW zWx$!=tr{>l@6QETyL)XI*(T;XlZUY}WP5CgZ*X=GO-;{|m;#dzrm%LH>`7;LV6tCj zk74qNmCeCqZeuTCa*dt2VRBYBy9|&?G|4y&{hi0g0O-c}AZ;)E29qZX*j1Q3UC55Y z0SSY)R6xA7Cv)_gJ={jc3LlXZw$X)+o&0IMGb0f%5|KQ}eB4n~Ddp$#2IS2M zn>szCm|OIjRM|?rkdGplMbn0a%?V^&Y?X3|)~oo_mIRiwj%r3Zzm7RHlURa%K=mXF jm`bQ{T@-Gip*;D#ie=YGd>q!7#V_)u zbF!H^BbPcOeeS-Xy*$*mzdYztf}yr>*cFU~+?7>|D^%&Ka5^H2qavh)+=}81Ys2g# zAdB9fuTj^}7|hWsbGo)HMt$+4w>_A@7n0X&tNs;%Nu#TN>%%3Z*553WAcv;cp)WQ_ z>DR*jt=OWsYW|xsWBgP#-(+yAH6;dbG&bbW3@?FD7_-YZ@D6L;%v z+i9_(u2b-SmxZ<2&ppYQwnLl$`hcTa<5D5euzKbWZRW=bm^-<=0BehW zWx$!=t!gkg@6UNyyL)XI*(Ulrlb5kEWP5CgZwPh|O-;{|m=Pu)NMUU-*_+Ppz~q35 zJ%-667B&Zyg_XU4$<;RIfyr6ftP>!UY?7BS^miT`1E3q@gPeQWH<&zGz^=mN=|Xk{ zCO;`+<1l%ygtdTkppm8>?0XJ2=o=}&jtzJK@&5<4ox1L_z#!lvyX++S(s_#=6E{RZ ztR$1$!+pTzNN=}I1Jfb?b{C$&q*~5$Bc1l~Qt+_WW0**~95aJ4=u9(gm; zrdG`;7G`xO)nFk}C`OUXqHaUd<~TAgwn{lj>xy{VoWOF{QuU}1*D;4Cl1s1;sGej2 jQwbHW%EHYwlxH|+!m>L_ejL`7#V^*s;z|Aq&}{zzG)D@D diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index c3e898c86fdcb2952c4a7fe41b6c00e41ddefb68..7a6d34646b1bb3ca4329338885cc91f5454e41da 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg974c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1=Mp9h> delta 3571 zcmX@QLh$Gc!3~~_hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+vY74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0aZAi)h diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 86f86f7617fa509c01193cf42a8e0c3ad9a3e7c5..6adda08f19267c71be7fc9ebeabe03375090cc60 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSoh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtHc7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMaMQmBiq zA8T!dtaAV*hO2apRj^s92kAGTkXbs`iR_bx-tUQ0sA-wq>3fJ;ANTj6*6Fwlwf0_X zL#^kBy{Ps0$OvF%`NUt;D37`UqoS=t!|i)IU>!&{!aBxQk(-HRud;U&Kas2&dV2B( zl2t?fQ!&))PbN@ncPfKg7t|-Hb^VbJMaR?qC^|XQie?>{eUDm~=8zv{MOz6r{}#2H zGhb13=*1P_&@qx7MU7Rj0w`*DeHLg|OxMT0yzyb{;A1n3ht1HvfDm*g_k6E~+e6f-^X`K`w%FzW*1=?ZUk3 z!K2j3W0X!Kk63Y9HVaH_r+2II4)*c%A!-1>AQurn?ZM@GwZ=`$c>ENt+rkX=TvQp{ z4YlFrmH^FRH@jCA>;XR5Nh`6V>rFnZ;?+@_!ovT@TYBk+vGnL%8lqFc<5Lx!pI^U8 hGnUe&syiv*rw?c^uy0(z!^o~}{*m9wUGp?Z{{c@`Glu{G delta 4228 zcmbuC-%FEG7{@th&D@r@?1y;~S%ZGvxY_2rBBV(nwGFj4GDzI};@))T82O8p^aDvk zGQ^khLNHv0NoWx}#0kP~ifUx$+LdHi-RO;UUqt84zhGbgfY0-JzR&xdvopP5)eF{_ zLE=)ouBii_0lB7D={R01yCqrah(_JAs(8F7B)8&q*SVaktw={k@+dvOIgbc|$&P-Eq*Fp8GEJ_|G}rrW~4ylKJKp@n7U589x6$cC)#u9C zq0bA*D?;4gFQTbfR=z?kc$YPcHwffUhSi$JaLNFY+?pxE~@nI zgxUyjdzj|1n?0Zlb|3F;r4`uG4NN?%?g#0PHD hS$pwP-8UiNrw?ch*f%cVeq`4+{>X3V-Wl3X{{hApC&d5& diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 59f0cd3903064c94465a7e03ce2ace939366beda..4aa91d901333501e83dc5aaa62e17b282d79b192 100644 GIT binary patch delta 62 zcmZotYEs(Z#$s4tmRy{eZW^y|l#-NYker%qY;Iv}nVMvfVw#+oW@2n$n3QIiXlayc Rl4@w2lw@MGxtyh&2LN6T650R& delta 62 zcmZotYEs(Z#$uS3nUhv#T9&A9l$2s@lxSj}n3R&5YLb|iWNKk)ZjxkSVrFQNW^Q1X RWS(SdZf=;mxtyh&2LNOO60ZON diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 2e496792700045e5d1c9aecf99680a528ccf5398..5b1d4b109db7827c718cef7858efa6f6a52c029c 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|Ch6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG TMyV#LhQ>)rCPteZ8KWx!^Mw_G delta 64 zcmccfmGRD3#ti|ChH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo T24+d-Nv7uJhN+ty8KWx!`Fa&r diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 21ed5b2b52708fa32dd7cd721a59d164852d9570..1c8f69409924ccb1829fb0606e7daa5b2308d9a3 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltyIS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<~fW);sAk06D9xv delta 62 zcmZ2yxXy4xHltx$W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<~fW);sA#`68iuE diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 39b5e1c4835597ac6bd72d3e9cde7f62700ac24a..02b4cea44034373424c2052c2017f0e93e480a3e 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gGS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<{rk?x&W9U6d?cr delta 62 zcmdlUw>@q{G^1f!W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<{rk?x&WRP6ZQZA diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index bc551b6d96a277d891bb7f0fef586a3bd42d88ea..b66659c262250b2920959b84ab2656225d37b032 100644 GIT binary patch delta 682 zcmeH@$w~u35Qd#}V(<_QxPZ%{Np2!$mPCy{hagA@Jv}uGOuA*JClHs(!9xT=5SIqM z=mQ9XNPGZaAwG#`b!J38`34pgR2BU7e^t*n<(J#?11S3LDh-L#XxDVhv{ee!SX(!m zV5(Mw61#4wnrUmKsY4w!!!+x9?Yvd4%D9wYI2tK~k&*+=(s^BBpi z7|r!7qOyUj*kb}52yhgFg$2hQZbd#3fQ1V<6ag?txR~2nF9O0sn+F{tJkGEk@D8@T zP!L8TOw}RfL0Y*)VBdped!|cd4&WVi8EdT-yp>wX@fc0Hm5>tOV@}&9RPZ1pvVESc zXAbTXKY|}HmfHH>-WS=gs|g8EHtb=N6qK_r1R}9WPWvX3ABSjO-VM-odb^xHK(Es5 pp_$=QjQYxiTWnppv)lha`s+t;{o>`>x4&X0ZSO diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 196394de92297e6c74a0ea92174343acc39007fa..a4dc1ae2af894128234f25f826c8783ec9d46c65 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4GYYYixbmLj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Yl6jJ;xw&EL<~qjhf@Ek*6TZ&~0GDMXF#rGn diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/imagelab.doctree index d1047312b36a760d38b7af63b082e42f44acceaa..5e178d1b4b33e41b90e5f4a3d08c985874a94fac 100644 GIT binary patch delta 6027 zcmb_g{clrM7|vVh)^+O!ZD9n*)?~VX47+wK2oYQ~5`+XyfT|3%YuE0Fg{%n)f<_$> z3`&rhV|JQBL#HAlY%HAVsfI7f)CD(0bP|Im)M#*SX~;lhVn{rM8jvW}vphGBXBc0jE=ZT@nIKXW*ly-eVPm34XIrvhYX0q_rfjQ7Eqk~Cgr0oLX9u7?@ebw+m__`#%ZRdq3s+z@ za#*^ug>Beoc!(fp{mjTcd-8NVCke+8^2O9Ij{=k5b5MNa_4GyP&!#9 zj-IJ5gqpd71qQ3c!LN#uO|PkI@Rx?Wu~AZ2_xlB6=*K5)fcaE~pWmpaa@IIjBQE~- z0}_3fLo|+Eup0AV5&gGjBaNH&pz5%Q=-*vsxDS`?Euc}Pk?xpqaYbO03rlD|vW)Mr z)X35*Y65LYb*5L!@eIoO-p6T%eEBijg4_k!(~yeg3OE!zuv~@cT25_9Kd7nF37%d- zqs34Vt?Wi^F;8rwGI?nodJ;JjyS(;14IrhYDsm)qc;yDN@)tJJA-p81O1h5CdCrKH zM_Z^;ds0b%kTx4E%PJKc_)NNMNlt5{-?2MTBXP*Yb_yY1e)<79xWb#IdYL!lap)wx zW;d1ckzHh!KkuaO`$6Z2`^CYp?WaN>eTy8K1ufUSLG5_^=yX!ieTm&|`dKMYD-D_` zkts&Av5nu(&NWPv#}1GkSu{QI44!X3Mrq(&{s%AQ_FlqXJMFx)pJvJj`sh0(NM#~J zz?+gZOMZS5>-u|H#s=sVvTm|0Qh9kD>8cz-=V>}?C=Eqmme%uRLB8d*wdo$AIsDUa zXcA})g_jCH?8qO>J-28FKQT^be&PVVA{YEhZeTQWG!{PdPr7cvM-zrkWZv-dj|mC` zjiA{-EUPE!7vRp73j77oJi6%6KXeILJ{ox6Cw|kDz&B0?d*s;?)6)F2RzIrzEHP2Q p&#W@JrDLV35=bmdA{EIIY+zdD?e(TXCsaU$ssGuswaw%<{RiM2tPcPH delta 6027 zcmb_g|8G-O6wfJi>$-J=wlITZYcgE`2W7Kekti-22|@xUKv4#!En62e$d;H4(EtO2 zQ3*10&2BSj>_9}sjfFeC#RvkKu)xMQox~ssH5wdS8ZywB7!vO5qeXx0=lKVGzMRiJ z=bm?8$Mw99>v_G)s4D!%`f#haHR!Gm)jwSw^!S3I`i2HiFdXvEd&cJp&GXb$%?4fYRQ&3xOkr{)sfYT|?6|4hIr{KedmrS@ib5%|h z%k8b80}*h(V#!`zBuegLk-g7c$IXJ3AI1#p@PD4%k42`#*UZc_0)L{i+X%efJz%8v z;_CB8)MMTrY)tg%Z1ZPN%)VXJl(mY)f>}8r^w>*YI{@v9wlP=0ETXSoMU)j>xB^R& z!_t*4Z1r1K{&_8V*@?lKVo%6E1+GHlS`MKZpVLD&v1QW`7D7ZgxBZFqOjk4_uI}82 z~Mxs_2g;0Y#=o zZ2R;+s`|rc{itf-i-V}@#V>zGRa<&L!ur3BCF9lF_!Wxrz9k@sNXAEzJ6F4dlJPQe z_+)u5)XZ%x&|fC@oy|u!y{4|gHx71Uqol6x136;grx$F1`9z7I-zleJRy$H5F8=l- z5`CIO)Q+6D8uMTgz4xXejhptM>ad8GzdDL=A1>LQL&HcTJv8Csiohmo3g{_h89!vH zkcDMb2ilP8Os^H=85Hwf&(jq7_OtXRau=jeLn@YQ;85_uLKUKGAvGcWpr%SEczF>G z=R-j>vOAUeJhqmKMtPBU-srK$4q9=d`AsZ68@ zcwL+xliwV}y8gc`BYpHOvTo8WQhC{mbXA6+{RDkyC=Eqmmew<5LB8d*wdo$B>HO;p zG!8U|!b^o8bYzd^RrhEcKRQZgesnLrBWM3gZeTPrG!{PfHr+DdqYlHyQg3+q#~3vL zjiA{-D9gv`25{#}1wIWlk1jg!H(dsnj|SfTmEZIt@Qstg9$HmkdM^8{)sHGai;d;* plS@o)=~!$k1rke>NJVl88<<9Uf2FD42^A1#>VLLuY%;k`4*>QqoJ9Zt diff --git a/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree b/master/.doctrees/cleanlab/datalab/internal/adapter/index.doctree index 9f68746b5639910d2cd001ebe93f49c6e20d46d2..7b1d2b0725c965621f223b9773c0792c8d506779 100644 GIT binary patch delta 62 zcmZ1>vqENrFQZ|BS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<~qhzJOFNy6F~p~ delta 62 zcmZ1>vqENrFQZ{vW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<~qhzJOFft6BYmf diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d54999be1f519080b5e5a8cfef5969cfd940f9eb..1c1d28ad26d29f124ec91efa8473846fa635abd2 100644 GIT binary patch delta 5702 zcmbtYZD>$W8Q&{iw0Yl{^-8(IuvHEj};bz7|;T}#!* zIyM~}&UU^V?{E|Q!#@KzD~I|1m}7$e8VoX+jBT(D6cn-R*eHyB$ljYPqraaE_wVy@ z&UwzghdcL~YfeAgC~{~+YBcd;<3Olxe=-wJrBn4Ao9dg>$?*QhR3g(*AC4q5kwkM{ zx*;8@PbM4c#01R)sM6YoOL&zFnrU2|Z7Sl04PLBG7W`LGINIz!_v$*)vgs;LAkN3O zb8hnyYAkJ@iyHE^`^8v}y&3GXhCxRx1WfAYGQNcAze%$5)6)qd$OM)CTelAH;U>^|3}Y5t`=Q zaTmXNEQJkQ-51m_^U4@|Cl_&Ro1^a*p(dJwc{W5fD$!3(PVD5Fjz?&#I_JN7d9g{X>m`3NsF_hGE3kx3 zO^?wbd>NK7Sr?J|WWvc->Ho1mF8>c60oFJG delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGOyDd%EG_6)z*A^>wHnbSTYT9Hb)UDR3YpB{- z$EIV$+3L4(hf~%EUj}aLILz-sWy1C}7(`Hp4z|Gt8)Db7Q5gFp`);m`KL0+rufIR% zoZq?kaOXaA&8cS_g);|6GucQs8EQ=Jf3`8%6iue~r_)WzOe)gS8f{9oG&P4CGSPAJEUhF5W)dpBrasaNrq z(%nU{dNn`g9m3VCd9Ck7P@UbCVi{!oFn9PFgJ${SlLxVSv;1+O2dg#9m)Gt^RcC|y zP}M7SZ9tp2y#5lF=LEMkta3p!O^9-LGS6Sd+|=NDKF9P7SqK+pl<-Q^M2G9&Eoy#=IAl-Cz1 z_(05u&EA2#`(MSnXTulZ(yRIXcn+JoEo_R=9)mv_oW#ACic?8be3f_z*WfS=b?@NW z;WKCoe(-ttTIK~E_=lrKXaa2Y&0`xi)Wvjmg?M!IKG;QNpuq56dJQ^G!V9tz?A(ucv}29ib3U>(+2t-jd;cveG3r)~tjtcQXox#U`EQMd{ zju(gLnV*NjISB6qlWQKnhTRnd!dx^t^2aVPNNg@nVG-^V!!?HWdMl0a@qepVKm&C+ zs)`A_Z3=MtRtb%p8uAKXVOdqwqruU)h5}Z;lYWse`DqYKrqc|?6qJWnQ5+lS5|Xji zv{%E4R8F42cEg#=LXa{#MJRlkHQ7&FV>=#ste-ZNXiTT3mrUzii0Wi=kXm%?6qrtgX{$W4k9zRX8nQi2 zT^e{x;a6I|gY+BR7sKH=KStQi(I@h?hV}UoDwnxKl*aSokl5Et;bM?8M|Dk$emLCkNtM}f8-U%n*aa+ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 625aa8a6f86572471570fda1c3366137800794d1..a552c19e8186267113746ee0278a195875e47fd2 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtgv7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqnYKD?UZMD#jaeSA1JJ8Qa;7uAzw9DoK0 zZ#L0xP@upC(PZikp6n~ZyE)$XIJsdLvH4nXGPzz4nJiZ+xcOUXD+ig*kJzjoznWaz zBR01s?qed`<}WGCmZpSZQ^mys7*lNIhbPF}#pF*&wf7?{WSHcx8SqRgbtvF)bhm8&qfY&Pzx z=O!z?PY>W=beilti)ZqwTdJFDXPA)}9bjWN`_7s}X5|J6Q`X537PD{eTY7?`(14io zdsVAASs?-qQ;;bvlj9F^ZPqz#N?tO1D1n%u_h}P(2^8uE-pT%D9Gj>8OX4KUC)di~th;X1@Rc diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index e38897667ae3bb5ff3a3c35ccee483c77e4e8963..ca771b861ba2e8c7a8c06a84846fb8fb7731fcd0 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg<7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{8cNN_R$ delta 1137 zcmZ4agL&l-<_*4#hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+wD7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{Amux$YV diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index e6c2d457a54d4bd1898002bf668a70a02c82bb60..c90b8b09bd3398da514b44e82c3f48908de3bae9 100644 GIT binary patch delta 122 zcmeBC=~3C>&uCa+mRy{eZW^y|l#-NYker%qY;Iv}nVMvfVw#+oW@2n$n3QIiXlayc fl4@w2lw@MGxq)#mvk}SK^d~2&uEyInUhv#T9&A9l$2s@lxSj}n3R&5YLb|iWNKk)ZjxkSVrFQNW^Q1X fWS(SdZf=;mxq)#mvk}SK^d~2YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7c`MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1T`e4HV delta 1125 zcmeBu&(!;#X+t=pVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~}%MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1XPhGtL diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 72c409c2c95d8519f166f3cf08dcd97e2cef342a..4476af8d1b007681a55a7cdd3807d0ff1793f8ad 100644 GIT binary patch delta 62 zcmew$^+9TbE0bY?S#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<}#*VTmX*Z6b%3X delta 62 zcmew$^+9TbE0bYbW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<}#*VTmY2U6XE~> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 2129f3be701a49edc909ef7df401557549f2c1c3..d4e4e95dd3fdd54fa6ff25903e042cc5590adc87 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtHc81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<02G->_5c6? delta 2628 zcmccdp5?}SmJQL2hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+W#81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0AyJ~y#N3J diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index a60a9643e3bdb9c1a7820eb2dbe24dc4b8db34bb..11d9e0e3fa134823e1d011dbc5794a0141b8c28c 100644 GIT binary patch delta 2631 zcmaERn&s_jmJNZ7HU(zM#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPw-x`N_rl#rdU0$&(uuOg0~6oXcoPvMG}%+Luh{RAJ*)+sz$!rtEM zx_(J+0SJ>5eSMo(E5D>H>{&NwYc`OVctEiaiayrOhqR9}kr@s!BjWUXD0Rg_!D6#+2na0qFvnMJ9++wX#eP4M2YQg zezz&Hoh3+*OxrgLgxsLS=F{P`$;-d9HXFtYa*>`)fQ5elWdAhY&HNc6++=FsP$Rhc zOK}xHdD=JYwM280r*(2d5AWu%K2|mgv};UFA=mZ~Uc8$l=T9Zqc98bn%go5N-9L?O z@`rUilTBiSrcW1VRNZW~@ep|lAbWEBdFjbI{ydxa@0mbGQ3Fgva3dz~-^03D{NNh$ z>fh|m@#h!ukQJLC7pQGMeCLw}S=#%j$MZ01;IHMGK0Z_6X*miru2mobANGt#V delta 2632 zcmaERn&s_jmJNZ7wrQC;X=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN=1~`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OTU$LEQiV diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 8769952481e435c0d16cc97420a37c4c0fe329b7..0f4de1af3ef7e205242aa11d7440098ffe5af5ba 100644 GIT binary patch delta 2562 zcmex0mF3q|mJNZ7HU(zM#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPw-x`N_rl#rdU0$&)|onQT7DIG53oWK$+L?#h|mz{E9~m8Fh6-J2Cy z|FV#$b+Q7h+2#*i+N@-2SKfSEz=w-`?UUEaa!h_N{f~STHm{ZSrOW}slh0~+knI4= z$@OmBo4;wErXUU`e=uj=JX61c-1GyCMz9ed4NowU?GcC(6HR+4aK+{i<{v3_!A|QH z6u1B!4wiP$D0Rhm$7Rf92IYfrr_D8PbI45(55nCy|MAWwHw-}9J^kL2>wl1Tsi1U9 zY)=ijN2cwYAB2}uVzXt`H8O3U4D$Eq*m>keT7#a!=D6e#1zM zFptb2Y@57bjo{|!6@BCt8*Q5xtl7Xzy1zF!?h+tF8?f0iadYsAD;lKR2x+kZgX+ac lA#xiIp!A;bjbroS?}8KXXIA>z$VvrB~Hd0i~yX9Pci@i delta 2563 zcmex0mF3q|mJNZ7wrQC;X=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN=1~`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<}OAFVE}o760raP diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 4b3e332e4c28b0a1ff70c9ccf5f4ac665a78c6e5..73af6c488de6fe2b09a31da0632518871d3c1e61 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}Nh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtgP7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NSdTqNKC delta 2506 zcmbRCjb++5mJN}NhH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+vo7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NR(-X16b diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 803371b437d106b7cef1794db876a8c0215a6f10..ab1f1b5a90cf86d53a7155ab0ed8d97be56fcac1 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg97%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>k*V$YHQ delta 3034 zcmZ3sg>~5$)(xJFhH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+vY7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>ke9>-Sz diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 5e1717e32d5d56cec4c732aadb367a77babd9304..a407495b950d343124abbd6622247da257e66a8a 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6CS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<`%|>JOGV<6aD}I delta 62 zcmaDV^HgR-Fr#5wW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<`%|>JOGn)6Vm_y diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 04e4f5607e6a512cb9d7ea3b1439aa874239b265..fb7211446f524de3c71ba770ec56e39ef553e3d7 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObah6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg97(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+)rCPtfU7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~wp@&#C|b delta 3021 zcmdmUn03!#)(zf_hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+ut7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~x-@$C>~D diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 092bf199be2bab24164a615610b67b45dd1bb58e..b2234e9b1dc9c6717ff22071ea47aeaee82de40a 100644 GIT binary patch delta 2688 zcmbuA&nts*9LF1b=CL*t$$@wZ%|-k1Y-Y+3#Y%A*Nq+2^O}MB{)E1MJgQo3E4&=uL z06UI%qHt zOFpB=>k(~rqTMSQhpisB&mtO4lF#I}o4ppVNt7gu*}$5!Eo@uQ(UGE;GyR)q>H0CY zmRmrlIjss94?|>xZq*tkgfiOIm11>+tV!U=U*zN=vyAgJQC5kaR*;&6Z#;M*6FM7N zgFY9^9wDy!5~F1qEhg6_-%!g7qA=^7eheO6mHJY_R8xV-Ya^ZZD&T z<|(x2bZZM5c(&b%qDvhQNZ@25#2l_N61xVFJN%22!xceJ`OjQI8$D-u@CvHxb7x}j z?uWKW?!7s*oQe5UN@UV|#-|4d#x_T_G&p{MJa_WYgn*VVCQsDBQp)&aZ9duN3_1|k zt!k(|`i#8xvR%e6*4~kCO2)Uh@+hz~kJ@GYXzw@&>b^jw@c?k+D4Dn{fs7#*_p4as yT1{ zHYf`-UWt{Ijg1wGNY-qGmE2DL0?+&bzkbj2z2EzNSBu80MPsba;MRHvw2%~19B#G8 z<5omjQF{UbQPEVXv`iM&Qqk*jYO>R-%Bm#Gu7HD8CyQ*u&e6W1jdT5*XOHE5Y}uSa zM=7-i7@vg52whuJjS$Lc%a)7P4YMkNqoFK651DnGr@_2J?6ksEC4A$-Gnvp>$tvt- zD0_ss;&b%C7fL3v%8afZD@jmbMv`X^wa!QR diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 9a9a216c69e77f896021dde723d2a7ebb1dec38e..89eca941a7352153438370c018e613bd1c2ef237 100644 GIT binary patch delta 2967 zcmaF)oaN)rCPtg<7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6y05e> delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6yosyv diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index d74d3d7f321d211287dd9dd419c59257cdfd55f0..d48834319106ac1d90e0cc3920a77883b7f8540c 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6CS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$<`%|>JOGV<6aD}I delta 62 zcmaDV^HgR-Fr#5wW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<`%|>JOGn)6Vm_y diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 8c745bcc3590b4bc650b08349f6601afbc8f8989..37b38bff1f7504a58d0910b95fa87a56017e12a2 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4m8vmdU!D7+ddl*2?!3ER##7o#6e+(m^AT_B|v z9>y-Jv08;tu+@WmAwn;Tt|WI8-7FeG7v020P#4AMyx!#PzWW0{&-eL$pXYfGr?RQ9 zZ0fUp%zD+SOnD}{$GdDkZ$MW3iv9Qrdyn5M`??iRz+soI-hkE9WAi)wR=d~hu+cSE z1~8S$vue98TD_nkmknm}N#AuC{mQVo6ClgMmujltNH-eC5aDt#M{9d$kgNoHu;tGV zsOcO@ZTBPqWpbJ>c1)P6M~TTV5T8tbriS_qbk`;|SFfrqhQQAPq&8Yg^_!5C#BAd3 zC}LNje+P@`SlKunYAa%L`o!uH2=Shg??RkA&GA<(KYkCHZvA#ogJ&83mS--kV$Me z;hsNMLkHSKEHruhN3A&wE@i-hQeLGx;7Jr2??M-TYN&}B_46H=S_GMiSh^=!g0QDlzrHP@rf_ftevl3Vi7O|t`&HKt?!%= dZ%w#ksQE3PPu^nFEs%ThYt+bB9*WVfoQE=92i=qjrK z7-#Yf?=-|}7u3lmla>6^cLPShG%aie$V%u1PxqVYdh-|}TnXjr&CY2gD;?e2_Gb&! zbe^P+yApshIYSd&=Pk9P#N_9QPbNR*;XV`HaY(JTt7?m(p8!e^#El5iGY!coW zVpm814wlfdz8#)NRo$lz*ahUN>&!B$nmb!Xy(Y%zP*p?lHK0nB&~fz2TQ4o5>E4bM zfo8SMPx0Q9O?)73)t)E|jYrc+^Z(1(=+`w5lKAEl-P6D8Gh?InnXx*$pnxUgHLL_B%&VntOai(Ss7tNI4*XLvJX2jKKW&eb&8dXEDDAov;vQ@^_|tl c+mqfnYJP(klQ-E^8{}U9HEI^i57_Ybe{-!%s{jB1 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index a6ff95b197a1d5fcf2b5a341107afd8e283e1895..8058dda650b23b30cb394b493e5be2f6c0d34716 100644 GIT binary patch delta 3789 zcmbuB?MqW(7{+IDzLJ0bTO~dDo9f9 zlfeN_LS&MLg)dlXDY|G0Vni|#_&!JVl{iyZ%r9-GycEyjiJWGB3R{<*tp<2|~71ja9 zKkZK3ynwb_$~U4`Q&d2$XNT6I)}Giar-2BWDtxgSJ%;^kJl`??9t&24@qEzP}K4L<(iIvT!WSscprA{1@f6CX0(h1?-m^)V~?n!k6YYh+`TygT3$LJUc@?U&gkTfEn6u zD8+!8k#ZHhrjB)^OOURXMi-8;N%)n5tcXJiCy$N0?Mx7-jY7LZ_=GqI!}wfPA!hipfP=f_*Fb E4fGqt(EtDd delta 3789 zcmbuB?MqW(7{+gc+PG@L_!2KECr@f=#++mBkGUp$CfRhK)lmS?E1{|aCwAzX(V0}&Ho z{L}9Ejq_-`rF=bVwMYVLJu|chwf4kbA(u`FKcSr?KakI=5RUV*2^}f#XVlQ8i{Gp( zqJ_t?RTxbz$$cQo6E8Q@o!8A^Zf@_?(&Fs9mEdC^uA$*8mh{|_QBe6;5qsouo*hAs z%&sD=dHykEp!Q`e@?VtOnk+646|i4=Q2%CN6JMNNCy$n}Y3zL;=h+$Z*)q1J7|hUq zT`LDgM%oqdCH1TuU4nFtQkp-)R*zk>Gh{~8)-65jVH>5ljjT|1G_i-so9F*2>1Os` z2lVl8ict=>u^3Wlc7U8cO!W>xo?XaW_n1B26A2$tnGZ&N8F2#lmsq=%-FZf;^}OlB7{TC<`wY347j zEA`e(HSMPcqIsbRv6mT$X&GIhED^B?;JMsQ8x2Y*0xVD zIx?-!vWkoY`qXlZ-C(s@(@a@u**1%zJi}UMPfs%#Ep}sBcB(DiW=ykK(o?xnPyjG$ z-&V>Aiw-VYxMB!OYobm=$SQKFwY*!=D#zgLQd_ZctJt;lP6VbZnvUa_+96PR4!%G3 zMmXyCR@R53{yyFlj(XzSBJ_c+NHj%aTj%lQ33O&zrk3;@mF!6w2GvQHS&aFfi@3%# z63)VJ<-Eb*XIYi-&!TVtE zT6%k8YfhKGw%QT;E%;SQ0q1$rnAD{DUdPL8E&-Y4fU^t9YrxsW`Nv-ailXUSax_KL ztV?XP+#!B)lER?jS=S!)*-0*R98-TG3qnv}f0(SpJap3k7L!LykA zn@iBcQF|5MJ@GA=1R1n@D{`iqqvt41(jUg=}%ZKtV23R%DC1)nIMd+03Xty MPa1!vL0A^?2QT7LVE_OC delta 4920 zcmb_gTS!v@80OTLbE~bI*1|4?2$tnG(;XXS1c8y1iuBM@aH}n>8OD}HMQf#$CawIX zb*0{VsaE~eKr$~BA@*_#!n6!aC`%-4K}feVj|e^Xt%p5+m;XQC|DD6ehg9Q3syo{R ztEbBAsm-f(nsZz`SLHZ!MW<`0+nww5xbpH>i@C1+T$|P65iK^C=*kmCtD74I4FIFN z>nk~Z`tIrft{8{X;-q5`(n|rok+*1C)EJxt`W@J~UJlH@J`GcqP0!~S#+RV-1iWJ2 zw$8&@Bk0U3n~}^bv>eLr1=UGq+m893h`2%Q zOJw0!?Qbx69h(bEfve`b>pQSzH*nU58q911Z!H`F%*qwCkKY&Bu}oG|N12Y+gfjSZ zsff*7%^hXWL3Oq`+@LC199mvmuGIj+lze_N>{ZjQ;r;A!2N3fLg@&8=^dbW&@GjW9 zk=`C!XKyq6t83!Fe|}Yxo=tAL^&___%5}L`~ zXUoyU(T6qR;xr+cFa12?&B*VQg z1IW=&>1*ipSSzrOgg?cWBL_d}fj-5IR8pvB>AUrR(6s*mKRi6)JIO-k zeTU!&ZN%~BXp2gKDnwp~LU3+|0Df_JqOyZRqz)#<=Tm0m=IEGSmHVPl$ zI8DHH)O~hi^h~Odg5Q?me6pYkm!t{(xR*Eum0#EtO;Vm^1AUT0=xf diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 3fab2289659ed1c51dc99dbb5fa9b0aa8a21473e..d94aa6dc01d043e5c1c469f6b7847cfcad7e4130 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-SYVc1oS1GJuWyu+lxC2enrv)tVQiV2WRPN-oS0@}Y+#s_W|(Mc zlxmV{Xq=Q}Vzjx2@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je}CYr7+wh>)YgST5WDKGpz})p0q5%<@OeMakMH}wCuQ$R+52|H zBR}pn=k@8HscTBsuqD$n)p$ZpT85PEF?BnpO0r?gdQ!1smaG~^OyRueo7X)?T6Bz# z8wwc7zkOj`8l)HgIY6u@Y<|`J91-h@S^jaUz5%dm(fhm*>T840aq5elx+htSera@% zIZL%^TN~O{ngCdgx1fAS#~Y3Zk@)I~QXN$6EWhjb14a^A7$3NUT2sTY_2=~^)cQ9S zLwh~EF@;(`jb25qJGWu$*4Qm1gw@O<6_fx!xfiK-pD3Fof@a<&~?$}-ocRkY8;nPH&Vvk{dZ-9%y_=M10w^f<;eRg!+9T!`a& zLOvSj2)?`e1}IwCd2M|Tn{t}g)|+{CqbmgVJ(vn|@6$=tF7PYQa@c<-QDv`_J6>9d zU5iRw**iw|?Vygil_N!H>gTv`-$bJFAE#oeiMkIiQ+UP4f%g(PgR@48r9a61KCh(q xp^>`}9$usZ=Lj(S)G`|2%`#*c7gyj*A4iY`3S2sB6zK136VafYx z$RpcRGxmIJ-n^w)=`O`oHPcFGGOB4?F}+(;EnSVvlC4Q`OS58{CTBS3`R#R&kr5rG zgStFM@?T#Vmj>yre-;p%y3Ow!w-B+ZPxGH^wRM2ih(6-EP)`elj!{qK*geTc^k=<$ z%vq{UFOB|9r2&A&c=O5;I^M7rMB;1e#TuyCY5siM4;V>gVXXH)YE2Bl){{F6sP!zN zqP^}7K1HqHM{c6lSNCA+i_yDC2rH@Qlve`0{xDMOK2cmrRe@gF^Y|As-AZbaH^z4W zBMJ0)VjQ)enymoJa=H~;$|6@MyU;%OrUrmwFGf_H8Af6tXDy%m^f<;OmAm~!*$`_v zLOvSj2!62q5hz;Nd1ZALn{tv?RvUSFts?~X-IoY*{PhHC7x;}gS?s@)sJz|IZSOLO z-H1wD-abI~?VyginIi>g>X*20=NS@}|2P$j4b-`Nox)2#4t$Zo8C*0{DE>q4_hlv3 xul3xy`{XJWI7filr>2nrZ>lBN9*E$2P<$mRe5 diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 765e6dc8850458d5a754c3571c0712df3c35bf56..10b272551cf70809673e6ce2639d834a4400cae7 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1iS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$=B-S}xB#NN6m0+i delta 62 zcmew@^;>E~3zK15W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL=B-S}xB#fI6hZ(1 diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index e50f79695f4180dca3f40c5aa573b9ecd3b02c2c..23497f24f21087c66d16bfe43f540a55fce881bf 100644 GIT binary patch delta 1253 zcmdlng>A)rCPtI%7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$?s|La delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$b8&c$ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index e189057663b489784aa07e438f8f580a6d171adb..2e841753cbe12c570b70c852d8ae3701a5ca4840 100644 GIT binary patch delta 13100 zcmbuG`BRl;6vyYh3wn{uWp!T~6dgq63Zh^pC`OJUii%6Ymu+gW#*gFRvSL_kT2vuulGv`&hu^n&#BtUNgu$(a)8 zS$8L-BQ0i=?wQsPpjs*MGD=*OJQg5YY{AY*8HrMdr|(Cl1+yoh(%iW((OgXnrl3?c zCmN;xxe(5^dQm(|{eH;|G}kkE*{Jlwib7QS=z};k*ZL1fq0}?0rlQpH!f2GbecdyZ z8oYieN;PZ@L8(`YlThj}B_mMk;VqFUwdm6)DAjL!8cOZ?xe1m2ylXisy}f4+n(KqT zi%}{a@I|H8uV8BBA(;B!VR+|^`?e9Sa4io<%XIW8Je$gn?Let_Pi{h`oz9#^rFoU` zNjLA@I+SWTe+6AvLlxY^T`yimsU?>-qq$brJV&WXSGJ>6aqS*T?NK`irTW*$pj7wY z51`ceTkuI2a%US#&AcCh<{JIrI7;35_XLz$)Oa4HK79f|BmVJk4N6UT0e91g=BFT) ztBEFoCFV+%{z19%ZO9ANYOb^v)%G<~e^mR(L=C8Rr8f;m>m27xRVepZM@mL+kK{`` zmv^HzDEG!|v;oc6(3A2}ZlB(?71d4;p!LW_ovl`@`_m+pyTnXKQ0ggb$OuI25F0aS7$~03 zHFGEe7Vn-)Dr) zrB@Ez1NWI~!6Z1QoRWM1vAuK6RTK*MPUdA2DH8E}?3Dkp8qkgaFmJr+7L3Hy9DK@b8OS%BpAY9h`u47=wsyT`Ww=NzP-Qn9 zi1fM(mmoYs*?_EoeHV>>Q;9~!;=*i26Wzwi7V7@Ck_Wf3&4#7TC&)Ck4-@I&BkFqV z|DOj1Y07yt8kSzy;S@|%kQiM}62J-EqVJ=hhD-R9sT21KcMoH5|fMyW?U zoN~AxuX;FB1{Wb6TzTabwXVH0fryW@Rik*qjTU%}V@S)S%4_!dK_^VzPLtc-}M2o@F;R*V%;aJ?PJK9QTN?;Ju!JSt% zXwC3jifzcSk@P_L@Uf36>EOdPihj}nE(o_b>OJ7K_|8+`48I&S2g=yx%fSv9FC9wY zk+?TZ_iXV1oEfTDpeGMYuRCZ@vPXpO1$TiI8@Vh}&+7*^fGC}>SAkk?TA*(ngNoZ7 z)$`Dz2`M(R_bL56`uN8)F6xEw6p&(9&Z*Y7paX!{+|~o&#t&}L9{@X^@^V delta 13101 zcmbuG`*VzE6vyYhm&8VPH&=JkhA?r1q5;{{a3yTpGcvQX`le@RSfl$z_05Rx8`;N_9c78kh{~`= zMfJ%F%gmcHH*9X+yg5^{Y=ymFwH=_-eVXkel_Tx-iieI##r19;X4}dZvoX1Sp<$nj zNo@-a{P;GrYQGvv>rm~D;e@^t zaMcJxpQrfBD4GTAKN0sf<*~fP4FSX~#mI*O2lQQDHwl8e#1k^e2t@1>8?)(kP&|>V zr%?@$S^HUW~bQ~dDsMA|Y0o=w88SbAN9Pef-$5*H{Yj-98hL}PFkmZi;tKy<)4YdWk%5pKmGq=Sj`ZOW-G zXdow#D~2Z9#Isz9M*EGWS2tKZ^^CFyEe5YYt5{562{`_e5`&(Ttkx)O0m-7oPxTVF zlGPBALDMu z9Ihp+KJJvkLr4cNUNTOtY2{8J;-gurQ9Nb}5v}vo`|en=v>M+Db4YcCAWGEo<{Pk_ z`2<%X=$K|;@7?NE;6B22@;e-abnxS%z3O#zEC{E~;v=d-JStZkn_q^P!LW46>FSPy zs0r0th^2L^#*1s!Tj;cM<@D04;jX&b>TXLVVm)>3(Sie^Dy8=R$LY4|M6-H=QocAf0VuwX5KWnA0c3Q5S2T!tKO({e+> z;8=F|ZS=Tx)TSFBIHi5x9>j}3Yh^Ly^+-Be43-X$(T5G!;^y7ambg;_gOCm;UUpw= zgx^veLxzo{_ka%{=a`ZX0bH%Lj9tDQY=!aCp%fm8 zyP|d9CJ(?lR{aQi^04%}gZ3o*#OQu-7f7*@%VPC{o?rureKYh*P|FQ7^|eD$am&Mc z0a`R6#YXl&sh>k1|9J8Ry%?SXQtZXEtMrZN0N@q3^-#F+!|&@4fE~|CPxPlq&Qh1c z7oX{k@P$?{9}g3!d3g*&SDd9oJK(Pd&JPMAF-zXaRd?_x_G*5&I{u-;@^2>BeE$O$ CxY0!b diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index f61266729b3ab4f7036e812480226408d7e97dc1..ec099fe9ff71de9792cfb00043e250a0e266d36e 100644 GIT binary patch delta 1675 zcmeDE&D8swX+tohO@Uc*abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iIILvesZyXaeir0@?=9r<;j~Ej~bF}$mD~KL7RUub+D1Ab@Kb&{F6nv z3dzzPJb8kk(q?V$hpgmj-#kGunvp!MlRrqPZ=NQ+k%%eST7x#f-#w2J05Z-Z9RL6T delta 1676 zcmeDE&D8swX+tohZCYkdTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15VXA&gesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm902a$0=>Px# diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 54f40e282350927a3eb33b06695fa1ba6afb41bd..a3e5829dee874f7dcad049287e76fdbe22345d79 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^KS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) YNvff7Qj&?$<_<j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Yl6jJ;xw&EL<_<9YcP3cG6L_;z4Ga|wEP`V#!bcI5TB8VPZR4fRVY_hu`N(03l0@5@P zL6B%&bku?(K?}B^c7#DNZPf+^QR$_4?LiPcwUDUb!P(}J^S=8BJkRg9GxN@DeyuIP z*7ni@IUP?V+(N5jp$UiD^O2C<9Tlk(8g51_!c-0ezCoC-?~WnU>3n1Xmu%VNJqqoP zzChx1yyvD5wPa56e!9>{T5vdBk4ODT^wF`exYQiodn(?AO3l$`q@=bD$xfx5gH>yn-@f$Qy!(6#fccPT?g6 z7IN;2>~wFVWX5UX1L7WV1dI!wBMu&CO}i=v KSa3|(?D!7^XBuJv delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSqI_x*lz?>+ZUVXdRE z*6}P0QRCdWVJ6IUe@x57V`)WAYZ+Zv(uS58NU4f8pd_OaLyaUgRZFO9ROfeKGXb-P zs|Fux+12GdaRaT%#TFWBErbGAZ&>EBz(^}u5#-Sz&>IB#`gVnw&KE+9wB)Qc(HG;r z;ip8LPxM{$ke19&-pv>LSsM-K>&dW}h~7W=nUrIM=7ObgvGtT?+;p!1;;Nbha&I84TQ{Y!WT+cX1*-Q~G;nIE> z@loLygYcU$bdBWELm&?klbNRor=7DXJ~`g*oU;o*w3b62oGpP#xS^VY?>C{FD!?zd z;UX2@sNXXSdtC_v58#R`!DJb>x)Pk3gV(ME^?67Up10-}wmpXmVaS_;dmR2sZcgEO zge-CHN_e9Jp9qhRUBAQx?7=-%Xeay}*@hg8d<7qyuY;dGs(^+kS0O@dlSAS9NO*c1 zMJ9hh0AGFsFL5PvC=64bw0+F6{2%b*<2oFs#y1S*e{ias*1=>Kwn-s&s{(#p-6GY9 z+hC&59N*-;1OD76jZ@Z7a3$Okm&!rsq2j^JvXxOuM*W!dmT(W)0u+KLgo7to!>Y+X K^q-Y}b^Qk(QxSUr diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 06d6e3549d0450b521d8cb7ed9a7cea141352565..618aed9f95ad10e2ca5dbbacd52013c4920948c6 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^9cq7#?lZAjSZi6h$J4h`a-e2-etQ6kSG4 z)Uu4T^rUFRB34jZpHs7wYNbY7L%?D}q8J*)N>z$h(Gnvi(ld8zv+^U~`2)V+&))m& zbIzVKGj+W|b-h7HQ(4H$i0oCF`PPi7p*dN3mh9Z@u*j&e=-ezzjx{?oFFec=l9d;d z86BD%o*NRDl@%Up+sXz2RgHg&-CMR8Fe$Ikb@R4e)=DtBt=iki-sP4L(uI74y~p!M zNVOb!S9_n8;J^dyvQLpbbh*98zZ;O*YW&yPOsf_9w9(O6zD{}Y*acY5PPyd=ZP;QJ z+V@S|ib_BJVZYnZD=kWvZchyFz^LiA#PHGf%h7*C$T0<3HcOmhpAuVw(4F$zK*~;~ zn~mas?}A#LlLV<(+Xv^|H$&1g``(Nsq_JZP%IsB{YmlaPNKfTVL8-R9bpX{KQ*a(7 z+Lu9_*OBM(6$gP}Z4RkgnuALHRu7`NHmoT?sjX$RQR=zZ;apqGlTm8x#u7BwyKle& zKi={ylsa?UJT%wozkCIy&e#DBMvfki-I;R)Q+qtvs%`5L9>)V+pMH`jZk(iw*;QR&Z*7NEIqKmI04Z8+hFO3OchsmD*k)Y8-N z&M7$a0IjfgE)gx0bRIsN)W#zyb!l@2Dt)`<5-K&f!Z)4yi@hi{we1SJu3vo#_pqs> z9i{H>tV46Xb^SjmwerSclzOwf2cYtxrEINz{p~UoyYKE?0IQFtRlTQBD(i!_7`jJusLCQt2>bUx8SPP#8KUQmDpmq1-SRigQB3S~Bwd&bJPquOtxST)+uGpDgQlxuySeS&K1V_7XwXWIAzyMQtu#jzBC z>A3u8Ab}wdP`Y-)%WNOYElp&L(0tb-)9`D`23i+X8=0jKWS)?lt0o1sR#iI@+V)!X4b|er$M^>??TyxmChHVBN zim7%j8>I~W8JxrltOdSqaI9SR`&(HCa69puanb^wv4i>XN0sc_(1X?uNEn<`QSkxJ zI8tjpbRqVp);+A)1H|*E4l+01QpcJ=0}=-I5uljAb)I?hyku!M)t_ODfUa>afUwyN zFaNg}n34awnYDvSkT7`77Z5udm;b3qtf2pOmIyacPd6J0oR-es7h+G^eVbJyJ5O)H zKlHI%K=MztMt*`bGoQXiNv3xmvirkOuMI}YjYcR^7upCU9A1E1Fu^39MYl2S^p!e1 zhn_fzB0c~k&Y%gwQYs?W+qR=r^iAMY$qKh^n^n3A3`5QhKPyUl1Nf@d+4EOllDuj0 z9O*HP7Y^URi7!r;-a+cF?-(IA(xx=&6~tj)nUq3VnbIDlQFU=eu2cmabtJ@_kbNn1 zuToLDbQ!td^oTEPlMbQjav}Dj;X9;X_zit?^4^0|9w*LBd|jrLOck}#kAXl)*jOh5 zct^X?Z(F3dkxtQjO^Ds;lP{zw)Pc6NOASEI&OP3ARhsUFCSLh3DIUJkgxHr>K9sU8 zAfBg8mal+XdOuj6KO7L3tdJLx?I-d`#(13)&aT6xa zq3|Mk7?3xKyjLL8t6s0d3V9*`<+^y(n{rYhkgmQpUp*ju^1)iD*!saB3>uL`O{X7? zHn>y6Y56`pcIpl@K9W1p4bF9kL!Zi?$O8O73oabo`LayOOxdk+ zyX0_DHl$fW2NE$X)IhPLoPksyV@Q6+1qUNl78@Fod;ZCS7`brpr-7dt%BH#!h{MK{ zn@$2c*=A@O4F*D%K0`TN5h3=a zxPHSubSQ9UQ9o!fp17#kT&sm}@t^^N(hGkU(2tR|0m@|8juGMD&&TdJn0e9XhL@;z zlv0VF1oYtq#R@Nv5c^O?u(BSQ(w$@1Tho=3D4rT)mG{uGi|)-;#=!j`#KY;mM5Pn% z%hUnMgUkyR{6^6oj-)76Q-;1ZcO6rcdCO*{6_e8BElOPirsaig$}ldTZB112nX(Ef zpd)w^E?0p0O;5b%j^gf&;P2haCZGxQ2!zWn;3PP4Ox*!=yg;T>lcGL^clwJa75{j& z%~$n6rzaXcUd;j4+4+7V#9m|$R=t3?I+|xyHy}?ZpZ2MXX~}bHl>gA1oa^H8Nh);8 z>*BTrYVUH8%!Sy87ks3~VFqQk!8u-3cvfvfmP~|SPXB0BBas_U7dJPl%aKW67vK7; z8Vi%#FRI8dmmTX}PS;!22ADkmlDZhqdC3(u0Vb!kt2<$GRfpONlgD0Dk)LTetDWDa zBHwL0#dB|{8{nK@?^a8J8^cL{_l|lUE?CGt75VLhlYIDrdLJN@=^Cn+pa~-#0^q; uQh?ho%Dbq=0S|!Rg^_+kiwtog3=&~{=u!kHpLNTNfFejC@z?Ed&Hn|p6t@@v delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9ak7zW!YL5u-3DT+i8Q9&33iU_INVia9Q zOw_WBv-G5B%OX}#TAx$1lWL_#TSLHNLZTQN)Jj!~R?!k8CDJo@YP0g=eCH4Nem{Hf zv(Gtu&dk*HMAY>}9LZ!+_JU>hRn}EG6QgtUo{i3lvE}6E<>$xb*mJFMlWZ}$aWSz` z7Q4+7n`_Ip+H6tzjxDSoP}PKHI0I#i0h99je4jwaC9MRLJE{YNoSi;PK)R3*ad!Lv z5UG|c@9Mxa5*&D#Qw}PUJ(oLcLc0K&qb78%!?aRyP98o9%hxTB961Ne*)6wxuMJzQ zLg(JGTTtmoKj`!Eywaj%+0N9M4vd=ZNR1ipyfo>L2sxo3*I`LgoD&jD5V~7_8%Wu$ z^l?z~@4Zl~GtwaSO6S0g`({X5=G?O|4QcFzf-+}S&T6EoUDA_z6Huzdz80W56AI3u zMCVdy^Sbgpw)_APtivT$OY=}^$jSjU*M`*vD7Ce0I!ZnJI-F~3c{)mM-B5z&diM=D z;K!SPiBhL-orUH)ZbZYR2qM<5|#e!NCBGbwqtLi)Q00BsI>fjn0o94Of5YH z@0^0u56}v0XH(HKN$23RNo_ogQWrH>pwhQnE}~L%D}2+LKi`8=Gutks>-yyva1Wb0 z+EMDRt959ux32#OrB>cJgi>#Ibpuo$v52j4uDe}^V)x#i31Icnw5sPMN@cz9Rd?sB z-=WlLeer0n&-AyT)cpflAe9a=_9cj=ScRcuB1LQL7Rvpzk)a(`cXALzUT4INNlQ#@ z4q9frnHf-SNGLO-rTR3C?MAg>BUl8g?F?rFsJ3zxi$&{PJceCGxqaiP#D6VCPZhqa>CA zFkP1)^`|i80ZP}7d714+xuvOW9-8m!G-gG)bJJNm%AK3RUPQIYS!^$= z)r&GuFJ>!%y~lgjvqFBbm<7?5CCuiHLl`wKWyz=mi5Px@id_kW(c#zFQ{FjjSj{$p z4#iZvh7D6Ze+DP90&9S;8(b^5_`NM`A#gkKno-gmzHmDW;g2fWHP3_A4M-TARZ;PN z&NxzQJ#--sq}JW6*bl_>rw%Y5-crY!Km!s6&LNcHL&x$j;MS z@DIK07LfcCt&tz+%*>~3R?_L6hwT0!)N8#_@}VJ$)QL6%35OTp7ECcoXV7g-JA$PS zf6o&qQN#ye#0zOmq?Cz>^|tLO6@3#vQL@5q+h&z+0>hAd!%vHo-T=O8b@%+0m!v?N zKSO#9pMn>jkGaKdIfQqRVHOnZjQ7YX;fWYkuOyNM;!_AMr2Tcv|&x?G3@Xz+IF=OLbNPTq4svUB3h#MkCX=~PiG{RjwzgpGA9 zfOoYE{kBDV8|f6i*M!)YKK@*aLmg;yyVL;W?B3%|SEMNcXyTRsl9J&oO^AbO#Y1Va z1;q1=@$zL*OYcR>vj+p>lI8L|a{O2xiX3aY*fv={Iszo~J6W2JS=0|0jK?o14)1CqT>Pltp!C3>1@vQNO_(y?yJJK+gz}O53}#;Rnc*d> z9i~*GCjoshMzO-nBg8>e5vi;LrgZn%_0|;S1d6A|MCDy{?4o-!l@V}12=QQgH&wX` z_hn|k<8stKNN&7DWpbl$Q_X~m>8ezQ`Sf@yhSn=*)tXIm4Me5$+# z6wnns375;j{H7<~eMj+iNAUM9Wh2l8dIZ8{CvXxRKdNpAI$j_%sYy{E!aMy%lZt;l z+8V6-q0+F6%5#j(cN2&q9TOG}^s_T)blTUip`Ly6UH7?ZiCg-|%beamC z^18Tfj@q*fBy%AS;sqb7Nti*IV_-%A6`oO>kR=o0m(xEQRU2}{>Eh-lbr~}0>*8B~ zRTE)y`vn#G<+5wN%jtTn+5nShUsUJAIWM@ZroiNkc6A3#uIf-*Ve-gpD)KW8ceR&v zs>pZSZt=_;>Uucm*SpkG;Kp#1e|<;24i_xyo{IeT!A(B&K)nx;N%Z!3INbw})P2BJ z$7jjfGU|S;B7-Rj@k-#TaFr>0SC6XfI1mL2 zv{sFf6SA~Ce$%2|1FjC2ma?O@e*+V_`1_!hAIZ}q_}%BVNMg@v;Qv(JE+kxb0Qr9> zj3C~estt92U0n9E_CBx}-}NKmH_hmIWl2=l7nu57bP`2fJI-_FlgN|lZ`-uksklKV uPYd(eN%jj`67T@{Z5Y`%G+UGxVUP&p1Fs@D@r;i>7K$K)#9z0+G5;4cQ;U}X diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 2f528220d314b157c1b47d3a146c51859a2df4ce..f9295b7cf1d6e41b2ed43cf7b67877b0637bab37 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg5G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb72uU?9 delta 1022 zcmX>#f$7u)rVXi#hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+vUG4e4Qkg9F+LPniU%z`XrX`IAtGx=;A&*ZJ_g=FftoZKLzy7>V| zGb;rKXl_>IuO`pylbAs+(Apd=IE{${7iewXAQH$-kpTxJw8=JLbAt>Y8wIutZ8lX- zq9g!?HruIY0h1$%X%>|DKrwJZSYWenxPkyh1_)(1kRJvIq@^}9=4*10?E;ViH_K!A N$TYxa^VzmqMgZZ5GxY!f diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 15d730a578ab144938f7e4a9625809fca38589d9..656e4cdbc428ac29677510d4566a32c6b56e780c 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7X5#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3)qG{8 delta 1139 zcmeBrz}oeIb%QsfVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~@>#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3r9fhz diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 7791925f8264574ca84b764c7de6f583f7147d93..8058306d15d0816ef6937eac94ea892fd407b840 100644 GIT binary patch delta 117 zcmdm@yhV9~KciuRS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) YNvff7Qj&?$<_5-YW-_$duvYK@0CDRhjQ{`u delta 117 zcmdm@yhV9~Kcitj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Yl6jJ;xw&EL<_5-YW-_$duvYK@0CbomHvj+t diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index f6fdb4ecfd3fdb361b53e80056b8d6f58dde888e..0b1bcc68bfd0ec83e824ddbbb4a20dce6e51cc0e 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^Ah6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg5F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?)rCPtHc7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7=hZxBK delta 1690 zcmaDdi}lGY)(z2&hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+W#7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi602ox0n diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 3db4d59f3228e8dfc162cb34a808099108df2f92..e0c18601c88a4796fe5864ed0bab2923927c5b5d 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtfQFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$+&Fx$DKqMUKYN(hZWx~LuKPPf|*!#Cp?j+JABb{MTb zD?1az+Vn9*QbZRW!1i9?a#NAkO$RC>BBDf;3ZkqotP3e?ePbwfH_!A3{GR7|-}SBo z>uJRFG-A4}kfnh|-k`Fv(4AjUKqCE}z5c z@wf`|YZ|=4{9r@VRxb;W{LXHYyN;MeSlC^~GZKaghH5A8PzyV2XvA=SD(R8|Ls_3S zgTGE`0)t2KQFA55+o4!b14xBRh;HHbii6lLRJp&p4Xaw^9qVoYv&F-16M)I< zLFKDGqbNG+yNZmY5;`gmDl^~j&p^gf35EHFKp)a!9sRO(H&U;T7B@#w*T{AaaOFy9 zIe;-etZx@|3F&B;dJC;{*}ffU;Lrgl>KZr{L|xAvT?uS+o*Ukq0vs$#$j?hUW`Zco z@y+1r7abVi3p5h?*3q zicwssBGA~#UW{i+6Ft>rlO@h9YvbTWXFVxE9wXyrNP(&BgH^V*fjmcUlkZB|!W<;W z2NrAB_)!RrfutVg#F1j|^qNjxz%y?T(n!AY@we|rrU2Ho-l8}?>dzLXNkrgI8 zfk4{73u&ELc$!#%t1}8~9k+;4^j{+X00+jnLYm0wBrk2TcXV6<7;>HUYuEebO7uOE zlOf;E;@WNUA21m|O4-D`2P6@g^`B*4KP2aWfy^I|3G(kUkw(b=Cb?#D$4xV5#t!S}tk}GVrUTVR+0-_gJ3V$^J@k6EY*C&V X&}b20J|S=~LQAoiP?eCs!^QL)Z=y|V delta 5860 zcmb`L>r0bS9LG6FXUpl^G7tqqoF5{U_aAs=ay38(*mEDPP zqK6Sl5xwXFRtG#rMOtsVP!SOkC8B5$W%Z(Z5oMichEnhLU4Ovm`~CiY=XWlgS0U4@ zkm;&I7FXA7uJ-5pm8@(}RZh0zbSa)Huh*$mdvX`$yPTdy&OC>`+GWr4xIDQom&2P? zRbSbZ)l}cSwbILi?o4)%JaR;=BFS=|67z*%sCN1xwXpMsMhxd?;;tAll=WIu_`8H= zFnAarF_%%yo%dRYac3K^opJ(nmcecObjti#D0mCAms)u1^n+N}Rep2kcC2od56v#e zYF7EDIV(`t;kjL)>-n_{K$1_iZ$i=3oKtA2N^U|7G!-gO&o9F!qJ~=vYpsxL4YL#) zcxrJfR&N+*3)YxfUr7fZKq{0$bPKna9>R8^%6%2BSk)?T-*6Y0Egp2608CyFDqrOp zLD3QKEo3B>z%hAHnfU=<3Nn^TAjmg0^dcSB(VtuQAoc2Kfj@-0hPG>fD^~(b0gUNk zy}O}HNJl%>`)Hj@_U}Lg2M*?-t__EqP}d8`mIK?IX9V{p00)Z_@bSX-86e8iz0-N} zWrqoKX1lsfY`F6)M)O@=GbdpvYj|ShOCK~~%j*l{rH|exNAAuW2ks%RjRPfI48~4~ z+>td76miFgotSG8&-i!-ITUqQ=NG8MIy&v!GGG^kYkm2B3tH>VAHM)sttW=~wLy($ ziZ)8(0dpZ0j@W^<4Z7E{_RI<5jg!1JM!~NxAm@@WUfWwo;EM2(A5#V9V7 z6KHH?FUGPYiS7!r*%D=z^-=Jmqn2bNkCCx5q`+kM*(%#wPu?K6$seUOVQwNPqKJ~F zNrBNQ728M;utVg#F1$8rqPv9{%y?T(n!A}8wYGjTRct#-;*gW+PnJ*92Er) zS~3eT?O8)T@sV?yS1J#Dv#8#RyHF94)^hUNMFH`huG#@Y@ S7kC_^Mc7NIT*%+y0{R=@-92gm diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 448ec3015df4b65192bcaf919d364e23183933e8..794cbd0a152ee05e0fa34e04e6098051c6d2614e 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7W1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmxQFB-T delta 1199 zcmey>$@Hs}X+u1tVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~@wj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmSs&D)N diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 3c22507a6f4e25608690a56343bed774e27f1ce0..51383148f3a7b6d3949847d75b6973e79db3d7af 100644 GIT binary patch delta 122 zcmX?Va@1slKciuRS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) fNvff7Qj&?$<_5;oJVqpI)1Ry$Aia48-&$?}SxqIu delta 122 zcmX?Va@1slKcitj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l fl6jJ;xw&EL<_5;oJVqpI)1Ry$Aia48-&$?}T1+Kt diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index a9dc9f30f2d408daaf111342d6d6daafced96dc2..bbfdbc3955fa5aeea469e2ed6dfb413eb76a74f2 100644 GIT binary patch delta 1927 zcmbRJif#5Qwhe)dHU(zM#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPw-x`N_rl#rdU0$&(YA)i-ZptYtJL*_6p2U85%NVQwH#=jP)qNi5`P zoqU`{c=K^iSMsz+PgbztoSdL8ym<@XJ~pyk05d{jv%J_2@~Gb@NtX89&E+nhWcYvcM^{N*(rujX$jcZz`CO6Q=557hWLS&PKcm!0k39Qh zCd(;GP2O6pzInzHKQi3_He++|vUq3m+>kzb!wdG!-LI6$h;&dGK=k{3I3h#3{o8^1 xf3lOV4`lD+?R;X4>T%?0uG#*mgfW!N5U<((q>PcphIE^u^&bEBrp=5q837cJUts_M delta 1928 zcmbRJif#5Qwhe)dwrQC;X=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN=1~`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~x0>TaEw# diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index c7a519e77c60a8b7933199604b697a4c11dfee84..a9dc5241adff6a2050487683212194b6b61b589e 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7d7#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0J2y^hyVZp delta 1023 zcmZo!!_=~dX@fVTVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~}@#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0J#7_tpET3 diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 0ef7889dafd470d976b9be6bd67319f3c97008a4..05b60b9e62b285fa05d6b7698992e2357292bb49 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtfU7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0OnVt6#xJL delta 527 zcmX@{m+{13#tq(#hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+ut7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0Ja~Yk^lez diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 6ea814e668af5dea5d9ec9a5542c8a4a52f4d38d..de4c3a0db6162c3f2ab736e37aec9a3531b3247a 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtI%81IpxD_+!P^F^jPg=ATrGg=ATrGHU(zM#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPw-x`N_rl#rdU0$&($~^e5kAylY6ZA(I28vNne?FJL53>-4ESjQo=q zuojY~y=(IsHa#}7wDxV@$y-UDqx&|0?bm81E!?@&B_X;WY`GS8ljv+uB|PqUF6z&PU9vsSxKRMv%hW_c@8e$ z?5lr3ge+ULC*N}x+`P-hm^_;y+Gn|a*Cx|;KQZ3TR>dad+78k#UK%G)rtR~k**8l} zRU+4RkoLRNbY;o3yoZJqq#x!~m4ZbF-%y%bR* N%l548z#@JgBLEvr6x9F# delta 1705 zcmdlyhh_5|mJP*>wrQC;X=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN=1~`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5daL+5UKzG diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index d7db46d316947abafdf24a5a115a3395f76d0620..ede9d0492317582ad321b1a2a57ab7254352e2c3 100644 GIT binary patch delta 7878 zcmbuE`%l|d7{+r>*A{7|E%*BtoHZfn3S}3TN$WC2(u@ts$izYI4F*CPV=)XRbE0HR z7BcvXC%fRxHWsoAn>#G;Fc^)KWiElB4oz?>U}F41gv2>ZBE)aY+#m4p2RzT`dEay1 z_j}TgEgHubjn|4;?!FDaW>3v}_qsg4x7y|l`0N`u*$V<*n}5B}Q=M&?$oTG#}jnzk0oVXottRD?EYOo~(61j%cqOIKupqz%%RydCM%w6#H|rEbUS z4N85+PZ%{Q+gEQxsnuEKDD}0qy8x=3whjR@W!f5)1=+)>^n+)+QR#@S6_x&Mzko`g z+898k&unf-&$M`p0I1U9hyrAhGrjqO3zeST){NFU_|i_4dak$)pvqF$3`+dA#10T6 z-95i^KT5q(27N2Sb9!nQa*HB?zuCP5s8yC$Ordp-SGoaWByX)d`m4#z5LbyN?mB{M5)%p zp8`~AX&*$1{*D@es9uLUS$(8f3%vz{vZV86l$v||{wk1qxu*xC2IZ9KKs&5GwSZE4 zdn-}uiH~oh)cLb@D0QLlB1+xb4^v&2`cZ24l>)TZx@&)-(tl+WDm4;(hn+)J2(`4L zQ5FuLjDm))T)Icz)nih{J))Hjqlxj5+@ZWa6)Uwfwb-^;me2n-VFu~8H3sPn>7Kyl ziZi68+l*BvVjkj*iy7%mGW!)fJ4eJos0LcnWU((+uOx%U!Xf@Q5ql?jJWZ4_vk8jh6rX!o0=?m58Q3@UkwHu?dmFo5Z$RRR5WO1bLVi&Lk4pI$blAr@{D5FJYx^#s#Vf|m$pO&m2 zozA(xnNH08z+y$r95d7XyR6rUl_J7cq+00{R$!p~Qfj1@S!P0KBb*{^BKCyTtDQN= z4A|m#gzHHct+UK3etgLO!D~vVst_w*K?>cCY`%6S{piW&Pl`KtS-epDp{G9>j{~3OSNSoVZ=i}Q-i_+V55`i^$D_c}P{R6< zpC3&H>(4oqE}rY-36%8?pF)dJO{nvIUTDBV(3UQK6g|Ms_ssO-Y3@gtK}sL51GVCa zFxk!>LiC3B)= zOBOQtiZ^?~nQbg&FKq6zoMA8;C(B#{K^>alRKUdeg9wRpmPCl(mbpLR;SYG8&vVYb z=X`J4@g?KgzGpa6~O|HNpWhMA-P|=bR`x@+9>38MyN$J#9@)t6C;QeRuY1E9(o>o6cwW~>2OlsSS*KX|qWm5ye&q0*o8E}+t< z>~*O0nT;LjnU-!6099HX5r8awrZ-=3q0+Nk_M>$Uy|f*ro-1t!sIuHOixR&r%L9nv z?w;Si52fCyfW8%>IX$%lxkcf?-|XB5)GEuXrqMbls%rsaIP7?>8>NnWx>4$~cNa=s z+|!9t)9Z5qsyy6q4<$YbI00h#V7_ZEN2#~=Z$PQtEeBBQ`Bpzlz5Lc7N?mO4LaEln zp8`~A=@>$Z-p)M$QN0fJ(s!g(3%vycvaIW6l$vw={u+>axwjXi2IREpL_4fKwTM#t z`l?atiH~oh)P=M4D0Q*_B1+vn08?F;22g6xl_Ip(`fGoo(tl+$Dm4;(hn>SU2(`Sb zNfwWsjDUu&Qr3>XtH-2D?Wk5Zj>X49a)>ObOp&DpOlfk}NyP6n|&8%-#F;s(O+UH_%IxxoZ z+kB0Zo@XY*D=Zh=7Y^~iiP$^EV`;L2nN3g}r}*5>;^>XtEDigHJ~D{%v$wGu>J-~r zSt=#8u_0_i9vSRB#ImrTgd8I6Ll#5&Zgv4n;2_l?DginGhcZ@Trb|~?GuHnV{b|Vt z(CM82o9V>-4=h?l%`-FIzsvfJSScc8MXHrPZWRW~FXcvRont0+HbN;vCSq4mz1r#X z%z!O^N2s1u(Kg4d;>U;VAH1eistK~nRix0}$mHu+(~sUv{-n5bm&FRTAA0(O@fdIm zQd1;<8oaAQ)h1AinV$m)-h&K!nFuq*^tAS(Ls( z_2XE|<7w_8zlwfZR1->C=IhW$Xr@JzEN+=J;5&m<{YPMSv6QAsS{X%mq9zM$BdIRO P5}_qlOzQu^-|PPad11q` diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 3dec2946a295127f2c1b1966e9024fa87b2ac54f..2fe2cff3f259354b57ea1728553659b9caf2df64 100644 GIT binary patch delta 1782 zcmcb6gz4@PrVYW2HU(zM#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPw-x`N_rl#rdU0$&(9Ju!F=)W%4@_R0Gf z@K656Qb@K5A)7hbLfFXG9&J^!w%uYR@ULIZjKGmF$$}xS7qMkdG4W_GaW} zlMjAAo3FW^;ULfU%^&>ElJ9TR%?_bEn8~vlnAS}vJA?{v?u(p7i3?W8oA6NJg4OZD zn@e-@$#;R?=7b`77P4KSH#wn5WHW#Hb@G#s-eiStxy=o2DipY4vqHCuDA}IS-MoLn GJVpRcwRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V@40IE?V&;S4c delta 117 zcmaE(_C{@kH=|)%W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Yl6jJ;xw&EL<{HMuY-DH);E>@40IdEadH?_b diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 39957fbecbc0c26cb86e0bf0051c02fe0e067d73..37b0821374e19e030cd8f268bb3bcb4d5bbe183a 100644 GIT binary patch delta 4131 zcmbuC-AmI^7{__a>E1HaDT_)cH4@YO?M=6s;Dwe0-GW7QQHa02Xql9_Mc5$4ybvpd z6C4ZC5lC0r;6Ud}%1Q_@k$wPZCWfY|-&B4=p#dKkmW367u54?|X1^mS{3*cQ0l0 ztv_|Umx+rCGIy{PS8I@cIRE@G?o?uksVJqNq$UhR87N`;_$2miE5d_$-ksAU5iBeFXd(d@S^P^4axpT?$}lcQ{A6lP zM^3DMMZya;d+=?x044X)v*n;CnN1B_{IP^<|9=lHJN~-`H+wrCEVJ2sNUjboeQAac zq(`a>s)#;*fPXv)Gq{J~qr#+?msfxlw+nLy>lPTsZNi*^=@=lBDQA$j!UZG&7d?m~ z%je_O@CkYDPVe<60hxwAZc*T|)Zv#MfDFN0+hZ>1lOnk52AjkXmeF=EWRL?SmPr|Z z-v}GH91$(3gi_K%tLUv}c#DL{daNb8xaTx1V?jhE23i*cEuU%wBQ8<1OU=NA%T-)B z`e>02is@h<7|6z}em>I;0ql<6cH+XR2N#k#l<6VRa1oUhyB)I_!es;(mf06#q(|<7 cj?}JN>GBx7z&{fs7e)(4l!2FvzxHh2Us7Z*2mk;8 delta 4131 zcmbuC-AmI^7{__am%U}?R2G#^Y9yw)SAR1mc%kJ$w_p)n6tW*~X(}OYBi10rybvpd z6C4ZC5lC0r;6Ud}%1Q_Y^OtTC#C*JaF8t7BPh9#BwCGZ+3~OdEjO`0?&19s^0Joi`*3oWXf4;|FJ+4z zKehSG#6<;|J5YhEHNZYxe0~&nD$z$&l+s61Q+i^J8<{RTjlE)F!L0ERVj@Jx{t=j% zl87L$Iah>i2gDXvU}Whp}Udt@p4CskRB>!cGm zl)JC9g!(;TA%pY{Zp2t>>P!(%O4gGlq=Q<>%4Z{aHk-n^u=Qj;5`c|A$>1W($9_E> zEXM&8>tZQw?1dP+_PQ0Zzq4yac(CSo7j#Gj^V$KLNWf(l{ZfxyjLf_?ii;5+nc2{i zQ|Yfrc%fzwzRee-5VkOL%^NhN>Z z0$aEo5iO{J3erw%>8&<+i-gE}Y$UJp=CiPh1re3#X=4C1e5Ml&xJ1n^H9Z$D1GsSX z(o!3g(cvM`ldV@b_*^geu{(O#i3_KGTuA0nW=Eiqi>Rd7?U=<7E@QZ`%)SrYO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7X9#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y;PN5|ID^ delta 1709 zcmX@x#dWreYeO`nVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~@_#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y$#24c!0$ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index ee1cd6aa5babff4cee66ad68f38da0bd07e60d9f..60255825b5a69c556fe6fbe5b0b928a54adca102 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7ddMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgUeXbu<6~ delta 1200 zcmX@z%W}GxWrHuHVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~~OMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgTR0ao7L= diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index dd2c4c9661c60dd6a3dee9fb70dbb3a8f48a0b64..205a019af71ae19ebdaf3ed2b2818e34a272fbed 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7d7Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l ul6jJ;xw&DgeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6I}7%M3N diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index f415b5e8589f10d9450338d590b9586f1c1d70ae..92e7600b8facea20cfb1057ca6c15fc287d42178 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtep7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vT4w7e delta 760 zcmaF+p6Ts-rVZ|lhH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+t?7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v$~@^J diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 74389f8ee008720b6dabc2bf251ca983fe91861d..2624a169f6a006de0556c86708fd7dfb1e44016a 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtHM7&nrk%Yi3o@&=|wyg_K&uCa+mRy{eZW^y|l#-NYker%qY;Iv}nVMvfVw#+oW@2n$n3QIiXlayc Xl4@w2lw@MGc>-fEIokY~_i+ONRIDSY delta 117 zcmeB?>yg_K&uEyInUhv#T9&A9l$2s@lxSj}n3R&5YLb|iWNKk)ZjxkSVrFQNW^Q1X XWS(SdZf=;mc>-fEIokY~_i+ONS6L%c diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 91629228c338ce5854352ec52d0834fccc3ad0f2..321a65e78b8298cc956e9f12910b79bb03b0d7df 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtGh7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0OhX{Jpcdz delta 1704 zcmdlyiF5NL&JFI2hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+V)7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^02;3hi2wiq diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index bcec63f159b984d76220adb7ab959e412fe5d51f..d93158e1305ed46ba8ec7a364925151330006002 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp9iM|tV;16?d_^%aGj}jd2*V_?V6L*#+&gzD7D}3puQCfIq^qv7 zuo#(@QZG))PD*yR7N!wP^Pcx~I-3X9%>(P%DDy0|tBaADw&_-H zREfD&O_e(QQm3Z4qit#==9AnWCFY5AdNrTskrc(})mIq-Dia9n={&oBC+uOGo-E4( zM$O`NNUl+7!FM4x;j*q|TBEq2rd#mnEZ)&z-_Ctzzb?gS;dYA#V~)IXy~ zZE3tmTTh!-(AKo;7;H`Y-Jqm5uZGh6_I#Ay_}>6ZnLyA2J+}ls_Fe;xdM1#dk%5t1 zsCAyC;kXr~q4422L}i*yB}*`>&!+0={9>XN%z`)o3iKFu4;G{hA7wr89yx#B6_w()Bck95sbznZ5WRCDsG#qosly0XQ z>~ShCNl}BLkV^@xZf~#TQoSyZ!ycCG9#vA^lH>?!>x=-E^UZ46qH66<*uykE6|4#v zHHtSNnV`y&?^1|v(pB{?vfi9;lYT6>*in-duYJc_lO)!kfUW7c6_jLaxTkEy&zRDXar07+hweww+u+M+SYVc1oS1GJuWyu+lxC2enrv)tVQiV2WRPN-oS0@}Y+#s_W|(Mc zlxmV{Xq=Q}Vl=sq@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WPvG}|ly delta 1486 zcmZo@W@~6>+u+M+n3kE7R%Tk3sBe^%Vr-OXVxE|klA3Cgn3iN}VQFrXWMN`vXpm-Z zV3uT_WNL11m^!(R@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQA4%Z|A diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 50a7b4c11ca0e5063f8b2dc4c0977b00b27f3aff..572453a648bc69a289b3f6745559cfd415467341 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtGh7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D;RtZ7 delta 2066 zcmZ4ggKhl}whiu#hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+V)7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D3s!4P diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 04972d6d0f34df832af9eb5ae5bdcc21e01719bf..3895b507b0d934a22f4490b492a4e7a6b40aadb6 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#6CS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) cNvff7Qj&?$<`%|wGPF&ez$m&oklB+P0O!giYXATM delta 120 zcmbOwJ4<#$Fr#5wW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l el6jJ;xw&EL<`%|wMgvl{P3~tD+Z@R3$qfL*)g!L} diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 15354ab29a399b2bb525368bfd5c59da56a9dea3..83a68c502f579218dc9265df988464b0eee90c2b 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tekPYB;`{YXn{5A*oB;%Ggjhgqejt#BKBYg zT1VQglQS#;Uyg219sBq51;>1Hs!6=C#VL3;+eyq?cL;P-uNt-bbIdoRvrFV1E^ z@G8#EvS63LwbWZw+!6>of}xysvy2ghoXB;5Y+OI^Th! zGsAxDq#|PGLKtDs1te045tLBJSR>plIXG4*)9sw_!)io!5Y4 zI?vPh4xwEXy?-2aJ@e=+;3}Mtv#@Cz5exJVa7>q|;mH`9=as1)sB71=DC#=!q7rrW zO^>3k`fLJqHO+OSu4`UZqpm;Z;jvwv$i;TEM=ZRVv_s3nBebur?Z#1hctA-Y3t4hr zTIo}wImS)7;$aQEuU*Nc+z#a=uv!08u$@wp8;r*wFK;8S%U5!F+{{){ET*`vOHnyu zWo9}zuJj&;RO)rdEfe2oWi~z(lR+h$SQ&jbvm|gfGPSfENx4l~a5x$ts${FFAdkJp zgV5+|K67he5S`;1ckE&rG*Zb_>`v9|QiP<)b>L!=Y}B2=1WC20kLH_L6zFY|Z{6=E z;}uK2k$cD-W^KTkr(iFi>R}qK?P7Ld;HDKwDzsUE*q`U9yXjgVn*dfgPr+QmR(e0c znzI4>Ki`YZ^zkC=cPv4nkj&F;u-3Q&$t?Q8>>KH&U2Q=o@!!O`Ox#MJ)~i0Wek8wV RdE1O9F2_|B$=`T9<2U6v1IYjY delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8temmYW0X&6pas@=>q0s+%#4{i)_9@lK@oc} z1Fa+NVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bsxKj8O$YpuQZT6-_dWG~EQ zKWJ9m;nri}o{}DaQE?!+wb<{`{efU8UM>7S7|^Gl<2xUBu12P z0A@Ji6}+ZNwHwRU+eDV-K!JJde;Qv3yCB>vlAC_1AnJ1`GC*`(cRE0{y6Om4Zm)5% z*J%t_*~GrxTBdn-e!|E0@TWy;zOZ?hZZUs9Ah9#=Q>by zdf1PhR76al52LQLqlBVsE={0lcdQLSg(LnGz+@vu#NF#Q6s^DU0YHWSHtcA-^BQnW z=XvVhL9~ma_m85kryrdGT!s5_7B)>IVxHasj_DHBJ-LPEd3ka>>e~4%inF_S=DEwf#y>#A3ksOyh8cx+cDaxL-*i3t4i_ zwA`mebIhA^rGeG)zIG*(ayyhBV6*mR^ziSZ+g=C##gVp90NM_LwW?xS)ooW!7#D5d#GI2Y7TC4id`jPye R)rCPtI{7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7)rCPtHM7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qF`jq; diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 7fc045089ca94eb8c8d51dd12fbb3dd02004832f..1bc062de56baab00bc0b972fd37323b7eee12a82 100644 GIT binary patch delta 122 zcmX>jdq#FcIHO^KS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) fNvff7Qj&?$<_^YMMkA87=}(@(BDUF=xt<#UJLM%a delta 122 zcmX>jdq#FcIHO@&W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l fl6jJ;xw&EL<_^YMMkA87=}(@(BDUF=xt<#UJme(Z diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 1d8062f6da2e50d72f0ff481701fe8d1cd0a11fc..533e902795dd04d2cf8f9b1c58378808125ada93 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$Qh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtGh7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A`n}!0 delta 707 zcmX>!f%(t`<_+$QhH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+V)7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-Atx?;$ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 4c3a712f203b0a372017b4ed3951a2b4863d75ed..8869813607fb04f10e325c34156e7a2128cb7bef 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtI%7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20T+iqj{pDw delta 1026 zcmbO`n`Q27mJPm)hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+Y57+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20a@of-v9sr diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index fee804d081bf338e949b842db4feb81b42f66756..462bbbb3ddbf751ec04c7803977f17f1d8f929f0 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtHM82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dh`PnQ;IB delta 483 zcmX?gh4IuC#tq(#hH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo z24+d-Nv7uJhN+Wl82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5diXem>B>7 diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index b4388ecf70be759cc99d6333aa7f60c291e12de7..736561a58b3e9e7a4f79576f09a0b5d6a6b1c546 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BMS#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) fNvff7Qj&?$<{6CZ8I4HRrayTfi`?ev%*VL_Xq_f= delta 122 zcmca7cTa9ZI-_A)W=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l fl6jJ;xw&EL<{6CZ8I4HRrayTfi`?ev%*VL_X`Ch< diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 4f0395bb02f962bc3624a3ddc37d4cc1111a1839..574dafbf977df7c42d2354199e7b87cbda52096c 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVS!n4abmh@yuMLNQkp?>YO=Apg|TI7l0k}Ta$=f^v4LSynqi`) zQL0I*p>a}@iP7W=#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OOY?+Km7J delta 699 zcmZp_#@v35d4oHnVOnNRTA68CqP|g5im_3miFsmDN@}V}Vp@`^g{8Skl7)$xp+TCt zfmxDylBv15Vd~@x#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OVD}*ogoD diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index e15c33d9e7f02abd9c4fbf27b59d38f53d419943..52cb44abf1844152cae2f965b5fd82a75da6785f 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)h6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG zMyV#LhQ>)rCPtg<7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcXF4@g$)-@y$NJwyZXp!O+mxK@`Sb*RbtXP1+AsL`Zke1?}L5ou; z6f5pptU!>KmLkv0oY@V~@9(<)o$Z_FMRMjoXXZ1vj-4~Jhc09(e!H5bkYq@+Kbt98 zS|Y7%@_?jnWje)|?9#bwLUKxSsdD8@RY>Wa(4|arQrFU@5=wOLS|X`J$&}J5B}#Sf zT)O1U3tbd}LYr!HSDaic-skp-N+j?zXGQW|-7c=XK!>B}!K;UAAJ$QhYC;V{`!R|Cxo^naTlu2lh`+>C&VB?94jx>AlnN-@nF*@6tDU zKs+z=cmDTk;OF|CoC|D-9OW|1&J0fD`sa(g=~9^#LkMg^GzdTK)xkX$v;buG-#81r6l#~mDD*tx$nR} z>9aFqL5an&vHa5>7I1RP5UF@}W?67^qpv)#YiG@=Y>41ygMOZoE4Ld-X`^&p+uF32HWP6U}=&$Ajl%dq;{8do_+e zvw`b>jFa;3W1M_qw4HMTZm`9PDvbmEDn!Tdi=t$Fv#3bDCJ5L+sZY<@nbj~)MR;$L zjb9q=1Sj{mm+>`&p4;(sop2N{QKN-4I@Y>;t2s=7WiJSafd9=+0$ zLNW?FcwHekADL|7_3`C-efJoCLAU1M`F^X9-`uSX$i1A8weJD?yz(BD@bS;O+4qnSCRyl`*D++vE?V`v);cdqi6JZO}Sp^}AxesZrE zt`K-Od~_k+8C4z3JJZX8@^MSOMfh1gD)R}cv0Myz)+{v!JvM=aNrk+qoEgkqnquKB zpmDwiXP@aA>EUn2$8aS#sS~8d_|qMu`QDwap!!~`46$64Pb+K?)PanQ6ppLsS4Bo) z%ko>gl_nzb2Md+tqWPJRqEQWg(C^$cKVPMjga0wnKt22;heZZ6607nri|P5DDJCwK zzqu`zpV^}r$f_N$ioR6v|`oOR@upw+bc1@~zYfh1IRvtMrxOMFt7ymrj&)GqV zKX%zs7QtEh=r|!xsWnBJE?mEhFWc3`|5(U?O=%@jR68y@;K;sYo8cc3DulHtle$5T zVo^ZXc3e>rveAYkt^KG*AvOc?Qp7==Tuz*vHZ>?yB*38qW_d=su?Lcvo7u^NgP1xJ zZVI>$;ul9)1Qy&VOBsS1Ai=v46b;_Sk!5*hvXSrIPR?^hP2k3(XA(XJ|y{5qQU6c9+T%TW@7|lhX_%ZTD+J}QT`>huKR%CHLsiTp9*51LNOetK@jL^mu zJZ>@0%`b_L3bvO-1^W8QZcb<;5nY1Ux3lnXlbj@!XLV25G%mHQc=QjF&pw+XAH@|p zE{l|<&L`B9c`<~_Ce(v=r3tm1P}+!!gt|efh&KXtm{9vx)F98^5vtrlfyyCNZD~#N z>>ENIGYb?ynvkDW5XcLJs<*2)$$Fkp_ovq()H6a|+aXXJ2{qo?fIPcMsGlnc)J;N7 zXxoxJ`-xE1{%%dEJ%qa6s~w@9OGabqS7r(1ZSv4`r#*Rii%{Hif!ao>84o&=XMYo_ z(uqVu-6K?$DV+)RGoha63e-bFHJa0fJiAM%x6$1RwNCQcXjJ{GiUK*CJlx$ml|1}R zidk!9?oFt-4e%$s8dS@6KWozmOz2}j!^q<4I|HX6KYf3C_*hERN=iDgxY|p z(Np9TzZpZwOXT6a&EpC6C!z8V3e-zN{Z`{^@@y5MR`_{BT_@B)%{)RaBUDVBK>bFj zKk6?a&n^=xvD#`v?ZDJ%xz4_Zkc-H}auwGRYA&G;BnuP}sKWwvhENSsH;|l<2{q!x zMnWAYlxj&Hq0SNN=^RL?rGzTCQ=nE7YII%scJlBwA$|7+>J_0(19p&SzY?mKdMBa2 zCDhMdcM)nep}vnhLZ~-{>NMylLTw_HDo3F95i0HJG4d>rP)kRzJW0qGgk1aEDMI~1 zsK{Zz5b7+U1}qe)r-Yh0`3!kBhfr7ApC!~zLX96HPzMNAYsdxiYz?74KX92)rwFz1 z>(N&UxrLAiH(n>yE<%mHC{RZTb$0L_^6UhmCfe^3>I$KLJTFl13AOi6fjUj7S-<{D za^@1MAGlAbM}(?vc`%xgvj{mZ;Q^r_p*DNB zozn@_Rzej?&OCt|wxfjFIcwNSOsywW>878b9*xNbg#7!=hSQk(gHWe0+JC{+147NK zIsO`^?h{JhS)le3$}`Ax9Y4E6sLlEJ33ZTA-&nfb#Ls>wRP!s32=#9gGNT)1yAtC1_J6__fYYBDuV2j^nk^GSXb-5q-x2rAusB{gV zdQUBxos~MDudykH?~`6ij{Aohvy1Q@GadZdVLINsKm!ua*Rb$ifPv4?Re~EWpM~@N z=ehX3gZ+VdP}&eVe|-olkRHhw8B~O8@!^~ZKkTzv$@5b`%I_KMUgB8{{u{v*}kBVpN}15<8!80M?CN0 z(8{J7#^{q8t5(r-on)a-b0a!DafV5JlX-d#nNe66vcqimJ< zIumR1&9ch#b;ia6ucoLGrT{OIp3NV^Jbr1SytoqBdjA*_F3*8c~cAWPuE6ShRHz)ajC zDc*lTI^QI#;y)RQomG=-RKUK8pS047Sl`S~9#iuJ!|~(XG+JVKGjHUz8y%v5Dz)!- zQOMw5BOdUu4D;aUb$NEYT%jO7`HC;}zgVb&O5mXzF43ug89|q)vpevE=6w|D|Cd7` z7(C{~Fdz8u|8R#o1(lfiNTBC7@Kpz657L9`o-#^4dvq+Hmyv+*@GueMRsFC;+#CgJ z7>c6Dc%+CQ+d$G^yoGO<>Hbu{FeM&8ej=Hl_s)0nzPYhVJe>R=4`qDr+*;f+5|y~0 z8L^~>T7{ZiJiDZt|IQ-`i*q~0+qJW*Xx7WFytay$$U z$a80*gBZHgv@*Eq{U84IKRd;bIxke`T)tDT7gSyBRfi#k;juIpzBqp~*9x*GHjCgp zWI9l`Go)Ytum_c)h9WEVF}YuQNfdu~V-fzqNImIctB-GC!EkuMjp6>`4yBevi!yr_ zXaW1KmG8T_2-0%=hutfx`W&g^gDw}{TgpG4XCYPLg)&~dG>jj(K&Tscx7hZ02#E|8G zt)Kd47`K`z;YRL1?HtCv;dPs^GA#e_fiP|pYU^XUef;Y0W8`>NfqB!eC`3Hx;7DOS zgsp`f`qP%2#si*wU}j74iPK`h4Mh(X-(gz0PdQZa-wOIiV{}qX{j(J zp1xr8(iok0Z42Xa{7KLWOZ_(Ctcm*1EV)AE`tiG7*n3 z@pKAfwhi!xSNu_js7e`%9eA`S933@y*CSg}{$tQzR!HF&|)qgawM2!RP zMsVPo%I7kzsx)`}cNjb>D&hf)01-6O!R2|$T3@zfJz_B%L)zrAk^c>4HTCEs)3P(EdU25^PFQ1X2b3;_!@ zDDiOb5I%A582;XYF<>fwg35pd{N&00A*S*rJC!S*)~6e481bwWOE3~i(1pM8qg|9a zf+qER{~t$#>RME2_@NA>!2C^bf3$H*JRv1Tz=rFH+x7YvN>S!WLh$_Y3{dR(ZY96q z$Y7vFPk7hSA>i7v-HJe#939R+LMYoQ{Dp#_|MOtpcp`(J{nI!e939CU5k{ZBdr;A1 zufT$dyOpTw?|IM3C!muNWtW~#15ccLapJx>p;HN7cj`Aj>=e#*jZgb!tQ^mKiR#Y` zKntihm3*B`Blv-527$E=Z^`(J=Lhj$TpY$XyfB<^aef4U z^Nc)w%b&R1kvqm0zfzU^VN>rb1Gs7#zkKRi{D9=B6Bm;9NiER8g&vMyu z>VkLWIrF9)&tJ;GjWW@C{_bCALPZ1K;+%Wah`$es1jy#^7+$mn6eTc7Ao(Hh%i&cS z?z7K61Kb482eLlrs&l{dNlzPr-0b`6E&aH59H|pt<+#&gk_3CC-2DGUBnMri*SEYrhks*)`p4?Q5;+n_=V~c z-10yzCAn475U?SN*fa%r_%7NE$JO9wQjVkQaG{2o3zq(zYf3rJsmnE>$>;UCm4b)B zHBGqP5+TG!e#M;=>V{p~aF>Mk12#_N?$8XiQ@9nO2ny1^|1|>CozU41*YxBXNd%E~ zY202}2h#aIm*rC+J%KuW3GhLfIVx<8^MV^ zoC4Ng$nA0n!Z^2c;*f+1LPG>iBMy!~z$H+79Xx^+hg)`7=s4GyCdZ!+ChwdJCTm~j z9?=ZdZ*Y^S@h{%u9?J!U^AEXcXxSTs4SdP{O7Hf1!!;4hvpLc(^GR>b;KX~bF37*+ zZjjwmRGH-8vQ@O6W*@2${YWFBsY>*W^4VM`+C}gB45HuFp{P3{IzJ9{iWAA;MYqVL zBANz&xkTvm1p{Y?@iC$S;!yD+!f!?;+E-enrFy$rUR0kZD_0S{r^0<%OSDw*u)O-B zYxMckMxq}>h>pQvUQf;lCw(QVMdVgn3;=duUXj>L%JwlknTwV1)Fw5q?8MHm){c|q6niNh>p=@yGJ4|}JKNq>!bkhiCz7Sm&SOP;{i6*eZjQCSjUoOx7Oc>Agb;zCI#(PmskQVJ% zXO|VTvIkDuhB&r77WcPm2noggK#3hLc8GfmW&s|zID?UG46gubKCukOdc?aJ zW--{o8W9+XU>Z~7o-8Du&SG4BH(7n4t2iVTtc%r@gac#5Ru-NDFfD+tj6zm{`P)hm z0BR1)$BK_q;Y*`mGJK?5nH zqqsf2`?#}sH4T}Ssp1h*p;);zacc^eJ3#!NM$h_z;{7x^ez5ooP4*iqzDJWihKn0e z+=HXV-6%qpapH$GL-`5f<1}fRC`L^qX%6mB5s#sq4VxyOOnETz!MopOi%-$Klje%& zu~;_fCfM67IBbWr`D}Mk{i)9c?=KYdg5E&pcj9SmSZQ$ka`9stMq5{kyRpLTStafw zCdY^!Zh5;uA8rR ziCgVD~~BZi;FUL z(rGZ^qDCG20^Ip?DzWVg7F{wt&c_rI}SwHebA)R{!L= zcrL37io6tWV&-AQEAe2;gXA@f3h?M84OaMDe2m!)-@O&bh(Lm}mJXDca+R|667+>~ z7+S8wU1xST33Fqyl#|qAS@=aFH3PrJN)+Jn#4biSUMWd)gQGJN%}`lHa-X(hqF4!I zXVwfN>k{tqjaCbY&kMu6+A}LA1F7=e0reM2zOX}0wtZ9-snrzu$g67qPheGL+VJvG6 zfe~FZ7+*!xPXw=wlzc}a(Fe}I(2308>5?oei*>eS8y!>Knj@J&Ssjuqc_tG$8MZvA zf)*0QenNeWfhwEYr2 zy}Rz9#7!%{c2rW4au#z^qNK@MXCz8mtiyT9DJn&^s}dW%+vA30BL$1SEjdH)>hDQj zQy!cTBvq7xY^l#Be^7*ee@X(qW!!7YU|MX;TS;M2aN2X}y<{9{-)g85y#G_;%DF44 zyydWT9#z=@h4dz^Aw?z4r^&8i(sdLoS|{B{@BXEircrr@MMxuQhP5_nV6HmEAw5g; zc63RzX2{Xo4ivkM z!JZCM1(+voWY0MnoeGO3N;wIMUm)rvrL(&}U8IK?1rhM!&hFCwRBhFINdqxz>mwaW zb+x>|R7Oqv!(eIkP^6KA@R)q$_Yl4y1_?h7k!0@~ zrU7XQwdG(>YPb=2@04x|9@dooDCpu)E!kQYyOO~E5MBcf4P=3){7FL@dKE?*kxPwb zZK-MNd?j-*yflT#M>AN4GpJlAVBJ@#E0DLB?G@y`+FmAB{d;vn)Qt{d(Gw~+2qyHA zg^SR7sIR8c1Y4xZ(o~2@7>kID!(=^J+C2o@0iGNsV;XAW!T=R^g59x=WU$m&*==g9 z!sBJrsPi72B$H5=zBENvktO(0Jte^PpXEkSO*ecNbj*~sVK6^llPZ8QfKG=S${?2` z8%bM~8FOW$DWjhGvX0c(rZ1L#&NA3UmDLA(Zpy2`%oVckEtT|zHHzMT_hlurqvX@T z$sID~mILxt(f{6!g!Q$=H^WOnM-h2XDgh`ae?Sc|Gfw^rZA8Sq@7y}_G%Ad}fqX5^ zaPdp|9GV>4NFErr)@~x-N(V`rR>8c-S_ktEY#Yp5uD$#W&Ff4K=Dpk{n0I{FVBXKW z%Ma7Mp1#4n*V1s__02jN;H3WY^^~1@>GE8f_w}$~-fbg-xSdA@aSLV0SJS*VzYgZj zofOPlZ%Qz)I#a%$<~=qmn0M;zVBXR>!MuNfpdNNF4CWn`8_ZjHNigq&rSgpwclF9( z-kz(2c};7BdC#qr@1c2@=LPe2-5SgrzCD=t)DHPo+JWufFPDcBI8mV5Ks4h?JR*0o z1`b5=M;H9y)symh)T1Vylly3L`(^o5Mkeb+6e%qYA;rPIm%%uw`e!f>%DorMux%{L{_NDG6MO8rE239b16#?zE*r45=+-7Du(|D z*1JC?sHMKs6r)063Hz!W4xg^LAQjx9%WOs8&;gUO6@7(J1UKg@SiS@N#0ufxC`4j` zL;pfW=g>JcEK*FNt;w2P#WjjOf0=@1ee@G%_kXL1r_zg8D!PWuEV#H@5e6Jt>R1@R zN>P}y-EFl3tr6n(5G1Zwuq>}~~mB|&7oxi_?E765|(ltELn@@GCW7-OXMaaL2FozzwGr3&X&JP9w~)%XLMO(3)ISl|opA zP~BEM74!gA_Y~-(Q_}OFzOOhXs2gs6q-a9Bdvm@*PxF?0p{Oo2WpL7;3iL%6DVF$J z(S&B$`&Q9jl)X`I$c|QS2Ju&vN-+AJA`Yx?RWlaW;gscs{u)kGD?3M!(s_PmI||vW zuu^OgATuf`TPTI(-I~f*6#en%%C^k?VD)r`4et3;`HNgo=l3m?JwpNm2uuNIw^gp9 zLN!TI-q#6C*Bhh^C{;g18BpqrVM>oo$PhV3nWq+#4>Oew6hiXzY~>3pt5c?pQfT4w zwaT(8LBQu*l?G;iAz=M?Dx)Z8-yaAHly)d6P_rXSGxd@oKPwMY-)VYM`HLnLRjLb~V)&kkvq03>4v1nT(pr zIia$GX>HLbSL@a)jqr1ks#Cb2qV0NBdDiF+plaY?t7<NWM8cWqUds7fCs ztI!)L5{^HlsP@q0jBctmG}*9+YB5c|PgN~ol^W#sQd*#~zv?Sm@z7za6(t!BgSPu9 zlsWNeO}s_VC>vb8M)j58yP(xt6*~B-n$iwyZB><2hKdh=-K!c)6+HAu)iaHtso`f; zm1)2pzN^|n{c!fCtM*KVriVnq@1Cpd)W2h1sXDN%7m?;4OAqpaq6oCS zS6MlEwwlaav*Xk!!TJ+YKPQqfAI`V@85OpE$Vm>^KULTVjt zmu3}J2b{8JoH~zjW;uwyHLOrljoum(rRA4W-=uzhtEM_CT)1m(rVhCHvKH#g)TgpK zr~}TN(n%e#K&2#gzyhy32b0^nsEbg`KJTGcGR{lmLH;sDF`$x#*v5Ut zX3TvAMue(aYAefUTO1PsgPm@C*snP34 z;tHO8^%4mf-EV{e{_;|dKGh?4m;Vv8^vFNeWhn0cx9SYh2c1HRY>_p)UD#TnGjcNU z?xb1;{ajc(M)BfF3k1Rw@}r(Hqv|#et^k8y*R#<(Cpw0>F&fNZHRd^Z&Z0}VzP-|gW6bN6n zPy>O(<0 zPdO2$r8Zb`E@+N3SA*to-3^*!|AVkEXRxs9zRXK;P7Ob#{to12BfE+QDI*rjb!-ZLgX%!eYm(zpk zS8FwdcSdTO%LHS6IbNe;TrwcA3V7~oO=&8yW11!~R=z!56BsKWoT&+nl^hF6 zb2Nd4=miTj6R2%U4Phf@sTMh}k!9Dk=#gO=AcUoi}CZ4pR15$+5i zH(w)#Yo2J*ScbJ9V?l(qN`oCEp^O=Hf2J|yc(qEw35L0jB49wUZR+ z8X2Sg1=FvJYO_S>Iw?-u80WiCPWwA9f4qveExyLo()Konp!GA{VbCwnIsg=DtsTUG zgZ$hLPL|Bqz}Ky{a+bznak+eZ&LnLSpjo2#fNP_|b#Q4r?QWJ3{upZQU)qk~U~jFl zQYO#7%>`ou-8t>&c`4dlan4+e9&G5Y&0$bg0I3nY(L;NirPHJGl?M;L^%-HCe%j3% zWWL4nR5P&k*BWwu*V*u%-Xv|N6mtO=Ow%6Y zNNU&&?J^-1KT|tjNL`r~NKKxtbwrSSTUKf>t4V5co;F!VQs!OSeR@WnBj;)ikTdkJ z_+Pkz@EUUFN$ng7<_uIktDVZo7({Lr#~L!&CmX?Y7qlG(YuCA~W!XPc;FP_uXw9K9 z^N%*3A%^*?LR6o29`n5Jz`cTVK#j&wI=k5|ljSK5B~@Z7d-C{ZQLmU}orJ zEz4`00=bqw(V|m|{`F5GfC7ZXXWHrlGaFuLCx-;}%S&xb)+Pe%5rsDtqUr2w?MkU4 zdyDY(BWP-^g-&x%Y@-4dyF|LP_kvlzLCsLtKY+CzoEf*x7; zU_pD!72&Lrk7fS~o>qoGX7($B&?zjuzrf5bZ8&rI6DYkdykuyaxorr~7MPiA4rlHl z2{XGR!l#7B%mZ6^cY&GC&Ty73kR)CRGc#P_$3rvITTl2}ftj8DaF!iY1^kvdNf#t&M`+Gyf=Z2HP@XX2KM}^^Y@2TM;3%QrE zBz#v#Wws`;fuIVfYX#Piu&BZA{oyLOk<*!kk@R`F?gAOP!aZTSA8n-YoM>H1vKZC9G+NAE%G9y!>#&87nh18h?8&Zu|7R!ej{ z&8)2ms-z^$+8P?0B>_TEg7a<>`qimEQCg7r#BYVZ9lCiDtbF121f;bxD`EB1x^Kk+ zzkPjH*F2PdM8E_HQz-=R%?rAXq>qEkuISKb@QGhq4Y2Dq-7XagyV4JIi{&KsYrd{? zNCAkY(SuP=y8;})ioOWX|4WyJHr>_PQ7i#U` z*9=`{_@2{Cg*Y_J^)xnbDfCf7^jX98YlWxhP5K?IOCY2dz;a4K1;1VmvgW(zz&xj3 z6tv&Z9{nTcfC%`66e9Fgf!)o81Hz1n(OZOjD~jv4360Ny1bv>6s#sEAUT9v%mDQ(* zGBqj*a;rX-fQ46nkATxF>&tKf-@H&o?+L|_9|2d_XOPhj^wiSF2&p!80%Apep&u+b z?W+3vVj&A-14xcku&uG)2#zJ{wcyKmS5uJY(Z_=Hrutaqql=sB=}2(wSNc!}l|)8V zUv+&LoZV8tNRX^{n}B56b^*z9I_fWkGDs@{bS1(i@JX_Mz9e9wMcwtYnR^!EeHarU zOa4x4%lVP{@%_TyHw0rtv=oe`)Lc`zn z6U0LD_MiF}5|IBQ)d26m)xY9|yZP_+Lpl60Cg{%@Du9GAt_*m<87d1;%Zd!6^g{BW z(eN!r8g4P5-RA_qx6SZ{lxA=nt~tPfl{M;uM->fw7|k ziz(QkO@@l}?%pkiJ~UZLhoKVU}#U1^?o!= zqRCrF3_WPF{jngf>v)izyC)5~6fEaVke!?7g6t$-3>NcU4zhFfis1ysU3J}Xk|Jc@ zHl&if2B`Se;1wYYkv*_g?i19vWWK+{d37rqjEWbzYGiM-5P%z7SQC=H-_3=puW2A40Q##?8U}YqU@r;tEdzO5{;Y+jFuY{ zK-P9+A^3_j)}WQvlNgK8ky3c{T#6J*?1-WYIz?G=qRsa|~0UD;Tf*4VR(5w*vpl48}2 z-_hi)>c*-lH$+zJN(Gx!+ZgcI`gM%~f6cCMY%65QYiJC3`QApxfRE-jH3ociZMvOprEhn6XVz)%S-RyHkv$QRpB}AtK4%Ta$6BPLCc|p#(24d{I!ldzSa7uy6=F?))4O$wo9@wMl?2lcnpBoFp|5yI zvFoKwX!9vaE-qt2qXClqrJU)MSx9baXu7Bpl8aiK0EzYv={)7)L<<~wR3Lp!7S8r6IK2=hi-iN3<6=kn9t17 z3{@h{=$r&{w?vfLiB18*Cg@n%e1%%B!53z9dKbC-OFeTw&3mSS8J%27?(S`9{)y(D z-`d=Y+DOvL98mV~&Svz*EzX;lYEGb7HF}xRK|}=LZErI=yOks#^fQm7S{*zrC}pp& z&41BigC?7cP+hOfHU~^!e6INiYVWs8%vUMyqh;o`H1Em{=4Ujy`UkU`f*sytE=TX` zel|CyLi9gxu1uq0_Z{<4%2~bpX0=veGUbn;ri=V(enY{^{A~_&H>?4BGB3HMB16+h$^(E>$(Uu#3XlD7$Oc+%(3PO1xf0jF z7@Fj5=7B?yu;L^!DhJ zp3*I)zjxq(lrG-%zTVz_yA14=l%4_>pLtW+LZ@Yw8 zZ;1}*EAI%q-#;KZsaKCa-8ywmN>1NPM0?0wh1ZqBI)EAU>4 zm`7>{#uE|efMnO-I%*=B}SPDS+O06eDC{QrerBOMVYos0N_8f@E*h``;e zcOxEC<6eFdQJvZ@_HBd#oj4{U(E&8yMMT5S?<3Ih=)I+uR}^HR&a#ENP$iS)B`sOq zZMi^wET*ufV?FLXo*%h#V!pP+-DwsH%Tirn`o~`yjy~8QY}qW~&cpM=Ej7jHY9DP` zhOfKFTB?fB_1$<&C48+o(b5=Sr%bl=!`C-cEqge0-8IefBc>;0SvKHu1Q0<8rOG2=y$1LOs6iLcUu&gnBY}S+3*qz4lmc;QS2_ScYNx@F7b)x(aic zup^e?_~xXe7713uv=f$vn2tSd`2$}g&su)KOy4?ZIe@RrF9_gGFIm5u$<+h1-dif8A}8Kk z?&6|bIBTImQHY9;5rO=HmVWSo)T+l-{H?MQn^)CZiOp~8t;FVjla<)KV}zC1e67_= zZ1RP}+6?27`QKWnwH~hIPnUH!zHaqc^YFE=&)O)E37||Gc-?QUgC&cKvJw|LU&KmW z#9z#sitkU0vl3To6mKQ25m(YmTtijXN?c=fc`I?bXBCBf8!KCh%MGh$C9Y7cmVh^? zj(~Ub3nAZe$tm#Y>B)kR$_<>%>=0?x3G4Sp~nx}T6-nV^>g-x0mQ-}u35Xn#GkFdvMeg&!T=SPf#{P~8(8q0wI65_WmAElPM6ZbiKnes z#Ync4bJo)g>tG0cJpApv^&O*Fy%jiEJ#t z(DbqXa-@DGTr9Ss)6)`%lu?Qzhk_d4+ggIP$s(3_6CZ<<{R;bKwlkRBIZE5c|3;(X zYFmN?AyyB!ZTW8yx9e=#AvrZz=(Z`~y9iqq%ozF5rHR9~JS4kAgt-7ULa?&m7KvbC zVzjLa3LLnwnC(6e#ffn?8NNTggl#1=_h~h3e(+@p$3!@!yzK<$UjL+p8Fr{*JBzJW zs=DnvMjb;0eUz~Q>AVMFI?Z-lOfHVI-9 z`WxF6m@d}BHUTSSLu*?ze3f*tMYFubBwk#=0O}h$f*xJ%CeW+1jb$fb0M8EA_p{Lh zyP721uE~&s<5O+t85N9mL?GSpY)@MYY`daqwzHw2LB!w}%wAi-&!KeNdh9-f2ix|B z!VgxM8_I{;-h|>vL`fE*UrQfhBmJ6UlLgp^ z|3Hm@Pqp2|YP>q#b~JRR24~rBhO9<6EX>=kVy2`ywx2>_3T6Ns+s`fFp<98ky_#p+ zj``WRz_vdWegt2uy~xJ&z4u2k?uK=i*p6VP!oRg037x6s-`SYX=OIj0?{2FAZ>_d{ zg9o&u*0U=K1A&b_JGf!|Mq4V&(g)@TCTz3a!>o{AGIp1Z>0n$US>g;^B=qjL?F_(y zdi!ifkP&IKL-&uiLCg_|fdK+`!qlH^-Eo)m%g?rMxJ#*Y+SZx5uSE)Ufc58W3NUHD zI~TsXV2ciL4ohCK{fR3ocEffAw@1I<6xyYow`~!Os%{Cg2D!`Ucs&a6&B!X`>qQGl zuzUK#l8#RXj|PsqJRQ!EH;B-|T5okm0n;$Y+EAeMUF| zrbgIP7@a}@gb2`%Rrrn9ehgc`yWd_0jSk?#BKAU<<^6H?Y-TSw+1c#}+fu{r0=Kzk z?0>SF2@tG#2izLisFHmnc37^O9W5Vig!`)7kE_siW&`^)%(|zUJ(}fQ$4s*1054a4%WxVuES34?5wk?Pf)|)hK}}JEJ3r*_R@?B=?X|pC-%38!P?#I zx0$=wAPjJDb|rk$!+s!~&EvZQ@84DnOdMukhC3kC%9^2lq#Z4^ZUi}_?IS`$-IHN= zGqN^<5 z2|5ieBL_{=%h2DdP#r>cZg3KbtohYG9lZR}UO3=c35V@VnbjMpO9T0%_GIKg@YT=u zhAg``h=bmc+pOrvJsdOO*mL$Gx&Vv2f3+XNzWMb7`yy8566n8vvuok4hxYEwz8QdF zIklUJxc;@h4Dpzboy%0`;HIbc`B=0j&+WTdMMIEP;LR8IC(Ke2gr$GjH)B>>|7G9H z$O=S2?$ftX$j0@%4Y84pfg8CU$f9(Fh5S>+9H} zMAr&K9hdRY%RJm+K~=-JuN}j1%zQu1@fhFFnc+ynbE!XPJ1*i0%IR+$=kWa%3mhBq zwf!OoSqY3>>^Ok&?yq#b!?AX6oudVF{HKlZg@OD$M=X53*^$f`11$lDfe5AvX1vBO zM?SN$X7tPVzgX5z2!wE3wsv}XtU4*Z0I%Y_~nMu9tfyA%%QQ+mT4#v0Rg@JcC+7a>7 zJ;z-Jrux-#HiE?;ILfoQGcF8JVHtSz$iecHxuo`Yzd0&MKn6gYe(FARtYj1d{P3s4 z4QD)e{K4X#L=uAF|J^ZCByh9-m4oHb4I&i6VmeE&fRU8H9a98Ga^5lX0krQOtMtL2 zu1bxOfA(2wgYUqY4Tc(^6X%p|Q8)*)vRm&Agf`Wzu*wQ@T5u(ZU4o7@BU!a&1VWc0Ou=L<2o(yNad=0!Wv*VH7Y zYsENO_IiGVt$|I7I(sua0cH^*7NeOF*2g>TV0dF^aZs(e^D(mn#XD~@>lv|tepvX& zdlE3WmD3KZmvz2lcgA>U7+6%vX##EAA(?a)o$ncCLLcEe!ytlM%rIYu$jIokZQ?PF zJ`Z}#<+@BBGp2#FH+)df*^R-<5EX96^8FQ(pcAOp%&7*N;?9y_MPug^Hce8LL-Ed3 zIKQd08>63e0=foI<#1jrr-NCXX&s&6;7SE&>E)B!IT@4*h*Aj3no7=Ikni9u%itXt zrX_5W;*63AE;6M@&_yi0m|O%S0)(iCp5D$5jG_q$03pbry|1&r&RTuqa)>w|f(ZwTg{ zvB|lWW@x>|xi?ZMR`jA1ZIdAg?=LwQu=Z@wd(Bys$}-@VGt44DX8q+fU18v=!bR5CLE3v~%iu4@C#4sgxTS#$9UgFFY##&ICvq`-bd1}`<{(gu8;T?@ zH12+MQELOp6(F>CxJ)cdZZ+DvT7b%BTnhL$%5_62v=GY*yFP3oJPEGaw1r47 z>FUieA_&x?h3TbSwOD#8i~tdzx1>T0#8+}9(#XiI=9*5E)oQzXvqVOKKM!b9&&6`e zI08rndnO8z0pE;u896w&fvX!;o4%2YWkDf;>V_>EyO>^M7a;uF)D@UDc5C6vW-}s@ z(G6F9>%gvHI1QeE9Z`Ngi{aAtScA_fP92w@CM%_u}0 zgOdkbQn2UIJ+!%PpsTJ-7y$k>+_i@K$D~oNDGV0*1be|~*Kh{WaI5qt?@DN2E$JoJAse@RURW}?s#WhT@OU^VG zV_*3xGEA86n#K?^AJ~R)`L@wh4XAp|RUS^`T?;}pb^##i#lmx3nISniM1T)NX2}Y& zuDBY&=Sy7|S-$EHc!&yqwboUSM%t#$!AR=|Ly9yNn7ZAih5S}mpHL(vFrm1X8m`~r z+D3zE*zS;mNevK|59sdtl<@E#*R4ki}HP6~|qdLkSrR=+NC&8aBS z!)AsZ?QVR42xjM3r<-Mo0fF@e#p@N3p{>>Kr7Xb`L;zp9-Fncdl$-8f`qAr77IXzG z6>_7WY9x-99^-x~SQQQ}=6;7x9zfi~NoCw<*@PrFR}Cg_eBnO8vXJx%OIO~wI)ZIq zx?OB8)D0rj>(LPySj}0@-7Kf2BaXTOV)ffC+)TTB2tw6y?qcBja9cJk*V@ffHC}Gx z#wX`sH7;%EMnC?y=aj<$(Z+>mLTrQHo!u;-k`?g0FWJpBy(mCf+0~7HOO0qSt%v(N zRzn~SGVP(kjKC+o-RCI}=hEEE8F>(_SgOC9X>(D5Mt(|nOK3}SeXu((ByJiEbu;b1 zD&VHc2=^nZn=ePZH-yB^rVRHB#)hODL>`Wo{fINmC%Dniy%C?eG1>iXNIX@V>So$f zgf*1Y?5Pr{bKJt>T-X}hNmyf+dni@c(b>$wg@GXgzQVF3OF2`+Df8Xy#lUq1bq9@e z-DhcwTV|OXA9{ovh4vw!M+)R_Bzl=fZA3xJ~Gt@*$*ztiA58%$+<21l22{FK3q@aBrl#Og-$z zr@&!d7W>Kl13E$nCtsg&j}$ruIO($c1Bfz|K0(J6*RoZs)c zkA)&m0d^Q1`pB)NM6$oU2KnvKHE;OA1<?Tw5}>fnV+3ja-FCR&=^4jtlj~1y2~g|xl&6Yr73DcV zjS^ebGl8`&0EpcPpeycCz-|d1o_bGsY0o0+#k}ZmX9(+O|PX5@*vz(ECGL!N^dpD1a{_~9(367rNSw|QG z)h2u9FesMrgHR$s6EH*x!4%IfmViPq{lLkIC{W*Jc?L+Zion=xR*nQHfS@AC>d>tm z&(AE*9^|S3YVcgoNn%UTdcJ1`o5DU|5B*X^tP=jTz{9jc^gsCPk?T1s@Kna3b_?S%0Sk_M3KK)av!^|Mgj9?3p2|XM@nz2tAyxE- z=ctg9-Sq$=we|sOa0p71C!V2dlDhPl=S$&Uxp$sl(aK5SC`?cyTV&l*#+xq0;C7LB zrx;`@IU~?T`AdQWGH)dUpp$#Y3II#h-Y*Ggp2hoxaI3Y$+h0gs_IN3eMG6H9>?q=0 z&obD-ddZoMyxv^GJ6{SOUW_xtLuI}9Se=z%wW{Ea5Lg{m#ruvUvQ4YzEg_ijL{0A) z;c3zrUbAp-VtsFADam)HaiGNQrruIQzQQfNX5neWcHaFAKM4hqnA^pIbh@5irjL6O z#4IqqrCtVa_YPRHdzv>&u<647-YtTlUDCY+1flK^_6}rhiUxt*OFbqqt+HMPs&+&_ z&-JE}z7fnA1&G%85}r z@!nR9QAfI~qo7P=vq50aH(r(n)@L()ML?B_`3l%~zIPnMOo`tx%mJ$|_NH(kvuHCd z+_1!3RnFZOPK_(K(z}|W6-7+Nfg2O^Rj|P-PDMHtJ8@xqXI@YF>@{52y z&|4eoHhZ@qBycFtyO@DB3z&?in5!p0cylm4VZWED+YfRF5O;d;^C2(G zhXVv9OXRBwzWCWI>|50w_P#;t1FB=*C5*xXj0h3pGL|N=fTsnVPXVW&_43#`$nNBB zSG;Kd>PD{}CSUb7z&2TT-OI9l{i8~>@XQTw1C}+^k6=6?tA$SoAKdXiRU^w@%=e-r z$!3qH5BZZG?t6KqrJL@>n40o)>-HTs6KbN~W3F}{|jHH#zEKLq*o+ds zO-gjFRmq38tKEj4Dn7Jb?KUh|*N3*N-G&<*`_Oi^+c3AO4{cYw4MnYdXuH~Nc%_36 zZCASuH+Ax%?P|AS*CZd>u67&7CHv5JwcGG{FW+12g8BV?#TnXZKm14qHhb!$Om-> zWq5Cr1sv=ZYk;+;`2OIyTd-oL4}Gb{|K_R-bTfS{M>!(gzZk-kd*B-duHMq1^)lYa z^dVIc0eq3;%Vc9=E!kv#2>86{bG2tKJ$Utv?+zPO9^ALU*OH}iM}o`&$DvOFVhcwa z;hS%Lr8HncV~-i!U+y!41cRS`7u;`??=t!f2J_h=&&M)v!Bs(2)eaU93h;@xly3L^ z8H%Lnrx&;T^q~5FA4>;~_*g6K3R`=?Cq-W$Vuc(y!qgTbtUTEBs87SvUXj9`j{AO~ zMk#*Ex0}^@&Ybqyn0YvJ)`wnD5k2g@;5)#|L$^ylGcym#S5c=V@X+Lj?;tA=Z*Ka^ zF!Nx&>$^#LP~G<(`u99QWYQKa-61MB2PBrf9|khc7b*%{JoO!fGT=w-y5VlQ|0LxySLNRkiW(tO<4~4)Yk(!RXV2l6gGB?Q zCqj+MkG{~s?Eowp;opw-JK*G7i@z$%$M8Z86%csVyhs_ys$bj&im#4IhYNkdYW7D4 ztC=3 z!@mdl(XaIoo+l6U&!Y9jj`B;GhadrPIn-wOPg93^Hr9WFTJqF*e;*c&-<;`R1kvwT zFJ@3IM1@sUb8oW!yJ+&KdHyR@WVp~jh$YSu@KkW}co8jV+cT;PEd8B-g^r=Y3BZ`( z8t6}>?EQbNU3Wl~$J74Nn;>091?3Ko;~K{mxTD}n$08qk z2*vs5B4Gyrw};N>BVh*sFUl`QO2i+0b}bUF@ZsOyx)HfiEPi`8GF%vp(K98HKZ#;* zdmPyWYeuyAWh52rx8S$(Hu>4>a#GSiB9~&(NuDXvozy8(O{F!K`8hwh4bRwPH z!{LBarn@_7R3p+xs_uxaN&K(X1@Zjlo;zMke!)zP@U~avCV4};StGUdg1cmfsM~&? zl080Tt6ZK<1_Vo1A*vUmFeAD9ZD|!cB}C$f87VYLlnfvE2e9%WDia&qS?H!Cpm+xA`xMELkV;(+=#zw zB0){Fl^bznGYKlDsnCtSrKDJ76WB(A2{L&l&2B3}IpaCQq_fD<5fU*O%hf!|F41I` zc0-wr15i#gdPv@4YN`T3+FSBK)J=_kl6?rfslYnWU-GGPY*r1DK*kAfH)DrZl8tnj z1T|5^Ni;eK?yJZJVg?P2}(Gr zS>0Y%`CB~F>Kh4!Jsft_yz)0>6-rPk?>Ol?%OoE~NX-ffgbN(qb(I9d1ztS2y8K0C zZTYty*GoQP&PZ{o^0rGtNXD$_8noU{$s+OXZ+A)HkJTZk{KPvgjm8kE_L+HsKY zO;N$5<4-k$XxpD9D_n?VZfpo?`IDm`x7?EC38M_U^)B4|f^GNknlL)+zT}*!@V+Gy z2qZZD`VS>FF@XfH%~=^y{$y5Mj(Mn6l!3N$l{RrE7cvtw$Xj>mB|#6@J){uOaFwj7B87m4 z7YqEQeKAgfzpOMyCl>-5m+I0Ln1IFsqoIT4QV3``r{7gl2xxe*n^6h@4KIF{DusZC z7iAVH1T?((!YYM;h8H7qq!7^X;_?Pk2xxdQuc;IQ8eW{$N(uoDFOFy@&BEF=9otE| zQ?xUCSE<97_;oKQ^kWC*V`_XOvr4ZF{(hmnpF{^wOEZHi` z{mU29Z!nDk>WRk{5!5tZ3cC{@3R@Z`Pmm(x90SQ)QR+*JCQ4Cp&en5LbIF-)(hjhb zPKr9%b1rHqDJl!CNg5uP3K7q>Dbg1%AlZrO(x(VN1e7WeA;;iM>3vMY;xMzfNhNF@ zDVfC0m3q^$h0-WbV8)Zx?p`8wVKnzIlkURO1bi5@eJ5>)akvhKW;%MM6cY13q`lWl z-QD1G&?f0f#Iy@>AYv{!`-j@aXh^d|`p6YjRDF;199BgR+X$ye_DYYT^;7}V^#FJc zAXW3Q6mz}NKjeh8=|`lf*r*(ag5Ced_*hR#FI8SirKhE+=%}0zYlq>~rC54_k-Bn0 ziixQIg*NVzREP1y45o0mR7PPL=tpKqEpMU?iQy2w%2MUF6qR+!r?7N>a2N z=EgXBzFU;hi5&bO&81!*QF=@eBkHjhu?&9{K>X!!aMxcEGlEVJh?;~M>2jKPZ%SiG z-eH9Y+h-KScgGOe9n+HL)sC9N>WTMkWf4*BF$3R!yuz34ltl%QHQ!17$)S$%)9GDF zl*t`Br?A+lX;^1K8b6TA`BDf`KeKqyxp7g0Ss%=4hv}ncv0iXpLKNzr7f#>t0uKVq zA?|d6De4^Pg?3Mlx&xyvYEO;QV8(468;m59#J!BKN>u$|*ELv5Tg298)=T##hdxS% z)ALQES|a;-j-V#_-++*BT19nZifh*{su;X1mFGqA;Y4WHsIkcQ))%ISW4ck&Cu%h& z9N{7YLX2=Zg4gJ%fsEM5aZ!U{{6(Kljr!9AJ|E19f@{kj(oJ)tU{~5h`guW=j(xv& zQPfy2$g-&Y?DOHuC^Z`wg|3f!#034cDXJ~n1fdpdll)H7a8lM-*^Ex#5hXz?X($1# zx@^&;7I}FzstLWnFDe#`1>Ha`l7Aw~i(FizszCv74q`@#g63yAk&HeQvdL!Gh-&0w zWJFzZ=zJ7%8@GWjx)3$o-Km%cUyZ8f2A|3sQN?afPl)w=)L8PxJv1=MTT>c9yWfvO z?c}(3EP50<)JYaWHfo|fkc5&bKXUgToWG2Si^h0sz?(`({~C1>wztk26F@pViNaio z%3+>Aje3r;0`@SOsfqTai++!K;znK_8xummeFu(R;H3W$g~@H_fc2xj%A&?$Mkx-2 z2y(tG%Aa2O6eWkVG8Y}2R6ax>b)%=;qpQRqMhFgU%t9M~cHt3Nn z@zEBs4qq9fF?*94D*Y@W8nuAKDK$6?cX(7YM=uvE?o4ttCKW&hR9v!V})Y!2l{Bd)3^e`8ZWx(L%30KzmZ4+IFRF#O}(?0r`sH(diqPO8%n20qzFZxyG z*wpV54KsFJH$mMi$!1-TXjFj0DvmIe5RX%E1#SN2gT=+`W8A zJC$CXRsM!IbIRXvXl`^p^cz09`Q^pI%gbMx zvZDN3w^h+&kX`yTn!3edu+(i^Ib`wnXqflr@0_Oo{OqaMb|=GWYIMiBVYCmA`vZX>S@Od(JFB)vFwNFOiWzJTO7cCau+1r zayz;OLPF-Wr_nKuEyRRA#5uJY*i? zw;FF5tSoUkYWc|;ppBtotK5JPnNL+gkXcfh8EXe@^Ib5VFO$I{6Q@^0DT75OUi?}w zgGDA@oRBPoMJ8TskScRDwqT147Mb|B*;z7JWa7nB^<=Qf#EX*}%V3d-7k9Lf!6Fkc zE@>nC99fg2C^jsxIlK&&8cMPQW+ebE1}nlWN>t@gic#7gGq`K+GK?c){RPNi`B9d z?B}&M2*3M%qwu>`n}y%?+ba76veJIrWeYI#lK*5$fF&eLd?Fi6%D#)i^oI_-Zo+Ay zMHWRvXL5U=%!7{JCoAN&a!`iZOyvOXM~e>0P%AtY2->4ExZAXZoIftZT*+Jk)aIlN z6*5&Il%AIDVN}+ilO02hFDrnO&&yCtIu!`1mt=6fyo9{IB0E|sDieQ{p+dI`Dm8wR zjbT*gUq`oK3Jws?J(rMscVw82jTK~i-jkhTUQb&h!)(>80NVYlYzbx})`8H7%zmVa zW8H0*~|0y>;;vKVz(HrC&Q<)|uR;_E*7;WVS0kf;a5siTbiazwS z(3rl6iEL6K;GvJ25wtWSrY&aKtOBO-XO9ET_bMz=(!g8^%EPfD&4}am*g}`BRga zOYC!9vlzI%6^1G;V)lX+QF-eagFAe7>>&I;DNp$QADx8XpXws~{_AeS@3VTwv}gD$ z`o)aK1cv3D>BS*2)0iD|6$}^_gNj$n;RwLhU6#DZxtsI|;;5dgm?9Wp%zRxwMcWmXKV zVwTW4b7DSK&hq>}$OGx!`7zOzX$OhI&dbo1F$tCFJQE4uY#FvL239dkX#U0+Sj8-% z4Zn|pRm>8av@@oCWrR&6727Kd_Qy=YtYFb38$OX$QGF|eLlLS284f%VK1dgRX-SkEk>uRg@UdS=Ov z>vI2!t*hhu$*PgO?oMvh)miRa8O1gthuk5`%&Vn=tBE}1Pby{Tq;c^hPkPH&Ua87} zdq+-dyvT($sxV>6w0(#?vNGL63WZ2o<3uivm?;MM-$cmQAo^vN5rh`ik@s?S+DyHp z{ivA|Frg zs^pmUGI(|YsdGstY}4$okzaEG8SOgx8-%_bVBu6^kYBDI`S^nA$sPNf> zpHk#OHKex#-vju>^nvTwrcSP!W7a6l1b`RGXrD;#ix$+=T7H!x- zegqNBQ{bXQ(h#cb??HQbOSuQ#-$D-CAm@>xt>qUgReg%Ka#YY>VF1_K%l9!V^E%4U zSBgq*Cpju;ub}dwi~KsHa;>}khe}bI+f$AT+AFAR=_CJOKM1>wvs2ChX;~d`3{BCC1S*gcl@FEpZeY}&?Vd2H+~G@K)_noQ?Uij^?9eN$pjW8o_1HHOcM z-QZ}mG;wZhU8d)@M5qtx0znZ^7sl4Zj&FA^j(y1JK3WK0NEKYTF}4b37VcG=qCctMQwh=cme?;b3;=+R+#0Ka zd@{*R1IV5ovA2*g1YknRmivBQv;~bFgs}(^X8_6H9vexX9f=jf$M5&Yo`9@2jN8=1 zvCDAW1W*c~r!nrQoE9B^Cia3WIh5Npgtog7n}`U}NCjAnE3t5&9}|tAqYqtCt2V#QNG&O@W#rfftfz z$r3+Wy@mo6R5QvPf%L7R2p|JDE5z`6e@zAK1maq>MJQg0O3I2-u+&RTw*fN6A+dNr zMgjL3@^1@b6`kCLqK8(IAwJg5sHlPQAOB(p4Yvb%H%JjoHk^({EVxs^TPRQ>i);$a z4q!ka{5Fc(SqfB)&HzZA{U$H^eU4%&By|E^lFs!NTX4-)AalQg0u`l~OEapmf+Y!M zTnc-6 zXF4lRimiQlcg2RvK!x{IoD-qm_fcTB+A;y@zJYm=ruzwf3 z(5|Nx%`k&QE^2AQTR4GrIlczzSO?N{_wN_qg?e02+=gpZ8PUHkDn^MN{Nx`LxUIgd zb{wy97mjzfzN&ysHGC{!_*nrve|a(FhT;!|-TbZoi|ld!{E(+`9N7Ge;v}XD!SVGJ zLifOziX@Ep;|P3twB~C?H&KIg{#3A(nrvLu@q+^P3A5sk`pTNl9^wr~q*H=Elz!=~ zj6}b*V$pP^hjKb{fZCHy4ru7R>PnVmlMxXLSEF}>Yb*|jpZ z<4(5hi>@iGZT4ube1{-H=X6lk!uT&Rmi`oi&L}6RG9jOrcNBNmTWp5HOR2f0{4N{^8NB2Yo%z7t0`z0ybtP}#)S)VIm9;1vTf1$jF z(1`;KvX75cqM}tmm>{fo_8YG}<_1*wH0acE${ud3s8DEFkYc8c4E$bsxKb?MZ$rBV-n_%E7JDm5~(QF8~a@ zqTJ5vChDpZv!lNpXZJPb3(O32Il$=aN;q0jM#664>J|i|MYokssD2P0CbK6iyy%E~ z%Jqze^Z{BObW4e{1Tn54po+>RU#apI>X_AOr22aj z(mU@2?APxF?1N>>?XDi;#TI0aYuruRz(p0}O5*fkK4h4O3UdSs?YpQ`GNwAfLk0et4Ie{2K_TjC2@?wsHTA`%>#H2Xs&W%$$;I}HcYhVW?-Cfd2I+gaF zr-IehGWunq&{Q+#t6-70jCwCrbw$4e9FiM_)I1v)a`AFi12odCYH}|MNqN>Xq><}Y ztGt}Hle#-pj}aX^-(@;*rz!;FEMDza4J5@n4O}C6U)6zhqpF~!>BZ=Kd??_31UObi$F8rmI}3U1#hA7mO+>SgoC0V8G9eR^S8a!;%x=b?qYSuMdo;zD+_?oM*8>{ zl@8`9S>34~t1x*%07j_0ZBJCF*r*&J_ql3?v%uxkOBH4+yc}xcE9kW=V~BNMtB#0V zUjL!Ogwf?(#=cddq9X=C@)ONobjo|xS&>ZFk1EW;ta381KB-P46;t3<;4bEBqWRA1 zGa{pQZfZ>C9S0*);;#OhOb${f(;XgaCnPt)0;hVZCyA`;R8gZ=s~pC>)K`60bQWI* zs5c=^iRAB5deO2#^#u{@R;YS25{vuCj@8weFphw>Cz3jkVD!mu(t{Oqiz|IrTYXe? z+lM06$fhr%^2M;GQZ;HZtb!beG04<#At!f9bz{}raq9XzukDKe7hXiI-X-$N)Bb<( z`aNEa8iD>xUo#A9NT$T~)jSbvs(;tlJ(D^KGk0CV3lbUiqq$b~MAZHXW~=_$YPh4V zZe*CSa`HY`Js2~D<&^UOR0$_Gh0Lj2TdHrOu}VLxf@#an>hV>uc6l)Au_rAUpw2_9 zc*{_=8{Iriy%CL2$MX2^2S#Bz@RElxND7~%u8$m3f(ePRzSJ~T{i{2-Ng6j>joT{* zW>C0DE#7!Hrce!=VE8yrwMacyaHn+tQZ;G~keP)8TL?8t_qA$2x^$Tuc9gKDMEkE$ z!#W@@He97H!>W4cCUt$x*+^j6ONhNX>`|v-VlR%sW3Rpk)v)BpMY(@O4NHE!xaFi8 zmi%~e@mY0Cq=3Etwr%(K%j(&v1wJM#U*N0%Kn)9goKx{5H7xM)V%jS;Eb#GS!aFrA z@bRM4do?WZ@#3iu>XU8--+Kho`OcbV;+G#>G*etisnM@GS?Qsk@rN>e zHL&Q%i-Q9-u;|B&?LswLOoYcBO{3h$kU4ZmR6n}CmgX-s4ER2Ng`SuV_NqkVgsh#3 zq|8O)Eo6e-9IF|PbjJfJM2jXTQnEcUn=~|NP_YxcDg96ff7;imY2)g&kigkU1DTzv z@uxmXn$E6HtNwOM@>ZG#eM)k6Nog=GwrFZ$+*p%kn(<^&h6b}t$e-Pts}Yt7gKV0= zTu59>`v4N2qj`epEf^jJya^aXf`_;Bj7|wnG~-};l<_#-LW9|u22lHGpH>boP7^>HosVltkM+=`_>%VZ z+J}&sUK&U+HBJ*oGd|ZqUP!Jr?Ff{;J6`HXcYdMif(dKN5s3FlARAXhTb;t9>UV-w z(JNy$UEDZDn)Q|Dgp*JVpR9pht&BLmG(`grk{9Ps(^L~5J2XRcN3aLFPh zY;T691F5r6gPD2SJ3W>pQ*h3vjzfoZY>9HYL4TqMPxJTw&qdg z*nDnn&IK-HW7R>m$iOY`-jq7Wy>%sXgLJXPf1@UaG(I7(PCgxr3!=H6al6s=_>Tjp zBWNd|xWkx$o!hwMSf_B1lvb}6_p1ktHTjk)x6nATzqdrhC5av6^vF18G;_z>eCcp$ z+;~4^Q>ZvJSE`F^=Pc5tdB(W;B1tbZWWK|r*Q9?Y#lenOJ~;RxH4Y+OUfgbpOGJ;b z_(@jC1=NQo=EV77f?lXF@rY`t7IAr)pqC@?pm#yrI0$;VR8>2~LD0*Kw>rl`(94Tw zy2s@so7CUWsy6E%w-poga;7}!y*f4yf?m$4)x%ut4 zn6BykIM~(7e=uoj9PDc4MfVkP5a9CSu{CiJ;PT?{8{;6r<;9y@<4}pJd1I=`1N6nN zxD=%JmIx_;W*m&$j7D%AQWdlRj6E6mJ<@I`klQ7t;l%$&oI81bv}Q1^eK9WBgU18Z zel6}Tax5vpQh@zIRQ#LUaYMzL8Tm_GiC7%?C~l`%iwUK1RS=Y4!9^5A8Z+ zXgYx$@X?0R0e)I1LDeL?s#bKx--l?wK`WiX5`gufHEL+ji<*C1OFLRr_oTX7IP<^- zERNCQ)xAljtx47>wM~)grU39z)by%2?SxPq&Ukt=OWWDU>7cMpdr~tkW^WwZOh5+y zR$7A`ZLY;^GYnX&olah~)<)3QEww*m`XvVfX5Iy!J<6v#X1CSC=AOGdy9bct9klNd zDg~&sbWfhPDaM(=!yCzf@mgUI0(I-9Z68SX74!_D!@ks3g&gFJSm78gX7n{S#8NGhO^NSBuH>1Tbgm@&YYt zvjKm&^L#CY2%JNMZ?(l(LkV51#f15k=|MDylI2=VQYS9O_7z%GgwG!?S*;BfIaFD% z{TZu*dmFT$kk)vX-rTG;i5%b#n7ddG&O5Zv(Hx#q?eC%~yxgO`jODO@pB6RK!Run& zLG3<~L&GE5lUNP`$Fy)<|6=`~fkb*ri0gnP+3T8~Tdnp$`x8Pd6l-6WQ#2qrG1#-K_i*=TIuxZ1_vdZa-li z%&{_5i>|<0@~M(+{BHf>{J+mTcj~S3_}~8uoP@!2UXYVFedHX!UTpL$+~P5gr<^7k z;}M@lE`~elsk3K%2F4ebW6=iQ@y|qFxxVq|Dpi@`RpZBCLOjl9V9ofTzg^V(duV(V zX5T$vZ6~uAO5BBW*!}Cq2V6Mz}cdWdxj8 zjemie8{_gc+^LABUd`e|yvRsv_Ym^138*~pD~QbU+Q(<1T~r5YTn)OkV?68tfo2#; zN%#0&m_U(p%o`FPMxKpv58?;HDI5sz>de{FhXdjlVmVTPjS{>BEgTkq815KiOnZ%p zhx9O82KNZ0Nh9Mo@NWa?+b`q)z-;&7{PU+j4y1Rc0#$+a%<1u`(C(Ij5dia~jpoGr zi2VD^6Zr?wl)`dR{O2?NT$J+*;`1?6RGk0EHSx7*&iZ(%yTE_^)_8)|I^kf!JK_x@ z^|rg>kBUlG?}>+nOXjxey}j|<#p0^{@!P~=?}PD+#bWit@i)){9lRJ{h1?w$S(CoI z9G~kUNY(m!yjd9Z(C==?!)zNT((i6O%(n5O{(gKC+OhIiTFfdx+Vep?OuKSK+rxO6 zcICyW$MNkD5hsNT%EuTcjPr&In~R!!jPLE5S@1t`U+?s5=u-fMgYv1@K?jXF1>@?$sn~ZjBIk#)h3M#U1|uWLn~$O#Q&IDL&tdP@7#=gTCSFxRdow6 z-3Mnpu;-63bwD;p)$q5>-&-=Cw0)DZ_@?2lHSw1gwWwsH&RrI z^B!G4oJu&X9}U~9vm)z;BSes~dv*R)c0lLv#??f#kLq?K8xcpu%aK{-U^sCn7$D|CR>)SA4-<`>pf|{i(Vr57qZJkA4wYbaPpxqJoFnyo7v#4Ux2U~ z#|!-ETOU1YHrjz8cp9?wLoGRpt*XCR2{ITL!)X+S>O)DLJ^E90U!WdNlJTywS%@C9 zV#5F_0K&;H4wE0IUxAegV8ZFcntGJe0wSN2e4XBtG>+B_dy_w_tDi2?`b&zHP5`9< zin^$voEE(sqlb-tTuBQQ`qelkRfrf)tElwnF)f=>qM)g(*oVp3D7_bTGwY)<9)W9w zBV13?Tbu+hrAg6S5p*bk6(LECCv~3dyOXvy{STZ2k!I?HNd8ED7#(QW_r}Bqf@T}& z=ZKv`WMlm)3=VWIok-)Z`r33sE4@tgXH#1{=sCA9_h*MXp!}KR1rq9)r@x0$paVhA zM^1u2d(j!?&m2&g6Qho2L&(714yQJ;yMCJ3&?0*2*C85OIVuIzE20Z&-e13}GFXgZ zI6XK3=iWG_*}VY4_jCOokbgME(hNf0TZvsQz(d^=q*z zD+i^e`TCm(-#{EHi=d+?>#v~^EW<(Rt~2#=bTi=yw`S=x1ZPKbW;9urEH+`;oq}iA~7e1^OfsUZRf?{7t(O)S!=W zkq=#lq5g|ZXpW7Z>ci259WZ^#r03#5kPdjECs@}-;*NswtC#7&ps|1GgG6W8@U4Cz zV&#K%VR<_m89F&RZ6#Zs3=a|BUYJ*QHu!iI>~O5^X{b8215{iUB!Tk zy#EdrLC#h+VD6U@LCoYvh(QQ0KlmHIg~QaKIkG0$fC=Xum=rMU3Q*LyhT$Qm`Ickl zM;QDA$om0KA;eVI5Ja|k8N%r0ID<{7WfG$^^hH=vIes0zp_d4?&}bM~2`B8kv>9^YfIIs(Jl9Y~)Lv2pLp$-? z)lCd5MBMhR3=xQ4-S0FdZ*#5>)7Mt8%!N=os z0hMq{0xAVmIAhFBC~&l4v1m7k#u;9q=5fK{?VMy7g6W9F+NcNDY8u*!GUiV+91!id z(QE^(&2plj<{4Nr3ugAu<{R$&knhZa*+g@9 z(b3=BYUu646+>F>Fkn_39C+b${!YVI%*cWx9QeWDNgl6+>mvN4Yu6-24GeD7^MFAX zA@UR~#_Av&Ke)&d!dgQ7h9<}p}Re=L* z!v9NU3JcPQelb*Y6>9U*Lqj1_N6b3HX`RQ0rD#QQgicQlu+57#I&$^7;hRda@qTF_ zm1C3fs+`TP-_dL+NVcPLM56vQOcvF$|D6G|U{lfL-u`7cTsb!F$_zt9Hg`T53My4e zp-x8Bd0~e<0bb>sm}plQW4_4ijhhk8%g@7jhZHpna(8ys6Q?^m4cxhYQ7SaLP+ub){p4m&0*te98svaV`ct6M8PoZL2Afl$v{F=ANOdD- z5XNAbWJ=n$hA|aOL_o-?WgINBITvo6TPd~p*D-!BViiUjdsYf-v&2{;Vy%p>WOe;2 zGaf=VKT*%EVvTJ@Hb<1kS(TE^S#A7?8IL+@-H*=I8+TwLd5&=CyO&ky&&kGb(FhGQ zpi}j-8FP@Mh~|a$>Uh#S^^CW%mBIiB0Jzh}4UK^=jU3GGay zh1`j0nMzxHVcdY>6lZC42I@UH2#X_01sCsbrM?UP|alHC4^~F z;DAa*2G7-}XJ#7{&^7Q`R!b9IUuay0m7eaOZ)}8lJ+sV$Mn)gHbcyjY=Issu0swBL zcRynY4PRz-6YWyJ%7~f@0@NO)+NT<7dT)afGd`t&Fis?qvE3;1aeB+nUDqOq8b<_@ zhRp-7(gBBz%`p-~v>85k_Q)`j(!me1XC5(r?e6rN4BA<}KB-f^Mip}LVWu1TbftbM zNjz;thO=Sh&<{peQg+&S4$)W4zHf{t{@WAX$&I%?gQ@+jai>e6Oc6kRFBpx^ywv=X zF%Hx5JD?+o`wvFUBqRWI7Y0%>MN14I@Pg(w{2t7#DDTkgNBM zQ~x^!3et>2zkN%I@jKz|T^||0M!dbwW8)6=+lM}b!4_BlUoVVf|NGnFLIPudTD{cR z2H|Vj!;Q(J@x5wN-#?9cRXhqj_`E)ekR(>4<6RPlyOPEqjaA5IAMZTc-!tKbGnp2w z2qC+?6JUQ!wS+Lb#3x}MW}bz=xo@vbPqJxPraL`cHDORNZxR{OgndFY@sCN6`10>E z4GGI5ak|lwf$51g$i*QE9^__r=OA*(-^HE$b=Me7F3w2wAb0XQyOXq4P2B0a)(O)? zxp=hRfCNuWtO7y_@1yX(T3XJ%Y()Zf;-%xO5>^QEjNG2EtP1~5c{ri7H!m$cn?T%o zDeH2=2H^?U9}+$Y{~K^8!Bco5_Gv;_FX4&T39E%CTD?z*_Vf{Np#0zedcUS)T@ok2 zL|=ik7Y+7I48){W;=)v&_%4jxwnli8ewTX%(SxChalwKKc!eg4CZJU$7NE7|c!3`w z+Qa~|v|pk>F%M1LLsiC8xsGf(5?Ymb&Vc;bE4In}$;~&t ze5tx=;+yJ1ohSB5yo%|ExSBZjNblahbY{QAXEk~Cd_6Vsv`{_WW+x8z;NLwWiN|Z= z44HQ&KRT@!@|LJ}B(D1JICBGThmtMdH}WM#-miR#erFhv{O_VtKzxX4T<~0HxT(k-Q0SGEL5i+;#M5Q35-$j3=(yL3UkOz} ztG!K}Cl>d;PaG!}8-7Ymg1gV;LZ_zP0>U5Oq%t)XIRwO+W*{tq!&tSZ6PU3Oe|Vk2 z)KTORmWZ#51}4)Fn87ILa4gx>P2^xs!<%DYiwTt^TST z98*704^!&l^{}VD39{61)1KVOG#G1EiyE8Y1T=^FqL~R1p$JC4y15B8Q^z$D)5-)( z=A6UKHYUvO1rD>ntqC=?#2>bQR?cBVM-wJgR?3Aac0z1zr#S zUqUB{ZJT6_X}riGcASY|VY-et{eiBFvWccKB8TadO_;?yZdS*pn4X~Z&}4c!hr2WJ z9IDT*1c#M#%iE??A--+K5z{HO9==^z-Yz~Y!u#sjB`7~htwp8~F(~Qr9o`(5tuWma zEo$y+6K3}Zx2TnCOpY*Z?|OVU`g}try7IxBO>nN3JIj#o@rK!8o2fh6C|d3`jTSjP z*k!_O6yfTuy~orO%^_yLX|c%R>Os67{0^I@pgEY1nU;who}Msa_62f1M4vK^Ky$F3 zH4POxoG8Y38t>1WP+42K0K+et)`}doKbV$aJB`6VqB?Lo=$a`|bQ1HfVyU zJ}c$6X}_ofpL-@u5(}=$diPCt&>V^%nBe9V?iyA;G%dqc!{bMl7+3dxYPu+LsQ1G3 z9hSqKmz6L_-`~n-0i55MFx$_0UDW@>ggXAoAHMk31p7pIU7UDtLL9WD%RZReV1w@+ zi_Npdx2L$6$9NU^I*vEYNi@~KR?2W!^C%J3)x(VLMI$`T60x~9^D$#i>T?axu3|ol zZYqEHnH^2#e1I7-;VOinAwlLAnE7HZfNxlNC2g!_M)#t>);8Bf_Z}R;2m1fKqG_KeqD)U^CP4_r6W(|_VOwpPhlZm7C zX7ohf_Xe{LT|ZM2&CNwoo}10nu!;>!HkY8=%JNk62$6%rYDQ10c1Sm)wg&LJ(Avzc zMGgzI%;*WtGuh@NXgz4^mDk0*24=*R5pB}Y3>mk%eUE5j#-w!;46~{Es;G>HektE=GO=&1aMlAP2J6KHSlVC7dq@~a~+Hs z-MeUROfG(7u1+;`%ylrHfgw;p_yw~&k-xtEGIJn#{w^tqJlkdOLys*oSHoz869KFh zf|1aGmF76i=@QOqab79MraYU*1Zg%=RcTTJUj|qg+=0lR&xwFXft{3bWO5i zEu1Wg&hjVMA0&6BM)#ygPGn%IA%+|}oQYT?CfvdRFqFRZOez*SGFt4DbW_y89^WKq z%qDP-dqJP&OLIe#YNJI3gz0o>wWMg#e%IGddMDcNj=D)lMZQy|Np;c9R3T4_5FKDU zRT9>S8xz3sp&vC#Dzv&jwaA)BEs04@u(FV`?Xm)?G$m<+sH1z9q%oM?S*-Tx-9|}a zV(a#4Q3=HWjvw9HDk%q}7}mGY{EkUI&@R2rw5%#*z~rp1ydeFOUJKr%MgJtoUd}yi^uVOIqOod* zB-IeBr_HdWYoh5{zf3xb7IEKqS;Oe3iAks%p?OOMgh0A@a#FfTr}XQjTWBkswF{bk zyE#ejqV)_etc3LdSP-qfAjyKU9&X3Ci;~u&Wr2qSY1pcym!d3T8$9|Vb`_#(lHHa1X_FU;O=qtm8Q+NjVjwwbO7BQs%m@yHz zkhJdEKID8}_7wW9CAlG5p8yj;zqBPg`jo_+Qj36$H|0=act|-?qA#tPiY|3}+rB`_VeTBumiBW-?HK$rK$}#M5%pe?AjQ2hepd zlHq;`ZcWollie^!1i9J5+d5Q+Y7n;zTCFVkqPs_dlMq;pi}!_{o~xZ?;Neofa3wQi zbFB2fXUb$u^uoOdS4wGE3hHvhas&bh{`5tyl!d;6>K4SNI1FNtGDR?m04i0dToiTd z7MGG3j5G*(ATvdW)-62jPk?F&x!p783+kVh674CF&T5o$OQdILlClP)Q>QAaZAiVX zFRPLly>e@i*%4`->8ma&v6w}re_*+jqJ1gu^iYo!aoZL(_fDxPI*ac8Q?7~wmj**q zZeh9-{<0aPQ>xHIU#6haI5GqZ2qQ$F5IQZTy6BeEW-w#rZR+%#l&j(owk%13bjbYM z2Fp{%h(EZwD&-5z00&;*iIj%EawkjgpGa9R^mf$$Qp!F*L9knQQZ9)y9{eTcrPyN~{57SK zI53HLm(mp}?jR;)5KVMW-R<mxp`t#Z)wKwJtrXQxJZpKWtLOpVYaKKR7 zW_D_pNO5aHs<=^{)}5dFRFt>&!g6^tic;00yyG{e-Vo*O|9z^jSe(8i^|1&xX)jvd zHZ=cO>L<+L3uJ3U;NiNY>Wf@=8h0jju5bu~{%|Wb+)Jn*mxrl7$eL(FYK7JF``aY3 zv^4dU;G;;{>r~8emQx1QVCwxx>SNJvT;HX}AnUdb*&AW^q6a^wev8&1Lm+_QNg%Xy zt5Q(x;`BfEuQ%OCw4ah9Xf4;YUSgFOdZdLq5qo=GGJWNl)=q5dp9QDQ5`R!uE$tze z3GH7ytv9Aq=URn_Ymi1!xgiv~T-2>`0MnFusnS{?E2AlahlA;x_%xWR<<8-SKJC8P zsogWBIR^H(Qq%gPNAnwp)SFG)HcHzm8e-k%Y3P{+z^X=7Ez%%2Ij4K7RayzAt?<#V zx>Fh?{AD;~M%OgV@;@I-0!%Pn)-6q3v8AVaru~UAD9*{!Kdmjspg0qF*q;=AksU%U z1Jk~Z6;$+WVcH8!Ox!8R(v*I-E-e^Chd=y!eVVI6AmMeb+`^oHP74)lPktlqH_`5t zx6)pVMeUt5spty3KT3NeT4UemX&1yHZ~Z^gCPEG;XUA5hiyoH8WQ#sY1?vQs!HBT~ z0lImlOj|#n4z6Os%xX|Th!h>lyiiND*oB|1ZJAO95ikH+6H>iN{pqxm!V-@$CI>=j%ffC*T=a)Pu|8}~?iw>S?K~2@d!R7&U z0I|qJNc?ww#{dWxFM69i8`^}axOveBZ4aG=^^ zpHYeY*@D^HS)txu*Da`HZ50TQZd!&jDtUJ-sC<#4{j2D@yO!A)KjffNl@|YMIpPUa z#+CU8(-ki*XDd_RRSCd(Qt#g^gI%2N(9v%!p04mY>7DR7tIRT({q5{*y}&*%yIZ}S zJjC$@Ng8R5CZ9a48-UFQPir{YSY}D2K3>*|PVn2=-qxM$GpmaA0Q+?JvwEQ=-+$av zovshEjz$a15Xb_ZHH_X4vD&;u1(F4!)*w<;Yzd>?BCOt+@dVUNKk6&BVsbN6c=(08 zgUh362bX(Fs~3_>Gg1_14JDu}9i>`pHdx1}(c^deC_mtIgM8 zyDu78aj8>TW8!e;#@1ELZ0|L*E@q!&TUo0zGo97W+JJrD>S&d6^X)49-MFVUi2dEQ zuXQ>5^cZCQnVIIj!B)yX7Ywy7WZ&z*5We^O(t4eJ|9F&O%0*)YQ|_2=oyLCmWTJHv zVrGjj``WsU^?y#cdWF!|bF3o}TBXn*Yn_O{%`=;foNwLm-+guYkb*?CgACnc7g%>7 z#sza9B~E0pE=t{%Z)CdCclToYq^1RYrukYu1p}ch_UKXVHL-)-<@6X0S1UcG_a?i&-NA zh`ywbJl&JDziJ&%`W>)VC9d84{7L`LjhBh^y-#%+Q%(?+Ucc+^US?9n-$3T%Z zK5kv{-!(-T3;~!>;-B8li>^CiwFxp8p0SRv3?9GWE8(p5SCOCkq7`%OpqwAa8-B?; z2+=6WrG*(iX#O>8b&<^48&*tz&0q+?7&w_~x2&kUrW_~{blwB&Rm@Hpj&LXH70k@; zdFf3GA6RS9*yq+nOgzf5?(TURM14P6S0GwCS1vhp+!{u@c%)BoE~rk@yfW+V^h}R- zBDLzIdy%`FykVB5Sz=>4-z)v+8l-a*$T>MllHORXjfb*yjHz+v?7g(6JlzMnYt~W| zlGA^yDiqE2(?9bPifdY=JNpR5y?N=?y@ld~-s#(5#f?3-W>9*2u^2KUy*6CO%)ZSS zo!&+C05m@x(mV2RKTb@~6u)gYC4G_b+nqDheLaQ$4=+q_hc!}SS)5*zC>N!VLbN@u z5CFJZiDzrl(@WA#n9+gb?KSC+qV&YdAcT>n%hNHZf*cgW$S>cepQ?lw!pLVU(=q4g z${EnLtI}OP1cNxRF}<2-eZTHXuPxe6@V@jLPW%Tu52WuGO7#4}bhvDWo7wrp>Cxg( z-HxZj-WL9C$jS5vV$u6_`f0KF;7mHZ=$+Z@vf}h@VzJxBbXWxA-`2g7en2di{+O;3 zEm?g%y_5KgqFd=7#UE_Gn_ed3?!TX|5x*^akUm8G?YKwjZ^h!YXX%^8ALPDFXBS{H z4kfSBA-4c8`n)NpUh~g#>i+N2&x)^j_E-87@v(8FL_j>8#`#4q=_Wc(-=i`+AM z{A~@CXbYUH(+JOu04H+D7#c0SaG+NP?8xNrURWiguUM?+pYf-N5)qW)5aheij0o`u zS88Ou5*htiGefKxdboB*qWA;vx*1L)LM=%~vH07+q!~XUhI-6rj;8s_jNJi(H*A=i z0S7=CYjVSq(HCdB6X<(uMm@oekyhCmldv#zaxx;Nf)0=M%Q!B2!-YdKu85v<%$STX z#BV((X3Q5o=hkT%Jw$EEXJ(j1BOCfnMz;8EaY4ovMEpWQTU8Mbg$69j$Q7J2>ANCh zCqf;7u!0ozvw7`Ym9bHff*e?zF&zoT#|^Ue872{G(54K;2%Rui9O|#l8Jk3?-PVuBx4hj)y`uX9)dNJ>Zef6 zqMXo|r!&40p~BB+>_!semACyuMkZz^jN4@CUj{FF^>PNBqvc-X?2j2+D?_HuwG2PZ zP!!0_BykNgYmzN*GltV$cQRBif=m1BenwSMQ(+IWErw%z(teLJ0tAbqvz}&zimqp8 zX+|u9GYxo~VR98ncKnd>UH~rWlZk3SZ!@NoqL;(mSAXy17!@9M&1~S}3}*_9okFUS zI-Z%yLLK$<%)Ce}`g9|y)63bLPV&lx9T&W(8tj|-6=ui?+8;^o24_|!{@$&ws84uZP+4$s8N+!F^niapcX8MY9 zthHwzN6ImbSk7hCq|gp#i`M^RDT)*Q!%Z=fe=B$e#jhbUWUIIk0Wh4l_}hSy7Xw~ zVHc+xq|?dF6G*`*fIUErCy9eeI88d6dC(bHyf4Po(cgd?U&yo})!T+f{FwQO>B95p zOiW%R5T^~*T+e)i)I}Qt4{PYHo0(rQU9`HBiAi(9SO`F??`F2fv?Gpi=XhoSUHCAw z7E=gc1UvgA6P4Gs0xtV`W;VdlIi;Bf_IdL6Ow61-tL`>Laqwj=(&lle8ua74%%F0X z(Pfz@FixogGxvFBl^siLX2$Sm7aM0<)dLn(Jj68rWL!U4HImoe$&DI4ZGld68-H*o zmi1oVw3C;uA7=6yUf!834Y7IBUcR=0tn#_WUsScNW`7h0+Awpy4pcvSHpqsVvS*6! zOo3M<(xSOg++%ehZMx?Ko7Y#$ZH*B2HLS00lLmoWE-GwmaV{&L#;R<0kwWFuy&Bsj zRxj!CHblNGrqz79SZ70J?&c4B7;V!Sfo~FRn0S|CyfoQRX}kHuBa?028G(DLw$<1w zFj;J_!QzIKHTQ?`rzNw&ri_P&G zP_(pRU3xw}(AqYRRe_})UIPo;+x9VxRvm4aB@3>IX?eE045LpM+sglLixe(ZKK({XOG5vz~^IZsQpS@_`c(8T^WH(6Yw5T{*?`tgPRjrImI@C5s-h4 z*TAIdHdF#`PN3#&TOlLx{WmtuR2jzzo@Ya4-{ueREwp{Z2sB(^+l*}hn-b{WQz@z-Hj7y zv&}}C4Fv4O8{rUYyT>qE?6G0aU~nE^?X}flG04&b_|EX%!AkVT(~sCzF(Guv@wPbk zL?ybTb*F7}7=h$-Hq2@V*W%)08!FE>e|YCb+g3)P=M}sLPW@oRB-y6puJJgL(CfDE zv92iWrVW)`n+uck!=@N1J@r{qC;-;%(k5o z@Oz2(1OrQLsKnY_1J8f6U19_dzOhlP24sKQP+7G(0s78%gAthf!L}Dm;8U3mbyW=` zuw$nE0ek-t7yJJI{(joY)!qg>9wdD{?EA~-XX>7D2_dslY;2jgj3g}_8y)#pwG}Vq--sKe9q}lyk z0i$Pz9kC!Iw8E2__5n7z_8ff=o&H4Qh z`+6+@R-fBZnX&IpwCD3XWg#hc7e?aD7&|782b?K1KHq+hVSJi^a%+HLV=hTH73GpR zg_+arYZ-;anWz@UF}|H;mtdAJ;o;u2O@Vz16N0ZD{jtFAj~Oa(q-Bfjw*iUfFSCau z>2x8rS3mKiko0;r24T?gtmZu5HGzEBYV!R?`&)#4I#38bvDrQfvl*WwlqbHXkobDO zE0zerR40W;?S52qz&-{{g>E`*Z;m-u&R9`MeT~YY$3=p)*CXk&3-;meK%>T0`%XsZ z;?H&u_V-VB?AH(}uL(zv_`~i`)~CPZQ{9!u zZq3@o;C|VGHv$T9{V??pw%DDN7A1|Q{)e;T5KV#tLJQ_FPM*#B29wMfo^MV1Kg~Ue)#b~1NaDb4$dT~Vd{F=bln3UZeS*y(nOHoZBMRlkfAZ519M!S6qNDYzZ-JGyo z)D&`2KSS!JIR%9M%mJ14%JxFmOmm)onn3#LwY1*I?61AR#;;At#?118O>wl^WZ_iE z0sd!~WD|KYHCsiN_D%LA-MS{%A>VwJeF^w>os_+ab>2Z!vum->xUaK6XL78XnSGW0 zJ$g>Ie--$gxj4Hj`+LdK?3mi{d2(O&ZRUVi9msx*RT_ab(n;h{vE7ICI+lF{XV1+U zN<}j2rmIs_zQ$CQ z@gn|*wL>{WJaOm1nwZA(~MX##1b)kHC&z7Kifnp29GtZQE6J##&SkPy+a!`4vxd`yEU;^~d@SGvFv6_Hv(5Y0HlA}RXH{nEBK53Suc>`UWmgCB5 ze^Y%yS(6$H$}%<1xyzIl)-x6l?~+IR{}stCQTuk^bSwpGjCANbH;1@ zketf_2-rE#b3glc2I;<&ax9q5xc|U{!!9g?bc<;@Y@ZiBI6X(f#zIeL=lsgr`Q^eK zCyd|c?_i0e2_%kI({GpLph9^E%wl@4DCda)x8(E*uEKf@as>$@zuV{H%L9yV;m1=W)(n zZ}@b3opa6)J}*1x-ebhKyXU$&S0rpEyFGJ%;K!8V|Mq+3b_|5i+O=|LRz@gK()fGG z{}ADvx{N-H%B_vLGs+=e1(ti^_FQ*Dl5+z{T(HfbEU1z?lbGXk#d~q4?@y7FJ#o1| zfB>_!xv!bf6D_&3Sn~~TnERLs|FKDKRrcxEB6lyVcE0i!K|75G%#1gD$#R9F89%Q|Btor42UAx+J1+eB^poxb55AEm<0xg zVTNH~GDA*74vJvTSt-|?GiE8Xn8k=$*Mu8f*Hr<-s%!eHx_X9t_xt7H`orpOrk{S! zb52#AuCA`m^FLzd`oQA<{%^KzdUT9FHCY>$;ojapCe?}xh-_(xFx&m8YR zl-95-MgC=Uf9^#8Rx};mKi$6#mE>Wu|F2YnvSt2`w7j~~|2?gNXV&{KtBVv)waZ3h zvTSs3$XJt63MWjKpjJ{=L5KY5<0*Xni2rA5&EaFrn#$AugQzv$H~jyiR@mS1Z%WH{ z_x(T7^IALsTQi<5ea$VN|Ma+ zyMUfx#s9TDbXWHPI?#;jH41=anpAj9Aiq+rJ(~uI!GUaC(Rm7<-XfqQKs&?*ff0sV z7}^TU+Xl>}?)|Mpz%kkiuj>=An(hxB5MU3cN>*(ig?vN-j=0OvfF_V+fum|#{F!}k zA%1wk83$O;8%7s#K8TaV0sDZ$aR~1Cuq@y?tu5>20dHt0Rjdm5Ov{B)0mYCknr17Q ztk|p|RSVhW1xyCm$7MX+s?Y871L#W^_`tY;dXS!hLn3Q6=c3J10^Cs8f&g#)c51+3 zf{Av{2$%;Y$1VSSXJ$Zs8dS82_&Dkj`Iv8pC&ou+ZKgNgHjk zTi_F##QHV~>;)N%pd|6@Zh@cyQqDqhay|U4Z{R6PYwLi(UbGXg92U42QlmLKWbJ3r z*PS>z14^C_u08+cid1@3KHN*-xpBcD=s&H*i;2rSTJXwFa1m9g5xQFU7V|^fG z6#}lhatk?c+Ym?@ZQmR?goe$_oq_csNf0+ue_}5Aw8H8GfgX?q;c2x{fr1|e+TbzA z13Qt?J@zDf*8Mt}&3X!kdNXI%Uw@E92#!;(J( zXH(&xz6@MN%cAPQskF3y7r2a;>plc7re*KXfzxPt;#=SWT4tFE=hBK{VJW<0j!vdO z!!;1#llro zm8M8oQYR`!ONCqNrpn{xLT-lb#8txGKq{Do?TfkzqFE=LPX(#jAcVXgUF&4gCgEq& zV4=WmLdfK>TA-5c!h>~Fw(%|@H@E)P9^nC~vR(HHtLnz$cByb5Rd&W9;VvKxR()O{ z7On^Nv9tn`#?cP9J0)C1eM1{_^y!Sy4ecH_!V`ZxD+Dd}%=wA~mR%6eqP^6wmxS|( ztvKVVFoh<$zuXkIfuueha^Xaw9r|*`+6E2I(!1fK_l5VVj$BW)?V<1;IN*)IPH4(+ zLN>mJJ6yGn5}?Mv3HbrGA&GvrsA#x#59Iq)NJrVMe-Un@Chh%0*o~IIy%b&s3>0Hx z+7=-580_;_c#1w_<23m2MHmc@hpzL4*7$*WP&*(OCE^f%vJ46|cUY3lf7B-7?F1diUN3;&aLIi&hHr11-%?^rN__P1vP^- zBPJ|Nuo}{;wY785N;I9L2t76oL==-fI8&omP(h6PKLF(Dy{y|S^ zfH(6C8UO+2C~Nuzt8w#DK|6W^nmnV?Vm!4VD3P`+Z;FCG(Oa;W6N9Q6kn-WOpm55u z=b9k${elPh-P)inv|PD9=p-%G8-vQ|IIzzS_V*_x?C;ZevA_H82|7;yZhMgZ{lX#k z_p~GI@7<3DouYsL`!xIefwS!Is`KpcKIK7w(A3%HdeAMXMwn=1E5HHwg8D(8{?&>! z@NXv4)=x~N^`C=k^J3emn5`}?1*+20qoWq+5n53Zs@4EGH#t&0%eUUiC- z-m+jWPS!^Rb8)g#5nPWnI=Cb=SVYbHmdEHH8_Vd&6fpX23xl^&^KMRIe_uF_{k{JT z_V=$dgMX#wJzW^Q1oFg=I4K;H6};l=qm74-@=J>C+7o>E$E~GHis9XRgS{aQw!l-Q zNAp8PRybjQ@Egcon-ReqIUf#&d;^LAM5Fm9gWIs>coav1FIfnVptfbfH-20UMA0xo z8v$ulja0heWoLqSn-LZP=YzKZSx}q0;DZ-}XP6V9p_hX<)(L3G6&lG$P{ZrNkavPP zT{Jg>Zx9UJ{Z4Q@ps%Bm&xv3cG=F+w58V4f@E~B&@i3J$3nOvPqu^K6GA?(?dm6mK zics`=9!whYBRJ<(u)Q@YC%p^qLCb@mgGZ6@*e@c@^bvf*O0?O`Wr>9`%V=j!znXag zg?tNcj0_7?een@n5&7!c1_x0?R!{U2F!GLxlqX!s`6oMw z)=}R2E+U|7$Fj9Ak8~A%BEg0abQdj#w3S@gYOV!0M7!OF+an)swlfMGQ4oYR{Y0yY zh)h}cA)+IcZpAPWWVbY#a3v1MUor76ed~(nE_;k@y3s}qQ#JE zMi9E8E(TFM)*`yZibh%zS;CV7bOCp60 zDI4ArofnX@^0r83Ps%<|MZS)tOnfb>q<;_mAZp`kw!|LIv1;BCm5s5s!|QBA{KzTj zH@lFXX!qz4@_F{l7DMpw_94gV6*f49%xX=_u02D3Au*2K`iIzAlhSKw$WQL1JQx;| zQ!gEfcpQ@3k3X+eL;rOO&|6#~UwcDOLg0TBP0Wh6b(m zX^w{M7TaKLJ8=gxaCEYvJx1-tjjaWU(Hx(7+8Xtf)HtDfzG6V)U?gn6sCu<4YS>-; z_m3Nmy7dt&@bVtwL68Q6o{a8K6MLi9`6E?mi=Wu7|LmjShcuYr1zR9dMjIEjV1W3< zkDG%h3>04nWgSBCSp03c_>?7z$ZqR_to_Ag=u;`SMWRDyF4!zU3|Z0*3xwitj+{Z* zIZ{l%9z$)zj}_v3mTdF9PF!HdHl@+xb^H%(V#R9ywA@T_bN;v6^TcQQA50i4z69xQ zj1I$sTWG;_@rNH*n7hd&wZsCH?|%}Dao8;J8bG#<1mt9tw?qv2-VZrff!7p^msug7 zsc9}KV5RujkK0ZuC{Wj<;_mpuDsg>C?ox}eYMuC^8Do>TQM{r~Y;JE7n?dStEgQ5| zT*kAB+aZR0bgdTaWQo|VZfq9s7XQJsnY~ZEu1?y#-Y*8N##(F7#Dn4~Je!6`#It~G zFo~O|pqn~V&|NKkY*Yupjnv2tCT1XYL+qH1D2AsL{Ng4MIT=H3*?dw7PMq3o?8X zdtx)M(8<=EGC2+&fM4_e3C}b-N<)iU&cxXA;JbD34E^vmo ztc50YDsRK#*w9~DcY=4Og!bjl`IsHL&5~KRZ(QgvkXsRAnG&~{8@kq>`RD#m1QJ%+ zmDpuX=m(x}iQnvVEVQp9 zJ38@V=mGxd=*yvh^YR2&gx2RTk$oq$f>%oRIMkWfB=^_QKuC_yX(E0Z`jaK6N$H!= zi(pB@KZaWJ%u>FG`rB~^p>kVEtj!VutDv}xon#VO+f5r<4|R45ZHngENt&Xr7wz29 zcQ-Q$PI8ctkKl6hoN$#GoY0ziX|C9>nWQ`5Hr|xkc%%BAC1rwF?DoK`i{$8!d);_b zV2g%KmUy7ST_unOPP&bjsLT-$gfa{LIPQ2 zki)p4lz<)vaVP(wVFb2CNg#vf97gMC$r*tAnF|ibNe)s4G7{kgs*)t7kh^2TegfJ# zSz?3LnUblFga!AA=AQ`?&}|2W!vrpk*n@qhN!);OnS?85Nj3m$bP^&bJEM8Ja1Y#T zu7tdp&a6VRITANyh?aO_^QDrFkY0w^r$$v{Bu!BDCW#FSo}zQZsjDQOv=ty(MD z1hkm}V*>maRqx?e$!`Kup4?8FHc~Dvk?gl3rEtF_--47E4oa>-h7UOtb{&^^p=}zS zCsv-6T(dL^lv`#LDCN8a^qm0{I-Yn@LcUA$3ctN9Sp=4P=VS88o{z)Djc~wCNiH#) z4T#6zF!Hp#2d?>QMA7lzKTF7GIbLDIBME3a2WRnjE$NY0*N~97XuZAuv0Ni3ui|IQj}t zu#g_IG%cnZa=-CtRAeWGjC>F^Rj4+(xM?rFi1r>DJ{s+^x3fZjIYN zv6Hk4(9`<)NW*b%J?U(SV)SIPI*JrBz(vkYVTsbuZqj!aNOOL;3wqK}3YpbPu(EM~ zPbp{+hdcRw6Dj#jGRI+}w{-503yBHLJ)nl!xU7YA8-Mw+t)+{9{PKviqO^_F9MW4Z zsF22^)QQsi%pnDxrROY}7?K`R$b(xWpcmfOQ)&s3r4}K!k2H_hrly}1GMH71)nkAZ zw6J?E!r4L63p|@uexRnH7VFJW>72T0(|e>zo0FrZ3jlFb%f`-M+M;f3eh-w|o3pqP zh@_Br5Ng@Pgh*{5X#hpQHgf3EsNzx$RbH1t4RG?P4zdQ&R75JEa`T> zJ@(C)LgtVe0lo0TvC?{V3o7||=}F#g9VSS(0p-G^b?aF-B8n-}w>%NebSdPfvR0PM zGo;0kw1*%hpxyb>dZ=iZv9<0sUmDD}*2PPtYheP_qI%))#nJ?zRR0OnZJBf$uUGks z{{=7KRZ`HX?|+Hrg?-jam-Dhk*UZA$)x!ZEuN=o)voF0UxEkt(d)&ze#682H81gt7rXXi}zZG z{Q+i15zs)pFx&rF>1Cu{7#UBmoZhny{$wAPEMT0+I)>e3jV)HYg$el0w1#2!tjEN2 znuI-s%yS_5J9)uoaxZ86q-_}NOK?U6L=c>DWQVYO5J`s{oR)?+RIeM-STgTVcE1ScX@|)Q^s6CvO+xCQAfCMdPg!*)t zD|R{@R%Xd=Kgy37jc_gt8_oBn@u$L)V11SxlM8@8bz)@K5M4SQ=2HAcIt;D3Y3+-X z&Y4=V@t495@tz)iC9I6!Y;-Mb5Trr-?+dbcX=4)uTUsJxiKfat zedSG;_LYs`TjcG2vX{J5w+xg0#cysHAzNk5+O<%jYy_{()({zJnG=r8>@eAEfDL0BmIm}x0wRbm_|bmZXr5lLLoza}h|3`c9+NfUtx7l}Gv|LW{(@{{Jy^^qpo+UP zZ&c(t+!9^3PwI@F@5_{soQP_{u$=9}?NIV%OK0r&K;~e@q=~OIN;B`NOu*lrt^LE~ zu6ZwI4fs3>*O=Tj^{p&{KPvcS(j(%l%*_E{E|)oIbm10A-5|UP8gjP4jlL5&!q)V% zBu=#pCrRmUw~hmGnnU5noJzUV>t>KVaT}Hevc+0kMd!U6Jqb@kUB>V{JvniXNyTc*V z|7+Py-V+Y`LR>9^|Nihap3UXb@Hs#3b40N)(b@*kLvtrnM|Hugj)s#&m6N6A2`~|c z6Q<&#M~YCzatVExAjebH9hXp~_oiCh75K;qSrBDJ&weWbNZW!z-9i zaKD$~WP&_LzuxQcQhxJJRk#Y$XK?g|_%8?a_x762B6$;l zW4gm!zK>^Wu#~UoH(OfE!_94%92E%ukN!jB?BoZy-=m@S@~`MxM2;=0XD4rhx~k0w z;%yG{WFD@qv%DXe+wSL8j`(j6c^eiFD7K-Tcb2-59JDY5Cn5*i#7o|j4=7!8xzRc8 zTFS}IGAG2dR&pU9e8W4)$sBaEk6vo z&nG0gmi???J?pZ*4wi5D@m8j`%c}TOZi|!&HMS_frI@U{(4@c_d-=()krD5HQWyMf zs65t!ZDx;>lW`aBs9AvgGQasGNDfK0@SYI)B!OT(?iniYW`)jN=rtOteVTPekL7ac zk_q$$SVZh`!#F}-1F5gqSIHyLpz)F3C^%l8j&|>mL*Dk|P{u{c>vID`6IJq^=EYBX zyC6TE95A^HQ8-NCf*|oiPSzvmS#th~{)`0qM=OrZ!ZbN#c99X!3*S$dgQg_cB3#ds zKQ!aW9M6?Q#_?*Q-1FrcNE%U#(566sgORZ-l0()Kt%XudkhiTHnckD->lvB9rpk+d zyn54^;oR~-T7lDoE5PH3kms>L9M^zb(_p6q_V#W{tAfLr( zKlpBxVV@vku3bIj+fn~lu()kPJ8LX*h*-~l98cUZszt{` z-n+*FBY5v71x2i4QP5aIF2{NIu{Pok=ljiPqawI!hVMj29AiJ*kQmXBX>=tuVlr4G zQLjh`^kj{ni+wu*M zY{kxvQ$-$U$9iib&$2B?UE~7x*IjXu?-|~KRqyhg* ztiP{}w8p7Lk$*vi^jjJ!K~E+|f+p3IbMd!Hkx3TBp2X>q=K%dBcm44TBfapg8Id2% z2+-x(k-2pO`eROHsyP9YEr?tP1j2;TLcnb!Cgz-{YS^xfge(G1PA}pfH6^Z!^o2B7 zCV;TDksGL*pVvojhKWFl*kZ-T$nk(I1`#3&IBQ2_sIA~1Tz()j3!o+ik)o>$B3)4S zjz~{jbtJNh9f5N=7nup*g!f#IBwvX5hrMH_sfZK-6vj_)M1CM3`2L;98sceu=>cge zNV(uqG8}Cio=kMjrf*pc)Zb#?us3P53E5v-$PON2C?F_!Wy6JsQ?Y9xun;$K=t}4 zE&*x{cdqvc#bBJ=S8>`Ltqy5M?#Kr!ATLClun@tjk9^*l+v2r@6zw6gL$NU7HP8w* zd*tJRHv22cQg~4cPrNEXF&0n@kdfUeygx{>k6DUy#ftitoY8o-OhJ}Ep!VZvxq>`B z<2HRG6<^7k=JeE3WMpD|@3Ey%XH< zw2KPJqAf-g5q;tVSgwGcPmG9W?|r3QRm`>^(tN(5I1aOjU?t;(TM98Cf+?5My9yu9 zIX^4b)qz3g14Tfn z4*$d{L62>@lPeOHD|rs%Q~7AYV9G=#VCpOmnWU@$H1jkFb8z_#Wek8ecQU$I zq-u=c%u;?aLjm6$JrJ5r8rC84N>AK%o^lPVU-;=_CCRvGRl}Q$m1NR6w;8cq`GlE` z{Z}h5K$1toKN0WTq?`@ppNPoG9;l*7mA6*O%wtM2Rh+YD&_|5)*n@qL;XfpNiCnb4o%>6d!v$C%h+dL^y3HUg;X{nL}x_BCY#K3wg z8(iV6iig`q5D-DIM0dT+Jn#osm4gL~gN6-Mun<3fCQKUFr^KytDR8t@NUYvlO=6`2&y)l=I6D!!ij z`l&wi%mxCtM2g#@4`*CAC6F6vSVPy z(Izl`tZCCX-h}%m!Gya%$%Gq~s+z*9_bEf=0Ev;1B2^)}HbdDN|2keZ5FjBY2s`6A(#vo(OiZ`3>rADnMRP zI}GcbS7U>2J#y5d{o7TUfGlUhE7c&3b`Y-sPe#vf>iFy}@3hvv-)eaFMz|!g?5%3I z>Xb9lXzxiC6JC;^)a)vtg`K|X9x2+Y5snm`G--c~Jw67avH0<9Ip5jcNeb(0cU{!q0AO5ph; zRV?J;6-VIRQ`KrpVDWD%NZ!n0-27d28cd-73)Kut;Ot8kByA)FCIf4ACO%xP+E1^Y z`c}0Ls($G^RU0sYi62y1l)%SNswF@In|(j4z}LU~Rh3JwzeJ=4HvqE*YCG`t`&+1g zqW0gmQiG$<-9`;thJZEzd3Nfxlt5!gHDuZ`7yfc5^(}A;orI&`j+G4#FWV)l(>ebFI~od0L!` zg0^bVdS%?nhuW((lz?X^HE7i*8pxu~>bGDQJnyPbqy!}0)qsHu)|Jlbp?(Y|;M`lS zpahcps=yeOcc7mK!-KG)pSnMoz{g?gZIrs0Q35 zFpTU)>LAGY3sE2p2dq*T(8|v}1bnnkeI9tf6NWo%R_h58p1)mvjW#Qq67>mM`s`Bg zrRB}t>QY+H+^e>;B;^vUZcEGKN7Wr5VAM6Q#uX=?Qn#Ru2(?4h{;X{88AD2{EYv8L*#Hr3S7_|bZ6{-FC~T4~DZ zzFQlOj$8?6ch#Jwf_63sO<3M*_u%%_LcKA%OS!0FHEaNnpKqQ#$wGyO4YDb!!?gxmublS zz8!eoDot~0;@S0@d-U(CHfnkTDjqduF#5cQ#Ibz4rU6Ax+okaY8Za0Wq%)Lu*#XUc zN^2R`%%Y&Jk8=B^$2CWt$nLSrnr2Y8#p6gDuDPLcA-F6M&)?<)ao-)yb|`fYw(`D4 zXG8c6`$cn#(zg0T6JkZm@K>5nRPCv6G`k_ZYr1PkprW@`_3)98no0GH#2bC&i5J;u zL9f!7aF@&qb-?TGwAoaAPbaM#W#8FV+nkmm^|hX~O!CzF(Q>Dkb|@`tnrk0JX2fw< z^=hwmMWPA>W>K$X#9(ur$$}dYdvsS zFYSI44etTk7XTWFGpKNgHVUc+A}70|S4~4baN$txWFsLYAEjl@?TFD@2S^ZdRsE=! z+7;gvYGX+NFujAtTG$G-wB_L7K1j4QEygot+JRtVU1GEiaF9|POzIn})^ByZ!B3*J zl@K+l!InYXnAPf5`ppk;r9b~i0wrm_8X8Cot+NXpXwOplMs z(LSMNn>_Zrd-?2lbH}mYg^y>y>t3W)0*uEer)cFyALA~wv~M7m5|9wQevX#RJKuo^ zEnt?~Ez**y)jROr#f3n0(O=Teq_JOh zP5ZDRY`kPJsy9mA6m{?E5u_jiS>3*fiLo9R=khkDDoreUfok`cK`^O|fI~Sdl z8c^u2YYnMDMpz3}_IH&V?&zsAqmh~B(ai(RXry!H?n@0#b)D!%R{7{`z!!1WsO_*% zYh4w^=k9xFw9>KOB&59#^fEI?p5h{cYl8zj5g0=ATo>I)FwK-0b$#^CL*5vd^wjk< z#dDv2JlB@}brq0=h2u)WasCh;7ZG2E>f}(GgsVpDjvDWYaG6Bs z2aVbP!nMNF!*%pw1b!Ex>kg%gDn3-XBc}|VCwivQxuO0UIwwrF#71qgFh=JNmeh!D zh5t%mWM#>4vebV3EnTR6Km?>F;jGwrW#~B zm5<8#({;kS;VS0p?o(IyTA;f{+bR1+Ixa`KwOIF#h=I$O>5^%S*n73k5i+-ubXP;r z_|3W|XzS?Co$>dLIwweXLt!w1X=c*k{Z?Lsr`vS?U=4Qe)Oq0DyLAE+uJt}1_w7Di z2DCmQii-%YHGYG2h~CG|Jg(yg1TetH)@2$Q){ zV{8Op*j%rihdRJS7Smj>MWWgEDF2b}H$bm_y?+L2jC}qRXx=~ z);A^~Dzbu&j;+>$%EFsj;PPK|$H)TPRbm%}p6j;3Y*S%^ngMARjFh}^^=sW8Ge%@@ zjSlj(yB6#H8{HsCh}I%h{;gZYvzh!!2YK*Yi*@=R-7ZMou0`PL^tn za%bP#yzCp*$%dnco%%<~fpHLy31R`yY`kAoM<6pX>O7^!84ny4Wn<1rMfgWu0ag_r z>~LUID$lH6aMTDev$Ag_EpwJe-Lq!QzAB=wLI%`{1H_1eAp&ND^)XTLJiW(pQJz40 z0jR4@lrx^35=CCB<$`TYsxjD3r$vE2OHGI}SoBe%b;K!|QA^CZYK7f%qsaRhw1(kV zc~L7Y*yghFQ9tvWQzk_Xf?G0;)DZcMC>K5i3THxovnQ&ZK(G%#*c)}o68)A{%CmcTFbeRf zoXdj6#Yoh;{9U#iq1@AZDJ=t!*I0gDbtO|%f4LN|{`L2?Meho}Ll>}0eP8h9$o z0b7(sEf5G!;o_4~Vslddc_!+pHz_y$7S+N9kfIpjz0pIjXcd}vm{b;JSTx{~J0?)S zQ$zpw90i$|N>10KvQ=VR+~jN231Zulhk7Uuw_J#`nckPcpkbDJ$ZRCahr=0XrSC!P z!h7uWEg)SW0SZDZn(1wDq>H}LhA`shBUClg$C{BHSrh#@nBzE9C#-3zC-*p~&_o|S zWSRw~hY7uED`MlEw)zj2q@2=O|B5ih8NKxqT3#5e_lMkS7;Pu7=8n=s@*xgjSGwLF z8I*c{EyX9J_4{a`EfVTCL6tK?df}%*deB7R|6=Bal_7faIptI6e(3*#R2!-ODx|mn z7pavpy^NB2FV_QB5JCS!8xX1ARwq)J`0xa01eci*!EKU!4x94A^mL%wtC@Hh#{{<;wihdm+%{B#q1N!VA-FAo9oWg=Ndh(jkDZF-_9zmWYa0ZB?^){&McD)t4I?d7sU)iCLwKkeEX21SD z&V>x}h^n~b&kw!RBESy&VL(gu4x)VBxMHV)z3BmGlT5Ff47 z_k_rJT@oFNgr7+EQt(_qgJv%whl)IKlNx;t#h&yQl)V^Ho$!Kp`W4h2oj-!I7Yc+4 zy`Z~>Ks_I9BvKNl!F|TOA%?cvtO3;vw(LU_8QD>j% z3p8iB-!ghTprJCNwZ+|9NAG}yMJ>Y2w$bEC@G0cn0ZauG!*0}##fi?*TFRnXx9AOZ z5+vO>8Z?upR*)w>qBl}1Q+h{37A30%s_YXDN=RxEcK44aFZZ589R@`M2INga*A^EI zjs~S6lnSo)i(W-p%o|=u7Qc;%o(AdN84LgDVc;06_K$W(T}}xnVt-+@v#GsL6-9Rg z5W<8|F_4R%((qtuMXoHGyXWH`YB!KayP-0z-V-;Ahz33DO^Rj- z1|kW@ESxkY`l-nt-R$V^kSyc>M|Z-41<_oVk+PUsHnf;oX1O$43+x^xh_hhjrf3^3 z&A=qhxI!cD=^tJmxO#nbGti(N?LR0mCcybL#b~&VQGU6dQQlP&-4~K#5Lu+fhl$)> zO38oQS37q`TlPnPhBd+*5++E`XoJC}%k2+Ew*w5((VL9{n2dC-v_PTZi}?|`jpw2P zpKf4JCVP@EqKSsb*rDy`qkjgN=QliN2--PWVuin4h(2U4D8;3hqgC#t^mrO=30aKW zi0FhmUyOD^+g?YHh4IoNgIvN7hdix{9%U^kMeRO-T5H0IL-WEDK1RntLbVnFeU7d& zBUGk+i{4WQ!@ThG@6qvfqarYm*+Qvovy53+Cn{g8V)oRHiqbCTF{LuVF$R+R{fE3x zF|kl8c)m-_Im$xj9s?N*s%5dsBPI&Uf`+XZKGZN~C#4eCI0lmY)lxayBqoN|%N9N{ zqajTpL5fG}Oo=T*fm>)x=-d*r2(zD~jb*oi2`zq*nbF9@~^!Z>Ea1pjKJyVmZ}T>SIsR z0wjt%dbFr5Jxg|AoL~&(weQbX@_6h++eh0^S;MccfF9Jnl zXv6Qv>WK^R*4Ip~!s^&=4rG7Nm)NsZrW`@sW-6bzOb$f~ zKUW90500Bz7yG%(U=lc;X-)X-&y2Yq7`KTUksB75Lw#Ev85cr*J2Wb80X6G6R4xPG(-P8}E5n4Z6G0^5HyDK3GEIC^^A4rmOZA+zG#@%TA$ zg9u|z1axhdckk9TAU;E+J7vmO^)`q!r8)G*;W|*lN{@KRE1LgebFN|h4a(-H#_{{>!scs}`2B!Pi?YGQT~loc z2iCrKj1RAa$a1u%D%%R5>=N%~C3uS~d&aBGNjbQ0{5T6z9vv9(O3Q10@xRb=@5uNh za%t=x9RG>#HbkW6M_lE1z7Y$hw-yY2z*NJ=rabkR2J>E(*eNsGG z?Xq9IC)O^Ehb;4AbYovkuHa=)sH)e*e{vwDyd+-QvM!WQT#NTXPyD>Caq^A$MRo*I z@F*U#T7iipGD14ynqT5SlQsgsdLExk%b3^k^MG+fo1eZ&W0%kj)tl4Y4XK|bI^Zks z<8QhU+_lyTkXe!@%9!BhP+9MJB$U%gTGu3DMSY;Gq>YxLcij_qpl(sd2~Vnw!uH6u zX9BSEz}I>vcmw(jwAMdCk1DeY8{rkb6Pf`!4Thk3oal{~Ol_w^*9Ig&W>ym(v)Ln% zV*?X1ECe@Ex1kAuj)>A(j4upJ=nH5y*vaQcCXmsIo2Yb50-#04gn$=hT#KBSjVfmr zM&gs931gcQ0xqv59%#Kd!4(+-5|DZZxUSt(Ov-T9NYn^@MqLq?A2O z_-;eX-xE5~a>}cOIrR5#)d^&9`6jM;o1mmP!5^)$4ljj9qFGtk)^*W|KBx< z*Xhr2LL#SI+tfr(wS#fsfknR z@yeNrXDQyM#fjg!a#bR^5hMOwlUPB^z;%fSX=%A3@fa;nZ%n*S%O#r=_tVmUYa&^L z<|YA;;&;G|*hMw7 zTP|vP$Q})ukW40VK2B_e=7)-$aK}FqI|~H2apd#FR4YLhBiiLlVQbWsNTvfjH*VsB7Jf-Q3%8F0^}^oY5(fhs>i?qV zgaNa*?Bwb%tUxtz3AuoSKBk&uR3Ur7QqT`28nMuXy+ z$E4gG1?XQW4Wt|htmE2+c6?*D1;P~??i!#*DGbvvodocQC(y`-|b3c$g7Ve!vNpxneH z=4Rp&d%}s!bR;j6ngZIh|5nnUWsdG|l1{k_mg2h>$z*lArFgSd@=jWY*(8&Z?xnbq zUGjqFq}<*ynPenOaZ%^w*;b@$6Ot=vDa%MMv_l~h(P-o~J{d3`VG8v{Wi2gnm%`-3fJT{{;Ccgz5G6k<+k-W}~aR^(T3|ek^bMh3t za!v9aFo(+Z$v1fpXEr4R-YCIDQpjUP8mCk6g>A_v_{%RXNd|l>3Tt;JcZb|&a+mkt zn|y%3yz_zNVrUd7N|UR>9xywce1_+6_b5aHrev$*$v%*&K17FDng!Y;A8ocX3LH@o zgh!rBUgbbq46aH3bR$^+6gU>m4=-@SYwjcqT)8;Md!Hwhm-1+}!xLX5lb76F;qxNJ7@-v}Q)cp)NUTZO z2pC+$L>)(Gqr_2msqG*YkboF)C#O^$ukMgxNY8r4l4oN83Jk6&ssuWsom)6q#|Qm63hHVQT2 zzLcaI)!iPJYE-w~j8vn#-)5%f^Xkr+ms$!?7jdyyz4oOu8ni2wtC4QFW@&0~SEJ$s zx2MJf6_+6jj0vziFMHH+lX1PuOtM#$F{ohwZOe}0;34C)EbO-F-Xq`v1Xi=;Z$*l0d~lRAWVM&B={t2ul#Ipfmz)NDS~ z#l8lkGurep#PiNr+s6bZ3<&_yu1_$Kk5?BM z08bJSIX41r^%?JuH;p&^1L+h9!fOcWIfjYsVa(J?h7en#>b=>93qKBoug@`H5brsL znRwU&16e?-1T|f30L<-0N?`U$gAmgFas(EiHC&|xqAnOp zew+aID>saS+(waWCn3^7y~y zG&fYe*WihVgryk(hTx~+X-?LJPPIC%za=RFod%p83| z8hPwjf*Td4k%eE!zhC3w!%^uDSg!Y&XPp81k_iPW{+8YupR&)m??f1_@XX*ki=-wQoKlUwGB~9k zduI%y3N&qzF^*>#!*WpK*;9GpSc6EDH*LfG+;(2T8g|Fb0HF~$8kA|o5n z>tfQV?lh@2JShXxMbVZy7b{aUCQ&7xW-$x)8Ou}mr51g4Z?DpRW4bf#4N zJf>9cqKrE<27*^I9PiZ(=js}!#H@8piO>z~xY;JA#E#7wztZc^-7a>t>gz-j47H6u^xvLp&{b$bsKg+}f z@0~d+TASs9Ze7Tj4>K$R?LLxai$9iU9ES9Qgu`%j^?rs8?s7e&7y0N@evSvuzmuUe zW5izF%SeI|8;%L=5lB}=IpJ>)GXAmPIAGhS8P|ZejleKI=K}nXvS%ul%NdY?jcP z{ovHZtXcH{?jWs-FD5$gHT ze0FKp3v*O)#McFvt;l*OV4G)GWgRhNn+w)vohR#V(jUZcB|@{!6(w0A{13kE%IX2A zCCEqwGKq?u8_9-Q%lBoSvEn$PRfn^t!UT!J2ajacKxzUZ5`_mI&pOJ)Kz1jy=0Q1h zI+f)O6fz1|p2^DOIYgh&Du8mxzL4e2!U3U6Sy51!xtFt~d?>xUlJz@}_~Lq25ft&; zjV#b|JDh_GZfBk3#R@O74r9m<>S>w%`dCS8)KOO7Yjeat!qtcavB zr&Bz({F8OnhP6`D%(K;`U!rZ-2ZwBLN4D9%HwQ*$gFY8SR3IOny-1$+_B~tRiMwjEcY81a@-*3;0F7~roNP0o zml-zRn3vtmiCJ=YTJ}KJI^tGyvt#+AD_3McXuy6jV}JGp-l)bndlN6fjiaWc`V-lA z`J;hnvv2XTbi0^6mOt&-hv$aw$^^iIeKYt5#YE^d_L!xKO2l|#CAF60AR z<&d?vxlNA_Ib?1+xA|+w9HX0;`Q}XKyY?>qa^CQpzC&|_{Au$?xbbY(Z>lbO?uvj-7-+>q66X(v==Z%4k&l$~S2o3}PUrvunLdI3xXlh$LN zIxyR0j$)z7oW)B`<~&=OvleVl;KrJcNK}wxg&S|kAz!fKf^zPboH1bjMnnhHqr~K% zi#u}4c}Hy6XR;^Ykjb7&CrtL-K9h4E7;aoj>x~*-&bcKx#`5c+o?U!V%#|Eye(l_U z92ryINYkQM1J!sON;_=1BA)#}2D2aykhF$MBr%Ij=1R z<&5s>yE%Y)+T5K0$5ga~FunE2QHu)86|U$(cCIs)-p>IosyD$tHwqU%$XRYKD94ST zk1f?BJMtoDe{loO2<|)N?@NKAL%9bJtwZ>ZAlAV#&|u zZuqZ8xl3G$6cak;?lvQge7odAl1PH5!J%Dqj{!mmQ*!|0(ulaB12Vj`9*(}WH6MlZ z`{j0|Ufnz}_qBkO#e;K;+(_9VG*@9w%FKw|{#K;it;uai%b#O%?dkDn$+_g&ZaF@X zn!5qg<`DX6=yO&sWI#=OEH{bW?X}6tmD&&o6cpw{me?XdnfPQ;Za(CZK6i5EqGcbS!&P6@1=le-p5;Q8F#Q(y&x7v+{x0#?PjfJqI^ zh;WqK15BXX^4xipz{!=lkf}YKimt13Z$kPx?&O*4$jO9&YGdvJs0$8m$^|WC%MmEr zntOo~7_$RTV0}sMQ*aQr+nt+62`t~6y9uhmvwgV^U>Bg$T(W*{IqG!?9)!~m=WYQI zz{CX&Xt$JCmb)8j{MD1Wkh@%b@^tPiYWJ>laN++spL+)E`KXJzWZ~~}^v~s7$V!V` z`1)VXT?-JNH68P>=aR30lp}{*a0O(yb1#DxxNtXjJ0+0$Gd%RpJ;?nVlIVtf$yKr8 zeATbHzdI8a+_U-ccexh;sR1T%-X#CTX@b0av~Tw}&-;^>JuLH_?MOMIULKk3P>x+( z^2lPu<@hhxyeqUkS$CTrx_45))Z;Z{o^PbcFmp*xa(DGLEygjs>+A@!<`Bsh_ zcE}?iNh!yMPI;mBq&(9n?*aY$ntpj3>EB2C<#D-%$FRKiG&dPCGEZSa%9Z}?cv4_q z0?k40hO+%l(!3T9WdEWzZy!BAK0dEsJyIUZ%`2kU={GhnnU-4$@}!QiDjJH)l$JJV znPreCUOy`@g{JA8)~y%hwE%WqJm%3jOGo_6;=Dv^YS2<9ZQEsei>S#*SLMB<<(~C< ztsrR@sbHa~YOAFqd#sheHE)@Tdb?eDW9x$HhWj7LYem^<53zvhcZ3B@%VT*LXdt~h z#RBHgnLM(fMme5&js;Bk1r{*9FXqKlhp(+*0Z?!wk1YIHjw|lx{Y`PtKhAp#WGKZ$ ze$N}@LfphH3cdR8JPpuIQbdp%uz{6z|K#~mH~scCPf8-{K)?Jubl1fq-;LVQ$}XR) zIN$8^xr+1LG2fF`9P@_xT*bN8D4)||P2+s7;-oaq=PHiSJAXB``&Dap{<*gKTm@Lt zKA+4*DaV65=9AeyY)Leqv>wdZRF`@5(*$FnpupUgxnM@#baA*=oWeIsbu)2&N5MU6yZ!^NRC7Qu67` z@~x@!^4H{#pk>*ne6AH-u_d3p(_N1LAA9csFI9D~e`n|dA}C!sGoXk@!ChvTv15#y zC<4aba90%zVh@~-aBLtbuqc9{9#Bz%XxvIfO7teCSyPP#Opgt3Vw&asuD$0B!;$QH zbNt`?zVGLqc;}wYo;7Rjz3Q(%&$vgYjg)_{d2HGp9e$|^{XW=NeC6f7L!u2&P5Ua% z#=DmI?URh19GhtD#%WJ=@bLYHh-<%M;k4dS>*nO8mOne~0QoZC{lPSdLD=eFnl@0r z#9=?1mhFhqHy-@A&gs@FZg_24N8$n6D(EW)Z#^OupZt2-cX^yGuTT4HM=Zu|%JXpX z*1OXVjVAqmT9=NT+oftEs@ac?L<~P}pZ-z552l^Nb|I8z{?YKyX;*Y)-j(VWa}PcB zF!4@(H$VFL(`g-nd@R`thReE)=G=9|F z^WFE2j_Eu7qmE3EQVoI{_7;=AKdzgw_MhHIeC^xc{AP6W!08{!=R0o5bg3amFYh}& z-X_KlpMHIZhwUPJ{DslfgQkx;t^<-p+u)oQjk|1meBeKI<@A5ZK7H(}>F*EX?|nB< zUm+LF@pGm>Bky;fJN*Iq_u+Zdx5&R&-ZlL#xv<7BNxtuMck+F-EcyPM_axt+yDIs9 z$OFmuTOUlmziG|%SLN@|`Bw7%;K!5iw|qPKenvF?NAmj#&m`aPwK@6z$t}tE)4n_X zkMbz;e>i>LFEZwm~V){d}YBbX)gZqEr7geL+WPK1(Alx_7DVC*JIY`Srq&PTeCT9_>`SpLlU&uYO|A z+2hZRj{9`_205^we3ndvzh!EB49-0N#L(KW#Pc9qo6LjZwaGjfQJc(z18QLfdp`Qv zA+@7BxRZI2$k*CkGcP0t=Rt?pe(OJ<(rpIkcRKJ>tl)R`#ntfXyxPNL^hy8dmLqFd zb;-OCDPwDI=)~U#zEZoPGk?7kYim1jN=Z9=TMH+N@Q^w{6~A8F0Z_&AiVlt@om|_C zrxcfsukC=%ZP&UQCe$9(fpxS?C4vVU62oN);IhU<7oS;cbwHopeVygt3wNDeduDfD zTxve6Kb=(Di=p{!a&2Qb{x(jn9VCZt(RH;bi!VeEHq`FJ+=@2dRQtEyUu<&xEc5FG zrs;&cYCGz^`E1`hFsJ6%-us_FipU&NH|VYxpV&hvD{8+iMlYy+^@~;#0noIe0~7l5 zkCGKHF0So}5xxASPFooC=^u4kT6;hjx_Z<-wH?WiYpXD#mrm$N?r~cMvYU@g@H;Pj zsCN6FnO{c$^sniNeDJv{i^!cV8*5j|ddK{*c1U0Tp7dJnMZNg@;O}Zl8u)c|^&e`l z=+57_-cSDh;EvkkyYcV${#JYSUi@{s*In0@zd!F?_wJsV&yo$a_r7%n82QRumuH^hlTJo#nssDdb5d;{(d$oj4;Kr3|G(?LSA5YGf316^NAk0qKCOGYSaxF9 zdb8Mni+a}|U99Z){px?)kpOb`nn1Y2>KA2JltDvWSyTUoHklXK!%gzZuqH>`pRI51 zz_J*gtPIF%=~G75&+Q`KY97%~ynAr{>MvO7 z=;-J}>L+}W*OHGmIfRL z14S$B`kOkU(3ffuji=WS5*NMPV;^zH&k@#6COq0yTY z>ks%s?;X*~M_uDVh+59A@6jWdrUdiQ@+v@>UifcG-PCZCU@#T&?>eXTaeQ7;gZG89R zyX$8b>%H^d($9kXOF!$ss{XO!^Zw$|`udI>G&_6yjjc^X#T{2q>l#Nvip!pBIzBq# z+x2VqO1ix8cw3k2&((J*%DY`t%BBfDqK)6Hf4lhN>t88#{tsR&b^d{G)PI^R+{k#l zp0g|NnFYVEA6e{~AHGw+t$26ij`|CGCIt@txYS>teNyVLM?b6IvPV*&agTvQEB4af^|_dj!11M)(A`O0|>qIfy|qJ|~KdJha6zSZjsY_g|_Yp-s& zH}mI2!@T*LhK?R*uMcY)AaZY9)?IvHO!mdT=bZ!FKn?dAO+f$ta&3dtfv24JNMlx3 znp@bnae%n$E)dc`c)y{GsDJVD{?R|LYk00B3vu_A4ilHwHgrUj+_k#7Crlm_tCMT$ z8lLMc6c_ossi~nO8s+CIHlx2ZH+HULl=-|h0U+(+We$6jf8xOjQhPa6&?Hu3Ol4bSyR z3N-(wVOvM!y7=QY1HlfSX|7DEncy& zqklqBaQR;v4$frmj28a2VPdyTlsqj8aR+i-c0O$zH^ICA`6~-L@=OUnJ|uej(}wSN zaKXkk6iEn%bZzX2D~#tjYrzMXk4ePTDcu_10c731w4b=VSL1g&_Fl3+Gx}}s#z#7G zcoZMVj3)GLjDWwF&oX$Q#sy#GSuX3}xE`E&s)|MrZUny3N5P0jZ!fX%&`SqIud9ucl0ZK0tw%JzUc9{VtBqgn zo80}$8I2nt36KRApVj!sk;&y#^4htL zZ+1&AebGqHOnmp1WsS2tkhdB!W*>C03#N#ppQ}47x^Z3OFM7mpFMhwS5fB-*acFes zQ;lCKzR>TUY1~kJq4nQyyuUb@;g1^sUMw)><;E-E8jvsl?(3!AdGgK1O!4jy{?vF! z_oTq&4;!OmKWKkx1T!)I*=K)kJhWKg$WIy{g0MkW_P4H0H*_RQqHTTeT%G+y|NWX4 zWnM4SlXJtGIw)8~Y?u3Vpv$A-*{0(=;$Y)pN=G-v0-lt0mvGtoU4p)zpz4vE7T_WH-IhksVN06Mb-0(~}*Tfg*kee%xPN_;QZ{ z(WGOWM)wn||8V{Q(PM1WKB941)6nQA6PteCJsyGRiF2BMP`sSyG+mawf3&CH^uuK8 zM1Q=b2?oF1rMuVO)HIU#C0WBm zqEy+m#ihy)UfP5>6&Lv3-A!AI^*(if6DnMM_x4q#vPV47w54ZqchAR~&VWEb)_cuU zO>cC>BOCYhn_HV+>~K%>;~_iM>Ik*^{(X|}KJyoC-97P_O?HpuL6>YRb-?7eOD{F# zx1|pF+3%V@E_T4%@0G@5(vH%29Pv@9hF*U!)v)0oP2Vs6?5<36+jv~qxp^VJMA<`K z_bT0ev2XKFi=*_!u;#Wtz9rk-Hn{fi<{ia8KK#(;Yq};iJfk+ZO@ujmsq9fkbKBVc z(`+`1&v5L~%_kOzX3_D@J&JeNpWJ+6NBsJX($&$@3z~xtj8eppAL*Km$Vk7rxBzlN z^NiwaJwCY^wKndfNmrHL@UW{(Z}`SFr8iu9T{9VtaoJaUg}Ml8(@ zi{5&mxl2cSZ@@#%(??`hM)Q8u{PzrhZ~aO0FZ%G;d%gLiZu~v>H_f68e?R;~^Szxj zD_1Xgr@3oprPy-tjQ-I>JDN}LRQ!kFAETpV|I$2q*E?%JYCcBR^Zv)ppUQgP%gh)q z|J}F8jId{0MYrue<6(Xl*#l;rE&t9NG{cvFKN>RQX&Q|l8#Y7l(N_3hBWFA(Z}JFB z_Gr6#l|Ex)mYZ8on{k?ajRB|6*jqm5>@S}-C_3hx8TZLwynX%*A{$pmFI+eSO2HQs zCFZuvX8ip>KcS+>FP~xd5pTV`f4}Ho(`LNhJGuO0%Zxu@O_6uE-#+7q-Q&yE&&-F$ zN#0!j!adB&`0KaspTU%gFIPW2<8e$o@<*4ioALMJ<#mtGIHFk9mM3T6$cYQw@XUJ5iVPft>V-FGk_176&|MRYZ2l8PO-9MT!GxK0{=HF)2bj>^|yLP{5-p4b((h;9^ zTZMaxbk)rpLGjrl=QWwT!!A`AFek&kGbb(eA68X6`TgZJE`- z^Qc2}V$-IX1H>7dX7(4`u3vt{fBdWH(akewSvkuM4YS~?ftT0vO6a;)sOAmJ(zGzh zn_fY@)Ops;l}lxAn>#q_|Bso=dggpDAGoUTnR(x#Ca2)rx~sU3pAYk)UohhuvlU7$ zylw7~XkM3DxAn~BE#KGVlnWIqQ1ecp`lhBEZm8N;nAejhtXL|3!jJcwHNR(#X%;j` zXF(MVEw6@_UC2AS>v(~!IDsb=ZQHH6^fGxz#PwaZ@2rhIbDFB_TA+KTp%?OAsM~5@ zb?t&HtU6+InOW@$MPN14;WU%c8s84*sf;Tnx-h0kqk9U9fcqf-cOv zx)+Gdoh<{RzVEc0*Cku<6e~15)o`64&jg^`&4Qn2UWI}0IilZri~2_se%f+driP8y zbm>OJP?fwH7&g<%oXab0e;BZX9uVPA{n9rP@VfYtkP< zO!)a)RZJS)(le`CzGdlojnx_EZH>{>)PiM)rs}F5XTa1`7EkGtRrI{22caJnDCN7B z6S#RdWQND1l>G`JfQ8G?lz>8U;HaczPHOzhnEROxDetJgsH~Y+-V(IG&MLHQlrPFyNRJ znO7DweE-Ii_XA7*iWlxa_#YuDM`DT^&QJnoho; z8oHtfT0RI0g@Ue`Zovq3_AAX26R+IfKbm{&y7RjXOWkk9mWSpIh?MhY-RSLnCGhzkxC`Fm#%%vO4_%=8v4iH)DdL1Gc+F< z28+-4k<`q<(K!zUOKNbm;`EjWGBu8`>8kHIikHv3zU#Q5j!fs7j>2B)3+DIW=*3<) zugc^qw66%YcBz_8Z&?>j`fNo!dv?pv8q3uRhR3R6r_NiB=_+Pk%?GNh=}r)ev9E7$ z+Z~z0p6lBVTM9#_>aJ}ldO>##)6+c56zlU#`bQu5axc;J&d^b0|OV?CdD6cx$CRb38t zI*=ZY*vpxMsnUtqG3IU3wtg`0woF6%0LAla=kiORuZ4EY&r0tti{+OS2J5dT{guST zpRZ;49WlFWjYZ%3NHHoB7e}69tBM-IRHG>c_M0fLHLCHIua`XvHoYUP_blU#_r?(8Nk+P;nr>jy#VoR}2*DE-h&rxn#zSx#!|9kNU zdHU&wl2_RYn8Zl7ZXpO6B4ojU^G;F3`eS(E#>FjbGFkQ}GbrexS12Hl6cCF&&9ya8 zMJhlJ6FUxK%ZWFVY4UWEp;lqGs=Jo1&~Ikj5m=M{R-$QD z%YpF{+)wu{(?duzkjU~#@UE+eHiB5_vjFE!nKLN5sO!ygY;^=4WKl(D63|1Y?%5Us zL*SY&vmjnniO9)G%HhGW>i7YNslwz}e8)FE1a+G_x3-;vxwN(s5gpNIe#MewpifH8Lc}2Ek)@NSP9L+3*Vfjf{p=DKU3%4^v(;9Y*C*1?f zT1I45#6>hR&GqGxU<5Y8rlQ-Ps?qOmL2d^uqkqn3P(qvjSABX{&+9reDvL8j{xFq* z-6jzvH$SrIk<2hn@!4y&yl&@JQ*%tsaCj@-SHgm8i7nlwFmP1MLrBgQT7SuCQL|o! zhMW3rRm3`dc6agAs+LiQ7K|~*xH7rZHf$>}EOu!-U$A{CCaI?71%-S8sq?pM2et_& zsVZ+inzz@Idom5_Bh~K6OP`!!yCY9=Q~S+`kG%g{x@16BO?xMm&EA=loOxNrM7mOZ zBzwcoyLsRC3Z^avw7?BDr;rF{R~;{h*Fy0vm~P;*?kMA$1>MAe;Cg6AS{P02vGkry z)^u1P2rY_d1*m`;8cBg2&GcQfgaOYa)R zDY$NcZ6ohkc~fy5)n;m;ODlnN2NjG7;# zlrK311;$ls%y!-iB^Mkg7E~loynJ%XGoO5tiDcH8-GM<_en2Q0=$5P}K5Y+O9i9A(&r$oL)#q}wS zgqSxB%{6^pnkN+B$8M@6lQuD~*hZf3F*;#zL&SCqCJQ^TL#a_|PV~~E+0SHh6&lvX z`V;441H+;!U_~2glx*>99u3sn+?|D;SI$$eNVGYj?}z`5}`#eowxXz%zkOD zipF;r={YH}r!MM1+ zissU2;`l|&u&AVuiQR79q|Zrz*V2``s%@3kq`#18dTVwfPS)g+Jh1u7sfNu*~`&*RD@F%flbGN znRn54EDUOj8KQ!)G^3SYTl`KYm)$Bnwm@M&_wufRH5SW{ zE3M8dnxrRfz=qgz6GChv7<(*j90d;3oyBFj1-&4TXiNwpXF|Esqq&BPjw=s0X@B*k zR>k^7TP`TPT$xOnO>f?dZ4OzrLep(ZPj9hL*PDmtRCFvucN7aJ0;gBV(BysAzs|1c z_#qwMX&t5pUP4uU*T5vk#zMzqBIDFXv%|ERSTJ+^Kx41bZH%tC^IRvioX~UgHlt+G zOf+@XBB_U_HYnClYf*Dp-_shze5qr;9M#gCAC(Az3G2V%)LFwuQzqpZZoJb7{*cvFW9y`Ofnf zoFvx&?7se02SU|>P<0^e*1c7AAmFmAIuNQ3gsKCfqTN1rc2*q-RR_ZEeHU%Abk%_n zyG5!FgsKCf>OlCscdP0^s5%g;4urJ8(y9ZY>OiPE5MqBt)q&9F5ve*5st$yz17R1( z*8jKzK^%44>OG?yy5DkAmr98ZulKs;gie`tW%*F2^|>Y2;e4q2H|F&an+M#|tL4Xo zZsBt)pWC7z54wGZmibdO@$0vD{z>OQKAdDlWHlm@$;(j{6DPZLpAmvZJcaG3H~}>y zBAORB5AiX0>u?m38G`FoBXln$O4*Qs_Mu~!Wkh5>(sB&)4?>%~m(a@Nrz7eQCzS6J z^HFr0CtmvsZRf?HpUfU#v2DU#l|%58sYSniUL{GuBD1BSTEwWz_*Jqp2uZ;I?HPd< z%`;oBBqf4?bj>qVm*BZPUPHW$GJHEIxH?Z;4DL$2_M|PTp^P#m%7h#e9AKL1IJy}c zswd;lW!z<)Pf(NIbnKC<*l_H*f8gh{M`R76+6zQ8nQopu6k>G<0ooJ%#}zrWDO+R~Mc zL)%k|zD3()2Dyq-P#u?8bBmy$fS7~8Em$6bSV>$(F)bo}h}ya3D@@ULNffl2(qooa z@-0?)E9qPOa!nxpx5O#yGFT+9DGqDSAgqgM1~pW~%H@j(M8_T}qkT<_SSEUaXd-5v zWjmo_S)_Y8I^k^OEXa_W7rU;$JySyl9hHP~eUV>4Fb(Td`fEuz!CRXIdGy>%rJ zb3T~;jhvp|v@S9`W*?okSmU9|zQNe#btUfxOiseeEE5;L=0~`G**WZjM?w$bF1|)k z9Z^TbVJjAiJ3J||urjbbPJURO$p*IW6I<$%%SsRtsdA(~kcC7bUl6cTi$TkMS2KxI zTTVijD>Y0Yxhf9&=j@SL$HHeH_%te;wFvFC0*`D6!m9~}DI_maW0F=&#$rKnct7Gn z*#<(D7d8s?yCQbf5VsX?7g=K3@*aUGHl1R)n(N{H_YAkd#zZYx_W~db7KMMtq zaU^Sk_(}pI6oQuW1fltkViK9HB$*M(>Z;JJFZ%5>XMCk*#rjcX2CUs@PA|fbIg!a) zAy%0%5F$B=ZuHo+Wh$j>i_BhIi@`p_OpCB-_CWGFOhTI-n?Mbf)Xu>67{ojFS~4hF zae)j!w%8q9@;nJ&&F4dhpuvL2L~%ofG+$Fm#yg2rPH&yO93qu-sSO8)Bc@K7eOA`? zSl2q|3$d7a*RdUR3Rz#QA?jm-PTv|;BQ1kHnS3c0hUt7IlJ-Z4q{33PWa@%xQM}gjVlO9tlejc8m zF7ADCoS&`vgn$x#N189YWI&`mQX>&k zM`W*3j9IPFDq-?d$Ox9fh5x=$Ti4dHR1Kw4nB;r?PbULClVc8mIpk5$fgYa6;=rt|m(WZ}%vg?{*>rb7MyO!3{ zJIrQ<<-`e{mk!8QdbK2vmPEd+X_KzTp+^2PQlm|5F*_fM7eUi#Er!fuoYE!dAtka` z8iD1=NemtcsbnGfMjjFWWIsd`*UlrO0dIW1eEMJXvN;*qoG>{+8LXki*Ddlo}!A=k18s$^ul9&(o=$EGa`Ip77zFG2v5 zG6923GCoRV0M-L*F_9RrdPAnmvZn$hVYsBXkl)T4vs5W-k~d7Z_{j;7B_1=i<>Ag8 z(uXQE8cT~S9!Dutf&{U`_6aW~2AaHIWO-B+_9j;eiwZNH9{}}$#Kr3sd;(S#my^lY z$=T8kq%RptO`0A#B|e#99ES*I8pB3%KH45p@2+AM6}&ias6w+zmTZMqIcQIsV~NKn z&pBYUF~-W5MSH4wpM+m#5An5ZyhsLQX^^}?#-6Y0V)Ie!1|+HKHRN$v?Ad%tjJrYh zbAYgcw#kkT9!D`liADFG_3o$cfQX-i2G*>dXD zb7pkQEZZ5h^29gijQ%1qD}BY3U+m~3!0_!OE`DKNpO&@FbNJj5t!D63@qtOK5kOV& zp`o%Bfk1J=8>X%Rv}O4~kN^Nv2yqq?eNeE$4hss!zz>N73Oo|NM)I_QeE>QEt0?Ab z+abyV1U^U2mwO3=)aLa-ymQCAQ?o&Zw%a^Xy+#4LR*ZZB!31;(+c$~zl2A1ugn@<@ z1Xf_0By7)KI<-p{7zv2NDoC!-7GN z;f&M#g0BGoI{;^Q;w4ONQv>;A<{}-Sos=fyFil0&E}nNh>Ez%e88krvQQp8gWPy<3 zk>wxs6Fy-GxSasd z1ppQJTo2EPsR>|?h<2R-;-PkFBSVRq-ou_v6*lr=zl+T?}{Tp{>uE-IhBHi^wkcJ@uY8oM2#7Y7X3IZ$6bh8Nd{grX^ z-OTVxg?ADXd{(jIotWRzRTJhv-sONwmCv8tf4o?~{o$dJd&c}7oy6m3^%<5h5j3AY ze^5ueL&TA{A55CxE0$uSPVW4CA!p!-#%T>O5pbeFNI5Rhi8?M<+?5tEi3t#V#ZobD z`@p;BZ|Io=&Xq_sgWyo)5#&QWb*icWW~$_E{EQ$9OL+c@rQ#abt)Bm=gy#n*)C66b z00vHe0NVH`(U@R6fl>_ea9m@>QgMw(KPGD=P7^;OP&_hxxeI<;UTD{c8X;D!T98Y5o`@&^MQ38Dh%xe!7@-AVz9A)Z0mz%G;tL1F zDCwt4rJ{b$g0uSOJTSX`jX*=(@`Oj)1R)R+3ZOgjd4xn2Cq~6mai^bj^@0!g=xU51 zQeF1@KH{E+1%t(5bqjiRQV0bs@AgR*i}jDD)-C9lX;qti+h`+d*G z1uwTNw##!Bd;Y?v1$J7oF;S*@!9$&MpqvLPP=|69fLZeZUe*<#8>F?EL?RZaex*`z zpWQZV!7+US98*mo;DE(srGo)k06~eci_n4g02@@oc9B}9jqTzg!5DO53>2|q1^r?FQ&fmrJP&Duk&K+)J#G+(IjsihK0kHS}nXogK7IqQ(II1LU{> zqOFEp?-4l4<`4W>Tw}#jagDt~oIBJUM|3fh<`s|v8SN0Z!yp4+HH!eK)QgL=OmjnK^aLEZ`eLa^yQ^afI#JJg9 z{-Rzqb{6mbap9<_p;=xweazhhXUWUYW^(!CTjb?0uA#uSv&D*|#1)NP9`Qqwhn2Bu zRu{2oo2U^Jo>|ykTqUnw^zIrXuK2AOuyD})LE__WVlVOOK@SfR_V(hf3ER1K`)3af z5w~v_{l$uYD+Y_vzY~4LQLj8SRJp-dcY5P_g#E`RDp~O8=buWY^9tQqlP5wp*XPLy7FWZU6kypZVvv8lD{> zI=>_O{V%koW@q&mliw9T5TAX2VOR0r?~8%rhpSf&`JZ{StFO6jgjn{zu>V(DYo7V+ z2yyfdvGjkTANT!lG30-~ndthzh+aL!s#{p84}2_swpZpM(a?L**T{B27*}nFJO&LZ zN+xoFRSz0DXvS;3MeUM$_$hQ(nqoz0Z9z3 zB#_!6@yxd8g2>N4=wtoL3qanBoB+8B?T6x+0gJ}xusx-ld)? zhM=GW_Y5r(VUpx$!HUBcY{LX4BMTEONrL@NNi+i`3v!F34KWFnbqLrD$+b!hK}noE zA|+K~MIR7^;GutY-86#|M03yFj##~h|cO~-BBOdxe=^K;;% zU1`MgrC|*u^SmTLQV4fX%$JE3uTs+z?>U#=DDky1UhAVhmy8;XsjECdo~B_wAqfV# znkY`tNDb_$E`~1zcqd9I04iueNg7iUAYWm0VnU@d8jkeI*$#NJLa+I4makkP{jJ^EL6=e*V5LbbGie)u(n}61ogiKx8)*!=nIxoCYFs>HE&4{bQrlpwE8-%1(O!gt zhrqRxi-Hw7k3H3q$uelRP=z2pl_jKP?GRXXo|FU>fPsmTH?WP%R4AD+DC5f)&4z&D z$fX4FVyzBIhk%oVJU0bvfy6imOc}w9`inul=`F{}C>o>;scrHes;D_&$$>RaKxi?6 zt0*BZF9QZE>j62?k_LM(a`sz&6$u+^0f88i7(02M=-dL@x*_xMOi4~u1oh7ieH)&e zfW%O^e4y(9ZB^$2avx3cfHyWY%StfSbLou+foQUps$`I+HX56julV|+QDeZVE(iT5 z70C*0)c_8itRZyv06G~={NyxXjA_f`tzZ+7Cg?Vr4LF(7#-*K8s=}l+c6DK)X{2>n zDA!o)?MnydD!dhYqC_8uzCtE>v6%n|?Py@I%h2o)YdcCk`%4@hUqg-qVc5iDlSzS| z2`3#JQkOG+9`HFd;$2|}!vJ98>DZHhgPT5?)0 zy=g;{6dQ_IbJUVOvw0oR2J{G*%wkM1NcXU{k@-^a$enSFgwJglOG<$@kw|xrS55%H zuUU->`OQA5%M+f4;vpe|K`9~mf#fmL0Z3~mCpv^{i!3^l76XMe6iEb=J972vOig;j z38h%)B;Ak?%c*4Xsxs{y z{~9?SD7N_Bd@*;gB?FVhwHn+zu$~YtUqBhMNxvpHh(6E*neM@R$n?vL25*ImBdu94 zcHrdFn5U9P2Up2MCytsYRl2fu38jLe4N3}Ug6?R3~cmPI+HrIvR5p7x$(3wcWkc1?g zMOG%i;#kx%P)b4r4MPjGLtvD{lq1QdVv@6XiPd=0D-7WQDml9a>(!UY{~BbZw0N)4shNOjJX*FaXib6g%W+Bn^9_dbT zR^>2q?C9UTg_MiqoIEeGC0*R#&|fKbLa~?Z7jS4{r}ao6$0{z)j3&>8TN`miX0EaIYmp+Ulu;`tFwEu@FCAW2+PT(pz|39)P@ z>@|`(OOL4?p&uL=t=l4DDQw+_u~uQ(a*88QQlF>6*NVEyj4o!^vu~s|>WjC+?OHaq zO_V%N0Yx14=#qZo%?B3cvdD8J7Ry5n3KPkY009tuKoUKLZuiRk_gRMs4A?!;EaRkm z#B*>^$YA3vgm1S{O#i|NPG(_K0v`0To}WP#^DKYGD2gkvr7OW5`fx(_{XGy8-k;lX&HwnBy^>z zzMW{rSKlT&!LBe+yGn!=re{02fC?R_w4H2Bmh^YpnPG|aA<2+A$C!XPE-`ShPqLjz zm>Vn@Wmqem3?yK}Ok+!2c(R5e%T(Di5xPnEwUXmKM&=lX*oDQGMM`oVhziVUtStdj zi)833r)sOvd?1$I&!Vf;aw#ZC9Nx;x^9m{(H@F3=6ahgyfaQaR2vUMgLo3@tvnVUX zv=HN?a9)#93eOFT4@ryUdq6%Cbq$JA#6*jnZ4c}lGHY35@SEY_RpGWnd6m4U34n~8 zvv4D)w2sdLUeAgR$2uEJP{~S?6A$|a&QwoA)i|8PIw}v0)o?TxaTwMas|nju$O)Ax zl^T{BoTAvv+47LIQ0eWvP>T*U~6_^3dTN@GE>{bu2$%_5=|l$KdCPUJcK;!97RL4M>#>1 zW_pGN1J#WogoGZ|CTjZQcFsD)MCq?WU&m(-0wyvJS;UaCA1)y>1IlfY6~?H&og{T?wvX8Zs3)!8cG^iQy;Wi-!QRNE zgi8$z92h??s&*jF8lZ(?oD7S0*bvE47LZU}P|M=NB%_{Hi8TUNb&!rEvvtuFsd$KC zE-@mqN|4bIWPlkWHiZaV^!Hd~C}QKJx9y5gx-A};tI#(1Skmmj>6)cIYg8T_8Z4co zjPsg}5=u_+IuIa13n(_70BNZX=sgy03+cunl!2`Qm$%EZfnJVy-&c5_WWD7>=u|N! zvG3HW@SG%h!6#_;iUsuT(nLaS>Rk8GG+0IN-p|j#e_Cy1;_vtT%O<)vI z0+M%|k}$&~<9PrcVvL2MEsx28$Z*VbsOd!;1EvjC3&0hG!BRqX;kW`QhQnV6hcE%U zC@!>`SZzmrNBF_g1R)rUk*V*a(?bWEFlZ+0tU}Xfyw0+fnr0hS#9oK7%&-liddj00 zWUx?Sof8Lys;1e1*!hV$68cBXq02?$liW)rIK|sCMFG`uud-9fC%B&q>-}@!ZlS1GAOhYp41~ zgeCbGAd;Av!ySV7@IT{`39#A2?To@5V{ozI5qXKb8;WWikl6PmRjH&3mh{;K{p`e4 z#QFea9<4IEwr)JYzF8Z@4{b|V_S^S^`bCSn_ zhm^bq?25#D@k*f&-c(rR>r5UQA`Awx@KZ}ES_xOR6)6j z>mLakoelIl)LMdzfZ$;zC)|iv-H0DxSZed4>0P9-^mft3a2JcGt+#t-Ie0-T0$7z} zIS(Ecrejkhl>=d)r5lSJSbt0dBR=ps*!LJdz%JP)vCPVt!@Sn!X?tu5tiR~6tTDXy zFu}6jAel17B||bsOZJ($^V;%KDl{xsp7S=^XN87iZyO74_+dt2jIER%a2}Can1n&( zWXHp#!zt;73Z0HC38f>MNvt?Dw$#wQM5HKswbRF_ou3-!%(NNW?vTT{p3-pztIcAP ztMFn3vr3N}!fJdF)WhY)=n!euVKO&I2ZtJBCJOKGy`U`tjOer&C5WpRSS!_GPD0+0)47D_yF z6PrTd*$Qxi33ewkX-fQR8+Cp9h_oZnt}q4L$(U|xS8?J=1ghvvsOu}dkU&KF^02@l zxC(0t5k2T3@b;Z!8)RB>@(A zu2GI4%tk1&ut}nwVtXgik>U~wI+opHA6tc{g)@rtE4AH#$elM9A2AGzX@N!g_*|IC|04*xS&1*-47-`Skc_vE>*XjLF%Br8sSb+C^kln3?LXwn;C& z*Hn3S{q@A91HpPreW@6LJ4+}Y!F(as0yKLaXAG(|YbcPpu0;7HM;GolP&s4V@dDu$ z3@_+*=-W6WF-iK#=*KpYVZ@OWNvLt~nS=!Z9E$4-cxsTlQ4PcjkCmIqi4__yh(}Id zd@A};O1q(m6|-1OMAT)~pu^ahX)sRX6H_^Th|o|8P-ydGJE%6K3@|GVJjE(0G;9i} zHx{QJBBhj5+Tgcg1_yD`VLIS-1UQw6tU%E&UCA8B`9z;dVD8hKPR_9Omc`Wl<|Jnr zt}U#g2nW(q8beUCIkD^c;JiD5ZWgUlq~;KUgRpC2oFev2f?INlc7vM`E6z@be2#Dv zHc<)djQA+kaKJu8RVQ~yWAOrm348WN=~7E=HyRNWGJyw(s2h{-B zk81nx-bu>+MGFYf(;&5C%K{8pdcFvj40Hvm1)|{PDoZTkSk^+c0U5T1z1+i_i%}y) zJw%=MairbL{=zB);@)6&vQkyVd|Uzs`#v(H&XgeL(Ixy(DsIU#tI)D9P5Qa?h6@Db zN;_k0(>Kui(N_sL;uM9Eodu2vWn!q4`1(Q8baFN$2`i{;fUZkt4!&L74TRoWz}^#Q zRwQ@FgiRm}ha3^ha!%mr4bf;!kjk-z1XdD~6{}*|^ris@#zCE{&}w{|9iGh-c7=S( z*-1VgVJzh0DJHxN($+~VTzQl<)?3BrzDAIzO_mWc&jd_^@a*AlBLYoAm*(J)Aiaec z9?Zx@Dv*OHc`4XI3m(|C_$J~-R+HYWP)E+ua%AGCHMrAlJ@7dFz{{^aLQxJ^lta(I zPC7>b)3(QG<#8jV2KoeOI=m_21{NVbBn)z>1pxvr;UKa3x;S3x2{wrVa@|2&!3$0w zvvz?aoT_QFwVgGjQcuQ`q`^|iRd_W_^AFBDSB!pt@t|t3KZxV0G4~~{2T**Lbv4+3 zXP!Yd*uO1Bq8jYaxm*qQuLk??DlS%o{db#ZP!0C42K#>wI-}_OJa0BaWHs2o8tmVe zXAm1ns=@vjjHs(45HUR_zARF;rW)*D4fd}F`(yU02Ky&j5=zlHIj|b+pAv3gwuM%V zxsP+RtHJ*NKG&cc>|d56Q4RL52K!fo{gZ@@c9#A0Jd|p%e|n-pHQ2u_7ha zubwgqmwH+bO1n77YOw$3^9-uN{?%arYOsGb*#C362GwBy#5!3aCcYZ%FZu1O!T!}? z|J~*nRD=C@W-nBO{j0(L)nNZ!(om|w{w_hYyGb&r2K!fo{r^oaMm5;K8tlK@6oYE8 z|Np;&{iFYWY3WIOWd0!eyiOD|UR(NvdX?#2<6LY^I!yCjklKLmAw`OODG8GW1~<5v zU>G>?F@jkk8L7a5d+*^v33b&izg~L1IOMgFy`x^QFMXt2W=k1Q*zez7y6+bw#!~*a zW6zdJ?=IzYcQonUWv_J3so-w_-UuokDcGh;I!XvOL#T2hf{|zHMaHm?K3oQ4Sf#={ z8N<#NNBni!>Wa0O(T45+(Xywy98jr+`IFDPC7}%)`mbg0brP@MSzDwH+b?={&(7ki z`&RT2oBy?=XY^>-<%eb#W^URux}($bja|ObsK^QvLb1oYFCTWX7%*k|m&Kt^&8!i< zpPZQ!gE!0^Ci+ZS-d%h=W%*v>o@i!wap;pX_ZNSEif_Lz%l-7JnIpx?Qu9VDY=}%p5L$cP-C)?4oBzijCJSKj#b8vU%go1H`e{ zEq_c*xMBGSv2D}Lfui3Q$V%pIo;hsK(zC>ma?$n6v*PqkJjLegmk$)KEODh5Tt4aA ztDP&a34^P}Th}i?^8Z9dEqmO!oX%n?Grdyb@|k|tT`N{+EBrug`+5Jt;*RcHdq&61U(wj5^3%MzXvN<>~vI(@iTGK=qQUGdIYnY@_z%UelN{$#~}%jh<+`|N|M`1<`wuIRDc(3Hy13KIYveyN%kHZYxnK3~ExLAD`EGLK%h9l|EC1QG zzm`ApuxtIJd*8 z`fMNxR-tcXLnM%{_fL_wu{BXO!P-m~w-XfEx%ghYa^`Nz#rGQ86|{C! zFuvEWoV}ZJ@x6BC3cD#6-z%1DXq%d9JU83DN^-MZm1;b3+Lw%PwlBH6aZz^}n9GYR zL;d{FF#Nk48g+MLliY0IeEZQ6JEpgOwK(~v{%c`>F}}9-=;FUWI-&KX;^mvQttS^R z536e(SG;VhYdyVqdGtxG=M^uPpVWF*@$#Q1wVqJC+*aRuTJiGkueIJ#yd3=XQi0DJ zT8}E;9oyJ?RL`BefmnH7>p-#j>#bcy_mf+Pm4DMTk8j>;Y#p&jskm5oaVxxOvh;0~ zE>`)-$)(!gKe_er;@vT)lwNk~DXnJ|@BZ+V))RI%0*A-dRQTeltzCpUuDp3@Bk$&$ zzB5`6DE@NUxYlEem)pj*ezm-k_429WN=`ntbwsgHpPNcgHQ}bxQ{8b>>oMg&ow~g3 zr)Q0CHHtr-H@?(!zaC$zrDj6ug`5ecXBj)IG{)~wXgzLc-5|)`F1vODopt8K@^{lj zliT*qqKU0T%YV~!dfPWYpV*o$>-mZI^Pq8M`<_;M&>bzUCl;T1Ud2Cw!wdTmDTv#PK(`exr3{v8D;Pl)r|ayhdDT-_uKDe$?ruF0DPi)ES#k zFAen2Gg?pF*%Z`c<9Ud6XYmlT&M5DUyx8Hjee?Y@T5HN)d7GRY@lSf4*_tgr-C<{z zk9}S+_5+1-d+Vs;_nXfwEulwmFFoVLvr5mX&MrOU`)9SDSk~Uy>u4``4v%==*`*h) zJG=DDEjuq)&MA%h_;bp;%SgH_uH}hyT1W5f0wWpq_?sT*whk?C_=dKIPdvALfT-+N z-Y)*hZReIo-I-gOo_)`2{mRZJ%%m^(npavhcb`{!`nS$2?>NLU*>M!@D!zVxY0*qQ zztnq^?kx4*@;l2H4S;s?sp6l87nGiA#RcUn8?aP4;N324J*YS^FWgl=E3IT!j-Fo{ zxQ!Qa$fd0(mHnW2 zlDv5-Z?fdl(imTOPkHaCV&%Bj!6Ghn$mCM3<0qFMcIo8O!#1wi=mVlz5R;P!%n?#mxsleBzrb);N&ZJd037m*|YIiw_jO$*mYNy9=7+C)~}U6 z#@L%Fzj+FeQ9GsdtjD&t9#WBu#;(qkQYL+P<<9%(&Iym~|Hq3x8JGPS3q z{8bgbL1Fvx_!vP^{s08 zz0bzoK3IHXee3Ug?JRh-*wTO2{^F8vwVuAq-KpJYju3zRR_oe5N@c~$$6D>3|BSXj z);j)hvEK~5j%UBudStejX6DrV;f8v+p+xuWx$2?JeuZm#_SC>U9<3BcmwlT%NL4J+ zXV9v{#XWniI;f*R>@NOfFYGOT+i%s6%c~HyeMWTKfK?Y)et_|@(^~B4zv}RgR`Egk z59NE`oDp+hdAp0au>Y!k(|h2(eODDk*P*NS?Qj(lRZOnQ*|4WTBd#;@@bUl<4$EVx zd(b0Tng_*zc&YQOn=6;f+%|V`WFN8WzJrANUhAl+lfUZto?^|7jPMm#t~$D>xVZoQ zqoS8@T=n&y;x&)EUzxG$#Hr%+iMW^7|7F#My|WUq85#jkHNdO|{U2snpy4$KPIHJ$ z3#GgpC?7Q&9tTegWn7b~!T0C}1!$+ZX{f3f0T6#rMl#WYQZAGIEEpXiXs}>}hc5?U zUx2hl({WqdcmXT4tc&MQT@9y8daIHRT@j6kuI^bQ30dG@(CATMxB;@aHU3cmy`BjT zQ}g331ELQa7sD3fh4eM}{4m&){mX;7(5Z#Grn|7#M^Iux?^VzoD45jHg(`+<@`9sT z7HnSy!-Znhw~H|H>1|qy*cNVAvxU?Ki}8f;n9+5iLhK2o9g+B)R4}kq4|BSYD zUrYuNv=Sju+&Xk|Hsr!U%R}dFf$JXzkRKM=(?0N_amku+r9*)Tc{Gpr-r|_D zvRAyuavBUrjwLztAa>{Af>}X_h#mq($lEQL9p{-XFgrq_4e&ceE-=NBIShRL11MoT~6rl5%2{*!0rUymG%62fN#YFNop4Gkn(38Y4jT@0ZA!>=B8 zGuaA-#meC=&x+BnKfJnPwPiUX1KxP}#x50q5IwT};Y_E@du2WH`fncY+<_j6NX&WY zX)uEG2ybDC{-@?4tR!;)!4*<-#dIJlD5~QXOU3H=(lw7v@0Ek<0hTDJ*PvgA%|}Q6 z((({ATOO3JP(;THezroXg}2Qe((+OCNc2(k=p}P9XGfDxSbOVronQazmqb(VMJHw@ zhntN+iU^GiOEQvc+WZ4OGH^7_iTaIM2lJ7kIm=<3l+r!ac91HeGNQcsV%y`h+Zcc6-`b5+s3l>B4 zUnmUW92Ub}-X-RNgH#*+2EZ8 zo8BmaN&j4XE^4F(yZ9JOFViiY(3UK5ZlORP8BDX-8yqO>F(5!tr0WU05eAm?y9`TR zO=6|Dw2jg(eUQ|4oIh6j{A{;vSLnDBre?O%i%oUrB#c`%K&wl&7mZtm5Z4J^C>2!} zl4<*a1^c>9Fb4qip6Z-zdMtQbU~ zcq)W2FB%4v*MxgMxTKBNF1=kZUTx#D=?z2QHfoU~{`LE{dt_|`vSo|5O%r_5Hf>8(0Ky?Fa%G5*%=`wGQc*DVYGHo7=8u`CIUCIy%@ z=}bd|2@V@Y8`mJbeUL|@6nUnG%^faC72;DB`di=By@Wq9Hk%DoU{^;Iwp^VR>%v3^ zH5t0UWGWBx3&$~d3Ey~yb_+3aSWSg?V+Kj(pKA}%4anwAbBtO}fNbSCkzjY@sde(& zAPck==%sy?Qv^opBEehw8G^B3PTOi@$4ncgcKUhh?9{?`rLEL{GlG&fU*V-BdP|u$ zUp?!pXI=HI`@AexJ?qjA+3HzWJ?s8Ib=F1EiRA?82nC0GYfd~*&^2fYg))-#c-`wY|mueQu!(9vXXym~r}sRUJU7pilP|eJ=a3 zyQn>5!)2KtMSnPB!`|I8-z^)igU{d4VSA9MJ$ObRvE19xtz~(zfzNlM<-yb4PtSZ% z*1)SzJ$+aQ=0k#eQhOtFZ}NAajwXM13^ z^b?o7MS=MrZaVZpv2+9lem{8g<9mpGL+)-JvH2!jT=5~7SDd%GPfu~ec@(%ekeAZ~ zE`L5{^Zq?D50nl5!8dN+v!jC_)i-TEe{xSuPKsSn#@L3~v1Gwe@#&v8pSI`Do0u8I zOQY@^7+v$u<{p{y((2s{4ib;NyZQR^n>%jVHcFiS-sTs|Z#I4Fk$uFm?{EHE+0E## z_cuQ{LL4@1%c#iPd&`e{iu*3-^2}jdKG-j3U_w!Bm*5H4%cH#7I9_qu5^y5fCOjpH z!Kqj(Hu@cS#FpzuiX-=?@~szb+15*ZcpsNPxO~f@dy1tOaXD<-mY*IhKKdq?L+;;l z$Avl7^F7p!(he<^Finp(55BrJB0BnDt|Qf6d8G9Vr?rJhOhV*hQxwR7(>BFSNCa3 z%XWaYhJ=5UZG`G^y#s2cw{8xs{I^-zPuRWFU3p;h3u zbQK;}537JH#y%}=FBh~xT#Pf_4+;bo>DU|zQYqN*bSq#dX(l$CFtNYoj$FMuQ&XY! z;m#a2=cP96Ibtd{5V2K#}?9T3c+~f9w9E31Jy`++o)gndk_L&>#-a>r7H69N1ZTUAI(8 z`mTGrA?+Gdy9`TRoXN{8G38^05o%{dG*V}0=3Ez!`Nf-yl3)LCY#r7&^IwTLbgH*?T}S1; zAKmfc;OIhsYnL%N$NKe)uDNsT*pZnx%H*uKqpd?bDrbpH@BFZ@K*;XX;%(U)d0W0) z|Hmwj1-y`MXe$U5oQ6I=+q@NWA_sP$6rNb~Z1>K&3Wdr=i$6a4>;si5Et9feTKnuZ zT@I*F|NP0nUD+mNKmP3HoifYIdIZS7nhy8K5sN?EJL!>oH$U5Q@8;+D{1>0^@%cWV z=lT4A&ky&ukracpV#@k z!RO8B-py|f46?`^DzUq`G6`)o3mo50XyDa!^QIXDMGvr&UP^j^BXQt1Jjx+%OTrI5 z(;^}{G!2`}LP5a^82X4fZX&K$EES8ZA8Ol{)QGQtefy~Bv5DJiJENj=dFC10p6?}A zpTOk_j=X!(UR?gsmzP;*+oTHHW0qJukam94Ydh_9`3jdUd&$dp$8q`PeYVf+EVlZz{J)xvmYI^7;5KbCN03j$nlmH@~^r)dlMFc5{ zD8ivefs6t|01-umfWi_Hh=_?Acb-td}k`8+#pXdiU%e+UC&zS)Xb{hlm@gWR0Xaa_& z!x>yL5}{(`_3aJ#J;21IIGnId!4c#9{KV{dn2|7ZbK+sY>$OeZ@O&J%PR`Y1vk3-I zE;k#_0pqAF4$S7q(#_J9&DG7oNZ!QCjmyK1Hui*L6R~}admJ!*-#c`2xIPJUuuUYvOR^_LH`+wpI?#?iS%oac@I_Z&(8$o0}loUKmAg@f+AR zjxR2xMd=dY^5pVXJ6snWbI#38#9EVT@24(&1@`{GXG>egSI6EnS9*31&d#Uj zRQpr;?dw6^y2r*O);rOQ`wSRcxN(79_k2ArTtJR+XgOY=os0Vy+O>dtXb~d930%v*W-pu65+0eYpmTP|0H#+LDBzf-tweN)Tc|li3eOH238yf z4hA@U>8!Xc$XH%h9uCOkOn+>gR;lvD9q?1JDV)+BzrU7)#m~IF{FHcX)}!3{i8!Ny zlk|PyOH0QtG7dKaaO5B{FSdI&Yvp9ze8HxDcMOhvoZ3(wrp%Vd-qJ<>d+ypVul{Ss z39+@?@a-b=^K;N2aoM?eVmKimGo3ykOL-VG*pA2Eop^iz|8|XDj|(~RSy(QBI>4ca zti$Hmn-_tG629i`33$$!3Vfn}n+++?Vhq#XFyr7z(IK;_fW zjX3x5Z__j1WN;0^dvuk){t&!}u>S3x`g^opPOZcGuhq&yBWw3p8b!wAv`BU$jz7R^ z#2pEYLUe3gTuxpb4oYOl5iWi;<(pM#11#%eCcwe0B!~hm&xBk(Zm}dob3(8a)xj!< zU<51%me1rY$b3RF?snjW1&%pDHRIG44sxw{(X~i)kL>d(W!v>pk%{-nTK)jv#ckL9 zB5@%s5td6%GOnm4WaB5va&d73+C2+P5?H6;+bP1n>L#3c9FmiC&Dk}$< zCc5Xu=jJ5Jt2-@4>hhQ0(1qtg(_lRXM_(|iaoZ;cQ4*7LV`Fi8GMfT(UTH1@#%%Z!$o&!@n~bwjS-6Ikkduh{4VP2YsSmeYa?uXB?}jZF+{!^J**KlV%UsF1`TDw- zaqf|?dXeQ`+44n}?sRJZ^^ksX?WfJ^sn_?=>$^;PDo(FYisd6p$@R~}bjQ&>EOY5G z#l!H#+HEWrY;kW6Dib#tvo%F?55toUsoH_~uf3L>Qhy-+yU1qc*XO=RV`kqSi2q(I zdN%NwYc9mA);Qz^$we>1gUil|h0U86k9FF(*zP!_`qp}!e*AqUt~e&a<-_q#J|>x+ zi>qR}u+kFZ^DzvQlTtJhpZhY7d}5-^M(ZW&v2du5O-zoD)yL=O#%Dw6C3a6xlT;UL z`AzMA$vs}13HAS;wY-2OCqYcLIIe}cC@BSpGGTY-CTC-;W7gnvhH6YjmN5GIN-S4SPW`ZH4g{TQj+tqG991X9cEuV zeYgWdup)Q|FX{ek#(LU2a8>NR@?_c7Q_|V%y`d$tvU70P3&uT`Gx6kjUT%IqE@tAA zUouW^(Br@Hp;Wo*jKgHvxX}ui4F~VCbD>*Oy65KO9xzOm9Kzyju&C^{;SF6xE@t@@ z?g$L)?C#i{KqX?~HRR^95)vb4T!*Q8uZ(r)_h7;KU-RsKckXKyqmPM?tuyh#bBV{Z z>A9GTp`F=~!d#sIC6b>7BQ#evJtO|z(^4;!m4Cl-nXc$x`zQBr=gD&aT`>RlE6_Np z_iyc$guxa?iCb4Ti@ZmrRLk@5xeeX>ynppA|8w&G?jZl?=B`3zD#K*+OV6mc06fR!sdtixQ-viHb>3j6RvJ9>GqB_C54j0|LRGmiYSE{Gc zqGQ!v0=1XgIOV90Nip4%=;*QP+pagt5S&027pu2)jE_l-iA##X4p^6{#JCvTQjEb- zwwM(B0FQ>oCdI}i$I^?(tH*iW<>vej-{1a`Sv@C5;TQj6;<^vR7X{`+UHn5`kIjg} zzSTe9jziXocsmZ9RP%B5u>YDxeQ>W%v!s4jeMM)Wz|zItX!z&VUVe4@vaXbLp^Pu8 zz5aKi;&oS4=*1?lkE4aBtJnT-grxGT>K*@kAsO1_^x!Ujl*DW9>Uawxglxhw&2%xKlH+;x{>Wyg6bqn2f_wheE`oxWPRC(Ata7p3R z8=`RP_XB>`Z6T3m{91Q}Za!vgO*Li45c)LRm`aCc7~7ElYet*{$^n{E1oZ73<0Kln z1W=b;<7m3P8jxd}F^rDng2m@ipw41bGwPlP^ttDNc6-#=lJ+v{y9nqrful+nR! zfrji3381*gj032}<3OhzMG49u19jf>Ncrq>e{YH`0QC-+@A9`HO=#gVXJgt@0G1Vx zgQe)vNIz;a6)Yp?8dK<{sUUPL1@n%!<`D9q2DI@ipt3T{7|kmHikeTN&V_)cO*f9E zJu?Aym|<=~e@+KW%nG2HGmI0dhe3rx>9-jmjMxBlSfQ~A&729ew`|07=9Xk-H04E= zI+{++1$5+=xhb751YyhzKraVcf@tXDKtEmzv@pifjE*yU?J16S`spA_c>?t~x`0v6 zWB(Jz!PNX&pjV%^w4r`af_XRh<&Gy&G|wDB#b+%|DPwwbLSYd=&xyf$;&fbUsS@7&nu1 zSd&090^Q28 zhK6lMrx~5}3Q)AhL$rG#Aj?mW`OwT4?4fjK5vVnfL1Ie`_CR{@IiSz;u#!#pKBE`s z01bcMIE7~C0a|Ua2T}R+Aaq&=G^3598FgF?v}!R>S+_Dq|KiF>=4LMdZOQ#1rD@p< zsOlk>$paVc5fr!t)H#mNys4SptuxpgzncNNwl{p~Z}T#T_71{+-cN z(}2oiJYfKOhKI9^YhiThBS42PLx-+oiIvf+mx0iIAu65O#?h1}E(bcEJL<@CV<8Qm z4(Ri#&-I{)zK+K9;tHm&MA(!AMnBqf?4~#Qt~3s%-7I=F!yH5C#7eMy#L*_lFYZbe zD~*k5(kg_##a(uEm9dEYSaUUcewChHT+MOObfqOmqQ6)Iz|oQdYHo(o(H9*)^jis{ z-p{)7%C-+YY1gF<0kp6b>Sf-GAY5ZTapgthdOF8ibHhu<1+-x~pq^`tPvFTWsdFpW z80S(E_dr?PbKdmyS~O}Ii+0so<4ZJ%hw{30#x=B&bUxAd%EEDGz42N4om=9|1=W33>cI`hkwr%u-gjTY%b$AQSFn+x?F_ABXdgp67&^*O z6+@phbdsS94E@EBk)cwCeqd+=L-(Bmw1y#HhQ4JegrV~cbztZwLkXvf0PbV3F9%*= zXgEXH7@Ek?DTW?psDh!V7`nyKB8I9NTFuaPhBh*EkfApjy3No5hD;27#L#JmDjBi@ zDk`|l;P)J8WoQpWzc93xp@yFUx({YpK_Ekaa##dI?=lq4(0YcF8G4}gQ3?LdWWIC3>{epbr=dX6QIW?HPKTp?HSQF_g;CeujoIbeN$D41LPbBMhBwSOjnu zgWqxBvkcu~Xca?WFtmZ8GKSt@$i~oqhF)Um7(;@gvkYBk=sSkCFl1qbg+QI&lx zrVMRjs1-xI8Hxe))QX0)X68J(cEQ??1xIMhHe(WPD>LqadHUjBsG`|hjODr`qQh3> zTpcZ2W1h(tYCc7+HwRMHF;f%q%4^02I>v*j@CBhNIo@EOZ^oH@Ijw;H`;bQ(yV;eU$oeE#GxA-qZqu$ zI7>&HZ`o$Dc^pQA_8JFKc{9w;K$-h&LJ5`DX?zA!5<|P&!G#=8Tr`l1N=u@!LYu;?sh-$9c z1BKxb*HUI#xyj}&rXMyo){?B6ZS@ugOdz3GS@(ZBz&UUWkA zaN2#fL9n>wx2XBp*g#8|6B0=1FO@E$P8mJxkkmX1uevv+$g}g%5uY2s zty4sqhbTT{^l_s_x9v08y=X#y=g^YB{po7SXU-Yt=ok;8)wj`T{$Cm`8eSBNYV?@p z5lNeDBRwefg3(J1_}X|tB@4gv#u^O_xL~}gflV$Mz1?JbLVwxVUIk&9*}SReWurgs z?pD*9E?hGPiv3r)-kfvkZZtQjK~z!h(GhoW;W?>An&IJ!w`zk=sQ9DWSgBEvWgrzU z^zfwK$2^(~Kcn%KMmZCUVtdEdM3R2zgYF{KY@Dtmk7pe-Ri~wB@5(>O?XQVttIPNWRv+z3Y#(Xz&P zn32bWtzi_JP!mA%7EXE@78B1*&N_YUCd29spb!p zml*hmnr2k0HB3bQh0aC>(;LBP-t1#)Nvq!rXhcyz`nl7Q4i>NdqfPJ20@N0~($^n? zVr}9<6&)O2Vv3vTLuR=7AyVtr(DVZkp>J$z;f6rJ6(*RMG5)>~;vo4)(08Kt)I zcNedEn7-gxTb7|cYMPooYPnj{!fP6Gt*T*lnp@xM>iTEwid}L@$P$PSD|U7|$-JdlHrG zHMSMQBTXSXNBlBe@RQ&%yoy=kb90?%4z zvb+8m%{XV##Px%Yrmi~1gT(DlrpX#u5N&!&18;UQs)5gpH#t?1(lQ|Skyp1iq8XD- zLE_DcrZpPV@X02d27(E4CX11tWh&D^w;a=_Do6-*7dLWUC7_Z53`TptX`9Bn<9IF6Zb2N zOjA^lJf4UA+!S9uZ-Sm@B7O4$#_&z?<`UB%I=bD?Ia6IQYP-xdoUZn8YT{bD%mnQU zJV;<}^K+9R6`!<(QD)!ZXc~9`%|xqALSxD-F^y4~N>j{Xl)gGRo+=B2!)Qu?*-P|V zV}g?B)X2XLlF&bjB+9=D_Mq@N!5(7fI+H_7X9k&utLca{ub6skV8ljKcdZB?yoKat z{Pa!1n0Hv2eYy!%QVaWbnJNAsoS9FAc+;oe&`)EwnI6!{nB=_a>gO1r0k>PmQ0Jx= zFY)Jg9ucyfRMQp63_3`5mH&IDzFKaRucMuiTQKP#3~fTa2Pq*^ zhZA(Tm-zbq+WPc3%l-9r%Rnl5ye3@CJIso7Mj$j8Rt_gqW(Q4!(bc1-a@_?{Qem2{ zqpwTtg|%ymjcLg-=+sRFrTxP(CIbv4eX7-mFjIL@c}iHgc-sVG}T``4F zdABg!TsXl>PR5zp1aXFKN1o+_QR2DhAZEu;noels&4WPhcF+=7Iz(wJzB|RjBI9*4 zTf#{{5s6JdZQ5Czjj0p)PY&~<)KOucglq!EQ)f*u7G<2M-c}zm?3@V(ro@Z4+k6Ci z_W3$#il}c`_b^@5oHu!BB#ugm8cykXVVZ+IK8Jjd;?FfFULyAv zYiC)W+O*S8g!@qWA=EJSN1j4t10n4MH`;D6&8)LF{oSt+ud1yWbJB?z^czp>z=KFy z>|E`2H6hI@$}Pf!&e))F{BN69X)J8?(`UZsj-?|NcVYR1vyyRLBe@w>P6%lNY9sot zM}(*FzQf%iSzxz&?{}JibLGa?FzlXiikcbWO%=a|d(xxp&;$b-m?2dh1txJA#7${U z>FXlkrFf$-*^SI-x>{;wc0?ytaTU9pk84Rw?ND_sqLbL*Y5qnFeEXCo3>E84t5yfQ z3#0`p<75P!utYbth*CwA%#P?n0Wpyt6ukz;c{ITMk(NZsO0D*yFvy&v#bK*npdQHf>YAgON%)@DBoHpFW;uhu^u&?8=`W^Kado#giOd+*60q;<{7CGKohd)vSW`vqQ z)L5X+I#JotKu^+dhzzDaZTvk{&9ge(T%qy!x2(g{h>mWH3{`m!N19>4S3GQ6Oxs(T z2hqy0wzd@5+FY)?g$J3;&@X?j!@PyaZD)o+0EB>Cf+8rK-^zz-4utwp zpPr!}!rtDDnO~A!!xJtD^OUt{6-<>swsKedqo$+zw8|*XbT&idJH|We8mJHb%3|5o zoJ*1JE*Cp5#$2RhJcu0m=4c97->L&uY;5Hr()H$DDn8WPBmM`!WjdQmHsh9oUsuNA=)YhF84@;nE*q`N3#>B)KM&%QfB++%C8Pksp zlyOj2J^2U4xT}813xmyYrA^t&L#}8VPnl-Y7sH>b*9WrC7E8gIRnM^@!Y4id2y0SYHuqO z&1Y1KI6K+g6Ya!V$o}DcY4wBc0_f;0e8t^!Swv-utLB+ulS%OM z0#_UnQ*6crAoDr21JfU>(vQ#*Eya~ZW=waIqHk#7611n9jJ6Fa^%0aHWHC2EZ9IW^ zZMAgt7Ibv+V@lUL4YAR{4e?Ye76h=77)t&tAZ|woxfTTGtuVLMF&;#FSDG*DPK(v6 z%vkA>Av;RU)d*Ssq8a9MdtX-)P1hoc75=Uyir1Q-&@qmg7uK4HD&?9>9LrptscJ>* zP>L#O?@gQM!;#B*nf1CPLknx<)Sm6VsN^;TV9k2-F^wz*q9u6+}AP`tB)b+}rzx6J*i;zoO4ip)W6t#7&_3K-!LZYq;3 zMoq`~)~ZGsyqo)I>mN|ha=-Q6ax`$+pU}}!d(BVlO7Fl0DBlQix4l!-jxtL+1X1QE z&D{yQ(o6iY&%9n`fxdWv(wlaKhGwv(CRt<;mAuyh2Lhh#*i`5%%;(j( zXFHo)Q{@*OqTtkYmQ4{T<{pFK%4leb&Qwv_v7_3t`;VJX{5@Lbj*h-m(HPZmoInf8 ze2<@BoIpU=!kR6hUH=3vPuAP6u5N6+Nduyf{2>b5`=T6+8o zOpJR(>o3i4K7GrB@fPS8VJ<|?IPoI@*=8+NtedM`^9m9N%YVpc(u|l z?EQmznT~Nxp6_8gOFh*&S;YLrQ;G~!ZK2~e?Wyu;XUJjOC=XTeGJY{{a7Ao`7Ak)t zx~)3Ir~k$yRmPTrpwEoP-1BO*mnwf-Z<{~W$Wnj;s-inm?<7lWQT-<*K`RR)sH?%;Ey?#`a^s6ROW8Ey6OzsvP2_>r{Roc*ko?wbV9IV2tOf9uEv6Kp{7PC2~ zGRbt-%Mx6dDIhO8l8UQ3c&O9&!@d>_f0+h`u39eot3jK(GtOdv3kGrLZ?GDN6BZNb zw{PIsO$@TY@B$b}wO$zMJ)_!CMMMj&9TS>bUeS1p?eIG84>!Yn+SjE8m0P=LW4Tvz z3;J88lNpJ@lm1H=j4z&$rncmoGNtroh*8O#c#l)+!`DMBFjHidza^X6x~oqe`|U!Q z1)?Syqqg$|@)gpKVCCf(X@MIj)1HkPYVrw~x%!J;+KR|l78unsN`(_ePJahpM%kLK z?L>MT%lCB?(?18TBggUfb{1IsGR~e4VQzxGlRBfF>|nu+P(K?^jH-^{X-m0|t8}s) zQCY;1XbbGPn#LHiID0Ue3cXzu(ajhO1~c#=VjqA~ZzBh3I(@0PY}6=H_tdnH>7a`0 zjW}*48AmGi!kVrzbTq;2CBhOd7y?WYzjn94y^>(>6btMV$zM6hGC)-Hv|#mK;&RqO z{4n9T-vVP$2FmO>kfIDRbz8l6D$B0qVJ%FOC$q1`M{WA~4_Gip)Ff&Row5co(RAcG zCc7j3{)gCA{SmwJ5p>)i11y+CIkrG4!?Xg!b&&alQ_MhfGch5Jg<598RVfXKX)Hxv z6c4jtWkC|82`Y>BH);Q11WS9nKe6H=&v>*SWf@NC4P5KPFORa6>(-0Gqq#>mUx3z; z>b2h(%OEPah=sTEF%~TK0fa=c)l#*-8+#{8f$q?BSU@ivRAicwZpy{Z^0_A zj0hDPO_lxi@pbI84wEcc)sp0lS1?io-tKn4Iv$>%Vu4vADKg1`uev4QHPYZfHu&2ItYMm z@+1RNnV^Dn|4Jm7`D7ecR+d}fcS$+|r)sPRSJ%es_LAjcEwps4Wt;}yDYcByK=gBe z6{L(3v_$zr%K%lvyKc0=i{Z2hOxaYmz*5)dTfB+&za&p5M2z}8b|}q!wv&hILR>9l z5&t|M?US_4l0!wkkdB-(k8HER;suTkV(hO9EWM#`B+gzxd-?F@HYkzQ;xsInSvxEr zxY)6uykpp#7B|U_WeDTXU!!ub@4>fnUkOt@3Ua~l@#bfEp|i~BoR8r>Lqr)%eqvOUCX&`wH$^e zG!jP-SVpU*pt3=z92O3*Y3wk-u}{#{ z2C(}VCwQnOxN?*=562Pk7)om!qZ?K3jBhSpJ#N{iC5f8#79}Tmwvp_>LsfQxsx{Lx z;%W%2O2@fT**4=$K8!etGInCil)LLdr3Gs;K!XG}%Awg9yt@WQHA@l$C?-3xu~_{j z%Zuck@wFw^jn;&jx>M#i_7pzQI6-$&-3eXst))N*mi^#gY`E5vUO{>o$u`5;3P}_fENswgpjX#BNN)D$5cd#Av?k_xrNea#< z_|r=Fn~`*6doWa60ZQ@7Z78`Sr54r``GZ&4EAPg;redZhcp!lwP-B#WM?MRI6I2c!(lTD>S=|f;R9b=VWWB zDDt*K)?^?b-@p-6s~=^)srXTmKE+48=xfCwW%Av`{(4jK6ea#v40{<*p4&jtLdA+e zD`q_o6i`UF{~qyZ|C9i=%7>d-->DN@tZZSe)^IdVdn$ZOX()CDTQP0O)Nn|^snOH# zzyU=Qg;MzNp6(Qtnc_|%Ra?Ep;czRu0_@Ob!+ZLPU6HjlL-h6(cg)&ce9}r|l5(K7 z0qvTa;w6r@u|iwP3f*mpfVY(xxd zi$CJ6Uun1$3`e5XaW}m#boTvT9wI8)3N0fO#fgrVlp2Q87L}(oCjWB9lQIvY<)i>U z*rPThlt$;K#rYcIP`2LcTPNa(k5jy8_@(|>T$&H*f2{Za(3*cec)vIGK7+(1&y%TE z3?NwwK4?R44YJ~VLe~9$*wMJ(oifd6y>$=NZ@uCRDgG32DaAu=+&BBV1VKI0lAdUT zQ~pCrORD)E+0-<@*@#wM10)msbbu9p1ZOBPakSKGBiAjEcRPw&(i>G;IoL;K4^OLY zC8%<5iZG+bNW3crC`e-Du-b8kdBt1w8e#R)l9U~dqI%MtAFM6K=8-&9&di4V6@QV^ zoGLtfc+wj`A&rBhYX_d3A~ub&Vs5(IF(qGNT!e@A@F9=i!T#IW`mJ$gXrBO8jC?0p z-;-5~7Bv&Cm=0wcER+I+84i!caYzRn1R1Uo#RFGB3m7$Wt#p^>Tm6K8t`+m9jK`8E zeDhtc$7-rQMNLX=NL6EcxQk|wTH%FBP8{s=ra!m3L?d%nsuz9Y18v!%z`9T6ajASlmA!aAG$c;gx5Rpmbr3zgz}i;0&$MF48X(*^-U};g_yEhLT|DGb5=D5;E7 zrtjOF!oN&)7l?>uI?3aI0Xd?*v>a0pDvfE=g;X3+Yi#opZRT3bHAZZ?`3NY;by#Do z#QcuS0U_kK0G0UbTWyl3XBL3{H4(kg${xpg_$9831H&nRclhLVw58aJ=?FL$G9n;! zGuL27C_djelGZ&B2`F8}>QRzm$hD-XPB%lSwM z++}Yf@}V;fZeb0<2eD!*THohf6*V3NT0o#N6l&8E zNC#6GEBK~@itGBGEnko z?y=f5+*Q_gboN8VgM3HycNZJ?T4BLUcGg`~oYcQ1-Ci`nUmSR+wi=v}N|`YlnmA(& z{zyH3Wk2h28M{v6MT$; zqkjZ#E<|Q>x{Wwug*PEHlX@NP+KzS`2JrH$6~>gLaFPNOFRTK!SZ`VNbal%>Z)(#N z9!d6bDVSU=*<`8D_isnmdGYW2V6)id?0eB_P(KH|qp)^4(pwJjum`oj8+7N~Z|f&Sgr zO@mU1`TBoo={=vI8)J_4cc%@?Ixq3Sc~^?A(qX~wSGh>k#I_Xaes9 zYta7LHkjQqv8Yg6dnz8*-%Ct$v%yN2fpXLq&KMdj7BsYJVyjBM3@mAE)6|r}pwaY> zHdv<(2o<}%Y_4XNXChKt*+OL=R9vaR5Am_N6i01FRIzG+KkZz++e_H}Y13kZD+8`czMjieV~(mMbh+?VIE?9xJ?^jF55uOhxA`6jl}p!8&3(`OY)#M>UXnFIs)lnDMHd~ zizzbO*<9M#<%GyIn~6CcY&@rNa(9cNUp>rS6nC<@I^CrtL#b@_FmJl^m7<Py@3t&&svZ$1O`$ zvxhaL-!~2mApe_Ke0Vp>rs-`_lwxz~N>?{Wl3%~!0piu3HkU5qtq@UizYV9-IboN2 z2`%kDq9sMVk4o0`vHhT5a-W0R2oI^haq&KC_`gDKV+z$Inrw4EgNivpBVAY=(gq9CTPf#s`p9a}- zUM`teaA^xem!Jj9Htw&^;`d;rD7_0rZj?18F9KZvq^JKeTS#~`*A zvEd_%X4+s-s`z$W2nF3D$-7Qje8iO}UF-*D+proYDXUki z5d&!V6(y9=MuB3{92@pkm@LwtvH5A706UX16v*R8(`18z0C$EUGktb?U@`%k#CRnqRY8s-D&DsSS(*|x1HCr z#JPvJwR~iaD*KFqU+s_UD$+0bY^QC%mKtm+Z`$K)*D92md(%rC+hsFqWVQ&XXFitH z^qJ$@3&<+^&rhE+Y_K?0rgn+mETI<*38nVT$101fyKqu`xm zJV!F8G^hx}$CD}+k8egbrt#r)XY(YShB|@1xPF}bLNcl8f|KWBqa$ARL=m$pW3DqZTO!dEADqcc4r(XGGX5q&o%C@rXP>qI}%`CHpl zI!bN}MT*PklW0?WmkwQZk;?&GosmW4ceV{Ws_Ba$V*_T55qqE^oBId;>i+(TYnTUf*+; z0HNT#unti5HJZG9`Q(lio;4ZE$R&{K%SIb~W61-J)Qrj|OvdH(?UMs2`X+kqXETek zBuA`35*v&-%~&&Iax>NA^0wLbXk>Y+SS9;U@emChHaLDVB90zw5zBi_@gegq9BgZ+ z@boIldUvx%b`(!W3*O`w+&&Tlha345Xx1o8Te0E?Tak`I?O^uV^{7d}H&epIu%Fm& zl9Xb1+^a9Yn$eJERAl(jT4i0J$o+*a6G?tQ*dBsQ08<)?fxofICj)V$*+=Mav&|-P zS=P_y-V7;C&1|l&fIs)A?T|_pBkr(eDjECOvB}GtN)+nsaDioDNiREE@Rrg_Y;RzP z7;&Ij(8zvE15v_XG*%=PLU;-rd%ZtkvDuo5#{R_94oxLf;-wa<@W)KHsza8qIO=VO zhLsdP5iOumeyqbOz=_?vdNKXzgNTeEIvkbZLBTmNGX4m(qsb)?ulR_wP3%}flen{u zJ*4!7EN@|KX2&3vVK}WFLKX2D%_wRXM&-{f>{>$#G$c&Zzhze0J0nP#L+#(FlpSZo z?QW7sR7KjM7bJVSCk`o0ykqmD)S>96il3Drsu`Q%Ub@-pC8Ar~p}v?;pggYXMG6!Z zn#`dkAs4GqbidN?r!*9y9qrJ`e=o`}ShUu6w!_S=PvI!^S7Ek4ff^`=bg@IWWrnEi zuNt>J#IDNMij20ZuRlp|hp#UatL=BHJUyim?cSZ;OpJ@OW1Iy~ffB{55t&q#>pIkP zG{FuP16K zWq7VT^*M-F`>IrQ?$E z5E8HaI2Y%=MsbVDG?*elndc^P=}*Zdi(~Sdi;%G_NRm~J(BE{zJAQPll;5$m|o-^t<;^EWDr(Sj=8 z&2y)){(0Iq_Ln(!*!bZuVjjY4A-NQ_4sJwQz8#YQKP=&1sBsCea3JJug0 zMV|Z`ayzdZrLThdP*K3TKvKB%Mfo&4)ZyWhY#bUn0^Lko@C zV5Fa4K-OQ29ZNWi#>Y&B{PfCr(&L&Ap(C0Kzh!pJGQcrK^93v9o>a%I`(ZiPUXtZv zi_Bf$v^bo4&!6Tk!d7waKQ4x&q1LPfHT&WPI2uJI7(cp~<+e0=RZVM2B^zf1t8Uzg zm+Y|n#|=T5@zhHM^;wHp6+>NRerqkt{DGLXj?271z;!EFzNYdp*$3&4t9#+c2>k|R z}=2Y_gj1YSJp+YU*&ztSo5Jzr)u(k+^7ImBSb{LVTYe8@otx~@z7&kVK8O9R2U)V?c@Q@6ftF&9j=%Ji+9_b zYy5jQ;`G}Dk0+9ZwcL&+q}oIYi3W?BefEo5pw!YsGM;Etda%&F^bOcKq5JJHfn^Mw z+|#lxsVIz5ebBMO4y#g<oXstTcw?rdk8iA<5Slel*&W) zr*(`6(V<{C=)WI-5-VJX?Yq=KshWCJ%xWtNj&cDcBX3aA#mloI=;6swNY8(Wrd27@ zlh6Ffj{S$ir(prfe!l%NavZVLWpY1qf`=$@9QT(A738;5jl%eoJnAK-{3`BRZTR3p zT&6n33RVWe`%cZX40>pjp?SIHJDmyhruM% zV3kAG*KT&kF`Y5mQH0fB@U$<pTbQNz*#&`T7tq`)r&fSS`QifM#RV_% zlaqCbBy&@V?`n9msZD4H5>inS@RQxU4uxbEwXZG^UR}WNivGg7woYb0p}>U~=J?X! zpRlg>%5Oa7C`Yj9BcFKk_yb*V=%}f!c;*itlmG)s-mpV6c~ix(`8a%4>&2%3#hPit z5OfXevvu7agQ$C&qwW5!jyXDpG+TUmIp*?;_4Bc-!tFf6&4FmueWB3sa#S|W9N^Mr zCmK4+b$7(mjU4Fmh2>z#aCb}~WuMDhy6oivu`A-W8-i3Ef_8dI#D;P^?Vkn3Bh^53 zIJm~mbtxVS=f(oA&XmXkD^_c(gX`>1&WYq!V-~qFC`Pn$Y|+vCmu-do{?;VwR^=*i zRU2+F;I8E*E^w6lq80+Hof!I(A_tVLO4+euwXq0|6(~-1aKML@JaS1H`81=F#AjR3 zo}_2By}9o?ah;=D;rd}^mT4G8U1<#KIodIY9IbFAXh;`FZ!~BtoTPrGs{{VO1gCX# zEK)&&>(o#*h;_WBk&ebWVB|@zMG2108W`8z0lAi;$C4aVRFGm*9A|Y~gsz9fU5Bq{ zPe(X^JM?md@b`iHRXnq|11H(u9R{Ity+Q_!HQpsuC4C*8P=oO}_WRib+%*z>xSu0W z15fvNWNBdPKrV-5I5)^)(9yHQFpTQGW9CE7A?VP`5iX55Ar0OBrtluhT`}`C3?#g9 z_7c5)-enuTKHSk+$9NES^c@MJdAehSii@X5I$+Q-N%S7=fYTsB-!VK&B>3LLj*Tiv zm4}=?#g=i7p*nhRI_i4&>9o}oP$2zWSA}m+;QWAV`AwbVcv!{PRba>B+sT|Klf~u? z2X-4I=T3|B0r6gzV}gdu+%j@Fx1CPZ2~V!|q49ahs2uA6>f+YNd5&1TAae_)_jtsy zPy=6n)UiqflM5UlX`t^kw35nucDe&gBvA$o5c$B{t(lI8XytO(04XSR#OW9h61yLF zlxSf3laBQo_{S`66Unf1wj;nz1wWtTXs>|{=Q*M^uaoa?2-7+e)7HW@jy|H|ImaU^E>add4r*Y-C62us_{mboRt=oD%#p8w zKP+b{;AF(Sl@9nHGDX>#=T>uL?r>ner{4Q@4^d=8O@)Z0m$($bg9J)}^d%U#&OsV@ zsgy+np-siommNp6&~fV>Z);$SjgEmDSoo?VLj@`Cv?EIBHaikD(!eqY){JH1nOhzG zw9o_F9N07BP(tB53CDIvv_|T@!+{kP86oLS#~=-Sai;@E2W05$ySNP`7_r*{cX#n} z$mrkRnNvHtIYo5#9qgvI$GD9qr8ZhD}Q+hj8Xi!OZvNx`ynjh zEUo(;5`+~`HFa4gnv44!!*szSei<`}O=sM_RcB^IAXL1g@lt&TS0_cJJmL@O#BoyCGm z$8a^;cjqAJl5qBrvzJKuip$d{+JWQRVWwd9j4j?XjHCA7aLc8*#QLRg9DPuc6v$)s zdB+nf$ZDvOn0A3hRg!+ZD4UD9Uir?kT?y9)nnE*SId8yig zr4mVs{NAxd1K%_9aFwCCW(PLXCHRU}DqYS8aW`oU6%NO%8aPvNtku9~H(AnUw2E7f zu38Frev}%VQ&{#hPco7r;#Wte2A2HhSfPT1J;@fL|82)5jTHAM&nz;+*1sHuD!9L` z6Dmdqp3ph{wQNicoKVp+bWkIwtC=brJ7FHk&rxU7AhEDf(YMBdfUnkBT z$j}6T=V*=Ll>p~_4eSu)+@OJ9HF08dNAdOS}C(0S)1_X{{6Y+j)=Nm3c=~s>v zv8SyQf^_U5_$>0_%ct5qaSvs@%V#mQcS08f4-(NGozO=TyxPeL%_G4*(N1W12|nM| zc~k?(baR$#V2fBMrWncKjB{ecM}mHdPNx>?m*l*nfqx}CuW8`T9?pvzc)6Do4w#H~ zxHq?%1PfA~FX(7)e~d^x(K(9tK7dvTNOw&l;SV}72LcZg68$p?iloaYI6ap~IYew9xN{JF({_Lx+uYzORJ_k9NMJfma@K4%ZlZk9A(q zLOYFj9?-y>6P!Q5(mD&f6VHf_rq?Hl-Lpv>Uexrp3KJPrPg_@Q)r)c2V<&aX9 z_mP#((;7HnwR57z@Xkxz=A4CU*X&!%a`;v*tS!8*nn8!ByUeSaQpnQhVhiyQ7#jiG z8}F^YPMss+4yCVmV!8wf_4}M7ReZC-IYq@q|5v$)OcGr-J24-r;1(yQ3<)0F>V)wt z!DX*Ghq$TW_pkE^mZ6K@a6-RGu-Q&06x*d~=svvex(bihxO(pJE@uxsDfT#e&U3dD zODPgOy2lCKCBcHd&WAPdi+$YKGPL+zC)`O1PCDS+t$|_hIbj&d(0vD;K5iCRQH7VCu+Svvca^1_L0UcE)QEnpzS&lMQ^nmo@B+sC-Pdw2Tt{=1Ty_oo z{?$D2fosO^{u`{xB`%GI0Y)b*e8$Cjlk-Cjg!Rjvz@Y^;=MF7`ocgCYxX@MaBU3!b z+m|LN$ZyvnEDxSg(EJPrVwKf75J$kcs~N}apDcd6BrDOmD?;XID}AyYmYj?OTJK?>_%K?oVXDWG%8k{wHS-P|JSY9nPNd z{YMqdX$%SE{Fnw_Y@k3sW$5Zg3T9^s_Hb9QOeeuCPi313hxn)-@xn!9{L81eZ1;IxMF@!+&r`EoE=_}O3t@{_@7E#!N_ z;N-`G(}Lwo!D)W-nc%cW1-JNVT@d+&V8r0(ff1kI1_lp542%!I3Y_LEp9D^8Am0N9 z#%}?mp!^UpqVp@j2;?V#5rN3fi+uU5 zU&Q#8Kk6gDC>y`_eFjAZC@nA5Bq|XU-eBJA)oX`bbikljmMAqf`wo5MXT{M zzKF+f_@;Tt_j}P6{CF>t=9hcHiD!F@n8=UzB9ve3MMQqC7Zv5VdJ&%=>P?H1uk-@r zCwdW)-{(bT_;FqY^25A{&ad(!9zV$o7JiQx7(d2~H2Ec71oAVyh`?{~rg_N+c#9B` zpWj6(`0ZWr@WZ=kwzK?klP~V#!_V!4#&7K+QGRF_)#g`rLE|TOLF4yzLF31DLF1Qo z(>&#~x@Z}GQx`1!pf0lK$8-_MFX^TgHJ0z_f|Vc9#fM+eMF;Woxro7U=c1(ia4tUl zYHnI*`D8AN&F|%+5%{rObUMG3o7Pgkl8bo!L@pxm`?&b<(6^n}gOog`ki4&&T+a zCxsmGFeM<~Eh_O-5_PBPgrCwUlw}m8?`OJ!v|dFfoMGfOEaNGy++Jx&KSYm8XwOo? zX^$S?=)Qt6{AVow~%-*LSR^(R?4XB3& z)x(S06bVMFU--xooMxS?34N(xwt7-OL-DHv^PATicdB?V*ZVPorI ztlFuozrAxR#Gsz9+qK+y1q-ysz=PJhvn779;t^tRu7w64`bQq9C$3C67?{Q zhN3z|9uLgQIR3L zwg1)T39LtKQV(lZ4{K2m3$BNS*2BWrfBtR1b@;hjp!o zvGQeUU}an)weVf6!5okKR*wUbr^b?k#*Eftp7k)FdYFGbET|sV(uIk*7Rm^nZXGRZ zsiffZ0e>#h&+11XEU^Oqd`hpWpDV!%oPdU+Rfuv%=ci4aL*&G{k^T%-+9R2^VajOT z4w@6D^lQpLPQf!w!MB(bdR@2=Gt5b<3{xg2|0OB%_bD*XZBQ|uTY!D5e$J~Oo;(of zgE=>=U?1g$EAu>f(m>cXGKVXRb*E@Xgfd)LL5CxhR(?E%fcBG}`K!qup@ey`k%_Q_ z6c7o<+myi{6YY*v279p12hB=%fa$)c!BNU+4{ZWpORq&KgWc|HL`sx0O!p_<-wHhM z(vnunI1g=Jf1OONP~)T2v$c|~+e({SE7Np)$-9jbhHK*;+aL=zGLglPG`Ee?O81u7 z&_)T>>8_G!t3>;;?gp_xRB~2CV*3aM^2JM+8 zO-^pw3&0BAf?bwZ@D;^%P@;7Xn$khh>(0>X4$3^;H{{(Bt)dzl1^uC2vkG=nkB;E@ zou-1+lxY5roEAAMe6^TUYyDM}07c6zTP65K^MIx27I{-BkeP+r!(C`E`gO^(rt zPN@6=3h4~SA80^lrB(YcwFE<_z(yI6fj|AGvZ2Cy8ZlF#nzITNTG?4?(Ta^#&b;?x zum!xpY^t485D&eaRdAd>=9J&2o1K*&x^vVe8ZEe=hDR%UKi1JmuO(D=R>7yVB3cGW#ieDh@BQ@q%&vVQ#H2On}LI30h{AswFnaW7tMG0%g zCNHOW`%O^(+{qNy>d5#dDDtcVLDRb^EsEF(X11Hh!1mN}{ONESf4ZLM2&_I3p;G;* zc9%4b5y+-7K5QD}^Q!t`%NQ72#`y5?$LB-!!#`tVfKf7sUS7n&A{0!1hG)Ombsq_*J(n&N(AJHIP zM1vg1204rk(n2)IL2QuTp+VYz2I(6bq`ha5o}ocHh6d>u8styM7^G8ZkUpWI;246r0-{tuAe~~O9nX#4bty3NVm@*y}qT= z=`%=+#vp&G#ULF%gY@?d(%oAsy*-0;_6*Y3Gf1<>AU!<;J9wK@Jszbny(*!!t++&mi49gS24`(z!E8-_9V1fDL*gTW64BZIDi# zLHcw>1}V4(DYphWLm8yhE|o&NRLbm9DY8qYFSk?*>{2PO1}Uyfr60Fc3hPoSt4pO5 zw^R!1QYoiPr5R(8Qo2+M=~5}9OGBiLE|nr`kP^C73g}XJZt;30BZ?=Wg29-63i|n? zfo9=XWDCkYfPS>t>%NW!8)=_j8K>KbAAgXa+*lNoyL}0$`l%({;Cof6qhtJL=OuIYiMw0RX zJ{^*w`*u)vvN8#uqsht`e43>wWAT}uf~jl=eUKtK@1!UXM(yBAHTe>M-ulK>DI?Fo zYO_>Pb`NAyMLT*R=aY1zhtkXUB*$rR4Syp1b@X^I1t-&D{2Np6o{9%}2KGc%Ptxk1 z${>8cRX?qIDGvh6Q$KI^QicHgu@@TbBz3=EMp$@1N_Ub@-;d@yNlkjAHBM4NZ&ctU zRrFT+`pA48UT~^IeCbXvr8Du5Ie2JAJxTrgC|z_n>G3`&>OLyzg9P@GsgIJ0&!AML z2%nRw$^v`_^u;>ZJ}U34Eb`sQwR!gir1}FERx>9ncs6-;aBtfDfZ`6G9Sysm^S1n zx<;=KQ&PcwWf;Wv8buF>C4}UMqf4*R(cuv3YZN#F!hel&N65gPBV^zoYT$@;^c`%p zbVNTzhtg4xQ{+Dq1vy0pBf)u!J{YNtp*?+-M$~+iBo~ZQ#`>J%X861kC2RR5)%3?R zc{QV8ww$6?qm>MNo*j*We2QvDqqR@bgol*L_`LTJgzFUfjX|ar)OC#VkdOR*vc^}D zj-Qb#(~wR;T3~be$n=>p5bp{)KL-6)LH9qbysd#2kD{7%9Hq< zoUF`J$$h6NA+Tj9O;H}f=lB$mZ&PxH@&pCUM(jNq$}AsVPc5*wbi?mgg;3zrN-V!% z+y{JRnUcL}7D{)U3|T1MZPH~+Y<4!<^)`K_y6CR zfT-Aw*ezgpcVY)BV!{f7*tvEGDsnIpR8+u55evn{z*Yp?H~I#_z4zJ}{9beJ?)dro zc>Mm^bLTl{&Ya0Rd-v|lC^XYLZ)_vn#%Rg|l?$Wc;SX{dgF?R}*Dg!=tS9W$bbHo$_>fa4^{V$%8p~r_2W!a5z0Fr)$k4*t#atgc$j`i z<2+41x|Pz+U}Z`(vhp+yB)>CN%uc+c4qhg|+MLk`q0*&!4)cgA))GOz6JwE#L-X)p zMcgS!?T87%xxHfzT07X3*N!6%LV12adNl`5{@IZC@CJCAPCE?fW9ei)0X36O(TvO@tBvfxI)%Az5RNCUtp`4RB z_9KSU>AcurO;A-I)XncV?Svi|F68O+G^U%rSWi`FM`WOIKeM4E3FxX_BX|?ufT^ zO@)Nc;khO+A(R!#BK}M$D|gsOo&Q)h}8-A2Y%) zQsxOa_1`F>H2g=mOhv~nT(%P;!05Uu)) z+!o>P@QY3@;2bQrM3shh?VGdMft|NELg5*80d)E9&N_-jg`hhh^wp z(d4!q-8Y(UEay;@6>KA91xgxCxmI#$!b;Ql+U&=OTd;T%ANpOY%xwhqUL$^9F&x12 zNFGzJUM6RKkIFTJF=WDN^eXhFaC*54x4m#0w%W7+;`wTZZfh|Ah0~KYruh&<*K#On zEqYxzZq(@e;dEskhgt=ozl2jv0Or7Os<9p;A)JEOqw3-)X1!?^M7<5Br4X?j@F*aT zT5mM1g1E8Kv>sx3peY#QOCYPv-DFyWP`)4*n}bY*kPDfXLBx`2B}9i{4&4lfyK&TO zGgcUJl(?Bgu3JnCtHp^@_spLY(+NKGN(m~6pk66qBDz$;oV5O(sW=tfYO0r?(HDED z7>nhkyWKJOVCTcCcvOJhI0i!~Td|T0qb}Q6?A(T45=K_rS&Z6la@Q@iDFq8uDku4M zfCXi{sV=n2??7)2qnSJS(Zf?+v<^WB3!~5w^t!O1oosdRPBs^-i_)R!bYV0r6lLt^CT{!H< zqA;1p@5Ze>nPPV%c{1hMgVjee_1(j9TlZi!m`rc>VCj%dF5xVU;V}J)c7(&&CrS%P z?w`nMFEl^V^u4C$)jo;3Y%vhUKImqt>N~?^RY!7F56eleKTy@Cy{OViD!vbnM$*82 zFcV2T_93T8%Gd`lBB|ki^aqm>sb_g7tDFc^qM5M~+}=6iIoHqR#*x#r-Fe&K^Zqh@^7I z(1TDn$5`{uF)ZgIsZuoh2VgYka66jg${*+QdmrZ z6nYBdErYU7VJu{j+i6rs1|2z#IVFP}&tU$`pe1K;Tg{*kXE@z}vzT@==;~R_<{9L2 z&gAMSehoIvEsBS3fyHu}T^&&ZLEY693OxtsQt0D3EDKYpSDbj9N5OFn)8jB0Q>fi} zIG#dySGPYz`gzoA3N^dHaLonQd~pGdltNA88Lp0J_&gqMoI6~YsB_$OFPe-8tWS!#a+TJD}}CJ;`~co zW^cSNbH-OLv!@PMSWLUZIbObk4$a1_d&1bU0$B1S+84NK(09Z5ttN}=D0 zT&sOeyWR+(`ZeLjUQ-sOrfdJpqK3c1~5 zoBQrz!b_n~_b`E^P|N#lW&M4I&+c=&>JKp0pe`OTJoA9-slY=vJzN)2578%6D90l% zgWDsva_AAh*`!eZ$EHEmxboheM&*UzjR1Y5ca^!HJM-=- z)##ADk_S(dpFT!4oF*%BosA->OV2HgqZXMV>JZ-{J|s< zLWPs@9dt9bNye&;a?!|S(;y*Zld)uaK#!B5^nmK8!089HIt4{|K(AAf#{+8n6lH!u zE1qJMKM>A+&yAXVRc&=p~s#*{UF7bJ){`H0;>1vtR#W zWa`?#Y*9Cn0U4wn9yNt2(W_A=@2b9k3YHD8zp*XDEw ziy__i;uc5zOGrl&Mb@7Y!wZ{9Y1rQYdtOwO--r|G;|uiEMC$(%lV&2tyu=qJPIR;) z5*@+8?5UXi>|dL((ZMTIeyGfQh2EG*Nw45bA~kw#8m1?RuZ9GDtIGsM#O54%EzT!W z=4*JJNS)qbGD)P+H>k`+N_%7KrYHAtM)F*ZsX{vH2fJ_7`5zwx{x$W}wK_C})|W=) zCu%WZ(4dM`I~BK%L~5AIUad=I>*=Xj7ADfrx18m%w-^qIWc3aME|Dg@Lsxl3E8k(n zJfh@xXyQlMz6f*MBbud)OaGY~S?!`9|3Nc?N~fXAN6^?b43!8vk%qAxLB-S2Q6k7c z9b+qkE~lFoLv(wON{pZb?~yKxZoWsC&mzYRjEXGs%|J$3bUA}zsZ6MRr6!rC?zP2_ z7KT>%vBGe5wWSH~twB)lOX7tZ!vGN$-}mljpb2@KhC7*9CA_7tnK1vBI(>k_Jv8hB8uv1Xv8R*rNMSAF3)@`( z1v63#?SImx z@1|aMKSf02rI<_KbR$0Dee$8awuMQ;#t4pZ9mw0F^IBr zDYeP5uvayjxEF)_+{_9$TjdDx>866l1zGTbgf zlqqTme(2jjj4s$K4JjZ!qj(W>XW-b_VTjEhK@LTfdSstG%hpn0*e%2cOB9A93FKE8 zZY5A$VN`qq6)D1@QAJqgWD$6Gn;sWYdR7xZaTrbEl!^ zoV@(-nC!H9*n!(#$!qnL))iG;tg`7sQP{eN9aELw5YEL=wtFngt#lbp8bR1;V>##7UBri5h9to z3-O7(govbN5G`K_ch^16`9JQutdvzI-Z(JS!}|t*a?ubn7d3-k2}>!IEyQUmR}LbC znhUX+hCqm=-;8of*_OPZ%a5Ox{}|%+oL(4SWi`Y4?oTW)vh>(Qx+^R`B9joiD8BEdEvrntx?re^7Z?7-Hk^r>O!vV=M}(zdx-G;R$`s-f z<#U8MKsAK8OPwKF9v60;?DGDPonh$4W;^1A219PV&hRIfTL_tB6DU+zx=nFHJf&ws zWYZ5J?op`<5Idg|x%=FvHzMA4d6)G!raqU`JnE{bdS(y#dv5K-3;${_P zJ;aEr${L7_s!AmYq#B0d?o&-^4za%)rj||gvl^!SO*F7N?wy+`y1FtNqGS!l4Pr_S zWjw^w8n|<9qV_d$Gu%YGYcjN}r5F&JUW;K;EoCf1t!i^9q&BPMt)o-`M1EzdV;!Y7 z<{1AvN)3o@bui=arI&Ru9quLPy11q6rKxo>0q&)Xb(M|~HcqgymnJ#E;$FJvq>O@S z=nQA~(mH3>eCCYldN0*>QA$E|bW!@`6)!&-yprgyZ4oT%U6hKL(C)in27F01>cN{> z>Ru0(aEF)HX9{b;NVEb!+S*G&BEN+Y}Ci=u0NrEUdZ zk1>J#Qiq{teoUa^V_D$pykk73czAn^3N)y6sfprc6@+DxQkRA`RqEq9pedXVq8Cj$ zrfW0B$2v%qduw6rftFmT7~OA%dJUq(Epa?r*XFpp1ks0q9Tg7<*G?=VhbU#}Rwtz!(90nxbBoUC zuSvABv*HVp)fxRGi9&}e6=+!(48kNz?xOfWRB%H=n@&n&+R{}i2oTYg4cc|X07U+7 zN+k;FhQ?2#-)?BzeBH5BN}{&Iz-M*G5+RAAyJI1jL~{jd(E~F>61^R!xKi$(sK+Gg z&=bpmBns-uT0eR!a}i1(j%DwjUL4bOgi-^?PNO-J$fGxAfh0Psi&Cx_f=M*Tl?#!f zi(!3~Nq~ucl*tf3-BH+aec8blBjI35U#vlrX#Pla9q5lBjflWidoZf5iw)S_QdQPJ2 zBe-m66=nQiahdyGjMe zV7i$#TB(BToukotReCiVO~^4-by$?TjX~vdOc|Os1|#4orHoO!*orqpJewGT18nKs za>bEedMj-yz@d~q6hg)-%OI+aQ^Fw<$0@t@7hNhY#&nGjay^0+&YsFpy6vUp&NFeG zZy?^7&E=`=hyFoNWeY@CFJ-fyti=i>!v{Gg|4%ZTT$4qjX$B=2+65;l8z90aV6Hk! zRlRWwKT6TwSP~qiMn1}Nh&Uf*2}H+<%4*$i2*EBsq&rPLvoJZoqEE9FZwQasm}6hj?b!^S z=P=wpNAW4e9+kWZkHiP=zq!QySG?+6X)d&`Q@~uM6U5`WaN|0)p9eRtQ|vrt4n!j( zroQVGVN|9=RGhEOgxIEw;tQ1d2+;zx-E}IpPzivDSg5RmXtW5^+jTmzh||?wjKRhk zm7;Nr;o*6@x)_7)Jmpz}DmYKmmMH!ZX-m*4&XdnlWg&#J6cfmK%C`(FCXMQZ48!9MJzb%crlQL+i@l-t%h5h>=;(4x{cp&51)O<9XI3cXA)q&2 zUm}&Ikt>mXEQPF8wn4O5r9?vfw+amxOB+`!hwS*v+q4|`rZf#3Go4kO=;c~v3=K^~%^ML{tEVT`cum zuk42Sww^;F84_N_(3DLDJ97NI_6HLL?zoi{*%$ue^8k~jG-TNFi;7FaNVTr zgitpj{SOKb!r1&l?TF+4B_%8<9xsxt3g&Q~&FKC==+0)8`v>`K!2te2)>}EWXRET^ zfxnjKss_i!2YQRmn5ll=UZXvxV3EN7tiU@o>DzGUdq>T;D;pthZ->!$ zR4GDj!~};NOm#HH8ane&VCutrK{3i|h~OAy zO=(Vn(eh!0e7ZYW&lYJCzb!9%p;q%ydy_zMH>B(@uDg^sPyRPQNXW<}O0 zNi}0JB?MArEFL%oQg$o~8c5qup|=N8x6>G8f%N6Has*=E8HNMSDu)rub51z`5q%C_ zCy<84DSPynev%f!r=&#`cTNeUbusWikRr}2`}A1nC5UxiLWM+Z)ME^-K(dNg=7=XG z#(0JQWpO=T2^8Ux7nNl~rd?Dv3OVnRvO&ngmleF{lbfP0>%8q1UH|bFg#`Dzs)zGj zQ`U-b&^2YX{(ey3P~_ehe|)^A%%L60inWf<2z(}#dLKbIx4)|Nq?Q{Mo3i`{Qq?fT zi4Rm?o{7E_y}a=K2u9tnD?RWyC+fP=si1fn2$kGNuVh~ey{Y&X2;_Ir4cWVpK6@8A z-BPBJ`*S6~{_4>E{lNG4)6Q#H>bXYM&P7gll=c)5qvWCwr}6OY7X{qJNc}~XZz*g4 z=XIl}QNnw3n%g&(c6u%TqV|c(3aH;oMCbZNBX29~Ae7r!Ec~Jwca#P z??jz^K}kw?GM&Z`i_ui;0me);U3;MHfEfP}ol=twM<>H(=rQLHw?spK=ve&KZb89IA7 z`8-E24=0Bg$_YEx4|oCx0-oqM49!L4#VVMv|)84^_II8}iavmb> zKP3)gf0}X`!Z%&H0nz-uau1?F2CLl8P_80GnJnBtD0dNZF)0@yKAMzE5GNH5%~F-q z2sP4_SO`VqP}E1|3_@O?@a==0s6@vkW~X_~d#%2vEx zgGp-OMq4_ZU+qpI7n|hGVTh!{HmZ07Xrc|P-m_7gBUHc^Wsjs8w(1y&XSOItBz4HA zdO(EdW0=p56ZqPx697}}7`DmJaCd%HyiSy>fI1RlYyp%zlCBj%xg*J?pgK~2N$AO9 zl>5nI9FL;*ri_BBc=73bLC(X?ULB_^8J0uIu$&SLL#b>bwGfo*7Gm#$A#^2vg(`Io z6)d3kF6`;yJuZ;{#A6t|9*GC9#{my&?>t_9Q-SGXVRqQ52pW>#IO2Dz@Ii-bsTj{i z)h4#1rj8po)*oMiBI#EV)qpHLi*lCtimKiSwJydL5?)O8N2pYBwz#CYItih##nq`0 zJ|)!Y5UC~9*$^Hj)p-yvOR{E zQKvw>tb;mAA=kR9fBqEVYhpvZl7kOgUmU(V)=}F~Ehp6mIt`uFnGlDZEULAeLKPo> zREv%F_3`ua#&Vf$wQmN6_RVNgJ9T)W(W0ptFKQ0Fs5u?#s`jIiE|`2$Xp)QS2l3iP zodz+a9v9efIG{eRYcd3Rd~{Fi^fdwQ*91)5-=IUn#V$fjV7}_3eaM-%ix0 z31a6oR0|?@bwf7zqao(c6#R`zovD|0O)u!;<4+N&dt=o`H{{X}kuLp&q0xVaR|?%~ zj4_Zxotkico@>H&-LxtDda$WFA8}62xUTj$Lr*|+G*=fv9B8gCfvDd?T>){ng}NG| zTT9lw)KZ;;P}^4OQiyA<$l%x@`Fz5}bQ?SPS+Lf<=ZeH%Jr$fnTUj%>44Ck*El{0T_)G*{&o zQI%WhMLV=qKvy*vP3_FJy{xl3L9f9}TcLsvYEv5hWoLJ_nTq1U(2w)gWNJH~7D6n8&=-%)s6fL_~Gov3FoZlnggFws#4<;U&8-Ot0{ z!v|Ab3N7r0@smRFy2#NT^A}#j>(14tcIP;k9$X81dZ=@CbLH_HmZAJ{(VphgEa|Bh zL%OX!RYwR6q`COn(8*P;KyJNM7hJFDg~mNi*1cIQ>a8voAy>7kuGbqsFB)Aj@I(6qk2=0gh!|b};V-cKAy($&yu7D~dU{VDebpBF(}so+ z5BjS3LY0eJ_EUQbxw@Z()Yor zicFe5L|q7xH3a=PljaRY-_E4$p)i|Cv)x#Hb;E?jHfG>$tF_~C>`=@wwU(`Ts|=H5 z&P}#>msagd&LdQNOp=MzXE>}R(!Jp@ok#;lsH^|y4YZ>b$$gqyisrkk-SfG-kM{8P zc6S%4hPh)XB+?^y_=VTkMq;$!ci52(yL+J76X}u%8Yz)lk3yeIq`jli&l9QeXm|;~ zMx!qzQjRgIpPpOM#`vYRXk(dMGr}=S_I7puH_yy5Y|wKoX5~csHkNalG!8>7kzS0$ zAWkH&@oHrV6nip$5YFL=KJbXTdtw+pq8Lw%*GE*_3pd9{v`H7gz0^twRWzWR>>_`I z+6v-`K`jY!-GC7qL4|zP6688Tt&Qus6OcH9-cG;_9zlb>QFRgY#2clLpn*QfG=i@C zsCyv%CaQ}ZB19jXHVs7+ALwH?6DCe{AMfws=NX9q&cm`7exjc3tG0xQ^+k4BRNYVY zw#yO;>&`>My7S1x2mK*?yIWprIZ3S(^aw|i8M4S`5_~}7NmzVl(WXh5IKI-)Nig-5 zn)!1m)E`T|xAe(hZ3IzkGNz`tv~@DN-`k)msJ%V-*Ns}8LZ_$=aQ$csnr096ovJQ? zcrX=H(}n4u2TU;CPM z3hvK3MK9*5P5De7T0K*>hRUXya4U-bn~9DQMXs~dArKL>IC<{bSe``D_}N&UM$wts zxT8iK9;QTWj-f(J0Bx2irOz=E1MUngY`08dWSMxdPgoswW)rxjQ=QmD0W}S z8H6lUha>cBp*pnGpZC_p%WGm8J{6Bi0u52*w+Kc1NjDZ@Qu#^Ni{Zvkny?t1@+UoB zj7s=Pt(UOay9A~GNj6K>3FY~nwrN?S@8ARWZ1Enp7oOpI`A!Tpu(?WfVkuhx7~NT_ zx|BSokMNJ1c*T^*$9K$FZ_LdcTa@Z7Q=8#^1K?lsJ;?qh^Iv>F=@q9nl5^;!pbt94z9wWh^G>(QLuQLrHf~) zF^1yl%WAbxF8l)>uTCnS#mQrhS`n{HEM5aMCn$Xly6_1awiXFbV54Ky$O)>o4$H$6 zv}zr?=?PNSsTKYweXRi0(?{AEpmv5x3BWw~k=)l~MfQ=D^;o8TquY->bOtM0&$POPgeugq1OB&#-JH_$YUvvE9|sMt&f-6W^Gby{1tO;6WYW? zHG|Z)5Z*x;2qsDoQdgETi9y8JT`=k=n5G6} zHabJ+g5l8_%C#ByI1V{b`^{<(yyX$F8DAYQQNm`_!zF6C1*tC4jxCr~E>YpF7`&Hg z;a1Fcm+(Iy4vpM~Yz|P^Hq2TF=+!nXAr4UA?I`L2y0sm%-2rO118bE76uSe%_yE-p zfw2R$Hw4vxfb#Felz)H%cB<3M@+)<}-=i$z17*oOd8&_(hyTn#!!xQB3YYJaS15-4 zU7}Ew<1W1n#aOvZjlwW<-le5s7;1MZDGa^rI2GB2o6vD;z6*EV=otF10;G z`Q2(Kh;h3y43E><-58t4srVjrf#WoD4=U^|o!Fx`g;4gubON;r$MPY8=7%Fe0zD2# zw@jdhd(kQhM0?R$66ot*R9OOz-iLck0wwN4DHEvOeikS8qa!6ynFv-{7J*4NfxbjA zbc@8dKYq7v#b~^@vSKt{*st~?hbT24lxjwClAtKuBG?TFN{Uk3;JumT18O;HbO0@Q zn+6?#3%4oe0D3mZbio@nl@6jQpVF{{7+6o~>_Mc;rr!rKIcHOgL-;zyq0%(@5S9z~ z=;R^H!1pNg5JuiT>T?*W?%`oDhTKlde*{&!le!#1HaltG5e$HxWPcQzJ88;M^buaJ z6eaa2?ojW^;TU?sds=r4^V$Y_c}(pIQ8ya5MGjS@snM8PWANk{RUJclkE4=eX!dcW zilL0-sK945=mee{Jfkfq(952YZ4B1c&uC!`G@sFz7?dTHCZ1MZ$nzw=Z->&*YVO+1BG4yApk(5|7B zeF_V_P;xm9x7d732$-w~0c)-hFf2V0*MQ^-X%FCF=*R-;XqFs+@WXP4Bydd!f|c`2^Xwt-asw_1?O z=2={p@?U|ile8j1tw-apV8T907p|ylAzZJrU6}7i1+S@5>!|n})ICwHPqsJIY6Wk=Bvz4^ zi0?5SsZgH9WyrPG5*r#nU8`WL??Gd*%{CY4#0|B3UXjL-Y(tTWc(zslCe|G{DC(vf z4dHPM-?MK}<}HkA&Sr?!zf|rQy4Isa++bO61TDXfuJN2qfm#dtavS_G1>9F#(~3J- zIv=LUJLo`%DeJ!4kQ(1bhdE4!yXdlqY1;#}BUQVH5p$T<-BUMPi>+}CAvLVYYUZ}; zH2A*S7%{Nr1%dQkAdu97JRV@oar!k7NZOC)K197=z$@yg_s0*hcGylmQ`8pZ`v}8s zJ8gS}32ZxMKSCGXPO~4QMYfaoQ?)DgOG2Y=r>#kNV6mNQKSLMk^91GHPKTbTn;{B5 zhnXeG80_2WWiomlTOJPqYmMlAidqKOFjy>g?9X_4yM&FFoS=gQ!mu<)?#BI!&qks?S2Wgb?0jupa^8Tb&rs*bp`%I%P z@xXqyf`ChM(KhffqXIRsMl&!_+`6qm+YCiO{#0ABbEA! zn#zw{&<%h!K5b=SrtfDBu1QnUg8AN%1}n#*7I3+2!%=vHdbupC-9tIL#8 z3`6lr4y_8VvvX+Ut?_@ne+<*Zt?A{#olPh_r`8oQN>0raVn{A+KE%ipS|?G--En=p zgjSzIa%=T)eJ{7x3!*|E%|kbny%z=hl39rkTWZH%h8{wdR%%Fvp6@9^ z%CB8^)GnVk7ApJlX_Fz!+GzuIN3I{Wro(=_TF?nQt+kHak6Dxb_sr5%BEMD}%D!c^ zmSW~C8k9#XMB(|hihyca&6&RE*Q(=sZb`V+yMWdM*V_tcb0JC>)TTlN6x7D%Wsl~b zrdLI^GPF5O#o4;WV5o(?Rt_q29JHFW*j{Un>+|+pwDN_t2?(t!q|JobT3&OZMuoK= z`Pk5cizr%ETJNZppmPO2*i&?2tqIgJ3u|5wgNkU&Azl{IHb4xmptT|`pH?+j6Kt(U zDMi_Svtrt4MD8f2^@Kn>d;Qh6n~G~y5rej^OX%Q2AkZqJY-o^5^x8oyiEFe4SL=~-?wb&@nU|r6JDpb;H(a9=WO+8IRDp?id?K2Il zisA5q;;W(qf51MB=m{UFX*F#D#9e2tEnZsJhT(dsi`JJSt81>f{#jky0kO4)whkh* zp4ON~)zo}&eW#|D330BLb_=3lL#;jCuC2|&b+?nWlhzi>8BSU=h-%JS3kW#Xh_*Oujc^UmmP5d)H4yNp6VQd_L2US8COCRK=b zqd~1us#6r&N$W?BtDExQMRTH8F!y_rBbfiBt)-r)$T$J@1q@suF$DW~YT;CS2u8|x+A>6o zg-G$zdf?=9^nveW>!$6{ZPrI+@K>D_H?6ylWc^GZrqzWqYGE=2DqsZ!%HD&N;aVeI zSysT<5g4#s0sYC=9sPrAArb-=5C(B@q!tY^+Cw`IQEHU75d!6Hg6*-iR=7r?JCfIE z%^TM!dB$Ib?l2a!ITu>gFv{yguf{P#p~usK@#q{}a1{b&9!Q(LFt)ki1c5U5rOO7) zzBkEv0`6qL4O)pZH!(!;g>KPS{z7LnW$F}Pe=iU5+>o_aV!?iT0y@w|YT=E3z{~e# z5RN`t9K=f>?Xk7k6x1-Ln+?t1`JprA@x>zLBDwl%J0VnG?Eu8QskkXV^V1sRy4WP# zYA@1)Nt!SO>mz8qKWdtdHl^GCxLvVjKMJ3$x&CFo;}qQ6*t`qvoTBx{HS!or-KJt< z=ZpqGAdialWh$#8qXu}64XX;Bo`$wm$Z0xUP^jQsc=cqu=4LH6G&LOWYeNfM&bg4! z3~fMOMjr=}x*4mT&ogjuQmEEEm>oJ(^TqY`nWzDUR?b4bE40&ym6ykC+;kK&8F42` zoUIMe&7K`>?qUPypq<%=PLwhS?y?6Hak|R9x!NeJgY;@Hs*ZCJz9NIp^kg1JBIn{t z(~Y=ua8|t_kjoq-^`4I*d6n+W*Tz_16{T3^Wa5lVLBN7D z9bb+5WHYU(+8Q(i+u8^LGhM0sS`4czG;}@YqI~PLss*pWF8ckjZQSp>(uH+eWg4>% z6XF$Gy$<)$E9A5RORE2p!_aCau$7PiZ;?X?6d~EIdf-`$Sn!NC;Cf zZhAXJQE5Mpsn57njlwo-T@dqrGbYj6Tz7@+E?hwNuU~fEniC+ko zczd^DmCfqaDRZ0VjBBK6PD8e%26oWw?b=$X+U`JKJV>*4;L8kmuQp^`M6)BO5Ud8- z(mV(ZiF#CFC&u|fnzU2fXnjyPnERRyDY;C|s8c8$JV@(8H6uj9FgVDTJJYQ&41P}2 zfNJg1n*NnAd>8J;oUkT++@(3`shiTU-RMVODPXtez?&BHrm#x`4aT+jZ{<1eGzcxQ zge=jE1>h}UOJdhpXe_e;&n5`1u!Icb?Kpas1la`{tdXEl5eDnl8Z9PUlx4DBs)%i7 zVRfSf=1hYG*d!{bNoCg9Yys@WR!hi`T7#pvOHia4gAfT^dtuXH6vI zZ)P!wk-%IXrv%t5>gVWu);MbcTt9J^kfFsYBwj}e`ae|8ycy3~FS%N!T7+jU0 z^lkyvF#mIu zHBu~q3;WCxGBn3-`Y`Z9fLM{|8~Ypr7+(t_|1%GgY5{EFoh8J({USO|f*P4@^1TG! z9~fjxP{_oZ02A65*0NH8cDgI^LD z@-WDjV2?Eet94@hap|wxFv+>j0>s~4kxgz1#6MgC@(Lig5dg3iAV}1yQj|6FTL9N! zK}*OGQi!7qOW<47ipO6uN$@{dkw-}h?iOKCMuPEr9u5-xr-M%rx)(O~oFoLMbZ}nJ z_aRK_0RNU1xm1G<PV zU?CPGgC#HtO-x)@Vz}aH2m)kCWhd0|s8}Y>j4xK6irV6s`NMCvNrB&@Vl1l@Fvvl8^{ z%Npk;*xrZ1MWZC$b(Jd;9MpSFf&}0CahjVFgzFl&CHSp(%zF~l8^}o>N)V)jBnvPa zoCmQ=iiH^P&t}n?pG)vf2d^YJGMF{~m7v%V2Ja-8se^P0@ULfKG*g1Yx~oP-67#6~ zD1muYeUZRCj=oD^9!EbVFb|__3CzPNM}TGQnuk$tGr;&Wk0WcTV(vBhBruPo0uq?V zQ6UM6>7%Bo1mLIU$JDlLINjEshIl95}1>a0Q}$VI@36tEf&CDY_o(6HnTW- zhXftxFxVL&)?aL4%OWOWQbqht9iH!&VBQi2;SxmS#0F^WlOX4E1`!g7|ExnJN`i{3 z7#x(qIB5-&!;&;w%iyR4gVr&KmcV*FgA)>n!yb^$NeOZXGB_o{V;!84K>X_+NzNH1 z5r1z7IWIx@76$PWoZH6Wk_1(8Bm|ONkwBag0dP$MbGzIS;E7m3W$k8-L<=x-OWm;q zE%EmS;6In+TnS;fc>J}-U+R&^YpEjs zV-N7J1l=MTyp>?34*rus(?Plf)emrz3<(zM;DZG50AlGYxNYLRtgIp3cjAxKX z0`79g6^Xt1{g4IQp$iu)>0()x)1_@5vFz}YZsvv`j65Q8;p9Dkn=N|q7 z{1As`@jiXXcdD7_rJrsI8Jr8V$(a(klwdGhg0DK5D}gvc1s07GG%L+ufdqDC7%W;Z z?tgFtf0ZuFWQkO{g3SP7WSIn~aRdgy3JJzJGFT;nICupbYb2OgmBBg*#J&&ESTBK5 z>{194C2h!bC6HbsE`6*eWT>h~pOFAtP6+)t0r+4TacT@eywor!xh#P>$u&;G_dj!*8x|v+ z=`BmhAkLbB$=ecC@4(=$1Rr#8UxLVvtnp9+&rS>;OK_qy1LG4(mUm&2B0&LcvVeS_ zNf4-m7ZMcj&Kj>InBIfI8ws3xF-R34RaCHhe+K`Vfl(iB=`z0J0FKX)pvedZA0#-X z14V)f?yR9nU^9}zCkZC&;EM#!aE1$t_Kn9M`&E1_lPsw+c^reE5{O+lkmk1pw>=sB zgWVkTvK5=iAcq7-9psWgY{3B=c?96i0*vBB6c8Ih#2y?5)t7;t1#o95UOA5M5G&+tXOTv<}4mchhtxWu?l>84MgGNSevOQ37$o53E*{ z;N2Vsl_l6Pk3m%l#C9J@Qe6UZ=#RMn)|5o-`2m&M5}eRMT>*HLjqS@=!^Hx)u=On= zLy;96-B1GG)eIU-AkGOw7ELX{XjrL}<`!aT9>gjwC3vEP))I)*gJ7hs1cx^>XfJ`s z76u(9u-nFVB#jp+DHb&B@ky9A&t8PeGW44kYL^+2BRe?f0V&k35p(LFkXVV zXa-&z#Qjh1H-c;?NR<+L*?c507uHVzxi2n~Ott_n{ZvcHa5aYWm@a|Xk_7rQCBUIc z{QP~kB+)oV2`Y0X=zE@lQG(ApSRjEoLkUS1Ng%c@0azlzX=S4ezpq40G;qj(a2+p2T3U1TS>3Ujnf?3bKf_0HdL9 zGLr)qV)&54;E)7mo-sHg!A%_;lVJJ_);KP~*?$?tNKh@6L97JpbznR#iOpM9IV*vE zI)gX?;za$N#t}|%KHdVjIxbm4hW;kjzaqiiuMDn9(C-_A>k{NLerIx1k}w@4O3*Kh zHSS1|>j#5-5?uMo;DH1IzZpD|VEsSrc#;Iab1+Ee@yBI*oQug*sj@sbgXa>|&&%MY z1T*azyq4gN4*r!u9DIcednD)c1HOS47} z3G$a?kV}FkI>;kIh7PPH=;vVMG`5nw!v;3U*G_`i3JeNJ;8Kx+y#&EJC@ev?4vI=( zuHzB{91$J)Ssk`fdZYOLNf55}vNFC!6^?h1;C@X8juKR;&7h(LW|LI}NEUfCZp|9i zEr7GAX$ctyI&rkIwj`$;F{vv-yT%NhB}mXgJqg6tI;gD%5=?5wppgW|+onLE-@hyCsM}!XR7%!*K@txc_qngr8&*Ays;vW)LO8kTVPp{sHG09G0MQ z9D}10jJ&`gT7t##3{FU3oOF@NNl9{FWpGLYaYP;J`HTdw6B(S7K)QE=eFxuS1e6MoG+rH$i|GVt9)K8K8300(dkhT0(|_$sB!0g6L-q?n!X@IfDlh z&gJX99@rnhfLLvBpaaV7FddLYC-M0eBy#Yr6h_7Qp)H zmXOhKDxK|RScsw3dj=mQn3KUkkw9$igqqPLn3m1plLViw`7!Dj34&}He3PJ~9Rp*Q zBx~|B`6EFf=%^Uqof2`^%;~76!#x?RBSPaB>szQZppgV(zba@nF-o$f3zKFNO2OX5}aDVz#zebWemI}pcM=zN^oKo13w9D*D&yx zVBJ~)jD{(aR0&{}X%cML!3+tC5o^qnV7CtDNKikRHReeWuY>s#^x4cB3w0o#zrEDS zVyWW0g;kbH@LLDVB@i2cp^vPTpe^1@23Re@O&zS2K^#X&8*` zmOva~2@o!Ud0yQw0OI%*OQ8{E0X)$jw1f=(uCRf_5}d}4Aka4+l_dKHlV}NWFs4w6 z5g#P7c_c}WtnSsB0;0p5#D z#lbuP2?C&_$e##rS^#^IC_?Crc%4xH1@W#0aP)mk$PfXeF!#_5F#gO5k_34mEQlkT zpps$%Y~h(DWQf3*4@AF^!1W7*R}!56#^8+v_kJ))m0(sjgLi!Y;Y`IrpRk%HRm@&w z2#_h<5@$m}!(;*MmTCzZI_2l+j}nN}K%xIx0&(;wz*h;J3g_nUKi?(kRD@N2NYJq; zgI^Meb3kDvTLQCNIj|#>AyN1#jsk^7ZVO;P^IAfNfYKaoqXRMi109*;L#ixp&7hV9)!H$rBSFoM z44fpm+l7IP1RJ_Bs4s!JT^b4SNHkR0Ub*@GkERyFE!Er-GPHGN3oRu$(T7262^{({ zXe&X#0SwwpAo4(AI|+cv^dH0MAq={jf%*5Z?tjPk5&+X8R*-svJ{G`E_OpZxUxu;0 z0TS#Q&R~!PaUKkYNI+v4xCtPp-hT}33`~Ygl_YNl?h=Tt?NAO63CwPd5g<$0_&kd> z##;dU>17ESTF>R^2@;5n@5KGrM-nF^tN2RLdm)2K5}5OtBEVOX>Fgz}G2H?<)0vhK zpZE%|XAAIF=!-L60p?kNr&0WKXTBw9n7@|e7fNt#J%hyp;NGX79fu^#EP!)dVF?*L zgIRx-1pT%!SR=vU9Sqj#K#YI?P$ui8N}JsbHcAk`kHIDh#0hrrB3OVZ;nvPb23swF z-P&#m85~b?bch6E-#!=!HA*u643k|F#Ktk$BSE2y4E9Q}?h=Fj5){3{AX0+j*BBg- zz~wrFLl$5(6u!meh=mveZ!_W&!ZKbsR zsO1y1+LR(%EvB`VP)Z+dl~!yOuC;bmR6}vq(%83JOI2g1mKLdaAreyGS!RyB@1L17 zzd18=X70SZy}4&hO5OINx29gRNgscIJIWC8W&+?%Ujn5C++a{fz!-nha0qy-ECGK3 z7Xk^C74T6Ifgk~2Isw4-x15lg6-XsSzy=0R0l42Vj8;Vfb*d1kEZ{rXYZx@D2++e3 ziC{C1&u-X$7&NL9!0Rs!P<6>aUX}7|3J6LdP+LG^a{@5}4z(gsPe4=~0`&#tv?CBF zKwIHTL;`n|@;bYb0c2KVlTzzDQ4LK6;MT{`kLCjYd4oU;0p8sSynx^oHh~*HUeIHp9;K!!1$8H8afz2M*i2N6u6qi?9K?tbL18VuNpx5-Aqbd zbHTQtP~Z(A=w%YXn+R;Q8TQLX@D>7imW20$Q%R$@0aRrllTtxnQ1&|rwxfQRX$0Og zfb{$86r6u_{`*Mai3iqWbAdqyP=O&PrC$A->ibYYuek(<3%E3&zz6}+D+zogpid@& z(X;XW6E)gv8<8=n@;zEHHJ5r*%j9>?vrB@XEWB{494O8Thb5@*-3jAyc zcNk6>uW?8coQA{f=QAD;Yoq!c59! zM<6JEl8!cj^sAYa+V~??S3|(a?F4FBc>XJX)`&qB1XM#klTyR?Qi1vcY8@pICm{BB z0tpC~U?29LC(zIUsu5iM=vmgAM{FQoE`X13dp}L%WCyo2J0Wj<%I8ORJ;a5TtGEE#%5f#Cx3?+_R%pxIpl zqZwfTBe{*SqM{oeCqOsznE>6)7XoxMUkcF8qzllkOhW)~U`wb^uvvWnYY6o%!=yMr zLs0C>7ZjTHjM=kxi0m5}X)q_Rf9ByJQO zet2539>GO43!L9#ts4bYnn}P$unRR#jHRQxRq7a@Pp#~*aQzGQO}D#KDgpPnSnD1H zzhEVE%2Or#4WQm1G%0k4i~7F^$aawaF#)dy5jZJeb2(o+|DP5zo!j_bfNnG!0lXN7 zyFu`23C&y(4PEPH1T-9X=8@so5M*MJZ)2#)4FkyVTRH{(FXg2C+a_Nf1y3W;Mvj2W z;RJF8Jc%HXCji{-Vv&3Sy3s-bx|JdU+=@$;m}3mp&3FsY&G;ao1G#7tHRC|A5c?M0 zoIrp9)VDyBQg6mmb~yo~8xRN;;7X1oQc=i9@dUyITumepA>e640?`688xyE5pc0!^ zOMtdBMu4^~)+I!n7AHVkmMB15)<}T1tcd_^S#tr}vX%n0WvvmwYkOFKQ#YB6f7uWk z!Zs#_&V%vDwi9rn6@iWdHnb*?ECAdIW09@`QaTanCZM1Lfs{G;`$IESXIAMUD%IGm zUIMh8eGu%yB0XEsMDHsa+OmEEv}HKW06ikV3eY3+n*co`X9egHIfvjDPF?WNjFn!b`HzI=(B=QnzlMNLeBhuN z3*0b(^lzDzN*ztvw*`QcX4KCSpf7>B0tSCV8m>Gc`sA7~AoMd*DHJgFa{@&IEIuEX zm}~4Dz;=2I(1!a6(Cs=9z(IlEf4zlNYk(#tRPrJMK?YD~%bAq=ZZc(u3eeZYiUQE_ zGxR=80JwWb5FtR%gy^|=|4nm4ANcB`qRpx$AdM@D5zvh=4CXpI0&sDo{g@<+ zO6xULNml{jSQ^{yCSc+!0x1F-uO`q#KvS-xmw@knAdNl(%C6<#Utb}gttFLy0ty%? z0pG17je!EtCpB0$L_md21cnLdwt>J10pOe(i;S9!*B=^n@J)?mjHm>0B`yK~{6rd` z3b?@<69kN~Nn?_Ln_OhFfS$WZW2%6$u5CnS2zjubK!$*^I|x_;>Sqy{C*U^*3k7uJ zW)=%T-`3E(Wda_v#!8z1Gyq3;lgf9ZGK$Nr70{R`<_`ka?4u$Z1e7~WV3UA2F0w^{ zp4{66xb%GfS%{v`y9DU@yjOsp&j$qP`FvP_p3X-F=;?eyfIfJqo*iF3pU;Sjp3i>> z(DV7c06m{C2`I~x^{N0p(XI>7)A^PGE~O{hZ9|lv&p870e9jf1Cu^PnJvZ|O=&4vJ zKu^UY0eULBO3X7S9(_2y1?Z{hBS23@hX6el0|e-)7$iVX#qt95RCHE zVIH3UY1H)qOcE760Fwpi0hlU455NoodH^y6=mD?<=mD4~pwPubvQUT~fW-*5;(S;d zMssMH0W=?0n3U?~N7<_cH29ZBaE$=)jgCXQPC!`)f%OPn)W(0gl8vIWqb#Y|0yZ(& zDgb<@W34*`GzcNEQ@}XZ*dt&b_hi3-A1gcP`Qwm~uUX}Y0NwlJ0(5_W6`=e3n*iP4 zvjTK~&k4}oy$Ar-pW`6w{$3Fk-QPb2=>Famp!@r`0Nvla0(5`x34s3Mn7IXf9p)nP z5DA?zz%Mzf6c|89`>{!x6Ux5==0=jf7r6H33jC@PC?(*H>IBLN0B`2lgdYL=|6^S( zB4tHoC4*oAHR_T^hyd{Lj+Imp(4`)M$^sJV69^X&!yrn)mc|Zx|5Z)M>I5oNQvi5_ z$7bpXxSvFzo`Am@G!QVL5osg{$b@E~j)nq47&J!UqETPPq?xD;XhLOL2mlxISV=1Z z`ar!TKp%-V0`!q+CqN&GjsoCF(ELvpqK`yZ0s2UE6QGYoiU55idI-=*qL%=DB>D)@ zN1`tP7tb0z6wtkXqN0z45}=R7Kmqzl3=yD@#4rK+NQ@AmkHjbeA&q(dj}fAegiC-v z5}zVCfNh+5v73d|BP^+f`6 z1b`cS9Ig2RF1z#u5S77%UgCy8{(*eJdn@4P7ljTmHQOZCR!OZP||kv}KzG zXv=;Qpe@_30bKvIX<4G8P1`L%Tec4YtPO@orW7*%paC?dhfPZDOQ!6j0>J4$4%i6+ z?l%aWnveHiRAt=jM9zrHb_Rb4NaQl-18R*GC2s=At-la z|JW5@0oqP~0lDvyMxcPd7?cz6`C!rr6%hOZ|Nbfp8N(`J0(r`~hjiF2MUQ8g<=noT%t_6A{1{1n`=85|wFW0F6&$lTy=1 zQFb!{>&FskA>ca(tpptUoUcDG2?^yk+6aJ632@Zg3D8z_6rkHp7NFbhDnPf}O#rqF zm8KwYQQvgCJ&?eM3g8kA_8tJ0UItKSQ%y>(`iipO5pZNOf%gQ!Mg~{`?_q#7{`)0? z_eF!7aH&B;bge@L=vs#(p#PR&p98FQqyc2sD3db(#ElW4|B0hXP8GnW2Ux+UqT$ki zS4|KS!);6wp#O=REI?Z^Re-K_h5%hh1_GLr%Xvy#29V)%A?4!y50{f&3rs%lj(~
g(lyeG z?ueGpYH!l0kdvSC3S6IdJ|8<&!?qsO^v3{tS$4 z(2}6{IXNiHHB)mC1=SE5a|bFccnlMzKebe>^tU|r=!||fc3y+-8csa;^o+dZWDDR9 zBRK{-Bt^4`@RMeQ)Kc<^EnC+<8f{(s*d=p%o}J13*MI$&7`^1teMHUVyOe0<@sA&L zUAOm+7KiUS`#9L|;M9U)#)3c#vO(x_704BJtQclsn}JlYHJUy8RO@20Sv5AVdjwL^L#`t&OuBLB_CY#2`Oe)$z#AUQEp&T zHsJftshZ}SD9#>9 z_;CXmJk313!*C)Ab=smK(dtDoxWeVELx~AfDttnaIl&v`Vzlz0a)nNpB^%5c93@=j zDK#gyg0z|k-mqvNvHbXrgT?hfd3-drNRHA8PAOxuq<)6w8IC)aJ!%z33{!)Nn#43X zCZ&EdB%1re(#cg!TG{;;ZMb&Py_x!yN$aGSq^#IZ43v^mt<3NlMJ=X$r&P&AR-lx0 zIY}WH)--H|Oa;>mlOdGjaIPxt+@}{^v1D=;Q^y`+m4+O*XwrN^r?RB?rwF{C?OVP2DziJwnq(>rSasYTb*}EM|Z*6{=$N-K~mX z?|n&pdG^*l#X)~$1HzmfIxy$DzLSTBT#}gSo(f544&!6qjy8;3JgsUJ8wk*2Oc@Y? z=G4%EAx+6s7nWedjJACG`1(vX$M5jxsXm4j!{jH-2htv*xUkbIRzfP7R$oHDg(a{| zePKd$H|^}!p5oe{Jia&ddbX`;9j$aQguz11iQ;m$Ikt@=p(-lYN7u@6ZY$Bm1)TfU za(3OuA>JxG}-t)o34Wr=n|8A};D$u1dN530-eN-V#C;|SxyQI*@Ta{Epg2CpZ0eUsOd(O)ij>fJpu8+WMVPu=uXb(gjAS5Ew7Xf$)yQ@ai8 zwy{dAc&_IlVK04Zq}c81?mfk#=T9FZK3e$H_^8K{r(XM#c<%?%xahAxcxvnCV$CjV z$F+3-VH9=$;kOQdU%d5$r^ZE>J@M^hCyB2-@$GTZJG-pyrq|$(4W*cuck>>)5>i`U z&*M*rS{hfT)(#7>?8vne79g!~%~5M5EI>-J5?Fwjk6!yo)!4K@n19(=w~u&Z>GBcL zlP9dbwtwaWIkd-$>F2Cn*;O0Rlylc!pZOqq``op=_Y`k^dP!k@U~Jl>3p3T?U9y(f z(~)<{GuoM%r*}+!wBea&lrB6`@Whc~?#-XrNQ-+A`9>KY5@mj{ci zVHiYSKp}1U=#nOJ4Th@PNb6XpzMhG${^hewSz6)5J{A4?*;VO9ci5-y`^~d=SEc?z zH1XqS5AU9NcgJ9`4*(H)^^ec)*5!@2-)GMbjTn(|ia7g&b>muIn)F=s(xi1q3=p@C zT|X{TE?sx;Xwm1=b>pHx-oCEyAaT|jK8{_sP8lRtOnPoyG;__mdDY_8+xgabW8IiR z;`~4HvG#*??++Blg*;)_pVl3?kJ#l6zWw2z>%ZAYJhms_t{%Jo7Drrq2_MhDaQ%S3 zV%gPvoO_A<_|JPO`{LE>_v)Sb){eeLLuafX(3OdoAT`kyx2&IhSzoC_8LmFTA|2@Y z1$&4OKVE-&>6eY;w~UCq->>hT>G16f3-%QUz1KEg)NEUSeCaP6`Y#+Oj@-Wf_0li* z{AB&)l7B~ypR9jyjJVC;FfN)nWWy_c#r{M1cvQ`XZ6j+SX7*5I?a<5zILTF9;YL8* zgP~%|GZj)MrSUGcRBR3$eCUSj#)_ZMU^|vVrWA%nhA%{<_7%4To;_rht zo<%f6*^0NE@IfK$=)S=lcgqq(<*Axt2EGr8eFzJ+ZTWrtuWlK;_P9IbD@~4v9lB#k|$6Bck12 zS+ok%P1#D@Lm$dlD&UAv#PY*8?uE_43Z+RF`vt4f^c>=iV0xFq4|eFN(GgEBq7#0g zFd;ffQKk&aaG@a~j>9K>B?tX^zF>(VoI}AP=jnNZB}|OFSUgliTJ(Ytp7O|hbSsva zlp5Iv(h^g?LTQOvWQhm&**JE*t{5jDdC)Z%jESwgj!QI&r?Rdz1qyc;vuj?%GMb0D z-3)SxvAVkaCKKBS!B+pqmL+#)>dQ@w<##k$5FJuxIcj02(&b0Xm7zsrM6ZKe2WL|{ zC4)i6iJHE*nd1GeTXzvhP1txsWv^BCT4k@DH|6A0k2?CKDJdsYSN7Tw(Mc0G-dHs@ z?W&xA*&D3|`McZM8%OPyc`Fff4hc7|?yCHKueD%Ebo|8|drc5?U%PBz zRl>#ddO>c!`|%h2Oj_AQc=*wp7amA0xkGAR_l*~>sY)v!O^jZ+y<28=$v^kVF;c)iK%EnYw1^+R57^ZF65 zcX<7n*H3u8%j-Q}Kjrm4ub)NJp5JWc@nRv4S(XNK2A;>zA&xGvEiCY+hoe+Y#6%^n zR4gVo@3#f7v4?Mxa6l!`jBy=HN2lVsgly_Y4l6H?x;XeetyKKP&E}RR)uQgqt>dB< zXKtCk0hK>~UH!lNd)luc@HAT%4t2F7z%V%*K;%HM{ zRYovtdJb$y4|lq4^1=z8jB*mfY_eGGFmLA>e)0_1JUNL%%4)_dYdMLxf7;XY9?gt$ z$ePFz=@F6vkq_JuA>M}9(eXm$?T9P`83h?wGrnr4fF=5{TWQaM>JSZ1q=nU0zZWo2n9mX($Zx!nEU2P@m$ ze(y8Sa}nzEtMBLg`u+avpF8KwIkTTRbI!~>bN{)_9MuqBeeY_Mb{$gVlar@BQEduO zOvT-BoP(y|$PT+3lP2IJo{9RjT-e6?)QQPz%Zfs-jja>;j~a)+4{)8~;ggYn8m7OV zhX1o%{`Cwm;U9Y~mCx|zj$P5P@jo}L`hUyoV!6o8)#DN@F5Tec6ioAEh<^&4gZ2q< zR8p(w+UPosAub)D60viq&xL1}#;3QqAA!T^wA8#w^r90NB-FW~F%6#oOR% zxWST|mp3tWQfdzFg{z;%s7~j<6tB&-e=a$Z22XZWR4Q)ZCt_C%Dg&05O~T7xJ8tQ z^zguOV`m~}DDLlI&gl~;rl82OP5^!exMv* zBH>~HYL8?5#3bD7M_byXz4)4FQf?~z)SRf7kLYm9|Bofoq6YY0=U>XBfF8>`(3*Q! zeJQ)-YFL|uv>G!n6(2w3;_47ag#QdVAq{u&^HSSSO2Nf?;5Bv1zpTyb5ER9|iqBmB zd9eO+Z3X+!|0Je=@m!Ptx!>~G7o~=el;Ja%e{NaAr!P07%F8d;jnZQ!$ip46N!Vab z!o4a8SV}GyT3q^K4_yo%v4M9-FolvjVDD!Vc7*sf-43`wlK}CX1aniLtTtc0vx4uS z_~Wt(3HlE0u|<+N0Uw?uW2=1xy>t z`Sz>6QTRRtk72h@N#^@1DNw5ua5N0tAvXaZy``qnM@z6HrLGaFe2;BnhvfDN_`(T0 zCTSBBQu1KhU_4l=)uk9~1XesK5q)w(8g9Q~Il&z=%)eAzm7A1<%T5z=Mf#7caJ%K- zipKw$Bu4#nnH{(#_{KDOgID832w{gwDbRCivd44qwsuNhsy;O*FEs^&(tLRVu2JFJ zvD`H1dF+ql`expQ4te-qD@UJ_gAJ<=IlSA0sWxFkaxyNB?F#UHNNu8aQXLfhxbyKhndT&T9=vw#29uwL!srajR~ukWbWw;3}x5sO&@ zmeTeK@rgC(AoLklJ*WdLfUq?uOo08In}oYH_<$!jIaS-8`)6A-nYR80y^oJyR_Y4> zakNtZGNJxOSpTvWl=IJhseWaa(QkQ!sDEjddTmV3zlr$56dQ_3dAZpA!Ya@KQU=AD z0@E-_pPMXjkq`4PFDa!1>q}S&cwQYBnIM6w6Jf<+_k2?ONtDopzaNu##?mk+Ct>d8 z!tTQgiL0HdF!Ux)!Z%%dkkoBib>aJ$vXi8d8T~J1%iC7%NG^JluxmUKAE-j$I`G~k zMi967@F^xl5QlD>GQlQhD(=E!M&a6Vdwi9KRT-aP;fOjF22QHF)f$zOhFeVd>7d7r zNPK3>JFbZnvE=j0gZpBb%rMUWr9|9R<*&5(Wez!q=&_8p)Ov00379aQhUy;}bgM;7*&i&5HFT7aPd9 zBZldjmzRt=j6*;@J|>=k`);mppvH$O*&YY{xo3HwZQm<`1Um|%;eMr z-0Yq>DG62t1T8TqIUx_uOnc0^+$233C2t1*n@=ULl;TTH%&~tNo4;JT{}+i&tG(a) zFWr{H=4D>Bu){&VQmjfVdmI^I0_&!PKA_v$}~E?E5M(BUJ5 zf3cDObLjrxoXGziy8j%y{~Wsi9J*Q_=o6u?n4iCE|{Iy)vImW+OMl6weN^Wx4M3DZB)~gwD<&kql$Z2 z@i!P+2YiKzyLOka zji_HM0T-A_Q5UYI(&kgw9zizo^8OY7&DN9|(farfe|tlY%Wfatf;s7xD@Zut^tF1l z;pDRV|8>p(&^2%B)>FdfrS0hGxocjvh7W==lvba)=JkIqE$zNW4);E}Hk`VCd#&65 zp~z%V*RQTk_+QD*?vU-Fbo$F{z5XIRDF564t;n3daBUD(v|d~Pzkcahb1I=H8_hA#~;ipquNj4X3JBCU=^hj}+S;M;x*WAqS(sJp&X44JGgCfId7G;!o$NBCFpF zK)?Ah+>f%R0sUYpns8=WfH!^0Xu(WSN}K_fydt0j znw!ID?+g@_m9|{&Zs+>7NDEdkzRyV{9?>0i#0}1C7tI zMNs<%Kw4c%2+){_%&`?TRi0r4zp<8GiM{TEq(74bzj7G4e?HnBxKyMX- zCFEtGn@^AQrKlpH&E^7KQG`zaVwLRbA=GLqq9RPT7PMs%iqKC2I%>x_^w}+&I|VOB zTr12W>ax5nkPM5F$sF0piQV!4$r*NEa(@mixdfKgeeFT?ETh}FoGZ^6$Iy^ffNJ;h zoF(9($%vO7Vr8@?_s`DADLyp*<(qz#esGXGPto3V{Y4Pgd~OdU%Tn+~R42<`2K3e@ zP>+|`8`F=BmQ2IkDE{0YK*N>;{e|W6-pzPF`g}RE8qCc1i!haYuK?AT1xV)nA)|+R zAf&XV7=Z5Q={@Emau$s4;%`>6E$#DV}7(n>oPIjE+il4bYM-$0IbY7}Q%cfSxHf z&Y{yR9_5cay3w{5K^Qt4=;Yas&eZcIpv_oAMJ{m+r@M?EdJbszT4NzqFyEKk57i^@ zb&$Dvtf4}FdUXhudO6+c@;Wd(d3Mb|?&v}b*8{!Ho&CyrM)+BDKSYZ-c< zp=}HuW#|otzGTS4&;^D*VaUkPXAJ$!(Dw{IbOO*ZhUzo)5<_7Oea=vGhBh#ibfOU8 z2?o1!O=jpLhUPM~m7&E9{l?H5hK?|_k)cwC-e#zRp?wUUWat<} zW`-&l+6bsH{}O}5kyeIG4E@H?ZHDTc1oR6-0SsMWs4+w347FzHJ%&0k?tGxQWg-xV^rjKOypTFcNY43#qUE<-yQy28*whF)dpI76oyI>*p` zhJIw|5JOIeeq!i0Ll40u&G-Bg&>fCzz)%%KO}?yG_)z}q47TIQuNdmg&`pN=F=S(C z7(;(Bl*`a|h6)(E#LxnUzF}x3L+cqLhF)W68$%9;b~AL4p(6|(WvK8ZgMz{H43#i+ zgQ1rh`iY@U4Bcnw9z#B-0PSQbl%XFPieu;;L+u&b%uqT*XBis6&|QW`F?5-s#~FIF zP9eZ27`)Drix@i2&}xQ0VCYqbtPH)y(C-ZGWoQROA2akTLuVLzi=m4Qeaeu9p;HX~ z%FsoI9zG4|ZHD{-73N=MFp?v`WT+KGyBJDksFI;x4DDlRFhlDY8pqHV3{7R|Plo0* zbeN%~3~gcPC5GN-XbVF|hTdc7V}=goGkA@`&lvidp|2VGkfBP3eqhMK(0+#gWaw*# zJk9{x!%#3oWemkIbc3OIKyzQH^Tf>DIqMdzYmpCYw#1xD-FhvlO9NjwzC-<+K~a`B zhlLff%~+=p2U74ki^?Rry=h#aV?2-w?pVF4m4~jq@Oj&K zre1V*O z@oSAx)zao8kmGF)&pL-JW`1Uj6#8Pa0$JRP#s;=DGD)iFK4Gt|~mz&1v zI>v+PXobBVopdubqUe$~o)qQn^b%D+8K0NrKq|H(-^2HeA)@RTV}%x3br_Kqbxa{t zndRp#%6~PU&?uF5OAu9kQE&7ID8B)d~LpJY!e z?PK;5_B+N8YVZiuz^38liFR+=QfcudeK(~6&HO3IA8xJPYwsP?`znhlcQgI0adTA# zstR#Ha|5ZcKT@N)Ar$?me;`F}f!IZQnD%Srbf+nZikbw3(hqgb0V1}Z=?g8-`(CDo zZfYJyMpqtHF@AN$p!%i@T5=TJRE+gAxw?aKDq0dym-f5~v78-Xf&f3W0XB9;Vv7VS zz2uz79`!t`3yG3yP8n!5(x*|Tf#myxC6-d7O`p->SDiDfUG`vF5o790QE$2` z@=J^96ywK0IjU$m~C8t1kL4-(8(RP5z$T6oL#o(q6l5C_8GvP(WEVZ7X z;4#vd#O@)cUpahhn5m3Y+}!UB64OSQ&T?eeQKkwG{l=K?GqEzq)RO$NO^w8$ai+CQ zxi;Q(heJ^6pkCreu4y-Oa#h4Td8Xq`oc*}zE{6qE)E1^pRa*$WiRd%kRKO|s&oqr= zrbe^WUfw+0w36|bPpBmwo~z=0pESM9@juR2Q4{=7djBE>MgJ}>vv=FPsk|8si|h@ddMax6YaQYHvgsEsx%caq2%&$)l&G;+4KYWE z;*F*z8vcp}c;#kOn1&y|V28c;EXd5bOY zm{nkDI<%L6SyD_I*xhi4Q*gZ0sE?ZEG!fU3z8W|lL zM}FRsL1N(zQ)e|xanj@}hzjnSVkmoXWSBt8k6nrC!+t$%GtJWYVIiN@NH86nQ}$2T zRo0h8`p}GPsQ1(=(_xJ)joM77DVk=ij;v2NY^Ff5LAT1aNcVm|Y zvQi%1IEco59PL5fd?B8D@0wO?JohSKj6j~SW^x*V>4;)w@?F28!o@msusHm%8L}cH zrJ?bR&fJ2^@*CHs@u}DYcT8dPsID2KD0%$*V50i(gxFN*!WvQAmm6cfW(DEtX-1d) zg(v%X<0fP|wa$5y z8ZCGQ{r{!E87`KjJed0+x1oxZC{J-W&zQb{P~m1w z)4!1Q8>8w`(ep8$)NM8lUb!yRZEXHXV}w#`N%|&cU*Q*Rh8mKoOZ_Y@1tLpybfc{! zlA=Q#kE-Vl8L{Sp6t72xvUWLxX@9JF7wzog@DuZznJ2>vyNG2GClM3K{}NWjubZ18 zF8~8bdIG2~{+Znr9VDJ_X?|0qVB$rJ?AGRo-Biwswa_R5vSN?>n)uz80>P_Zhe#X^&#l5Mg$R23M zL=W$Y4#io}cp9JK>dXFvxi5hS(m=s!EDcdO`cia$j60Jl0)-`Gbz&y0{H>_!)26W{ zRZZPXJe$=O#ly`%YB|UrVIrM585^SZ-OnS<@Y-csEO%;J`fy*H}$JBMf!rE&NFT?C|5<<&rD~OqO3TEw(Q0S`NSI zw<+e&RI)(owrbA^-x=mCH(EOeeT)OP@w8wp9D}S`<{}+~P+$;rf}l4d|B~3Ybmsdg zNEdf>k2&VoH6H&wv?n{VSuQ8F!tttJuIb8fw^gpEW zcOVS}7N(F)Q-6jlx4(4ZlBMQPHJ-xX)O_RU%BKn5bfq5#seCz$>VquMs8$aodEZJN z9!cGlW@$~upEYYskl_H);{`K(%sua;ljS+(-qp|yhCS%%m^J2D9fLS5DmGuHu^&K9 z^?cF%yB67ht@*kd*=?QqrjB}VH_AM6>Cjt7ZNZBp^K2dCfh1QA+j~`Qsk}v0u&P}) znAhv*h27Z4imqpgB7JIHoT^yry~>M`Oy^o3qNr%P5~q$++9op=eo2PBU<&k#YgI#F z=WH<_)5wsaR+N4<087KhxSASh*H$x3dzl67LzzWHjqd#Vb@Kt0ETG{Vxv88mmocF~ zi^C}o_g%BM% z&F`s^0$M4?O{L5Blz-E_G3y<*Yp)z&Ns+1LOa&EtACp`9)0LA@2vU1T9^z@jJo}EA z;n7HLWZMJoRZE{5v*h)1^Oss?a-3vlSx+cIbVfASG>7S9p8K4IIQogXxt5#kHUGIv z3yRJ~uZ=$LVj?j0phC|Unwnqx1&@KO!JkKA{8!a$5l3e>wsfaT|3qzf=;%rFA&p0R zd6FmnXuCSJb2+r%jZ@|$f6JoW7pg65mL)*=RhY5gCMyU@!O}La0Op-MwtwRsR9(ev z&Ag*V-faM^$D&YPdrF&-$;K)3(^J5zdo%NA5D%#kAf zB2QvT54~*eBf!oE&y4FTE?pyX5J0+Ni{uT<#@D4Hytyv z_K-Pa!D+1}-<-zlM?tH$sv7QQ=Xt|Syed6P5BgxCll8ZxU}eFK;won?Y3ZkG|D#o| zas|pA=|+ohS!VLxg+Mu8c)&3P>RvHt;48jN9!6heXqd+`I5z= zfR<{pu#KSw%ZgeYKUvR$ zc`nJN2jJC|hgqU2`o-3v_}kewHAQf{w*?AKGX8NC-ck1C)-YCvwW*`_{F(X|$k<=< zDXnh_qcw-)+*LWe<7a`SGmkhGVCmyV>p#M#2d;$#()wUaU&{FyCkMI)mU%ke1xh#t zzqxd=5=;Jmuxzm`zRuABQI^3}(a55$gjYjQeMA=@utx~gJ;V*jpj1mIioV{aA?YJ9 zDi4gd{*jhXz%7tTduIG-kfoC-in096S*&^Af)%BHG&XGqwe_sA^j~U<{&%}jhX%WW zy|S4FTXJezwU7r>IkSc3L#FXI8132(|4`<4`jokmn9&OTSF4!HH_^clOttlGEJv8Z z!5aoLUD?}h>#2JBNW29Kvs0+KK;E5coq*oj5bm0klwiSh1s+Hb{Fj2|SUxK*G}J7L zr`lUKYCKXiW%Z5c2SlNnRwkoUWNLxqoi=VNh>4Y?f~tL&ezPr}s+|xYB)W9AKzDL! z0@@e*{IXzPf=X5@(Sp(~=W7;J6dT`MT~e<1U=fuGp_pMK$%N|qcC&30RRK)wQ_a-1 zpCwLXLP5P%)Aw8^dPz+QAEg!fN4AR*$^ciDNOD#M$NQ@GuRe>#TNWg3S=o#zeLGLJ zUne}u{hDzL3z57R^3@P@Y}LcqoRBAQU58rAbngjeDEIHy7T7$N%awIFxQ@1R?Hdmp zVOflSX>NsmW2ug^_qS^!(nnda=Px5!`w=4Bsw(o?F%~Q-Oc79i8Ez_*`$jZIGF2~C zB09%%p=KWCYm~GaYg1va1%9(ELb@rH@3iYg70)X5)ph#YJnj@(&Vk1*eYJ8Pa6S;* z75Nr8LCgu`S*yig7ND=Eu?~_fM^u)0syJnCAVOyHc-2gsSVN|BW?7)!WF0!su^iLt z0G~ycf~gsv5J2f8+Xab&c@`*s<|Mh$qAMghj50Q3k800+ORkQhKgX6AE`&9ux1Poj z>^!Xvln8#tvP{Q#pm^_DmPrX-SZEoffgKlFhG<~vbCzrk3|wZJu7NMEuuN1zLb4nx zzLKE%Z%d!Iz_jHI>G~Q_woFe962?^)yH+3~^R-N}Uvgz4zFlV-s>OC8%Ww_czQKa+ zELk}WI96f_j@j%239&h}W@AF#8lBjBs|Bu)51ME$zc-Orgz7+$ytdP}v0=DjFxiuB3EJ zsz(JalCb6b9u~*Ay%sEvvPhTGily>CNsY+29e7Glf#*@dlU?#)%Qu43;sk& zTE1({XeqWHFqEHiYB2NDkSBB(Mq8N0VH`Fp6lJ-O#Bt2MG~*ABw*Y;q&o&<86(pKq~j zsj15@ny|}%-qOI09$AcIXV=xrfut+Ebjn&H^bTu~8TyDvTDR zhCgUQc6dr-3RfT~J{HS1K6df8nXx4W4Bw*dFZp zGmqDq#in7jwj8sy=Jm*dbpI3Aw4ME{WvPyFxR-p)JMv;mGm-YY1qbai5~JxytIwri z+u%=LHe{r$_H}5pEhSDpL79Gs*BeQG=NoLgrr)zXucOQ%uwwb5>-tRVKnfdbiQRkH ziX&D)0mNtRRG4IKB(mMCn2RzJJKsJcy^a-`NgUTIaGc?8{a(Y{{o$x9{5`EFG(5V# zEtLGbr}>g&RYzYD?PZ0PE>jlIur?QwK2~(U#IY;xgBgr_v|ToJ^cH$wD|%W|_%ev_ z^S5Gzt5edC1BddGo!c(ZcC&`d>n~_=xX5l%U9krpq+gI0NVg-g zDYB@Q6;o5@A)8sWI4u&V02!VXu@`c`zK!*Os|X$lkORfacq?{?)N);su!cH$(bBUx z{@SZ|)sU}>G^h04&@^km24zp8b(fY<-ot=w*lHFohxyR#(#Jxk}>?WuZSiJ-Jf z)a{S1R(QZNwLCYP8V^BAKamzfRdaFr;@7=eVynAR-0fk-ZlX-XH+R+_MSW|xe#Jhv6I0}_G{3RcHW`H%8HhV#71J|%_*{f_33A66}j@@kIEtxbcDxRlP#ST*8*=-VuzMAEK1NWEoLtyWTbaz{Vf zDHK0ivn0(!6{S66tWcq{><7Xv8Se?jN0g0owUi!o@UHA?Js@ut$w3LMYYP^iPN+Hm zT99wgjvlz1hV}R4MC)#?oa$LXW%D}L6$d6&YXm8n_a8~GOU|s09^&ZaYO#1QTgz}W zRm(_T7n6lo9Z+zZJk6!f1e8!KH#&JAY7iIvv#F?~YZcou%Zg1V;PNC3Bl~fBsF*y* z3Y%F*!a@q6(gxj|(&5k3J;bWHR&19_%AkYzQlKKPd$id8q!p`_jNJJyBC}Jv$B3g( z@gT~`s$)>;sFyGK|B&t{#53GLNr7I+*|t9@DA!BuTwqP(}xK1F-}Ou<UxlLC15?>TyS(e{%+SoMZ$Nxry+dl`5jVWi_I z`&zF6v3V;OAtP~y=`Gg0Zv9Qe&m6!xT;`v+k9YhH>uV2E;tIvbiYKMGV*-BirWKnf zGC8bf=&V^8A@u57y?yZnz^T$<63MVW0Zq%*U)?YG+23^E2wu;is|O-3f(v;rygJvFx1t zMHzwO-e*?0_%fmFo$}p%8Vipvcv+Q^D(7)*xcw3dV>j`n#vUoq5p}iRlA}_zIwOKs z|K7)ol$B{70tcn8ZkJ^JYZ=YNlC!LcYgbdO{<^v&Wbb6{&IlKqzp>(!3!GYy7ahpZ z7S40uRrl+b3s%pXRY*UHwZQ*MUr#FgJi|j^;e?KprNJ-LQ`R>b?!y1F^@0{D>xDFN z0*j-^BBu77!IVEqG2c5j-cY zwDQ>A0jk@R{kuyPMf#uC#ww>kM`H6CiL`Oq@hgxcbEvSYr|45DPh~TG-&T%Ovvl>z$T1Q;jV4wXxmQP^r*m zS@*jP^euS|J4^lJ|1uor6Hy%bx8hRZu1ymrbCqSfaWY!!ZH3=kbURM#A087K4|ZP#k%(Xw;(a6IU% zih~0@>CfH+aZdFc8Ze}*4NI*o7gtTZ2}2e`NB0b9L^Jn-vD;ag>P6``Rr?2$R2h|r z2DDWvr9EsG9X;ue(^GuK7(<~Mw!YNY1E;4;Gi+D~0pg}d5B4nrvV!T}#X&gEIfbQE z9wLwL!=1-GxO%0rlz$JqQr@_k(~nyxb2vH$CUI7#ZKsY#lwcDN-^GogwuFmljsaW@ zzyM<3lhT%FL3a+~cFRcVi5LcREg2WjJ!bn=Bf(0<)w1C*W701w!D8P~8~iKDv}?Fc z;NDwP^HQ>nM1$7Gnqz7BC|eml-puSL8jiM2)zPhAaK44_GN<4>NOP=MFxCbetn@Z^ z(d8akn;o`#B6_@Si;iZepvw4Ub0SrCaBVs6%dsufF|Hj_o}6NfrlX~gHm22qn2}p^ zZE&eoGJluBxl!e7kA+h9!;j&Xc`l~mXL;N|l1IH^EwhMzEI=jSc$}r4$pTwZSSBQA zMUp+3GYS))(`>NnWF)pWylG=BF1GuRx*0C&&#*nAqaHi4VT~_K^QmgTYp;4?fo&y( zWk2s#v+lKxz1f(ybRUA<_li7EF@3h2XiS!?NcIMsFLw8a_|utHLqh0EpCKNi_z4@U zZ|0F3cb$);W%^!28c_7sA(16{lRVT&Iacbg9WuPukRbzL$7!lkH`V2i~g>$v&yNI;^SK zvW3S^rpA@f2AmM9rT_4HqHL=TJJ^!K{Y;ff!||nROH_E^HXE#8Ns(7V(QlAhiE~|X z7Z^PrJ#Kh_826U#Cyf)AMSR5ccWkezoB~aS`70A)XUT_blWsPni2g&pRa1AtuIf?6 zQK*lYy4!X@M4hV4IH%IbM9rhCdm~tTQ~AvUiVgr(N%j z2%#S?Kr1@;+Tf{49_ih!{gt*qy}}+70RMVN@f2skS>yQ;tCK3|wjQ6D^Li;(0g(^_3rR2Ym$jJsrZ@ z_9Gkii0IdYm)S$8e8<=u8I_VPYI^cmM zw|->_1?gk3!I3_uA%!KIy~N$ioJC19M**&XVBxvb9NjEaXZ>h{&kS6xKi2{}bl%N4 zvYb8)XW<%aXi1jM@w;K$tfN;}U^&3|^aV8EfEBFF#5DjIKrS&t4^AB0oL1W4(LHD3 zwMdd7-Ox-nHZUa4yHa9?gJ*-p<%~kga4HKL=Sef>kM$5`iVdzKljZGZb$GxccHXqX z;+N_0y_JvH{Il&%9p&!99VXYu{R8RDY1c)j#9wWN*pWWX7nu_6p(V%0HKJzAv9{Fx z-L_vN$ZwxcCgO|#=_kiy&+QM^Se!(hxoxv*OxW|s2Svg~^Q?n3Wwzp7F2$&t5c=V^yD$vmnXA=16t@W$Fu8E4|U0&=WB=MDS70+zHDPz;mzz@YMg3PnGX@cPi_VQ=bM!j`t8) z|Fv%8!x;Ec!FCugGL762+SLkWM`h>ui?t2yFcO#|CWqKv9sH$<6NT9;wM6LqP^w58 zkJ~)IW2^R5XOw|Mp_*loY)|>;IYDAgV>=G)WNGpsaP;DvcvB@7meb*A``-pyls2(n z(b(CD5HKQOJImy#QYaNZchg%Oh_hq!OGaY1BN(>AxVlvF+|5SfL<>9IVM*b(3AD}C z)(8Dum@^@WuEe7XrZ)dW_dy)$h>G~?YIFMu?e`TGdi!NHcLABj1_T!*U;$yFnehe` zf_$;!=M+26!nWgrPF|`V+Q|O^bOE0diMt)_&^{7}dj@M~#m!(`&B+ZT@e8c)$2!?D zwIun0cohxGjS<7U*kOPEg;Hgk5GclWv%~t4lm|u^DBg5`#Z50Uv%CHLUrLNG3CzVQ zUW&;}yx!9eJ+x>h?>uRbYYd}N1-4kam0>T_ImGtfb{NAYy`XaO(#B{i80=EC_50c9 z<8Jm~C|W7tA7;Aw^}=NFFlDDRuvv(e`>8 zT{Qgmpg=ouSCm1%N~0B) z-F0dU>N+6bL$qCPhozJ95*EO}Kjnh&Qw+#=(>l#ZqKyVf^~++wO3wa|S?Ch^T1uZ6 zz*YPtY?;y*>}z!lVy_h&I3jDcJ;+VPxpaZ1?$goeAX8(?`r0^HtNcs$zPfvKHpbLc zG+T>l0VE(1@9B(w4U6QfHz79F4(hFS-0;5lF`@8=%p{uWuBa-OF! z_>Nt^DsyK8>ZX@h3i#{0$*=Gz0oUvU6w#2f{EviE^g3+ZW^81AR%$aviipkj`x>Wo zTEN+uN;lnXNL7Oi;4Ys&>?IbI+F`|UZX)Y7ySJN~u~bcxy?9`OA5AUAqAa$#I0>9F z6y2jBjJlLh_n^D)z`Oi*J2&fSHY*Z-{6@S56}WSXYYV&O+jgw=zynEIT?_W|T*{pl zC6F33h$-UAdv@H%luW$QCH!~Uu^TFJR|9a6aAOu8vDseWA*S!~GTa$WY`4qsRf>xC0`HfNZ^Hl;ZFrCm{RQGVKP)4;cQxO5(LP7VxTgJ|H$u45>rC_{WMuJmUTg0;pntP&+FKA_O=v1k8SU8Llblj-mYKPo z5|@helGPqs11I2kPH5-+1|rkJ%L;Rfc8a~eo6K1tXL#W} zy(OZ39B`u~KE9zNM5OyVUV!2#!G@Kb?~nL922$2e*9Fi+{*HN=JUg*{F}Xw(zG4N6vb`aTPDKyK6C z!ZebPSjorr4o08>*?V2;J}wf?+#$Y;!W@m?o4&kmYjz|tqb#;VsXzr%s?%f@jJ*`(m3h)lt3c9-*+m4%QT#UsNU z!!^?T!+BcBRMD#(?jm=jgETzqqO-H;GuqK#M@QP>Lq@sAT(O=Y^#93~88G?hC&z95d4bE6G zb+RKtr~8t&-ZKV?vMG*d8NuTR*twsI*`@nZoSNo1$Kh);Ft#9i9Ch>)I|?|j*mLM~ zJe#(Jem;jz_n+fP)G-Jr;t9u#8hC3iDyYV8eUep&WEk|61LsW=ob`;Oxdy(yz=5mQ zGS*n=z@>f(MlW`()=|8j_0tl^7TV}^siw*$j$|Flf6LKQJW}ka)bQww&Q9XVm$8>U7(mJjMaIF@(B|JkJ7w3tGRf3B)I5uctn^zss<}&u)MhBb~2_D|;=%axR zOC94?ki07#(c;amjwFrbc+CN$niJ5%vyLXB#T$+$8fnaS2aW?}UTDS;4Xk+Eaa#i~ zy$ktK8B%vR;3P=i{=2v%B=||0150}M?=Y45B|&=OY-L3a>Q#nZ2OJ1tBl1Z z$mdj$lhCd^JAPZX<$TCr`}DC9oNkHjv7l+n1?oZVvI9ifV+x! zBS%vDJ1$RkRZAxnFYrKdwv`hKPJ&C@IFD%H(0C_=S;n@~JCADM?F46;1|Dwj#LO=UPS3jqd*d%c}QHE?2I=Uff6_H#mYN`{v*oqIHJ*Z?QKLzA)P zgSh$Yt6lDjMlhXZy2xuz&}O-*cQ$PZHde>ul|&g5T#kduU+%Wany);q(;eDJ^!# zG_H(HHfM&@s>RNn<=n5urp}7jR*MzOoS$g1t5!P4Y2e*e&U+d|{bJ`S4Ya@L9IY{oTFRM;5E`#8_-L;n&TL`WCI4{n&|V26HCMBC((`aebOZxG2Zu{adqRb8=Y7w zfd>k#*RTa7Xy4-eMgzaz$`U7IzkZ$PyacDb;oPTz32!?4!ENFkUU=IHb>@ zO7PHoEOCZjkT^VvidUp}qKfx=L(K3p!vHY##)R8d=7hb^AVq%S>@K#y?;N3#{6BCG z)4=(Ax$k9yIN>~@fo=z!J2mj*gR+X8?Pj)*qMzk=L^%Q6^sQ22^H$F?=xqNhCXuF*+z^%?!2yX z4*h}^n@nUp;asnQtG;yJ)xeFXSsymfg3&5pf&HQaL(+ew%lqhbmL(f_pm^ph7F-F2 zpL5RCz>VKH@x{E1b$;i})4;s%o!FU>v1spd?0zlAn9Fx%b1$QS%}X%maNvT)x0jvm zpvIP9#2QsPU(mq4Ke7^*u|ux$h`DDVz3U;``E)h|OQh`vbcAjX!N$!HqfO31jQ9+3 zbQg9rS`FmvY-~prTA|W_u*pj>dDF#9cB~(W3FwC_D1lDr8;nRJxK0(1%izb^4ZGB--@yChemKUslG@Wb1@ct{XK zg*kTqeM}iVpWBD--N*3HJfK-qd-D~P2Q-jSUT<+vr$F!|jzUw#riT^Cq{LYSM7O$% zUd6>Ccja{rOz~78D9j~(tf#;clAx!L@|sRQ*PE%6Z}n!n%ZGY1{p2gXnLhG~-b^?7 zK5u4#e4IB^eVI4YLq5xkbo?f7W*zw;Z)SpgjTbEZ6fYwA8Q#oB@(o^a@&mk?q4M?J zOker*Zf4#5t%V$`ldtX~1wXlq^!(l~c=)kh1pLx&W_|h0Zsx=Cja^{;zAh@tkLw~i zzpRT$epVL=_)T44{Ge{8zkE#>Ec}!%67V~^nSt^V-OOOTpo`~PQ7*rqixl5+pgx?7 zy78;InW^&0T(tKJV>P_;pG|>7%xL-YEiiue776*yTQr6r zyhS8Gc8lcv(k;^QGq+&jH*SIP1GmVNU$;dhKW&Qy{H|@LmweQ=5DEE7ThxNzvjq=7 zW{YlnlLI&TiY)?u!WJ}szZRMD2!1%vSOlT2!0g zphYL}1GE@)etkAGM7}(Wbo}fr67ZX|2>8KSWX-S5qIiC47B%E|W-~qN$ya94`Wv*v zU+Ech3$bI@<&X7v=%E}b++*?5Y)m5^o?OOHUj7CO2v8dN^1ISt!vX=et&|d=BU8Jfz@naknm5Uamuz zZBrYz4?9$hpV}_YuUiu<%=f5?=GUu* zdDp_~*TVd2VF9(Upjwz$XE#|HeyzJW-=`K<=vxc*uZ0EH!h&mI4QpW`wXm>S*dw*D z{EXKd=?hQSayo@A2U5HG1foD`9o`A!)sw9Yhj~nW0C#$I9{IRvL z@m46|2gICO#N1j~UM=kLTG*6Y*wk9sVmDEzDR8 zE8VSfvid8|f2|g_trm9jy2{DZra1q!hRHXw)u_U=wK&fGo#VT|M}7bIs7rs3s{DJ@ zwZBCb<{SSOmv8xdl>P5f%HN}Y`g@f3jha1BzZT|q!$Tc^wJ!o{5rb-B4QgSHYGI+Z zu<%+~WGyVJ78V0cj=x%b(^|x4wXo*3u$Hy3*0r#fLbE2{Gm~I<2j#7FBzkz!55|e)(i$>=Q z4`GS1(7Y&RYzO``2P|x#sloSZzzYc?Us8k5)qocdMEYR$$jLuJ-qFf4p4tkl(CTPq zsqO#;$0!4JA5m_M5|hYF2>5T=ng2J5w8*zZ-RD1{;Ahp(___5vFV}2Pg0qzNaqzgVA@U+M^pt^Eu8>@`) z)E0Fot%^lI?4=)Ll?l3UsaG>)n(jR9Zl*-&>~y*rieQ5hMZ7~%aY~Ht712FT3D@b~ zrLoPG*1oLKLCk=n&dGn3N}8jD)1tDuvR2plzNEFtpNvk-AA&B-KLk@K{~_2+dHILv z#g@9mm^N&Ma!$`Kt@}`Zw`Fya(-?mDl-mKG6hcu}19BHm{ zsRw}NUw;ZegNoSTVf&TiyDmkP|1yqJZKM45Q0h7PKho5;$oU*mTcu;u%^G*;Pv8#! z89!g&!OuK5m_M(2u=#VAerc=deOdRT><}ykIr*0Zf3C+*_9pyvdxI0OmCSkEej8DD-{B}; zGEn+USS50#-OTjB_d(yg2S4)PUQ;eQyQd8X^N7kk*$$dW{C@G#aGOXpn!pVvr7_LHdgZ`9CWL=`9+hvuJ>? z2)EK8eMN(G6%Eo;G)PC$AdN7CoUsP!B^soYXplbQ3h5#mq=#sb|CM5p?x8_?hXy$n zS4iK`AYDU)^b8HsTrx<%(7+1+gLDcFa*`S3lrqR!WRMP_LHdIR=?)sC zGiZ>ukwLnG2I&bJUmd?oY4f5=Q%-)~@U4U6= zS{H09S?KL9V6l*+3o37+s$`)_-6iK+YGCcIw9###Mmd~SII%}d|zc80&8EHc~(DV3b2FyBrW0*Wje5xk6?{FLGGCl zgA4XYZ`ov_F-D$i7cbPAoz#HcCMqCZ4Hq51ulkqEx(uVf-< zJU|(OV9o#~%SYz$$h$B~o_?3gA5)rB)&P9Q7L^m>?{RFY*F!Dx6^a@tlT95cla&ut zvXDAp5UQ`xv_VQY1n&)!EWZ!JP$<+hOG!ttBntwh(Ag|lDad6ohC-pd!4NKm#9)Y_ zLSB!`$gD?YYpMC4FqxXLwcC>nBrjt|Am zJ3!5cVRjv$l3^Ht10}e1j_B~g8Tc<1}S;pwzliaYpLjEC5k(x2m%IS6KC zD^IkMsYd!E)fxP#L-IoaP<2RnFEoETl%^@%FjVw6?8dAnT=rZ z1XQbnPE3F}S5WUkD)#s!WhSuiCZRV@ z(yx=yHz#TQqum zmoKr6`N;Jo`Ao%BJ4sJZm6&y^QUGl9G!(Uwo}Pv&x{)qSgW}yty{1D#Hqy@NsNzP7 zoPh)zY1ItO&5d+(24?X_8a@*feIp&2DHF6TP^JP~uLinVlI8JP$eL)`EM>G0$?6Y9 z^#|jO5f44J{7LUun;{m8<`R9o{hdBYCH$ECR#TKnuh4k98`j6>J!RjHJ65Y z$R&3Yl@@R(%vErHLFseRQ$%miMKy>T%u{ewL-XdrJs|w)ChASpLgv9!kK1y+C#s!7S6b{XW zYKFs#RQ#hNC0EVBXCpG`v6U9hQ!{8xN}l4$X$*^$Tn?R!l!N;QGy0l`P=fT-hr3t@u*%}_&my4A=A4&fDZIBJ`{6BP^bzBwC_y5HL6vXbp?!fNG z4(t}Oy(-wP*KS1+IEpQHVk-vNjbdP9yx+FM?%Mr(&Dp!>{rUQM{QkM;&U4PpoS8Wj zyLay_`7Bf|Hx#EYdUj88g9^=nm)xV|GvOEaXy8or_C2~b6TNhg%FTkW-J|eX44r1f z5AWeMPaJo0c9NebXPxaJvR;G_)36bT#IP8uKPSo8Ek@aQUg2|BP1nG2k;P31i@{qp zVL%LxpNk%gp*M5UV=>fY9*T^iGxOjdF;r|m93zH8=EDbL$Y}w5K8A)b;84N>*7RPO z)E98uLJnnE1ph>yi{Mv@v}_TwP9)dGn5z=^O@O!?k~AB_Hx!re2k3cd(gKL#VM##{DJW?f#7Z0&22pTX(jtgG zrl_+#i4eN8JZTPuZ+Oyth&SO$bKDN7ip))wBAKnAGuc-r4Wx1&b2eFzgZHDQq=Xsd!2>MWZ$7>Ui30 z3YWE5sp4tiTI^5a>Fio8?eUavT~crNcx8lp9vCq?PYUvy1_z8>msAna&(~om5l@ZR z!*$|m(|XSR_j=COH-be>1ZV5HfwP^w0mj{>l^c@0-S4VwYZgYfcS@(AB|gYD{YH*1 zyAgYVyEIjW-qD(k*bBU)#~ZPDy`wUluorko<00JNsT?j=K@N4Rrl5MYlW=~aI-yM+ z3g;T)81nDPeKS_-cjUVn`-XS4V>9*?@967hZ2jI*y)D?+y`yZUL^N9qVRij6^cY@@)f*mZ29+gp+4Hp;UN^Vc@&vJI68 zr*Ye`sSKxM+fbKq`nfHsv0J#x==*47ymt)6?M*7J4n^~DY>&bzcsmRXrw7|n-*76j z19^wjkR3@)%!D~6B4Nr&v~DL72G+0UVy%ne^lJyYKAc+a?+S zsQ6yi9J?3Y6;9{OQ09H;(QxXwk4uQ$haFTnIq&Cmo%Uk~6;3<%!{Y!CBz1%6a{z7= zPNxrGAwlgAvgVkB*xiNG#e?uAz(Yx`%(kc!jkfSPNnQuh7U>J)xT<4^&?Dh=_E1s_ zQ)T8UsQ8_xVf&zhlc>`E*IYdgu?Q|##BWydl9fgx^r=CY);&$3|G^xJZcGbayo}l2z&&g{?k|!VEL?@or zb+t<0PSuYkc{x3%A;*yC3R-Xs6Wj_ijv>z#)c80??Fw3Z93yE3Ih{Z|t)NaPF!QXS zb0;t(uAq|9SbkSfNHnMW5sk@d1r3eC#J+;=#GuhvP_dK9I+hxrgn_ZN{3JGivGnnz zy7fl2Pcd9_3L`g`UY&yRu~g$UN{^)_r_t!K^yDn9qN{~XMZr4i@gEU|R)9Q-MkvY%($hMs5Jjw586k*@*rD&s9rD|8P+{MzW zt5}O;DMc(gDVB!DVx5bn`?0K9@fut^mV&OKJ7ekVH7=peb&lJ9of{%~9GB234&E0_ z8{)WkzQl2RG`_)A3A@2n`S%7c)?%sZO;%ZO6RsRf*KV>(-dh-nu{7uww{g@hOb4;# zber>RbsIBeEQR03T*Dm|fT_xs7*0ty&{5XmE7_n@B|fRSJFA>o0Tr*6DQWmVoJpik zhf$}kq=QauJf;OS)19Q|j@)p&)mCn^@)$>MI9|n?_hM=P9Sm#E(``Kz*F-4)!2Sz| zs-*K9;Wu>Te;(5IE=EKwZMneP4>Nr}te&lHmnKkCO5@{iMl{koG6t zdz94K{ihm2K6sA67Wp+Le5V@y9kY20I& zrx87d8)@|GG5k)W&QIWC8XbNDztbqkQ(R$cH1;VPMx*PdDEZNozWbpm)zh;mb}8Q zFCy$U433~Kui?KDwD~ngNCahg1G{ffxi@g}8#MI|`uqmPzrp- zy@lpmig}At-%{FlDCaG8e}|TNOUK^9hPRacJqE*D8vH(KCWQ7rsdo|la)A5gV^F76 z6H+3AX*mv3|~5hLjvWl4fT-)L|WD))_|lVHLo zN=U*G+C(KZgdR~-4RMcXm4*b5=$(SMDXorlx5-aOm2Xp&j=_DKG8nM=HuW~(kGJWN z0q?v`9v_e(l*)WSwL)q92l!(s9siJ28{+2&IB6)={D=gh6!a0}IF#;wMC*r==O>gG zN&%m6Un-RLeByMUKCw#8&sgR{Y5HfhbSPanLs`Et?EVD{VkoWo0*?=+M_+K)C6w}h zjgaf)n4+C!yr>opWjaof8C^;?8%@Ec*|xN}nHW z=k_0{-+H?A1GCS1%JvgIw4Q7~Vf=bJVhWdEC}BOd`NeS?e&O=xJzf8WbWxP_3r0jy zh2NMrqEu%ccg7DOO>yYvZ_FF`YjZ}##{EW7QIz8kR|DYRA)-BM_sAoiuu znnV0afppR2lM)FIQ9w$~7vfqkvxpXrAAyBJx;CF zc3MVxoe{T+YB_7&A;O&zw~Cxx0DqIG3yS?s0WMmlqPtYhJ@EsPx=M6-aoHsZnqK@= zMehy7yA?FdPTN-M<*4if+yQt>*_CP>CaN55PE@>w(sdqgx(Y zHHdWSwVDvk)1$}YXjytRNF2RPkGjNB-3(e;r(ZNI1Cl3DU>dn zJ+q>`%``bH+I2HsR-u3CO;)WLM5Sz+m(zI~kWI_$vR}1byIDBFXBE2SSe?muHIu96 z?6jZav%#wUc#Rs8zM(qV(I#(bZg%ANhT^j$?hSe7K-^cVlLP(qm4b7iF?P}w1wYf< z9Pp#h)F7wUrYM${WVW&RbybPM(9noT?9Os${6hVA8jO3~Epuwe_O z%7w~op>DafHV`{=X;o^eU&d`s@w@oIsspQf}v#20F*#9A7x#C4jd#AVtHQER2jXEUBj`Y)fW?Qy@r%!lup`6B#Z?51H7`-7bF zYI)S{8_&F2Zrn4eg&^)nbW(v5J~ieM@o3BA;V1{a>Zm>PL4|X%o5UM{$p+q!PEOsS=?y0HPN5g1Ez#^uH;? z7fRvk7kHa9et-Y3@Dm6*@{OXCDyL|Ati&Pur9>FzDgd#JswuIGIziM@zrEW^;)nPD z@<{>jcH|>-?0>O5#hTVXr9CRATXao{)%0G8I7(X(;ujTHB7qu1)KWjY+dkko_y6)a zqJC~S^HIOR+e#q(U+l8~Y&cKrR8IRTT8TIGNQtlXLy4V~qY%Vrs-nae>QG4ggI!36 z!rC!vm|@CNEBtY);5Rx8D8y`wSfFH)8N0{{eWqgvuAu#^C3_twk`M z?xD{`v~dstMYV|#Z;NWPAx0F_f*?{B*A_tp7uO0xAVFTbRUC8pQo2@F%S~lVX!-EH zbqUN*OKE)x%=Js@X9-NKOQ~x~tq;VBl2{y;QqEG^0Ep?Ou(Bo?Hsa$0MM_;OfAHc&1v zOrRTRkeB8SvD*vDH&C|n$a({fE3fs2cu*d8ZlFpPSaU`NtyRtqsy8y-bbO%AQuPTK z?LR8Swt?POz}&czYE{%~K#Z@533DS|s|b76l3o#uhqdbo8n6q zY$;w-r>fYdyrx}MIYHWLXx!HnP)+L!ajBX%7@~4@wBu`9SDiJ#nxb_LEhpw)TMccH z%QkX zT2osqXy)OX-jPRQZOz4*vyI6>`Ri)goo%->;b*FIl)H}B^sfSg>S&pe&Bi)fRS1++ zj8fNyIb2*ms$N&ih3_b{2u-T1Wy5zAT!0SNuH6kOFgX;z6aLR zikPUA(`iaqU#knzy1rHqBB(xk`ZVbcw8E6W0sIy*4YcYI(92Dm8fY0!tvnRp0PV!8 z4e+k-<6X4k)UzQL;b8jJMaxeY8=|ma`qL238BG1WwHXkvy|ob#-5bHXkfsqjF_>~S zX5rUO%Rvol;=`x0mMh(WL1X&)m*$Sg^D%U*vDQ;1>4rM_G=Uoj)7x%ZF52BhYlQE4 zyJMhbZpyq(cknxHwTd*andU+1?`BS&966k5stt!`xn^1b#M)-)uV8X(u8oA4+8mu2 zOo`1kKM0=|EK2u8K37{{LljJYJ+X(Y*%BQeObc3aM!#CZvG59dW%k!7EmK$%)Ot;4 zEj8_IrDZ@&bSrHI#6n-qhqkvyTL#mc))*SWRMQ7ry0y<*D9!xPEwV6)AVSUlA<2!MqwCsyUdDRKyJD6&B*2Y8J?+ZVB*qK|VS{Lqf zct#z>z$sKm!4b;QsIHnPzQY@Es#aGxG`mDTkF?y~o`Xh?9NkZKIvgYiG4&@=>2}-~TDng*s3*mQK?Ekpu3sWMT1K-j81*lXH zt|WXQKMm}G37Z|E1Rd<5rN?)8LoRyO1LKNaA}?j{$)>_DDgePH>O;UAiqNH=*c_ma zEzuxpe6{TOj@~awjeIewvJ3b^yz|uxKzQ`RW;dAX^Zg^0XkZHT zxvC(#TloWey6#_{T(38l6YgY3jP&p6-dtz&ZxM3oqviRllbiS9X!NfdN$A>Q6yFDH zgzDcGAn00UIC>Q?>g=oKz;|@5@;CHqMe5!U)-I=|{m>H2>3l!T^vfwle>BK)YSbUr zE+?k}Xub9Q(O=8yK!40Q%jsc%t&ka`p7EGA087&)x->wW0O37Qn*(umptcEO)F5pG zL=Ky_1Y(;_+e)oxX{o65U@Z(FX|T2&V%`uf7$WyjZ5hOYp&V-B53jpKSNyRKU!tx7 zSmQ6z!vJkAM89F$EQq(mw1p7khI8(&BRDR2gcbr=bfmT(;?hWMex6HeK;2!B*;##H zjdK|^)NepPIB5u;O&vZ8?QxBwM`;anVBe^=4_B7(_QBb&uivmy{YHe?I64b?jYgv; z(Uj4c$MG=6XiPmxRB(*uZ$1!GYb%PVwUz2s#}JSFk_(6GO~j~m8>6LlDdRU{02aO^ z`ZY!yg;XQPVr5C9dt)(+B~jCHoYjGG+GvDIj_0`G@f??Y0>}AJ;JAM$VBt%mIuluC z(?rb5N#r&OGfWZ$ zouobUv@A4z4xITU?U;k6I7zwZV%a%KfpfJP|MO%B9uJ|Q-bJ%#&y(}d0MTU>&#BC9mJjPGRPlY?(a7w#Ae`} zQp~PjXzhHs_!oLTADe`!5u~KwFUii*l`xcrckiP>37X!?*t+|Gvs`IBiZ^ zxez|ayQbWfdJ&e8wdB1>TM6-Ok+vOT@nUToM72O|H^l2eEfOMpiM9u#MG&ie4bpZX zv@w`P+oc#_Yw6ok46wDdI)p>sq1tAI-iK<_aXmOJ4D9 z84_Hl+RL@A5U-YV-28Bind?+~g|^X+pH4Z4D<<1HoDQ>A!*e&ww63)Bl9moCV^(S_ z-C3o-Csgo3y#{NZG?lc0&V&5>2ZY$J)2>yh;dN@hT3ZG2dNrn2HYywCS%ZGOOiR|l zz{~V>jkXkG^jegDnX<2gEte^3ownJ0G^ImXl+dB9GGacxkJj7~n<_$!fY=&=T3jZd z4IKKo0R>&A;EhW z(fS;di-NYX*0pVzy;f3>?P!UW^nE)lTS;L%&;={0%1%@i560}&LLmZnX$0ZC8*|`F zoJGh9YDJL9J7Y5F1hFeYlDt zdb1CskZ9t5Ot(ZC4`^#3_8#E4h6hm;(W8TK529g*Uir#R$uTHAuqx6`b$`HVJ6-LEKoR^uo9hn>|zR5RrS3#pjaNf_$!EJqlc=IV;7(=e1?-|2-UoCuC^#2(;^ywk5OBwR2h{c0i^1@`72! z$6)eE?H}Mj zXi(n}JiJV)u41jZM{TcSHoiy8uVMndM>%4(#SmL!(G&Nm@-+;cdvxgH}t_^dCJ0)8Rd8ehX843|+Ye(_$#cZ7jGkwEi~SGKQ+h!^dJME*_p6L;iO# z>|)6MF5D@G*4{-~F;wmzYhJhqCy61y`xp%|^y@x{!XB_@@rQ8O7>atxp_Y$O!5Dh_ z2+p;dJT~ZAXk;rb6W&LOU0>^JWnHOt0_KAq)FVOboO_2k7$}(M@iZg)4H(gHqJ`jff!b_Sy72M&3D)Q%$b@S}DFBJ2}~+J4rKA>{Ez zEB2Q`oxfmU##7W6T%p8Ms;}BGh%sMrrzD<|zG4cDry<{P!vxRXn4<4@Tu;Q)Yg73D zz_u-(j34lncpCW=OJzLiKXGd%p2q!R@#hzIZ}BwiH&&^5a{0rV&HSTs33b)g=VD#u zk(=sq-{Z@(eF0i#C^8$Am91va$`O&wCn*?q*wQ3Xfz8x}AE z_b=|!A1A#g9GRUw>H z>YX5bQzG#@x|mY$2T?W^i_lbhAB4W8(uY9wPpuDth)u2chp6Ptam$_c-U$74)(1lL zb72wdqGvZKt%x$5m9cDU+oA^w=5_G$Dc2(3z^=frKj!)cIbIQit) zvr&b#dQp7umR47fiX2X>cQc;@>E9ET>fe)e54|<{yXmfo9p|RkfY|SbI)qbRcfGHv zTYW5atB)lu8+0GJ>u!jB@lPD+`bOSu}42YfP!AdVY z*sNyh(ahnrExq0gB5ej#Je>S9pvK{JCj-N(8PPW3v?e2$;gpF(12gG^0dHku>uP6a zu_ZGnaLvMb4$7hrHqE%Z6lUCAYF4joR<2&Ptok5#e%MG`j#zw9-Nt%uTANL;nzqlt zK|}hE=!YpFoYH0EyvJoje}&WYY+QVc?D`0VqO-FVC3EP*5n7c)9}STyr#=>9K~8-l zgmW%^3dHPO`e3uTR!31BJ}9mcitCk8FOPAK^DQ6L)zd=JFSkAp;(l)3W*X0r@l=U6 z+i*=DZo@r!xPfx!Wn-r0)q5hzlf2xp-ubwlHs|BEaPj1}80ZP#3#V95y>DKw^sw8o zLVduEUHc5`?>EA?k3ZKJjxqo@)DP#^>q30Xk0Q2HuLAmTcYbnb|05*ChiQIfv3hB# zcmcd%;PKVEnX!l1PW1}v0Z6f@APU}284BsW^KrtY=SZkNP-2=s0i*i)p_SGB)$J5q z2oC$09u(4RLF6c`=Qcw*$)_;tglBz9=>>47Rxgk5X^QCcAwr9wc~?+|qPiU-sHi>% zB1bWO5=2-rJrtr;aeV>A;o^EAM3WNwB8d1B`Z9=slKK*-6=9{&RV!#*DGUoPWgH%y z$WdBXkA3tit@}eQ0NLi$drPXEO1+kQ&oIVO-b~#i$mOhtb zILM1NA9(5G&F3!WSH-Uj^Q)4Rm)?Vpm)Fxk_dgf@?t}2`2QB5C@(7bAF-;Zis-I3Mdnz8h* zI*0n!;D&izg9~n7Q=f{s+ch~|>ssg)v|TOC$gr)pJ`3VrZG9d@pE~+N2(1ol+Ulam zVsW2RpAF$(k4t!2kK_F6a|_(9&n2{MfB^{e8*uZMZpe+jsv)SlM!CM~*l|*k= z@oR(`CYH`NVwH-GbsIu!8gt{OZvwZDrLj%)A?A}hZI+`g@Im=K^xR=B^y+E+1AP1N zlUK3i(-gxE4?#8M>`OPppvNO)%{ar9%`sf?Kvi>wcbjvAHEY3T9x+9+mRK8NX`m^# zw8ShCOL<#yRjC!n-D$;HH*c*^M%=~L+`{#IbWeofkGW{F4`#+c^uz}f{U55(25tX` zcA27hTP%MFwbhH5D*5SiTfGdP#3|fPFA3469mdx&3U8;khIrFXZwgVdz3u}st3B*L zM(^9}Iq-vta|bMbd;y!4x^~d>;roOR`T+F{SX@WllTvilOQ%uK^x*R0T1XmNGeFP2 zG~L?FbhjH$X;x46q`?2#Xj@0Uup`Yd{A$*^D`vW$o%CY(KBp6^|C4^1Vq|A@)lYiS zS)Z7WpZd9hN7ZfWgM4gQuwoXr&4_!4dMQjTKk0lI%wj*ObXPq;1acjR-{LNGMLqCv zPd7N3Mr*pE1vSdkU7rrIwmTe9qe4C4oEmNHfhj|y{5@H$>WM+m$qUfSo_a_8o>$vf zR}bdQ^MyA>&=+5%ilA}5kW~cz=mocppt*i<%?L`~o5iHwC=HJb^@bBi(AYi<^**pG zf^2=!M-lYAFWNVPTK0ptM9|@WC_92G_D6R|(3bvi#t6zWfYU7!ws|Ru} z*#@yKvj$=8M39F~F9ZQQ^HDpS-rmLf@sYgNcFs(vZP*mtAl(LEyg@w%W8B=J8-wAz zH>k!C78{1>1^-I*&k$XmK{9M8da%q;y;x55n1P0H{g#Fe z(>Fq79ge;`HsLK`bM!MFz&xmjgd(FjdqVj#!wjr zcV*4Y)Or+BZKCy~kZKb>8HJI(i5iavd_>`+^~w-&qcK}NqIzSnnmnRSW6-p>@vjNJ z7&RV?%HO6*W6>|S>FZd18pMQgn7(e)_i^Z#+cavtKH2TI+M(CofFDomZlJO~a6tN# zPCfF{v2l7CdOWL#M{@iJdgKH&Kj+&Qzt5(gsFzC&#Ez9el&;$K&JabWvanCpJ0Ns>Dh3PSG`$_fglSy-m1(R} zcsiz-P?|fPi+DU;?}ku~8Ju9@4D1+T?+nhR&P-0Q%oO@e&dht3-UBKTv)Jt4v#?tY zrL40NT2I4gV_I2HyJn+=^^{=_{Bu1`o`dSHr{|_CpOs3Fib3A^dt;3SQrf@)M*(tTc+b> zvxMeaMxM*`;wGAfpZu>c)9ZPxG8?*07|#JiY29*tC_Hx+Em^M5&!J*%t?<8m{y;@j zj_~sz9Af)S6~gs;F8sVe;NsMjt^?+U%h!kG@lXgI*Tc-OGo8FXq%h?p9q$PZ#~SsU za;?A`wTmvVzyb2pS72)1McY*2YBCTsNC5OdaGuDwNH*PtzK(a5!!8*kC8wb)_YBHwiw z=(p(JI%IZ>TCPXu+@gK!G4J1^$`M$LZ_%y@Tug1DixFs1zNb(cqSgl3yqacjz^GVF z4>w?WT}`DnqNi8Wl#P0IJm+v^BdQWdPd8%CjiZvApczNgHt7u@&Thg+GmhLgW5C5x zpUoIladd1moFR_#ZNZ4)`w!V^)E4-_FACd&{1d3xZnRL!tw0G>WGj*;(B!Rf+5~#A z6+~bG^8a64v+2u9%pi%y%K6`M9ai0F{!Fx7N?9mJ6J#VJ?V5V>z*>Awme*UBU zM)A!UR_uvKJbLcMl)ayp?!|!JPha+86z|8KOL+Ag+P4p_{)Q6w!KgRXYCmR}H*|16 zG~ZCp18|wIG~)nD{YqyJz#qO+rGuE?cG9qv*r4bnU1Vc;qNQbti)h$WFEsa9l3MlQy2f zaOa|`Qo3lp!C&RAiqhd@z9oDR~S7_{M4ns{2TOC3&P$-YV>PQs_J zQo?DyG`&8FoUc;OQ;hna!YH{)Q_jFm&YyylU!`=XktwI|4S_TbAfTS#BdveGv7VU7 zM-S)3Z^x^`z~d0Kl> z?_i?2KalV$*7lN@us`Pln$dwv7zF$9JBd+-oGhwVQ8H5`XG zPu+{fe&rcmkJEcn9k`de_V0(z60X=9b6F3y^W5$Lf39%KgCJw z(CB!*1im9-69}ZqOU`%Tqnyy2=Gqno(ADLj)%GjO}K~bcT=|ny)s@d2p8H-`S0tCAtLW%k=sr69^hWeZi;!J zhp5mKy*4dAipAXGXd_znKq?vkFn9$hUq4I=kywdB_=6|pvJ)!7VdJAQ0ZoI@kC_OFuS1${C{9m0QHowNcIp{e?&J%Ka zgFWfLU-62qUb#PHr?M~f>}Kvhtz2krWy(PVU%+j-zyhruJ^$r}-U4Z1QD<8D67KbZ zY6lqAD8(z(feo1f0UIVlpwQ|x`nB$b?di@oYWa(agWb&zZyFh(NZVQ+enVn1MR@P3cg;~?#Rk2^32>H0^# z6t#CUGE+kDkhHWUQBMcDCJ`H$gY+^HWA`AnPT~|tl5orPAZ5_7!muqWuGMEek?o?R zN(X7tXKcD#>zHH@(xuNRHb%#W;2?d|u`Kcgm5q8C=pweh4&5>^o3Wv_snG|FT(-6k z1Pq-I0UJBeu8&wq+0g0`uq;P4LstN$!LP_UYU*Y5cLWeUi2_C=f1K4a_^Ca+i+O(yBH0pAPm7o^+jqHE*+N}IWE-0bb9357Uau(pi(Q7J4bXX&Z ze@ubCsz^Nx8eTx?umJ9%&Iq7a3e%KAoEf@il+zmWC~S0t7+lzB4-r$?m;_O)h!FyD z1Hwg}A!d8=#4($!EQ+?`RMjYDG4$&xDpkzrZl|uS0#X>8A72$-@3 z0#*#8*sAaqHl-2yRKpNpdzL}Klki)BReQR9{f_+QwO@7h!db zs|du_F|I(YsB7FYQPIwzR{xavAH{6}gnFIk#>eA;%a3p0;e>&V4(=*%Dglac| zgR)`$=ywyN$zRq{Q>+?nT_yV7)ad?~iAS3m16589(8M9ljr8~qJ9FWDCc_5TyV}!e zM^joDh44M1h0)RU#`09EC4A)+weZD=j%*3LPEm}n(U5#vVOBat&3YLv!djzSkwY)| zL3nFpFur&9Gul&EA7c!@$N3l+A@=k}0f}ueL7t+4ZH)^MUhRxHh!pLOy)LIz9~Cd{ zN>9fpmZ7)p(J!Z{c?aVf#H9YlV4B_0h;TY}s6;0tg%eoofyO`z>x`-W6y@q-yoGo- z$QVHWU5(>VE7i@&q}1wmheMyDX+w+_)TjqK{uD*_Fjhmf?rBVhK)t6xpnfAEP_=mw zsMT~8*UMN8fy!)wKs|h^Z*R=%T$%L{?fV$}Azb?!2Oy&R8cYAG$J~BKJ;b0M-sI8W z7=rJp%sU9wVHfYp@iatQ*}7)o;n8GT_t>XJs;k9usPRfCP@_>Q`Cq&h=5M^uP_ zP?xqecqpd7e`wKA%qRcQv7wkUIh2jw4@Ip$ke@#m_Yd^UAKl0M-Z>C8M`Qc@C%~AE z?+-`ADLxOw_(#c@%tzi|$G8qhT4BxCR1+#Xz8(Hk3HVDDqcf4aQ=-!-aJv zZLCq@uM&O7VOir63((4OM)ALj{W1=He3bmgqvA*D_IP;XQK~n=SPt=Eg0To<&_oQ& zqZBvQC=fOYGx|{)Hpz&FC^s1%c9a@TH!9$vPOJh)snry0R*ur8DaJ4ehrAG-{CVRHLZ#bJcDcE>gfmtZ+xB8rh(Ug8DiMeU^ETgT7W(K&@$qN`y>1Ja*A^B{q8xKgEjj{WH-ps@1Y2qBCBEF-@ zQKt2!u!7FOJlk(B*0xBRHrHtPS7vGEVNT-AylK%qbO+~Hn6AzZ941dI|S#ETt z#)OvOdl5A$jxeq6qY}$dZ@w8)iQX^64vn*{Os$t2t??bn!c48kG&$U8?-Hr3+i=*G zj_Zk4DE$hfAbPRl3Zs`Z$BfuucJJ*KSRW%P=Ss}ckrcEN`}s)vgOHiQ_PrSU-x9s> zs44m>lJr&BhOjpjp~f-Dfm!=G1#B`( zknaYg1HNC}gxM`|100nLYD^d&jtm}3FfpJ#<^1Kc=zfq*|A3>FE0aM5U@HgQWr-g@!4xR9R8A5Nj;A09&!b3fZ0)=jc@eGF4}=Mu1N%oP~;dtP>L8 z!zvL1_O@lPQGjbl2Ac(>>cL>EfH^%GY!{Hsm%&Z}LwYgT4PZB`GRu$29#P5FhrvDp zt;RDrAmE<~3=Ro!G)I&I{9nAiQ(5D<1-N~pt&pwBTtwUP2)mFeft=v9fPtY5&I-65 z&fvU&oEsQi6wq%ggUbTmL^8N4AV(B~YYgnFBU7DW5+^FlE-|<%K>e){9d%oPqi%N< z*r@Utgd@hG@xTIH*+*8$Rs)BRBl@ude464vI7kt|{!EeADu+9dS>?F}IER;3i2r?v z1g`}Yf6w}F1q?}K@LoWMBnC+WKAJ!m(A55&RXzy0^qava0Rev)d=W4tnUk{on}8oq z41Ngcl#;SW0xj@94TDqyO1Lv{Rsc`NB(tT(k?b%e zjRMx+A{B7A0Jorr6|$|#!1@^l1Y~yN@s~x&ij1t1T|gZE35hIo2^f%>L0$o`Oz;uH zv;u#uR7ut#D-*<+<(hx0RE94zODT#x?ElB|5|XRK*3trCtID;U0Eej+1UO8sEWlxE zH31G&YbtPG8PYDRopY^Y5pJ=1RtWJN-B5wkDnYmG3>sU2^_yBDTWP$821d3JFxUjG z1++6WXlntxm1PHuSebMd;K-z#0{oA{&t18go&r*LW8h~2Hmi>nvK?&C(ftJ+sK{VY zU>dt4%QBUj3=x%tY77DdT&T)mgn+Lm7%iZfnPi-RcoR$%aJeSuF-1TYyGf=AIcwSe7Lt`n;~u!t?h1PKDZn&7E`J)JqpzXGy!VenGGcoV!4@Y)3L1!Oc$wQE8g zqw0eI$Ef-&z%h=#32=;~p8_1i=#K!$FiMWUA(~^?F^p0<0LGtV9Jz>!!)wwCaEzmL z0vzKggMcjNsL3qAF^sYaa15iI0?c7#x8)Jy7)PE09OI~<0LM5gBET_@iVJWIqf!DK z!>FtP$1o~y0-VKfbBv=(qT(1wRRuVPO$`B#QBzxhW7O0W;21Rx1vo}cV*xyBu>Wc% z#4&7I3UCY?9|4YG(@ub6)N~Z!7&To4I7Ur(0gh4Q%YgS^j$zYVR2;*mp8&_O87ROp zY6c5%j2eFdj!`pQfMe8*5}-zn9piVb5XZ2YAiyzfCJS&3o2d%??mGdL_DRS1J90e4JrOu!mqjT3eu@0T%&5wIzo!6^YJ zRx&svpa}kh4gWbOK>aBj;DP{0zg$*8{Uh7{ydDjV6Nrr#Snynrb%^Poz{Kxw42fa*%SExi@AH9W`h83mNTz#y}LYbMAlV8}(*$Sz<;EQ6c^j$C7qTfmj; z4Dy;ltv|(XGVv6ZT(=n%5a1Wjppby$cNi2Au>LNCVgl4Z;!)WW0vxq3tpNX_9WP7Z z>;G~VVb?Big>0!Ga}E^+0xf`*D8`zEEz!CL|TNBq`roS=yX*vMv9$Tkx1^n!j10SiAcXeHp|R|Y-;967dA zfZqjVbKDE)$OKk!8J(?=tj+Q16XEWo-hEx-u9dz{!Jwzkr)27$!iyMFM$@Pym0s$NHyU904-g zLCo5ZwL-RX8992q0IzHeCJOjsg2@8jWoHe$fa*CJOcUUii@}T_wf^zH|EJ|~eaWN=C}97)a!a3s0FNqGHJrwby@Wh)ad^r{uI*=lk0H37vMGKdq9Xo8ypwtKV2 zZ2s2?#O4V*y#4v&K^aV_PuzM?l$D44x~Xj##j% zvl3C)R}Nq|hua&8FM#)tApV_zsy!Jb3Wzd+CSb5HYZwAtdolPZV5A8?3#i_gHNNur zW4qKFOHl52Q5o5v!A}8&@Ru)W{1$L+AcJK1m%LfGEdC6V3$U9YrGVEaNUZ?>!QH+y zmeaT@@=`UB9>BoO0_+UwtdJF*K>_?F48H>4KnR$X*#fMe)e7OL2#(G!;My1lIZdF} z-_Ws4a*K+3y9%<*E8y;U2A%?pi3|z|csYqdApyZt7!(n3cLsxE0=CTr!1Z4VA?0SV zN+|*A^(-)?i~@Yb!>Tz9yez<#tzd<0ndWhHB>@2o8B`IVPOU(W)huAQ%{NI6i}1@_ zpi)b~y)aHwN5G6_4C)C`2UZ|S0|9>F47>%X7ra2Dv4FPg7}%Q%IcAdP0@P6!NYhe) zqxL=u+*5tO4yQ^$qn!n~IXYM&+aJ6N2GN}asF%M0bP=%JzKuyYA&a*&=po?Y4hFsg z+U#QBCqSK!fn56t$hVh4KLMHdF&H2qdOw3f!D{{EsstTiGFVj9i5bXsr~pT0hbh2s zl1Yg-$v|VI1-SO3tq{Lx2GL^$Ogq8);{~LMPR{q=Ckojg%_@@xw2fh47x2jh(**dQ zWQ`dDE}CGLfRU$JV~&7VXBf-_u$xs`ewN7sQE7Od!6E_kuP_J{@X-W80(xF$jim~# zR^E{vFZx6Sgejm-^sx0e=bGgfK!aiYtx&;VD!wA#_=yCo72w&)F*&WX0Jm_26|zmb z&LwUX&;u{hK?a)zs5k2XY!$HN9)s-`u-nSqXR^~Gw!{Yvb_>Y$h`}BKS4^-^z}UyE zaX`TFe;FJSQ1m&2BLad!36>BzB0HZAf^2qlPf~jn;=#|yYH-VT|mko3~mTG_mjab0ZV=}h!+r)j19jl z;CFHc_j&wr-R`7h@=#RNyM$2L1OXMC89Wg%-i^UC0solbUjZ%6274jE(SolP;PXiA z>d0dh^UfmNrioU__BlOAYXUxHVqgfEn3=&x0l!V~SwLVG*7z#GFFS+p0Cv-idnWlQ zDs^+P%5MRiO^|G&M;@D>!4UcfRFWE7x|cY#J`0gg7#rT`z<@~AXx!3vdx7tdOlEj;}_vy_Arnm6?IF^!~u4hrxACONvZMrR9fp-?k)gF-0=F>Q%Ea6R_P@`y>$xp=q=#X7zTX> zsIzaN(O?H6Hs#og9!qv%rrBZB;?*qR+%DT+iV6?1q94tFkOIcE`yl@=FDd>TR_wT z26F{GU<Ok3a6Z&OuBTib}g+28#u#1AEX!O9V_>#voXLI=j=ipgZH8Wd^k|x9agzw0Uph< zR>;=zK1W{{piUt|mNx{PO<-_K06k_9FJRCU)Bo=ZQHK#BlluZ3RyxdJPc{smM2l?7P;jTN%nqTXHtJ^qVQCnA72xg0!2VsxB6lV~1uXSo@LNFV3=EQmSaqA6nL%;^j>@J|AXe4> zOjg!#u>jXTjTN$Gx98w^HzDnEGDs(2aV`ew1&lApAfte>UJNn|NHRfI0ioqtBfEg_ z6&U0UQR@#I8e54;Zc({dnL%Cw>aZrbhNl4aLN|Z{0@OR)0163E?`;DpB49{O2E_!} z^;%3y2zghVK`8-?>o6!IK%Mr4T+0b4RG&e40qPxZ(5NUto%{q)S%7-Q8$eaN5Owks zNOb}3Ef~}k;L?&oZ2^l~F{mp*y#Wq+)EBU^J%fec|+2CW42=*7TCz{EZb+6tI4kU@I^V}~%XcNCIu7?aKdx{YMeRX~a{47v+Q zHC8Y2YRv9B;l?lcP$bwsi=-&wfHke?NfC|f4V~T)NCYUNf zovMXArkg~m0$)|3-?#EjnTrbi?@xqREWlR8s*v?!L6t$A1vvVq6|!x6%lY4S0CoNMhRIz; zeyS4PH3knXz&Sj!Lbh!mIQp>w^;SZZ_*6g)3Z-%_Pg zr40&JFUg=~%7Ir@VDCl3an1Y}Il;ERB=8B_7~&o?2BGO@}J z0p6Jz{1UJ$3xhub9A+iQ@k=%g7yN-BD{G{(0Nd$og=|Z5aq?QzpnJK)sw%jsF}%?ka+ZjRkZs&LEF~v85U0 z6EL(KgZu)F3JeMgXjq9sVF8(|Feu7^$G=vCNpVq`S%*PM0Y&RGC@r9bH-oYQ;+in< z5)j;sK?MPheyOYg#-aIwD)szFHH&ah)v!XgdOn;(EddAHFsLISZ#xF{1hnhGpn(AO z5-b$aNC90H+6V8w0%+<0j^DqU{~g~-0Sr~_Ak74AEWk##vqHAd-8sJw0wQ`a=p-Q8 zk3km!)R#dw1?*f#eH)V=qH=c#1788^t(P#{Pk_U$z6yL}x5q0np)tS$Z08^=WUDio zqX!EpGerTrZK#m4c2)@x(0V$9;Q~IHWsFh)3r{lJM7$CVg^slV7dqYw*=o<`=!ptE zQu-YhF_>b3fp+yzpQ%>RHgz$_PZw|@h`~$+ZmS&bg)*390WNW#6|xOn#?cD|vV+3<6D{#{Y1vO+e`!yLUv zz=S9U>+C`X9Agq8;7BxsjRG>9X0Ta6;28#61!O+QV7q{<7Z~gm;B|??ZVT9L8Lu+g zV-Y^S54GPXpw3O!I3VD+2@VN3ev37Z2$*!6!BGJd;~5+m(DNPxd$f=?515=35c811 zX#vrX7@QTLKW1=VK(%KKE(%Eh4};4BUYg*l17Q7q@h_`f6P5fg7{m!U^OC_$0Z(2r zxGmu4YX)}&WPiuto`Cfxcp$*^7`rV&5p4X-cjlqtpIU%@=pQR&n`v;C&jl>{$l#>_ z?GuC70^&b2cq?GzR|f9|*vEWlk|adExerzt3cOclRmAK006tlO&H7@6tmy9wL@E7H zQ~#F*SpSa|!oi1p*VG9IszG0kKlK(^6p+Fs09{-dq!RGL1kM5`rDY9Q0o~mhq!sWe z9Rqg(<2)F62$+`z0PAlCA%(NDN+tn&O^`)ElN_v(O+c|+3~~tAic=O*nOp)K&5>7u zXw^Qa@~}pJ25SA~1}Z4=*Yb0GVF4aq42lXUUxPt$0T=5sC@COcBL<}fBsOJGR)E6_ zdwE3;DZ3oEvnyGE&8lLBY6|((f zAJ6%95~5C!giT!(z`h#)F5k=h|LzL>Rse@cDh*!?aF%{n$mTJdqx&eZOX;`4tA3&1 z-vX>Z&=JD?<-aO{zXdqKFe`+o4LH9M0(vfIFiODV6%57*@Z7{;oB+Q_ z1{1>6{U`2Ci_QU!3Si;ES!J{RSNDX>}r$M5jVExkd!krmJD1eL1WVW(y3^rMS%h+OtY-7`N^fm!r z*%<8L=H(n#=3}x;RK^xy5GkNYQ3iVjtS-)Azkn8{7#vjKmom%oM8OdYuvte{C_zPs zmbG(&6Bgn47%OB8EYH!W1k|m~;EaISCJfFA_|S~O1p&ocGq@xmduIk$81VJSjxJ1M zMde6$2G<36_%gU5V2lZF3Ao>jHR1()@MCaSz`Q;T?hD8=%$c7*e<)L!>ld&>w*C7!yFvogd$!R?MM%wm|2u0GS1Jl{4kfLS zZPXb~P+CBds|?BtD0PQ{mjY*19nL&tP|*UMV`VF33w*Ak?Y3${u07%eH3dvfU{FT@ zj$u`1*B6lL83S(t<^N&OM8G@~G#4<3%eA#KftvpuhPDwE(==Oq0j6c6i`hB}a@f{Y zfWx*P0vxvW65z0{j{w-l^M8Lu4yra=Hr7Q|aF7DH*_X^#B$4Yg!~)!i{#M8~<~2tT z7x3~egHZy$ykqeHx;pdtny$5vJ3{10f{+*@ql6k#MCvN4m8+MJq0PODrd3m`)$W#Z zHCjrK(3V>%Nt4>fYo1CqQEWvTF%>n|aE+zZP*N2Kk&t?yX+6z(|5@v|zWdpGJ!|cC z_C9Byy`J^Hf)2kE7{>tHAH{V{P!p+iq5`RAvI42*Qw37Ze-ubH849G983@i|(>}s# z@%gVI)V3T`;_bKs8ted%Y$2A*1M+;10c1bVl&l@aw0VI7h%}3xxmdwVcL^+0kY2*q z|CLH0?kw)JS^-3zMX*+Zc#((TTXbvs3^!V=R{+sx5jY6oDKETWKY`BbW<5rF2^}=w z#`j;SZBp+xJ&1P^9b^ZBi+GS(wdo+c4WQQVF(s?|BRb@d3QoJp{-ArAG9VAuHa%D z0+9+HJwYHwL2f$&aSH0QTTK**pUo7AX9*r9;#w;O;#nI7;#pe-;@Oi5#IueH#IvUr zh-b+NFk-I9YMw&QKWhkeVOLYa5Wd*M-4&ecOrV#7b;$%$6rAlsptpk5=Lz&xP}-9~ z>MZ>Hp&J&&^2KWUs|iH%MKDl-_&Edt`~y+R8qkRb`cSnH&xR=w&nyMv*>DA^9-?M!`zHM~pRqI_yJJ!l=OL_(uvhrV>b3u;?WMA0zNk9Z$bZWQv-6 z{VIXa6fERQKUc7G7+GX0xbrrFYz0LOW-6FGf-Gh$_;5r3-T&q(k;X1ikjkxJte|=t z9b}n;$_!R2h-6n+E0CM&S_RUBc>p}z$z5?l@Z3?7|b|9dO z=ee2W`););dfP)}ubT9mO<=#8Kp)}hJfuK+J#q#?4i4S;59pvj z)A&b1W9Y*F-+l=JUHC@*hjzGP0NGzNB@ByJhL>8VqO61~N zq9AlKnUpD*@G*gM1vX!gE6p~3Lg-|y*H3{s?yo@Vbt8b20-ygD^J$+TA(gC@1q5mu zK#dJCC2Q3*+8nAt?uqpjT;!W%xPl4)rClNw$ViBpjo-g%Y{-d^QxkEkiGnmfNHYc9 z*v|w7;&>|s;z%0>;z(Ns9y#ihNb+%PJadSA?PvhCzLP0g?=Pp#ofSZ2XYBGW3KA9* z=&E2bgYF6-)-&$X3xJ0!9mXU@O_EoWNpA&@RuJf`V9H7YsS4VCMWDX|3<(X@3{cpj}oV!}*#49!mz=4MQv$&o>pw zcrI2TgY}LA8Ji^vWGI#?kfB(vK!&2H(j0T)k<;m?K!&2f0vU>K1u_(a6v$AlsX&He zZ3QwE!vw(RPsU<>HIbp%P=O4^CoUI-@8SmznUy7 zCNNOJy4wVXD0q06z)%G(T*J)kHdAngZ#7=?bI+vJ^-MMHnG3$kdSAn|bm5egvKJGMSr!KQX@dj8c& z$ybSF(pbS_22B;*P9lpI3a&F~so<@)WRa*K7pj4JpHNVTK|2H<>h+aOI;hE8Ptrb} z6eRI^>8wCbR2KzuCb}w+GtpgvoQYlv;7ri?Pf;RgqPGG$6MYrPnMhS2XQICXITHgF z$e9?TK+eQa03IH8cq*WehN+312}^;TiQx+5OpH_@XJWJhITK?P$e9?cpiVm;|KpX& zneZr(GcgIlCA=P9))A@iS0C@f&1OLjf!hfCDN-0W1%IAXGuEclh&HPsw;T30H85-HKEoe#Ri6 z{z=HEqsAe~#SY8aM4*Z8BK0;?Q0pDCNSKG;zo^%x-d1WN^|nE<36FYjD(%zO0P3H1 zri2R(VB0z<$eTc*lY&(YIxBz$2k8FOMM)^v(N)1s2Hh2i7rhiny(tQ$-rfqN-o6U3 zUT`%Pfrr{A_4Y?{6dT(V)*S$ofd)`x2b+?$@-y1}nu7h)2)v;nh7aJgegPiwZMEPk zJk|&$a@0`@AEv||w9k4qk!l2t>)}JXLC6_$k`*# zwsLlxGn_UAyW=z*$Z)O=WH^-tvY$A^sS8ko$pRkC@r8fL@D+T>&T)pX$3qEUM~7@N zXZQv$ls0o#z!|>o32-K7vpAd28NT8O+wjdr$ne!b$c}M_Z_|08i0`XGR?Zo|Nd_f+ zJqj{>$q6!ibqTWdoZ)LlP{Mb8Aj3C&AiKvIzH9@fU7X=dA5g*WpoG7;A;TXYkl}Y)$h@3w z;S6ty0P)@c*-_5$0y-eaO&2Vnm+i5E-sGz2Oy=U+`vSr5QO*t&R4PU~g1dQtLs9Ek}+RmIIr<_t|8B7UT_bJH9L**>}F|7P1W$ zS*$%c-S)@YHv8b(TGb{WZm*rn<{N!+L9o~D-dd40cjs3uMu)Z=)Y`aTP;pCC_JOT# z^q^2Etom2O+sOX&g~fz_sEAv-_f#x4vdd~fllJ+ru(lO?YKPCJ>`vS1n7e$ay`Ux> zWVbK7HF7zb!t1GY7R0OIT3`zAuvTE%+jfxUPG7pUkSM&(O19hW%v#d7BWptgFZi(Rk^9N=v@iYR5Yb;M(#PE= zDi#}M-#S25AM>HMr;fJ{EI|csGzxw4uVH=C$0~c|LE876FTKSSUht)UJ!3Bl^~V1- zUeEh*dqyY>On5u^FWbl6SEabg9unqlVBZRb7GLpU*%yvb+kUG^!|mt7yn$|bk(drf zdpCCfTCo^zuL^^f(WY?wnVE&ufNQ=c3zioK*uiz-)ZwKe)2-jkI6txj$%@X z$tq0xW3mpD4Va9?WIiT|n0$iCVNAwg^39SSka|$|!elBYeKD~xS&qp?OfF+G1e0Ny z^u{C=lPpX+U~Nx&1i2(U2G6+#g;&ZO@M5>9TwwlPpcq8X^Y)2#`|}; z0?q~)gx?qRIE7)}x;9)Q+;(}4w;H%!HP)L1uD6f%w#B8;V!e^^xC6i4h|cmq;do~F zM-f(RZFF*Dz1dxx z4vTWJdSac)2dqAar3hFZhBXLS&4tAWSS7(C1FV9-H0m;}Gr;UDEGNL~ zo0fGzj|6>{W>N&T0jOd1uuS!nw0L ztZE)abSIW(9o_A+V+P(&uqTd)aXaa2@2yE_gg?-%DG-sJqr2~iQ0%1AthErg{kzIE5@ToXjj860Iddq`jh&EdSyN1$@XjVc*cBMg5KTHRU$A(aKe zuB{(8PAs|9rWyV^w3_z-Kq?agDziG(%cw6?P&q;0mK;lnw$VOu2oO>eA&xPtjMq^) zkIt7AhQ&NUt7pdnAr<UO;4QegR01HyKZPZ?fatq9P z*ztaOY&8BxwO;=k5Gfmiz_JRsQ9gHg~2A$~XzV_tjbb=!Yj+bAcgYU$r&!%m_r z4O+ksq~3(kiq=WzvnHieYXuhJwr?TKp;hEWwkz#DC>nq4TY24pkjj8CfvoyLd_e0f zXZp<2s)xPI0gXXWzJ!;O;g0fBW0qJ?psu?r9;jMX}b55{Wp1*6HWeOr!3@Cx`9&&o}CORqw)s2;S-kHxTQflb2OC zuU6P2tl{`xAfy_={m**jyt=q7adp^M+%^jyJ#f^Q%5a~zwmK`HdvK&)EOU5+F(mtM0Xp8eGSyK@g9Gx9$l;<=nmSAYiZupVnAi%nnw$ZH?*yK{=Rx^^{S!APNVwEf9W#)w2+HgH;g(++g)}k18mgiOCPYsTutf zx^fsIWpI#d-zy0Ba8m{GzbNJyCp<(B6%SDLb zK#!=>te_cH;Tn?s?rULoZt8%BPV37Lcf=*(b1Q2EglXUa52GPI1FO#=E(5FnON}}Q zkr=GwP7`aubmk^;wINQVdttd2tH1Xe8|W&*3Pb{f?Zq9ibD4dD@3^@O+x ztP&s|0;{!$jCvUY9x!VFkq%g$JmxWS=5eFGgfIuZ`2&b=!0K&?YryI>1T+u@kqlS` zUNGtfh+V*}Im9Sn<@(jAN|%l52;m86Yb)z#2u#3+We|~oRo&}GB|*pmW?M-)k4-Eu zh)=>NgVqX&9l%isszZzbR<~3YK$rk#nGhbpTI@7fR{rlK&t}{+7UtsfME|v_rnn7j z8)VcTn32zRZD8iT?4jy+n0(J{9L%w2^+G+PT;WFLG&JhZh$<+j)Hqe{)HwC0`^}^R zbf+0ij^}yxy*e6o38up{Yv0wVfF7uv9?6f+JrnKVo|XClA>~drD)MDiPS^BDG0z6h zM5_TX1KpbGjN0|6^<#l>RfC}pGsLa=&YGe}?>z7Nb4!Dct{pp*@Ik5d!ED$P) Uv>VL%B$Z~lccXDy+N&-950v_XH~;_u diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index fd393aed105c91c4426fe0e75b303e9c49ad1c12..36e9a681a217b3c8b83f40fd1daf146f8c89b3be 100644 GIT binary patch delta 64 zcmbPwfobXmrVTBOh6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG UMyV#LhQ>)rCPtgLGA1ko0L&*9MF0Q* delta 64 zcmbPwfobXmrVTBOhH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo U24+d-Nv7uJhN+vkGA1ko0MZ;48UO$Q diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index aa91f574df5e13dda62d462f14902235109fcfa1..26fb434c16e01d6109f6a826b482ebd482a68c57 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4GYYYixbmL\n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:02.058027Z", - "iopub.status.busy": "2024-09-06T19:37:02.057684Z", - "iopub.status.idle": "2024-09-06T19:37:02.256206Z", - "shell.execute_reply": "2024-09-06T19:37:02.255652Z" + "iopub.execute_input": "2024-09-26T14:51:06.340715Z", + "iopub.status.busy": "2024-09-26T14:51:06.340434Z", + "iopub.status.idle": "2024-09-26T14:51:06.519948Z", + "shell.execute_reply": "2024-09-26T14:51:06.519447Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:02.258543Z", - "iopub.status.busy": "2024-09-06T19:37:02.258213Z", - "iopub.status.idle": "2024-09-06T19:37:02.262761Z", - "shell.execute_reply": "2024-09-06T19:37:02.262194Z" + "iopub.execute_input": "2024-09-26T14:51:06.522000Z", + "iopub.status.busy": "2024-09-26T14:51:06.521573Z", + "iopub.status.idle": "2024-09-26T14:51:06.526439Z", + "shell.execute_reply": "2024-09-26T14:51:06.525860Z" }, "nbsphinx": "hidden" }, @@ -2550,12 +2550,95 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "024f58b175f14cdca925ad2ec59e5f75": { + "01a52525efc245dbbd179fb0a46c9b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "047ffcbda41946e19a08ad3b61bf841f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39045bc38857424e8dd68bde536fe596", + "placeholder": "​", + "style": "IPY_MODEL_edbabb45d56b40b7a43858d7ec51dcae", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0944754e93274569967afe6d608ae5bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0ec72a2a0065496b8b3b6ff239cb643d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22cbf5fe8ee943da90f0599eabdc47e9", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fd121ab479e40598a964ef1fe640df7", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0fc0d5f5c5fd4be8b001f46a67af29e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,25 +2691,33 @@ "width": null } }, - "0445112b7e674aa2a14ea027dc8bc2f8": { + "0fefa1fafea24c19b8f8733109f29d90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be38efba8d3b4a918b3d7486ef513b34", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6efe50b16d4bb4b79ecb580262a865", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "06c85507cf49495584b002e6aaa044e8": { + "10f1631d161c449eb8c661cb78376e34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2644,30 +2735,25 @@ "text_color": null } }, - "06fc43e80ab4403ca27ca8d667aca1b3": { + "122c68d343034072a896523a1a6f59da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e22cd2b18d5465c8bfc301a968400ec", - "placeholder": "​", - "style": "IPY_MODEL_0445112b7e674aa2a14ea027dc8bc2f8", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "076942f2bb5542e9a9c126f736c4b427": { + "141a122f5b984ea4b8d354438a45f4ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2720,25 +2806,7 @@ "width": null } }, - "07c128e462924e039bd30ffd94caeafe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a3d18201bb14d5c9e73af43adbe2cd8": { + "157b0b5de92c4dd39861100e0048c0b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2753,57 +2821,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e6d9313a802d4513bc93abf9ffa9fc9b", - "IPY_MODEL_6d3f4ee5439044088f65368ef798b3b6", - "IPY_MODEL_351c45295ff8422c8718ee4bdefa510f" + "IPY_MODEL_46affc3b26cb4f05ba2a6b4d66e4a233", + "IPY_MODEL_e504d10254784e0fb8866b5539c1da25", + "IPY_MODEL_5e794a3967d7453396cb620ce1a5277f" ], - "layout": "IPY_MODEL_7c5730df719649e6ae1137849667983e", + "layout": "IPY_MODEL_b707e815ff5841ea8e23fc04fa7ff454", "tabbable": null, "tooltip": null } }, - "0a606b97ecff4d89be8f66714f909ba3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0b9bdabf441e4113805b54ee83d92f75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34e238c0c2c24406adb5d978aec7e807", - "placeholder": "​", - "style": "IPY_MODEL_511e7568ac814ea8846c93d586063e8e", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 285192.56 examples/s]" - } - }, - "0c2a412a844140bd80a53f2ac3fc325d": { + "1af334042da749e9a2368c61aae4462f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2856,33 +2883,41 @@ "width": null } }, - "0f5233a082d94dddbdb0503eb9250ed4": { + "1af3d41b10be4701a4e58df18c1a38f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_024f58b175f14cdca925ad2ec59e5f75", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0366a87be804af7bcf6f5cd7f11bc3b", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1b540d6d72a748d0ac6d30324dc37e51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0f970e1142174368bfc637a6cd8d6fd5": { + "1ee09afeb3644ffaa25df19feb6d7756": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2897,15 +2932,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_881dec995ffa41c3b5cbe3a2f2955ed3", + "layout": "IPY_MODEL_a199cd7e7b8c46dea72b37e895857807", "placeholder": "​", - "style": "IPY_MODEL_7500e8476ee64140b7338f73ff7b6e53", + "style": "IPY_MODEL_d0d8518db2324e00900b4cc97bf83cba", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 10000/10000 [00:00<00:00, 246828.30 examples/s]" } }, - "10a3911ad0ae43f599855a0ad46d4195": { + "1f4aff5948cf4d0186015296605c7196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2958,7 +2993,41 @@ "width": null } }, - "11645e47817743048239554d8f897a74": { + "1fd121ab479e40598a964ef1fe640df7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20c8eedf90bb40d392876c954589ff68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22cbf5fe8ee943da90f0599eabdc47e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3011,7 +3080,7 @@ "width": null } }, - "118d13a1737e460b986120e1cd8488c6": { + "23438682b36c4a25982847f0236795a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,49 +3133,25 @@ "width": null } }, - "11c48316135a461ea55c3d08dc541755": { + "26577822b8d84e4f976ede8bcd034275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d54af3f6955d4b968858d238a0210190", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2fa408e34274722bd36f3791c967fb2", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "13063e602ee246eb9b552b3b781fa85e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1510cd85e1a74691abd66fcc8f87c34c": { + "27d69304db224bf69131404f9ec805dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3159,60 +3204,25 @@ "width": null } }, - "156d3569cd004246a2f548957d78f2bc": { - "model_module": "@jupyter-widgets/base", + "2a62f69b0c2547d89c82d6582f304d32": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "15c77a61cbac476e99fb0331858d1d8c": { + "2a6efe50b16d4bb4b79ecb580262a865": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3228,54 +3238,100 @@ "description_width": "" } }, - "1658cd683cbd496c9ff193ba8d7c35ea": { + "2b2f57b523f849bbb599cc612b663ba6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8a497f4724b458c8448b91e3ce44d15", - "placeholder": "​", - "style": "IPY_MODEL_3c640d11994b4372834d50a9621d95c5", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1138.50it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "16923bdba0af47908931030b52eaedca": { + "2f87fcdad766443d8c4bca6afb07dd5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "309f00f07977438688cb2e2a138942ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31aedd70a4c245c99b7449fba431ce39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37cb8925a1ba4ade99a9002b6b26e8df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06fc43e80ab4403ca27ca8d667aca1b3", - "IPY_MODEL_0f5233a082d94dddbdb0503eb9250ed4", - "IPY_MODEL_8efceb1c08634d06817a3fa57d1a8f06" - ], - "layout": "IPY_MODEL_a9b1da96fea74c509d14483d998a7cf8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_86ca6bb1495e4902b7bab635f193c7b5", + "placeholder": "​", + "style": "IPY_MODEL_c8b6019d0f094ef6b63a722264c996a6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.07it/s]" } }, - "1e5e214067f448fe820c272b4d8b60b6": { + "3814212d72544fd898cb1f84a4da144b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3291,17 +3347,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_929f19e8f15344c999957b2ce7569264", - "max": 40.0, + "layout": "IPY_MODEL_a7d9118a0a624247afaec6d0c70354df", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6c95b5f8fda84c369cae7cba5624ccfe", + "style": "IPY_MODEL_01a52525efc245dbbd179fb0a46c9b73", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 9015.0 } }, - "210dbd38b6ce4f9e9f8b810ac64d03bf": { + "38e12e1caf544c0db7e643ca4333c637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3317,7 +3373,7 @@ "description_width": "" } }, - "23d399d3b46a4f8d82116059129fd43f": { + "39045bc38857424e8dd68bde536fe596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3370,7 +3426,7 @@ "width": null } }, - "25c0e4e85ebb41299102ad0b3e0880b4": { + "40c57ff589b84713af0069686d77f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3423,30 +3479,7 @@ "width": null } }, - "26b545a844a84c278f68d51645f7e371": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac970746b6684c3ba6bb43eee4014e2b", - "placeholder": "​", - "style": "IPY_MODEL_c77f86be94734e2ba274bf4267c5a824", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 680.45it/s]" - } - }, - "294184439d7d474cbfc6043c1efa9d3d": { + "41752bd19eff4ad7bd7f964db91e4397": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3499,7 +3532,7 @@ "width": null } }, - "29ace475fdbe4624840332dd0e509ed6": { + "43636151bcde46648bb7aaa89ccb8a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3552,81 +3585,30 @@ "width": null } }, - "2b755b9c572e43a396e62c74fba5329f": { + "438f1faf1add4ca0bf523ed0c6de324e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_11645e47817743048239554d8f897a74", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c13df622dfc4f04853781143737296f", + "layout": "IPY_MODEL_7a0e1f1ff0db4d01b7ee26a773a3e838", + "placeholder": "​", + "style": "IPY_MODEL_122c68d343034072a896523a1a6f59da", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "3273abc0b1474d17ad8e620a0b9cd685": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a53594c87ee944d2ab253fdeb3aeae5f", - "IPY_MODEL_e38940706f02447996928468d3f523eb", - "IPY_MODEL_e127093a41b442febda97da50e709395" - ], - "layout": "IPY_MODEL_d9bfaf958ae54bdaa41267876482d6af", - "tabbable": null, - "tooltip": null - } - }, - "328179309f4646028e9f8909eefb6c74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_471bce1ec58f4d4da4ed7ed290449c5f", - "IPY_MODEL_a8fc249e1ca44d4084ed4e8e978d6058", - "IPY_MODEL_f03a0d23baa4409abb0c7271bd76ab8a" - ], - "layout": "IPY_MODEL_bb2fc960507949aea6439fcd3c77de5b", - "tabbable": null, - "tooltip": null + "value": "Downloading readme: 100%" } }, - "33d5aee8319348e485ec3980bc726f23": { + "442d008a589d43729e86f45feea617a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3679,7 +3661,7 @@ "width": null } }, - "34b3d7273cdd4ceca25a11fbb32359ce": { + "44350a751399489a9b7ac94b4aa0544e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3732,60 +3714,33 @@ "width": null } }, - "34e238c0c2c24406adb5d978aec7e807": { - "model_module": "@jupyter-widgets/base", + "4472b003fd7d40f4b054d6725929c2e0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c8fe2efdded46d4846420593a00bcd9", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_acc0b8fed3ec45c2b61e4cbdd87c0d3f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "351c45295ff8422c8718ee4bdefa510f": { + "466806dd912b4f9da060546451df881b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3800,15 +3755,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e65bd8055fd45d8999b608481497477", + "layout": "IPY_MODEL_5171002b8b9b40e58bc90a21fd7d4fce", "placeholder": "​", - "style": "IPY_MODEL_82b18a92ec124a52a6892b31409db80e", + "style": "IPY_MODEL_a1491d109915441ca6418a110cd3b606", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.40it/s]" + "value": "100%" } }, - "3c640d11994b4372834d50a9621d95c5": { + "4685982b10924f9aaf548d58e65e7fff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3826,100 +3781,112 @@ "text_color": null } }, - "468f054b84de4a46abae17b5d6030a66": { + "46affc3b26cb4f05ba2a6b4d66e4a233": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_49329574ba97425f8b3b12f07b8d53cf", - "IPY_MODEL_2b755b9c572e43a396e62c74fba5329f", - "IPY_MODEL_861644c40333498094e62f8ac990f5a3" - ], - "layout": "IPY_MODEL_0c2a412a844140bd80a53f2ac3fc325d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1af334042da749e9a2368c61aae4462f", + "placeholder": "​", + "style": "IPY_MODEL_8fbebe50e8c94c68b5af42bcaa77c458", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "471bce1ec58f4d4da4ed7ed290449c5f": { + "46d058b0dc32483b92ffc747203adfbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9b3afcffed047abb3d7c9215eacb041", - "placeholder": "​", - "style": "IPY_MODEL_d0dfbf919e5f422689492055a00be836", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "49329574ba97425f8b3b12f07b8d53cf": { + "48ba164541954d109266e55290018b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77caecf6cce84ac885a2c431ec321e76", - "placeholder": "​", - "style": "IPY_MODEL_df804279770c4bbdbba569e996a72047", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb02675b1ffa460abaf2766e247e9e76", + "IPY_MODEL_f5bdc90f13ac4085a6c87c3f16c1db23", + "IPY_MODEL_8e5227fef7bb4af398c777c479c081d2" + ], + "layout": "IPY_MODEL_442d008a589d43729e86f45feea617a0", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "4a900a7bd2894dc2905c92a999845c41": { + "49a7ec98f7764b44b81eb30169e07a30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78ec8846971b49dc8ac35c9865ab7855", - "placeholder": "​", - "style": "IPY_MODEL_a1e0fb35ccfd46ac9b640c1e3a97a83e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf2c49458b23448bbd90dd22355dc406", + "IPY_MODEL_0fefa1fafea24c19b8f8733109f29d90", + "IPY_MODEL_e1863acf55ff485abde9e3dd42efb403" + ], + "layout": "IPY_MODEL_6f45d2ba1fe14a26b1dd8d8cde2b3404", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.88it/s]" + "tooltip": null + } + }, + "49ff26f36c4046ccaa23af5a0e1bd79a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e22cd2b18d5465c8bfc301a968400ec": { + "4afd56e1be684a4ea49cf9bd94feb822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3972,7 +3939,74 @@ "width": null } }, - "4e5be3b38c73499194dd5bfcb00e9476": { + "4c60fd9ec0a14e40806e9a0ac5d515de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d78c4c4290346e58aeff13d1e2863f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1f00c2ba7fa42879c2ae82deb9ae36b", + "placeholder": "​", + "style": "IPY_MODEL_10f1631d161c449eb8c661cb78376e34", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.27it/s]" + } + }, + "4e00ed69c8994d9990e59ec728ec2a31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5d17f8bb48c489d84f85f8b0e82285e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b2f57b523f849bbb599cc612b663ba6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4e60241fc8fc4199a601cbd4c617c5e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4025,7 +4059,30 @@ "width": null } }, - "50780f5c92b44525bf711232bc998378": { + "4f30a386d77a45318659e949f29dd3b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1371d623aa5489ca6e8e84cd59f53d7", + "placeholder": "​", + "style": "IPY_MODEL_31aedd70a4c245c99b7449fba431ce39", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5171002b8b9b40e58bc90a21fd7d4fce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4078,25 +4135,31 @@ "width": null } }, - "511e7568ac814ea8846c93d586063e8e": { + "517b83c613bb49c9ab0cd319caf77fa4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_438f1faf1add4ca0bf523ed0c6de324e", + "IPY_MODEL_3814212d72544fd898cb1f84a4da144b", + "IPY_MODEL_bf819d4aebc746d595ddad41e330f6dd" + ], + "layout": "IPY_MODEL_959554efc55740f0a1054b9bb02b35ab", + "tabbable": null, + "tooltip": null } }, - "5264eae69a4a44c5af270b7caaa7eeb4": { + "52f3a03aa4994380b8b138695e6993e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4149,54 +4212,7 @@ "width": null } }, - "58bd914194a245c2b1a963606103a9bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65a24ce68aaf46d6b97c06a7d9ffc735", - "placeholder": "​", - "style": "IPY_MODEL_ed24804748ab483289fec871eb4e7ebf", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.43it/s]" - } - }, - "593399f7ed16479cabf5d6887e2046b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9db52ec22ade4fc2a207b214ed54d964", - "IPY_MODEL_7774247051444f258f5cb5a4624a6d83", - "IPY_MODEL_f082a4eab5444b019ea911ae0fb7a92d" - ], - "layout": "IPY_MODEL_8a312c718675404cb5eaf36ae41d943d", - "tabbable": null, - "tooltip": null - } - }, - "5bc3a1038e00432097a539e27f83e00f": { + "5407b52abb3543878bac58e171136ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4249,10 +4265,112 @@ "width": null } }, - "5cf6c3b877784057a47d544871ab0987": { + "545ab14d8bdc4758954170fd6a6c7f2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d16d5292876e41bbb948c7172eb1b022", + "placeholder": "​", + "style": "IPY_MODEL_9d21835857024eaca20e6c75bc8f65eb", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "54d86e58cead41e6ba4d5f91406ed1b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "554fe55159064f65be3faeef3e587efa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44350a751399489a9b7ac94b4aa0544e", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68ce90ceb8c5418fa6b01cf5ea89177d", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "5568c1b377ee44e2baadcd2713472be4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -4267,7 +4385,7 @@ "text_color": null } }, - "5e5e4490daf942669f04f85596a7308d": { + "5a0315cb61bf4e1b9c52127d29ddf405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4282,15 +4400,104 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ace475fdbe4624840332dd0e509ed6", + "layout": "IPY_MODEL_fd18df91f07f4dd2951fcd6f5d643d2e", "placeholder": "​", - "style": "IPY_MODEL_f784e45cbe9248ae9c16491028d6bf8e", + "style": "IPY_MODEL_2a62f69b0c2547d89c82d6582f304d32", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 64.27it/s]" + } + }, + "5a31bc5cecd243f3b3fc5adfc57abc50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5e114e4103d94679910f2192af574f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2007b76905c425eb8c5793d5064dd23", + "IPY_MODEL_eb1eb741913649deae955849ad2ff5e8", + "IPY_MODEL_8bf2df37d8174d2faa0d068cc68a2fef" + ], + "layout": "IPY_MODEL_dd4c58e0fd6948c49326bb0bb920e8c2", + "tabbable": null, + "tooltip": null + } + }, + "5e37b90b12544b039698dff9bf1b1167": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b832eb74e64e4a219cb1a39e71503899", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cad31ec6e694b91b3e194e785d6cc13", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5e794a3967d7453396cb620ce1a5277f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aee54ae8933b42d09ef6de4b7c8e9cee", + "placeholder": "​", + "style": "IPY_MODEL_919e7f7fa04b447e977f5978a6008575", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 48.5MB/s]" } }, - "606a0ff67cfd457c88c691c81de63a4c": { + "5f57350bd59941d3b3be376c1389de24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4308,7 +4515,7 @@ "text_color": null } }, - "60b6605a27b343f3a046b38e2ee92eb3": { + "60160531292f49f6912a5e7fa5c1cd4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4323,39 +4530,94 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f9f45d26f74148d5aafa521c2e42894d", - "IPY_MODEL_f11e1a00f1c942a080552a095321e730", - "IPY_MODEL_b323c9ad204c424e81ad897a8a41faa8" + "IPY_MODEL_047ffcbda41946e19a08ad3b61bf841f", + "IPY_MODEL_4472b003fd7d40f4b054d6725929c2e0", + "IPY_MODEL_bdf9a01c9a4d4a6186410cdd21003fa3" ], - "layout": "IPY_MODEL_f1c64d058ec34988a144f78b8ce7cbc8", + "layout": "IPY_MODEL_27d69304db224bf69131404f9ec805dd", "tabbable": null, "tooltip": null } }, - "612a34311c13432a923b885221f461b0": { + "60b1a0d2d540411383054bcc09a9902a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62dcb057ad134472b2f7163715a51417": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_156d3569cd004246a2f548957d78f2bc", - "placeholder": "​", - "style": "IPY_MODEL_0a606b97ecff4d89be8f66714f909ba3", + "layout": "IPY_MODEL_23438682b36c4a25982847f0236795a6", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a31bc5cecd243f3b3fc5adfc57abc50", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 5175617.0 + } + }, + "63fd06eb481e40ff939a4af2d7ec11e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68ce90ceb8c5418fa6b01cf5ea89177d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "62625d830bc54505aa74a2a30ef3af9d": { + "6bad8602531348f08c403c73528818d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4408,25 +4670,7 @@ "width": null } }, - "63223699d1124f63b67f209182bf8e11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "65a24ce68aaf46d6b97c06a7d9ffc735": { + "6c8fe2efdded46d4846420593a00bcd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4479,7 +4723,23 @@ "width": null } }, - "6739176497a24677bed9ce1d499ce111": { + "6cad31ec6e694b91b3e194e785d6cc13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f45d2ba1fe14a26b1dd8d8cde2b3404": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4532,7 +4792,31 @@ "width": null } }, - "67956635d769462da5b0f8ec7ca4575b": { + "77e4c9ec41b8452c8963af0b77b5555f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8838da60b00243caa8a1c207f1f8be22", + "IPY_MODEL_b934aa90c70b4cfdae426a9ca50e61a4", + "IPY_MODEL_793b99f043774f62a311dedf0c93aba0" + ], + "layout": "IPY_MODEL_83e0553f47d84eca8ffc9341907dd047", + "tabbable": null, + "tooltip": null + } + }, + "793b99f043774f62a311dedf0c93aba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4547,15 +4831,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34b3d7273cdd4ceca25a11fbb32359ce", + "layout": "IPY_MODEL_ce14eb0a9f94406f9670f2a1dc1345c7", "placeholder": "​", - "style": "IPY_MODEL_07c128e462924e039bd30ffd94caeafe", + "style": "IPY_MODEL_aafc8b9a1a3a4506b5483ae08647da91", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 60000/60000 [00:00<00:00, 282979.24 examples/s]" } }, - "69af7b2b232142ffa08b9e4439628311": { + "7a0e1f1ff0db4d01b7ee26a773a3e838": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4608,107 +4892,60 @@ "width": null } }, - "6c5276f1cdeb4d6dafd955e313dfb495": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6c95b5f8fda84c369cae7cba5624ccfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6d3f4ee5439044088f65368ef798b3b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10a3911ad0ae43f599855a0ad46d4195", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ac4bae02a5884435aa084f8524ec36ab", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "6dd2d74eb1d04d61844ec3c03149c90b": { - "model_module": "@jupyter-widgets/controls", + "7de683e49bbf4f65959e300da53047ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6e84e471535f4aa89081faaaa485d6c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eec22da0f1c144399d3b96c5a790810e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_747540cae7c946758cd31d80531063d5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e8d203ea1f24d86a8504e8c8f549098": { + "7ef0c36f65034c0f9d5b161441b6e47c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4723,15 +4960,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fdd97c1ed34454aa0a60e98a62224d2", + "layout": "IPY_MODEL_c91d42b9d1c342cf8093443f4eaa5204", "placeholder": "​", - "style": "IPY_MODEL_9bec32080a844b95be00f98699eec0a5", + "style": "IPY_MODEL_20c8eedf90bb40d392876c954589ff68", "tabbable": null, "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" + "value": "Generating test split: 100%" } }, - "6f0a00d7d264477684a40569e5e3fb89": { + "83e0553f47d84eca8ffc9341907dd047": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4784,7 +5021,7 @@ "width": null } }, - "6f4b003f65a3475b87ea4dfb49e22177": { + "86ca6bb1495e4902b7bab635f193c7b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4837,76 +5074,123 @@ "width": null } }, - "6fdd97c1ed34454aa0a60e98a62224d2": { - "model_module": "@jupyter-widgets/base", + "8838da60b00243caa8a1c207f1f8be22": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e34ca479b1cd4338a1b034c9bdb6cdde", + "placeholder": "​", + "style": "IPY_MODEL_5f57350bd59941d3b3be376c1389de24", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "8bf2df37d8174d2faa0d068cc68a2fef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a129d278f5249b2ba66adbc4c7981b4", + "placeholder": "​", + "style": "IPY_MODEL_cbb874850a0f4b8585830f781d02f6c7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6394.51 examples/s]" + } + }, + "8c99cd03c2204dd69d220e1911ef407b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f30a386d77a45318659e949f29dd3b0", + "IPY_MODEL_e0c002bd6e8c4598837703a0b54dfdd7", + "IPY_MODEL_37cb8925a1ba4ade99a9002b6b26e8df" + ], + "layout": "IPY_MODEL_5407b52abb3543878bac58e171136ce5", + "tabbable": null, + "tooltip": null + } + }, + "8e5227fef7bb4af398c777c479c081d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40c57ff589b84713af0069686d77f3b8", + "placeholder": "​", + "style": "IPY_MODEL_1b540d6d72a748d0ac6d30324dc37e51", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:53<00:00, 1198.28it/s]" } }, - "747540cae7c946758cd31d80531063d5": { + "8f801276525d4e939b2f6a4ae43acb97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd7812d3359f4747a8d626fa5a9094fb", + "placeholder": "​", + "style": "IPY_MODEL_26577822b8d84e4f976ede8bcd034275", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.80it/s]" } }, - "7500e8476ee64140b7338f73ff7b6e53": { + "8fbebe50e8c94c68b5af42bcaa77c458": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4924,33 +5208,25 @@ "text_color": null } }, - "7774247051444f258f5cb5a4624a6d83": { + "919e7f7fa04b447e977f5978a6008575": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23d399d3b46a4f8d82116059129fd43f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_13063e602ee246eb9b552b3b781fa85e", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77caecf6cce84ac885a2c431ec321e76": { + "959554efc55740f0a1054b9bb02b35ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5003,7 +5279,7 @@ "width": null } }, - "78ec8846971b49dc8ac35c9865ab7855": { + "9a129d278f5249b2ba66adbc4c7981b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5056,25 +5332,30 @@ "width": null } }, - "7acec2eb1b9b4c74860f49bf17a12246": { + "9b43cbe4d995486aa4d260f3e1778a5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccdd8d1027864d7697480a9f400c528c", + "placeholder": "​", + "style": "IPY_MODEL_2f87fcdad766443d8c4bca6afb07dd5a", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 35.9MB/s]" } }, - "7bcf07287e5846bcade12829a0129e5a": { + "9c97151f1d7f4a49a3e2278cddb3c604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5089,32 +5370,60 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0f970e1142174368bfc637a6cd8d6fd5", - "IPY_MODEL_11c48316135a461ea55c3d08dc541755", - "IPY_MODEL_6e8d203ea1f24d86a8504e8c8f549098" + "IPY_MODEL_fb35e5a84e5942e59aa0f8e4a6d4b045", + "IPY_MODEL_0ec72a2a0065496b8b3b6ff239cb643d", + "IPY_MODEL_4d78c4c4290346e58aeff13d1e2863f2" ], - "layout": "IPY_MODEL_6f4b003f65a3475b87ea4dfb49e22177", + "layout": "IPY_MODEL_e2ddf40e09984deca4602e0c72e8bfd6", "tabbable": null, "tooltip": null } }, - "7c13df622dfc4f04853781143737296f": { + "9d21835857024eaca20e6c75bc8f65eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d4ba4757b8d48bba46623ad8f4b39a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54d86e58cead41e6ba4d5f91406ed1b6", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_38e12e1caf544c0db7e643ca4333c637", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "7c5730df719649e6ae1137849667983e": { + "a02cbe5a9ae843ff95023851f56408fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5167,7 +5476,25 @@ "width": null } }, - "7d5c3f6e3cdc47378b7a095dc828c708": { + "a1491d109915441ca6418a110cd3b606": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a199cd7e7b8c46dea72b37e895857807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5220,30 +5547,7 @@ "width": null } }, - "7e624075712f49aeb75f702d9f7850d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5264eae69a4a44c5af270b7caaa7eeb4", - "placeholder": "​", - "style": "IPY_MODEL_dac3e32ab9a846e79186067c2b27a96c", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "82b18a92ec124a52a6892b31409db80e": { + "a3d204cf9a5a441d9ce00a62738821f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5261,7 +5565,7 @@ "text_color": null } }, - "85965cbbe5ef40678b86b3d3f8e4fc95": { + "a4367ae0bcb046beb0aa7fa55ae59b6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5314,54 +5618,7 @@ "width": null } }, - "85a6da0e361d4bb78dac486525795dad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_612a34311c13432a923b885221f461b0", - "IPY_MODEL_c20bdfdc755d478c8d2c59d296af1748", - "IPY_MODEL_0b9bdabf441e4113805b54ee83d92f75" - ], - "layout": "IPY_MODEL_5bc3a1038e00432097a539e27f83e00f", - "tabbable": null, - "tooltip": null - } - }, - "861644c40333498094e62f8ac990f5a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a77a4e7f5f8140bf8475f4d847910210", - "placeholder": "​", - "style": "IPY_MODEL_5cf6c3b877784057a47d544871ab0987", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 25.9MB/s]" - } - }, - "881dec995ffa41c3b5cbe3a2f2955ed3": { + "a7d9118a0a624247afaec6d0c70354df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5414,7 +5671,7 @@ "width": null } }, - "884d6ce901e24a3797e35af5711b0f35": { + "aafc8b9a1a3a4506b5483ae08647da91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5432,7 +5689,23 @@ "text_color": null } }, - "8a312c718675404cb5eaf36ae41d943d": { + "acc0b8fed3ec45c2b61e4cbdd87c0d3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aee54ae8933b42d09ef6de4b7c8e9cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5485,7 +5758,7 @@ "width": null } }, - "8cf5382c91f64f789a1af9c7918f14bb": { + "afdc4d351896438cb7e9760348393ddc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5500,15 +5773,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5d9319b3ee0495d88f51937931cd00c", + "layout": "IPY_MODEL_6bad8602531348f08c403c73528818d1", "placeholder": "​", - "style": "IPY_MODEL_af8db4b8467844b8be9927dab8c5e3d9", + "style": "IPY_MODEL_0944754e93274569967afe6d608ae5bd", "tabbable": null, "tooltip": null, "value": "100%" } }, - "8e65bd8055fd45d8999b608481497477": { + "b1371d623aa5489ca6e8e84cd59f53d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5551,40 +5824,17 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8efceb1c08634d06817a3fa57d1a8f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85965cbbe5ef40678b86b3d3f8e4fc95", - "placeholder": "​", - "style": "IPY_MODEL_d86fc4609ac5440a807e454ed938d58e", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 249921.29 examples/s]" + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "92880a6894cd410ba97664fbbbbe340e": { + "b42c916027f0431eb2b8bccc86357bf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5637,7 +5887,7 @@ "width": null } }, - "929f19e8f15344c999957b2ce7569264": { + "b707e815ff5841ea8e23fc04fa7ff454": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5690,31 +5940,7 @@ "width": null } }, - "958c94ac86804e8fbd31685a6f87d389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac11acf9e07f48d1af94fcdf26f8c615", - "IPY_MODEL_a671667e5adf4b9798a98eda0ac57dc8", - "IPY_MODEL_4a900a7bd2894dc2905c92a999845c41" - ], - "layout": "IPY_MODEL_4e5be3b38c73499194dd5bfcb00e9476", - "tabbable": null, - "tooltip": null - } - }, - "97578dccf99646909cc139834ab78ea9": { + "b826bec48c45487bbcae63716ac684fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5767,133 +5993,7 @@ "width": null } }, - "9bec32080a844b95be00f98699eec0a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9db52ec22ade4fc2a207b214ed54d964": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62625d830bc54505aa74a2a30ef3af9d", - "placeholder": "​", - "style": "IPY_MODEL_afce32644b8041548c6a8fefb3255e26", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "9fcb012408c9489cb4882ad5d8d37ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e0fb35ccfd46ac9b640c1e3a97a83e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a53594c87ee944d2ab253fdeb3aeae5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50780f5c92b44525bf711232bc998378", - "placeholder": "​", - "style": "IPY_MODEL_eefff7211ed94c5b90094ff9520c50b5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "a671667e5adf4b9798a98eda0ac57dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1510cd85e1a74691abd66fcc8f87c34c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15c77a61cbac476e99fb0331858d1d8c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a77a4e7f5f8140bf8475f4d847910210": { + "b832eb74e64e4a219cb1a39e71503899": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5946,7 +6046,33 @@ "width": null } }, - "a88f012a925b438fbc901a161c09cf50": { + "b934aa90c70b4cfdae426a9ca50e61a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f4aff5948cf4d0186015296605c7196", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf1593492574460ca63450ff1667241f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "badd7c549d834045856ae809d48d9fa6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5999,33 +6125,30 @@ "width": null } }, - "a8fc249e1ca44d4084ed4e8e978d6058": { + "bdf9a01c9a4d4a6186410cdd21003fa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_076942f2bb5542e9a9c126f736c4b427", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c5276f1cdeb4d6dafd955e313dfb495", + "layout": "IPY_MODEL_41752bd19eff4ad7bd7f964db91e4397", + "placeholder": "​", + "style": "IPY_MODEL_60b1a0d2d540411383054bcc09a9902a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 58.52it/s]" } }, - "a9b1da96fea74c509d14483d998a7cf8": { + "be38efba8d3b4a918b3d7486ef513b34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6078,60 +6201,152 @@ "width": null } }, - "a9e701e6d5bf4ec2a9c900edea6104e5": { - "model_module": "@jupyter-widgets/base", + "bf1593492574460ca63450ff1667241f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf819d4aebc746d595ddad41e330f6dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d89cbf3e824f490b81fa19d70eb0784a", + "placeholder": "​", + "style": "IPY_MODEL_63fd06eb481e40ff939a4af2d7ec11e1", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 960kB/s]" + } + }, + "c01e10af9cd04c4c90430d0afbaa6da0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_466806dd912b4f9da060546451df881b", + "IPY_MODEL_5e37b90b12544b039698dff9bf1b1167", + "IPY_MODEL_8f801276525d4e939b2f6a4ae43acb97" + ], + "layout": "IPY_MODEL_ca16aad0772747da8b6cf03b6abc3643", + "tabbable": null, + "tooltip": null + } + }, + "c2007b76905c425eb8c5793d5064dd23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4367ae0bcb046beb0aa7fa55ae59b6d", + "placeholder": "​", + "style": "IPY_MODEL_309f00f07977438688cb2e2a138942ee", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "c57636ad3dc54dc0926bb56946b10ab1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b42c916027f0431eb2b8bccc86357bf7", + "placeholder": "​", + "style": "IPY_MODEL_4685982b10924f9aaf548d58e65e7fff", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 54.36it/s]" + } + }, + "c5b4b8f4759d4bac96dbdbe270c10816": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c8b6019d0f094ef6b63a722264c996a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aba8cf45b54448a59ae5e30586981cc2": { + "c91d42b9d1c342cf8093443f4eaa5204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6184,7 +6399,7 @@ "width": null } }, - "ac11acf9e07f48d1af94fcdf26f8c615": { + "c970c34254fb445a91f6a8570b2ee0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6199,31 +6414,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_69af7b2b232142ffa08b9e4439628311", + "layout": "IPY_MODEL_43636151bcde46648bb7aaa89ccb8a51", "placeholder": "​", - "style": "IPY_MODEL_9fcb012408c9489cb4882ad5d8d37ecf", + "style": "IPY_MODEL_4c60fd9ec0a14e40806e9a0ac5d515de", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "ac4bae02a5884435aa084f8524ec36ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Downloading data: 100%" } }, - "ac970746b6684c3ba6bb43eee4014e2b": { + "ca16aad0772747da8b6cf03b6abc3643": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6276,25 +6475,30 @@ "width": null } }, - "af8db4b8467844b8be9927dab8c5e3d9": { + "cb02675b1ffa460abaf2766e247e9e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52f3a03aa4994380b8b138695e6993e3", + "placeholder": "​", + "style": "IPY_MODEL_46d058b0dc32483b92ffc747203adfbb", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "afce32644b8041548c6a8fefb3255e26": { + "cbb874850a0f4b8585830f781d02f6c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6312,7 +6516,31 @@ "text_color": null } }, - "b149b2726a33413c8e2fde403bed8e98": { + "ccc0d279330845b8b34f60a57e76743f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afdc4d351896438cb7e9760348393ddc", + "IPY_MODEL_9d4ba4757b8d48bba46623ad8f4b39a3", + "IPY_MODEL_5a0315cb61bf4e1b9c52127d29ddf405" + ], + "layout": "IPY_MODEL_e23cc3c422934dabbc7fa7851f6ab787", + "tabbable": null, + "tooltip": null + } + }, + "ccdd8d1027864d7697480a9f400c528c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6365,46 +6593,31 @@ "width": null } }, - "b1625d60d8254709b2fbc8015a483069": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b323c9ad204c424e81ad897a8a41faa8": { + "cd9cd1e986f74424b60db3510b43826d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_294184439d7d474cbfc6043c1efa9d3d", - "placeholder": "​", - "style": "IPY_MODEL_63223699d1124f63b67f209182bf8e11", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ef0c36f65034c0f9d5b161441b6e47c", + "IPY_MODEL_554fe55159064f65be3faeef3e587efa", + "IPY_MODEL_1ee09afeb3644ffaa25df19feb6d7756" + ], + "layout": "IPY_MODEL_f8bd324861dd4e2ca40f79d16ca6ca8a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.13it/s]" + "tooltip": null } }, - "b8a497f4724b458c8448b91e3ce44d15": { + "ce14eb0a9f94406f9670f2a1dc1345c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6457,31 +6670,48 @@ "width": null } }, - "b8c0903ec57a4db09eef7c66d76ad798": { + "cf2c49458b23448bbd90dd22355dc406": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e5e4490daf942669f04f85596a7308d", - "IPY_MODEL_c1960242d8a3445da3b5cfd12aa829f9", - "IPY_MODEL_1658cd683cbd496c9ff193ba8d7c35ea" - ], - "layout": "IPY_MODEL_6739176497a24677bed9ce1d499ce111", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fc0d5f5c5fd4be8b001f46a67af29e6", + "placeholder": "​", + "style": "IPY_MODEL_5568c1b377ee44e2baadcd2713472be4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "d0d8518db2324e00900b4cc97bf83cba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bb2fc960507949aea6439fcd3c77de5b": { + "d16d5292876e41bbb948c7172eb1b022": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6534,7 +6764,7 @@ "width": null } }, - "bcb6b4fdcebe40208119e7b000c67176": { + "d89cbf3e824f490b81fa19d70eb0784a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6587,99 +6817,31 @@ "width": null } }, - "bfcb4b6339d14370bc404a61e757edfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67956635d769462da5b0f8ec7ca4575b", - "IPY_MODEL_6e84e471535f4aa89081faaaa485d6c3", - "IPY_MODEL_f0cb3f6ef1cd478f8be08c7d0285e829" - ], - "layout": "IPY_MODEL_cc31bc3295e7426890cf527d78a13416", - "tabbable": null, - "tooltip": null - } - }, - "c0366a87be804af7bcf6f5cd7f11bc3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c1960242d8a3445da3b5cfd12aa829f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92880a6894cd410ba97664fbbbbe340e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b1625d60d8254709b2fbc8015a483069", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c20bdfdc755d478c8d2c59d296af1748": { + "dc9f46273db144d982f466b186d6ea8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f0a00d7d264477684a40569e5e3fb89", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_210dbd38b6ce4f9e9f8b810ac64d03bf", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c970c34254fb445a91f6a8570b2ee0a6", + "IPY_MODEL_62dcb057ad134472b2f7163715a51417", + "IPY_MODEL_9b43cbe4d995486aa4d260f3e1778a5b" + ], + "layout": "IPY_MODEL_badd7c549d834045856ae809d48d9fa6", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "c65df96729f9462e8df514c9d2bab3e8": { + "dd4c58e0fd6948c49326bb0bb920e8c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6732,25 +6894,7 @@ "width": null } }, - "c77f86be94734e2ba274bf4267c5a824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cc31bc3295e7426890cf527d78a13416": { + "dd7812d3359f4747a8d626fa5a9094fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6803,65 +6947,56 @@ "width": null } }, - "cdf6adba96a64fc5a04910695f01468c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cef86182d7ef449481f59dfea70aa34a": { + "e0c002bd6e8c4598837703a0b54dfdd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8cf5382c91f64f789a1af9c7918f14bb", - "IPY_MODEL_1e5e214067f448fe820c272b4d8b60b6", - "IPY_MODEL_58bd914194a245c2b1a963606103a9bd" - ], - "layout": "IPY_MODEL_25c0e4e85ebb41299102ad0b3e0880b4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b826bec48c45487bbcae63716ac684fb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f241c4541bfc4e678ceec3ff46602200", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d0dfbf919e5f422689492055a00be836": { + "e1863acf55ff485abde9e3dd42efb403": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc81a44ecf7c4ad1b851ab50894a6d71", + "placeholder": "​", + "style": "IPY_MODEL_c5b4b8f4759d4bac96dbdbe270c10816", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 584.78it/s]" } }, - "d54af3f6955d4b968858d238a0210190": { + "e1f00c2ba7fa42879c2ae82deb9ae36b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6914,7 +7049,31 @@ "width": null } }, - "d5d9319b3ee0495d88f51937931cd00c": { + "e20ec2fb456e4bb9bfb446110e53d341": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_545ab14d8bdc4758954170fd6a6c7f2e", + "IPY_MODEL_4e00ed69c8994d9990e59ec728ec2a31", + "IPY_MODEL_c57636ad3dc54dc0926bb56946b10ab1" + ], + "layout": "IPY_MODEL_141a122f5b984ea4b8d354438a45f4ac", + "tabbable": null, + "tooltip": null + } + }, + "e23cc3c422934dabbc7fa7851f6ab787": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6967,51 +7126,7 @@ "width": null } }, - "d86fc4609ac5440a807e454ed938d58e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d936e9a2111644719473853bc9465d85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aba8cf45b54448a59ae5e30586981cc2", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e06e8dd00ef946db9d9676c674e9f1ff", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "d9b3afcffed047abb3d7c9215eacb041": { + "e2ddf40e09984deca4602e0c72e8bfd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7064,7 +7179,7 @@ "width": null } }, - "d9bfaf958ae54bdaa41267876482d6af": { + "e34ca479b1cd4338a1b034c9bdb6cdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,197 +7226,39 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da5cdaff84244e95b85f4f6729933e89": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dac3e32ab9a846e79186067c2b27a96c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df804279770c4bbdbba569e996a72047": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e06e8dd00ef946db9d9676c674e9f1ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e127093a41b442febda97da50e709395": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d5c3f6e3cdc47378b7a095dc828c708", - "placeholder": "​", - "style": "IPY_MODEL_7acec2eb1b9b4c74860f49bf17a12246", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 85.2MB/s]" - } - }, - "e38940706f02447996928468d3f523eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97578dccf99646909cc139834ab78ea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdf6adba96a64fc5a04910695f01468c", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e6d9313a802d4513bc93abf9ffa9fc9b": { + "e504d10254784e0fb8866b5539c1da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcb6b4fdcebe40208119e7b000c67176", - "placeholder": "​", - "style": "IPY_MODEL_606a0ff67cfd457c88c691c81de63a4c", + "layout": "IPY_MODEL_4afd56e1be684a4ea49cf9bd94feb822", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1af3d41b10be4701a4e58df18c1a38f8", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "ed24804748ab483289fec871eb4e7ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee5568e238c045b59cf17074e12437c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e624075712f49aeb75f702d9f7850d8", - "IPY_MODEL_d936e9a2111644719473853bc9465d85", - "IPY_MODEL_26b545a844a84c278f68d51645f7e371" - ], - "layout": "IPY_MODEL_33d5aee8319348e485ec3980bc726f23", - "tabbable": null, - "tooltip": null + "value": 30931277.0 } }, - "eec22da0f1c144399d3b96c5a790810e": { + "e5d17f8bb48c489d84f85f8b0e82285e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7354,94 +7311,83 @@ "width": null } }, - "eefff7211ed94c5b90094ff9520c50b5": { + "ea25312b42fa433294a739c7e0d5c2a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f03a0d23baa4409abb0c7271bd76ab8a": { + "eb1eb741913649deae955849ad2ff5e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65df96729f9462e8df514c9d2bab3e8", - "placeholder": "​", - "style": "IPY_MODEL_06c85507cf49495584b002e6aaa044e8", + "layout": "IPY_MODEL_a02cbe5a9ae843ff95023851f56408fe", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea25312b42fa433294a739c7e0d5c2a9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.46it/s]" + "value": 60000.0 } }, - "f082a4eab5444b019ea911ae0fb7a92d": { + "edbabb45d56b40b7a43858d7ec51dcae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a88f012a925b438fbc901a161c09cf50", - "placeholder": "​", - "style": "IPY_MODEL_f7b0cd88615641199d9599093664c3f3", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.47it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0cb3f6ef1cd478f8be08c7d0285e829": { + "f241c4541bfc4e678ceec3ff46602200": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_118d13a1737e460b986120e1cd8488c6", - "placeholder": "​", - "style": "IPY_MODEL_884d6ce901e24a3797e35af5711b0f35", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5023.35 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f11e1a00f1c942a080552a095321e730": { + "f5bdc90f13ac4085a6c87c3f16c1db23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7457,17 +7403,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b149b2726a33413c8e2fde403bed8e98", - "max": 40.0, + "layout": "IPY_MODEL_7de683e49bbf4f65959e300da53047ed", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6dd2d74eb1d04d61844ec3c03149c90b", + "style": "IPY_MODEL_49ff26f36c4046ccaa23af5a0e1bd79a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "f1c64d058ec34988a144f78b8ce7cbc8": { + "f8bd324861dd4e2ca40f79d16ca6ca8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7520,79 +7466,133 @@ "width": null } }, - "f2fa408e34274722bd36f3791c967fb2": { + "fb35e5a84e5942e59aa0f8e4a6d4b045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e60241fc8fc4199a601cbd4c617c5e6", + "placeholder": "​", + "style": "IPY_MODEL_a3d204cf9a5a441d9ce00a62738821f3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "f784e45cbe9248ae9c16491028d6bf8e": { - "model_module": "@jupyter-widgets/controls", + "fc81a44ecf7c4ad1b851ab50894a6d71": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f7b0cd88615641199d9599093664c3f3": { - "model_module": "@jupyter-widgets/controls", + "fd18df91f07f4dd2951fcd6f5d643d2e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9f45d26f74148d5aafa521c2e42894d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9e701e6d5bf4ec2a9c900edea6104e5", - "placeholder": "​", - "style": "IPY_MODEL_da5cdaff84244e95b85f4f6729933e89", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 55a26f513..688f732c4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:06.951842Z", - "iopub.status.busy": "2024-09-06T19:37:06.951670Z", - "iopub.status.idle": "2024-09-06T19:37:08.104160Z", - "shell.execute_reply": "2024-09-06T19:37:08.103605Z" + "iopub.execute_input": "2024-09-26T14:51:11.092091Z", + "iopub.status.busy": "2024-09-26T14:51:11.091687Z", + "iopub.status.idle": "2024-09-26T14:51:12.301495Z", + "shell.execute_reply": "2024-09-26T14:51:12.300906Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.106594Z", - "iopub.status.busy": "2024-09-06T19:37:08.106312Z", - "iopub.status.idle": "2024-09-06T19:37:08.124373Z", - "shell.execute_reply": "2024-09-06T19:37:08.123937Z" + "iopub.execute_input": "2024-09-26T14:51:12.303829Z", + "iopub.status.busy": "2024-09-26T14:51:12.303363Z", + "iopub.status.idle": "2024-09-26T14:51:12.322353Z", + "shell.execute_reply": "2024-09-26T14:51:12.321902Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.126574Z", - "iopub.status.busy": "2024-09-06T19:37:08.126159Z", - "iopub.status.idle": "2024-09-06T19:37:08.148467Z", - "shell.execute_reply": "2024-09-06T19:37:08.148011Z" + "iopub.execute_input": "2024-09-26T14:51:12.324450Z", + "iopub.status.busy": "2024-09-26T14:51:12.324010Z", + "iopub.status.idle": "2024-09-26T14:51:12.348557Z", + "shell.execute_reply": "2024-09-26T14:51:12.348062Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.150542Z", - "iopub.status.busy": "2024-09-06T19:37:08.150195Z", - "iopub.status.idle": "2024-09-06T19:37:08.153510Z", - "shell.execute_reply": "2024-09-06T19:37:08.153043Z" + "iopub.execute_input": "2024-09-26T14:51:12.350597Z", + "iopub.status.busy": "2024-09-26T14:51:12.350164Z", + "iopub.status.idle": "2024-09-26T14:51:12.353712Z", + "shell.execute_reply": "2024-09-26T14:51:12.353237Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.155506Z", - "iopub.status.busy": "2024-09-06T19:37:08.155162Z", - "iopub.status.idle": "2024-09-06T19:37:08.163216Z", - "shell.execute_reply": "2024-09-06T19:37:08.162658Z" + "iopub.execute_input": "2024-09-26T14:51:12.355535Z", + "iopub.status.busy": "2024-09-26T14:51:12.355193Z", + "iopub.status.idle": "2024-09-26T14:51:12.364277Z", + "shell.execute_reply": "2024-09-26T14:51:12.363833Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.165384Z", - "iopub.status.busy": "2024-09-06T19:37:08.164978Z", - "iopub.status.idle": "2024-09-06T19:37:08.167532Z", - "shell.execute_reply": "2024-09-06T19:37:08.167093Z" + "iopub.execute_input": "2024-09-26T14:51:12.366192Z", + "iopub.status.busy": "2024-09-26T14:51:12.365860Z", + "iopub.status.idle": "2024-09-26T14:51:12.368238Z", + "shell.execute_reply": "2024-09-26T14:51:12.367806Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.169550Z", - "iopub.status.busy": "2024-09-06T19:37:08.169205Z", - "iopub.status.idle": "2024-09-06T19:37:11.232996Z", - "shell.execute_reply": "2024-09-06T19:37:11.232340Z" + "iopub.execute_input": "2024-09-26T14:51:12.369910Z", + "iopub.status.busy": "2024-09-26T14:51:12.369584Z", + "iopub.status.idle": "2024-09-26T14:51:15.473892Z", + "shell.execute_reply": "2024-09-26T14:51:15.473328Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:11.235550Z", - "iopub.status.busy": "2024-09-06T19:37:11.235362Z", - "iopub.status.idle": "2024-09-06T19:37:11.244291Z", - "shell.execute_reply": "2024-09-06T19:37:11.243862Z" + "iopub.execute_input": "2024-09-26T14:51:15.476275Z", + "iopub.status.busy": "2024-09-26T14:51:15.475917Z", + "iopub.status.idle": "2024-09-26T14:51:15.485407Z", + "shell.execute_reply": "2024-09-26T14:51:15.484796Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:11.246379Z", - "iopub.status.busy": "2024-09-06T19:37:11.246205Z", - "iopub.status.idle": "2024-09-06T19:37:13.219249Z", - "shell.execute_reply": "2024-09-06T19:37:13.218645Z" + "iopub.execute_input": "2024-09-26T14:51:15.487349Z", + "iopub.status.busy": "2024-09-26T14:51:15.487005Z", + "iopub.status.idle": "2024-09-26T14:51:17.515517Z", + "shell.execute_reply": "2024-09-26T14:51:17.514901Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.221677Z", - "iopub.status.busy": "2024-09-06T19:37:13.221173Z", - "iopub.status.idle": "2024-09-06T19:37:13.240218Z", - "shell.execute_reply": "2024-09-06T19:37:13.239749Z" + "iopub.execute_input": "2024-09-26T14:51:17.517807Z", + "iopub.status.busy": "2024-09-26T14:51:17.517109Z", + "iopub.status.idle": "2024-09-26T14:51:17.536120Z", + "shell.execute_reply": "2024-09-26T14:51:17.535624Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.242381Z", - "iopub.status.busy": "2024-09-06T19:37:13.242042Z", - "iopub.status.idle": "2024-09-06T19:37:13.250225Z", - "shell.execute_reply": "2024-09-06T19:37:13.249765Z" + "iopub.execute_input": "2024-09-26T14:51:17.537976Z", + "iopub.status.busy": "2024-09-26T14:51:17.537611Z", + "iopub.status.idle": "2024-09-26T14:51:17.545869Z", + "shell.execute_reply": "2024-09-26T14:51:17.545319Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.252315Z", - "iopub.status.busy": "2024-09-06T19:37:13.251975Z", - "iopub.status.idle": "2024-09-06T19:37:13.260671Z", - "shell.execute_reply": "2024-09-06T19:37:13.260195Z" + "iopub.execute_input": "2024-09-26T14:51:17.547622Z", + "iopub.status.busy": "2024-09-26T14:51:17.547301Z", + "iopub.status.idle": "2024-09-26T14:51:17.556250Z", + "shell.execute_reply": "2024-09-26T14:51:17.555755Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.262712Z", - "iopub.status.busy": "2024-09-06T19:37:13.262373Z", - "iopub.status.idle": "2024-09-06T19:37:13.270531Z", - "shell.execute_reply": "2024-09-06T19:37:13.269960Z" + "iopub.execute_input": "2024-09-26T14:51:17.557888Z", + "iopub.status.busy": "2024-09-26T14:51:17.557705Z", + "iopub.status.idle": "2024-09-26T14:51:17.565685Z", + "shell.execute_reply": "2024-09-26T14:51:17.565225Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.272557Z", - "iopub.status.busy": "2024-09-06T19:37:13.272379Z", - "iopub.status.idle": "2024-09-06T19:37:13.281035Z", - "shell.execute_reply": "2024-09-06T19:37:13.280557Z" + "iopub.execute_input": "2024-09-26T14:51:17.567291Z", + "iopub.status.busy": "2024-09-26T14:51:17.567107Z", + "iopub.status.idle": "2024-09-26T14:51:17.576362Z", + "shell.execute_reply": "2024-09-26T14:51:17.575909Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.283068Z", - "iopub.status.busy": "2024-09-06T19:37:13.282889Z", - "iopub.status.idle": "2024-09-06T19:37:13.290486Z", - "shell.execute_reply": "2024-09-06T19:37:13.290023Z" + "iopub.execute_input": "2024-09-26T14:51:17.577990Z", + "iopub.status.busy": "2024-09-26T14:51:17.577812Z", + "iopub.status.idle": "2024-09-26T14:51:17.585393Z", + "shell.execute_reply": "2024-09-26T14:51:17.584817Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.292532Z", - "iopub.status.busy": "2024-09-06T19:37:13.292191Z", - "iopub.status.idle": "2024-09-06T19:37:13.299536Z", - "shell.execute_reply": "2024-09-06T19:37:13.298963Z" + "iopub.execute_input": "2024-09-26T14:51:17.587245Z", + "iopub.status.busy": "2024-09-26T14:51:17.586929Z", + "iopub.status.idle": "2024-09-26T14:51:17.594347Z", + "shell.execute_reply": "2024-09-26T14:51:17.593795Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.301807Z", - "iopub.status.busy": "2024-09-06T19:37:13.301492Z", - "iopub.status.idle": "2024-09-06T19:37:13.309949Z", - "shell.execute_reply": "2024-09-06T19:37:13.309476Z" + "iopub.execute_input": "2024-09-26T14:51:17.596172Z", + "iopub.status.busy": "2024-09-26T14:51:17.595784Z", + "iopub.status.idle": "2024-09-26T14:51:17.604165Z", + "shell.execute_reply": "2024-09-26T14:51:17.603720Z" }, "nbsphinx": "hidden" }, @@ -1373,7 +1373,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 0357de56a..5b5c4a565 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:16.238148Z", - "iopub.status.busy": "2024-09-06T19:37:16.237968Z", - "iopub.status.idle": "2024-09-06T19:37:19.032647Z", - "shell.execute_reply": "2024-09-06T19:37:19.031997Z" + "iopub.execute_input": "2024-09-26T14:51:20.550084Z", + "iopub.status.busy": "2024-09-26T14:51:20.549919Z", + "iopub.status.idle": "2024-09-26T14:51:23.546779Z", + "shell.execute_reply": "2024-09-26T14:51:23.546140Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.035274Z", - "iopub.status.busy": "2024-09-06T19:37:19.034943Z", - "iopub.status.idle": "2024-09-06T19:37:19.038478Z", - "shell.execute_reply": "2024-09-06T19:37:19.037992Z" + "iopub.execute_input": "2024-09-26T14:51:23.549062Z", + "iopub.status.busy": "2024-09-26T14:51:23.548756Z", + "iopub.status.idle": "2024-09-26T14:51:23.551996Z", + "shell.execute_reply": "2024-09-26T14:51:23.551554Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.040624Z", - "iopub.status.busy": "2024-09-06T19:37:19.040295Z", - "iopub.status.idle": "2024-09-06T19:37:19.043522Z", - "shell.execute_reply": "2024-09-06T19:37:19.043021Z" + "iopub.execute_input": "2024-09-26T14:51:23.553571Z", + "iopub.status.busy": "2024-09-26T14:51:23.553396Z", + "iopub.status.idle": "2024-09-26T14:51:23.556530Z", + "shell.execute_reply": "2024-09-26T14:51:23.556072Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.045678Z", - "iopub.status.busy": "2024-09-06T19:37:19.045330Z", - "iopub.status.idle": "2024-09-06T19:37:19.065598Z", - "shell.execute_reply": "2024-09-06T19:37:19.065087Z" + "iopub.execute_input": "2024-09-26T14:51:23.558190Z", + "iopub.status.busy": "2024-09-26T14:51:23.558016Z", + "iopub.status.idle": "2024-09-26T14:51:23.584373Z", + "shell.execute_reply": "2024-09-26T14:51:23.583877Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.067819Z", - "iopub.status.busy": "2024-09-06T19:37:19.067470Z", - "iopub.status.idle": "2024-09-06T19:37:19.071077Z", - "shell.execute_reply": "2024-09-06T19:37:19.070583Z" + "iopub.execute_input": "2024-09-26T14:51:23.586327Z", + "iopub.status.busy": "2024-09-26T14:51:23.585980Z", + "iopub.status.idle": "2024-09-26T14:51:23.589627Z", + "shell.execute_reply": "2024-09-26T14:51:23.589147Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.073199Z", - "iopub.status.busy": "2024-09-06T19:37:19.072859Z", - "iopub.status.idle": "2024-09-06T19:37:19.075873Z", - "shell.execute_reply": "2024-09-06T19:37:19.075346Z" + "iopub.execute_input": "2024-09-26T14:51:23.591183Z", + "iopub.status.busy": "2024-09-26T14:51:23.591009Z", + "iopub.status.idle": "2024-09-26T14:51:23.594239Z", + "shell.execute_reply": "2024-09-26T14:51:23.593788Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.077966Z", - "iopub.status.busy": "2024-09-06T19:37:19.077636Z", - "iopub.status.idle": "2024-09-06T19:37:23.171760Z", - "shell.execute_reply": "2024-09-06T19:37:23.171196Z" + "iopub.execute_input": "2024-09-26T14:51:23.595893Z", + "iopub.status.busy": "2024-09-26T14:51:23.595586Z", + "iopub.status.idle": "2024-09-26T14:51:27.775987Z", + "shell.execute_reply": "2024-09-26T14:51:27.775330Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:23.174471Z", - "iopub.status.busy": "2024-09-06T19:37:23.174274Z", - "iopub.status.idle": "2024-09-06T19:37:24.103567Z", - "shell.execute_reply": "2024-09-06T19:37:24.102969Z" + "iopub.execute_input": "2024-09-26T14:51:27.778341Z", + "iopub.status.busy": "2024-09-26T14:51:27.777966Z", + "iopub.status.idle": "2024-09-26T14:51:28.697834Z", + "shell.execute_reply": "2024-09-26T14:51:28.697228Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:24.107438Z", - "iopub.status.busy": "2024-09-06T19:37:24.106451Z", - "iopub.status.idle": "2024-09-06T19:37:24.110626Z", - "shell.execute_reply": "2024-09-06T19:37:24.110110Z" + "iopub.execute_input": "2024-09-26T14:51:28.700329Z", + "iopub.status.busy": "2024-09-26T14:51:28.699942Z", + "iopub.status.idle": "2024-09-26T14:51:28.702874Z", + "shell.execute_reply": "2024-09-26T14:51:28.702381Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:24.114244Z", - "iopub.status.busy": "2024-09-06T19:37:24.113304Z", - "iopub.status.idle": "2024-09-06T19:37:26.122882Z", - "shell.execute_reply": "2024-09-06T19:37:26.122195Z" + "iopub.execute_input": "2024-09-26T14:51:28.704853Z", + "iopub.status.busy": "2024-09-26T14:51:28.704499Z", + "iopub.status.idle": "2024-09-26T14:51:30.723899Z", + "shell.execute_reply": "2024-09-26T14:51:30.723229Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.126146Z", - "iopub.status.busy": "2024-09-06T19:37:26.125493Z", - "iopub.status.idle": "2024-09-06T19:37:26.149493Z", - "shell.execute_reply": "2024-09-06T19:37:26.148954Z" + "iopub.execute_input": "2024-09-26T14:51:30.727734Z", + "iopub.status.busy": "2024-09-26T14:51:30.726555Z", + "iopub.status.idle": "2024-09-26T14:51:30.752360Z", + "shell.execute_reply": "2024-09-26T14:51:30.751847Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.152122Z", - "iopub.status.busy": "2024-09-06T19:37:26.151750Z", - "iopub.status.idle": "2024-09-06T19:37:26.163613Z", - "shell.execute_reply": "2024-09-06T19:37:26.163031Z" + "iopub.execute_input": "2024-09-26T14:51:30.755440Z", + "iopub.status.busy": "2024-09-26T14:51:30.754576Z", + "iopub.status.idle": "2024-09-26T14:51:30.764760Z", + "shell.execute_reply": "2024-09-26T14:51:30.764347Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.165819Z", - "iopub.status.busy": "2024-09-06T19:37:26.165507Z", - "iopub.status.idle": "2024-09-06T19:37:26.169927Z", - "shell.execute_reply": "2024-09-06T19:37:26.169445Z" + "iopub.execute_input": "2024-09-26T14:51:30.767190Z", + "iopub.status.busy": "2024-09-26T14:51:30.766574Z", + "iopub.status.idle": "2024-09-26T14:51:30.771522Z", + "shell.execute_reply": "2024-09-26T14:51:30.771112Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.171802Z", - "iopub.status.busy": "2024-09-06T19:37:26.171622Z", - "iopub.status.idle": "2024-09-06T19:37:26.178323Z", - "shell.execute_reply": "2024-09-06T19:37:26.177759Z" + "iopub.execute_input": "2024-09-26T14:51:30.773863Z", + "iopub.status.busy": "2024-09-26T14:51:30.773237Z", + "iopub.status.idle": "2024-09-26T14:51:30.780343Z", + "shell.execute_reply": "2024-09-26T14:51:30.779939Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.180430Z", - "iopub.status.busy": "2024-09-06T19:37:26.180102Z", - "iopub.status.idle": "2024-09-06T19:37:26.186371Z", - "shell.execute_reply": "2024-09-06T19:37:26.185807Z" + "iopub.execute_input": "2024-09-26T14:51:30.782231Z", + "iopub.status.busy": "2024-09-26T14:51:30.782055Z", + "iopub.status.idle": "2024-09-26T14:51:30.788970Z", + "shell.execute_reply": "2024-09-26T14:51:30.788375Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.188480Z", - "iopub.status.busy": "2024-09-06T19:37:26.188150Z", - "iopub.status.idle": "2024-09-06T19:37:26.194198Z", - "shell.execute_reply": "2024-09-06T19:37:26.193624Z" + "iopub.execute_input": "2024-09-26T14:51:30.790778Z", + "iopub.status.busy": "2024-09-26T14:51:30.790601Z", + "iopub.status.idle": "2024-09-26T14:51:30.796446Z", + "shell.execute_reply": "2024-09-26T14:51:30.795882Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.196327Z", - "iopub.status.busy": "2024-09-06T19:37:26.195981Z", - "iopub.status.idle": "2024-09-06T19:37:26.204376Z", - "shell.execute_reply": "2024-09-06T19:37:26.203913Z" + "iopub.execute_input": "2024-09-26T14:51:30.798232Z", + "iopub.status.busy": "2024-09-26T14:51:30.797967Z", + "iopub.status.idle": "2024-09-26T14:51:30.806498Z", + "shell.execute_reply": "2024-09-26T14:51:30.805933Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.206432Z", - "iopub.status.busy": "2024-09-06T19:37:26.206091Z", - "iopub.status.idle": "2024-09-06T19:37:26.211539Z", - "shell.execute_reply": "2024-09-06T19:37:26.211070Z" + "iopub.execute_input": "2024-09-26T14:51:30.808353Z", + "iopub.status.busy": "2024-09-26T14:51:30.808081Z", + "iopub.status.idle": "2024-09-26T14:51:30.813342Z", + "shell.execute_reply": "2024-09-26T14:51:30.812825Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.213685Z", - "iopub.status.busy": "2024-09-06T19:37:26.213350Z", - "iopub.status.idle": "2024-09-06T19:37:26.218528Z", - "shell.execute_reply": "2024-09-06T19:37:26.218074Z" + "iopub.execute_input": "2024-09-26T14:51:30.814997Z", + "iopub.status.busy": "2024-09-26T14:51:30.814668Z", + "iopub.status.idle": "2024-09-26T14:51:30.819982Z", + "shell.execute_reply": "2024-09-26T14:51:30.819532Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.220571Z", - "iopub.status.busy": "2024-09-06T19:37:26.220232Z", - "iopub.status.idle": "2024-09-06T19:37:26.223906Z", - "shell.execute_reply": "2024-09-06T19:37:26.223327Z" + "iopub.execute_input": "2024-09-26T14:51:30.821669Z", + "iopub.status.busy": "2024-09-26T14:51:30.821337Z", + "iopub.status.idle": "2024-09-26T14:51:30.824940Z", + "shell.execute_reply": "2024-09-26T14:51:30.824366Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.226160Z", - "iopub.status.busy": "2024-09-06T19:37:26.225819Z", - "iopub.status.idle": "2024-09-06T19:37:26.231140Z", - "shell.execute_reply": "2024-09-06T19:37:26.230573Z" + "iopub.execute_input": "2024-09-26T14:51:30.826780Z", + "iopub.status.busy": "2024-09-26T14:51:30.826459Z", + "iopub.status.idle": "2024-09-26T14:51:30.831493Z", + "shell.execute_reply": "2024-09-26T14:51:30.831041Z" }, "nbsphinx": "hidden" }, @@ -1497,7 +1497,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0c93ce2cb..9404f1540 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:29.604724Z", - "iopub.status.busy": "2024-09-06T19:37:29.604545Z", - "iopub.status.idle": "2024-09-06T19:37:30.035194Z", - "shell.execute_reply": "2024-09-06T19:37:30.034674Z" + "iopub.execute_input": "2024-09-26T14:51:34.296488Z", + "iopub.status.busy": "2024-09-26T14:51:34.296076Z", + "iopub.status.idle": "2024-09-26T14:51:35.016105Z", + "shell.execute_reply": "2024-09-26T14:51:35.015553Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.037845Z", - "iopub.status.busy": "2024-09-06T19:37:30.037406Z", - "iopub.status.idle": "2024-09-06T19:37:30.168185Z", - "shell.execute_reply": "2024-09-06T19:37:30.167636Z" + "iopub.execute_input": "2024-09-26T14:51:35.018426Z", + "iopub.status.busy": "2024-09-26T14:51:35.017967Z", + "iopub.status.idle": "2024-09-26T14:51:35.151580Z", + "shell.execute_reply": "2024-09-26T14:51:35.151068Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.170587Z", - "iopub.status.busy": "2024-09-06T19:37:30.170087Z", - "iopub.status.idle": "2024-09-06T19:37:30.193350Z", - "shell.execute_reply": "2024-09-06T19:37:30.192776Z" + "iopub.execute_input": "2024-09-26T14:51:35.153697Z", + "iopub.status.busy": "2024-09-26T14:51:35.153277Z", + "iopub.status.idle": "2024-09-26T14:51:35.177588Z", + "shell.execute_reply": "2024-09-26T14:51:35.176982Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.195997Z", - "iopub.status.busy": "2024-09-06T19:37:30.195790Z", - "iopub.status.idle": "2024-09-06T19:37:32.997740Z", - "shell.execute_reply": "2024-09-06T19:37:32.997128Z" + "iopub.execute_input": "2024-09-26T14:51:35.179788Z", + "iopub.status.busy": "2024-09-26T14:51:35.179361Z", + "iopub.status.idle": "2024-09-26T14:51:37.765581Z", + "shell.execute_reply": "2024-09-26T14:51:37.764993Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:33.000426Z", - "iopub.status.busy": "2024-09-06T19:37:32.999838Z", - "iopub.status.idle": "2024-09-06T19:37:42.839981Z", - "shell.execute_reply": "2024-09-06T19:37:42.839475Z" + "iopub.execute_input": "2024-09-26T14:51:37.767993Z", + "iopub.status.busy": "2024-09-26T14:51:37.767425Z", + "iopub.status.idle": "2024-09-26T14:51:46.526023Z", + "shell.execute_reply": "2024-09-26T14:51:46.525421Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:42.842458Z", - "iopub.status.busy": "2024-09-06T19:37:42.842052Z", - "iopub.status.idle": "2024-09-06T19:37:43.014469Z", - "shell.execute_reply": "2024-09-06T19:37:43.013871Z" + "iopub.execute_input": "2024-09-26T14:51:46.528043Z", + "iopub.status.busy": "2024-09-26T14:51:46.527681Z", + "iopub.status.idle": "2024-09-26T14:51:46.730683Z", + "shell.execute_reply": "2024-09-26T14:51:46.730045Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:43.016817Z", - "iopub.status.busy": "2024-09-06T19:37:43.016641Z", - "iopub.status.idle": "2024-09-06T19:37:44.396004Z", - "shell.execute_reply": "2024-09-06T19:37:44.395431Z" + "iopub.execute_input": "2024-09-26T14:51:46.732793Z", + "iopub.status.busy": "2024-09-26T14:51:46.732448Z", + "iopub.status.idle": "2024-09-26T14:51:48.255623Z", + "shell.execute_reply": "2024-09-26T14:51:48.255118Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.398298Z", - "iopub.status.busy": "2024-09-06T19:37:44.397931Z", - "iopub.status.idle": "2024-09-06T19:37:44.810929Z", - "shell.execute_reply": "2024-09-06T19:37:44.810371Z" + "iopub.execute_input": "2024-09-26T14:51:48.257484Z", + "iopub.status.busy": "2024-09-26T14:51:48.257119Z", + "iopub.status.idle": "2024-09-26T14:51:48.773736Z", + "shell.execute_reply": "2024-09-26T14:51:48.773135Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.813440Z", - "iopub.status.busy": "2024-09-06T19:37:44.812940Z", - "iopub.status.idle": "2024-09-06T19:37:44.826271Z", - "shell.execute_reply": "2024-09-06T19:37:44.825842Z" + "iopub.execute_input": "2024-09-26T14:51:48.775864Z", + "iopub.status.busy": "2024-09-26T14:51:48.775323Z", + "iopub.status.idle": "2024-09-26T14:51:48.790103Z", + "shell.execute_reply": "2024-09-26T14:51:48.789626Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.828390Z", - "iopub.status.busy": "2024-09-06T19:37:44.828044Z", - "iopub.status.idle": "2024-09-06T19:37:44.847179Z", - "shell.execute_reply": "2024-09-06T19:37:44.846760Z" + "iopub.execute_input": "2024-09-26T14:51:48.791833Z", + "iopub.status.busy": "2024-09-26T14:51:48.791503Z", + "iopub.status.idle": "2024-09-26T14:51:48.810723Z", + "shell.execute_reply": "2024-09-26T14:51:48.810137Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.849314Z", - "iopub.status.busy": "2024-09-06T19:37:44.848979Z", - "iopub.status.idle": "2024-09-06T19:37:45.077019Z", - "shell.execute_reply": "2024-09-06T19:37:45.076447Z" + "iopub.execute_input": "2024-09-26T14:51:48.812726Z", + "iopub.status.busy": "2024-09-26T14:51:48.812340Z", + "iopub.status.idle": "2024-09-26T14:51:49.055015Z", + "shell.execute_reply": "2024-09-26T14:51:49.054398Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.079688Z", - "iopub.status.busy": "2024-09-06T19:37:45.079281Z", - "iopub.status.idle": "2024-09-06T19:37:45.098946Z", - "shell.execute_reply": "2024-09-06T19:37:45.098466Z" + "iopub.execute_input": "2024-09-26T14:51:49.057480Z", + "iopub.status.busy": "2024-09-26T14:51:49.057052Z", + "iopub.status.idle": "2024-09-26T14:51:49.076673Z", + "shell.execute_reply": "2024-09-26T14:51:49.076195Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.101100Z", - "iopub.status.busy": "2024-09-06T19:37:45.100762Z", - "iopub.status.idle": "2024-09-06T19:37:45.277489Z", - "shell.execute_reply": "2024-09-06T19:37:45.276850Z" + "iopub.execute_input": "2024-09-26T14:51:49.078495Z", + "iopub.status.busy": "2024-09-26T14:51:49.078146Z", + "iopub.status.idle": "2024-09-26T14:51:49.248180Z", + "shell.execute_reply": "2024-09-26T14:51:49.247594Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.279928Z", - "iopub.status.busy": "2024-09-06T19:37:45.279722Z", - "iopub.status.idle": "2024-09-06T19:37:45.290798Z", - "shell.execute_reply": "2024-09-06T19:37:45.290229Z" + "iopub.execute_input": "2024-09-26T14:51:49.250291Z", + "iopub.status.busy": "2024-09-26T14:51:49.249923Z", + "iopub.status.idle": "2024-09-26T14:51:49.260161Z", + "shell.execute_reply": "2024-09-26T14:51:49.259683Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.292867Z", - "iopub.status.busy": "2024-09-06T19:37:45.292672Z", - "iopub.status.idle": "2024-09-06T19:37:45.302178Z", - "shell.execute_reply": "2024-09-06T19:37:45.301745Z" + "iopub.execute_input": "2024-09-26T14:51:49.261950Z", + "iopub.status.busy": "2024-09-26T14:51:49.261604Z", + "iopub.status.idle": "2024-09-26T14:51:49.271258Z", + "shell.execute_reply": "2024-09-26T14:51:49.270689Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.304034Z", - "iopub.status.busy": "2024-09-06T19:37:45.303861Z", - "iopub.status.idle": "2024-09-06T19:37:45.329485Z", - "shell.execute_reply": "2024-09-06T19:37:45.329066Z" + "iopub.execute_input": "2024-09-26T14:51:49.272963Z", + "iopub.status.busy": "2024-09-26T14:51:49.272785Z", + "iopub.status.idle": "2024-09-26T14:51:49.300283Z", + "shell.execute_reply": "2024-09-26T14:51:49.299657Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.331450Z", - "iopub.status.busy": "2024-09-06T19:37:45.331118Z", - "iopub.status.idle": "2024-09-06T19:37:45.333941Z", - "shell.execute_reply": "2024-09-06T19:37:45.333348Z" + "iopub.execute_input": "2024-09-26T14:51:49.302435Z", + "iopub.status.busy": "2024-09-26T14:51:49.302020Z", + "iopub.status.idle": "2024-09-26T14:51:49.304853Z", + "shell.execute_reply": "2024-09-26T14:51:49.304388Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.336081Z", - "iopub.status.busy": "2024-09-06T19:37:45.335742Z", - "iopub.status.idle": "2024-09-06T19:37:45.354797Z", - "shell.execute_reply": "2024-09-06T19:37:45.354315Z" + "iopub.execute_input": "2024-09-26T14:51:49.306559Z", + "iopub.status.busy": "2024-09-26T14:51:49.306373Z", + "iopub.status.idle": "2024-09-26T14:51:49.326211Z", + "shell.execute_reply": "2024-09-26T14:51:49.325620Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.356897Z", - "iopub.status.busy": "2024-09-06T19:37:45.356543Z", - "iopub.status.idle": "2024-09-06T19:37:45.360935Z", - "shell.execute_reply": "2024-09-06T19:37:45.360328Z" + "iopub.execute_input": "2024-09-26T14:51:49.328491Z", + "iopub.status.busy": "2024-09-26T14:51:49.327912Z", + "iopub.status.idle": "2024-09-26T14:51:49.332250Z", + "shell.execute_reply": "2024-09-26T14:51:49.331798Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.363152Z", - "iopub.status.busy": "2024-09-06T19:37:45.362835Z", - "iopub.status.idle": "2024-09-06T19:37:45.390311Z", - "shell.execute_reply": "2024-09-06T19:37:45.389739Z" + "iopub.execute_input": "2024-09-26T14:51:49.334080Z", + "iopub.status.busy": "2024-09-26T14:51:49.333676Z", + "iopub.status.idle": "2024-09-26T14:51:49.363534Z", + "shell.execute_reply": "2024-09-26T14:51:49.362928Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.392321Z", - "iopub.status.busy": "2024-09-06T19:37:45.392005Z", - "iopub.status.idle": "2024-09-06T19:37:45.759141Z", - "shell.execute_reply": "2024-09-06T19:37:45.758581Z" + "iopub.execute_input": "2024-09-26T14:51:49.365331Z", + "iopub.status.busy": "2024-09-26T14:51:49.365032Z", + "iopub.status.idle": "2024-09-26T14:51:49.727339Z", + "shell.execute_reply": "2024-09-26T14:51:49.726743Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.761452Z", - "iopub.status.busy": "2024-09-06T19:37:45.761084Z", - "iopub.status.idle": "2024-09-06T19:37:45.764398Z", - "shell.execute_reply": "2024-09-06T19:37:45.763923Z" + "iopub.execute_input": "2024-09-26T14:51:49.729270Z", + "iopub.status.busy": "2024-09-26T14:51:49.729071Z", + "iopub.status.idle": "2024-09-26T14:51:49.732072Z", + "shell.execute_reply": "2024-09-26T14:51:49.731620Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.766685Z", - "iopub.status.busy": "2024-09-06T19:37:45.766351Z", - "iopub.status.idle": "2024-09-06T19:37:45.779490Z", - "shell.execute_reply": "2024-09-06T19:37:45.779045Z" + "iopub.execute_input": "2024-09-26T14:51:49.733810Z", + "iopub.status.busy": "2024-09-26T14:51:49.733632Z", + "iopub.status.idle": "2024-09-26T14:51:49.747657Z", + "shell.execute_reply": "2024-09-26T14:51:49.747198Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.781428Z", - "iopub.status.busy": "2024-09-06T19:37:45.781250Z", - "iopub.status.idle": "2024-09-06T19:37:45.796041Z", - "shell.execute_reply": "2024-09-06T19:37:45.795601Z" + "iopub.execute_input": "2024-09-26T14:51:49.749243Z", + "iopub.status.busy": "2024-09-26T14:51:49.749065Z", + "iopub.status.idle": "2024-09-26T14:51:49.763193Z", + "shell.execute_reply": "2024-09-26T14:51:49.762714Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.798043Z", - "iopub.status.busy": "2024-09-06T19:37:45.797870Z", - "iopub.status.idle": "2024-09-06T19:37:45.807740Z", - "shell.execute_reply": "2024-09-06T19:37:45.807165Z" + "iopub.execute_input": "2024-09-26T14:51:49.764801Z", + "iopub.status.busy": "2024-09-26T14:51:49.764624Z", + "iopub.status.idle": "2024-09-26T14:51:49.775091Z", + "shell.execute_reply": "2024-09-26T14:51:49.774491Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.809952Z", - "iopub.status.busy": "2024-09-06T19:37:45.809629Z", - "iopub.status.idle": "2024-09-06T19:37:45.818832Z", - "shell.execute_reply": "2024-09-06T19:37:45.818256Z" + "iopub.execute_input": "2024-09-26T14:51:49.777122Z", + "iopub.status.busy": "2024-09-26T14:51:49.776798Z", + "iopub.status.idle": "2024-09-26T14:51:49.786610Z", + "shell.execute_reply": "2024-09-26T14:51:49.786151Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.821154Z", - "iopub.status.busy": "2024-09-06T19:37:45.820691Z", - "iopub.status.idle": "2024-09-06T19:37:45.824900Z", - "shell.execute_reply": "2024-09-06T19:37:45.824317Z" + "iopub.execute_input": "2024-09-26T14:51:49.788278Z", + "iopub.status.busy": "2024-09-26T14:51:49.788101Z", + "iopub.status.idle": "2024-09-26T14:51:49.791818Z", + "shell.execute_reply": "2024-09-26T14:51:49.791364Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.826963Z", - "iopub.status.busy": "2024-09-06T19:37:45.826647Z", - "iopub.status.idle": "2024-09-06T19:37:45.876648Z", - "shell.execute_reply": "2024-09-06T19:37:45.876084Z" + "iopub.execute_input": "2024-09-26T14:51:49.793563Z", + "iopub.status.busy": "2024-09-26T14:51:49.793225Z", + "iopub.status.idle": "2024-09-26T14:51:49.849225Z", + "shell.execute_reply": "2024-09-26T14:51:49.848755Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.878907Z", - "iopub.status.busy": "2024-09-06T19:37:45.878480Z", - "iopub.status.idle": "2024-09-06T19:37:45.884204Z", - "shell.execute_reply": "2024-09-06T19:37:45.883634Z" + "iopub.execute_input": "2024-09-26T14:51:49.851334Z", + "iopub.status.busy": "2024-09-26T14:51:49.850848Z", + "iopub.status.idle": "2024-09-26T14:51:49.856692Z", + "shell.execute_reply": "2024-09-26T14:51:49.856243Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.886291Z", - "iopub.status.busy": "2024-09-06T19:37:45.885973Z", - "iopub.status.idle": "2024-09-06T19:37:45.897008Z", - "shell.execute_reply": "2024-09-06T19:37:45.896438Z" + "iopub.execute_input": "2024-09-26T14:51:49.858413Z", + "iopub.status.busy": "2024-09-26T14:51:49.858094Z", + "iopub.status.idle": "2024-09-26T14:51:49.869805Z", + "shell.execute_reply": "2024-09-26T14:51:49.869218Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.899243Z", - "iopub.status.busy": "2024-09-06T19:37:45.898904Z", - "iopub.status.idle": "2024-09-06T19:37:46.075809Z", - "shell.execute_reply": "2024-09-06T19:37:46.075226Z" + "iopub.execute_input": "2024-09-26T14:51:49.871476Z", + "iopub.status.busy": "2024-09-26T14:51:49.871161Z", + "iopub.status.idle": "2024-09-26T14:51:50.098032Z", + "shell.execute_reply": "2024-09-26T14:51:50.097456Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.078430Z", - "iopub.status.busy": "2024-09-06T19:37:46.077957Z", - "iopub.status.idle": "2024-09-06T19:37:46.085812Z", - "shell.execute_reply": "2024-09-06T19:37:46.085244Z" + "iopub.execute_input": "2024-09-26T14:51:50.099892Z", + "iopub.status.busy": "2024-09-26T14:51:50.099599Z", + "iopub.status.idle": "2024-09-26T14:51:50.107584Z", + "shell.execute_reply": "2024-09-26T14:51:50.107015Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.087762Z", - "iopub.status.busy": "2024-09-06T19:37:46.087589Z", - "iopub.status.idle": "2024-09-06T19:37:46.522443Z", - "shell.execute_reply": "2024-09-06T19:37:46.521749Z" + "iopub.execute_input": "2024-09-26T14:51:50.109288Z", + "iopub.status.busy": "2024-09-26T14:51:50.109111Z", + "iopub.status.idle": "2024-09-26T14:51:50.496608Z", + "shell.execute_reply": "2024-09-26T14:51:50.495787Z" } }, "outputs": [ @@ -3767,7 +3767,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:37:46-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-09-26 14:51:50-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.005s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-06 19:37:46 (176 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-26 14:51:50 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.525178Z", - "iopub.status.busy": "2024-09-06T19:37:46.524748Z", - "iopub.status.idle": "2024-09-06T19:37:48.452276Z", - "shell.execute_reply": "2024-09-06T19:37:48.451758Z" + "iopub.execute_input": "2024-09-26T14:51:50.499275Z", + "iopub.status.busy": "2024-09-26T14:51:50.498755Z", + "iopub.status.idle": "2024-09-26T14:51:52.468119Z", + "shell.execute_reply": "2024-09-26T14:51:52.467505Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:48.454913Z", - "iopub.status.busy": "2024-09-06T19:37:48.454468Z", - "iopub.status.idle": "2024-09-06T19:37:49.092778Z", - "shell.execute_reply": "2024-09-06T19:37:49.092169Z" + "iopub.execute_input": "2024-09-26T14:51:52.470295Z", + "iopub.status.busy": "2024-09-26T14:51:52.470006Z", + "iopub.status.idle": "2024-09-26T14:51:53.135612Z", + "shell.execute_reply": "2024-09-26T14:51:53.134933Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5793cf283c046f188f735beef4577a5", + "model_id": "819cd513a50348b98c0ff3c8dd72c7bd", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.095580Z", - "iopub.status.busy": "2024-09-06T19:37:49.095115Z", - "iopub.status.idle": "2024-09-06T19:37:49.108940Z", - "shell.execute_reply": "2024-09-06T19:37:49.108334Z" + "iopub.execute_input": "2024-09-26T14:51:53.138593Z", + "iopub.status.busy": "2024-09-26T14:51:53.138086Z", + "iopub.status.idle": "2024-09-26T14:51:53.152674Z", + "shell.execute_reply": "2024-09-26T14:51:53.152106Z" } }, "outputs": [ @@ -4257,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.112413Z", - "iopub.status.busy": "2024-09-06T19:37:49.112212Z", - "iopub.status.idle": "2024-09-06T19:37:49.262201Z", - "shell.execute_reply": "2024-09-06T19:37:49.261645Z" + "iopub.execute_input": "2024-09-26T14:51:53.155019Z", + "iopub.status.busy": "2024-09-26T14:51:53.154607Z", + "iopub.status.idle": "2024-09-26T14:51:53.305855Z", + "shell.execute_reply": "2024-09-26T14:51:53.305327Z" } }, "outputs": [ @@ -4325,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.264493Z", - "iopub.status.busy": "2024-09-06T19:37:49.264138Z", - "iopub.status.idle": "2024-09-06T19:37:49.776468Z", - "shell.execute_reply": "2024-09-06T19:37:49.775810Z" + "iopub.execute_input": "2024-09-26T14:51:53.308217Z", + "iopub.status.busy": "2024-09-26T14:51:53.307686Z", + "iopub.status.idle": "2024-09-26T14:51:53.823497Z", + "shell.execute_reply": "2024-09-26T14:51:53.822950Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e53b81d02870488ca1d70faf1534371f", + "model_id": "ac8a16cb60b04919938bc00b2f1342f7", "version_major": 2, "version_minor": 0 }, @@ -4598,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.778901Z", - "iopub.status.busy": "2024-09-06T19:37:49.778528Z", - "iopub.status.idle": "2024-09-06T19:37:49.924980Z", - "shell.execute_reply": "2024-09-06T19:37:49.924477Z" + "iopub.execute_input": "2024-09-26T14:51:53.825382Z", + "iopub.status.busy": "2024-09-26T14:51:53.825164Z", + "iopub.status.idle": "2024-09-26T14:51:53.978845Z", + "shell.execute_reply": "2024-09-26T14:51:53.978305Z" }, "nbsphinx": "hidden" }, @@ -4648,12 +4648,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "021a50164b8c491ebb069bd57b11ce1a": { + "0cd32d52503a444d88252596c7202d70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,30 +4706,7 @@ "width": null } }, - "2cb88e5e7d0f4849b336950480e87a06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5349f02a0bb24786bba46192aa1d90ff", - "placeholder": "​", - "style": "IPY_MODEL_b93c4b8b97f34f0b93a2d334e5065e1b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "313b234230ce4ce4850b3fa6a5e1b1ee": { + "1e281a0c15b84c80941bc82a97097993": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4782,7 +4759,7 @@ "width": null } }, - "41bdd318b6d1453a8daca74a0776e419": { + "2680a7b149fd4520bb536ef2dfbaa7c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4835,7 +4812,7 @@ "width": null } }, - "5349f02a0bb24786bba46192aa1d90ff": { + "2ea4ee3035ec4460b45119db4b86c88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4888,105 +4865,25 @@ "width": null } }, - "5664879b48124f5cac1e0a8c43742995": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da820a1ccd2b42d4a8c12ea0328d1169", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_da8ad4a548a8409389fab7ddc0e601bc", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "6529bc3e5e35424f967dab0385030a5c": { + "305f6e33eec84265b93317eacfe9b6b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41bdd318b6d1453a8daca74a0776e419", - "placeholder": "​", - "style": "IPY_MODEL_dfac24cbd04d4a6a9c6a2f3d7e34c87e", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 682.83it/s]" - } - }, - "733b0d114c6e48e6af9ced8acfb5bf3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_953f4c82aabd472c9e8dfebdf70939d8", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86445ca79c764836a406520c67b4b945", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "7b9c39c715b849dbb886ceaeb96e5c35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fb3eb018b9d446294207573ca64cda2", - "placeholder": "​", - "style": "IPY_MODEL_ec3f09ac595d4dadbd0cf34793d57087", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fb3eb018b9d446294207573ca64cda2": { + "31a345d79d134ece901060efdb94b165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5039,23 +4936,7 @@ "width": null } }, - "86445ca79c764836a406520c67b4b945": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "953f4c82aabd472c9e8dfebdf70939d8": { + "31b855e014d84579b8434de0e51b2846": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5108,7 +4989,97 @@ "width": null } }, - "9ffc7a8014b64edfad1dd643172601d1": { + "4a9cf0b92b274885a650766f05b77292": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31b855e014d84579b8434de0e51b2846", + "placeholder": "​", + "style": "IPY_MODEL_77f44dc1b8c84ab4aef3e983303eb4a2", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 696.05it/s]" + } + }, + "56f377970b0e41d0a3ab38bfadd0c51b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2680a7b149fd4520bb536ef2dfbaa7c2", + "placeholder": "​", + "style": "IPY_MODEL_a9661f0b7a8d447c8c47dfe0b78f61ef", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "59cfff3ec22848b6944ba0bf323bd24b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5f01f9c656284899b3a91282330101c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_829ff0aad29b4270b40cd9499bc93cc7", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77633068b2ef4937bf213a3297280a11", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "769fa00f56a8417b92d2a48b7c419f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5123,15 +5094,73 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_021a50164b8c491ebb069bd57b11ce1a", + "layout": "IPY_MODEL_31a345d79d134ece901060efdb94b165", "placeholder": "​", - "style": "IPY_MODEL_da74a2af2dfa4378a23a6009ae2f264c", + "style": "IPY_MODEL_305f6e33eec84265b93317eacfe9b6b0", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 785.38it/s]" + "value": " 200/200 [00:00<00:00, 735.07it/s]" + } + }, + "77633068b2ef4937bf213a3297280a11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "77f44dc1b8c84ab4aef3e983303eb4a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a185cb088b4a4b50933699f586275482": { + "819cd513a50348b98c0ff3c8dd72c7bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92ac731fb51746b9a27792595b65bd81", + "IPY_MODEL_e345abf69b7b4519a731b4da99441fe1", + "IPY_MODEL_769fa00f56a8417b92d2a48b7c419f62" + ], + "layout": "IPY_MODEL_2ea4ee3035ec4460b45119db4b86c88e", + "tabbable": null, + "tooltip": null + } + }, + "829ff0aad29b4270b40cd9499bc93cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5184,31 +5213,30 @@ "width": null } }, - "a5793cf283c046f188f735beef4577a5": { + "92ac731fb51746b9a27792595b65bd81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b9c39c715b849dbb886ceaeb96e5c35", - "IPY_MODEL_5664879b48124f5cac1e0a8c43742995", - "IPY_MODEL_9ffc7a8014b64edfad1dd643172601d1" - ], - "layout": "IPY_MODEL_313b234230ce4ce4850b3fa6a5e1b1ee", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0cd32d52503a444d88252596c7202d70", + "placeholder": "​", + "style": "IPY_MODEL_59cfff3ec22848b6944ba0bf323bd24b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "b93c4b8b97f34f0b93a2d334e5065e1b": { + "a9661f0b7a8d447c8c47dfe0b78f61ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5226,25 +5254,31 @@ "text_color": null } }, - "da74a2af2dfa4378a23a6009ae2f264c": { + "ac8a16cb60b04919938bc00b2f1342f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56f377970b0e41d0a3ab38bfadd0c51b", + "IPY_MODEL_5f01f9c656284899b3a91282330101c8", + "IPY_MODEL_4a9cf0b92b274885a650766f05b77292" + ], + "layout": "IPY_MODEL_b805213db2034e85bcf8aa102ab8cd3c", + "tabbable": null, + "tooltip": null } }, - "da820a1ccd2b42d4a8c12ea0328d1169": { + "b805213db2034e85bcf8aa102ab8cd3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5297,7 +5331,7 @@ "width": null } }, - "da8ad4a548a8409389fab7ddc0e601bc": { + "c28c38c2f92e4620b4be9878c38511ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5313,64 +5347,30 @@ "description_width": "" } }, - "dfac24cbd04d4a6a9c6a2f3d7e34c87e": { + "e345abf69b7b4519a731b4da99441fe1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e53b81d02870488ca1d70faf1534371f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2cb88e5e7d0f4849b336950480e87a06", - "IPY_MODEL_733b0d114c6e48e6af9ced8acfb5bf3a", - "IPY_MODEL_6529bc3e5e35424f967dab0385030a5c" - ], - "layout": "IPY_MODEL_a185cb088b4a4b50933699f586275482", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e281a0c15b84c80941bc82a97097993", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c28c38c2f92e4620b4be9878c38511ce", "tabbable": null, - "tooltip": null - } - }, - "ec3f09ac595d4dadbd0cf34793d57087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 200.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index e932968f7..c8c374ab4 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:53.970574Z", - "iopub.status.busy": "2024-09-06T19:37:53.970388Z", - "iopub.status.idle": "2024-09-06T19:37:55.134808Z", - "shell.execute_reply": "2024-09-06T19:37:55.134157Z" + "iopub.execute_input": "2024-09-26T14:51:59.182546Z", + "iopub.status.busy": "2024-09-26T14:51:59.182366Z", + "iopub.status.idle": "2024-09-26T14:52:00.393643Z", + "shell.execute_reply": "2024-09-26T14:52:00.393076Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.137505Z", - "iopub.status.busy": "2024-09-06T19:37:55.137230Z", - "iopub.status.idle": "2024-09-06T19:37:55.140659Z", - "shell.execute_reply": "2024-09-06T19:37:55.140221Z" + "iopub.execute_input": "2024-09-26T14:52:00.395685Z", + "iopub.status.busy": "2024-09-26T14:52:00.395388Z", + "iopub.status.idle": "2024-09-26T14:52:00.398322Z", + "shell.execute_reply": "2024-09-26T14:52:00.397857Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.142857Z", - "iopub.status.busy": "2024-09-06T19:37:55.142554Z", - "iopub.status.idle": "2024-09-06T19:37:55.154394Z", - "shell.execute_reply": "2024-09-06T19:37:55.153913Z" + "iopub.execute_input": "2024-09-26T14:52:00.400144Z", + "iopub.status.busy": "2024-09-26T14:52:00.399840Z", + "iopub.status.idle": "2024-09-26T14:52:00.412193Z", + "shell.execute_reply": "2024-09-26T14:52:00.411697Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.156367Z", - "iopub.status.busy": "2024-09-06T19:37:55.156193Z", - "iopub.status.idle": "2024-09-06T19:38:03.213180Z", - "shell.execute_reply": "2024-09-06T19:38:03.212490Z" + "iopub.execute_input": "2024-09-26T14:52:00.414113Z", + "iopub.status.busy": "2024-09-26T14:52:00.413741Z", + "iopub.status.idle": "2024-09-26T14:52:05.730687Z", + "shell.execute_reply": "2024-09-26T14:52:05.730191Z" }, "id": "dhTHOg8Pyv5G" }, @@ -3119,7 +3119,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index cec52a458..6f20431e7 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:05.442254Z", - "iopub.status.busy": "2024-09-06T19:38:05.441754Z", - "iopub.status.idle": "2024-09-06T19:38:06.608058Z", - "shell.execute_reply": "2024-09-06T19:38:06.607439Z" + "iopub.execute_input": "2024-09-26T14:52:08.034662Z", + "iopub.status.busy": "2024-09-26T14:52:08.034481Z", + "iopub.status.idle": "2024-09-26T14:52:09.304690Z", + "shell.execute_reply": "2024-09-26T14:52:09.304102Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:06.610846Z", - "iopub.status.busy": "2024-09-06T19:38:06.610375Z", - "iopub.status.idle": "2024-09-06T19:38:06.613802Z", - "shell.execute_reply": "2024-09-06T19:38:06.613322Z" + "iopub.execute_input": "2024-09-26T14:52:09.306879Z", + "iopub.status.busy": "2024-09-26T14:52:09.306585Z", + "iopub.status.idle": "2024-09-26T14:52:09.310196Z", + "shell.execute_reply": "2024-09-26T14:52:09.309631Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:06.615798Z", - "iopub.status.busy": "2024-09-06T19:38:06.615518Z", - "iopub.status.idle": "2024-09-06T19:38:09.981363Z", - "shell.execute_reply": "2024-09-06T19:38:09.980664Z" + "iopub.execute_input": "2024-09-26T14:52:09.311928Z", + "iopub.status.busy": "2024-09-26T14:52:09.311543Z", + "iopub.status.idle": "2024-09-26T14:52:12.757719Z", + "shell.execute_reply": "2024-09-26T14:52:12.756901Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:09.984620Z", - "iopub.status.busy": "2024-09-06T19:38:09.983724Z", - "iopub.status.idle": "2024-09-06T19:38:10.027299Z", - "shell.execute_reply": "2024-09-06T19:38:10.026694Z" + "iopub.execute_input": "2024-09-26T14:52:12.760355Z", + "iopub.status.busy": "2024-09-26T14:52:12.759696Z", + "iopub.status.idle": "2024-09-26T14:52:12.813184Z", + "shell.execute_reply": "2024-09-26T14:52:12.812421Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.030074Z", - "iopub.status.busy": "2024-09-06T19:38:10.029673Z", - "iopub.status.idle": "2024-09-06T19:38:10.069413Z", - "shell.execute_reply": "2024-09-06T19:38:10.068633Z" + "iopub.execute_input": "2024-09-26T14:52:12.815571Z", + "iopub.status.busy": "2024-09-26T14:52:12.815173Z", + "iopub.status.idle": "2024-09-26T14:52:12.861989Z", + "shell.execute_reply": "2024-09-26T14:52:12.861319Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.072131Z", - "iopub.status.busy": "2024-09-06T19:38:10.071875Z", - "iopub.status.idle": "2024-09-06T19:38:10.075127Z", - "shell.execute_reply": "2024-09-06T19:38:10.074582Z" + "iopub.execute_input": "2024-09-26T14:52:12.864397Z", + "iopub.status.busy": "2024-09-26T14:52:12.863906Z", + "iopub.status.idle": "2024-09-26T14:52:12.867232Z", + "shell.execute_reply": "2024-09-26T14:52:12.866761Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.077352Z", - "iopub.status.busy": "2024-09-06T19:38:10.077011Z", - "iopub.status.idle": "2024-09-06T19:38:10.079576Z", - "shell.execute_reply": "2024-09-06T19:38:10.079132Z" + "iopub.execute_input": "2024-09-26T14:52:12.868891Z", + "iopub.status.busy": "2024-09-26T14:52:12.868591Z", + "iopub.status.idle": "2024-09-26T14:52:12.871312Z", + "shell.execute_reply": "2024-09-26T14:52:12.870766Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.081910Z", - "iopub.status.busy": "2024-09-06T19:38:10.081719Z", - "iopub.status.idle": "2024-09-06T19:38:10.109741Z", - "shell.execute_reply": "2024-09-06T19:38:10.109183Z" + "iopub.execute_input": "2024-09-26T14:52:12.873230Z", + "iopub.status.busy": "2024-09-26T14:52:12.872884Z", + "iopub.status.idle": "2024-09-26T14:52:12.897801Z", + "shell.execute_reply": "2024-09-26T14:52:12.897165Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10e11ec38b13425280381ff5281c4450", + "model_id": "554f0bffd2414657b0244763906a1e3d", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e2d5adb59434e2081db18c696100263", + "model_id": "d70c6118368a40e3b8c24ac57cc4db26", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.115104Z", - "iopub.status.busy": "2024-09-06T19:38:10.114762Z", - "iopub.status.idle": "2024-09-06T19:38:10.121297Z", - "shell.execute_reply": "2024-09-06T19:38:10.120726Z" + "iopub.execute_input": "2024-09-26T14:52:12.900530Z", + "iopub.status.busy": "2024-09-26T14:52:12.900181Z", + "iopub.status.idle": "2024-09-26T14:52:12.907197Z", + "shell.execute_reply": "2024-09-26T14:52:12.906763Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.123497Z", - "iopub.status.busy": "2024-09-06T19:38:10.123043Z", - "iopub.status.idle": "2024-09-06T19:38:10.126503Z", - "shell.execute_reply": "2024-09-06T19:38:10.126056Z" + "iopub.execute_input": "2024-09-26T14:52:12.908993Z", + "iopub.status.busy": "2024-09-26T14:52:12.908664Z", + "iopub.status.idle": "2024-09-26T14:52:12.911903Z", + "shell.execute_reply": "2024-09-26T14:52:12.911461Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.128505Z", - "iopub.status.busy": "2024-09-06T19:38:10.128204Z", - "iopub.status.idle": "2024-09-06T19:38:10.134549Z", - "shell.execute_reply": "2024-09-06T19:38:10.134003Z" + "iopub.execute_input": "2024-09-26T14:52:12.913714Z", + "iopub.status.busy": "2024-09-26T14:52:12.913385Z", + "iopub.status.idle": "2024-09-26T14:52:12.919520Z", + "shell.execute_reply": "2024-09-26T14:52:12.919085Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.136656Z", - "iopub.status.busy": "2024-09-06T19:38:10.136338Z", - "iopub.status.idle": "2024-09-06T19:38:10.179181Z", - "shell.execute_reply": "2024-09-06T19:38:10.178556Z" + "iopub.execute_input": "2024-09-26T14:52:12.921164Z", + "iopub.status.busy": "2024-09-26T14:52:12.920839Z", + "iopub.status.idle": "2024-09-26T14:52:12.968393Z", + "shell.execute_reply": "2024-09-26T14:52:12.967757Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.181945Z", - "iopub.status.busy": "2024-09-06T19:38:10.181555Z", - "iopub.status.idle": "2024-09-06T19:38:10.218200Z", - "shell.execute_reply": "2024-09-06T19:38:10.217453Z" + "iopub.execute_input": "2024-09-26T14:52:12.970571Z", + "iopub.status.busy": "2024-09-26T14:52:12.970308Z", + "iopub.status.idle": "2024-09-26T14:52:13.022776Z", + "shell.execute_reply": "2024-09-26T14:52:13.022011Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.220958Z", - "iopub.status.busy": "2024-09-06T19:38:10.220569Z", - "iopub.status.idle": "2024-09-06T19:38:10.349381Z", - "shell.execute_reply": "2024-09-06T19:38:10.348725Z" + "iopub.execute_input": "2024-09-26T14:52:13.025203Z", + "iopub.status.busy": "2024-09-26T14:52:13.024937Z", + "iopub.status.idle": "2024-09-26T14:52:13.170260Z", + "shell.execute_reply": "2024-09-26T14:52:13.169652Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.352202Z", - "iopub.status.busy": "2024-09-06T19:38:10.351437Z", - "iopub.status.idle": "2024-09-06T19:38:13.390257Z", - "shell.execute_reply": "2024-09-06T19:38:13.389586Z" + "iopub.execute_input": "2024-09-26T14:52:13.172750Z", + "iopub.status.busy": "2024-09-26T14:52:13.171949Z", + "iopub.status.idle": "2024-09-26T14:52:16.250921Z", + "shell.execute_reply": "2024-09-26T14:52:16.250318Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.392707Z", - "iopub.status.busy": "2024-09-06T19:38:13.392511Z", - "iopub.status.idle": "2024-09-06T19:38:13.450827Z", - "shell.execute_reply": "2024-09-06T19:38:13.450261Z" + "iopub.execute_input": "2024-09-26T14:52:16.253054Z", + "iopub.status.busy": "2024-09-26T14:52:16.252685Z", + "iopub.status.idle": "2024-09-26T14:52:16.313315Z", + "shell.execute_reply": "2024-09-26T14:52:16.312808Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.453108Z", - "iopub.status.busy": "2024-09-06T19:38:13.452688Z", - "iopub.status.idle": "2024-09-06T19:38:13.493414Z", - "shell.execute_reply": "2024-09-06T19:38:13.492941Z" + "iopub.execute_input": "2024-09-26T14:52:16.315165Z", + "iopub.status.busy": "2024-09-26T14:52:16.314831Z", + "iopub.status.idle": "2024-09-26T14:52:16.358568Z", + "shell.execute_reply": "2024-09-26T14:52:16.358096Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "368f0547", + "id": "52d078eb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "dc65d1a9", + "id": "79b5500c", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "e31bf904", + "id": "f114fab1", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0365a86d", + "id": "a6fcaf91", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.495546Z", - "iopub.status.busy": "2024-09-06T19:38:13.495269Z", - "iopub.status.idle": "2024-09-06T19:38:13.502952Z", - "shell.execute_reply": "2024-09-06T19:38:13.502358Z" + "iopub.execute_input": "2024-09-26T14:52:16.360590Z", + "iopub.status.busy": "2024-09-26T14:52:16.360173Z", + "iopub.status.idle": "2024-09-26T14:52:16.368057Z", + "shell.execute_reply": "2024-09-26T14:52:16.367484Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1c944acb", + "id": "fe87ea59", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "c713e4cb", + "id": "6c7bf69f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.504946Z", - "iopub.status.busy": "2024-09-06T19:38:13.504608Z", - "iopub.status.idle": "2024-09-06T19:38:13.523104Z", - "shell.execute_reply": "2024-09-06T19:38:13.522534Z" + "iopub.execute_input": "2024-09-26T14:52:16.369947Z", + "iopub.status.busy": "2024-09-26T14:52:16.369620Z", + "iopub.status.idle": "2024-09-26T14:52:16.389325Z", + "shell.execute_reply": "2024-09-26T14:52:16.388736Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "59184bfc", + "id": "c73832aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.525068Z", - "iopub.status.busy": "2024-09-06T19:38:13.524743Z", - "iopub.status.idle": "2024-09-06T19:38:13.528122Z", - "shell.execute_reply": "2024-09-06T19:38:13.527552Z" + "iopub.execute_input": "2024-09-26T14:52:16.391059Z", + "iopub.status.busy": "2024-09-26T14:52:16.390763Z", + "iopub.status.idle": "2024-09-26T14:52:16.394252Z", + "shell.execute_reply": "2024-09-26T14:52:16.393690Z" } }, "outputs": [ @@ -1617,12 +1617,30 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a20db80d8ee4c558ba192d544a0f48a": { + "01c2b1694c624296b114bf1d67d63cff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b91ac3abe0a43e4b471a93ba3834871": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1693,25 @@ "width": null } }, - "0e1e83d9b67447b1a76b3a2c668a8439": { + "1c5e90fb88e44d4280704d7ea69107fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f603edcaca0493985e74b52602fd4e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,25 +1764,46 @@ "width": null } }, - "0ea8c549fffe4418b122c5d1daacdcf9": { + "24e8217d30ae40ec8e547d17a79c5035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "4d41deb2547b43daa3622e6c0f359568": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_853967e0e61449b5b519cbd25c8830fc", + "placeholder": "​", + "style": "IPY_MODEL_70ee3acf89114ab190c8c886bcad952a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "10e11ec38b13425280381ff5281c4450": { + "554f0bffd2414657b0244763906a1e3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1761,16 +1818,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_98a30ff8d08f40f5a59fa3959a1bfd7a", - "IPY_MODEL_9e361a1c4f7d49d28575030ed31684b4", - "IPY_MODEL_5d93e4fbfc844d82994983ca2900ac04" + "IPY_MODEL_c8c65a735e994d1792a82e7140824616", + "IPY_MODEL_77dcb3bbbcad4620bbed6ca47c4c44db", + "IPY_MODEL_e241857383f5412490f7baca022471b6" ], - "layout": "IPY_MODEL_4c9d550f7159424fb6452da47b5cb51f", + "layout": "IPY_MODEL_af8c576b995749f49b6a3ff1a3ef7338", "tabbable": null, "tooltip": null } }, - "1989c2b222ef4983ba1d80fd96d80f9d": { + "5569a8600bc64dfebf5774ddc1b6543c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,23 +1880,48 @@ "width": null } }, - "278fa17d981b49c5a5afac9215c11437": { + "70745b2f7b374dbb8bf3ac849b0ce45e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f603edcaca0493985e74b52602fd4e9", + "placeholder": "​", + "style": "IPY_MODEL_01c2b1694c624296b114bf1d67d63cff", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1566266.10it/s]" + } + }, + "70ee3acf89114ab190c8c886bcad952a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4c9d550f7159424fb6452da47b5cb51f": { + "74ffd9bb94c34169aa80dd9d157cd10d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1892,30 +1974,33 @@ "width": null } }, - "5d93e4fbfc844d82994983ca2900ac04": { + "77dcb3bbbcad4620bbed6ca47c4c44db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a20db80d8ee4c558ba192d544a0f48a", - "placeholder": "​", - "style": "IPY_MODEL_85eb048e0015452a98d2585ecd3acea6", + "layout": "IPY_MODEL_c8f68f3e3778452dbb68e37345ea22a9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7a5057a16474398af969c555e555a5d", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 908211.86it/s]" + "value": 50.0 } }, - "62148dc5598f487787910111c96b2850": { + "853967e0e61449b5b519cbd25c8830fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1968,30 +2053,7 @@ "width": null } }, - "663eab6313474ab4b43a56ac15375332": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e1e83d9b67447b1a76b3a2c668a8439", - "placeholder": "​", - "style": "IPY_MODEL_c8b6ee68eda04b79b9d7e8ba44708601", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "71bf8e249c8e494a8293a1368b4cde75": { + "af8c576b995749f49b6a3ff1a3ef7338": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,67 +2106,72 @@ "width": null } }, - "7e2d5adb59434e2081db18c696100263": { + "c7a5057a16474398af969c555e555a5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_663eab6313474ab4b43a56ac15375332", - "IPY_MODEL_cb19cecdebc048139ef9e5b0697091e8", - "IPY_MODEL_b09565a1c786456187dacb880907b06f" - ], - "layout": "IPY_MODEL_62148dc5598f487787910111c96b2850", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "85eb048e0015452a98d2585ecd3acea6": { + "c7fe0e5fdfd74b84af9f7585515c62f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fead4528991a4aafb24e155e68de7bc9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24e8217d30ae40ec8e547d17a79c5035", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "8a29c209506d4b1f809b0eee618845ff": { + "c8c65a735e994d1792a82e7140824616": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b91ac3abe0a43e4b471a93ba3834871", + "placeholder": "​", + "style": "IPY_MODEL_1c5e90fb88e44d4280704d7ea69107fc", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "8a7564586c364ea6ab0b8036f15d75de": { + "c8f68f3e3778452dbb68e37345ea22a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2157,56 +2224,31 @@ "width": null } }, - "98a30ff8d08f40f5a59fa3959a1bfd7a": { + "d70c6118368a40e3b8c24ac57cc4db26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbbdcb4211b04decb44b6be6dae0e74f", - "placeholder": "​", - "style": "IPY_MODEL_0ea8c549fffe4418b122c5d1daacdcf9", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "9e361a1c4f7d49d28575030ed31684b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a7564586c364ea6ab0b8036f15d75de", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_278fa17d981b49c5a5afac9215c11437", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d41deb2547b43daa3622e6c0f359568", + "IPY_MODEL_c7fe0e5fdfd74b84af9f7585515c62f8", + "IPY_MODEL_70745b2f7b374dbb8bf3ac849b0ce45e" + ], + "layout": "IPY_MODEL_74ffd9bb94c34169aa80dd9d157cd10d", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "b09565a1c786456187dacb880907b06f": { + "e241857383f5412490f7baca022471b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2221,15 +2263,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71bf8e249c8e494a8293a1368b4cde75", + "layout": "IPY_MODEL_5569a8600bc64dfebf5774ddc1b6543c", "placeholder": "​", - "style": "IPY_MODEL_8a29c209506d4b1f809b0eee618845ff", + "style": "IPY_MODEL_f6897d47a5094424a94e9a8a0a058c31", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1197722.38it/s]" + "value": " 10000/? [00:00<00:00, 1012407.73it/s]" } }, - "c8b6ee68eda04b79b9d7e8ba44708601": { + "f6897d47a5094424a94e9a8a0a058c31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2247,33 +2289,7 @@ "text_color": null } }, - "cb19cecdebc048139ef9e5b0697091e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1989c2b222ef4983ba1d80fd96d80f9d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd96842c5f86404599e6a57c4439dccf", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cbbdcb4211b04decb44b6be6dae0e74f": { + "fead4528991a4aafb24e155e68de7bc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2325,22 +2341,6 @@ "visibility": null, "width": null } - }, - "cd96842c5f86404599e6a57c4439dccf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 0126898fa..d59d7a26c 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:17.966921Z", - "iopub.status.busy": "2024-09-06T19:38:17.966743Z", - "iopub.status.idle": "2024-09-06T19:38:19.153643Z", - "shell.execute_reply": "2024-09-06T19:38:19.153020Z" + "iopub.execute_input": "2024-09-26T14:52:19.810405Z", + "iopub.status.busy": "2024-09-26T14:52:19.810223Z", + "iopub.status.idle": "2024-09-26T14:52:21.040404Z", + "shell.execute_reply": "2024-09-26T14:52:21.039829Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.156468Z", - "iopub.status.busy": "2024-09-06T19:38:19.155927Z", - "iopub.status.idle": "2024-09-06T19:38:19.159820Z", - "shell.execute_reply": "2024-09-06T19:38:19.159280Z" + "iopub.execute_input": "2024-09-26T14:52:21.042734Z", + "iopub.status.busy": "2024-09-26T14:52:21.042166Z", + "iopub.status.idle": "2024-09-26T14:52:21.046124Z", + "shell.execute_reply": "2024-09-26T14:52:21.045639Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.161985Z", - "iopub.status.busy": "2024-09-06T19:38:19.161628Z", - "iopub.status.idle": "2024-09-06T19:38:19.848074Z", - "shell.execute_reply": "2024-09-06T19:38:19.847540Z" + "iopub.execute_input": "2024-09-26T14:52:21.047800Z", + "iopub.status.busy": "2024-09-26T14:52:21.047493Z", + "iopub.status.idle": "2024-09-26T14:52:21.500478Z", + "shell.execute_reply": "2024-09-26T14:52:21.499906Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.850305Z", - "iopub.status.busy": "2024-09-06T19:38:19.849961Z", - "iopub.status.idle": "2024-09-06T19:38:19.855710Z", - "shell.execute_reply": "2024-09-06T19:38:19.855268Z" + "iopub.execute_input": "2024-09-26T14:52:21.502342Z", + "iopub.status.busy": "2024-09-26T14:52:21.502065Z", + "iopub.status.idle": "2024-09-26T14:52:21.509359Z", + "shell.execute_reply": "2024-09-26T14:52:21.508870Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.857664Z", - "iopub.status.busy": "2024-09-06T19:38:19.857483Z", - "iopub.status.idle": "2024-09-06T19:38:19.864510Z", - "shell.execute_reply": "2024-09-06T19:38:19.863928Z" + "iopub.execute_input": "2024-09-26T14:52:21.511294Z", + "iopub.status.busy": "2024-09-26T14:52:21.510958Z", + "iopub.status.idle": "2024-09-26T14:52:21.518230Z", + "shell.execute_reply": "2024-09-26T14:52:21.517794Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.866738Z", - "iopub.status.busy": "2024-09-06T19:38:19.866419Z", - "iopub.status.idle": "2024-09-06T19:38:19.871181Z", - "shell.execute_reply": "2024-09-06T19:38:19.870718Z" + "iopub.execute_input": "2024-09-26T14:52:21.520016Z", + "iopub.status.busy": "2024-09-26T14:52:21.519670Z", + "iopub.status.idle": "2024-09-26T14:52:21.524522Z", + "shell.execute_reply": "2024-09-26T14:52:21.524038Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.873167Z", - "iopub.status.busy": "2024-09-06T19:38:19.872989Z", - "iopub.status.idle": "2024-09-06T19:38:19.879315Z", - "shell.execute_reply": "2024-09-06T19:38:19.878873Z" + "iopub.execute_input": "2024-09-26T14:52:21.526279Z", + "iopub.status.busy": "2024-09-26T14:52:21.525942Z", + "iopub.status.idle": "2024-09-26T14:52:21.531374Z", + "shell.execute_reply": "2024-09-26T14:52:21.530921Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.881299Z", - "iopub.status.busy": "2024-09-06T19:38:19.881109Z", - "iopub.status.idle": "2024-09-06T19:38:19.885448Z", - "shell.execute_reply": "2024-09-06T19:38:19.884866Z" + "iopub.execute_input": "2024-09-26T14:52:21.533093Z", + "iopub.status.busy": "2024-09-26T14:52:21.532754Z", + "iopub.status.idle": "2024-09-26T14:52:21.536654Z", + "shell.execute_reply": "2024-09-26T14:52:21.536203Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.887541Z", - "iopub.status.busy": "2024-09-06T19:38:19.887226Z", - "iopub.status.idle": "2024-09-06T19:38:19.952333Z", - "shell.execute_reply": "2024-09-06T19:38:19.951659Z" + "iopub.execute_input": "2024-09-26T14:52:21.538466Z", + "iopub.status.busy": "2024-09-26T14:52:21.538138Z", + "iopub.status.idle": "2024-09-26T14:52:21.605533Z", + "shell.execute_reply": "2024-09-26T14:52:21.604911Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.955055Z", - "iopub.status.busy": "2024-09-06T19:38:19.954571Z", - "iopub.status.idle": "2024-09-06T19:38:19.965639Z", - "shell.execute_reply": "2024-09-06T19:38:19.965092Z" + "iopub.execute_input": "2024-09-26T14:52:21.608178Z", + "iopub.status.busy": "2024-09-26T14:52:21.607735Z", + "iopub.status.idle": "2024-09-26T14:52:21.620493Z", + "shell.execute_reply": "2024-09-26T14:52:21.619924Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.968612Z", - "iopub.status.busy": "2024-09-06T19:38:19.968081Z", - "iopub.status.idle": "2024-09-06T19:38:19.989523Z", - "shell.execute_reply": "2024-09-06T19:38:19.988990Z" + "iopub.execute_input": "2024-09-26T14:52:21.623400Z", + "iopub.status.busy": "2024-09-26T14:52:21.622546Z", + "iopub.status.idle": "2024-09-26T14:52:21.644716Z", + "shell.execute_reply": "2024-09-26T14:52:21.644193Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.992484Z", - "iopub.status.busy": "2024-09-06T19:38:19.991953Z", - "iopub.status.idle": "2024-09-06T19:38:19.996496Z", - "shell.execute_reply": "2024-09-06T19:38:19.995963Z" + "iopub.execute_input": "2024-09-26T14:52:21.647639Z", + "iopub.status.busy": "2024-09-26T14:52:21.646753Z", + "iopub.status.idle": "2024-09-26T14:52:21.652233Z", + "shell.execute_reply": "2024-09-26T14:52:21.651741Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.000004Z", - "iopub.status.busy": "2024-09-06T19:38:19.999084Z", - "iopub.status.idle": "2024-09-06T19:38:20.005225Z", - "shell.execute_reply": "2024-09-06T19:38:20.004698Z" + "iopub.execute_input": "2024-09-26T14:52:21.654600Z", + "iopub.status.busy": "2024-09-26T14:52:21.654175Z", + "iopub.status.idle": "2024-09-26T14:52:21.659391Z", + "shell.execute_reply": "2024-09-26T14:52:21.658868Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.008748Z", - "iopub.status.busy": "2024-09-06T19:38:20.007824Z", - "iopub.status.idle": "2024-09-06T19:38:20.018446Z", - "shell.execute_reply": "2024-09-06T19:38:20.018010Z" + "iopub.execute_input": "2024-09-26T14:52:21.661608Z", + "iopub.status.busy": "2024-09-26T14:52:21.661407Z", + "iopub.status.idle": "2024-09-26T14:52:21.671252Z", + "shell.execute_reply": "2024-09-26T14:52:21.670825Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.020571Z", - "iopub.status.busy": "2024-09-06T19:38:20.020204Z", - "iopub.status.idle": "2024-09-06T19:38:20.024666Z", - "shell.execute_reply": "2024-09-06T19:38:20.024096Z" + "iopub.execute_input": "2024-09-26T14:52:21.673132Z", + "iopub.status.busy": "2024-09-26T14:52:21.672789Z", + "iopub.status.idle": "2024-09-26T14:52:21.677167Z", + "shell.execute_reply": "2024-09-26T14:52:21.676751Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.026677Z", - "iopub.status.busy": "2024-09-06T19:38:20.026505Z", - "iopub.status.idle": "2024-09-06T19:38:20.138981Z", - "shell.execute_reply": "2024-09-06T19:38:20.138473Z" + "iopub.execute_input": "2024-09-26T14:52:21.678723Z", + "iopub.status.busy": "2024-09-26T14:52:21.678550Z", + "iopub.status.idle": "2024-09-26T14:52:21.827660Z", + "shell.execute_reply": "2024-09-26T14:52:21.827142Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.141251Z", - "iopub.status.busy": "2024-09-06T19:38:20.140804Z", - "iopub.status.idle": "2024-09-06T19:38:20.147269Z", - "shell.execute_reply": "2024-09-06T19:38:20.146678Z" + "iopub.execute_input": "2024-09-26T14:52:21.829459Z", + "iopub.status.busy": "2024-09-26T14:52:21.829100Z", + "iopub.status.idle": "2024-09-26T14:52:21.835627Z", + "shell.execute_reply": "2024-09-26T14:52:21.835049Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.149710Z", - "iopub.status.busy": "2024-09-06T19:38:20.149204Z", - "iopub.status.idle": "2024-09-06T19:38:22.175679Z", - "shell.execute_reply": "2024-09-06T19:38:22.175042Z" + "iopub.execute_input": "2024-09-26T14:52:21.837607Z", + "iopub.status.busy": "2024-09-26T14:52:21.837231Z", + "iopub.status.idle": "2024-09-26T14:52:23.851625Z", + "shell.execute_reply": "2024-09-26T14:52:23.850969Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.179907Z", - "iopub.status.busy": "2024-09-06T19:38:22.178817Z", - "iopub.status.idle": "2024-09-06T19:38:22.193599Z", - "shell.execute_reply": "2024-09-06T19:38:22.193081Z" + "iopub.execute_input": "2024-09-26T14:52:23.853998Z", + "iopub.status.busy": "2024-09-26T14:52:23.853506Z", + "iopub.status.idle": "2024-09-26T14:52:23.867378Z", + "shell.execute_reply": "2024-09-26T14:52:23.866868Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.197201Z", - "iopub.status.busy": "2024-09-06T19:38:22.196240Z", - "iopub.status.idle": "2024-09-06T19:38:22.200280Z", - "shell.execute_reply": "2024-09-06T19:38:22.199770Z" + "iopub.execute_input": "2024-09-26T14:52:23.869442Z", + "iopub.status.busy": "2024-09-26T14:52:23.869086Z", + "iopub.status.idle": "2024-09-26T14:52:23.871992Z", + "shell.execute_reply": "2024-09-26T14:52:23.871490Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.203753Z", - "iopub.status.busy": "2024-09-06T19:38:22.202840Z", - "iopub.status.idle": "2024-09-06T19:38:22.208375Z", - "shell.execute_reply": "2024-09-06T19:38:22.207870Z" + "iopub.execute_input": "2024-09-26T14:52:23.873901Z", + "iopub.status.busy": "2024-09-26T14:52:23.873567Z", + "iopub.status.idle": "2024-09-26T14:52:23.878299Z", + "shell.execute_reply": "2024-09-26T14:52:23.877773Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.211876Z", - "iopub.status.busy": "2024-09-06T19:38:22.210955Z", - "iopub.status.idle": "2024-09-06T19:38:22.243013Z", - "shell.execute_reply": "2024-09-06T19:38:22.242528Z" + "iopub.execute_input": "2024-09-26T14:52:23.880472Z", + "iopub.status.busy": "2024-09-26T14:52:23.880009Z", + "iopub.status.idle": "2024-09-26T14:52:23.917031Z", + "shell.execute_reply": "2024-09-26T14:52:23.916497Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.246118Z", - "iopub.status.busy": "2024-09-06T19:38:22.245468Z", - "iopub.status.idle": "2024-09-06T19:38:22.754137Z", - "shell.execute_reply": "2024-09-06T19:38:22.753573Z" + "iopub.execute_input": "2024-09-26T14:52:23.919143Z", + "iopub.status.busy": "2024-09-26T14:52:23.918754Z", + "iopub.status.idle": "2024-09-26T14:52:24.441145Z", + "shell.execute_reply": "2024-09-26T14:52:24.440578Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.757125Z", - "iopub.status.busy": "2024-09-06T19:38:22.756730Z", - "iopub.status.idle": "2024-09-06T19:38:22.893326Z", - "shell.execute_reply": "2024-09-06T19:38:22.892578Z" + "iopub.execute_input": "2024-09-26T14:52:24.443535Z", + "iopub.status.busy": "2024-09-26T14:52:24.443148Z", + "iopub.status.idle": "2024-09-26T14:52:24.581215Z", + "shell.execute_reply": "2024-09-26T14:52:24.580592Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.896382Z", - "iopub.status.busy": "2024-09-06T19:38:22.896143Z", - "iopub.status.idle": "2024-09-06T19:38:22.903618Z", - "shell.execute_reply": "2024-09-06T19:38:22.903032Z" + "iopub.execute_input": "2024-09-26T14:52:24.583982Z", + "iopub.status.busy": "2024-09-26T14:52:24.583021Z", + "iopub.status.idle": "2024-09-26T14:52:24.591560Z", + "shell.execute_reply": "2024-09-26T14:52:24.591052Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.906322Z", - "iopub.status.busy": "2024-09-06T19:38:22.906102Z", - "iopub.status.idle": "2024-09-06T19:38:22.914842Z", - "shell.execute_reply": "2024-09-06T19:38:22.914319Z" + "iopub.execute_input": "2024-09-26T14:52:24.594472Z", + "iopub.status.busy": "2024-09-26T14:52:24.593722Z", + "iopub.status.idle": "2024-09-26T14:52:24.601463Z", + "shell.execute_reply": "2024-09-26T14:52:24.600918Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.917418Z", - "iopub.status.busy": "2024-09-06T19:38:22.917212Z", - "iopub.status.idle": "2024-09-06T19:38:22.924586Z", - "shell.execute_reply": "2024-09-06T19:38:22.924068Z" + "iopub.execute_input": "2024-09-26T14:52:24.604404Z", + "iopub.status.busy": "2024-09-26T14:52:24.603652Z", + "iopub.status.idle": "2024-09-26T14:52:24.610627Z", + "shell.execute_reply": "2024-09-26T14:52:24.610123Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.927978Z", - "iopub.status.busy": "2024-09-06T19:38:22.927001Z", - "iopub.status.idle": "2024-09-06T19:38:22.932989Z", - "shell.execute_reply": "2024-09-06T19:38:22.932417Z" + "iopub.execute_input": "2024-09-26T14:52:24.613514Z", + "iopub.status.busy": "2024-09-26T14:52:24.612748Z", + "iopub.status.idle": "2024-09-26T14:52:24.618379Z", + "shell.execute_reply": "2024-09-26T14:52:24.617862Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.935455Z", - "iopub.status.busy": "2024-09-06T19:38:22.935286Z", - "iopub.status.idle": "2024-09-06T19:38:22.940366Z", - "shell.execute_reply": "2024-09-06T19:38:22.939926Z" + "iopub.execute_input": "2024-09-26T14:52:24.621206Z", + "iopub.status.busy": "2024-09-26T14:52:24.620459Z", + "iopub.status.idle": "2024-09-26T14:52:24.625372Z", + "shell.execute_reply": "2024-09-26T14:52:24.624794Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.942577Z", - "iopub.status.busy": "2024-09-06T19:38:22.942242Z", - "iopub.status.idle": "2024-09-06T19:38:23.018404Z", - "shell.execute_reply": "2024-09-06T19:38:23.017754Z" + "iopub.execute_input": "2024-09-26T14:52:24.627070Z", + "iopub.status.busy": "2024-09-26T14:52:24.626899Z", + "iopub.status.idle": "2024-09-26T14:52:24.703448Z", + "shell.execute_reply": "2024-09-26T14:52:24.702825Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.021060Z", - "iopub.status.busy": "2024-09-06T19:38:23.020492Z", - "iopub.status.idle": "2024-09-06T19:38:23.034062Z", - "shell.execute_reply": "2024-09-06T19:38:23.033451Z" + "iopub.execute_input": "2024-09-26T14:52:24.705665Z", + "iopub.status.busy": "2024-09-26T14:52:24.705281Z", + "iopub.status.idle": "2024-09-26T14:52:24.718371Z", + "shell.execute_reply": "2024-09-26T14:52:24.717910Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.036553Z", - "iopub.status.busy": "2024-09-06T19:38:23.036240Z", - "iopub.status.idle": "2024-09-06T19:38:23.039008Z", - "shell.execute_reply": "2024-09-06T19:38:23.038465Z" + "iopub.execute_input": "2024-09-26T14:52:24.719953Z", + "iopub.status.busy": "2024-09-26T14:52:24.719774Z", + "iopub.status.idle": "2024-09-26T14:52:24.722525Z", + "shell.execute_reply": "2024-09-26T14:52:24.721993Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.041147Z", - "iopub.status.busy": "2024-09-06T19:38:23.040695Z", - "iopub.status.idle": "2024-09-06T19:38:23.050646Z", - "shell.execute_reply": "2024-09-06T19:38:23.050044Z" + "iopub.execute_input": "2024-09-26T14:52:24.724217Z", + "iopub.status.busy": "2024-09-26T14:52:24.723890Z", + "iopub.status.idle": "2024-09-26T14:52:24.733856Z", + "shell.execute_reply": "2024-09-26T14:52:24.733386Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.053067Z", - "iopub.status.busy": "2024-09-06T19:38:23.052637Z", - "iopub.status.idle": "2024-09-06T19:38:23.059254Z", - "shell.execute_reply": "2024-09-06T19:38:23.058781Z" + "iopub.execute_input": "2024-09-26T14:52:24.735568Z", + "iopub.status.busy": "2024-09-26T14:52:24.735390Z", + "iopub.status.idle": "2024-09-26T14:52:24.741960Z", + "shell.execute_reply": "2024-09-26T14:52:24.741508Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.061114Z", - "iopub.status.busy": "2024-09-06T19:38:23.060934Z", - "iopub.status.idle": "2024-09-06T19:38:23.064369Z", - "shell.execute_reply": "2024-09-06T19:38:23.063906Z" + "iopub.execute_input": "2024-09-26T14:52:24.743631Z", + "iopub.status.busy": "2024-09-26T14:52:24.743288Z", + "iopub.status.idle": "2024-09-26T14:52:24.746500Z", + "shell.execute_reply": "2024-09-26T14:52:24.746046Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.066492Z", - "iopub.status.busy": "2024-09-06T19:38:23.066088Z", - "iopub.status.idle": "2024-09-06T19:38:27.075896Z", - "shell.execute_reply": "2024-09-06T19:38:27.075361Z" + "iopub.execute_input": "2024-09-26T14:52:24.748147Z", + "iopub.status.busy": "2024-09-26T14:52:24.747796Z", + "iopub.status.idle": "2024-09-26T14:52:28.830714Z", + "shell.execute_reply": "2024-09-26T14:52:28.830201Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:27.079119Z", - "iopub.status.busy": "2024-09-06T19:38:27.078209Z", - "iopub.status.idle": "2024-09-06T19:38:27.082469Z", - "shell.execute_reply": "2024-09-06T19:38:27.082025Z" + "iopub.execute_input": "2024-09-26T14:52:28.832745Z", + "iopub.status.busy": "2024-09-26T14:52:28.832361Z", + "iopub.status.idle": "2024-09-26T14:52:28.835718Z", + "shell.execute_reply": "2024-09-26T14:52:28.835165Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:27.084613Z", - "iopub.status.busy": "2024-09-06T19:38:27.084277Z", - "iopub.status.idle": "2024-09-06T19:38:27.087400Z", - "shell.execute_reply": "2024-09-06T19:38:27.086984Z" + "iopub.execute_input": "2024-09-26T14:52:28.837752Z", + "iopub.status.busy": "2024-09-26T14:52:28.837357Z", + "iopub.status.idle": "2024-09-26T14:52:28.840312Z", + "shell.execute_reply": "2024-09-26T14:52:28.839737Z" }, "nbsphinx": "hidden" }, @@ -3492,7 +3492,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index d4d06d3f8..f81022c48 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:29.945055Z", - "iopub.status.busy": "2024-09-06T19:38:29.944859Z", - "iopub.status.idle": "2024-09-06T19:38:31.152677Z", - "shell.execute_reply": "2024-09-06T19:38:31.152154Z" + "iopub.execute_input": "2024-09-26T14:52:32.169125Z", + "iopub.status.busy": "2024-09-26T14:52:32.168956Z", + "iopub.status.idle": "2024-09-26T14:52:33.431499Z", + "shell.execute_reply": "2024-09-26T14:52:33.430884Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.155349Z", - "iopub.status.busy": "2024-09-06T19:38:31.154914Z", - "iopub.status.idle": "2024-09-06T19:38:31.333867Z", - "shell.execute_reply": "2024-09-06T19:38:31.333299Z" + "iopub.execute_input": "2024-09-26T14:52:33.434100Z", + "iopub.status.busy": "2024-09-26T14:52:33.433789Z", + "iopub.status.idle": "2024-09-26T14:52:33.621182Z", + "shell.execute_reply": "2024-09-26T14:52:33.620609Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.336296Z", - "iopub.status.busy": "2024-09-06T19:38:31.336106Z", - "iopub.status.idle": "2024-09-06T19:38:31.347492Z", - "shell.execute_reply": "2024-09-06T19:38:31.347045Z" + "iopub.execute_input": "2024-09-26T14:52:33.623560Z", + "iopub.status.busy": "2024-09-26T14:52:33.623109Z", + "iopub.status.idle": "2024-09-26T14:52:33.635370Z", + "shell.execute_reply": "2024-09-26T14:52:33.634790Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.349587Z", - "iopub.status.busy": "2024-09-06T19:38:31.349239Z", - "iopub.status.idle": "2024-09-06T19:38:31.559000Z", - "shell.execute_reply": "2024-09-06T19:38:31.558435Z" + "iopub.execute_input": "2024-09-26T14:52:33.637192Z", + "iopub.status.busy": "2024-09-26T14:52:33.636918Z", + "iopub.status.idle": "2024-09-26T14:52:33.875845Z", + "shell.execute_reply": "2024-09-26T14:52:33.875224Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.561389Z", - "iopub.status.busy": "2024-09-06T19:38:31.561027Z", - "iopub.status.idle": "2024-09-06T19:38:31.587035Z", - "shell.execute_reply": "2024-09-06T19:38:31.586568Z" + "iopub.execute_input": "2024-09-26T14:52:33.877984Z", + "iopub.status.busy": "2024-09-26T14:52:33.877640Z", + "iopub.status.idle": "2024-09-26T14:52:33.905047Z", + "shell.execute_reply": "2024-09-26T14:52:33.904562Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.589259Z", - "iopub.status.busy": "2024-09-06T19:38:31.588898Z", - "iopub.status.idle": "2024-09-06T19:38:33.659672Z", - "shell.execute_reply": "2024-09-06T19:38:33.658986Z" + "iopub.execute_input": "2024-09-26T14:52:33.906945Z", + "iopub.status.busy": "2024-09-26T14:52:33.906618Z", + "iopub.status.idle": "2024-09-26T14:52:36.066124Z", + "shell.execute_reply": "2024-09-26T14:52:36.065509Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:33.662234Z", - "iopub.status.busy": "2024-09-06T19:38:33.661770Z", - "iopub.status.idle": "2024-09-06T19:38:33.679880Z", - "shell.execute_reply": "2024-09-06T19:38:33.679304Z" + "iopub.execute_input": "2024-09-26T14:52:36.068327Z", + "iopub.status.busy": "2024-09-26T14:52:36.067791Z", + "iopub.status.idle": "2024-09-26T14:52:36.085955Z", + "shell.execute_reply": "2024-09-26T14:52:36.085444Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:33.682125Z", - "iopub.status.busy": "2024-09-06T19:38:33.681797Z", - "iopub.status.idle": "2024-09-06T19:38:35.246559Z", - "shell.execute_reply": "2024-09-06T19:38:35.245952Z" + "iopub.execute_input": "2024-09-26T14:52:36.087636Z", + "iopub.status.busy": "2024-09-26T14:52:36.087436Z", + "iopub.status.idle": "2024-09-26T14:52:37.714159Z", + "shell.execute_reply": "2024-09-26T14:52:37.713482Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.249384Z", - "iopub.status.busy": "2024-09-06T19:38:35.248692Z", - "iopub.status.idle": "2024-09-06T19:38:35.262909Z", - "shell.execute_reply": "2024-09-06T19:38:35.262437Z" + "iopub.execute_input": "2024-09-26T14:52:37.716539Z", + "iopub.status.busy": "2024-09-26T14:52:37.715812Z", + "iopub.status.idle": "2024-09-26T14:52:37.730102Z", + "shell.execute_reply": "2024-09-26T14:52:37.729543Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.265091Z", - "iopub.status.busy": "2024-09-06T19:38:35.264657Z", - "iopub.status.idle": "2024-09-06T19:38:35.347361Z", - "shell.execute_reply": "2024-09-06T19:38:35.346752Z" + "iopub.execute_input": "2024-09-26T14:52:37.731957Z", + "iopub.status.busy": "2024-09-26T14:52:37.731617Z", + "iopub.status.idle": "2024-09-26T14:52:37.821262Z", + "shell.execute_reply": "2024-09-26T14:52:37.820618Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.349859Z", - "iopub.status.busy": "2024-09-06T19:38:35.349553Z", - "iopub.status.idle": "2024-09-06T19:38:35.568160Z", - "shell.execute_reply": "2024-09-06T19:38:35.567596Z" + "iopub.execute_input": "2024-09-26T14:52:37.823300Z", + "iopub.status.busy": "2024-09-26T14:52:37.822839Z", + "iopub.status.idle": "2024-09-26T14:52:38.038920Z", + "shell.execute_reply": "2024-09-26T14:52:38.038375Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.570518Z", - "iopub.status.busy": "2024-09-06T19:38:35.570156Z", - "iopub.status.idle": "2024-09-06T19:38:35.587030Z", - "shell.execute_reply": "2024-09-06T19:38:35.586565Z" + "iopub.execute_input": "2024-09-26T14:52:38.040759Z", + "iopub.status.busy": "2024-09-26T14:52:38.040570Z", + "iopub.status.idle": "2024-09-26T14:52:38.058165Z", + "shell.execute_reply": "2024-09-26T14:52:38.057614Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.589095Z", - "iopub.status.busy": "2024-09-06T19:38:35.588739Z", - "iopub.status.idle": "2024-09-06T19:38:35.598220Z", - "shell.execute_reply": "2024-09-06T19:38:35.597755Z" + "iopub.execute_input": "2024-09-26T14:52:38.060074Z", + "iopub.status.busy": "2024-09-26T14:52:38.059687Z", + "iopub.status.idle": "2024-09-26T14:52:38.069888Z", + "shell.execute_reply": "2024-09-26T14:52:38.069309Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.600262Z", - "iopub.status.busy": "2024-09-06T19:38:35.599918Z", - "iopub.status.idle": "2024-09-06T19:38:35.692538Z", - "shell.execute_reply": "2024-09-06T19:38:35.691918Z" + "iopub.execute_input": "2024-09-26T14:52:38.071813Z", + "iopub.status.busy": "2024-09-26T14:52:38.071379Z", + "iopub.status.idle": "2024-09-26T14:52:38.170054Z", + "shell.execute_reply": "2024-09-26T14:52:38.169477Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.694934Z", - "iopub.status.busy": "2024-09-06T19:38:35.694629Z", - "iopub.status.idle": "2024-09-06T19:38:35.833017Z", - "shell.execute_reply": "2024-09-06T19:38:35.832312Z" + "iopub.execute_input": "2024-09-26T14:52:38.171925Z", + "iopub.status.busy": "2024-09-26T14:52:38.171696Z", + "iopub.status.idle": "2024-09-26T14:52:38.324224Z", + "shell.execute_reply": "2024-09-26T14:52:38.323549Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.835595Z", - "iopub.status.busy": "2024-09-06T19:38:35.835206Z", - "iopub.status.idle": "2024-09-06T19:38:35.839051Z", - "shell.execute_reply": "2024-09-06T19:38:35.838497Z" + "iopub.execute_input": "2024-09-26T14:52:38.326329Z", + "iopub.status.busy": "2024-09-26T14:52:38.325951Z", + "iopub.status.idle": "2024-09-26T14:52:38.329903Z", + "shell.execute_reply": "2024-09-26T14:52:38.329357Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.841055Z", - "iopub.status.busy": "2024-09-06T19:38:35.840887Z", - "iopub.status.idle": "2024-09-06T19:38:35.844523Z", - "shell.execute_reply": "2024-09-06T19:38:35.843987Z" + "iopub.execute_input": "2024-09-26T14:52:38.331907Z", + "iopub.status.busy": "2024-09-26T14:52:38.331482Z", + "iopub.status.idle": "2024-09-26T14:52:38.335196Z", + "shell.execute_reply": "2024-09-26T14:52:38.334746Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.846624Z", - "iopub.status.busy": "2024-09-06T19:38:35.846289Z", - "iopub.status.idle": "2024-09-06T19:38:35.883516Z", - "shell.execute_reply": "2024-09-06T19:38:35.883025Z" + "iopub.execute_input": "2024-09-26T14:52:38.336922Z", + "iopub.status.busy": "2024-09-26T14:52:38.336603Z", + "iopub.status.idle": "2024-09-26T14:52:38.376114Z", + "shell.execute_reply": "2024-09-26T14:52:38.375641Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.885707Z", - "iopub.status.busy": "2024-09-06T19:38:35.885360Z", - "iopub.status.idle": "2024-09-06T19:38:35.926415Z", - "shell.execute_reply": "2024-09-06T19:38:35.925951Z" + "iopub.execute_input": "2024-09-26T14:52:38.378083Z", + "iopub.status.busy": "2024-09-26T14:52:38.377733Z", + "iopub.status.idle": "2024-09-26T14:52:38.419996Z", + "shell.execute_reply": "2024-09-26T14:52:38.419527Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.928488Z", - "iopub.status.busy": "2024-09-06T19:38:35.928146Z", - "iopub.status.idle": "2024-09-06T19:38:36.031351Z", - "shell.execute_reply": "2024-09-06T19:38:36.030698Z" + "iopub.execute_input": "2024-09-26T14:52:38.421872Z", + "iopub.status.busy": "2024-09-26T14:52:38.421510Z", + "iopub.status.idle": "2024-09-26T14:52:38.531907Z", + "shell.execute_reply": "2024-09-26T14:52:38.531268Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.034301Z", - "iopub.status.busy": "2024-09-06T19:38:36.033912Z", - "iopub.status.idle": "2024-09-06T19:38:36.132017Z", - "shell.execute_reply": "2024-09-06T19:38:36.131369Z" + "iopub.execute_input": "2024-09-26T14:52:38.534145Z", + "iopub.status.busy": "2024-09-26T14:52:38.533766Z", + "iopub.status.idle": "2024-09-26T14:52:38.651268Z", + "shell.execute_reply": "2024-09-26T14:52:38.650679Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.134718Z", - "iopub.status.busy": "2024-09-06T19:38:36.134254Z", - "iopub.status.idle": "2024-09-06T19:38:36.372737Z", - "shell.execute_reply": "2024-09-06T19:38:36.372155Z" + "iopub.execute_input": "2024-09-26T14:52:38.653171Z", + "iopub.status.busy": "2024-09-26T14:52:38.652916Z", + "iopub.status.idle": "2024-09-26T14:52:38.868009Z", + "shell.execute_reply": "2024-09-26T14:52:38.867481Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.374987Z", - "iopub.status.busy": "2024-09-06T19:38:36.374694Z", - "iopub.status.idle": "2024-09-06T19:38:36.587886Z", - "shell.execute_reply": "2024-09-06T19:38:36.587278Z" + "iopub.execute_input": "2024-09-26T14:52:38.870022Z", + "iopub.status.busy": "2024-09-26T14:52:38.869668Z", + "iopub.status.idle": "2024-09-26T14:52:39.116995Z", + "shell.execute_reply": "2024-09-26T14:52:39.116409Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.590343Z", - "iopub.status.busy": "2024-09-06T19:38:36.589956Z", - "iopub.status.idle": "2024-09-06T19:38:36.595878Z", - "shell.execute_reply": "2024-09-06T19:38:36.595334Z" + "iopub.execute_input": "2024-09-26T14:52:39.119063Z", + "iopub.status.busy": "2024-09-26T14:52:39.118651Z", + "iopub.status.idle": "2024-09-26T14:52:39.124659Z", + "shell.execute_reply": "2024-09-26T14:52:39.124212Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.598057Z", - "iopub.status.busy": "2024-09-06T19:38:36.597740Z", - "iopub.status.idle": "2024-09-06T19:38:36.811700Z", - "shell.execute_reply": "2024-09-06T19:38:36.811079Z" + "iopub.execute_input": "2024-09-26T14:52:39.126372Z", + "iopub.status.busy": "2024-09-26T14:52:39.126025Z", + "iopub.status.idle": "2024-09-26T14:52:39.360620Z", + "shell.execute_reply": "2024-09-26T14:52:39.360015Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.813989Z", - "iopub.status.busy": "2024-09-06T19:38:36.813680Z", - "iopub.status.idle": "2024-09-06T19:38:37.873549Z", - "shell.execute_reply": "2024-09-06T19:38:37.872901Z" + "iopub.execute_input": "2024-09-26T14:52:39.362552Z", + "iopub.status.busy": "2024-09-26T14:52:39.362361Z", + "iopub.status.idle": "2024-09-26T14:52:40.445531Z", + "shell.execute_reply": "2024-09-26T14:52:40.444958Z" }, "id": "wL3ngCnuLEWd" }, @@ -2419,7 +2419,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 0b05cce8c..f2aa83ef9 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:41.455901Z", - "iopub.status.busy": "2024-09-06T19:38:41.455732Z", - "iopub.status.idle": "2024-09-06T19:38:42.611358Z", - "shell.execute_reply": "2024-09-06T19:38:42.610733Z" + "iopub.execute_input": "2024-09-26T14:52:44.089068Z", + "iopub.status.busy": "2024-09-26T14:52:44.088906Z", + "iopub.status.idle": "2024-09-26T14:52:45.299550Z", + "shell.execute_reply": "2024-09-26T14:52:45.298928Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.614152Z", - "iopub.status.busy": "2024-09-06T19:38:42.613703Z", - "iopub.status.idle": "2024-09-06T19:38:42.617474Z", - "shell.execute_reply": "2024-09-06T19:38:42.616914Z" + "iopub.execute_input": "2024-09-26T14:52:45.301912Z", + "iopub.status.busy": "2024-09-26T14:52:45.301449Z", + "iopub.status.idle": "2024-09-26T14:52:45.304645Z", + "shell.execute_reply": "2024-09-26T14:52:45.304094Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.619686Z", - "iopub.status.busy": "2024-09-06T19:38:42.619396Z", - "iopub.status.idle": "2024-09-06T19:38:42.627253Z", - "shell.execute_reply": "2024-09-06T19:38:42.626804Z" + "iopub.execute_input": "2024-09-26T14:52:45.306413Z", + "iopub.status.busy": "2024-09-26T14:52:45.306142Z", + "iopub.status.idle": "2024-09-26T14:52:45.314151Z", + "shell.execute_reply": "2024-09-26T14:52:45.313702Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.629251Z", - "iopub.status.busy": "2024-09-06T19:38:42.628912Z", - "iopub.status.idle": "2024-09-06T19:38:42.675739Z", - "shell.execute_reply": "2024-09-06T19:38:42.675250Z" + "iopub.execute_input": "2024-09-26T14:52:45.315923Z", + "iopub.status.busy": "2024-09-26T14:52:45.315583Z", + "iopub.status.idle": "2024-09-26T14:52:45.364795Z", + "shell.execute_reply": "2024-09-26T14:52:45.364189Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.677746Z", - "iopub.status.busy": "2024-09-06T19:38:42.677566Z", - "iopub.status.idle": "2024-09-06T19:38:42.695187Z", - "shell.execute_reply": "2024-09-06T19:38:42.694600Z" + "iopub.execute_input": "2024-09-26T14:52:45.371300Z", + "iopub.status.busy": "2024-09-26T14:52:45.370858Z", + "iopub.status.idle": "2024-09-26T14:52:45.389579Z", + "shell.execute_reply": "2024-09-26T14:52:45.389064Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.697240Z", - "iopub.status.busy": "2024-09-06T19:38:42.696927Z", - "iopub.status.idle": "2024-09-06T19:38:42.700805Z", - "shell.execute_reply": "2024-09-06T19:38:42.700357Z" + "iopub.execute_input": "2024-09-26T14:52:45.391559Z", + "iopub.status.busy": "2024-09-26T14:52:45.391112Z", + "iopub.status.idle": "2024-09-26T14:52:45.395156Z", + "shell.execute_reply": "2024-09-26T14:52:45.394627Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.703011Z", - "iopub.status.busy": "2024-09-06T19:38:42.702619Z", - "iopub.status.idle": "2024-09-06T19:38:42.719152Z", - "shell.execute_reply": "2024-09-06T19:38:42.718696Z" + "iopub.execute_input": "2024-09-26T14:52:45.397035Z", + "iopub.status.busy": "2024-09-26T14:52:45.396725Z", + "iopub.status.idle": "2024-09-26T14:52:45.414290Z", + "shell.execute_reply": "2024-09-26T14:52:45.413687Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.721153Z", - "iopub.status.busy": "2024-09-06T19:38:42.720797Z", - "iopub.status.idle": "2024-09-06T19:38:42.746197Z", - "shell.execute_reply": "2024-09-06T19:38:42.745739Z" + "iopub.execute_input": "2024-09-26T14:52:45.416157Z", + "iopub.status.busy": "2024-09-26T14:52:45.415806Z", + "iopub.status.idle": "2024-09-26T14:52:45.442358Z", + "shell.execute_reply": "2024-09-26T14:52:45.441883Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.748111Z", - "iopub.status.busy": "2024-09-06T19:38:42.747776Z", - "iopub.status.idle": "2024-09-06T19:38:44.708904Z", - "shell.execute_reply": "2024-09-06T19:38:44.708307Z" + "iopub.execute_input": "2024-09-26T14:52:45.444293Z", + "iopub.status.busy": "2024-09-26T14:52:45.443936Z", + "iopub.status.idle": "2024-09-26T14:52:47.450691Z", + "shell.execute_reply": "2024-09-26T14:52:47.450163Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.711480Z", - "iopub.status.busy": "2024-09-06T19:38:44.710993Z", - "iopub.status.idle": "2024-09-06T19:38:44.717750Z", - "shell.execute_reply": "2024-09-06T19:38:44.717182Z" + "iopub.execute_input": "2024-09-26T14:52:47.452884Z", + "iopub.status.busy": "2024-09-26T14:52:47.452391Z", + "iopub.status.idle": "2024-09-26T14:52:47.459433Z", + "shell.execute_reply": "2024-09-26T14:52:47.458958Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.719963Z", - "iopub.status.busy": "2024-09-06T19:38:44.719631Z", - "iopub.status.idle": "2024-09-06T19:38:44.732695Z", - "shell.execute_reply": "2024-09-06T19:38:44.732259Z" + "iopub.execute_input": "2024-09-26T14:52:47.461250Z", + "iopub.status.busy": "2024-09-26T14:52:47.460913Z", + "iopub.status.idle": "2024-09-26T14:52:47.473767Z", + "shell.execute_reply": "2024-09-26T14:52:47.473271Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.734719Z", - "iopub.status.busy": "2024-09-06T19:38:44.734386Z", - "iopub.status.idle": "2024-09-06T19:38:44.740630Z", - "shell.execute_reply": "2024-09-06T19:38:44.740080Z" + "iopub.execute_input": "2024-09-26T14:52:47.475532Z", + "iopub.status.busy": "2024-09-26T14:52:47.475187Z", + "iopub.status.idle": "2024-09-26T14:52:47.481746Z", + "shell.execute_reply": "2024-09-26T14:52:47.481272Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.742715Z", - "iopub.status.busy": "2024-09-06T19:38:44.742407Z", - "iopub.status.idle": "2024-09-06T19:38:44.745203Z", - "shell.execute_reply": "2024-09-06T19:38:44.744635Z" + "iopub.execute_input": "2024-09-26T14:52:47.483691Z", + "iopub.status.busy": "2024-09-26T14:52:47.483212Z", + "iopub.status.idle": "2024-09-26T14:52:47.486088Z", + "shell.execute_reply": "2024-09-26T14:52:47.485626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.747300Z", - "iopub.status.busy": "2024-09-06T19:38:44.746906Z", - "iopub.status.idle": "2024-09-06T19:38:44.750594Z", - "shell.execute_reply": "2024-09-06T19:38:44.750021Z" + "iopub.execute_input": "2024-09-26T14:52:47.487800Z", + "iopub.status.busy": "2024-09-26T14:52:47.487397Z", + "iopub.status.idle": "2024-09-26T14:52:47.491109Z", + "shell.execute_reply": "2024-09-26T14:52:47.490533Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.752864Z", - "iopub.status.busy": "2024-09-06T19:38:44.752447Z", - "iopub.status.idle": "2024-09-06T19:38:44.755290Z", - "shell.execute_reply": "2024-09-06T19:38:44.754743Z" + "iopub.execute_input": "2024-09-26T14:52:47.493003Z", + "iopub.status.busy": "2024-09-26T14:52:47.492607Z", + "iopub.status.idle": "2024-09-26T14:52:47.495261Z", + "shell.execute_reply": "2024-09-26T14:52:47.494806Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.757347Z", - "iopub.status.busy": "2024-09-06T19:38:44.757015Z", - "iopub.status.idle": "2024-09-06T19:38:44.761164Z", - "shell.execute_reply": "2024-09-06T19:38:44.760669Z" + "iopub.execute_input": "2024-09-26T14:52:47.497043Z", + "iopub.status.busy": "2024-09-26T14:52:47.496706Z", + "iopub.status.idle": "2024-09-26T14:52:47.500642Z", + "shell.execute_reply": "2024-09-26T14:52:47.500187Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.763225Z", - "iopub.status.busy": "2024-09-06T19:38:44.762830Z", - "iopub.status.idle": "2024-09-06T19:38:44.791503Z", - "shell.execute_reply": "2024-09-06T19:38:44.790922Z" + "iopub.execute_input": "2024-09-26T14:52:47.502313Z", + "iopub.status.busy": "2024-09-26T14:52:47.502139Z", + "iopub.status.idle": "2024-09-26T14:52:47.531332Z", + "shell.execute_reply": "2024-09-26T14:52:47.530848Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.793778Z", - "iopub.status.busy": "2024-09-06T19:38:44.793374Z", - "iopub.status.idle": "2024-09-06T19:38:44.798051Z", - "shell.execute_reply": "2024-09-06T19:38:44.797497Z" + "iopub.execute_input": "2024-09-26T14:52:47.533361Z", + "iopub.status.busy": "2024-09-26T14:52:47.532995Z", + "iopub.status.idle": "2024-09-26T14:52:47.537680Z", + "shell.execute_reply": "2024-09-26T14:52:47.537223Z" }, "nbsphinx": "hidden" }, @@ -1571,7 +1571,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "vscode": { "interpreter": { diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 7626ff8d8..9b60292d7 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:47.803342Z", - "iopub.status.busy": "2024-09-06T19:38:47.803172Z", - "iopub.status.idle": "2024-09-06T19:38:49.010459Z", - "shell.execute_reply": "2024-09-06T19:38:49.009894Z" + "iopub.execute_input": "2024-09-26T14:52:50.516908Z", + "iopub.status.busy": "2024-09-26T14:52:50.516724Z", + "iopub.status.idle": "2024-09-26T14:52:51.779618Z", + "shell.execute_reply": "2024-09-26T14:52:51.779002Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.013219Z", - "iopub.status.busy": "2024-09-06T19:38:49.012725Z", - "iopub.status.idle": "2024-09-06T19:38:49.210289Z", - "shell.execute_reply": "2024-09-06T19:38:49.209783Z" + "iopub.execute_input": "2024-09-26T14:52:51.781880Z", + "iopub.status.busy": "2024-09-26T14:52:51.781585Z", + "iopub.status.idle": "2024-09-26T14:52:51.979199Z", + "shell.execute_reply": "2024-09-26T14:52:51.978560Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.212873Z", - "iopub.status.busy": "2024-09-06T19:38:49.212501Z", - "iopub.status.idle": "2024-09-06T19:38:49.226305Z", - "shell.execute_reply": "2024-09-06T19:38:49.225843Z" + "iopub.execute_input": "2024-09-26T14:52:51.981718Z", + "iopub.status.busy": "2024-09-26T14:52:51.981227Z", + "iopub.status.idle": "2024-09-26T14:52:51.994745Z", + "shell.execute_reply": "2024-09-26T14:52:51.994150Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.228339Z", - "iopub.status.busy": "2024-09-06T19:38:49.227999Z", - "iopub.status.idle": "2024-09-06T19:38:51.870134Z", - "shell.execute_reply": "2024-09-06T19:38:51.869617Z" + "iopub.execute_input": "2024-09-26T14:52:51.996498Z", + "iopub.status.busy": "2024-09-26T14:52:51.996168Z", + "iopub.status.idle": "2024-09-26T14:52:54.626693Z", + "shell.execute_reply": "2024-09-26T14:52:54.626198Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:51.872305Z", - "iopub.status.busy": "2024-09-06T19:38:51.872107Z", - "iopub.status.idle": "2024-09-06T19:38:53.221496Z", - "shell.execute_reply": "2024-09-06T19:38:53.220930Z" + "iopub.execute_input": "2024-09-26T14:52:54.628558Z", + "iopub.status.busy": "2024-09-26T14:52:54.628209Z", + "iopub.status.idle": "2024-09-26T14:52:55.959728Z", + "shell.execute_reply": "2024-09-26T14:52:55.959162Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:53.223970Z", - "iopub.status.busy": "2024-09-06T19:38:53.223773Z", - "iopub.status.idle": "2024-09-06T19:38:53.227537Z", - "shell.execute_reply": "2024-09-06T19:38:53.226991Z" + "iopub.execute_input": "2024-09-26T14:52:55.962013Z", + "iopub.status.busy": "2024-09-26T14:52:55.961551Z", + "iopub.status.idle": "2024-09-26T14:52:55.965395Z", + "shell.execute_reply": "2024-09-26T14:52:55.964876Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:53.229541Z", - "iopub.status.busy": "2024-09-06T19:38:53.229360Z", - "iopub.status.idle": "2024-09-06T19:38:55.301308Z", - "shell.execute_reply": "2024-09-06T19:38:55.300645Z" + "iopub.execute_input": "2024-09-26T14:52:55.967241Z", + "iopub.status.busy": "2024-09-26T14:52:55.966882Z", + "iopub.status.idle": "2024-09-26T14:52:58.123639Z", + "shell.execute_reply": "2024-09-26T14:52:58.123040Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:55.303915Z", - "iopub.status.busy": "2024-09-06T19:38:55.303372Z", - "iopub.status.idle": "2024-09-06T19:38:55.311571Z", - "shell.execute_reply": "2024-09-06T19:38:55.311093Z" + "iopub.execute_input": "2024-09-26T14:52:58.126062Z", + "iopub.status.busy": "2024-09-26T14:52:58.125463Z", + "iopub.status.idle": "2024-09-26T14:52:58.134883Z", + "shell.execute_reply": "2024-09-26T14:52:58.134421Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:55.313528Z", - "iopub.status.busy": "2024-09-06T19:38:55.313186Z", - "iopub.status.idle": "2024-09-06T19:38:58.079187Z", - "shell.execute_reply": "2024-09-06T19:38:58.078607Z" + "iopub.execute_input": "2024-09-26T14:52:58.136727Z", + "iopub.status.busy": "2024-09-26T14:52:58.136398Z", + "iopub.status.idle": "2024-09-26T14:53:00.725562Z", + "shell.execute_reply": "2024-09-26T14:53:00.724908Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.081586Z", - "iopub.status.busy": "2024-09-06T19:38:58.081221Z", - "iopub.status.idle": "2024-09-06T19:38:58.084505Z", - "shell.execute_reply": "2024-09-06T19:38:58.083969Z" + "iopub.execute_input": "2024-09-26T14:53:00.727650Z", + "iopub.status.busy": "2024-09-26T14:53:00.727262Z", + "iopub.status.idle": "2024-09-26T14:53:00.731306Z", + "shell.execute_reply": "2024-09-26T14:53:00.730747Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.086650Z", - "iopub.status.busy": "2024-09-06T19:38:58.086312Z", - "iopub.status.idle": "2024-09-06T19:38:58.089596Z", - "shell.execute_reply": "2024-09-06T19:38:58.089116Z" + "iopub.execute_input": "2024-09-26T14:53:00.733136Z", + "iopub.status.busy": "2024-09-26T14:53:00.732824Z", + "iopub.status.idle": "2024-09-26T14:53:00.736387Z", + "shell.execute_reply": "2024-09-26T14:53:00.735914Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.091573Z", - "iopub.status.busy": "2024-09-06T19:38:58.091252Z", - "iopub.status.idle": "2024-09-06T19:38:58.095249Z", - "shell.execute_reply": "2024-09-06T19:38:58.094671Z" + "iopub.execute_input": "2024-09-26T14:53:00.738211Z", + "iopub.status.busy": "2024-09-26T14:53:00.737791Z", + "iopub.status.idle": "2024-09-26T14:53:00.740949Z", + "shell.execute_reply": "2024-09-26T14:53:00.740494Z" }, "nbsphinx": "hidden" }, @@ -804,7 +804,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index d7703f8af..1a465fa59 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:00.696602Z", - "iopub.status.busy": "2024-09-06T19:39:00.696186Z", - "iopub.status.idle": "2024-09-06T19:39:01.907009Z", - "shell.execute_reply": "2024-09-06T19:39:01.906453Z" + "iopub.execute_input": "2024-09-26T14:53:03.303111Z", + "iopub.status.busy": "2024-09-26T14:53:03.302931Z", + "iopub.status.idle": "2024-09-26T14:53:04.571865Z", + "shell.execute_reply": "2024-09-26T14:53:04.571288Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:01.909568Z", - "iopub.status.busy": "2024-09-06T19:39:01.909050Z", - "iopub.status.idle": "2024-09-06T19:39:04.631163Z", - "shell.execute_reply": "2024-09-06T19:39:04.630426Z" + "iopub.execute_input": "2024-09-26T14:53:04.574087Z", + "iopub.status.busy": "2024-09-26T14:53:04.573598Z", + "iopub.status.idle": "2024-09-26T14:53:06.166960Z", + "shell.execute_reply": "2024-09-26T14:53:06.166164Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.633881Z", - "iopub.status.busy": "2024-09-06T19:39:04.633499Z", - "iopub.status.idle": "2024-09-06T19:39:04.637616Z", - "shell.execute_reply": "2024-09-06T19:39:04.637024Z" + "iopub.execute_input": "2024-09-26T14:53:06.169408Z", + "iopub.status.busy": "2024-09-26T14:53:06.168985Z", + "iopub.status.idle": "2024-09-26T14:53:06.172322Z", + "shell.execute_reply": "2024-09-26T14:53:06.171868Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.639736Z", - "iopub.status.busy": "2024-09-06T19:39:04.639557Z", - "iopub.status.idle": "2024-09-06T19:39:04.646473Z", - "shell.execute_reply": "2024-09-06T19:39:04.646014Z" + "iopub.execute_input": "2024-09-26T14:53:06.174071Z", + "iopub.status.busy": "2024-09-26T14:53:06.173721Z", + "iopub.status.idle": "2024-09-26T14:53:06.180705Z", + "shell.execute_reply": "2024-09-26T14:53:06.180264Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.648396Z", - "iopub.status.busy": "2024-09-06T19:39:04.648219Z", - "iopub.status.idle": "2024-09-06T19:39:05.143459Z", - "shell.execute_reply": "2024-09-06T19:39:05.142840Z" + "iopub.execute_input": "2024-09-26T14:53:06.182537Z", + "iopub.status.busy": "2024-09-26T14:53:06.182190Z", + "iopub.status.idle": "2024-09-26T14:53:06.687592Z", + "shell.execute_reply": "2024-09-26T14:53:06.686965Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.146327Z", - "iopub.status.busy": "2024-09-06T19:39:05.146000Z", - "iopub.status.idle": "2024-09-06T19:39:05.151442Z", - "shell.execute_reply": "2024-09-06T19:39:05.150979Z" + "iopub.execute_input": "2024-09-26T14:53:06.689555Z", + "iopub.status.busy": "2024-09-26T14:53:06.689377Z", + "iopub.status.idle": "2024-09-26T14:53:06.695403Z", + "shell.execute_reply": "2024-09-26T14:53:06.694799Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.153485Z", - "iopub.status.busy": "2024-09-06T19:39:05.153173Z", - "iopub.status.idle": "2024-09-06T19:39:05.157137Z", - "shell.execute_reply": "2024-09-06T19:39:05.156658Z" + "iopub.execute_input": "2024-09-26T14:53:06.697090Z", + "iopub.status.busy": "2024-09-26T14:53:06.696909Z", + "iopub.status.idle": "2024-09-26T14:53:06.700584Z", + "shell.execute_reply": "2024-09-26T14:53:06.700149Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.159200Z", - "iopub.status.busy": "2024-09-06T19:39:05.158859Z", - "iopub.status.idle": "2024-09-06T19:39:06.019168Z", - "shell.execute_reply": "2024-09-06T19:39:06.018545Z" + "iopub.execute_input": "2024-09-26T14:53:06.702385Z", + "iopub.status.busy": "2024-09-26T14:53:06.702049Z", + "iopub.status.idle": "2024-09-26T14:53:07.596906Z", + "shell.execute_reply": "2024-09-26T14:53:07.596232Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.021668Z", - "iopub.status.busy": "2024-09-06T19:39:06.021221Z", - "iopub.status.idle": "2024-09-06T19:39:06.237090Z", - "shell.execute_reply": "2024-09-06T19:39:06.236553Z" + "iopub.execute_input": "2024-09-26T14:53:07.599111Z", + "iopub.status.busy": "2024-09-26T14:53:07.598647Z", + "iopub.status.idle": "2024-09-26T14:53:07.803313Z", + "shell.execute_reply": "2024-09-26T14:53:07.802716Z" } }, "outputs": [ @@ -627,7 +627,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered.\n" + "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] }, { @@ -660,10 +667,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.239343Z", - "iopub.status.busy": "2024-09-06T19:39:06.238930Z", - "iopub.status.idle": "2024-09-06T19:39:06.243194Z", - "shell.execute_reply": "2024-09-06T19:39:06.242735Z" + "iopub.execute_input": "2024-09-26T14:53:07.805415Z", + "iopub.status.busy": "2024-09-26T14:53:07.804927Z", + "iopub.status.idle": "2024-09-26T14:53:07.809280Z", + "shell.execute_reply": "2024-09-26T14:53:07.808847Z" } }, "outputs": [ @@ -700,10 +707,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.245282Z", - "iopub.status.busy": "2024-09-06T19:39:06.244951Z", - "iopub.status.idle": "2024-09-06T19:39:06.697627Z", - "shell.execute_reply": "2024-09-06T19:39:06.697015Z" + "iopub.execute_input": "2024-09-26T14:53:07.810942Z", + "iopub.status.busy": "2024-09-26T14:53:07.810764Z", + "iopub.status.idle": "2024-09-26T14:53:08.277163Z", + "shell.execute_reply": "2024-09-26T14:53:08.276574Z" } }, "outputs": [ @@ -762,10 +769,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.700924Z", - "iopub.status.busy": "2024-09-06T19:39:06.700539Z", - "iopub.status.idle": "2024-09-06T19:39:07.035472Z", - "shell.execute_reply": "2024-09-06T19:39:07.034925Z" + "iopub.execute_input": "2024-09-26T14:53:08.279934Z", + "iopub.status.busy": "2024-09-26T14:53:08.279727Z", + "iopub.status.idle": "2024-09-26T14:53:08.615867Z", + "shell.execute_reply": "2024-09-26T14:53:08.615304Z" } }, "outputs": [ @@ -812,10 +819,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.038382Z", - "iopub.status.busy": "2024-09-06T19:39:07.038001Z", - "iopub.status.idle": "2024-09-06T19:39:07.401507Z", - "shell.execute_reply": "2024-09-06T19:39:07.400918Z" + "iopub.execute_input": "2024-09-26T14:53:08.617985Z", + "iopub.status.busy": "2024-09-26T14:53:08.617788Z", + "iopub.status.idle": "2024-09-26T14:53:08.987995Z", + "shell.execute_reply": "2024-09-26T14:53:08.987382Z" } }, "outputs": [ @@ -862,10 +869,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.404511Z", - "iopub.status.busy": "2024-09-06T19:39:07.404090Z", - "iopub.status.idle": "2024-09-06T19:39:07.846501Z", - "shell.execute_reply": "2024-09-06T19:39:07.845952Z" + "iopub.execute_input": "2024-09-26T14:53:08.990870Z", + "iopub.status.busy": "2024-09-26T14:53:08.990636Z", + "iopub.status.idle": "2024-09-26T14:53:09.438626Z", + "shell.execute_reply": "2024-09-26T14:53:09.438065Z" } }, "outputs": [ @@ -925,10 +932,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.851154Z", - "iopub.status.busy": "2024-09-06T19:39:07.850706Z", - "iopub.status.idle": "2024-09-06T19:39:08.296657Z", - "shell.execute_reply": "2024-09-06T19:39:08.296063Z" + "iopub.execute_input": "2024-09-26T14:53:09.442663Z", + "iopub.status.busy": "2024-09-26T14:53:09.442289Z", + "iopub.status.idle": "2024-09-26T14:53:09.875533Z", + "shell.execute_reply": "2024-09-26T14:53:09.874886Z" } }, "outputs": [ @@ -971,10 +978,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.300087Z", - "iopub.status.busy": "2024-09-06T19:39:08.299623Z", - "iopub.status.idle": "2024-09-06T19:39:08.513354Z", - "shell.execute_reply": "2024-09-06T19:39:08.512755Z" + "iopub.execute_input": "2024-09-26T14:53:09.878235Z", + "iopub.status.busy": "2024-09-26T14:53:09.877876Z", + "iopub.status.idle": "2024-09-26T14:53:10.074349Z", + "shell.execute_reply": "2024-09-26T14:53:10.073721Z" } }, "outputs": [ @@ -1017,10 +1024,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.515572Z", - "iopub.status.busy": "2024-09-06T19:39:08.515168Z", - "iopub.status.idle": "2024-09-06T19:39:08.694654Z", - "shell.execute_reply": "2024-09-06T19:39:08.694085Z" + "iopub.execute_input": "2024-09-26T14:53:10.076454Z", + "iopub.status.busy": "2024-09-26T14:53:10.076093Z", + "iopub.status.idle": "2024-09-26T14:53:10.258000Z", + "shell.execute_reply": "2024-09-26T14:53:10.257430Z" } }, "outputs": [ @@ -1067,10 +1074,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.697419Z", - "iopub.status.busy": "2024-09-06T19:39:08.697030Z", - "iopub.status.idle": "2024-09-06T19:39:08.699909Z", - "shell.execute_reply": "2024-09-06T19:39:08.699453Z" + "iopub.execute_input": "2024-09-26T14:53:10.260221Z", + "iopub.status.busy": "2024-09-26T14:53:10.259868Z", + "iopub.status.idle": "2024-09-26T14:53:10.262670Z", + "shell.execute_reply": "2024-09-26T14:53:10.262238Z" } }, "outputs": [], @@ -1090,10 +1097,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.701948Z", - "iopub.status.busy": "2024-09-06T19:39:08.701622Z", - "iopub.status.idle": "2024-09-06T19:39:09.635839Z", - "shell.execute_reply": "2024-09-06T19:39:09.635227Z" + "iopub.execute_input": "2024-09-26T14:53:10.264357Z", + "iopub.status.busy": "2024-09-26T14:53:10.264032Z", + "iopub.status.idle": "2024-09-26T14:53:11.303194Z", + "shell.execute_reply": "2024-09-26T14:53:11.302561Z" } }, "outputs": [ @@ -1172,10 +1179,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.637949Z", - "iopub.status.busy": "2024-09-06T19:39:09.637773Z", - "iopub.status.idle": "2024-09-06T19:39:09.767317Z", - "shell.execute_reply": "2024-09-06T19:39:09.766833Z" + "iopub.execute_input": "2024-09-26T14:53:11.305028Z", + "iopub.status.busy": "2024-09-26T14:53:11.304725Z", + "iopub.status.idle": "2024-09-26T14:53:11.509799Z", + "shell.execute_reply": "2024-09-26T14:53:11.509285Z" } }, "outputs": [ @@ -1214,10 +1221,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.769238Z", - "iopub.status.busy": "2024-09-06T19:39:09.769067Z", - "iopub.status.idle": "2024-09-06T19:39:09.969227Z", - "shell.execute_reply": "2024-09-06T19:39:09.968617Z" + "iopub.execute_input": "2024-09-26T14:53:11.511395Z", + "iopub.status.busy": "2024-09-26T14:53:11.511212Z", + "iopub.status.idle": "2024-09-26T14:53:11.718820Z", + "shell.execute_reply": "2024-09-26T14:53:11.718199Z" } }, "outputs": [], @@ -1266,10 +1273,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.971377Z", - "iopub.status.busy": "2024-09-06T19:39:09.971032Z", - "iopub.status.idle": "2024-09-06T19:39:10.691109Z", - "shell.execute_reply": "2024-09-06T19:39:10.690570Z" + "iopub.execute_input": "2024-09-26T14:53:11.720947Z", + "iopub.status.busy": "2024-09-26T14:53:11.720765Z", + "iopub.status.idle": "2024-09-26T14:53:12.421538Z", + "shell.execute_reply": "2024-09-26T14:53:12.420820Z" } }, "outputs": [ @@ -1351,10 +1358,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:10.693528Z", - "iopub.status.busy": "2024-09-06T19:39:10.693149Z", - "iopub.status.idle": "2024-09-06T19:39:10.697005Z", - "shell.execute_reply": "2024-09-06T19:39:10.696512Z" + "iopub.execute_input": "2024-09-26T14:53:12.423286Z", + "iopub.status.busy": "2024-09-26T14:53:12.423091Z", + "iopub.status.idle": "2024-09-26T14:53:12.427074Z", + "shell.execute_reply": "2024-09-26T14:53:12.426599Z" }, "nbsphinx": "hidden" }, @@ -1387,7 +1394,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index ab02f6a16..82b2532b4 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:13.100046Z", - "iopub.status.busy": "2024-09-06T19:39:13.099622Z", - "iopub.status.idle": "2024-09-06T19:39:15.925691Z", - "shell.execute_reply": "2024-09-06T19:39:15.925058Z" + "iopub.execute_input": "2024-09-26T14:53:14.827019Z", + "iopub.status.busy": "2024-09-26T14:53:14.826845Z", + "iopub.status.idle": "2024-09-26T14:53:17.796587Z", + "shell.execute_reply": "2024-09-26T14:53:17.795936Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:15.928762Z", - "iopub.status.busy": "2024-09-06T19:39:15.928196Z", - "iopub.status.idle": "2024-09-06T19:39:16.252610Z", - "shell.execute_reply": "2024-09-06T19:39:16.252054Z" + "iopub.execute_input": "2024-09-26T14:53:17.798905Z", + "iopub.status.busy": "2024-09-26T14:53:17.798584Z", + "iopub.status.idle": "2024-09-26T14:53:18.137749Z", + "shell.execute_reply": "2024-09-26T14:53:18.137173Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:16.255233Z", - "iopub.status.busy": "2024-09-06T19:39:16.254751Z", - "iopub.status.idle": "2024-09-06T19:39:16.259089Z", - "shell.execute_reply": "2024-09-06T19:39:16.258660Z" + "iopub.execute_input": "2024-09-26T14:53:18.139715Z", + "iopub.status.busy": "2024-09-26T14:53:18.139407Z", + "iopub.status.idle": "2024-09-26T14:53:18.143870Z", + "shell.execute_reply": "2024-09-26T14:53:18.143450Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:16.261376Z", - "iopub.status.busy": "2024-09-06T19:39:16.260945Z", - "iopub.status.idle": "2024-09-06T19:39:23.300858Z", - "shell.execute_reply": "2024-09-06T19:39:23.300244Z" + "iopub.execute_input": "2024-09-26T14:53:18.145657Z", + "iopub.status.busy": "2024-09-26T14:53:18.145384Z", + "iopub.status.idle": "2024-09-26T14:53:24.392739Z", + "shell.execute_reply": "2024-09-26T14:53:24.392209Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<09:50, 288460.96it/s]" + " 1%| | 1212416/170498071 [00:00<00:14, 12024376.95it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:31, 1124759.70it/s]" + " 4%|▎ | 6160384/170498071 [00:00<00:04, 33857865.84it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:52, 3225591.40it/s]" + " 6%|▌ | 10518528/170498071 [00:00<00:04, 38150209.28it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3571712/170498071 [00:00<00:14, 11574707.14it/s]" + " 9%|▉ | 15400960/170498071 [00:00<00:03, 42330857.28it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9633792/170498071 [00:00<00:06, 25807611.79it/s]" + " 12%|█▏ | 20250624/170498071 [00:00<00:03, 44424970.42it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15892480/170498071 [00:00<00:04, 35393042.76it/s]" + " 15%|█▍ | 24739840/170498071 [00:00<00:03, 44347437.97it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22052864/170498071 [00:00<00:03, 41375940.12it/s]" + " 17%|█▋ | 29294592/170498071 [00:00<00:03, 44719226.63it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 27918336/170498071 [00:00<00:03, 46336247.02it/s]" + " 20%|██ | 34144256/170498071 [00:00<00:02, 45791541.93it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32604160/170498071 [00:01<00:03, 45410241.06it/s]" + " 23%|██▎ | 38731776/170498071 [00:00<00:02, 45062771.26it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37978112/170498071 [00:01<00:02, 46512554.13it/s]" + " 25%|██▌ | 43253760/170498071 [00:01<00:02, 45089662.43it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44072960/170498071 [00:01<00:02, 50196826.35it/s]" + " 28%|██▊ | 47874048/170498071 [00:01<00:02, 45213443.22it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49217536/170498071 [00:01<00:02, 50515326.91it/s]" + " 31%|███ | 52494336/170498071 [00:01<00:02, 45379651.12it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54296576/170498071 [00:01<00:02, 49331301.44it/s]" + " 33%|███▎ | 57049088/170498071 [00:01<00:02, 44930180.76it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60129280/170498071 [00:01<00:02, 51745509.08it/s]" + " 36%|███▌ | 61571072/170498071 [00:01<00:02, 43892355.61it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 65339392/170498071 [00:01<00:02, 51498978.62it/s]" + " 39%|███▊ | 65994752/170498071 [00:01<00:02, 43763301.63it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 70516736/170498071 [00:01<00:01, 50172708.54it/s]" + " 41%|████▏ | 70385664/170498071 [00:01<00:02, 43438744.69it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76251136/170498071 [00:01<00:01, 52173671.62it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:02, 44425115.39it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81559552/170498071 [00:01<00:01, 52429909.15it/s]" + " 47%|████▋ | 79855616/170498071 [00:01<00:02, 45166993.85it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 86835200/170498071 [00:02<00:01, 50316420.17it/s]" + " 49%|████▉ | 84377600/170498071 [00:01<00:01, 43789983.48it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92438528/170498071 [00:02<00:01, 51729464.30it/s]" + " 52%|█████▏ | 88768512/170498071 [00:02<00:01, 43106787.26it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 97878016/170498071 [00:02<00:01, 52469802.74it/s]" + " 55%|█████▍ | 93093888/170498071 [00:02<00:01, 42763173.18it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 103153664/170498071 [00:02<00:01, 51263628.20it/s]" + " 57%|█████▋ | 97386496/170498071 [00:02<00:01, 42678693.69it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 108396544/170498071 [00:02<00:01, 51439851.19it/s]" + " 60%|█████▉ | 101679104/170498071 [00:02<00:01, 42558052.16it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 114130944/170498071 [00:02<00:01, 53113973.23it/s]" + " 62%|██████▏ | 106102784/170498071 [00:02<00:01, 43049601.15it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 119472128/170498071 [00:02<00:00, 51879482.02it/s]" + " 65%|██████▍ | 110592000/170498071 [00:02<00:01, 43553293.68it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 124682240/170498071 [00:02<00:00, 50047274.18it/s]" + " 67%|██████▋ | 114950144/170498071 [00:02<00:01, 43398814.53it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130547712/170498071 [00:02<00:00, 52494107.90it/s]" + " 70%|██████▉ | 119308288/170498071 [00:02<00:01, 43218682.93it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 135823360/170498071 [00:03<00:00, 52004524.51it/s]" + " 73%|███████▎ | 125075456/170498071 [00:02<00:00, 47414945.57it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141066240/170498071 [00:03<00:00, 50983301.18it/s]" + " 78%|███████▊ | 133234688/170498071 [00:02<00:00, 57528916.08it/s]" ] }, { @@ -484,7 +484,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146636800/170498071 [00:03<00:00, 52034590.57it/s]" + " 83%|████████▎ | 141262848/170498071 [00:03<00:00, 64272093.96it/s]" ] }, { @@ -492,7 +492,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 151879680/170498071 [00:03<00:00, 52140968.39it/s]" + " 87%|████████▋ | 149127168/170498071 [00:03<00:00, 68499385.74it/s]" ] }, { @@ -500,7 +500,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 157122560/170498071 [00:03<00:00, 50962142.96it/s]" + " 92%|█████████▏| 157024256/170498071 [00:03<00:00, 71592148.49it/s]" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162463744/170498071 [00:03<00:00, 51228143.58it/s]" + " 97%|█████████▋| 165117952/170498071 [00:03<00:00, 74385700.68it/s]" ] }, { @@ -516,15 +516,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 168329216/170498071 [00:03<00:00, 53366850.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 46456493.64it/s]" + "100%|██████████| 170498071/170498071 [00:03<00:00, 49690890.85it/s]" ] }, { @@ -642,10 +634,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.303328Z", - "iopub.status.busy": "2024-09-06T19:39:23.302943Z", - "iopub.status.idle": "2024-09-06T19:39:23.307938Z", - "shell.execute_reply": "2024-09-06T19:39:23.307365Z" + "iopub.execute_input": "2024-09-26T14:53:24.394624Z", + "iopub.status.busy": "2024-09-26T14:53:24.394340Z", + "iopub.status.idle": "2024-09-26T14:53:24.399279Z", + "shell.execute_reply": "2024-09-26T14:53:24.398789Z" }, "nbsphinx": "hidden" }, @@ -696,10 +688,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.310122Z", - "iopub.status.busy": "2024-09-06T19:39:23.309822Z", - "iopub.status.idle": "2024-09-06T19:39:23.850296Z", - "shell.execute_reply": "2024-09-06T19:39:23.849793Z" + "iopub.execute_input": "2024-09-26T14:53:24.400938Z", + "iopub.status.busy": "2024-09-26T14:53:24.400609Z", + "iopub.status.idle": "2024-09-26T14:53:24.953810Z", + "shell.execute_reply": "2024-09-26T14:53:24.953168Z" } }, "outputs": [ @@ -732,10 +724,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.852466Z", - "iopub.status.busy": "2024-09-06T19:39:23.852115Z", - "iopub.status.idle": "2024-09-06T19:39:24.358610Z", - "shell.execute_reply": "2024-09-06T19:39:24.358030Z" + "iopub.execute_input": "2024-09-26T14:53:24.955849Z", + "iopub.status.busy": "2024-09-26T14:53:24.955452Z", + "iopub.status.idle": "2024-09-26T14:53:25.472907Z", + "shell.execute_reply": "2024-09-26T14:53:25.472351Z" } }, "outputs": [ @@ -773,10 +765,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:24.360839Z", - "iopub.status.busy": "2024-09-06T19:39:24.360464Z", - "iopub.status.idle": "2024-09-06T19:39:24.363781Z", - "shell.execute_reply": "2024-09-06T19:39:24.363295Z" + "iopub.execute_input": "2024-09-26T14:53:25.474962Z", + "iopub.status.busy": "2024-09-26T14:53:25.474606Z", + "iopub.status.idle": "2024-09-26T14:53:25.478282Z", + "shell.execute_reply": "2024-09-26T14:53:25.477855Z" } }, "outputs": [], @@ -799,17 +791,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:24.365783Z", - "iopub.status.busy": "2024-09-06T19:39:24.365442Z", - "iopub.status.idle": "2024-09-06T19:39:36.716347Z", - "shell.execute_reply": "2024-09-06T19:39:36.715721Z" + "iopub.execute_input": "2024-09-26T14:53:25.479985Z", + "iopub.status.busy": "2024-09-26T14:53:25.479646Z", + "iopub.status.idle": "2024-09-26T14:53:38.119311Z", + "shell.execute_reply": "2024-09-26T14:53:38.118760Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ceaa047f5ed4611b974d3fa414e2507", + "model_id": "502208beacbc4eb2877f50728ccb04c0", "version_major": 2, "version_minor": 0 }, @@ -868,10 +860,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:36.718898Z", - "iopub.status.busy": "2024-09-06T19:39:36.718487Z", - "iopub.status.idle": "2024-09-06T19:39:38.825920Z", - "shell.execute_reply": "2024-09-06T19:39:38.825316Z" + "iopub.execute_input": "2024-09-26T14:53:38.121453Z", + "iopub.status.busy": "2024-09-26T14:53:38.121019Z", + "iopub.status.idle": "2024-09-26T14:53:40.226608Z", + "shell.execute_reply": "2024-09-26T14:53:40.226078Z" } }, "outputs": [ @@ -915,10 +907,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:38.828812Z", - "iopub.status.busy": "2024-09-06T19:39:38.828333Z", - "iopub.status.idle": "2024-09-06T19:39:39.084401Z", - "shell.execute_reply": "2024-09-06T19:39:39.083812Z" + "iopub.execute_input": "2024-09-26T14:53:40.228769Z", + "iopub.status.busy": "2024-09-26T14:53:40.228334Z", + "iopub.status.idle": "2024-09-26T14:53:40.460757Z", + "shell.execute_reply": "2024-09-26T14:53:40.459979Z" } }, "outputs": [ @@ -954,10 +946,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:39.087122Z", - "iopub.status.busy": "2024-09-06T19:39:39.086611Z", - "iopub.status.idle": "2024-09-06T19:39:39.754107Z", - "shell.execute_reply": "2024-09-06T19:39:39.753534Z" + "iopub.execute_input": "2024-09-26T14:53:40.462963Z", + "iopub.status.busy": "2024-09-26T14:53:40.462510Z", + "iopub.status.idle": "2024-09-26T14:53:41.139530Z", + "shell.execute_reply": "2024-09-26T14:53:41.138920Z" } }, "outputs": [ @@ -1007,10 +999,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:39.756937Z", - "iopub.status.busy": "2024-09-06T19:39:39.756623Z", - "iopub.status.idle": "2024-09-06T19:39:40.092242Z", - "shell.execute_reply": "2024-09-06T19:39:40.091655Z" + "iopub.execute_input": "2024-09-26T14:53:41.141576Z", + "iopub.status.busy": "2024-09-26T14:53:41.141387Z", + "iopub.status.idle": "2024-09-26T14:53:41.442674Z", + "shell.execute_reply": "2024-09-26T14:53:41.442054Z" } }, "outputs": [ @@ -1058,10 +1050,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.094221Z", - "iopub.status.busy": "2024-09-06T19:39:40.094058Z", - "iopub.status.idle": "2024-09-06T19:39:40.335215Z", - "shell.execute_reply": "2024-09-06T19:39:40.334660Z" + "iopub.execute_input": "2024-09-26T14:53:41.444606Z", + "iopub.status.busy": "2024-09-26T14:53:41.444407Z", + "iopub.status.idle": "2024-09-26T14:53:41.692450Z", + "shell.execute_reply": "2024-09-26T14:53:41.691834Z" } }, "outputs": [ @@ -1117,10 +1109,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.337846Z", - "iopub.status.busy": "2024-09-06T19:39:40.337645Z", - "iopub.status.idle": "2024-09-06T19:39:40.434888Z", - "shell.execute_reply": "2024-09-06T19:39:40.434380Z" + "iopub.execute_input": "2024-09-26T14:53:41.694792Z", + "iopub.status.busy": "2024-09-26T14:53:41.694309Z", + "iopub.status.idle": "2024-09-26T14:53:41.786453Z", + "shell.execute_reply": "2024-09-26T14:53:41.785871Z" } }, "outputs": [], @@ -1141,10 +1133,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.437135Z", - "iopub.status.busy": "2024-09-06T19:39:40.436969Z", - "iopub.status.idle": "2024-09-06T19:39:50.846992Z", - "shell.execute_reply": "2024-09-06T19:39:50.846365Z" + "iopub.execute_input": "2024-09-26T14:53:41.788692Z", + "iopub.status.busy": "2024-09-26T14:53:41.788289Z", + "iopub.status.idle": "2024-09-26T14:53:52.391383Z", + "shell.execute_reply": "2024-09-26T14:53:52.390803Z" } }, "outputs": [ @@ -1181,10 +1173,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:50.849274Z", - "iopub.status.busy": "2024-09-06T19:39:50.849079Z", - "iopub.status.idle": "2024-09-06T19:39:53.085840Z", - "shell.execute_reply": "2024-09-06T19:39:53.085209Z" + "iopub.execute_input": "2024-09-26T14:53:52.393513Z", + "iopub.status.busy": "2024-09-26T14:53:52.393049Z", + "iopub.status.idle": "2024-09-26T14:53:54.671283Z", + "shell.execute_reply": "2024-09-26T14:53:54.670780Z" } }, "outputs": [ @@ -1215,10 +1207,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.088386Z", - "iopub.status.busy": "2024-09-06T19:39:53.087986Z", - "iopub.status.idle": "2024-09-06T19:39:53.295938Z", - "shell.execute_reply": "2024-09-06T19:39:53.295309Z" + "iopub.execute_input": "2024-09-26T14:53:54.673751Z", + "iopub.status.busy": "2024-09-26T14:53:54.673100Z", + "iopub.status.idle": "2024-09-26T14:53:54.874229Z", + "shell.execute_reply": "2024-09-26T14:53:54.873718Z" } }, "outputs": [], @@ -1232,10 +1224,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.298578Z", - "iopub.status.busy": "2024-09-06T19:39:53.298149Z", - "iopub.status.idle": "2024-09-06T19:39:53.301396Z", - "shell.execute_reply": "2024-09-06T19:39:53.300847Z" + "iopub.execute_input": "2024-09-26T14:53:54.876098Z", + "iopub.status.busy": "2024-09-26T14:53:54.875918Z", + "iopub.status.idle": "2024-09-26T14:53:54.879013Z", + "shell.execute_reply": "2024-09-26T14:53:54.878602Z" } }, "outputs": [], @@ -1273,10 +1265,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.303545Z", - "iopub.status.busy": "2024-09-06T19:39:53.303235Z", - "iopub.status.idle": "2024-09-06T19:39:53.311553Z", - "shell.execute_reply": "2024-09-06T19:39:53.311013Z" + "iopub.execute_input": "2024-09-26T14:53:54.880796Z", + "iopub.status.busy": "2024-09-26T14:53:54.880464Z", + "iopub.status.idle": "2024-09-26T14:53:54.888465Z", + "shell.execute_reply": "2024-09-26T14:53:54.888011Z" }, "nbsphinx": "hidden" }, @@ -1316,12 +1308,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2a68a2d432424faba9fe0b5e6944b5e9": { + "19f8d7cfcb2441f39ec909950206b100": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1374,47 +1366,30 @@ "width": null } }, - "3ceaa047f5ed4611b974d3fa414e2507": { + "3dbde950338e4819980320793264b8f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c213a022f9994559b2b3155f2f77656c", - "IPY_MODEL_d04af2b6417a48e88c2bb6ac7a1a352f", - "IPY_MODEL_d330cb5a3ec245d28c20140821dff479" - ], - "layout": "IPY_MODEL_8965ea1fe0204e49bbde2ee4ed6b5dbe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_444a8341757540238acd548381d3cf78", + "placeholder": "​", + "style": "IPY_MODEL_c63ffa48637c4cf790d73142dcbf1bca", "tabbable": null, - "tooltip": null - } - }, - "653de3cf6239488fa0adf55f2a1ae049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "8965ea1fe0204e49bbde2ee4ed6b5dbe": { + "444a8341757540238acd548381d3cf78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1467,7 +1442,91 @@ "width": null } }, - "b06f361a24974d5a8b8c89476e47f817": { + "4b5509bd08094575af9bfd6e1b39af74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "502208beacbc4eb2877f50728ccb04c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3dbde950338e4819980320793264b8f6", + "IPY_MODEL_55906b2e5cc7451a90a629cf8eaf9dfa", + "IPY_MODEL_e08a4a5cd5a34519a67999d955a20b6a" + ], + "layout": "IPY_MODEL_f0529d443cdc4ef783433718b133c35d", + "tabbable": null, + "tooltip": null + } + }, + "55906b2e5cc7451a90a629cf8eaf9dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6577ec2ef7f4efc9edc61cb0c210c81", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6428955d0d764798b409d0eed1cd24c0", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "6428955d0d764798b409d0eed1cd24c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6577ec2ef7f4efc9edc61cb0c210c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,7 +1579,7 @@ "width": null } }, - "b895588a207f4f0ca89d7c4764c3d066": { + "c63ffa48637c4cf790d73142dcbf1bca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1538,7 +1597,7 @@ "text_color": null } }, - "c213a022f9994559b2b3155f2f77656c": { + "e08a4a5cd5a34519a67999d955a20b6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1553,15 +1612,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ccda1205dcc748f99c76cf1800b182ef", + "layout": "IPY_MODEL_19f8d7cfcb2441f39ec909950206b100", "placeholder": "​", - "style": "IPY_MODEL_b895588a207f4f0ca89d7c4764c3d066", + "style": "IPY_MODEL_4b5509bd08094575af9bfd6e1b39af74", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": " 102M/102M [00:00<00:00, 297MB/s]" } }, - "ccda1205dcc748f99c76cf1800b182ef": { + "f0529d443cdc4ef783433718b133c35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,73 +1672,6 @@ "visibility": null, "width": null } - }, - "cd03cf3d325849b9a2597fce8db90de1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d04af2b6417a48e88c2bb6ac7a1a352f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a68a2d432424faba9fe0b5e6944b5e9", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_653de3cf6239488fa0adf55f2a1ae049", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "d330cb5a3ec245d28c20140821dff479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b06f361a24974d5a8b8c89476e47f817", - "placeholder": "​", - "style": "IPY_MODEL_cd03cf3d325849b9a2597fce8db90de1", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 304MB/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 4e72a9c31..5670e5e42 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:57.671183Z", - "iopub.status.busy": "2024-09-06T19:39:57.671012Z", - "iopub.status.idle": "2024-09-06T19:39:58.889426Z", - "shell.execute_reply": "2024-09-06T19:39:58.888863Z" + "iopub.execute_input": "2024-09-26T14:53:59.188556Z", + "iopub.status.busy": "2024-09-26T14:53:59.188370Z", + "iopub.status.idle": "2024-09-26T14:54:00.464944Z", + "shell.execute_reply": "2024-09-26T14:54:00.464378Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.892009Z", - "iopub.status.busy": "2024-09-06T19:39:58.891558Z", - "iopub.status.idle": "2024-09-06T19:39:58.909420Z", - "shell.execute_reply": "2024-09-06T19:39:58.908966Z" + "iopub.execute_input": "2024-09-26T14:54:00.467202Z", + "iopub.status.busy": "2024-09-26T14:54:00.466665Z", + "iopub.status.idle": "2024-09-26T14:54:00.486020Z", + "shell.execute_reply": "2024-09-26T14:54:00.485402Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.911380Z", - "iopub.status.busy": "2024-09-06T19:39:58.911122Z", - "iopub.status.idle": "2024-09-06T19:39:58.914071Z", - "shell.execute_reply": "2024-09-06T19:39:58.913630Z" + "iopub.execute_input": "2024-09-26T14:54:00.488158Z", + "iopub.status.busy": "2024-09-26T14:54:00.487625Z", + "iopub.status.idle": "2024-09-26T14:54:00.490770Z", + "shell.execute_reply": "2024-09-26T14:54:00.490324Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.916066Z", - "iopub.status.busy": "2024-09-06T19:39:58.915883Z", - "iopub.status.idle": "2024-09-06T19:39:59.147435Z", - "shell.execute_reply": "2024-09-06T19:39:59.146903Z" + "iopub.execute_input": "2024-09-26T14:54:00.492476Z", + "iopub.status.busy": "2024-09-26T14:54:00.492170Z", + "iopub.status.idle": "2024-09-26T14:54:00.593026Z", + "shell.execute_reply": "2024-09-26T14:54:00.592503Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.149566Z", - "iopub.status.busy": "2024-09-06T19:39:59.149370Z", - "iopub.status.idle": "2024-09-06T19:39:59.331007Z", - "shell.execute_reply": "2024-09-06T19:39:59.330438Z" + "iopub.execute_input": "2024-09-26T14:54:00.595033Z", + "iopub.status.busy": "2024-09-26T14:54:00.594676Z", + "iopub.status.idle": "2024-09-26T14:54:00.781165Z", + "shell.execute_reply": "2024-09-26T14:54:00.780607Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.333486Z", - "iopub.status.busy": "2024-09-06T19:39:59.333040Z", - "iopub.status.idle": "2024-09-06T19:39:59.576590Z", - "shell.execute_reply": "2024-09-06T19:39:59.575968Z" + "iopub.execute_input": "2024-09-26T14:54:00.783347Z", + "iopub.status.busy": "2024-09-26T14:54:00.782969Z", + "iopub.status.idle": "2024-09-26T14:54:01.032458Z", + "shell.execute_reply": "2024-09-26T14:54:01.031929Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.578938Z", - "iopub.status.busy": "2024-09-06T19:39:59.578553Z", - "iopub.status.idle": "2024-09-06T19:39:59.582923Z", - "shell.execute_reply": "2024-09-06T19:39:59.582473Z" + "iopub.execute_input": "2024-09-26T14:54:01.034452Z", + "iopub.status.busy": "2024-09-26T14:54:01.034056Z", + "iopub.status.idle": "2024-09-26T14:54:01.038763Z", + "shell.execute_reply": "2024-09-26T14:54:01.038275Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.584759Z", - "iopub.status.busy": "2024-09-06T19:39:59.584580Z", - "iopub.status.idle": "2024-09-06T19:39:59.590790Z", - "shell.execute_reply": "2024-09-06T19:39:59.590351Z" + "iopub.execute_input": "2024-09-26T14:54:01.040507Z", + "iopub.status.busy": "2024-09-26T14:54:01.040163Z", + "iopub.status.idle": "2024-09-26T14:54:01.046197Z", + "shell.execute_reply": "2024-09-26T14:54:01.045737Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.592686Z", - "iopub.status.busy": "2024-09-06T19:39:59.592515Z", - "iopub.status.idle": "2024-09-06T19:39:59.595225Z", - "shell.execute_reply": "2024-09-06T19:39:59.594766Z" + "iopub.execute_input": "2024-09-26T14:54:01.048092Z", + "iopub.status.busy": "2024-09-26T14:54:01.047754Z", + "iopub.status.idle": "2024-09-26T14:54:01.050568Z", + "shell.execute_reply": "2024-09-26T14:54:01.050000Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.597032Z", - "iopub.status.busy": "2024-09-06T19:39:59.596865Z", - "iopub.status.idle": "2024-09-06T19:40:08.597697Z", - "shell.execute_reply": "2024-09-06T19:40:08.597120Z" + "iopub.execute_input": "2024-09-26T14:54:01.052488Z", + "iopub.status.busy": "2024-09-26T14:54:01.052092Z", + "iopub.status.idle": "2024-09-26T14:54:10.157589Z", + "shell.execute_reply": "2024-09-26T14:54:10.157001Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.600635Z", - "iopub.status.busy": "2024-09-06T19:40:08.599991Z", - "iopub.status.idle": "2024-09-06T19:40:08.607726Z", - "shell.execute_reply": "2024-09-06T19:40:08.607259Z" + "iopub.execute_input": "2024-09-26T14:54:10.160258Z", + "iopub.status.busy": "2024-09-26T14:54:10.159589Z", + "iopub.status.idle": "2024-09-26T14:54:10.167515Z", + "shell.execute_reply": "2024-09-26T14:54:10.167054Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.609816Z", - "iopub.status.busy": "2024-09-06T19:40:08.609470Z", - "iopub.status.idle": "2024-09-06T19:40:08.613036Z", - "shell.execute_reply": "2024-09-06T19:40:08.612542Z" + "iopub.execute_input": "2024-09-26T14:54:10.169285Z", + "iopub.status.busy": "2024-09-26T14:54:10.168935Z", + "iopub.status.idle": "2024-09-26T14:54:10.172611Z", + "shell.execute_reply": "2024-09-26T14:54:10.172168Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.615042Z", - "iopub.status.busy": "2024-09-06T19:40:08.614643Z", - "iopub.status.idle": "2024-09-06T19:40:08.618056Z", - "shell.execute_reply": "2024-09-06T19:40:08.617486Z" + "iopub.execute_input": "2024-09-26T14:54:10.174288Z", + "iopub.status.busy": "2024-09-26T14:54:10.173947Z", + "iopub.status.idle": "2024-09-26T14:54:10.177369Z", + "shell.execute_reply": "2024-09-26T14:54:10.176897Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.620104Z", - "iopub.status.busy": "2024-09-06T19:40:08.619791Z", - "iopub.status.idle": "2024-09-06T19:40:08.622907Z", - "shell.execute_reply": "2024-09-06T19:40:08.622416Z" + "iopub.execute_input": "2024-09-26T14:54:10.179183Z", + "iopub.status.busy": "2024-09-26T14:54:10.178849Z", + "iopub.status.idle": "2024-09-26T14:54:10.182081Z", + "shell.execute_reply": "2024-09-26T14:54:10.181652Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.624768Z", - "iopub.status.busy": "2024-09-06T19:40:08.624594Z", - "iopub.status.idle": "2024-09-06T19:40:08.632747Z", - "shell.execute_reply": "2024-09-06T19:40:08.632288Z" + "iopub.execute_input": "2024-09-26T14:54:10.183707Z", + "iopub.status.busy": "2024-09-26T14:54:10.183367Z", + "iopub.status.idle": "2024-09-26T14:54:10.191340Z", + "shell.execute_reply": "2024-09-26T14:54:10.190898Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.634564Z", - "iopub.status.busy": "2024-09-06T19:40:08.634392Z", - "iopub.status.idle": "2024-09-06T19:40:08.637116Z", - "shell.execute_reply": "2024-09-06T19:40:08.636642Z" + "iopub.execute_input": "2024-09-26T14:54:10.193003Z", + "iopub.status.busy": "2024-09-26T14:54:10.192665Z", + "iopub.status.idle": "2024-09-26T14:54:10.195213Z", + "shell.execute_reply": "2024-09-26T14:54:10.194766Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.639192Z", - "iopub.status.busy": "2024-09-06T19:40:08.638877Z", - "iopub.status.idle": "2024-09-06T19:40:08.766647Z", - "shell.execute_reply": "2024-09-06T19:40:08.765685Z" + "iopub.execute_input": "2024-09-26T14:54:10.196853Z", + "iopub.status.busy": "2024-09-26T14:54:10.196518Z", + "iopub.status.idle": "2024-09-26T14:54:10.322626Z", + "shell.execute_reply": "2024-09-26T14:54:10.322078Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.769173Z", - "iopub.status.busy": "2024-09-06T19:40:08.768972Z", - "iopub.status.idle": "2024-09-06T19:40:08.878186Z", - "shell.execute_reply": "2024-09-06T19:40:08.877593Z" + "iopub.execute_input": "2024-09-26T14:54:10.324771Z", + "iopub.status.busy": "2024-09-26T14:54:10.324359Z", + "iopub.status.idle": "2024-09-26T14:54:10.435194Z", + "shell.execute_reply": "2024-09-26T14:54:10.434642Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.880641Z", - "iopub.status.busy": "2024-09-06T19:40:08.880289Z", - "iopub.status.idle": "2024-09-06T19:40:09.386974Z", - "shell.execute_reply": "2024-09-06T19:40:09.386324Z" + "iopub.execute_input": "2024-09-26T14:54:10.437396Z", + "iopub.status.busy": "2024-09-26T14:54:10.436936Z", + "iopub.status.idle": "2024-09-26T14:54:10.943293Z", + "shell.execute_reply": "2024-09-26T14:54:10.942658Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.389675Z", - "iopub.status.busy": "2024-09-06T19:40:09.389308Z", - "iopub.status.idle": "2024-09-06T19:40:09.485553Z", - "shell.execute_reply": "2024-09-06T19:40:09.484996Z" + "iopub.execute_input": "2024-09-26T14:54:10.945562Z", + "iopub.status.busy": "2024-09-26T14:54:10.945188Z", + "iopub.status.idle": "2024-09-26T14:54:11.045547Z", + "shell.execute_reply": "2024-09-26T14:54:11.044913Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.487964Z", - "iopub.status.busy": "2024-09-06T19:40:09.487496Z", - "iopub.status.idle": "2024-09-06T19:40:09.496128Z", - "shell.execute_reply": "2024-09-06T19:40:09.495570Z" + "iopub.execute_input": "2024-09-26T14:54:11.047649Z", + "iopub.status.busy": "2024-09-26T14:54:11.047228Z", + "iopub.status.idle": "2024-09-26T14:54:11.055699Z", + "shell.execute_reply": "2024-09-26T14:54:11.055230Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.498303Z", - "iopub.status.busy": "2024-09-06T19:40:09.497989Z", - "iopub.status.idle": "2024-09-06T19:40:09.500756Z", - "shell.execute_reply": "2024-09-06T19:40:09.500274Z" + "iopub.execute_input": "2024-09-26T14:54:11.057456Z", + "iopub.status.busy": "2024-09-26T14:54:11.057092Z", + "iopub.status.idle": "2024-09-26T14:54:11.059706Z", + "shell.execute_reply": "2024-09-26T14:54:11.059257Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.502626Z", - "iopub.status.busy": "2024-09-06T19:40:09.502453Z", - "iopub.status.idle": "2024-09-06T19:40:15.134668Z", - "shell.execute_reply": "2024-09-06T19:40:15.134055Z" + "iopub.execute_input": "2024-09-26T14:54:11.061497Z", + "iopub.status.busy": "2024-09-26T14:54:11.061113Z", + "iopub.status.idle": "2024-09-26T14:54:16.702766Z", + "shell.execute_reply": "2024-09-26T14:54:16.702139Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:15.137003Z", - "iopub.status.busy": "2024-09-06T19:40:15.136794Z", - "iopub.status.idle": "2024-09-06T19:40:15.145626Z", - "shell.execute_reply": "2024-09-06T19:40:15.145149Z" + "iopub.execute_input": "2024-09-26T14:54:16.704653Z", + "iopub.status.busy": "2024-09-26T14:54:16.704460Z", + "iopub.status.idle": "2024-09-26T14:54:16.712980Z", + "shell.execute_reply": "2024-09-26T14:54:16.712530Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:15.147739Z", - "iopub.status.busy": "2024-09-06T19:40:15.147560Z", - "iopub.status.idle": "2024-09-06T19:40:15.212105Z", - "shell.execute_reply": "2024-09-06T19:40:15.211592Z" + "iopub.execute_input": "2024-09-26T14:54:16.714897Z", + "iopub.status.busy": "2024-09-26T14:54:16.714556Z", + "iopub.status.idle": "2024-09-26T14:54:16.786785Z", + "shell.execute_reply": "2024-09-26T14:54:16.786234Z" }, "nbsphinx": "hidden" }, @@ -1452,7 +1452,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 3d1ba85ed..6779478cb 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:18.378801Z", - "iopub.status.busy": "2024-09-06T19:40:18.378438Z", - "iopub.status.idle": "2024-09-06T19:40:21.013953Z", - "shell.execute_reply": "2024-09-06T19:40:21.013191Z" + "iopub.execute_input": "2024-09-26T14:54:20.095591Z", + "iopub.status.busy": "2024-09-26T14:54:20.095416Z", + "iopub.status.idle": "2024-09-26T14:54:23.030061Z", + "shell.execute_reply": "2024-09-26T14:54:23.029312Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:21.016497Z", - "iopub.status.busy": "2024-09-06T19:40:21.016297Z", - "iopub.status.idle": "2024-09-06T19:41:26.205588Z", - "shell.execute_reply": "2024-09-06T19:41:26.204905Z" + "iopub.execute_input": "2024-09-26T14:54:23.032402Z", + "iopub.status.busy": "2024-09-26T14:54:23.032024Z", + "iopub.status.idle": "2024-09-26T14:55:28.921952Z", + "shell.execute_reply": "2024-09-26T14:55:28.921155Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:26.208261Z", - "iopub.status.busy": "2024-09-06T19:41:26.207954Z", - "iopub.status.idle": "2024-09-06T19:41:27.363762Z", - "shell.execute_reply": "2024-09-06T19:41:27.363213Z" + "iopub.execute_input": "2024-09-26T14:55:28.924172Z", + "iopub.status.busy": "2024-09-26T14:55:28.923971Z", + "iopub.status.idle": "2024-09-26T14:55:30.137143Z", + "shell.execute_reply": "2024-09-26T14:55:30.136538Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.366273Z", - "iopub.status.busy": "2024-09-06T19:41:27.365850Z", - "iopub.status.idle": "2024-09-06T19:41:27.369197Z", - "shell.execute_reply": "2024-09-06T19:41:27.368626Z" + "iopub.execute_input": "2024-09-26T14:55:30.139396Z", + "iopub.status.busy": "2024-09-26T14:55:30.139106Z", + "iopub.status.idle": "2024-09-26T14:55:30.142481Z", + "shell.execute_reply": "2024-09-26T14:55:30.141914Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.371272Z", - "iopub.status.busy": "2024-09-06T19:41:27.370943Z", - "iopub.status.idle": "2024-09-06T19:41:27.374872Z", - "shell.execute_reply": "2024-09-06T19:41:27.374336Z" + "iopub.execute_input": "2024-09-26T14:55:30.144228Z", + "iopub.status.busy": "2024-09-26T14:55:30.144050Z", + "iopub.status.idle": "2024-09-26T14:55:30.147926Z", + "shell.execute_reply": "2024-09-26T14:55:30.147419Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.377058Z", - "iopub.status.busy": "2024-09-06T19:41:27.376708Z", - "iopub.status.idle": "2024-09-06T19:41:27.380273Z", - "shell.execute_reply": "2024-09-06T19:41:27.379824Z" + "iopub.execute_input": "2024-09-26T14:55:30.149873Z", + "iopub.status.busy": "2024-09-26T14:55:30.149499Z", + "iopub.status.idle": "2024-09-26T14:55:30.153440Z", + "shell.execute_reply": "2024-09-26T14:55:30.152904Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.382286Z", - "iopub.status.busy": "2024-09-06T19:41:27.381955Z", - "iopub.status.idle": "2024-09-06T19:41:27.384835Z", - "shell.execute_reply": "2024-09-06T19:41:27.384366Z" + "iopub.execute_input": "2024-09-26T14:55:30.155269Z", + "iopub.status.busy": "2024-09-26T14:55:30.154919Z", + "iopub.status.idle": "2024-09-26T14:55:30.158026Z", + "shell.execute_reply": "2024-09-26T14:55:30.157441Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.386838Z", - "iopub.status.busy": "2024-09-06T19:41:27.386506Z", - "iopub.status.idle": "2024-09-06T19:42:04.890778Z", - "shell.execute_reply": "2024-09-06T19:42:04.890135Z" + "iopub.execute_input": "2024-09-26T14:55:30.159991Z", + "iopub.status.busy": "2024-09-26T14:55:30.159527Z", + "iopub.status.idle": "2024-09-26T14:56:07.853263Z", + "shell.execute_reply": "2024-09-26T14:56:07.852683Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "00ec60662f03441f8733d768775a0ed1", + "model_id": "0d3c194b71ae41699ecaf593bb466ee6", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af401850ebaa408dae00a90bb34bc54a", + "model_id": "f246aefc67174f658fc6990471fd838b", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:04.893407Z", - "iopub.status.busy": "2024-09-06T19:42:04.893064Z", - "iopub.status.idle": "2024-09-06T19:42:05.569760Z", - "shell.execute_reply": "2024-09-06T19:42:05.569193Z" + "iopub.execute_input": "2024-09-26T14:56:07.855727Z", + "iopub.status.busy": "2024-09-26T14:56:07.855280Z", + "iopub.status.idle": "2024-09-26T14:56:08.539218Z", + "shell.execute_reply": "2024-09-26T14:56:08.538732Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:05.572221Z", - "iopub.status.busy": "2024-09-06T19:42:05.571699Z", - "iopub.status.idle": "2024-09-06T19:42:08.487750Z", - "shell.execute_reply": "2024-09-06T19:42:08.487151Z" + "iopub.execute_input": "2024-09-26T14:56:08.541245Z", + "iopub.status.busy": "2024-09-26T14:56:08.540794Z", + "iopub.status.idle": "2024-09-26T14:56:11.382690Z", + "shell.execute_reply": "2024-09-26T14:56:11.382214Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:08.490015Z", - "iopub.status.busy": "2024-09-06T19:42:08.489812Z", - "iopub.status.idle": "2024-09-06T19:42:42.122207Z", - "shell.execute_reply": "2024-09-06T19:42:42.121639Z" + "iopub.execute_input": "2024-09-26T14:56:11.384692Z", + "iopub.status.busy": "2024-09-26T14:56:11.384341Z", + "iopub.status.idle": "2024-09-26T14:56:43.908330Z", + "shell.execute_reply": "2024-09-26T14:56:43.907746Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8ef1d6ee6da4d52bd3aa4ef30d9915f", + "model_id": "b6f8c999233c44e6b60c123e18607ca1", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:42.124501Z", - "iopub.status.busy": "2024-09-06T19:42:42.124158Z", - "iopub.status.idle": "2024-09-06T19:42:57.234866Z", - "shell.execute_reply": "2024-09-06T19:42:57.234293Z" + "iopub.execute_input": "2024-09-26T14:56:43.910328Z", + "iopub.status.busy": "2024-09-26T14:56:43.909998Z", + "iopub.status.idle": "2024-09-26T14:56:59.179852Z", + "shell.execute_reply": "2024-09-26T14:56:59.179195Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:57.237390Z", - "iopub.status.busy": "2024-09-06T19:42:57.237016Z", - "iopub.status.idle": "2024-09-06T19:43:00.971913Z", - "shell.execute_reply": "2024-09-06T19:43:00.971312Z" + "iopub.execute_input": "2024-09-26T14:56:59.182094Z", + "iopub.status.busy": "2024-09-26T14:56:59.181790Z", + "iopub.status.idle": "2024-09-26T14:57:03.058054Z", + "shell.execute_reply": "2024-09-26T14:57:03.057557Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:00.974009Z", - "iopub.status.busy": "2024-09-06T19:43:00.973827Z", - "iopub.status.idle": "2024-09-06T19:43:02.404764Z", - "shell.execute_reply": "2024-09-06T19:43:02.404239Z" + "iopub.execute_input": "2024-09-26T14:57:03.059722Z", + "iopub.status.busy": "2024-09-26T14:57:03.059541Z", + "iopub.status.idle": "2024-09-26T14:57:04.551144Z", + "shell.execute_reply": "2024-09-26T14:57:04.550565Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "33547ea19ce34215b8f9bbd75c870924", + "model_id": "5444a2dc1c4c403ab396248114105df7", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:02.407222Z", - "iopub.status.busy": "2024-09-06T19:43:02.406914Z", - "iopub.status.idle": "2024-09-06T19:43:02.435740Z", - "shell.execute_reply": "2024-09-06T19:43:02.435223Z" + "iopub.execute_input": "2024-09-26T14:57:04.553436Z", + "iopub.status.busy": "2024-09-26T14:57:04.552948Z", + "iopub.status.idle": "2024-09-26T14:57:04.584746Z", + "shell.execute_reply": "2024-09-26T14:57:04.584077Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:02.438408Z", - "iopub.status.busy": "2024-09-06T19:43:02.438030Z", - "iopub.status.idle": "2024-09-06T19:43:08.523002Z", - "shell.execute_reply": "2024-09-06T19:43:08.522439Z" + "iopub.execute_input": "2024-09-26T14:57:04.587085Z", + "iopub.status.busy": "2024-09-26T14:57:04.586688Z", + "iopub.status.idle": "2024-09-26T14:57:10.717190Z", + "shell.execute_reply": "2024-09-26T14:57:10.716706Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:08.525189Z", - "iopub.status.busy": "2024-09-06T19:43:08.524868Z", - "iopub.status.idle": "2024-09-06T19:43:08.580916Z", - "shell.execute_reply": "2024-09-06T19:43:08.580242Z" + "iopub.execute_input": "2024-09-26T14:57:10.719179Z", + "iopub.status.busy": "2024-09-26T14:57:10.718830Z", + "iopub.status.idle": "2024-09-26T14:57:10.774462Z", + "shell.execute_reply": "2024-09-26T14:57:10.773892Z" }, "nbsphinx": "hidden" }, @@ -1033,36 +1033,30 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ec60662f03441f8733d768775a0ed1": { + "008823ad1c554e5fa5b1815e6e7eee3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_42d03e2415284486b25cf67ccd387444", - "IPY_MODEL_5050585031b24c079460a52a9a4fc488", - "IPY_MODEL_b1848abf52f742ed9f7657ba08af06f7" - ], - "layout": "IPY_MODEL_d73b0ac161c9411fb176d09cfe007d5d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0555e6f1fc524e749446c0929d265eab": { + "038939be2791404a8d8b3535498c5720": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,7 +1109,57 @@ "width": null } }, - "08c7a2f2c6804a7da25a3555d45832fe": { + "03edd2e8077d415a86a42428227957c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5f572bcf9e34ff5b3f799cfc3b2c03c", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc418d04bfd44dc999d29a7cfbaf1bf5", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "0d3c194b71ae41699ecaf593bb466ee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d4af35c70b14d9b95542e9fbacf5ee2", + "IPY_MODEL_03edd2e8077d415a86a42428227957c1", + "IPY_MODEL_d408f59a6c4642dbacacf8536dd5bb86" + ], + "layout": "IPY_MODEL_b25023ee46574f0987d4401430bdbe95", + "tabbable": null, + "tooltip": null + } + }, + "11d7b29b91e94ee382b5c3abbb5da356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1168,7 +1212,76 @@ "width": null } }, - "0f26c903e03a409eb8eb23a06ad068a1": { + "15a01925ca5e45e5bb086a7b185ac53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ffca702bd3444f1690f1f5f85493ca09", + "placeholder": "​", + "style": "IPY_MODEL_008823ad1c554e5fa5b1815e6e7eee3a", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.22it/s]" + } + }, + "1b8ddda746534779bbbb5fd4b8f8df0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11d7b29b91e94ee382b5c3abbb5da356", + "placeholder": "​", + "style": "IPY_MODEL_2cada3550c7444318e24a19d4c5bac92", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 153968.10it/s]" + } + }, + "21f930a5e16b44e6896cab16aadf76b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbe2b73a42764a2aacaeaee0b9c612b7", + "placeholder": "​", + "style": "IPY_MODEL_d26696e0cc9f4eef935b52e6f5301e41", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "2cada3550c7444318e24a19d4c5bac92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1186,7 +1299,7 @@ "text_color": null } }, - "219cc478643a4ee5ac3bd50beeb53306": { + "2e397451daaa420aac06b58d115ddb89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1201,15 +1314,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b66b5652e59476aab6385c55f338eaf", + "layout": "IPY_MODEL_6c7533cc89b74b90bdcf06dda9d4297f", "placeholder": "​", - "style": "IPY_MODEL_c70c5f7b514a4120b47fe4694b8aa561", + "style": "IPY_MODEL_aedea8fe506b40c1933ac0b06c3dc5c7", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.35it/s]" + "value": "100%" } }, - "23f68f6bcc9f4247ac306e707ae76a3e": { + "3539b50ce0e843448d49322ce25b2b2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,23 +1375,104 @@ "width": null } }, - "26c9d71cd2b144f5a62f2e547396cf9d": { + "38f90d531db8409db73b7389ee4986c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "414724ec89444e8ebc1105e3c21216d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "477c45c2e60a4cc7bc955c274f038c75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_496448b9dfc748d7b07ed9a700cc1ab7", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c19fb70e50ef4b3aa215c397be2fa0ed", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "31810f3656744673bb829bd7c19b4796": { + "496448b9dfc748d7b07ed9a700cc1ab7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1331,7 +1525,30 @@ "width": null } }, - "33547ea19ce34215b8f9bbd75c870924": { + "4db5293fd3e94b6eb261d17cfdd19337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aeabc766c99c4e2b8edffb93d948620a", + "placeholder": "​", + "style": "IPY_MODEL_cbf3bc2871f144bda8f96df51315cc6a", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.31it/s]" + } + }, + "5444a2dc1c4c403ab396248114105df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1346,16 +1563,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6901169080b04ad499942dc391b9b336", - "IPY_MODEL_90fef083c08c4c3c927458dfb8b00fe9", - "IPY_MODEL_219cc478643a4ee5ac3bd50beeb53306" + "IPY_MODEL_e15e2d1b74894e47b98ed243861d83d8", + "IPY_MODEL_db3abba05009401583103fd3bfc35643", + "IPY_MODEL_4db5293fd3e94b6eb261d17cfdd19337" ], - "layout": "IPY_MODEL_571062df41e24ec2a51ede636c1c40ae", + "layout": "IPY_MODEL_c41365fd01984997be6e7450cfa7d4d5", "tabbable": null, "tooltip": null } }, - "428890bcca0c4c398b4c85e7b197ef23": { + "5ab8498d427444c6b4d07bf8d5bc6157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1371,7 +1588,7 @@ "description_width": "" } }, - "42d03e2415284486b25cf67ccd387444": { + "5d4af35c70b14d9b95542e9fbacf5ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1386,15 +1603,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_08c7a2f2c6804a7da25a3555d45832fe", + "layout": "IPY_MODEL_a6ce96bd4a1f4a83b1164ac6cbe3d02f", "placeholder": "​", - "style": "IPY_MODEL_5428bca92792410db3731a76852725a2", + "style": "IPY_MODEL_38f90d531db8409db73b7389ee4986c2", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%" } }, - "44a941086c164d5bb775c41c7d4ac57f": { + "60825090590c4420817f531a12ba0cb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1447,7 +1664,7 @@ "width": null } }, - "474187191bb2423bbeaab8075807fc8d": { + "6c7533cc89b74b90bdcf06dda9d4297f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,81 +1717,14 @@ "width": null } }, - "5050585031b24c079460a52a9a4fc488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fefad91592514c8b93cde6a9aa658432", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26c9d71cd2b144f5a62f2e547396cf9d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "5428bca92792410db3731a76852725a2": { - "model_module": "@jupyter-widgets/controls", + "6fc3fa5fef38489287ed8d9f7c6e1c3e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56086d38b6e24dd381b3d2d8adfc7dee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b4141a6045142c1b9ba131103d924f0", - "placeholder": "​", - "style": "IPY_MODEL_62e07c87b8f14d10ae3081dc89c264cb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.19it/s]" - } - }, - "571062df41e24ec2a51ede636c1c40ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1620,7 +1770,7 @@ "width": null } }, - "5aa47fe7e6cf4464bcbe167e6d3ba68a": { + "7211d82a11904799ba5182ef4f7e1762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1638,92 +1788,7 @@ "text_color": null } }, - "5e211e7a482d4ffc95757eed7f7aa9cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71cc03f01ffb487095fef61fe310cb72", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_428890bcca0c4c398b4c85e7b197ef23", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "62e07c87b8f14d10ae3081dc89c264cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6901169080b04ad499942dc391b9b336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa2dd8d15728476eac598aeb95576e3b", - "placeholder": "​", - "style": "IPY_MODEL_a247c69930644302aed767d71b7ec676", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "71684d8531234f3d9d16e15f5e2a1318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "71cc03f01ffb487095fef61fe310cb72": { + "a6ce96bd4a1f4a83b1164ac6cbe3d02f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1776,7 +1841,7 @@ "width": null } }, - "71d9c9ff1e934321985ce73f6d70432d": { + "aad869b6d41d459097999efed9f5aabb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,25 +1894,7 @@ "width": null } }, - "72aa2b7d62f44bfba1fef33687cd2d9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "733932bb0ae3401390e27945e01e9afa": { + "aeabc766c99c4e2b8edffb93d948620a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,60 +1947,25 @@ "width": null } }, - "7b66b5652e59476aab6385c55f338eaf": { - "model_module": "@jupyter-widgets/base", + "aedea8fe506b40c1933ac0b06c3dc5c7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8b4141a6045142c1b9ba131103d924f0": { + "b25023ee46574f0987d4401430bdbe95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,77 +2018,7 @@ "width": null } }, - "8c44f5cb10834552b9f054ccff28de8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0555e6f1fc524e749446c0929d265eab", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4ff48b5ef42475cb8d931380feef05a", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "90fef083c08c4c3c927458dfb8b00fe9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8f70224ecee42f48ecf14d646040c54", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e468d38bc9454ebf87117d355645f3f1", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a247c69930644302aed767d71b7ec676": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8ef1d6ee6da4d52bd3aa4ef30d9915f": { + "b6f8c999233c44e6b60c123e18607ca1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2091,109 +2033,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e7a051930ecf4f8da5a7114fa550bc7c", - "IPY_MODEL_8c44f5cb10834552b9f054ccff28de8f", - "IPY_MODEL_abb55722ee8a4e9383f54ba9776bfb21" + "IPY_MODEL_2e397451daaa420aac06b58d115ddb89", + "IPY_MODEL_c126cab8ab9c4826849b4c390465afaf", + "IPY_MODEL_1b8ddda746534779bbbb5fd4b8f8df0b" ], - "layout": "IPY_MODEL_44a941086c164d5bb775c41c7d4ac57f", + "layout": "IPY_MODEL_60825090590c4420817f531a12ba0cb9", "tabbable": null, "tooltip": null } }, - "abb55722ee8a4e9383f54ba9776bfb21": { + "c0780c5558e44bdf9cd38943fbc6879f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23f68f6bcc9f4247ac306e707ae76a3e", - "placeholder": "​", - "style": "IPY_MODEL_0f26c903e03a409eb8eb23a06ad068a1", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:33<00:00, 147431.29it/s]" - } - }, - "ac71e20e794944a5ad10d81bd3802d6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_733932bb0ae3401390e27945e01e9afa", - "placeholder": "​", - "style": "IPY_MODEL_72aa2b7d62f44bfba1fef33687cd2d9c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "af401850ebaa408dae00a90bb34bc54a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac71e20e794944a5ad10d81bd3802d6a", - "IPY_MODEL_5e211e7a482d4ffc95757eed7f7aa9cc", - "IPY_MODEL_56086d38b6e24dd381b3d2d8adfc7dee" - ], - "layout": "IPY_MODEL_71d9c9ff1e934321985ce73f6d70432d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b1848abf52f742ed9f7657ba08af06f7": { + "c126cab8ab9c4826849b4c390465afaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_474187191bb2423bbeaab8075807fc8d", - "placeholder": "​", - "style": "IPY_MODEL_5aa47fe7e6cf4464bcbe167e6d3ba68a", + "layout": "IPY_MODEL_3539b50ce0e843448d49322ce25b2b2e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ab8498d427444c6b4d07bf8d5bc6157", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 787.55it/s]" + "value": 4997683.0 } }, - "b4ff48b5ef42475cb8d931380feef05a": { + "c19fb70e50ef4b3aa215c397be2fa0ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2209,25 +2100,7 @@ "description_width": "" } }, - "c70c5f7b514a4120b47fe4694b8aa561": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d73b0ac161c9411fb176d09cfe007d5d": { + "c41365fd01984997be6e7450cfa7d4d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2153,7 @@ "width": null } }, - "d8f70224ecee42f48ecf14d646040c54": { + "cbe2b73a42764a2aacaeaee0b9c612b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2333,23 +2206,43 @@ "width": null } }, - "e468d38bc9454ebf87117d355645f3f1": { + "cbf3bc2871f144bda8f96df51315cc6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e7a051930ecf4f8da5a7114fa550bc7c": { + "d26696e0cc9f4eef935b52e6f5301e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d408f59a6c4642dbacacf8536dd5bb86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2364,15 +2257,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31810f3656744673bb829bd7c19b4796", + "layout": "IPY_MODEL_aad869b6d41d459097999efed9f5aabb", "placeholder": "​", - "style": "IPY_MODEL_71684d8531234f3d9d16e15f5e2a1318", + "style": "IPY_MODEL_7211d82a11904799ba5182ef4f7e1762", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 761.55it/s]" } }, - "fa2dd8d15728476eac598aeb95576e3b": { + "d5f572bcf9e34ff5b3f799cfc3b2c03c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2318,114 @@ "width": null } }, - "fefad91592514c8b93cde6a9aa658432": { + "db3abba05009401583103fd3bfc35643": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_414724ec89444e8ebc1105e3c21216d3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0780c5558e44bdf9cd38943fbc6879f", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "e15e2d1b74894e47b98ed243861d83d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_038939be2791404a8d8b3535498c5720", + "placeholder": "​", + "style": "IPY_MODEL_e7222a4d37404d41a68f2bf782915ef2", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "e7222a4d37404d41a68f2bf782915ef2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f246aefc67174f658fc6990471fd838b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21f930a5e16b44e6896cab16aadf76b0", + "IPY_MODEL_477c45c2e60a4cc7bc955c274f038c75", + "IPY_MODEL_15a01925ca5e45e5bb086a7b185ac53c" + ], + "layout": "IPY_MODEL_6fc3fa5fef38489287ed8d9f7c6e1c3e", + "tabbable": null, + "tooltip": null + } + }, + "fc418d04bfd44dc999d29a7cfbaf1bf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ffca702bd3444f1690f1f5f85493ca09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index c988c12c2..9d0e0764f 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:11.117353Z", - "iopub.status.busy": "2024-09-06T19:43:11.117178Z", - "iopub.status.idle": "2024-09-06T19:43:13.210573Z", - "shell.execute_reply": "2024-09-06T19:43:13.209958Z" + "iopub.execute_input": "2024-09-26T14:57:13.331707Z", + "iopub.status.busy": "2024-09-26T14:57:13.331541Z", + "iopub.status.idle": "2024-09-26T14:57:15.936866Z", + "shell.execute_reply": "2024-09-26T14:57:15.936192Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:43:11-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-26 14:57:13-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.167, 2400:52e0:1a01::907:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.167|:443... connected.\r\n", + "185.93.1.243, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -118,7 +118,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-09-06 19:43:11 (7.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-26 14:57:13 (7.67 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -127,33 +127,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "Archive: conll2003.zip\r\n", - " inflating: data/metadata \r\n", - " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + "Archive: conll2003.zip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:43:11-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.201.17, 52.217.193.233, 52.217.81.84, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.201.17|:443... " + " inflating: data/metadata \r\n", + " inflating: data/test.txt \r\n", + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "--2024-09-26 14:57:14-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.27.119, 52.217.207.97, 52.217.171.81, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.27.119|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,7 +174,31 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 142.53K 668KB/s " + "pred_probs.npz 2%[ ] 482.32K 2.17MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 7%[> ] 1.23M 2.84MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 14%[=> ] 2.42M 3.72MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 26%[====> ] 4.26M 4.90MB/s " ] }, { @@ -182,7 +206,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 8%[> ] 1.35M 3.16MB/s " + "pred_probs.npz 43%[=======> ] 7.12M 6.54MB/s " ] }, { @@ -190,7 +214,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 50%[=========> ] 8.28M 12.9MB/s " + "pred_probs.npz 71%[=============> ] 11.56M 8.85MB/s " ] }, { @@ -198,9 +222,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 20.4MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 11.2MB/s in 1.5s \r\n", "\r\n", - "2024-09-06 19:43:13 (20.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-26 14:57:15 (11.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +241,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:13.213109Z", - "iopub.status.busy": "2024-09-06T19:43:13.212725Z", - "iopub.status.idle": "2024-09-06T19:43:14.513752Z", - "shell.execute_reply": "2024-09-06T19:43:14.513226Z" + "iopub.execute_input": "2024-09-26T14:57:15.939149Z", + "iopub.status.busy": "2024-09-26T14:57:15.938782Z", + "iopub.status.idle": "2024-09-26T14:57:17.187528Z", + "shell.execute_reply": "2024-09-26T14:57:17.186884Z" }, "nbsphinx": "hidden" }, @@ -231,7 +255,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +281,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.516436Z", - "iopub.status.busy": "2024-09-06T19:43:14.515941Z", - "iopub.status.idle": "2024-09-06T19:43:14.519305Z", - "shell.execute_reply": "2024-09-06T19:43:14.518871Z" + "iopub.execute_input": "2024-09-26T14:57:17.190094Z", + "iopub.status.busy": "2024-09-26T14:57:17.189576Z", + "iopub.status.idle": "2024-09-26T14:57:17.193093Z", + "shell.execute_reply": "2024-09-26T14:57:17.192623Z" } }, "outputs": [], @@ -310,10 +334,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.521508Z", - "iopub.status.busy": "2024-09-06T19:43:14.521171Z", - "iopub.status.idle": "2024-09-06T19:43:14.524052Z", - "shell.execute_reply": "2024-09-06T19:43:14.523615Z" + "iopub.execute_input": "2024-09-26T14:57:17.194944Z", + "iopub.status.busy": "2024-09-26T14:57:17.194599Z", + "iopub.status.idle": "2024-09-26T14:57:17.197554Z", + "shell.execute_reply": "2024-09-26T14:57:17.197086Z" }, "nbsphinx": "hidden" }, @@ -331,10 +355,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.526149Z", - "iopub.status.busy": "2024-09-06T19:43:14.525818Z", - "iopub.status.idle": "2024-09-06T19:43:23.627822Z", - "shell.execute_reply": "2024-09-06T19:43:23.627249Z" + "iopub.execute_input": "2024-09-26T14:57:17.199051Z", + "iopub.status.busy": "2024-09-26T14:57:17.198872Z", + "iopub.status.idle": "2024-09-26T14:57:26.446906Z", + "shell.execute_reply": "2024-09-26T14:57:26.446343Z" } }, "outputs": [], @@ -408,10 +432,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.630427Z", - "iopub.status.busy": "2024-09-06T19:43:23.630129Z", - "iopub.status.idle": "2024-09-06T19:43:23.635623Z", - "shell.execute_reply": "2024-09-06T19:43:23.635160Z" + "iopub.execute_input": "2024-09-26T14:57:26.449170Z", + "iopub.status.busy": "2024-09-26T14:57:26.448693Z", + "iopub.status.idle": "2024-09-26T14:57:26.454297Z", + "shell.execute_reply": "2024-09-26T14:57:26.453763Z" }, "nbsphinx": "hidden" }, @@ -451,10 +475,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.637682Z", - "iopub.status.busy": "2024-09-06T19:43:23.637404Z", - "iopub.status.idle": "2024-09-06T19:43:23.985761Z", - "shell.execute_reply": "2024-09-06T19:43:23.985192Z" + "iopub.execute_input": "2024-09-26T14:57:26.456078Z", + "iopub.status.busy": "2024-09-26T14:57:26.455769Z", + "iopub.status.idle": "2024-09-26T14:57:26.817319Z", + "shell.execute_reply": "2024-09-26T14:57:26.816634Z" } }, "outputs": [], @@ -491,10 +515,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.988095Z", - "iopub.status.busy": "2024-09-06T19:43:23.987906Z", - "iopub.status.idle": "2024-09-06T19:43:23.992118Z", - "shell.execute_reply": "2024-09-06T19:43:23.991556Z" + "iopub.execute_input": "2024-09-26T14:57:26.819374Z", + "iopub.status.busy": "2024-09-26T14:57:26.819176Z", + "iopub.status.idle": "2024-09-26T14:57:26.823791Z", + "shell.execute_reply": "2024-09-26T14:57:26.823316Z" } }, "outputs": [ @@ -566,10 +590,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.994018Z", - "iopub.status.busy": "2024-09-06T19:43:23.993843Z", - "iopub.status.idle": "2024-09-06T19:43:26.637725Z", - "shell.execute_reply": "2024-09-06T19:43:26.636888Z" + "iopub.execute_input": "2024-09-26T14:57:26.825588Z", + "iopub.status.busy": "2024-09-26T14:57:26.825150Z", + "iopub.status.idle": "2024-09-26T14:57:29.558927Z", + "shell.execute_reply": "2024-09-26T14:57:29.558069Z" } }, "outputs": [], @@ -591,10 +615,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.641128Z", - "iopub.status.busy": "2024-09-06T19:43:26.640324Z", - "iopub.status.idle": "2024-09-06T19:43:26.644620Z", - "shell.execute_reply": "2024-09-06T19:43:26.644038Z" + "iopub.execute_input": "2024-09-26T14:57:29.561613Z", + "iopub.status.busy": "2024-09-26T14:57:29.560961Z", + "iopub.status.idle": "2024-09-26T14:57:29.565280Z", + "shell.execute_reply": "2024-09-26T14:57:29.564687Z" } }, "outputs": [ @@ -630,10 +654,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.646963Z", - "iopub.status.busy": "2024-09-06T19:43:26.646497Z", - "iopub.status.idle": "2024-09-06T19:43:26.651999Z", - "shell.execute_reply": "2024-09-06T19:43:26.651546Z" + "iopub.execute_input": "2024-09-26T14:57:29.567105Z", + "iopub.status.busy": "2024-09-26T14:57:29.566772Z", + "iopub.status.idle": "2024-09-26T14:57:29.572163Z", + "shell.execute_reply": "2024-09-26T14:57:29.571688Z" } }, "outputs": [ @@ -811,10 +835,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.654071Z", - "iopub.status.busy": "2024-09-06T19:43:26.653731Z", - "iopub.status.idle": "2024-09-06T19:43:26.680854Z", - "shell.execute_reply": "2024-09-06T19:43:26.680272Z" + "iopub.execute_input": "2024-09-26T14:57:29.573957Z", + "iopub.status.busy": "2024-09-26T14:57:29.573552Z", + "iopub.status.idle": "2024-09-26T14:57:29.601023Z", + "shell.execute_reply": "2024-09-26T14:57:29.600416Z" } }, "outputs": [ @@ -916,10 +940,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.683063Z", - "iopub.status.busy": "2024-09-06T19:43:26.682748Z", - "iopub.status.idle": "2024-09-06T19:43:26.687165Z", - "shell.execute_reply": "2024-09-06T19:43:26.686677Z" + "iopub.execute_input": "2024-09-26T14:57:29.602952Z", + "iopub.status.busy": "2024-09-26T14:57:29.602606Z", + "iopub.status.idle": "2024-09-26T14:57:29.607644Z", + "shell.execute_reply": "2024-09-26T14:57:29.607163Z" } }, "outputs": [ @@ -993,10 +1017,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.689077Z", - "iopub.status.busy": "2024-09-06T19:43:26.688908Z", - "iopub.status.idle": "2024-09-06T19:43:28.095086Z", - "shell.execute_reply": "2024-09-06T19:43:28.094529Z" + "iopub.execute_input": "2024-09-26T14:57:29.609321Z", + "iopub.status.busy": "2024-09-26T14:57:29.608970Z", + "iopub.status.idle": "2024-09-26T14:57:31.052597Z", + "shell.execute_reply": "2024-09-26T14:57:31.052050Z" } }, "outputs": [ @@ -1168,10 +1192,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:28.097561Z", - "iopub.status.busy": "2024-09-06T19:43:28.097109Z", - "iopub.status.idle": "2024-09-06T19:43:28.101190Z", - "shell.execute_reply": "2024-09-06T19:43:28.100749Z" + "iopub.execute_input": "2024-09-26T14:57:31.054589Z", + "iopub.status.busy": "2024-09-26T14:57:31.054180Z", + "iopub.status.idle": "2024-09-26T14:57:31.058507Z", + "shell.execute_reply": "2024-09-26T14:57:31.057947Z" }, "nbsphinx": "hidden" }, @@ -1204,7 +1228,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 41b7e3f4e1fe64f959116ca8dffca830affab0a0..72bcf4a6b5247dc437edb0e2fbe314e187c9d905 100644 GIT binary patch delta 62 zcmX>tep-A(E~8tep-A(E~8;uW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL=6Q^|TmXrH6B7Uc diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index dea8d934f762cf76466b693cff65549df377dc70..c129f1e1aebed88ad84d4588fcea5c3f932301fb 100644 GIT binary patch delta 221 zcmaFyo%zLg<_%{!4GYYYixbmL delta 221 zcmaFyo%zLg<_%{!4bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE z4a}0vlT6Lc4O2J&<&1cwU~Xw-U}$J=kz#6=Y+{s@WMN^Pl9*zilxAd>Vwq@}yt(wv hL?$Ids%jJ_Pkgg<^4a&jgbl3v@Q|Ibs_GxP%m5TMNd*7^ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 90395ba3d8e0c2e82e328ae673244704ac06a13f..6371237a08a00b08c4b9ecdd05ad90793e8035f4 100644 GIT binary patch delta 13236 zcmeHNTZ~;*8Fuee!yQ_CMcO%smV%fvv+fsP6a!j_*fu5vkXqIiyrk3?iNcf?+L(Bu z#vF79iKT@Eybx2Ez%gEcYQlptVB`Uf8sNbMFA4O?1PSrmbIvp~h0IELGdVMFGwZB> zul4`m|9$_r&*6v9J@W9m$DTWb?owfoyIJm-V$o+3QsCNfn>>j!xGXrKK2v8|5{Yu} z1)KTL8Lxf0KRG?oe`|VO|H^6F|NitR`~SU@_ivx>^K=Xc(`W6v(PJM9Q=ckJJEU|s*M0~?#8 z*H)|hTMzd7&mGv%zwqFi{u2jQG{3p3THc>Npx)C5XC6E_^WmQMSt{#k3W5oez1Nuv zsWoFc2^DPrjc4yEFCs6loVoPaiPL&9h~#MuN<@ckoQ;Ni;$0M3JEbghC?8`b6EtgMh2!3ZWQfBB zxY_NBi`wnB|8CjoJw`cai3cUQ6(Ms&1@*={O$jrc$Jy;li)P4+XP@5V+Dk#45t2tC zP~g&OYm%_c;y;efZdF{=KH2iWZaBRcq$Ey9r(!}DrExM@X*|=0F+#L#x9b)b^`~B3 zHFM72FT9}op~Dl#2&M)1+**h9dMk1^K^v8Yq;l|=!&Sd7E&BG+N>znL%_|R8 zd#gv9&pljS)lD*6!xT-N1MbRL!*RE`9N~FLyg7PHz2d2-s?RRz*+6ubflBX^KuU3; z%0_`Q$teb>21n1U4_7@)sq(lUDJc;uNrTGL#Bh=EXV2YW+2+o_s$L;(Y9=15woWV_ zv3cXAYO49=W7U~Gs-xCiFd!=n!;lI_tu|RvPeX8YaQFA>olAOz3(ZrG$zoab+9fZ1 zMwOZvymDc1;*QSKRX0l`gUM7T8HBXb852U}J`zSGq0O=r^_s!1UsaD(#lX#xmnu?> z+n$6pKYOz3_C(SqauK)$$er=dCc(HMAp=KJ%$-C=i)JE8a#D+AGZ02ZRMHxOexCj4 zBwi>yG?NKEsI7e$um$5m$DFKlgRL{w(^WC%@DQbt&Bu<_*H0-nX}|dKsXg1*@7=qp zx1K5|ER~$_#6(KgTF#WWGIMkrruE>}t2?(YS+{7HZ0(Xj`B%rjNbxX3t-&XFL5kKXyr0}nwtB87>5ux+OLbyW;G ztVgwYNZy{|YH%yFG5{lJt3o^Fi4qjT#xw3xW@7mGU2lVr#-TqT4NyHs5^lMZDzJb* z4dK+&jAxaVkv=)WGPMd^XQT|=psk>qhtFS%IePv=%ob0ox%AcQl1beCJWK&aD%xa0 zvqCrmsTMu;AX=mfm#Rk1t|S8nM_uQK)xJ_r7Gk7Sg$q}g?rVgoRlU-Y+FV{Vi>aQ* z?MBE73i$)Zl7x8JBfU5ePY1=2il0&L}T$~2OwXmF^uY!Wrp zq)3b=45c+XLJA7?MYCdzfl8I9OofcoCXz^?4Slm-*=&8HS~fWHi|YQW=VFK|Ck}Dx z1Q7w!U1}2qkJ%e+GOEr}^kH=tg6AP+9eT4`+ijH|!zI&JxS&-S<%4xBf`yd^s9)WT z2GPx25JXpxlz`S9Bg3Td~ z)aW3ExN>-qLfkln+5Me*VbrNQ!L(PL3k6H!DDhUlGpp3oe*+4nvNT5mcs78COL`T!K z01?56_GVBoreMBO}zBIy%Xo6L| zRaePp<}4Xe0MQsRt@6nOVp!mnJM%K^17iV;JGA6utSUthaSb!H;i&&OP>6byo9DRiD!%&U&BVAqc01BF<5R z(!w}P5(9I&Q8FodiH$J^_zfv|i*eEh*bP*on$_G02IT;nhH0SD@jb={FgbHMVHl=> z-z@hH_OI;xxGKgS7O5)4ZMJ^2-qO{PB=1~6d-4Ju4YRRk$uZYbk92KAA7PDouHhai zOt!7QaPSdQYnefusJ3^Eu%;j*37Uk<5E^K2E%il~S?1W-#{uSR3}A(@e0YRX$RW-S zZLT+7M#UtVk25F%WV0P+jnJvB1_k}@3>t$D%~H_R?2z9rxG613&kcwv@%}rwK7C)Ek)ECc+#xAkOIFBqck_6O0rZCKglt-z(;&EPH(Q2VE06`9e&LWW% zE(|=ZoLt}xl5p1M=qkZ!K(B?h6@*E|f+*lDC6)z&*lI6o#o(0(>OY}A7mv-GwO4np z>6PNP)I8O^eO-M94ijNsL=C6O!xxKiYl4LU6H-Ac%|A>E7(OFbL;VRUnOBjwb^(bI zJ|r6zX)hZo@K4x2u(KePy;VSPGPxa!FkgzJM zlfaz#EyPVjq?KY0k@n1uosCm=Qki+PnS$;n5sne2VMq@+IITCMxKd70uIFa6lGQk( zv{GVDLCxYd85gcDU092;6_?ekyM+_Y(~JT#1FmXYZLpyjUL%049L9o_y%qr~?|3^2 zw0b^B{9;~p6pfZb$XSl~aTtlhW02ACw}{FZEdWY0qOwxV=FfN3 z+j^o9bBM05-3b~?1pPY*FJXzolku&sOEDLQ)}MtRIArDt8USlJ?+yq9w6wR}w!91{ zAV<|4+fbiBnr4`Xi6c!*W~~bv+F1$c#Sm`^j&@Qv7UB*obMde-wg(~2tq1E5_9&(% z$sN&fa044uFz;Q~E(b3RQlt^=veJo$2>Zi*wORU| zx867VbIWPl@4IE$bz>8MY~qhi`~{Z(*u+2i;$TQ>V-tUD;`@cnG&b?y<-Nh!#2=gZ z@Af5_v57x6@!#>{U^v5!P5jxfc#KW_v57x6@y8~9Sg0}!uRg{m{@BDHoA`LUatdn3 oCjL8L9E?r;v5EgK-?RU}H1YM|_}4oRoL2af{@{*7or^mE1BulZqW}N^ delta 13412 zcmeHOTdZ7F8FueEP{2ZM+5&Ppvne+r(6jEBM1vSFpkg5=1e99W6%gc72#L_z(l#av zmdJoR#Mn^LkRXvt17l(o3(*H-@WP8h6Cg^0F&g@0VvPFjnK|X0gP9e5G}DJ(*X)0- zz5f6IF8}n=$4=V+*hvR}c0A2D-kk4}cew@TBWF%%=VMC3WiO4@!W*F|$(ksyz0{hf zLw`H|joSyWZ$D%3;C4QE<(~P$S=%oh{B(OW_}KQ3w9j8&ts5M<=YqkzcYL_K=#ekJ zIJk7zh6i_@x9<9M=bbm+a{YB%@3_rvOV@1;Zrk9Iofi(ieedam7k0jHaP_WJ2HSV` z>+5z5zV^l$gZp-U>VNp;+CTLNt9S2N6WlE!-MsbAZSIyka@sa9d*3s7de6y&KknH$ z`0U?PJ@UW$z@bO?K7C;$3H45M1v9+k3wkjtf zb8wP+&m;GEGBGiacUM}}J?`G%9tj?>qsdR)>tQrkJ<1{MBs!EZhvY|Q&?jM-P2Bd{jAfgUq7=@ z?b|;e1P)523XVt-GsQWxp&13|NH)XY?XL!PY0>=$DpeI0wXc4w+EIO{{mf(4<&7dK za;0tNN(hZa)k1S`2{G0irund1)4OG^u|W~^0;)L|f(dGz$EO4*-g^?286H?u@2~pA zFq0(>DhDGRiB3tcQy|tW8>MO29^mhKq>dN`)q1&r2sTbNG zK3Sd6k5LgGk|joR5e;`XNkf_BDtMQ|vuk>{&h?GXf-sNF5?TmrO)!l6Y&7L55!c@P zF!s1>LvL>Q>Z$ePRU^Go+%S|#Rw6LxgEB!Ak8<-`C_B9BQ1zp#Da6igbxBQ{Lh#fb zhP2;%rt0^tC7K0fzDiCQ89d%T5rm*JlXRl}{@L~VXP>P;J=eIzlrdBqlY_`sS&3rt z5m{uD=fn-Gi+ew=`Y~whg+wcIK}eCk^ORbqnItwb*}9kO^+O!|iK;2YmgB>e;>-fsUwf$gzFdjX6ruRTR(j2 zh3YHS&e8>KMAXZ#ymspqn?LxWk8drcC|SO`@XpxAEf=*9olu|Ll#bP1>^beN7uU!1 zWmZhYq%==f5Zn}@iXu}b2@#3;*2VS}3xTGXV)Q{I@0>-~m*~?-;7HUcRflh$-Mg=9 zl9PZIEuyzZa07UdSVLvjM(Y@Ci!5EYwDbzQknO$~tIcS^Q+F`R*M;_?UsmsIvJ-@> zBvlk#XvPf3kyJ)U2*A2Lx!6W%;;0dn109g8+8{?Q5gd(0*<|P>S&jCQ37;toOmK(x z4eYc!5tf|FdeliK$yy3LPS#S~apg6?txjveb#Q7YvyT?+@OPik*^@YL0w zYA<-LI)4+VVoCjJVU*N~2XCd|%9>;y|jc=zNlsu!yM^zgp@ z=bP0hO5u;ZTG93!M*w#Uu?$n3lN1E_6|h(WelwTg5tI(m&~Kemg z(!>cU6+@HIj{ORsFP*qZ4F667tQYZTOg zw;&xXYe9isOgN*AOcVkGS2Afe8aX9+(4MmdP7u7&$_s5A7k~(<$J}z>pkSdup+iCL zELwBY(4%NtHgX->T@ND%mQu??@b+`->Q6SM*xhLs+STjpHGRvS2sGvZ_yvoymMOt? zrcgVPJ2Qgq;j3S*ubbcM zsqj+*<#eFF(5|?o6jW&4>fWgnitN$;P>zvtTnz`bu$&y&OdRuW=Wk*}UGWyLR7{2FO@MmUxTlT~QzQu^z*mLiPEJ)&pWQ8P7#@6~`f|0i zbU(`rXnK0`73EfXV_mt;ZL3e|7fyAw+K%m`(Gg)f0bm7A?WmPWQ|RVsp&u7{H6($8 zo&sHk$sH@Y=u%d{) zMF<$nW%NlAWGaNs5_sryCV+E^x~}0c8XZ+=J0q_G0B^_dU@U~D?;+3$+)dvA>uzat zlhLoD=D|pym?j*)0a&J%hEo(hnbcilf$Fm3yv#^J0t}f*If{^U`T$~e+&$(6x=yq* z3WfUsJ?`q+Bnr@mObny9v&fGNamQyUg&h;h2QI76-6X^&yQK02fgK2W96B?^!92=Y zpf@Ly2?(WKre~%aI!lYMa7Qc3sgSBGXz27;7wA!}E1XOot-fO#3i1Mc7a@UI(EzQG z6%2(AgrRgCH2BCzksewB^hzox1%#{h8f*t991{x8s~uxqlX2;WD+fOUPM6~N6w@X! zsbq+#)OMwsD}`_8KiazjR>t(`-FX(;e_c}_KhLs*NJEMy%>{fx3(?Lkb2NYp^Y$Rx zH~!v?gD{%2;@{g%b)`#1j3awbF^uE7cSWJxZ`>&g&o)1u{YJ{E|^V9E>UpK zY0x4E`;kF2JDdn6J>;^4jsxjgq*Wz1b3!Uh7qcAYN{P9Ab>W?*qlH#F(vm`hxz}Y4 zD58ej0dhnb0hYn^L$fi9{?RE}@g41(;|LxZXs=&GSS^PJwd? zwuYW+veFJb2=5c-%y8`!)nAalg{bYzcLUs}2X!MHSZMFQr#`Vi>ivLRhju9x*T%Cb z9Sj>yGCIi+{uZ zSV`2!)9dA}|fcPe+v7BX{>E zeS*T%=1|t2f}&J0Zo>!+JkH zM=9pG#=h{?`n-!bDX|370`e<_k*e-|Y-}68IQ(BUd9*7&gpZBeDLMR;3d_^4X9bi^ zPe<;SS6JzF9j&m!i6*k`{x9|P+K2c3;~k?PH>}$7&<$&^nN132lY-f#;BCXK6{K=D zDVR+PW|M;d@RfwwqyY1|*`#3QbYeCsm`w^6N8+V98=lwISEu|rIKhC}PTsMATg-UB%vx!I;?`H!_P1}ti zWds*NBZyl4lZ8cBMGL`#_&`z8b#>vQR2NEhQ$k#1=gQXK`o@%EL`&Efi9_sB$Lon%f@SdmCt!$JkpnS(UKDl?pU zqdPr)=l1w3UGK@(L@rBKijq+5LJdI}n}w=@?eNNL<5Sb!E8W%6Bq?hQS6gvCs*YIK zAc%~~QI(K~C$HgaFTdRVb<{U*K*Q6Qy2snW|M~mzCwr22sriAXS*}K@fjD%*+wdqyvOB*lgT+}O%k>&a|q5Qm6Fyu zGqJQG1%=FW#Rr~EUF0y)_!22q;$l37>{z0FI3RhJ#ad*q2P?>+YT=N^7^uhEKn^>pLC($2-R!>QND zAL|zge zXdR?nU}ga?Lp9?&>I_U&495U8Mh@0{Z8$7YyMR|K_;B;@SHI z)zyM8P(Uya#e()EC!J+dDw}10vQL45Kg!A@XYD2a$g!B+H%9H27%Qx^A|&iXAz~jA zaA=ZaQwktzr@uHc!&oEcqBUC~=NKFIU+6y32Pd2^88K&3U5(O}q`WCLR3-f~iHTKc zPZ7NcNG@vv1yqS_jmOIiu;Y)qyQgp77{3Ivh|*9B7G)M>qKYZxnoRUyLatIx!H$0z zH3Kg)X~d1QOfH@^_MCa_U5FVcK+8FaE4CznQjtFFiKToz>m-~ zILQhRU@F?l@`4WD+1&WvXunmNRopZ>l2%W*9_s*Q_Z*wk@TtA-!FvJrXkAfJC#8xa zjogA&vN%iGS!rTkwxmvV)}o1&k7%_DCKu>UZCOTJQO*Ma`~GO+6Uta}jy_Xm!9^0` z_aLl|=$&bJdwgruw*vp<>yWNy*g3XNj=B%`xSzB{A*m=x85>pA3AF74Ai}CH6R}QN z4{=H^SV}6e$yx@N3nvSr4@>TM;Ds1Wv49uVV1x7tJp$(-YP8}g_qPHs+p-aN0kF3> zy9atsK((GpOh&}O!E=tuqCBzIAP-b5QMFlCxEWU|Nf~uC?43?V!Ip@;%p`&YSt{s3 zG6W>XTvRQkT2fSEnNj22!_WUT-kjcewENkp8GV+HoHSxDmF!0Mz&YpD5iRr5b4e2F z921!UI;$>$$qR07tMkh$c_AbiFJ}n@;*ySz^xSHY%W}L0L1v{d+VyK6o5%?sVt-X559C-P>(#OH~<; zNhruU+95LhUSxD)a#r&~a_8=MVpCQ!3EFeIHrNYK+owOyt1o@JY&Of+?8U-#nGq z;j!*vB*4&VZ7oG_0{F5dZ{Z%JrRfvbx*Ma3l3>tKj0AU3s+uzuL9qKeS)Il3>K9h= z)(SnRk8O8s=wa{n*bhJWS9kxeGw1k-u<4mubr7slfjLOAP9CPBh79jptXtr1LXw>{ z5|&9zvUq-YXd|40AYw+6vrFIg+mjpL9qqRYvVxG?MH2sMZ(UgcCuiB%oy+ttxF+7LZbGkgNf zLey|APzOoXXe0IT>e=qD<$Tr(K0Nhs_oYcI^c-?0KHq(GTMLY2s=!B~pbmBy)F^W; zF~N*s5O{rjxtkOu;evo6o0%$9+2LX}6akj82j+3&L9srwi3zId;F7D8GtZd>{x;92 z%y(tsMX<-Qp?M*4wGn$Ea{v8ex3euug%QUnlNFQ0JZvF(Xn+X9iel*Bz$4DtV;jXN z!AbZrWa+bvNkphu*13>2!&fihYf#D@9cIBYv!bpnedO_> zD=iS$2>a>1?*8H1raLvtzY7-YW9e%aZq7)U1~!>t)G%*I28#Suac8Z%eaYmaLa0>t)G$ pS+ZW1;J*Ub%M$FF*2|LPHx}z<$$D9`_y1m&xaqZzZ2acr{{Vrh{%imM delta 8889 zcmeHLOQ>B}8TNSArCbwiLT^gR;O?DkV^I^c9{+j`97L>8uqL$#iiWtJr1)s7n2D4i z6^aj(Vs#Is#exugP+Czpv|7`FBU`Zp!3>l*Dw=`qKpe(zpM7t0PX=dC9h{I%E<5*M z|Kof7|Lf0fz4qMJ^Dl0S`p_5ZMSU@xk})e8$cC6pp-`iC-codA1h1BxXrs1Pl*g}c zK5>0>hJWwuuW!yTADhkl?|)#v{lx5z?)mfVzJ?b?#-^&h*F@TfNX~>(WDGv3&^`N8 zw)LC0=AU7$NnDv+OVpf`OwKzBCK%&oO}zTpA8Xh%vqlLQh+HW-R!YW2ipF~DtfC-7 z>E8M*+v?wZjs11jPQ=#TBNy12W+HC)z*WY(L%*FLXf5Y48geqqL_&y2C41$0a%8zP zqCb6xJyE4B#YfI%Z5MHfBrka8?rh1}G zQd#Gu=wJBb{CBg-xZUA5=e$LUR>e(Sz*imn!~9q)Er}X)5M&K$rGm-U8SR`c4(Tlt z`4VdcMgYlHm(UAB3yah|cc97&`L|}5CYrN@nD?Fi^!fYGeB|Db zou3#>zx?%7y>`x>XuBgv*^zd2R;G0Scxirj_wS#ujn+kumKIUHB=Uv469fo*iMilG zxN$t2ptDh!-r_i6bcZJKQVll&m?km8to1=;gNn#p0eZ(>G_H7KwA5C3D~3Ydv5T{* zz}-LpHh-|K6M=_JPIce@`~3C>AaK>z0G7xU(HrNJ2);U#i%EHa&`25$kHS@8&=`O) zM}zOVH&!~0m)6jQjg7q#4frL}4IJu%{1h9RK0h z*un1cH|EEitWj|50~M_(BO{^7=nyDK;?Z|69NJB1JMo-_Ed|sfsPG(PFdkh3y#%ZK zvw~fjHQXs_tE&KRB_E^H!XXKvLPb|)_sW0SUEPmgop1JM6?=L%8Gd$^iFS2ltp?DY zJ1LC6|0d#4LeP1R9=t|A)yTE*zLZ3@78&{{|1y7=HH8YgSA!KggC4jqNpL?%f)QEQ z1&j3GT_Da(^k^AGQzN?k^+eSyAlGdjWp}m{S?xnyVs!}^+qbbUI@}N|= zPu!}KqC$_PLu(`9Kh%nX5ht>eOFp7*TZddSWWt1)C_)RX3krX83R&jva~m5+2FzWZ zHLD}*AAFIWX{UmYh&wQ22O2Aqh{^**sSQ6lcVcR?gxVoAWTjy(|kGK6h)R6pv$M8w5t^6tha zyQd{nII0yDKt>cwAPw=#LPwMxZyhKQ!WK#LWE6TPU}|D;m7IVKXd9%;wZq^JtnrK4 zc9OxwS`~-&u}X)kQgtds5RuJ!K`;H4PqLrQCPR<8OhhiDwjH^H-E$K3yieT>V1@W- z2gr)c=qg4DR3|jtnBqOO7+BMTS&QChuQd(rt6F<7c&sQj(fHmGYZDzx%jj7>n5Hg& zO{>dR_psJXWYt}JX?}bmZcXwMc|v?JR#XcJ#6ZBgg)=l5)ti#gMh^mwl^d79xEN`j zVgQp;0`I6qZ~Mp$ZuO~1o5>PD7P;pxhfr#ja-^lvM^3~}-M@C&gOhPbw0-A2?9g_0 zN|A=b=>+vv4!OmswT90H_`6qrx#x*_P7+E5+Hi)F)MIo>lX*K@sfkf z21Fz&LF>IsQ7A7;)!1SWPB0b$t~h0x zI`N}DnJy|BxDx@nu%wgqCL13GrRW@wbwQM)lT6WMW zFCv9hV8XC|cIlBSQDkz3das>iB5{-R4KxyBjXJ(P(DH3jh?)h7bzpP&$)SG1a*NaWBuBU_EHaa`YTqt+OFShp{f+N$)|&82v%t zCSvaD+eF9_aW_8BcDBLzq>D3LV8b+3f;D^vDF^{?T>B@FvPZGD!3x3>Qp(^wBVZ3R z_ux2`+!-gv4B9-H5$*(hm>`8^P*xyVRI4Q1apb$Cu{xrTV+wL2=7_Z0H#Y7*CFz5- z4{8xxh2~OIT3{<-e}qwV4)$2V!0+wUSY@&lNLTX3P7`2=kd%>Ne^&>_JTh!;-<(~V z=!{%O&%`|5g0-ody^Xc0tVXO|IM3Xn%l$hRe=gj1?x_ohKeaxatj{Lvv&r5yZ+$jd zpH0?hll9qTeKuL2O;#Li)@PHYW6=6+vOb%v&nCAV^ln+@)@PFyXPfoeWPLVSK4|@) OolR{2^udi^z3YG9De>U| diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 9474aa59a2236da09d07252074f8e2be27efa68a..3738cfb70b2d7d4cf6fd59033a59125f8c995107 100644 GIT binary patch delta 1969 zcmeHHyJ}TI6y?kn#A{GNF@oSdT&y(c?3q2UMiI0Se56!F!aVkfouG}4f>zNFIN10N zX~L?};Q5pt`9fQ1%HN{cu#DGY(k52Tx74SPNI+8c{g8;es5%SYgej!*p~HFsI0 zka?sijg^i9Pb&J1l0(SgoggHTA)t8O4Etu--22vA)X0?qpM%D1G5DZ`jFci_u+ewV zSDRN=RDX7@nf*RWn6k@|NEp-r9vtfIISK8Ol+;~YV<-C)o9w}%mXwyd)d_>{#aA|LrEy9Go3zgnO%}mX;+Dve)=6mmUsm!)7oRzokz-KVZn?n)`2w~! z!WMSAyYhz}>lX%tcTF1rF>&xA#o`&EQ^i6EQY4qSBiok`ADTLc-z$u__30D#tc?m( z8N;2;8dc`rIBlZDtZYe3Y}>gL6BeC;lcNX$u{=Uy2$rmr)@M+A^kh`pXzR+CA|?ro z%6NjHVv0fwzpZCf;n4kBVbIoxPZ;msud@q>0SsI+qFY*LXGWR}$z3)=0EWZ^m=cJI zfeT|@*rl(!{>A=N{qodczIj=TYCO}9Z_eJIyM6cijazfIrQMCL**1PS(=Gg9({*hV ncD@__Wb@S$9F%d-^41bQDC2&Y;Gm3q4$V#(P5=1#;LXv$Ni$0` delta 1983 zcmeH|KWi016vf$jg7^$77>r<%i?EfIorQ@ug0D&lSeQmqD#S512^MQ(mv%Yq{hfQyVRqLhcGo6WH%_R$_%JWo zr7){G8Xdp~jwwONY>_-Lf>Sbk>DaUNUZrQ%u&ajE-OqKxfRZh%&?Lw*ks%^S8dc0b zO4mN#te*C&x(i#?{MYHmmeHiWasebUV`6mN7zf&7L+!OKake|NC+;7sIar+~qji)) zf@iXj*(24&;exCojtntg5ienXt=_SVI_s+VK) zqqy@A1YQ)DXm(?_qY)C4FKoXKfEdQ6~eq~}r7uz>GVzQh2DPC9o9N)hPS@#o+ z#iKff1WhLIjcLFFl9mR2Yydn{Bs}Ozl?0)a=$*C@f+j)=mf0zYO~AiA)tHblHWZ_l zz&axbLK|Y)fGG!bU0K50s-I!sPyh6>knO8&ap}0R+FmK4UEdbxr_1)KM5cfm@RU%3 z2bD|Q8}P{=GT7UK!aLb*Obk}4Cq4H{qnUbibN=4K?YZkWZY}g>_prKeZ=(k@?dmr% k)$eUAF1EuRvC`XxqfQ=m@~D%C-jn~_N#8A=9y~w!3*3rBZ~y=R diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 6ee346b21035f7700356dd7aa8a9aefdb59747c9..fb5643e46db38a4602cfaa8c113c866dca191d73 100644 GIT binary patch delta 234 zcmZ4Tg=5JVjty5h4GYYYixbmLF)=DA7@3--B>`0#C8njB7^N9mSSDH|rkExrnx$A8 sCRvzmSJPr@Vp1ZctVUtFwHDLT>G`@$y@bt_(PR3}PFR__8Pi*40KT+CtpET3 delta 234 zcmZ4Tg=5JVjty5h4bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE z4a}0vlT6Lc4O5$0x!PH|7`L->F)=DASQsT+8m5?;8k-oHo0ys=TACUenkE?=nIu^n t8zos9~cG@n8<*jbI)OdgUC3nwf5R;uO+5H12$BV7t=-sLe|=AZBdXJ z6=RzUNJ;wQORJ8$TVv|bq-mp#FQN4`))&wiKiH(5&}dt21#Q%%HUS0OSk(UZ-sj#q z_cEOQt$gSi5;C*zzGuBY&-4HPpXWJ$^T_i)^T_i)_1T^Bkg49{Usv3Gv5KJ(Xvi67X`To7r zfp_%b^KRUI|7~`1(o_~@5TS_4sY=I~J8PsAA_<{wB|>@l?i=o%487BSTDW}eq-m^N zt&J-47^K$GS;aq1kk&+#yp4R?Zx6rJe%vL$%Ey&u(v?e!Q@P>knc1JN+Tt`nHR1STn`pw|}F^N|PVH=g|wBH$H!~tyA1{B}_pUsA z{@4F(;e(s|c8&HPKKt==4`2F?OSV0~=>Bhi<0ETRTRFB({fA zx!oW-2{dGTh#g1`tK$ydC ze7sx}a$)bzJ^YRz+r^*Vf6t@O8Erh+zqo&nU);KXzy8=SEqU|%8$WA@+}OVBw?Dk- z{-ckxca@My3SYMys4MQWz^o$=g7+qR(Jyx3rEalT{P#JhPK=O76uDFmyK=R0Qu!ib z^hG7Bs1M(Ttq#32z45G>K4H{vooH^^H8PnMVsZ1D{kulp?rr(8YCiGo(If3byT|*R zFP=6!rTf*z?YsNJ1Y2v0;st&p^Nr&J9f7Pvn zN<|)XExWrn_!4(-cIocX8K+Kgm!&LZEn``0ubt16Ql+gTexNdJ0={$L9X;E%cXVet z)i!u(bfKjybdxx#^xDxZy>{*BpEUpW&g>t3c>d^|=IcM(c=n&|vrFE# zc5d^cpZCwsYCiwdwKMu>cWplVz|VR1IkWb{*-ihmcH`)o8T`EF@4mLSbM~E|uid-W z+`BV-?(?V9+YY|%=GWg|AAIv0{T;7Ac>B$7sSdt5om}LiXm-7G?ZW1hJF}h5o z*$bM7k7TF3h)_&)x%1Bb)4in!V$`y(L1;RHgv*qa@nxCgvTfcRwc~DWH;kuJsmfTQ zK`wIei1MJsLgik1Qx`7!*{45}ePJ{K;_-PNL>;59ya+WfC3efilq=ml_!IVET4o;` zO$P?I&6~cJiNSH32YIV``1)*D^9GTfz0O`%p=S0<6TC&R%tpFc3J`y3oBO^w-aWf^ z@A#(io;nJXg0?bgQP(baUi+FONfnr@x$lzknGF*iH{!|cwArKk#vdN7*OrgcK832( zCKj%U(MK&4D60n8UiS{Rt6$vmX=vXs&g4rcA^XK0`f_$+bI4^E9B@Y5`pXx;<)*#e z={Y7)Xl`2p8Wy$iQWTo#9fSgJ`!M4Y-98>-GR<{IIg*3-axL#(et2mwSLUi~Uvu-- z*IaSsD{daT!&~1D%l9tsy=nindH=p__hevM&126Uzo5CM%1)SYUJ=M5Lo%)DB%nrB zy8u_HQ?P1wL}UlY6Y1-mLkbX(q)Y5Xr^3cs+DdvB++T9c^4+8L0_ZITHd$JoL>;V! zRux6=DjB_M-uD`IsyE7kp;hy;tFl+&5S9(yeDPbEY<_T6c6v8Q%u1{1OYM^LDmNDL z>3sr;sou#v`emHVo;swE3X$Lf8jB1CBvysWW3`oT{=trSFI?Lrx3<^T_`0t0piC8X zEsEfkH`qH!N;6RJm##f={PEF*`7W78-QC)WT{?xLd7xbu7P)WYQz|eQ3k`u-N8u7? z0>msUn_QJ!P~zL8(rj3tH7WvB|Yn5f{Qd0@W^ANgPD zc`o|s*GEdDVig2Gh%)DLsG#annjC)N3#nzf7%2y)V4APpnq5B~9Gx{?+}w6sb{f&l zFLs3Tr6g)6$g|NgG2VSU(SjZxFF>k>p`&$e} z5>>A8H7(gHypy%@wkSnVDT(=Z^|yFn7P7y^1G7k*fpXuZf{EGI(UsQdSQ=MqD?FN# z5LKbxuwZvT~hATWQ=3*OEXQV=<5TQ-`cm;aQ`Dp;_aBFpB-ilPode zBFsiFAAe!AzI@2$5I$pY#05kAjk_?!yg1+%4H3*yR)u!awoa_Dg~9g-BDRgLUc7;m z0R^p(}rqe1O%0=2{{B;3us~ zb%B7b^U6QSUNIdQyz{yjU!dklRp3!$Q5RKFGu31R{2$TN8}PVtX~DZpih|H7 zLylre@JtF3DB@^J{0HtMbsO+hbF2|&9d{<+L|Qv%O%Vw$FN#=c(SLq#jssIMy*Uod zqVt@h`IjcUa8g$mP@+>+6T$Iw!4}eoLRi9_iRIkOR0RiQYh8l2b?}ulF~pD*ZbS+z zyBR)ZSqV)z_f?IGTWbp@M1f8@&|GmvSXM_#`ehBwV(w)IX3?m z-^WUqpWiks9lFh1t#n`$^Gz!qSlh8^dEz>{7<{?{$>vgnD3S_a**Dy3Vz&SWPF zmusg0`Pv9PaIOmoi!`QGTF&5~A015suXyiTRvL6wM{pxVj%)=;5g0iGT27|Bfq1^(+X(o>#(@VQTRyx}qJ&slF1%_Z%I8PZff>xf-M|dGGr7EZ-Dk7u z6a=YZi3CEYwJhVr!HYghP6lSsyOx0o9Ak|a?@+FE2cX@TeJ?wEYV#x@Gq{il zy{Wu~6>x2&YvZ}l^YyJS&-66+T$`QMLR5@y=%BWm(ZCheTi+hqunnWzvvgIBcx!gS zoGfZCqAv-8Tt(|ViVRK^zv4Z#S`jpI{y2Vz`+85r-o&m0l>^I_R+O_{f7mj55s8pC z5~>w6U62dF=YiAE7=WUF_Q>PoFOJrM(GI)TD0s6`3t*UxIH^xK2@*oSwm-V~Kw5TLyBci@0>)gsQFP zG;~?FzAcyUo!KzH>CmzkaH$sxngG!OlXFpPS3nIp$GR|3rnj3FwVCd#2Ph{5( zkK7vHMMx4t%rPkw1b!wFAgJ0P%LqgmvV?_Cg$rhe9LQzOfye@Nu0+=87&20?N`w_c zATaE>>~NiMN6r^!1|EPTcJ2s|7zsBdhnvgp%XZJ^cX#d%&)s7UKH^#?6TD5dmhDCr@g$v!K+QqF{y8;VdP-`$Mzi$3CcD)H2R5zMXj*D`_GI~@)G-U3B8hTK zt9I!?mNLNRQ>&yH&q*Ld^gd`>gDTrMsEes|GURO&MKkaR&?z+u$JCj3k0zo5qXnu? z+Rt?0fs(8Usy~U58Zy2Z0*6L#{`Do}tA__~t?)vYlN%Vb4;QyyF+O?SwoxEZ%j1ef&O(JU_+avaaFthO^Vo;*WSxLG0eHd`T*RL^ zlz+op#7LzK$lIA-;#i2~*M6#%e@nzF=mQ9y3B7S8wB!OvwQ9w!vdF& z9ZYA5lYwztCo5jKX^1R<1(7<*;Yzj^_ycO0;C{+lpxRu+;LN1{%KcqFiB7_hljU>hK(=UF zyPVXKsdFdx|^m7e>>8A?KuaXvhU9dfQ)(&wsI6G(gf5Rh0uP6qF%i zhZUfuY>}App|l$`cc6l-kJ^1495|tEP;}suZi|`&+g7x3@QIL}wZ42=&1H9G`#K^> z7|c}*95JId|3yh>fXb7Cl5idC+#HJI3#s=c)t^8M!67J8ji(bE6-`yi#cY0orV*f5 zvd!irgE-^3H)JAfvX0Vh3xmr?Z;kJoJb$6IC9Z6j5WD2z#2E4!ks1gzy#)@qqV&$;o4Flk>^BmT~c;o3G)VYP4FVWI|nQ4$`qs- z6bo-P4JKIPKaq#qQcA71=MJZ+)&irWa-o2Rk@F{=WQdAMqml+!&ZVWH!TZ%LAA3vQ z@N)+VgzkV93xTkrunlQilqJp(<%rN;)q;Z{2L_{=q0N$o8LVwwOc^des;yyd=+bU| zduZb@!+H9CU|9{9_abmiosgg-5*R#RTP~Cm$ebQ34+ox`pr<|+$vedy)C&E>cT%Yw z5R6L#Vctuh(=ID01f>*Q^_GZmKO@>`;gqXX+LD?u0|WP=Z(!V309^=uIpwAWM`qC| zC=dctMbh$-+DU^xv_;EJ5nxA|B~=SpDFPJnj9LU#Zp^9j$K`?(lsSaD5Is~^Q|&-% z(c&MvKtjTKkvq0wQ%tj0i+*{z#xC?O* z3p{^+p%(0q*lS!HqJyGHy)E<2fnT_gR9R8Pp1!XyFZ7*JPxR5z-2+EdZ?&bN3%m90 zflWJ>eHd6z2W)!uxhEBrrlH+X{RAB(U#e?c@Na0af-(Nq_^dhKXw&VWNou$#PNT9Y zpyR{ai3P^wVV+X$v1hBqC3ckd0oNvj9Z`s_ES06U*yo)rKKsRwvwx<7W69{YNIerA z7`lrU7as$lNNJG_N~>+sFu+V(ieJi-P)}x}s|6wga@B0!iiug@vyOo6<6R@KAaQV`4+ma^Hyy1%RDN}?m^i+T} zl@pNDg#JP>t18lXoI||<&a|;@fdw^9jyg9-MgaO7p;4>?Z_)XLrvPcnD=25cbwsr7 zh;g>^2Phovit2f44k>w?^{Ud)H2P%?&7$>_&A~5cJDM*3=>xf0us^Cdkeaw(!4bMW z0umq}4co%KaW;Jw0ydaNsvqvg`2c?=|F7o{Q{Osb925)R$te-o)N;H!xB7W&6d zQJAR+qJ}C6({_CXQ`ZUsHNaRpdNr?K8ydZN&)wr!t}h>Z8wCVVV^uIDi*AIXP6kgB zwx~;yRAuxj`p>*>ObHv@i9QXkZ9&>w(g}p?fJBvqP$g$a-!p!2w2nG}Sj@#BNvilC zqG4^p>usfi&~vslFk~O^CVuI7b&E*4(%4fw);FahmO2=8PiT?Gp8z6|tW`|p{8DZ< z$|`9^q7Df-ZBWao*&}6P_$v&G1ZV2&EEY_#2h)IBgj7xYLQW_zV7(-AbGoGz23~Jw zHV0am2BEk3~$v{%eU?uJk;JJ?T?8qTbYkhe$$D$ru zFF&+xRcHgZHEy*)>XeplU2B04K7k&pmM*Ld8}o{_GEz61qqqeaIsTu*)07JlJxvf; zU=IMOLcoGd-Bz`s@>iszQB-PZDI7kQZl31rV<5ha$|5cXY=WdlLA(H}=3EpCNQ0W| zF9YMoE(@UcBKbZX`Rnf~v%{M~D(ov5^z=@^? zjSxoEr5ll=9Xb((ai&vcDHU9(NuNk`W)YEV6;-pAhA*njDNk1fH?oGs@iXx@6*MDJ z&V&F?H3Y4gRoRx#V&|06pz8G11q0LAs7_x#gJY@q=Uq|c`)<4A5+Pn9#Qq!K+GY-< zboPK+ERLaFGE(#ESv*A*C525iQ4$SP0xeT7-^1^yIR-G5C&Wly&#c|qZwqe&*=f%@EeXKe!R-G5C&Wly& z#j5k7OUbzKW zUW^BO9@?+hSV$4{toe<(SDWNs`Fyi zd9l3xVc~lehl<#nh3`=u>ibxAUi9^EL(LEKB9!Ib53A0L#U`1pxrd=kyY=l==f$y( zk5%Wzs`Fz0HSDX-3ySquofl8r@UiN=San`3wv((nFIJrwtImu5o4Z$?7sv1TSan{k TIxqhJbzaOa{qBjs`RxA%Qt6Ps delta 27292 zcmeHQd#q(uefHda?j2_2H8_LJDEI7{Dh38G>-}I%Wr#GPiZW<@F=*E_C@2_Fn_3u< zq&6*WO2@kWqe3vTTBb43sh+CwLDJU5CT*rPTBB(h+h`MP9V|^+745h7KKF9&Mfd)X zrpYlOH*@a3_qW$tzsL7|zu&rk=F|)R;?xTs`rLM!-*$6;uY9k&jQPl!6WaNhl5p8e zW3})`C`z&>%4;vRrs>4v+aG*st$oNuGozEl6F#_@C^O7DLYYm{9Xopc2ZkTocVzd8 zo6Y2mnlsIv55!ZUMWotAlN2M4cpIWJvi)^~50zi%4=tTh3uQ8q<>e!mB9!wkQM`Xt zgcGM!`|AcDD!=aFFE5=jG195%NaBh{;k`D|1!0tAQd=3_u{*B6d+?e1$oVIBz4n!7 z)KpoTbDz8F*o(gQ@ws2zJg{@L|Jd`N+Q0;l69v6L)Jp0@`&_)s~}>%MvJnQ%8lwdKTS zp@bsLB%6&THl^%U&|>Cp0}qv7XaDV0+s0zevSaUfQZG?9w|9Gw-T9wp{(C3xI{m!S z`UjWJ@1MmFZr;DwKkh9U8oK|gkLum%cFMl zjBak+IZ~CBYJU5gOLvaS{%!s?Yd&?>=+wr?mo{HId-UA)N9Q;2=+A!Os%Gc8qmONT zuQj>8eS3d~y(v8ND@!$TJW|65^~g_A2AhzrvfwWI#6mQ!y9_>5mi+SFBe-8k*(m(N zs8bfg3PZEBF(;>qb6k`ZaQ9^3nd#2`quX`uO(2%=6r^?{`qqVYP%3KWqPE?u4L*cd z`(S$WXqw)yI6L-_qXZlAqwS>wdE7vpdRXf4uS8kA6DZ*Zjw? zEp40L@S~+8qyK|9IQ}Z{my7Y zDWDMw4CNBQizX*!;E|XZq@Y?h@49?>*YxjRRQ=^qy!bj zYtBv9JZJ4ylI770rl&u${E5+oWUEP{R4}RqR|dFBaqSe+e^fb^bzRWh`Q~c-w0`CI zqoaD@EqL?9?G>p9UI0(MVfj$=c2Yfm0wdAtKvU#G;M{;86-m}O#TXN@JA-an)~CQ3 zF~k{xW0gJ;yuMKu04ESP#k+oKG*Jm>jnd(0#?Kq&j4b#dm@EabP;>Y+4z<2=e0;Pz zVETy%$86GXQz1bn_RQ?R;nKSKFJJAh z2Uew2ZjVkx^BFCdhS~FC!>16tm%Smz^p7m_WFqiu!9pO z9%2xhYvZ*epm)JA6EvAELA#Iw7zg#%3or$vNEX&-P*#dCZ0Ij7@A}O55Hl0-VNEPY z3c{AKoP2avM<+=tAKPani~;-IS|&sG@6BV{5VyS2Jb67r&B!%27itl2>agDi`zY{2 zcsZuD(MkY}Dp$64J=6xsc6t5X&FROhGpFDGcy;^e=)kGv%~6*I{B+CH{aYy!b!RUoJs+$trk@OhSX*A(ImaE`_W@Kpg|e1FvI2a9Rogbbu-R5rG#os2|f-YZ4$}M2|O9HX%JY4c6AB*wbe( z|LJJe;*BMAA2_REG8@l5WsrKjiIOAaXTkU2Xwq+4b+I>KS$DDLG}ueh8TLvQ&M3(; z<3y0bD4c%3OfACv#%R)OG_dBH->Y6#4_NJ@?Imo6E+ta} zWk^{EVG%{lWu$qJSa1#n%Wq^4oF+~o`=C|ydRB9;r2kh+l)kp_Iw zOl3C50_v2YJV8t3&{B$r+JJJ7EkOlGrVkdSfBB=MqXUOzHrK2HFWrJG`!`P05^XQO zZ{_@YU|GC_m4JVakf8EBqKWYhzsdqar} zN<_l_EZzb`(#kQQ$VF7m0M-y7SE2qn?33u6vny{ycAG~Ys;(U}+mMH=mrbZtk>iyE z(t%)*@EK@{L1~KcD&{-P+tHmugp{`$b+8l-upjuH(iBS~*1LHYr;vvsAOrMMd||Fg z@u->L8Bl_$pYD7FMPbnP>Dwy`QLxu4FV0Dt)8DFgHu-Z^Jt<*RJS?yPXif^CmmqY2 zVnHWE=4ehWfsi#^67?J*=nT?Fu<+-SKX@`}dg{Q+7e}jTjsU|U3I$DqQf^2|uf^x1 zWx09y4b`4GMmqQc_wF0h$$;sGzNebu%g4UCvb%YuTRv|)Gm=`iCROwD?|`UEAGkwH z!+>>Sj|o7Pje@!2z=UbgC?DXIMO5hc5jZMuq1fWHLDO9*_8T=Dp-9lCvsi%l$b=a|2$qMc#zBu!B64V1S<8Tqj3=hN zpd!{mxe}04h)&R5KwUYuVLb>ZCglJ+7>H3ESyO>kIG!Ey6m@7qwwP^Nx21c)Hh3r` zp$U|jKD%=fc+PjKi?>47a%Pm3r6>oHxmgQx|D=14|X7Xr4_nbiz30TO%BBOvFqGKr(vrHtyQ3N>2xkxGy zNb-7hK$Ai$#U(mHST6QQdIB#Gh%zDd^yFKh0j~C2Y_7-<_DH|I&LMyMr`1K!eodsv z{b0vSEi>VNJNyA{p35;05 z7XmVIfguhUg3cB-&}M&TCF?yM={HBrfIn`D#-XiSr*4yhr8N+fUflftjms;m6dD%; zaCYF*lm~!i2y)2UK4DO!0A%=Otztw=Qy?2gf+MD&0l?fSGx+IXq3?Bt3}r1*z*C&8 z6$}N9NQo~NS_xnepMvcFI}WzjqG`T$`S_a2fW@wa)qBREoI}!Q z6xyI*&|o`O-*KIO)9Y!!-)wVg-}vB!Sy6Ts^Bx*OAwp?F0ArykkR7sKXY};zij=?^ z;}HBKiZR}vd-Q1l#n5zyx{_$K?<3W$4wvK-ET9R2Sb~IND28u<*$hMr+#G5H-nj*04s2fO2XxBhz|y)(hE$7OjYgIC5F{By4vSO|7vl=DonSMa?scUh zhZLkrZcHAb27isExy6fIiN;Ci&R3L%+$vBA2!}-$hF%fT#RG)FDJM`5j6*e!F7KZ8 z;|8qjHs)#+);`nFvpzPqs}^c~1|LgE1sEwSbq&n{Dw7MIh$-B!$dUwan=LJfSg?{? zg=NSFNDctQyu(hNEUA%$6I4xUK=DL`T8QBZa8QEzi7@L4Jho@~K?s<=mYY+zRdmoW z65qi|fSQycKrvg?CPav#4WtN#55e5Su81l1-u)u@dn_{ z1n3>zRSy^;04u#G&?2y~GOOWDbMkk`n>vUC_GitF0sAfXZKLf)2ZWl7HSZblE@rBT z#(M)eD5RAPNCeR(rUvj}#!n^#!&1|o`p!3^;$pu~$}P-nVB_36UOa!bcTMn; z0tOM4}Ku`m)fDK|FFm@6%}Ho{rIc`4^UvNF_D|MIw02{Gm~d(I*c{ znU+pD&|~*x8)*{<%>ncU(~l7?O^fLpXH5by1%m(q>N4r9572KvG%x$h@vA5OrbF|@ z1!FUT5(&--Q4!@6xg(>XdYej-Pz>tVEYxtc9;2BEe-vF~F*j%oa}j!J1X!Et`d|Lr z73lgdQ0mZ;Ohji?Hj0K3s8P&FL?$R&a?8A*4!uAdarJ=x+&nN|xqO12Ct4Ud5O|ZY z;Ea$l(Nx5!W$A~`h6h^Fr*<@v?D5@@Bh;Z_y#lzWX!Mubh44J|=@kH6hbr&1kEJHZ zfP7JUl+J<>2^mCN24}@>z_x5gSFf-OdyUR(va7>rF>;<-XC;{zKX#FAjL-mUt8Wn^wfgy1D4SmEB}#M<)KX(1L`AfzFN zh%7P$a|{hPgmZ%4f*wc%b$veM>VcPt#aHR-fcdt_L0rTTK@mbFRDTSI0v1z;@g0m6 zg6DLdH;e!w5o*+{Xh7*CW@RW&(@M0`(2P-N8|1R(>+OsTkqQ;swap%+9g9f@VbG;IPkNaJ?HCH(=$!`r78(C94=sE&Cq{){Q|BB)@{O9P(xq^l8oO z`Z1b8==>(aoJ1NHpyjA0h*t?-5U_16g}Z;W3cUQ+6WlPtHwZzGkghkoA(BH20%I$cL249~ zfC>*OJtl>5j8d^@j#`5cV)~v#+hcf?mL4LmA%HM|P5~YH>Ai2NzA&nNzulS2Fkm;7 z5_fPlDOp;;QkItk(XuF9*kcI&Xt>W0JJq0S6bJ%&0d*VP(g7bM6{3d>*E5i{IwHy? zChjEUiI%c5%*{}P<{fTvfRNHwZl8_IK&$LG-gW>6%+A%gLg6kGYl6%L9NK}J1J|ZXi_E)=B&WG&Q zyR@<~GjwTD)!>;XLqJ527-x*Wm1khFXlOCjN%f%VH;h-IFJR~)$I>qaUvJgPGMvE# zfX#Zfqfo0+4Io#e*MkazQFJs{F=`djx+9z7ZNRjc=_aAqZddN^{MdNMDq2+Npn~os z%$&hrQE1Un#oY-|PxNxy$+H1*Y$20@*#r>NIMYpPOaVx4Sg zmQ5S$3cw7dJB~()Uk^DT(>}vtR^fV0cA5#WBQ`Ukn}(5n6-%QqAVX+0*E4|FhVp}P zP!LLiQjMuD^dt;;kIlfNxbx&OoPyqdJN(jtWVCjorO2Kr{y>rlRmkofDFBTxsMcMH zYlkN%{q{Tgryelf4k64+oLm$0q6w3MBoKO;(6EJMNB9c-T18XSVXm~lKWH8l&OuJ50ztz|kw8?DHkqo@o>7JeA5l93Vijoz<2;a&xP&~hMJpM20f{o$R{<&el#dU(kb%Mopf=$;k7S{>23eAa^+e73(+7^N&o-= diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 2452b16229fbc6f9335ea2552e4d90f5090fa747..4e29de852c98aac3fa0d21b9167cbdfdfbd54956 100644 GIT binary patch delta 62 zcmZ23wOndLBBNn}S#oh=x@o+=QA$#pL2_!cvAKn@WonW^ifM9Unu)Q2VN#l5qNP!) RNvff7Qj&?$=1GiGxdCy&6HNdB delta 62 zcmZ23wOndLBBNniW=>j}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL=1GiGxdC^z6CwZr diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index a7ea38c93a9ebff680a08b1296cd675929f8faf5..bed5a7f62943b45999716c984178eeb9f4cedf66 100644 GIT binary patch delta 223 zcmbQWjeXWO_6_?u4GYYYixbmL2@f9-wQo}!0 delta 223 zcmbQWjeXWO_6_?u4bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE z4a}0vlT6Lc4O5%nb8dgn$@u4hLQ1M>TC%Z0vYDm1sY$AtWm2lKNuo(=T4Ji9nYp2b j!FKM`j1!p%E8BCH(S(tpvgHEj894~5+HP>2@f9-wF2_Xj diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 30340024b6d9cb40150a90ba170cde6bc6fd572d..4d8dd8d199c54a095fffe56444b400efad8c81b9 100644 GIT binary patch delta 652 zcmex8i}Uv^&J8;_4GYYYixbmLlh-AyOx~Ho&#t4Orfh6!J$)l5qc{(k z2^E=~m@P87KSgWupJe694Jjg%Po%g}Xo5%Dxyb?Ps*}&8OHAIFEWU7kBRBQY;M zH733wGjH;Qbj8UJUx-Vn>nNzFrRrYlc=k}k*;Q#<{l z8k5XqtBfdW8Ynisppubu^6t#$$wgU8lUZ|s0(%)nCI@9Ha6#M&cILTkd0^m3OxDX0 zn>-~;nm;))FF7?QzN9EIuQ)BWXtH*;872Cg{c^VZ(en&8R+ delta 688 zcmex8i}Uv^&J8;_4bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE z4a}0vlT6Lc4O2J2nNyCx8K322xd+0e+d-| zEM=6O?4K^LQI=Vp7!#jg6ceADSX`1?l$=kPFG@0sOkSI<01Qo~$tpS0 zkdQ3Ol9}9`EyfS=0>TGeIZ|8@AAmeCSv%W|A_JQJa<=>BFnV89NHViDHcYlKO-oKR zGD$WxOG-^lO-xQnNi#Q1PD)NO-@en9X(AJ0WmyhPCX9rY?Q>*0&Q4g_QctF9%m6c@ B^HBf* diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index f6534518e751d528e2b8afee0526a5919f829234..7335a26c697b7f7264e691d8cc2d42470038e817 100644 GIT binary patch delta 10958 zcmeHNYiwM_71lbl4spb*1OhaPH=$5Sop@&M+uk3}6JQQ}mUfCh?FtE@^zfT~shkO1nBqDmw|YRjWZN>sH{Q3aj7_xkLE zrHkkf{%j;iv*&(uzVDnf=gy4RA0N8v<3m@C{$^53pXF|M?lgNEsV4*M`mSMfL--PV zrt1XEz(fYb5!7csF{EU)(M!AA8@H!-4!C}%f5NP>nRUrd^~M;gSNOvT7iLzj`UiZP zsE)mnm^8Ly^-mHx8&jiOCQKabUOO-R*fMtfmIdKxhHCt6Vq(Tze>Ml3G1hi#U2+O# z&5b*}*1A;quUQWbOC26S*JOH!zLi_{Qx_b`~JaBj*p?_+!hX*F`Ukp?3 zQMYFxJ&1eU^j6%Ex@L7xv5l0m(K0rpjE$ACnT59D^dKoi9NLP2=|Nfs7urg2Mj2da zE5WfGZgN4yYS#udHyH-6j%+~7N^-*sb;q*pGPV+2D6s?=+DdSt#3G!|O=v6uhPsP@ z>A}!ef-`gRmEb~K3C=2m3vI(CK)Vbuw3Xm^8C+;9!HF`s&=%u{$CoAv*Jep5k+H-j z2^UT&GBlPV%hiPx6=rMP8RUzl(d92!8d9z{k+GD%v^uKy4%87XzD&2AqK@5xTI02t z=s`>3;qo4|G#)Xk|RSv;hsq!$%qb zuuY&=qQUE=sC*T{OM$$>?D8q`uHd*f@N>hi1g2 zLmpZa58E0+)l47wk2j*WyceP#??hA8T#T-XXPxoK6RAcpnjc$t2jJkf05!$d&jK_r z9=2 ze%`(bM4dH2R09K1eGEkPZbpm8rEZ34=QhJKAzNVDDHBrg+7?JbpH&!(p~9MU**cbu zThZ0A@ADR#R}j|G2X$B)GoG+VZBWtweNZu-gNj~`=H)|X>b$Q*?h=~h)@|t8nB*Ks z^9xAG+8l{MG=4li4SctyA*hiw2(|*9TR2vk!b+(qC8* zGb)J2j~C={KQz_t%^>3GW^i!28AQB2fEMK=wbaqgI?|CAbbTDf@fMhMX=`CptSBjc zt!Q=(J=6+C8rlI0PV4{$7w!aK-8(_Sk)5zkd)v^0*jejcP>g+dq4{}-2nh z7ZhWty%-cWaR|D55Y3659vMVUg`UFJ4MBCgAklMofwTj=Kw8TJv>-o~M=dn60Qh_F zhS)Az2dr3BN4^j8vFB#gp068GpZMrXHL_1j9@-CLE?EX*{=Of?ytoX+oLg4xWt5D2Idd;) zd2Bgod2cyrdG$Uh)7BM0v-E!G{X`d7Pu~yZ&vXI#sV>wWC*{{afZcFkH|mV7Z*>FP zOAkQgy(?i_^8vKDAeTn;#<*w|boo06fcVi>K>YS9@bJQeKzzYNK>Ye@ARc)Lh`ZOo zv^ftK5wnQ+^EE)+uoj5-t_9*Z)`Ev09|Yom9|Yo~w*c|uk3fFg*1@!CKP)1S-;w9m zp&R0yObwgA$(xd>aKdbx;x zKmJW!F0%S^@p{c9hf!ft?3ilp6R4x$<4>PJ$0x&6+^U?P*GyMWWzgy(>!lym)T^ma zqTzz6hn_?<|1tZgC((f=lc|*=tjQ!zCeH5r2pveMf1X6Mritx!bre%J2a7ockks`A z+p70{)UI}%Lf`(nvp*=Ds5I@G?A3okcP1**HmN`U6FeWv#Q88!W1e(o)toeTci z$^y9R{Rmz0btYzq{)V<(nc_sao=FVH#0KM1a2E%G;d0NjscTD5O+?B46;aveQF7{Y zDdJO39PAQPa^`X@7?CcgjVb?RLXHuOThcV`HPW1<2xwc-5o{i&pOyLGPX}(J-*EzJbH0fX&7}Ss+Wir&L z`hJ&0FTa<3Hjxt4adjAhG>OeDDI99sLi;tPWlE37F=_mfM12JX>iuhLaeV~=3SU=y zW4%EfolDOa9x<5j`T`SdVL$MsV3O#saNkT$$#%V!+<;OBHUrBy4BvM-qgs?O3}X9^ z8~8$666XWTp8h=fT%z6*frD{iS`KH#mV$cJ(V4JaMnquIs7N}XpCwWiWSC(@l@;hB zVfD)Ile4j5&c*ho9gW*>pS62;LuwZF9p?Lnw)-w)mR?{{QmY{kNkn|mrP*03O@OU~*K1fXA*3q|*R|u|ZQC*oY;j5bfCUs#()^}@19fTitlk1^ZjF0;MB*9IO~#1BG=1^s7QfuTE2X9xR?c-S!b`h zo`+qNME#nLmTM&i(Q7_5ZY5JJxHwiOspecZlUm-JX~UqW1-9=aUC2?m}^utD9hT6a2Eh lxVj0J93Y?#tD9hT6Rd86WzHDIrE3MM}Z6m69~1F}0diS_Md@s(%6{>W@a10z_(?K!Ad({%BN%&fa@{_K}5+ z(jWP=7B;izo^!tMoHJ)0yLor z%;wA>*f+6Zo3?J6#H(?W&X$@j$!(h*ucvd+#Qq5t@unEBslzkXp-1&sIqbQ% zZbI7E@b#^+J3KnR;acqeT&oJItb3ZzKhU##(>=<(XZZRF{TJK2zKUMY#r7j|?{bxs z8OeL@fT{ew+%ux{ox+ULPvy1u%PRJt*!=8?%`x>`mO8O{5dU?z$u-JbHz&JrtCMWU z)rp6ewdTr50hv}nMhnPT0hyjH>rQr&0>FVRM={x@70?T0d3v;fULecUV`;siSrN+} zYtWQ<5WIY24O)>_!^Yj8)o?bvPM^EJ@5auZcymJ(jU4bl5Pfy2} zrx(cb^o#;}fvh`E(JY`C$nx}f0lh$$r)L$=3uKXA_rTO7!Q9LXB^2hlB*DbV*9?UD znuY2@athNPbq4uzX;k?Om4+0mO(@KV&##Vbdjd6vldq@Q9wARZf$F2V7;8myqv66< zG(Q?1Yefs9;muaGEE+bop*7L)^)|FJ8YaJoW=F%t0xgM#mDQ*#8op2s3Y%;+HInva zhL2AM>9Nf4vKm%oRtwp%6pfVKQ&3!f=%8`gPx`vTC*!k)gbk>-xTq=u-Q}X?(QtYV zu$tfj{<#`7J>!MQBTZGdbub{+wgJr)O$Sk?&gu znwAyTspnK!N@pNphfQG7`2%1vjsuG}j;3WoX7ZMo2C)>#>P=`;1agC;8Cf7?MH<9H zTJ(5a67U{RLQuU)$i?SLV9{5Lre<9IWR>!C>H7-pwGODl`yJrpzRv7|=wU&W{y;%a zbV5_DtpgIT)PaM`bwJ|6W;8n!sUc5oP?7ddMUO;LoSO<(mG#+4F~X#D)T2iu)#LS0 zq+MHq!TGJg;NETEt9ctRcw-yP)3)hoX5_4XI}~Hzb~GbH(F}3%43(Zww?i>@HRLJ< zO&log>_U?xr*Cwj+H6lj>jp{{J0Q_hb^x^lJAm5MnP_Ill!q}~}_9 zasaMg0l<4#0PuS&z{5`u0q}ng0r07n0DR;H$nW%3U^e#0Il$2xd1Dp&Zj`gJEdbon z0>GzQz{3lN(GuCT8a`L*g}WcoHJ~6g#Gdfwsg4| zINg^n7g1xEE*D&uE*B?DmkT&xlr9(Pw_s%Ha#6Zmlr9%RE0iu5;rrv?)a4?jE*EFZ zhB&@y8PxJDx#A_%nDz1(FQIco;VG_{;#Xzkwld|!0)KS!(WqSN5(lReo ze?5v0%pHo21hHzVS<8&nzANZJO#b^KnmAV9QcwX3$u^VNp;)ve5O816uKOY;!hXVO1+Naqh3q6f@@e1$8j~A zX)Y7oA(|&J)woNDVWn=Jj&DL~HK88rj0?`NMY-h*+jLzAdj=-9BbD0ysf&M(ABt5O z2IHn>Gfp(->yB`Uhm~7KO{Q6vym>l4A~mf){$Z>rxcp#j`NHDZe-lZ+j1E*G>d82)J^ILgE_9yqG&va`q&bVZs{&_g=@Rm@hMYjb#)VS^(LT-Mt1xm zj^6$#{%UNzXI=BC1Vb zjR+kRLw#E8FpGG$jSb6I3~fRjj|eD@$%H0+&Gm)KF&7#Y23FyDny;y_Gr^=T-;Tc) z8}Iv$DL5v~HkhZ3T;jS0qr}uyDP0oir-EpTQji}{D#xloMHr}Xu>9>Gn>6% zeWC(wTHMmQV9~6`$6EEf&(%C_t4QW1uC12hN__OVyT&9x{yaWuQV_kRQ=d6p6YARm z%+wsq~Cxm-Bvdk3~pMOfRg`HF#u&ByN!uFFjG>6BSM)&#a~jhWoAZK1y9 zV5#VcYhmAy=Buq1FEyoY%Tz7rWA##KE~U)VRamO(nfV$tUqW+KyLq~2y4Yu`{cK7N zOUI03kDCIkPYTjYPdHzTQ3&U2Q3gT#F=D$eRZEHC5~fqZU7?D=1U5~TTmmbjFC2|I zY6)R#fi#5W7((-@YkE|b*7WkjQKhqNhpK?6&eQ^F8Kx_2Ox4V%Sm@D88irGhLJ-b) z)xvjUke+W?zN5O27+jmeX;%9Q!ga^SoZCz=TUWDA<<|0bZfK@j>tVgrsm+OtHEycB zb4L}_#J=!}$~QHMAC@3&z+&afZNOp^Hdnh??$Qky`%QdgqF7wA`Bwa7(d{Qy+WSg- m-yOH#(%zSSYAEe}rM<7T_Z2y+2{*czvUkq%?!%)MR6G3uDXFB!d*wDaF7z(bU8=F~uU;#MH#d rG$qB{(lR+U(PI0zA1o7@2rFCuo5h5Yu(IEOSoX6MR(6Yp^*$2-OXW%*4dN(!#>P3}~2v qVM=1ML5e||$@XtQSSB(NR<`^%iwPrPWxxNh>}Mye>=p~_eI@`WPf1t+ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index ab819507409f3c147511090a42be52a756225504..bda516c39b9d369c8dda72f6e1daed0615507dbb 100644 GIT binary patch delta 3871 zcmeH}KZx8_5Xaqj2E8MoqF$qBe;$Ge@owIG^WMDISZNV4CfbR_VrQ4aE`^A*yO*%n_c;9Sps2nS#k~BH(ON4AvsHj24DuY)Ai_|fqx_s}k=WpCw{^;w@7_1O$ z%?c%2LlG1rS?$3FS#-Yq#W$ZegKogpKOgNfL9$XhZCyYpI=ZAVBtt1-j>=B|su=`V zpZ@Ib_3_>7gRQp*gPZS(Keh(H_pf{?P7IT))>U0Jkwe2;qjmg2qbWhD(4XEBPmR0J z#k&u8iGl$`L0Tl#-i7L|PsW(S?_hHO){b~`3_plVgN`Vt$Zd%!WV8xmEZL@jlrSMz zK8@|~?2Fa$vmc9}23?~L-~aQ8IN2`Yi9NB=pSmJehSAHAbch84>Vgr8r=?@iPNO3^ zD|RMKCR04r=v?92P&pvLOeI(^fodAFu>DDi$(lf#gFR+RUInKLNd%|RN;?j}a9A_( z?P~(MR?41*obA8;S-i-LVtsHHASR2smRJoD=A2}-26dWO!n5?0aWW{6$eZG^@Q(uo zFfM6%prr6(Iz!xwYEUX<@f1S}pcJ<$PL=#PXlI^C88&kEkM9ZD@Bb=ZG7>l!&^qZ4 zwl~h7S-W`gc()d+<8`*tdqe0e`e=i$jFv8yw086IT40TDe<`jEc3Oj4YwF?&zt9hV6Gw)%FeFAf&nt@|)TsETFjm&(LNU!V z$lo|6DQgIY??H0KAn`5+ViG}{S+`~kCaMLBskvst=#Y7>WSlY5B&+JIv-1o#>X~XSBD(HCTx}R}+o&DQ0Doa~kTQ%_S&Bhg6-H5<`?8c#6*1$pP_3g@esy zJY_CXvFeCAhoG%e#U`lQcw^m!LEhYE<|%}&oD&Ey4P~{UOHLC$(DU6hh1+SA1ywVa zx#=7OnN*b4Blj1Tw~@85OJqyg>NJMG#4SFJKxm?3;xuC%ql=Y=J8lrW44>VZgl5`X z*M#i;J7KL81#keLu~u2TE@2KnLUt)1BUh}E3lG6T&OS>vm@MJoq|dHo%ViGWYfb1d zPOTk19NlW&1NfS{rtsbQTTp*&EFM{y;l#NYX1FlJg&E#|AYGW@VFO;6;rx^6|IQ4@ mY=)zy)zRxK4^3aYM=osFm)%#p&z-xlJz8IS=H_T=ZRKBJK2zHO delta 3919 zcmeHJ&x;*J5cc&(OhQm3F$$tPyX2%X+tpp&U5yYy^bj!qx``&Ce?mZT#m$0X2pA7) z7BM8tn1d(7-U3R94-Y2#A1t}(LC}-rV8}raxfrbX-tMw{N&f-vTxOW5nXkV3>Z_U` zmiG*o_k6pu3+l;t>!MiQQNGIRCruEk3o z$O2H3rU)99Q6x1%t$YCq(Z~y5eDiTL=&HQ@=g!U*l}*Uec+^;wB*+mcS0Du;Sn`r1n`zjC70xLc!JMVvi$u>bCc*xxnDvFHa5 zjOzfNd{R*mWBEt?v^8(w_A|7bwqm5wzu{Ltl)B5|~IEYDcObssk2Cq8TdZ}{+81n-Sp;dsC zdD?g$c;p;84-x>9w~^<#+|04Hct)}7K5VJC)miEO{YqP-TSeUPVUyg*hyAVZ#o_J! zxV;~@_apz{Y<1f9e!S0a-rkSf`|*FWAKh^0zvB4R{-p;`E!5}e;_{2T9~d7?PrY|) OVOdT+d99zC-TfcAF=uc9 diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index abaf10fb61f61c4bb159f94d173ddfc367acfade..99d9fa96fbbda2a68012c870350aedba1b179c51 100644 GIT binary patch delta 84 zcmca{N9@KOu?-hE4GYYYixbmLSQ%sFb43bQfERsx(lFST~ vfDFsTM1$>GLCj4|N`#cvC``8xVqQAEIFz}Uu$c;B%%9l_D>IH`e#Zjj}X<4GaQBsPrQKE@?Vp2+Ks!3v6lBtEIxk-|RiJ756nz?~l Rl6jJ;xw&EL<|fA1TmY2(6W;&; diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 8e296d6cf4cbfbc752eb1cb97950418ce1f475e8..0bdcd45064c5c02205c6b3b2050e174570434198 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4GYYYixbmLwYbryywYbryyk delta 72 zcmbPwoMY;7jtvJm4bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE c4a}0vlT6Lc4O5#xa<+fuWZeFdlWB=00GdP?SO5S3 diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 3d0d6d533f404b28512c111b8c872088711ac85d..97ff7c611d063d879b49c0c6cb44a6490a745169 100644 GIT binary patch delta 2235 zcmeH|yK5Ce6vmk#k%+`XNF}&jt>lu-vOMhliv&%&ne0Gt!!FEG#sOMxv7203dQC@%rPPwStn24*muW)8wr* zBWCOXbAdC9%DNCE+T?^b3Y|ttAt{hfIiVDd8(ZCPt{#;rBpTi?apjp!2bUdg``Dkq zllNABtW_%~{menl3;*fhaxz>wu-y0(UZ1VFkJbXJBx1-GsLN&oPZlXgCP1w$zgjGc zHu_hWRx8Cccm*CZA~J}Yfifn56OnT-q4j-;EOs_kzCZ8*2 zrM4^}XUH&FXHAOjYo$TVAJf{JCbv5)DR_w7C&{=$t&;^Ck`RemY9pYjv+P9c+Fi0l zssOn+%t@rmqK;a7=A5)%Wi1yh?P}{^Q>3@moFX4d(L>!cO)mG994uTSgO&HeQU)S; zuTUprypldq4dAF|G410xZG_Mn98|&t-f9z+M#_T!r}gpyc}^T`zNam$$zacKOyr2} diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index cb12241c5e19f80c8b303c5a5fb3032dde977ff4..ab949e2e7d0816af693c5a2a493497e58f36798a 100644 GIT binary patch delta 64 zcmZ3qfN{|R#tl}Ch6QHH#fj;r@%lz7NofYjsmaFX7RHvTNd_sV$%$zu#s-E-X@-fG UMyV#LhQ>)rCPtgH8MpfZ0I91KXaE2J delta 64 zcmZ3qfN{|R#tl}ChH05OX=SEmiTXxKDaJ;LCgzDrDXFO@iD^lu7MA8FNfst%h6ZWo U24+d-Nv7uJhN+vg8MpfZ0I#4FJpcdz diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index b0b64f5a51cf50e6e6fb7f1a93d74d8e8fbe512d..5359952a464446b35bd07bd109e686327670e42c 100644 GIT binary patch delta 220 zcmX@|fbGZwwhdc24GYYYixbmLWhAJIc`4&Ac7m$ztYOSx1^~6cMN$9& delta 220 zcmX@|fbGZwwhdc24bw7n(#lNB67`LeQjCofP0SOMQc_b*64R1QEiBDVk}OQj3=PuE z4a}0vlT6Lc4O5$+a&CXh$;dff9>_^eGfgr~Nlh}bOf6Gg`9`*ZG}VkU@L1Tt!}7?C85_uL;H5RD`v zS&W0a5Zz6XJXey13x5!^vP4iaxEHffW;2WIY(X%fTk(5cl}uHHz8jYXeW0m2bZ4uwTFDOS=#a+NWtLPct3Qr|l~ z`TfI_GuS&|?}Y8Z-UYi0_HNh-*yQsb*xj&uVE4k_3ws~z{jd+f?t|SAI|Vxp+l8Hh zeGv8`*jd;Ei^G$97e77EI>|unWGp0Y2n7#k!t_AamSV>zUfTQaAX;8GF7KUQ{O9q# z*G>#ok&UG$>!hP#BYw$-N)g3>w>70Xs6sdSOv3YVf> z9@g|adb|_k-nkzQhKQodNhV4pbYvZ@A}=LLVRCiL6PsSsiN87D{o~v`n`)fmR725J zt6^PT2&pE`DhWNlG3!q)hR=3S?F==M^jQ$sOq8d*vI^0q%CVvw%wqQA?kBTB=#sN4 zUO1OYn&@pLManDXf^kWXH=ph9Uku;sZq0^9^fb;N>n}9}kFQ#6@SJ>H=}Uwlmkh1~jpjnLUY+*=hXwPznWa)A+`%?$qMtKX$*I%?-|~+9W4f zQVtx9AyoqMP1TgLbp5C8e=%zYA7A}SCz`QuUg=&MV$9wKwz#}ZCWwG~gi=cm)x^lW z%EKusvsY2dsXIg9Xrx!AQguZ-yPiiT;eiTV5Lp7AV?qMnXq&TP_KO>T>i&Qf8gZ8? zw8A03$;f-zU0KX~q${cG3G5Bsc)K<^i_2FMb@qdiDSPzh%)!7RQZ`mgWw z$76NGvz{Jb{cCs6;`Rgmwb}JXjnqCOKlb@AUb*zS&pi70l~!+VdN=OP?mu&W{0sNH zLo2nZK|lQ9(JfH0M4m&g$&t^Fg+pbd6Cx!U*)6L(fYmBHQH(%ES;wfPNjf+#szy=r z3TxzCB9m0HB2r3@6M8hM>3+3O&a7jt75NBj^G4wD&zHL}08$E|0j?b&rXm`u#8L!@ zWF_8NC6Sf2!4_l|DwR@$Hf->$)j&SL*W-;JbY~W?e4+pOtjC)onj$SvMCpS~k)=gX zR%cl(;Q9MmGwxA~4$ZKr#=-c*d;2d9wI*D>;;g}|6#^ovtOnSipi>lK)sw<|rDK)} z1W-(khNYLL*y2hldc3&!4He_;PK+ zsMVyK-i;ef6X^c+Vz)cAl3N3vHaf7u6eEf!l-g(1SE*E#Va4jrdoU4_5b!1dM3m5q zSvam9EQ!80ZUs6>_|%;~qTR_Wi_b6toC3@iYpm;_YegP^{ZRkp&T7xUkdTyQV^hDjum88mH>LtUNJZh3dbf#Z6>Ne z8ajud_<4PQAq0x8&r?J7n!X9<3f|n`HTd`mN zX(#8Z5%x{3yK8(T^k*Mc4}JCdPYUq~A;K-e)7D&eIA z9m)vWj3RMZL9#s)z8#W{Qf`8*)xw+JtvkH~$wqQ(kR(Y?Q9(1KqQw_Z5)*9ENl7Jb z)~kC+!g&GOHNFsWt|4X2YNRU=>0PKRNM=YR;{uHk0W*d1S_)mWW)PsU1d6^hbG9Nc zXUicf z<)CvQZ>KzVFq+L1SIr43BCDLL0hS3iS0goslVsO)aG(sO4^s(%ZMKCK5|G#xa-Imu zt@3EZjZ0=}#J!_|XU4xj)!%m@E@-(1Ijk+(f&(DTpz3Lcf^ZYaq(+RO*(|HnAHOt> zuUAOy(cpRM;r`pR>y1KfBB<4$o8GO<1Kx)5-!FEjhgNDwfEy1|@5b-k>Ymtcd)sYq zyY0R8O~fYZw%gwSteM+wZ@cZyu5Y)!?Y6hJW^T8=?Y6i40%p7IZMVJYhm!5K_qIv0 T@omJW_y2j@TVUJ!-QE8MH_6L^ delta 7630 zcmeHLONgaM73S(_W=x_nne^zS@4f#tNkkl{>r|bpQ>Dm=m_;CoNfr@_VXP+(1T`2V zSq!3CNZgIc{H`QBK?Sq&ieMgOFJz(2X7*`8P;f1N_t8W5;7sBE(wwF*U0tWnVqb~-Iu)ZMOH8F!jxAXqgp+4Ss)=$*k`;&v1u#dv-f}Mmd&wLDaH|!qRy|9nNJ^{NA_DR_Num@nLVGqJ~U}s>Tf_)lx z7WUBM;MDHLugp}R7!?Zwj9T2uI>J$duo9j-?%tLUmF!yt1FRg68#&-BZgO|8Rc#k8|@@TP%1>(3Uv+ z6ihDF#So*jp3V5uQ?t{H;i>8KCkE|uC_=gDM9j@bWL;Oh#{`#KD2vH2r@xvER^ba7 zG?X-FC4rraR^v);nY|z1{oeF}#qh)F^~uojuE+V~vnRWb$M>I``a$_D5iiQlD~?j4 zw$WH?3tMk=s|)!3&WX8Y?Ng3H3(`fZBqN3*TE=R@Un~&t+mnHHQKsU6)t=eAq-}0a zaxTUTGcT^bKK=8g>vMeP+f&tZIlg;odTn4~@V`^46VO>jT;;f{od~C|K#nrz|-$JMz z$Ez6neo=${@#5v_XO))=)?R*j|NAfOUAc08*eha^ikTecz(g&PxS~RCfR+?{7+D{s zuTM{p@BD3g&*H{Ivn!Jy^=h;S-;Y22jZ05{?W>PHajDmq$4_@sCwniPAOD(WJ3}wH zWp6(G@G1|0PFAKVYAx{+t`_a@s8vHMCpii=^r#2vY@>uwtdwB28ipdHmP)DZslzTF3bYX+6Jdq=93D(FsKb2`Mr`RiKG&Ra8T4 zaf39`G3q1*G{Kx&iU_qC19Aq1l(2r?8}ChjI~ihzfM`{5OJI&R79i6T_|hv~T-?B| z=XlwwdUi*zc^Sg~__KRw-x`orVv0^NxKC$F0dF)!$`o)zQya)RU6p`e!L`JA7@}65 zO7EFP9;ep=f7oOq(Jn;D>#(wXtT%Y4Rl)Li@E^n}RN^#m(oX^5sOz z8@5pNfM0UXt!ZDXZ{rbh>v)VN{Nu~CS)MQg!4vWDkB-Rw7$ zuJ>iT(!A$;*{z@3Bc&c$>w-oz`sToLVU_fljdE3##40YDjbIO|Ee8*%u`-y*LQTFV zZK86qC=x0{ML#FVTRt!wp|vx4!aSxzyCI1rGg4g7kZ*YN8)K7`+0|^H9 z7hnFOQeRN&{5OA~p=|_dHFQBAg(cVxA_$Uz9%3X+36pAO0y%KZR@$bJ-O2G*Sazy; z3($IPd>od&tlorWFSsMHEFQaq1|l<-3J8Qp7lK_KhDBBwv^ROE?EI2WF*#VS3G+RX z6pVF_Z8MEFund4{10*wsK8!Y(KxeDf+{j4d2Oz@UQ}U@1>f z&t(h0HJRPn@%T0XIdt8w8u)k5&Mpp;oJ-bO%<}<(VDxkbf?<(l<7-^C<#$ia1*K`& z_lP5tR-m4SLVaE2Nw*jWJ`O;dHcAvE&$FFf-(Q(`)^$=@u#MmFhT(dOdplbT553 zG1m)jg}HG*&t&}Z_31O)g>Sp?Z5O`f{~?a!ZM*RO&qZ@BbG^N5O`!Ab!na-cwhQ0w mSIzChw_W(Q3*UC(+b(>!-!!)i-);8g|8L=2VB!1I-Twt=5vkSy diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index d1c6aa6d57b8ffb32ce9a20583276d8d30c43393..c1cf22ab62fe0ae27246f661629023256102d902 100644 GIT binary patch delta 1604 zcmX^8gsb@p7fS={RKATYM>q`&%#w=}(@o>`jZ%`*43blmjm<5LEmM;WQcRN*(@cyF z43p9f6D^HWO;Qbwlafq~Hvi=OZ7OfX%D`Y#P?T!NrK@XXU}U0eV5w_lreJ7dWom9^ zXgt}_J5*IqPfx+n!c@=FSkF+;$i!Gj!N|nGz{=Dp)xgRy5y-N#G%=Vw!NG(ZNzvrE z@a>a39d!heOjFP>*E2Jp{L$w(H$v28@)@Uv8pe92dPe4YhK80p3Z_PSMuz5kMh513 zmgaD-p}C=+h2dnys0c2EVxTSFlQl!lC)c}p0X6Fx`8w$rD*!=eo`RvCX)zZUrl(95 zG(ajRJ9;^&Ww6Ii$qY`SA)!QA%9APYZlaRGhm` zz8joGe7t9c#3IN0w7^hcyf=~>=Ql$AC&zwaA5lJDCn*Qaq}BGIP?(Ov@7WjgnG~jS@}F6O&R>Q%w@nl1wcu%}tUl zOw0@o(##FalFXA#&CLx{H~-}PZ7Ofa%D`Y#P?T!NrK@XXU}U0eV5w_hreJ7kWnye) zXgE30HA>mcQqR!TK+nhoNSm4KC>WU-7+9Gar5acnCK?!8Sy>vGPwsUv;X_q7`J=P< zKPdr>KOvZ9X}{i&HIwJ$6clV8m#EKmw$Maq9F2W+r`6TwSWZkO zDjiT>KJ1;G7s^9wI&h4(AHjaN*t|GFaX#nNMa+y0ATasJ|Ik(?#;rtk;gQ}Lt diff --git a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst index 2e72a08fd..fe365b3fd 100644 --- a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst +++ b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst @@ -669,14 +669,14 @@ Outlier Issue Parameters .. code-block:: python outlier_kwargs = { - "threshold": # floating value between 0 and 1 that sets the sensitivity of the outlier detection algorithms, based on either features or pred_probs.. + "threshold": # floating value between 0 and 1 that sets the sensitivity of the outlier detection algorithms, based on either features or pred_probs. + "k": # integer representing the number of nearest neighbors for nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, Used with features, + "t": # integer used to modulate the strength of the transformation from distances to scores that lie in the range [0, 1]. Used with features, + "scaling_factor": # floating value used to normalize the distances before they are converted into scores. Used with features, + "metric": # string or callable representing the distance metric used in nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, Used with features, "ood_kwargs": # dict of keyword arguments to constructor `OutOfDistribution()`{ "params": { # NOTE: Each of the following keyword arguments can also be provided outside "ood_kwargs" - - "knn": # `knn` argument to constructor `OutOfDistribution()`. Used with features, - "k": # `k` argument to constructor `OutOfDistribution()`. Used with features, - "t": # `t` argument to constructor `OutOfDistribution()`. Used with features, "adjust_pred_probs": # `adjust_pred_probs` argument to constructor `OutOfDistribution()`. Used with pred_probs, "method": # `method` argument to constructor `OutOfDistribution()`. Used with pred_probs, "confident_thresholds": # `confident_thresholds` argument to constructor `OutOfDistribution()`. Used with pred_probs, diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index dfa986166..ddeeca8a1 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 96aa2015a..19e39730a 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index fb9f7a38a..f2ae592a5 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 1f4d94f78..09e312137 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index e9f1461fe..505cc2f20 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 5dcb0dd9f..cebc3c1c5 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 5fca24e96..6953cf6d3 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index ca90c3c59..47a83d9d9 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index d104da0e9..ef0bc1f07 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index ec9b0c142..73d01f5f0 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index a0ba8e763..7853ae5ba 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 8b7654606..e12721dcd 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 155a9b7d0..a32c08dea 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 40dabd38c..2caee695d 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index b36b8a466..ed5d33d20 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index eb6cafaa0..43216f98a 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index d3bb49df4..672c4326e 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html index 0911e92be..3d6003272 100644 --- a/master/cleanlab/datalab/guide/issue_type_description.html +++ b/master/cleanlab/datalab/guide/issue_type_description.html @@ -1364,14 +1364,14 @@

Label Issue Parameters

Outlier Issue Parameters#

outlier_kwargs = {
-    "threshold": # floating value between 0 and 1 that sets the sensitivity of the outlier detection algorithms, based on either features or pred_probs..
+    "threshold": # floating value between 0 and 1 that sets the sensitivity of the outlier detection algorithms, based on either features or pred_probs.
+    "k": # integer representing the number of nearest neighbors for nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, Used with features,
+    "t": # integer used to modulate the strength of the transformation from distances to scores that lie in the range [0, 1]. Used with features,
+    "scaling_factor": # floating value used to normalize the distances before they are converted into scores. Used with features,
+    "metric": # string or callable representing the distance metric used in nearest neighbors search (passed as argument to `NearestNeighbors`), if necessary, Used with features,
     "ood_kwargs": # dict of keyword arguments to constructor `OutOfDistribution()`{
             "params": {
                     # NOTE: Each of the following keyword arguments can also be provided outside "ood_kwargs"
-
-                    "knn": # `knn` argument to constructor `OutOfDistribution()`. Used with features,
-                    "k": # `k` argument to constructor `OutOfDistribution()`. Used with features,
-                    "t": # `t` argument to constructor `OutOfDistribution()`. Used with features,
                     "adjust_pred_probs": # `adjust_pred_probs` argument to constructor `OutOfDistribution()`. Used with pred_probs,
                     "method": # `method` argument to constructor `OutOfDistribution()`. Used with pred_probs,
                     "confident_thresholds": # `confident_thresholds` argument to constructor `OutOfDistribution()`. Used with pred_probs,
diff --git a/master/searchindex.js b/master/searchindex.js
index 3b057ca24..38dc81ec0 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "scaling_factor": [31, 57], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "strength": [57, 71, 97], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 106, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": [88, 110], "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "change_pin": [89, 96], "visa_or_mastercard": [89, 96], "getting_spare_card": [89, 96], "supported_cards_and_curr": [89, 96], "lost_or_stolen_phon": [89, 96], "beneficiary_not_allow": [89, 96], "apple_pay_or_google_pai": [89, 96], "card_about_to_expir": [89, 96], "card_payment_fee_charg": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109, 110], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 97, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105, 110], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105, 110], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105, 110], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "923": 93, "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "597": [93, 100], "493": 93, "060": 93, "922": 93, "330": [93, 100, 105], "505": 93, "912": [93, 101], "476": [93, 100], "340": [93, 100], "879": 93, "328": [93, 105], "310": 93, "556": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 97, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "523": [97, 100], "991400": 97, "356958": 97, "362": 97, "619565": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108, 110], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "110": [97, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "005": 97, "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105, 110], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "965": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108, 110], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "363": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101, 110], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105, 110], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105, 110], "174": 101, "150": [101, 103, 105, 110], "169": [101, 110], "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": 104, "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": [105, 110], "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": [105, 110], "237": 105, "207": 105, "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "46456493": 106, "64it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a01": 110, "907": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "4mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/adapter/imagelab", "cleanlab/datalab/internal/adapter/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/adapter/imagelab.rst", "cleanlab/datalab/internal/adapter/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "imagelab", "adapter", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 86, 91, 92, 101, 103, 104], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 91, 92, 101, 103, 104], "generate_noise_matrix_from_trac": [0, 1, 91, 92, 101, 103, 104], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 19, 43, 48, 50, 51, 52, 53, 57, 58, 59, 70, 93, 97, 98, 110], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 32, 33, 35, 37, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 85, 86, 91, 98, 107], "benchmark": [1, 40, 85, 86, 91, 92, 101, 103, 104], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 100, 102, 107], "": [1, 2, 3, 4, 10, 21, 35, 39, 40, 44, 48, 51, 54, 56, 57, 59, 63, 64, 68, 70, 71, 72, 73, 75, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "core": [1, 43, 46, 77, 79], "algorithm": [1, 2, 8, 10, 34, 41, 45, 56, 57, 59, 63, 72, 81, 83, 85, 88, 89, 92, 95, 96, 97, 98, 99, 101, 103, 104, 106, 108, 110], "These": [1, 2, 3, 4, 5, 8, 10, 24, 40, 42, 44, 45, 46, 47, 54, 61, 63, 64, 67, 71, 72, 76, 80, 81, 83, 84, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "introduc": [1, 10, 90, 97, 99, 100, 101], "synthet": [1, 103, 104, 109], "nois": [1, 2, 3, 39, 46, 49, 59, 64, 91, 92, 97, 98, 103, 108], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 23, 24, 25, 27, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 91, 97, 100, 102, 106, 107], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 35, 37, 39, 43, 45, 46, 49, 51, 52, 59, 63, 64, 65, 66, 67, 72, 73, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 97, 100, 102, 103, 106, 107, 108, 109], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 28, 29, 30, 31, 33, 34, 42, 43, 44, 45, 46, 49, 51, 55, 59, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 88, 91, 95, 100, 102, 103, 107], "specif": [1, 3, 5, 9, 13, 17, 18, 19, 30, 36, 37, 42, 54, 55, 56, 61, 65, 68, 71, 80, 84, 93, 95, 96, 97, 100, 101, 105, 110], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "modul": [1, 3, 10, 13, 14, 16, 17, 18, 19, 24, 27, 32, 35, 36, 37, 39, 40, 41, 42, 43, 44, 46, 51, 53, 54, 56, 57, 59, 61, 63, 68, 71, 72, 73, 85, 93, 99, 104], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 17, 19, 21, 26, 33, 37, 39, 40, 41, 43, 44, 46, 49, 53, 54, 56, 57, 59, 62, 63, 64, 65, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 103, 106, 107, 108, 109, 110], "gener": [1, 2, 3, 7, 10, 21, 26, 28, 36, 39, 51, 54, 56, 59, 60, 72, 73, 75, 80, 89, 90, 91, 92, 93, 96, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110], "valid": [1, 2, 3, 5, 10, 15, 35, 37, 39, 46, 47, 49, 50, 51, 54, 56, 57, 59, 63, 65, 68, 71, 73, 75, 76, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "matric": [1, 3, 49, 99], "which": [1, 2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 21, 25, 29, 35, 36, 37, 39, 40, 44, 45, 46, 49, 51, 55, 56, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "learn": [1, 2, 3, 4, 5, 9, 10, 17, 19, 25, 33, 36, 41, 42, 43, 44, 46, 48, 50, 55, 56, 59, 61, 63, 65, 72, 74, 76, 79, 83, 85, 88, 89, 90, 91, 93, 95, 96, 97, 98, 100, 103, 104, 108], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 103, 104, 105, 106, 108, 109, 110], "possibl": [1, 2, 3, 7, 10, 39, 40, 44, 46, 48, 49, 51, 65, 66, 67, 68, 70, 71, 72, 73, 75, 81, 83, 84, 92, 97, 99, 100, 101, 103, 104, 105, 108, 109, 110], "noisi": [1, 2, 3, 10, 34, 39, 41, 44, 46, 49, 59, 64, 65, 67, 73, 75, 76, 77, 79, 80, 86, 91, 92, 95, 96, 97, 99, 102, 103], "given": [1, 2, 3, 5, 10, 17, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 58, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "matrix": [1, 2, 3, 5, 10, 13, 19, 21, 34, 39, 46, 48, 49, 52, 54, 59, 60, 65, 68, 70, 71, 72, 73, 95, 97, 105, 106], "trace": [1, 91, 92, 101, 103, 104], "valu": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 21, 25, 29, 30, 35, 37, 39, 40, 41, 43, 44, 46, 48, 49, 51, 54, 55, 56, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 84, 89, 90, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 16, 17, 19, 21, 29, 39, 40, 43, 44, 45, 48, 51, 54, 55, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 85, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110], "function": [1, 2, 3, 4, 5, 7, 10, 13, 16, 17, 19, 26, 29, 33, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 103, 104, 105, 109, 110], "noise_matrix": [1, 2, 3, 10, 49, 59, 91, 92, 101, 103, 104], "py": [1, 3, 36, 40, 41, 46, 49, 51, 91, 92, 101, 103, 104], "verbos": [1, 2, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 43, 46, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 91, 97, 101, 103], "fals": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 50, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 105, 106, 108, 109], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "prior": [1, 2, 3, 39, 46, 49, 51], "repres": [1, 2, 3, 7, 10, 13, 15, 19, 21, 29, 35, 37, 39, 43, 46, 49, 52, 54, 55, 57, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 110], "p": [1, 2, 3, 5, 10, 39, 46, 48, 49, 57, 59, 63, 71, 72, 73, 77, 95, 96, 97, 100, 101, 103, 110], "true_label": [1, 2, 3, 39, 49, 59, 101, 103], "k": [1, 2, 3, 4, 5, 8, 10, 13, 15, 19, 21, 22, 26, 29, 31, 34, 39, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 88, 90, 91, 92, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "check": [1, 2, 5, 6, 9, 10, 13, 15, 19, 30, 37, 40, 43, 44, 50, 60, 62, 68, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 104, 108], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 15, 16, 25, 29, 41, 44, 49, 51, 57, 70, 75, 89, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108], "achiev": [1, 2, 40, 41, 44, 75, 99, 100, 103, 110], "better": [1, 5, 10, 46, 55, 63, 65, 73, 75, 76, 85, 89, 90, 92, 95, 96, 97, 99, 101, 104, 105, 106, 107, 110], "than": [1, 2, 3, 4, 7, 9, 10, 29, 31, 34, 39, 46, 55, 59, 62, 63, 68, 70, 72, 73, 75, 79, 83, 88, 90, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "random": [1, 2, 3, 7, 10, 21, 34, 43, 51, 54, 63, 73, 75, 88, 90, 91, 92, 93, 95, 97, 99, 100, 101, 103, 104, 106], "perform": [1, 2, 4, 7, 10, 29, 31, 34, 40, 44, 51, 53, 54, 55, 71, 75, 85, 88, 89, 91, 99, 101, 102, 103, 104, 107, 108], "averag": [1, 3, 5, 10, 25, 31, 39, 40, 44, 51, 57, 63, 64, 71, 72, 73, 99, 103, 106], "amount": [1, 3, 93], "paramet": [1, 2, 3, 4, 5, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 92, 93, 96, 97, 100], "np": [1, 2, 3, 4, 5, 7, 13, 19, 21, 34, 39, 41, 43, 45, 46, 48, 49, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "ndarrai": [1, 2, 3, 4, 5, 13, 19, 26, 28, 29, 33, 34, 35, 39, 41, 43, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 97, 110], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 85, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 15, 19, 21, 29, 35, 39, 41, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "shape": [1, 2, 3, 4, 5, 13, 19, 21, 39, 41, 43, 45, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 90, 97, 98, 99, 101, 104, 105, 106, 109, 110], "condit": [1, 2, 3, 10, 49, 55, 58, 59, 73, 93, 101, 110], "probabl": [1, 2, 3, 5, 8, 10, 13, 19, 26, 28, 31, 34, 35, 39, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 86, 98, 99, 101, 102, 104, 105, 106, 109, 110], "k_": [1, 2, 3, 49, 59], "k_y": [1, 2, 3, 49, 59], "contain": [1, 2, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 46, 48, 49, 53, 54, 58, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109], "fraction": [1, 2, 3, 10, 23, 41, 49, 59, 63, 75, 95, 99, 100], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 103, 104, 105, 107, 108, 109, 110], "everi": [1, 2, 3, 4, 5, 10, 13, 19, 40, 44, 46, 49, 58, 59, 65, 73, 75, 76, 88, 90, 91, 92, 93, 95, 96, 99, 103, 105, 107, 109, 110], "class": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 103, 104, 105, 106, 107, 108, 110], "other": [1, 2, 3, 5, 10, 13, 19, 25, 30, 39, 40, 42, 43, 44, 46, 49, 52, 54, 59, 60, 61, 63, 64, 67, 71, 72, 73, 75, 80, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 106, 109, 110], "assum": [1, 2, 3, 15, 46, 49, 54, 58, 59, 73, 77, 80, 97, 99, 100, 104, 106, 108, 109, 110], "column": [1, 2, 3, 5, 10, 11, 13, 15, 16, 33, 39, 43, 46, 49, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 71, 72, 73, 75, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "sum": [1, 2, 3, 29, 34, 35, 39, 49, 51, 59, 64, 65, 67, 70, 75, 91, 92, 93, 99, 101, 103, 104, 109, 110], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 98, 99, 107], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 19, 23, 25, 26, 28, 29, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "true": [1, 2, 3, 5, 7, 10, 13, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 51, 54, 58, 59, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "return": [1, 2, 3, 4, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 104, 105, 108, 109, 110], "bool": [1, 2, 3, 5, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 51, 54, 58, 59, 63, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 84], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 40, 43, 44, 46, 54, 59, 63, 64, 65, 67, 68, 84, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 108, 110], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 17, 19, 21, 25, 26, 30, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 49, 51, 52, 54, 55, 57, 58, 59, 63, 65, 67, 70, 71, 72, 73, 75, 76, 81, 83, 84, 85, 90, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 109, 110], "perfect": [1, 2, 39, 75, 101, 105], "exactli": [1, 3, 10, 39, 40, 44, 46, 66, 72, 91, 92, 93, 95, 96, 100, 101], "yield": [1, 40, 44, 100], "between": [1, 5, 9, 13, 14, 18, 19, 24, 25, 27, 29, 32, 35, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 61, 63, 64, 67, 70, 72, 73, 75, 76, 79, 83, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "below": [1, 3, 4, 5, 10, 39, 40, 43, 44, 46, 48, 51, 57, 63, 64, 65, 70, 71, 79, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "we": [1, 2, 3, 5, 7, 10, 13, 16, 25, 40, 43, 44, 46, 51, 59, 60, 62, 63, 70, 71, 73, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "loop": [1, 3, 49, 59, 93, 105], "implement": [1, 2, 3, 4, 9, 17, 25, 40, 41, 43, 44, 49, 53, 55, 56, 59, 72, 75, 85, 88, 90, 91, 95, 100, 106, 107], "what": [1, 5, 9, 10, 13, 19, 36, 39, 41, 43, 46, 63, 64, 68, 70, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "doe": [1, 2, 3, 7, 10, 43, 44, 46, 51, 54, 57, 60, 70, 71, 75, 77, 79, 83, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 104, 108, 109], "do": [1, 2, 5, 9, 10, 39, 43, 44, 59, 60, 72, 73, 77, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 106, 108, 109, 110], "fast": 1, "explain": [1, 10, 97], "python": [1, 2, 44, 62, 75, 91, 92, 98, 106], "pseudocod": [1, 107], "happen": [1, 10, 46, 65, 96, 103, 109], "n": [1, 2, 3, 5, 7, 39, 40, 43, 44, 46, 48, 49, 50, 51, 54, 55, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 88, 89, 90, 93, 96, 97, 98, 99, 103, 104, 105, 108, 109, 110], "without": [1, 2, 5, 9, 10, 15, 17, 23, 40, 44, 56, 67, 75, 85, 89, 90, 96, 97, 99, 100, 101, 105, 106], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 48, 50, 57, 58, 59, 62, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109], "distinct": [1, 10, 21, 59, 110], "natur": [1, 10, 103, 106], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 83, 84, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 109, 110], "0": [1, 2, 3, 4, 5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 57, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "count_joint": 1, "len": [1, 2, 3, 7, 39, 43, 49, 58, 59, 60, 72, 73, 75, 88, 89, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "y": [1, 2, 3, 5, 8, 21, 33, 34, 44, 49, 51, 59, 60, 62, 71, 75, 76, 89, 90, 91, 92, 95, 97, 99, 101, 103, 104, 106, 108], "round": [1, 43, 46, 59, 75, 97, 99, 100, 108], "astyp": [1, 100, 103], "int": [1, 2, 3, 4, 5, 7, 13, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 41, 43, 44, 46, 51, 52, 54, 55, 56, 57, 58, 59, 60, 64, 65, 67, 71, 72, 73, 75, 77, 79, 80, 81, 84, 90, 91, 93, 97, 100, 105, 106], "rang": [1, 3, 5, 7, 10, 15, 49, 51, 57, 59, 71, 75, 76, 93, 97, 98, 99, 101, 103, 104, 105, 106, 108, 109, 110], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 15, 16, 19, 25, 39, 43, 46, 49, 50, 51, 52, 54, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "pragma": 1, "cover": [1, 3, 86, 97, 98, 99], "choic": [1, 8, 46, 55, 57, 93, 99, 104, 106], "replac": [1, 58, 62, 73, 88, 89, 91, 92, 93, 96, 97, 98, 99, 103, 106], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 54, 73, 90, 91, 92], "05": [1, 10, 29, 33, 58, 71, 75, 81, 83, 95, 98, 99, 100, 101, 105], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 91, 92, 101, 103, 104], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 91, 92, 93, 97, 99, 100, 101, 103, 104, 109], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 29, 42, 44, 51, 75, 88, 90, 91, 92, 95, 97, 98, 100, 101, 103, 104], "max_it": [1, 89, 90, 96, 106], "10000": [1, 43, 98, 99], "x": [1, 2, 3, 5, 10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 40, 41, 44, 46, 48, 49, 51, 54, 56, 58, 59, 60, 62, 63, 65, 71, 72, 73, 75, 77, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 106, 108], "diagon": [1, 3, 5, 46, 49, 59], "equal": [1, 3, 10, 15, 54, 65, 70, 80, 107], "creat": [1, 2, 9, 13, 19, 21, 40, 43, 44, 46, 59, 75, 85, 89, 90, 93, 95, 96, 97, 99, 100, 109, 110], "impli": [1, 10, 39, 64, 71], "float": [1, 2, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 42, 43, 44, 46, 48, 50, 51, 57, 58, 59, 63, 64, 65, 67, 70, 71, 75, 79, 83, 90, 91, 92, 100, 101, 103, 104], "entri": [1, 3, 5, 10, 39, 40, 44, 46, 48, 52, 54, 57, 59, 63, 64, 65, 68, 88, 89, 95, 96, 101, 104, 105, 108], "maximum": [1, 10, 13, 72, 80, 84, 97, 109], "minimum": [1, 8, 10, 13, 23, 46, 48, 65, 70, 83, 97], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 13, 19, 29, 40, 44, 46, 54, 70, 75, 91, 99, 100, 101, 103, 105, 106], "default": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 31, 33, 36, 39, 40, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 91, 93, 97, 99, 108, 109], "If": [1, 2, 3, 4, 5, 10, 13, 15, 16, 19, 29, 31, 37, 39, 40, 43, 44, 46, 48, 49, 51, 54, 55, 58, 59, 62, 63, 64, 65, 68, 70, 71, 72, 75, 76, 77, 79, 80, 83, 84, 85, 86, 88, 89, 90, 91, 93, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "have": [1, 2, 3, 4, 5, 7, 9, 10, 13, 19, 24, 27, 29, 32, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 80, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 25, 36, 39, 40, 43, 44, 45, 46, 49, 51, 52, 54, 58, 59, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "necessari": [1, 2, 3, 4, 7, 10, 15, 58, 91, 97], "In": [1, 2, 3, 5, 10, 39, 40, 43, 44, 54, 62, 63, 64, 66, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 107, 108, 109, 110], "particular": [1, 5, 6, 10, 13, 16, 17, 19, 22, 23, 25, 29, 30, 31, 34, 40, 44, 59, 63, 67, 71, 75, 80, 84, 85, 88, 89, 90, 92, 96, 99, 103, 104, 106, 108], "satisfi": [1, 3, 39], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 15, 33, 38, 40, 41, 42, 43, 44, 46, 49, 54, 56, 59, 61, 62, 65, 72, 73, 75, 77, 85, 86, 90, 97, 98, 99, 100, 101, 107], "argument": [1, 2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 34, 35, 40, 43, 44, 45, 46, 51, 54, 56, 60, 62, 63, 64, 65, 67, 70, 71, 72, 73, 75, 79, 80, 81, 83, 89, 92, 93, 96, 97, 98, 99, 104, 105, 108, 110], "when": [1, 2, 3, 4, 5, 10, 15, 17, 26, 29, 40, 44, 46, 49, 51, 54, 56, 57, 59, 62, 65, 67, 68, 70, 72, 73, 75, 76, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 103, 107, 108, 109, 110], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110], "rate": [1, 2, 3, 10, 41, 59, 90, 110], "set": [1, 2, 3, 5, 9, 10, 13, 15, 16, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 40, 43, 44, 46, 50, 51, 53, 54, 55, 57, 59, 62, 63, 65, 68, 70, 71, 72, 73, 75, 77, 79, 80, 88, 89, 91, 92, 95, 96, 97, 99, 100, 103, 104, 106, 107, 108, 109, 110], "note": [1, 2, 3, 7, 8, 10, 11, 15, 30, 34, 37, 40, 43, 44, 45, 46, 51, 54, 59, 62, 63, 68, 70, 71, 72, 73, 75, 76, 80, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "you": [1, 2, 3, 5, 7, 9, 10, 13, 17, 19, 39, 40, 42, 43, 44, 46, 51, 56, 61, 62, 63, 65, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 103, 104, 105, 106, 107, 108, 109, 110], "high": [1, 2, 10, 19, 43, 46, 54, 55, 59, 70, 73, 75, 88, 89, 91, 92, 93, 97, 98, 100, 101, 105, 108, 109, 110], "mai": [1, 2, 3, 4, 5, 10, 13, 16, 24, 25, 27, 32, 35, 39, 40, 42, 43, 44, 46, 49, 51, 54, 59, 63, 64, 68, 70, 71, 72, 73, 75, 77, 80, 84, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "imposs": [1, 10, 101], "also": [1, 2, 3, 5, 7, 9, 10, 25, 37, 39, 40, 43, 44, 46, 51, 58, 62, 63, 72, 75, 80, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "low": [1, 10, 13, 59, 63, 85, 91, 92, 96, 97, 101, 105, 109], "zero": [1, 3, 5, 40, 44, 48, 54, 59, 60, 91, 93, 104, 105, 106], "forc": [1, 2, 3, 5, 44, 91, 110], "instead": [1, 2, 3, 10, 13, 16, 19, 36, 39, 40, 43, 44, 46, 49, 59, 62, 63, 65, 67, 71, 72, 73, 75, 76, 79, 81, 83, 86, 88, 89, 90, 93, 95, 97, 99, 100, 101, 104, 105, 106, 108, 109, 110], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 13, 19, 26, 29, 33, 39, 40, 43, 44, 45, 46, 48, 49, 54, 55, 57, 58, 59, 60, 62, 63, 72, 73, 75, 77, 79, 83, 84, 85, 89, 90, 91, 92, 93, 96, 97, 100, 103, 104, 105, 106, 107, 108, 109, 110], "guarante": [1, 3, 5, 14, 18, 24, 27, 32, 40, 42, 44, 47, 49, 61, 86], "produc": [1, 2, 5, 9, 10, 13, 19, 51, 63, 73, 75, 77, 79, 85, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "higher": [1, 5, 10, 39, 46, 48, 49, 51, 57, 62, 63, 64, 75, 92, 96, 97, 99, 105], "opposit": [1, 110], "occur": [1, 3, 10, 39, 58, 70, 91, 92, 93, 99, 100, 106], "small": [1, 3, 10, 39, 43, 51, 54, 57, 59, 64, 71, 89, 93, 96, 98, 100, 104, 106], "numpi": [1, 3, 4, 5, 7, 10, 15, 21, 34, 35, 43, 44, 45, 51, 54, 57, 58, 60, 62, 67, 70, 75, 76, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "max": [1, 46, 72, 73, 92, 93, 97, 100, 106], "tri": [1, 40, 44, 107], "befor": [1, 2, 3, 10, 40, 44, 57, 59, 72, 75, 80, 88, 89, 96, 97, 99, 100, 101, 103, 106, 108], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 19, 26, 31, 33, 39, 40, 43, 44, 46, 49, 51, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 80, 83, 84, 85, 88, 90, 91, 92, 93, 95, 99, 101, 104, 108, 109], "left": [1, 2, 46, 48, 57, 59, 65, 68, 71, 91, 92, 104, 105, 106, 109], "stochast": 1, "exceed": 1, "m": [1, 5, 40, 44, 50, 51, 54, 55, 63, 68, 70, 71, 72, 91, 92, 98, 103, 104, 105, 110], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 40, 44, 62, 99, 101, 109], "length": [1, 5, 15, 29, 30, 39, 41, 46, 59, 65, 68, 72, 73, 75, 77, 80, 84, 88, 90, 97, 100, 104, 106, 109, 110], "must": [1, 2, 3, 4, 5, 7, 13, 19, 39, 40, 41, 42, 44, 46, 49, 51, 52, 57, 59, 61, 62, 63, 64, 65, 72, 73, 75, 77, 79, 80, 81, 83, 84, 90, 97, 100, 103, 107, 109, 110], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 15, 39, 43, 46, 52, 59, 60, 63, 65, 71, 77, 79, 80, 81, 83, 84, 88, 89, 90, 99, 100, 103, 104, 105, 109, 110], "ball": [1, 98], "bin": [1, 3, 65, 91, 92, 106], "ensur": [1, 2, 10, 40, 44, 54, 56, 57, 59, 60, 62, 70, 73, 75, 88, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 106, 107, 108], "most": [1, 3, 5, 7, 10, 13, 19, 39, 43, 46, 51, 62, 63, 64, 65, 68, 70, 71, 72, 73, 76, 79, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109], "least": [1, 4, 10, 21, 34, 39, 43, 63, 64, 70, 73, 83, 93, 99, 100, 103, 106, 109], "int_arrai": [1, 59], "can": [2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 36, 37, 39, 40, 41, 42, 43, 44, 46, 50, 51, 52, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 80, 81, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97, 100, 104, 105, 106, 107, 108, 109, 110], "model": [2, 3, 4, 5, 9, 10, 11, 13, 19, 21, 33, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 91, 92, 97, 98, 102, 107, 109, 110], "For": [2, 3, 5, 7, 9, 10, 12, 13, 19, 25, 38, 39, 40, 43, 44, 46, 49, 51, 54, 57, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 88, 89, 90, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110], "regular": [2, 3, 43, 62], "multi": [2, 3, 4, 10, 35, 39, 40, 43, 44, 46, 50, 51, 52, 59, 60, 64, 65, 66, 67, 72, 73, 85, 97, 99, 100, 101, 102], "task": [2, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 28, 33, 36, 39, 43, 49, 51, 52, 57, 59, 63, 65, 73, 75, 85, 89, 90, 96, 97, 98, 99, 100, 101, 104, 106, 108, 109, 110], "cleanlearn": [2, 3, 10, 26, 33, 40, 59, 62, 74, 75, 76, 85, 86, 88, 89, 100, 108], "wrap": [2, 40, 44, 53, 62, 72, 75, 85, 88, 89, 91, 92, 95, 96, 101, 108], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 62, 71, 72, 75, 80, 88, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "sklearn": [2, 3, 4, 5, 8, 10, 21, 34, 39, 44, 51, 55, 56, 59, 62, 72, 75, 76, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 107, 108], "classifi": [2, 3, 44, 51, 59, 63, 66, 72, 73, 85, 86, 88, 89, 90, 95, 96, 99, 103, 104, 106, 107, 109, 110], "adher": [2, 44, 75], "estim": [2, 3, 4, 5, 9, 13, 16, 25, 39, 43, 44, 46, 49, 59, 63, 64, 65, 70, 72, 75, 77, 79, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 99, 100, 102, 105, 106, 107, 108, 109, 110], "api": [2, 3, 17, 62, 68, 71, 72, 75, 86, 97, 99, 108], "defin": [2, 3, 5, 7, 10, 17, 25, 39, 40, 41, 43, 44, 46, 73, 75, 77, 85, 91, 92, 95, 98, 99, 100, 103, 106, 110], "four": [2, 10, 98, 101, 110], "clf": [2, 3, 5, 51, 75, 85, 88, 95, 97, 99, 100, 101, 104], "fit": [2, 3, 5, 8, 10, 21, 42, 44, 54, 56, 61, 62, 72, 74, 75, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 107, 108, 110], "sample_weight": [2, 44, 75, 101], "predict_proba": [2, 5, 39, 42, 44, 51, 61, 62, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 106], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 13, 19, 25, 26, 28, 31, 33, 34, 35, 37, 39, 42, 43, 44, 45, 46, 48, 49, 51, 52, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 89, 98, 99, 101, 102, 106, 108, 109, 110], "score": [2, 3, 4, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 45, 46, 48, 51, 57, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 79, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 106, 108], "data": [2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 44, 45, 46, 51, 52, 54, 55, 56, 59, 61, 62, 63, 64, 65, 66, 70, 72, 73, 74, 75, 80, 81, 82, 83, 84, 86, 93, 94, 102], "e": [2, 3, 5, 10, 15, 25, 35, 39, 40, 43, 44, 46, 49, 51, 52, 54, 59, 60, 63, 64, 65, 66, 68, 71, 72, 73, 75, 77, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "featur": [2, 3, 4, 5, 8, 10, 11, 13, 19, 21, 22, 26, 29, 30, 31, 33, 34, 51, 54, 55, 56, 59, 72, 75, 85, 88, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 108], "element": [2, 3, 5, 39, 45, 46, 48, 59, 63, 65, 73, 80, 81, 83, 89, 90, 96, 97, 99, 110], "first": [2, 5, 10, 20, 29, 30, 39, 43, 51, 54, 59, 63, 64, 68, 71, 73, 75, 85, 88, 89, 90, 91, 93, 95, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "index": [2, 10, 29, 39, 46, 53, 54, 56, 58, 59, 60, 64, 73, 75, 80, 83, 84, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "should": [2, 3, 5, 7, 10, 17, 25, 29, 34, 35, 39, 40, 43, 44, 46, 48, 49, 51, 54, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "correspond": [2, 3, 5, 10, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 39, 40, 43, 44, 45, 46, 48, 49, 51, 54, 58, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 77, 80, 81, 83, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "differ": [2, 5, 7, 10, 13, 14, 16, 18, 24, 27, 29, 30, 32, 39, 40, 42, 43, 44, 46, 47, 51, 54, 57, 59, 60, 61, 63, 68, 70, 72, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108], "sampl": [2, 3, 5, 8, 10, 13, 19, 23, 34, 46, 48, 51, 54, 55, 56, 65, 68, 71, 73, 75, 76, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 108, 109, 110], "size": [2, 10, 34, 40, 43, 44, 46, 51, 54, 55, 65, 70, 71, 75, 77, 79, 89, 93, 95, 99, 101, 103, 104, 105, 107, 109], "here": [2, 5, 7, 10, 17, 43, 46, 49, 62, 63, 64, 65, 67, 68, 71, 72, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "re": [2, 5, 40, 44, 56, 58, 63, 75, 85, 88, 89, 90, 91, 95, 96, 97, 99, 100, 108, 109, 110], "weight": [2, 10, 40, 41, 44, 51, 54, 63, 70, 73, 75, 89, 90, 91, 92, 96], "loss": [2, 41, 62, 73, 75, 93, 100], "while": [2, 3, 10, 40, 43, 44, 50, 51, 59, 75, 85, 93, 97, 99, 100, 101, 103, 104, 108], "train": [2, 3, 4, 5, 9, 10, 13, 19, 21, 35, 40, 41, 42, 44, 51, 59, 62, 63, 68, 71, 72, 75, 76, 86, 91, 92, 93, 95, 96, 98, 101, 102, 103, 104, 105, 107, 109, 110], "support": [2, 3, 4, 5, 13, 15, 17, 36, 37, 43, 45, 51, 59, 60, 62, 72, 73, 83, 85, 86, 90, 91, 92, 93, 97, 99], "your": [2, 3, 5, 9, 10, 13, 19, 39, 40, 42, 43, 44, 46, 51, 56, 59, 61, 62, 63, 64, 65, 67, 72, 73, 75, 76, 77, 79, 80, 86, 88, 89, 90, 93, 95, 98, 100, 103, 104, 105, 106, 107, 108, 109, 110], "recommend": [2, 5, 7, 10, 13, 16, 19, 43, 46, 63, 91, 92, 93, 97, 99, 100, 107, 108], "furthermor": 2, "correctli": [2, 3, 10, 39, 40, 44, 46, 49, 54, 60, 64, 65, 70, 71, 75, 77, 89, 96, 97, 99, 104, 105, 108, 109], "clonabl": [2, 75], "via": [2, 5, 7, 10, 11, 13, 16, 19, 21, 25, 39, 41, 43, 44, 51, 55, 59, 63, 68, 71, 72, 73, 75, 76, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 108, 109, 110], "base": [2, 3, 4, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 45, 46, 49, 50, 51, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 70, 72, 73, 75, 76, 79, 81, 83, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "clone": [2, 75, 104], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 43, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 67, 71, 75, 81, 86, 91, 97, 99, 101, 103, 104, 105, 106, 108, 110], "multipl": [2, 3, 5, 10, 13, 15, 16, 37, 39, 46, 57, 58, 63, 64, 65, 67, 70, 71, 75, 85, 91, 92, 93, 95, 99, 102, 104, 105, 108], "g": [2, 3, 5, 10, 15, 25, 35, 39, 40, 44, 46, 52, 54, 59, 65, 66, 68, 71, 72, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108], "manual": [2, 75, 85, 88, 89, 90, 97, 99, 106, 107, 108, 110], "pytorch": [2, 40, 41, 44, 75, 85, 90, 93, 99, 102, 104, 109], "call": [2, 3, 5, 6, 10, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 51, 59, 62, 72, 75, 89, 90, 91, 92, 96, 99, 101, 104, 106, 107, 108, 109, 110], "__init__": [2, 41, 75, 93], "independ": [2, 3, 10, 64, 75, 96, 97, 100, 107, 108, 110], "compat": [2, 40, 43, 44, 56, 62, 75, 76, 79, 83, 85, 88, 89, 97, 99, 107, 108], "neural": [2, 41, 62, 72, 75, 90, 93, 99, 104, 106, 108], "network": [2, 40, 41, 44, 62, 72, 75, 89, 90, 93, 96, 99, 104, 106, 108], "typic": [2, 10, 40, 44, 56, 72, 75, 88, 89, 90, 92, 93, 95, 96, 100, 106, 107], "initi": [2, 3, 10, 16, 21, 40, 44, 54, 63, 75, 88, 96, 99, 100], "insid": [2, 44, 75, 99, 101], "There": [2, 3, 7, 54, 85, 101, 103], "two": [2, 3, 10, 21, 29, 39, 40, 43, 44, 52, 54, 55, 56, 59, 68, 70, 71, 86, 89, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "new": [2, 7, 9, 10, 17, 25, 40, 43, 44, 50, 54, 58, 59, 63, 75, 89, 90, 91, 96, 98, 99, 100, 106, 107, 110], "notion": 2, "confid": [2, 3, 10, 25, 39, 43, 46, 49, 51, 59, 63, 64, 65, 68, 70, 71, 72, 73, 75, 79, 83, 85, 88, 93, 100, 101, 103, 104, 105, 107, 109, 110], "packag": [2, 5, 7, 9, 10, 12, 13, 14, 18, 38, 42, 46, 47, 59, 61, 62, 68, 71, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "prune": [2, 3, 46, 65, 75, 86, 100, 105], "everyth": [2, 71, 101], "els": [2, 71, 91, 93, 97, 98, 99, 100, 103, 104, 105], "mathemat": [2, 3, 10, 49, 104], "keep": [2, 16, 17, 59, 85, 91, 97, 98, 99, 100, 109], "belong": [2, 3, 10, 39, 46, 48, 49, 54, 64, 65, 66, 67, 72, 73, 77, 81, 83, 84, 92, 93, 100, 101, 104, 106, 109, 110], "2": [2, 3, 4, 5, 7, 10, 11, 13, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 76, 80, 81, 83, 84, 98, 99, 107], "error": [2, 3, 5, 10, 40, 44, 45, 46, 48, 49, 59, 64, 65, 67, 68, 70, 71, 73, 75, 77, 79, 80, 83, 86, 88, 90, 91, 92, 95, 96, 97, 98, 100, 102], "erron": [2, 3, 39, 46, 49, 59, 64, 65, 73, 75, 76, 77, 106, 108], "import": [2, 3, 4, 5, 7, 8, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 43, 45, 51, 54, 57, 58, 63, 67, 70, 75, 76, 81, 83, 84, 85, 88, 89, 95, 96, 97, 99, 100, 104, 105, 106, 108, 109, 110], "linear_model": [2, 5, 39, 59, 75, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logisticregress": [2, 3, 5, 39, 59, 85, 89, 90, 91, 92, 96, 97, 99, 101, 103, 106], "logreg": 2, "cl": [2, 17, 33, 75, 85, 88, 89, 99, 101, 108], "pass": [2, 3, 5, 8, 10, 11, 13, 15, 16, 17, 19, 26, 33, 36, 40, 43, 44, 46, 50, 51, 54, 56, 59, 62, 63, 65, 71, 72, 73, 75, 80, 81, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 103, 105, 106, 108], "x_train": [2, 88, 91, 92, 101, 103, 104, 108], "labels_maybe_with_error": 2, "had": [2, 3, 75, 105], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 54, 61, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 89, 94, 102, 103, 106, 107, 108], "pred": [2, 46, 59, 88, 89, 100, 107, 108], "x_test": [2, 88, 91, 92, 101, 104, 108], "might": [2, 5, 10, 54, 63, 75, 80, 88, 89, 91, 92, 93, 97, 99, 105], "case": [2, 3, 10, 13, 16, 39, 51, 54, 63, 75, 88, 89, 90, 91, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108, 110], "standard": [2, 3, 5, 33, 39, 46, 62, 64, 65, 67, 73, 75, 85, 88, 91, 92, 95, 98, 100, 101, 105], "adapt": [2, 12, 13, 18, 40, 42, 59, 61, 75, 106], "skorch": [2, 75, 85, 99], "kera": [2, 61, 68, 71, 75, 85, 99, 105], "scikera": [2, 62, 75, 99], "open": [2, 43, 88, 89, 92, 95, 96, 98, 101, 104, 105, 106, 108, 110], "doesn": [2, 10, 75, 85], "t": [2, 3, 4, 7, 10, 20, 30, 31, 40, 41, 43, 44, 45, 46, 51, 57, 58, 67, 72, 73, 75, 81, 83, 84, 85, 91, 92, 93, 96, 97, 98, 100, 101, 104, 105, 108, 110], "alreadi": [2, 5, 10, 13, 19, 40, 43, 44, 49, 54, 62, 63, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 105, 106, 108], "exist": [2, 5, 10, 15, 21, 40, 43, 44, 56, 58, 62, 68, 70, 72, 75, 85, 86, 88, 89, 91, 92, 96, 103, 110], "made": [2, 5, 13, 19, 40, 44, 55, 75, 88, 89, 93, 96, 97, 99, 100, 103, 105, 107, 108], "easi": [2, 12, 49, 75, 91, 92, 98, 99, 101, 104], "inherit": [2, 7, 41, 75], "baseestim": [2, 44, 75], "yourmodel": [2, 75], "def": [2, 7, 17, 40, 44, 62, 75, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "self": [2, 3, 5, 7, 10, 13, 15, 16, 17, 19, 34, 40, 41, 43, 44, 46, 51, 72, 73, 75, 88, 91, 93, 97, 98, 100, 104, 109, 110], "refer": [2, 10, 13, 19, 40, 44, 45, 64, 65, 67, 68, 70, 71, 72, 75, 79, 80, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 107, 108], "origin": [2, 5, 10, 44, 45, 46, 58, 59, 62, 64, 65, 68, 71, 72, 75, 76, 79, 81, 83, 88, 89, 91, 93, 95, 96, 97, 99, 101, 105, 106, 108, 110], "total": [2, 3, 4, 39, 43, 59, 64, 84, 93, 99, 109], "state": [2, 3, 5, 40, 41, 44, 50, 75, 101, 104, 105, 110], "art": [2, 41, 101, 104], "northcutt": [2, 3, 39, 72, 73], "et": [2, 3, 39, 41, 72, 73], "al": [2, 3, 39, 41, 72, 73], "2021": [2, 3, 39, 72, 73], "weak": [2, 71], "supervis": [2, 10, 91, 92, 99, 103], "find": [2, 5, 9, 10, 13, 16, 17, 19, 22, 23, 25, 26, 28, 29, 30, 31, 34, 35, 39, 40, 42, 43, 44, 45, 46, 50, 56, 58, 59, 61, 68, 71, 72, 73, 75, 77, 81, 83, 85, 86, 91, 98, 100, 102, 107], "uncertainti": [2, 10, 48, 72, 75, 99, 106, 108], "It": [2, 3, 5, 7, 10, 15, 16, 19, 25, 30, 33, 35, 36, 37, 40, 44, 46, 49, 51, 54, 55, 57, 63, 70, 71, 75, 85, 91, 92, 93, 97, 99, 101, 104, 107], "work": [2, 3, 7, 10, 15, 33, 39, 40, 43, 44, 46, 49, 58, 59, 60, 62, 63, 73, 75, 85, 86, 89, 91, 92, 97, 98, 100, 106, 108], "includ": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 40, 42, 43, 44, 54, 58, 59, 61, 63, 64, 67, 68, 72, 73, 75, 79, 80, 81, 83, 85, 86, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 106, 110], "deep": [2, 42, 44, 61, 62, 75, 96], "see": [2, 3, 5, 7, 10, 13, 16, 17, 36, 39, 40, 43, 44, 45, 46, 51, 56, 59, 62, 64, 65, 67, 68, 71, 72, 73, 75, 81, 83, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 108, 109, 110], "subfield": 2, "theori": [2, 101], "machin": [2, 4, 5, 9, 10, 17, 19, 36, 42, 57, 61, 75, 88, 89, 91, 92, 97, 98, 100, 103], "across": [2, 3, 5, 7, 10, 13, 16, 25, 39, 43, 51, 64, 71, 72, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 107, 108], "varieti": [2, 88, 89, 99], "like": [2, 3, 5, 6, 7, 10, 17, 35, 39, 40, 43, 44, 46, 49, 59, 62, 63, 64, 67, 68, 70, 73, 75, 76, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "pu": [2, 59], "input": [2, 3, 5, 9, 13, 19, 29, 39, 40, 43, 44, 49, 51, 54, 55, 58, 59, 60, 62, 71, 75, 85, 86, 89, 92, 93, 96, 98, 99, 100, 101, 103, 104, 105, 108, 109, 110], "discret": [2, 37, 46, 49, 59, 72, 73, 77, 79, 80], "vector": [2, 3, 4, 5, 10, 13, 19, 46, 49, 51, 52, 54, 59, 72, 73, 85, 89, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105, 106, 109, 110], "would": [2, 3, 5, 10, 40, 43, 44, 46, 55, 59, 65, 75, 85, 89, 91, 93, 99, 100, 101, 106, 108, 110], "obtain": [2, 5, 8, 10, 13, 19, 46, 63, 65, 68, 71, 73, 76, 90, 92, 96, 99, 103, 105, 107, 109, 110], "been": [2, 4, 39, 46, 49, 54, 58, 59, 63, 64, 68, 70, 72, 73, 75, 90, 91, 95, 97, 99, 100, 101, 103, 104, 105, 106, 109, 110], "dure": [2, 10, 19, 54, 56, 72, 75, 88, 89, 90, 95, 96, 97, 99, 101, 104, 107, 108, 110], "denot": [2, 3, 49, 51, 59, 65, 72, 73, 83], "tild": 2, "paper": [2, 4, 10, 63, 72, 81, 83, 98, 101, 103, 106, 108, 110], "cv_n_fold": [2, 3, 75, 89], "5": [2, 3, 4, 5, 8, 10, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 44, 46, 48, 50, 51, 59, 63, 64, 67, 68, 71, 75, 76, 83, 89, 91, 96, 98, 99, 104, 105, 106, 107, 109, 110], "converge_latent_estim": [2, 3], "pulearn": [2, 59], "find_label_issues_kwarg": [2, 10, 75, 86, 99, 101], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 65, 81, 99], "clean": [2, 70, 73, 75, 76, 85, 88, 89, 91, 92, 98, 108], "even": [2, 3, 7, 9, 10, 39, 43, 48, 49, 59, 75, 90, 97, 99, 100, 101, 103, 104, 105], "messi": [2, 75, 101], "ridden": [2, 75], "autom": [2, 9, 10, 75, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "robust": [2, 49, 54, 75, 92, 97, 99, 100], "prone": [2, 75], "out": [2, 3, 5, 10, 13, 19, 31, 40, 44, 46, 51, 54, 62, 65, 66, 68, 71, 72, 73, 75, 76, 84, 85, 86, 89, 97, 98, 99, 101, 102, 104, 105, 106, 108, 109, 110], "current": [2, 3, 5, 7, 10, 11, 13, 16, 17, 25, 40, 44, 45, 46, 51, 63, 70, 75, 91, 92, 99, 100, 103, 105], "intend": [2, 13, 14, 16, 17, 18, 19, 35, 36, 37, 47, 54, 63, 79, 83, 90, 91, 92, 96, 101], "A": [2, 3, 4, 5, 7, 10, 13, 15, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 39, 40, 41, 44, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 62, 63, 64, 67, 70, 71, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 110], "follow": [2, 3, 10, 17, 33, 37, 39, 40, 43, 44, 51, 53, 57, 63, 64, 68, 70, 71, 72, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "tutori": [2, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "repo": 2, "wrapper": [2, 13, 62, 88, 89, 90, 108], "around": [2, 13, 70, 91, 92, 100, 105, 106, 110], "fasttext": 2, "store": [2, 4, 5, 10, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 72, 75, 88, 89, 95, 96, 97, 98, 99, 109, 110], "along": [2, 51, 65, 83, 91, 92, 93, 97, 99, 106], "dimens": [2, 59, 77, 80, 93, 99, 106, 109], "select": [2, 9, 10, 29, 53, 63, 73, 93, 100, 103, 106], "split": [2, 3, 5, 10, 15, 43, 51, 58, 59, 75, 88, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 104, 107, 110], "cross": [2, 3, 10, 39, 46, 49, 50, 51, 65, 68, 71, 73, 75, 76, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110], "fold": [2, 3, 39, 46, 49, 75, 88, 90, 95, 98, 99, 105, 109], "By": [2, 39, 64, 65, 75, 91, 97, 109], "need": [2, 3, 10, 11, 39, 40, 43, 44, 46, 54, 56, 64, 65, 67, 72, 75, 85, 89, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 109], "holdout": [2, 3, 75], "comput": [2, 3, 4, 5, 7, 8, 10, 13, 22, 23, 25, 26, 29, 30, 31, 34, 39, 40, 41, 43, 44, 46, 48, 49, 50, 51, 54, 55, 56, 59, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 77, 79, 85, 86, 89, 91, 92, 98, 101, 102, 105, 106, 108, 109], "them": [2, 3, 5, 7, 9, 10, 12, 15, 30, 35, 38, 40, 42, 43, 44, 46, 56, 61, 63, 72, 75, 86, 88, 89, 91, 92, 93, 95, 96, 97, 99, 103, 104, 106, 108, 109, 110], "numer": [2, 3, 4, 5, 10, 13, 16, 25, 33, 37, 51, 54, 55, 70, 72, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 100, 101, 103, 104, 106, 108], "consist": [2, 3, 10, 40, 44, 53, 59, 63, 97, 109, 110], "latent": [2, 3, 49], "thei": [2, 3, 5, 10, 14, 18, 24, 27, 29, 32, 40, 41, 42, 44, 46, 47, 54, 57, 59, 62, 65, 70, 73, 75, 76, 79, 83, 85, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108, 110], "relat": [2, 3, 10, 16, 22, 23, 29, 30, 31, 34, 49, 59, 64, 75, 92, 96, 97], "close": [2, 3, 10, 43, 49, 72, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105], "form": [2, 3, 10, 40, 41, 44, 49, 58, 59, 73, 75, 99], "equival": [2, 3, 40, 44, 49, 72, 106, 108], "iter": [2, 3, 39, 40, 44, 46, 59, 64, 65, 75, 99, 103, 109], "enforc": [2, 40, 44, 59], "perfectli": [2, 39, 64, 101], "certain": [2, 3, 5, 10, 40, 44, 62, 71, 75, 91, 92, 97, 98, 105, 106], "dict": [2, 3, 5, 10, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 43, 44, 46, 50, 51, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 83, 91, 92, 93, 99, 100, 110], "keyword": [2, 3, 5, 10, 11, 13, 19, 26, 30, 33, 40, 43, 44, 46, 48, 51, 54, 56, 58, 62, 63, 65, 71, 72, 73, 75, 80, 81, 83, 91], "filter": [2, 3, 10, 43, 45, 58, 64, 66, 67, 69, 71, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 96, 98, 99, 100, 104, 105, 108, 109, 110], "find_label_issu": [2, 3, 10, 33, 42, 43, 45, 46, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 99, 104, 105, 108, 109, 110], "particularli": [2, 85, 100, 103, 106], "filter_bi": [2, 3, 43, 46, 65, 86, 99], "frac_nois": [2, 46, 65, 81, 99], "min_examples_per_class": [2, 46, 65, 99, 101], "impact": [2, 4, 10, 91, 92, 93, 97], "ml": [2, 4, 5, 9, 10, 18, 75, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 102, 103, 104, 106, 107, 108], "accuraci": [2, 10, 41, 73, 88, 89, 90, 93, 99, 100, 101, 103, 106, 108, 109], "n_job": [2, 43, 46, 65, 77, 79, 81, 99, 100, 106, 109], "disabl": [2, 40, 44, 46, 106], "process": [2, 3, 7, 13, 16, 19, 35, 40, 43, 44, 46, 54, 58, 63, 65, 71, 77, 79, 81, 89, 90, 91, 97, 99, 100, 103, 107], "caus": [2, 46, 51, 91, 92, 97, 99], "rank": [2, 3, 10, 39, 43, 45, 46, 51, 64, 65, 66, 68, 69, 71, 72, 74, 78, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 98, 99, 104, 105, 106, 109, 110], "get_label_quality_scor": [2, 42, 43, 45, 46, 47, 51, 63, 65, 66, 67, 68, 69, 70, 73, 74, 76, 78, 79, 81, 82, 83, 86, 99, 101, 104, 105, 109, 110], "adjust_pred_prob": [2, 10, 67, 72, 73, 101], "control": [2, 5, 9, 10, 13, 19, 43, 46, 63, 71, 72, 75, 81, 83, 91, 92, 97, 98, 99], "how": [2, 3, 5, 10, 13, 15, 16, 17, 19, 25, 39, 40, 41, 43, 44, 49, 59, 63, 64, 67, 68, 70, 72, 73, 75, 79, 83, 85, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 105, 106, 107, 108, 109], "much": [2, 10, 39, 43, 46, 75, 97, 99, 103], "output": [2, 3, 5, 10, 13, 19, 35, 40, 41, 44, 49, 59, 62, 63, 64, 68, 70, 71, 72, 75, 79, 80, 83, 84, 85, 86, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 106, 107, 108], "print": [2, 5, 7, 13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 59, 63, 64, 65, 70, 72, 73, 75, 77, 79, 80, 84, 86, 88, 89, 90, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "suppress": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80, 109, 110], "statement": [2, 43, 63, 70, 72, 73, 75, 77, 79, 80], "big": [2, 43, 65, 71, 75, 101], "limit": [2, 5, 13, 19, 43, 54, 65, 85, 97, 105, 109, 110], "memori": [2, 40, 43, 44, 65, 71, 77, 79, 91, 109], "experiment": [2, 40, 41, 43, 44, 45, 65, 86, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "label_issues_batch": [2, 42, 65, 99], "find_label_issues_batch": [2, 42, 43, 65, 99], "pred_prob": [2, 3, 5, 8, 10, 11, 13, 19, 26, 28, 29, 31, 34, 35, 39, 43, 45, 46, 48, 49, 50, 51, 52, 59, 60, 63, 64, 65, 67, 68, 71, 72, 73, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108], "threshold": [2, 3, 4, 7, 10, 13, 21, 22, 23, 25, 31, 33, 34, 43, 57, 70, 71, 72, 73, 79, 83, 91, 97, 105, 106, 109, 110], "inverse_noise_matrix": [2, 3, 10, 49, 59, 86, 101], "label_issu": [2, 43, 46, 65, 68, 75, 77, 86, 88, 89, 90, 93, 96, 99, 100, 101, 104, 108], "clf_kwarg": [2, 3, 10, 75], "clf_final_kwarg": [2, 75], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 39, 43, 46, 48, 54, 63, 64, 65, 67, 68, 70, 71, 73, 75, 76, 79, 83, 85, 88, 89, 90, 92, 93, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108], "result": [2, 3, 9, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 43, 44, 46, 48, 57, 59, 65, 67, 68, 71, 73, 75, 76, 77, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 108, 109, 110], "identifi": [2, 3, 5, 7, 9, 10, 13, 15, 19, 30, 36, 39, 43, 45, 46, 54, 65, 68, 71, 73, 75, 76, 77, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 101, 104, 106, 108, 109, 110], "final": [2, 10, 75, 88, 95, 97, 100, 105, 107, 108], "remain": [2, 75, 86, 88, 89, 93, 97, 100, 104, 108, 110], "datasetlik": [2, 59, 75], "beyond": [2, 5, 7, 9, 10, 12, 38, 85, 88, 89, 100, 108, 109], "pd": [2, 3, 5, 7, 13, 16, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 50, 62, 63, 64, 75, 83, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 108, 110], "datafram": [2, 3, 5, 7, 13, 15, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 43, 50, 59, 60, 62, 63, 64, 75, 80, 84, 86, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 108, 109, 110], "scipi": [2, 4, 5, 13, 16, 55, 59, 72, 97], "spars": [2, 4, 5, 10, 13, 16, 19, 21, 34, 54, 59, 60, 95, 97], "csr_matrix": [2, 4, 5, 13, 16, 19, 21, 34, 54, 97], "torch": [2, 40, 41, 44, 89, 90, 93, 96, 98, 106], "util": [2, 5, 10, 13, 19, 36, 40, 41, 44, 47, 54, 62, 63, 68, 71, 75, 85, 86, 90, 91, 92, 93, 99, 101, 106], "tensorflow": [2, 59, 62, 85, 90, 99], "object": [2, 5, 10, 13, 15, 16, 19, 35, 36, 40, 41, 43, 44, 51, 54, 56, 59, 60, 62, 65, 68, 69, 70, 71, 72, 75, 83, 85, 89, 90, 92, 93, 95, 97, 99, 100, 101, 102, 104, 108], "list": [2, 3, 5, 10, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 41, 43, 44, 45, 46, 52, 54, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 79, 80, 81, 83, 84, 86, 89, 90, 91, 92, 93, 98, 99, 100, 101, 104, 105, 108, 110], "index_list": 2, "subset": [2, 3, 5, 13, 19, 39, 43, 46, 59, 73, 80, 84, 88, 89, 90, 93, 95, 96, 97, 99, 104, 105, 106, 107, 108, 110], "wa": [2, 3, 15, 17, 43, 57, 59, 63, 64, 70, 72, 84, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 107, 109, 110], "abl": [2, 3, 10, 75, 90, 99, 100, 101, 103, 104], "format": [2, 3, 5, 10, 15, 35, 40, 43, 44, 46, 49, 50, 51, 52, 54, 59, 60, 62, 63, 64, 65, 68, 71, 72, 73, 75, 77, 79, 80, 83, 84, 88, 91, 92, 93, 95, 97, 98, 100, 103, 108, 109, 110], "make": [2, 3, 5, 21, 40, 43, 44, 51, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 108], "sure": [2, 5, 43, 46, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 103, 104, 105, 106, 108], "shuffl": [2, 10, 59, 90, 93, 96, 97, 104, 106], "ha": [2, 3, 5, 6, 10, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 45, 49, 51, 54, 58, 59, 63, 68, 70, 75, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 104, 105, 106, 107, 108, 110], "batch": [2, 43, 59, 62, 63, 77, 79, 93, 99, 106], "order": [2, 5, 10, 37, 39, 40, 44, 45, 46, 49, 50, 51, 57, 59, 63, 64, 65, 68, 71, 72, 73, 77, 80, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 108, 109, 110], "destroi": [2, 59], "oper": [2, 40, 43, 44, 54, 59, 62, 73, 85, 88, 89, 96, 99, 106], "eg": [2, 5, 10, 59, 68, 71, 91, 92, 99, 100], "repeat": [2, 59, 63, 103, 106], "appli": [2, 10, 37, 40, 42, 44, 46, 51, 52, 54, 58, 59, 67, 72, 81, 85, 88, 89, 90, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 109], "array_lik": [2, 3, 39, 46, 59, 65, 72, 76], "some": [2, 3, 5, 10, 17, 25, 39, 40, 42, 44, 46, 49, 54, 58, 59, 61, 63, 64, 65, 67, 68, 71, 72, 73, 75, 77, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "seri": [2, 3, 43, 59, 60, 75, 83, 99, 100], "row": [2, 3, 5, 10, 13, 16, 30, 35, 39, 43, 46, 48, 49, 54, 55, 59, 63, 64, 65, 67, 72, 73, 75, 80, 81, 83, 84, 88, 90, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 110], "rather": [2, 3, 5, 10, 29, 39, 59, 62, 63, 70, 79, 83, 89, 98, 100, 103, 107, 108, 109, 110], "leav": [2, 46], "per": [2, 3, 5, 7, 10, 13, 16, 39, 43, 46, 51, 58, 63, 64, 65, 67, 70, 71, 73, 76, 77, 79, 83, 92, 99, 105, 110], "determin": [2, 3, 10, 15, 19, 25, 29, 33, 39, 43, 46, 51, 54, 59, 63, 65, 68, 70, 73, 79, 83, 91, 97, 99, 100, 103, 105, 106, 108], "cutoff": [2, 3, 55, 106], "consid": [2, 3, 4, 5, 10, 13, 16, 19, 26, 29, 31, 34, 39, 40, 44, 46, 54, 56, 59, 63, 70, 72, 73, 76, 79, 83, 88, 89, 90, 93, 95, 96, 97, 99, 100, 101, 105, 106, 107, 108, 109], "section": [2, 3, 7, 10, 86, 93, 95, 97, 99, 100, 105], "3": [2, 3, 4, 5, 7, 10, 11, 37, 39, 40, 44, 46, 49, 50, 51, 52, 55, 57, 58, 59, 62, 65, 72, 73, 75, 76, 81, 83, 98, 99, 107], "equat": [2, 3, 49], "advanc": [2, 3, 5, 9, 10, 13, 19, 70, 72, 83, 86, 92, 94, 97, 99, 100, 101], "user": [2, 3, 5, 9, 10, 13, 17, 19, 30, 35, 36, 37, 40, 44, 46, 54, 62, 70, 72, 73, 75, 79, 83, 100, 101], "specifi": [2, 3, 4, 5, 8, 10, 13, 16, 17, 19, 21, 34, 36, 40, 43, 44, 46, 51, 54, 56, 58, 62, 63, 64, 65, 68, 70, 72, 73, 75, 76, 84, 86, 89, 90, 92, 93, 96, 97, 100, 103, 105, 108], "automat": [2, 3, 5, 29, 39, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "greater": [2, 3, 4, 5, 7, 9, 10, 31, 43, 55, 59, 70, 92, 98, 99, 110], "count": [2, 25, 29, 39, 43, 46, 49, 59, 64, 65, 71, 86, 93, 97, 99, 105], "observ": [2, 3, 49, 56, 90, 91, 92, 103, 106, 108], "mislabel": [2, 10, 39, 43, 45, 46, 49, 63, 64, 65, 68, 70, 73, 79, 81, 83, 84, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 105, 108], "one": [2, 3, 5, 7, 10, 29, 39, 40, 43, 44, 45, 46, 51, 57, 59, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 103, 106, 107, 108, 110], "get_label_issu": [2, 42, 43, 74, 75, 88, 89, 101, 108], "either": [2, 3, 4, 7, 10, 40, 43, 44, 46, 55, 63, 65, 70, 72, 73, 77, 79, 92, 97, 99, 104, 105], "boolean": [2, 7, 10, 25, 43, 46, 56, 58, 63, 65, 68, 73, 75, 77, 79, 80, 85, 89, 90, 92, 93, 96, 99, 105, 108, 109], "label_issues_mask": [2, 46, 73, 75, 86], "indic": [2, 3, 4, 5, 7, 10, 13, 16, 25, 39, 43, 44, 45, 46, 48, 51, 54, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 75, 76, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "its": [2, 5, 7, 9, 10, 13, 19, 40, 43, 44, 46, 54, 56, 57, 58, 65, 68, 71, 72, 73, 75, 77, 81, 83, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 107, 108, 109, 110], "return_indices_ranked_bi": [2, 43, 46, 65, 81, 86, 88, 89, 99, 101], "significantli": [2, 10, 93, 97, 101, 103, 107], "reduc": [2, 43, 46, 59, 90, 99], "time": [2, 10, 40, 43, 44, 59, 63, 84, 86, 91, 93, 99, 100, 105, 109, 110], "take": [2, 5, 10, 39, 40, 44, 50, 51, 54, 56, 59, 62, 73, 88, 93, 95, 103, 104, 105, 110], "run": [2, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 29, 30, 35, 38, 40, 43, 44, 56, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 110], "skip": [2, 10, 40, 44, 75, 90, 97, 99, 100, 104, 110], "slow": [2, 3], "step": [2, 7, 29, 51, 71, 93, 97, 100, 101, 103, 107], "caution": [2, 5, 99, 100], "previous": [2, 5, 13, 16, 59, 72, 75, 86, 88, 90, 91, 95, 96, 100, 103, 107], "assign": [2, 7, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 40, 44, 50, 51, 59, 75, 88, 91, 93, 95, 97, 99, 108, 109, 110], "individu": [2, 4, 7, 10, 13, 16, 29, 40, 44, 45, 63, 67, 70, 73, 75, 81, 83, 86, 88, 92, 95, 97, 98, 99, 103, 104, 105, 110], "still": [2, 43, 44, 59, 72, 88, 93, 99, 106], "extra": [2, 40, 44, 59, 62, 63, 64, 75, 93, 96, 99, 100, 103, 106], "receiv": [2, 10, 40, 44, 45, 64, 67, 68, 75, 77, 81, 92, 105], "overwritten": [2, 75], "callabl": [2, 3, 4, 10, 29, 40, 44, 51, 54, 55, 56, 58, 62, 67, 99], "x_val": 2, "y_val": 2, "map": [2, 3, 15, 43, 44, 47, 50, 58, 59, 71, 73, 75, 80, 90, 91, 92, 93, 97, 99, 101, 104, 110], "appropri": [2, 10, 19, 37, 55, 65, 73, 91, 95, 100, 104, 105], "earli": [2, 93], "stop": [2, 93], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 25, 39, 59, 72, 88, 91, 93, 95, 97, 100, 104, 108, 110], "f": [2, 7, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108], "ignor": [2, 40, 44, 58, 62, 75, 80, 84, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "allow": [2, 13, 39, 40, 43, 44, 48, 56, 59, 63, 71, 72, 75, 77, 79, 89, 90, 93, 97, 99, 107, 109], "access": [2, 10, 16, 40, 44, 75, 92, 93, 98, 104], "hyperparamet": [2, 67, 72, 93], "purpos": [2, 54, 91, 92, 97, 99, 104, 108], "want": [2, 5, 10, 39, 43, 54, 60, 63, 65, 75, 89, 91, 93, 96, 98, 100, 103, 105, 106, 107, 109, 110], "explicitli": [2, 8, 10, 44, 54, 75], "yourself": [2, 5, 43, 92, 97], "altern": [2, 7, 10, 51, 56, 59, 62, 63, 73, 86, 89, 90, 93, 95, 96, 98, 99, 100, 101, 103, 104, 106, 108], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 19, 29, 33, 40, 43, 44, 46, 54, 59, 62, 63, 65, 72, 73, 75, 79, 80, 83, 84, 85, 88, 89, 91, 92, 93, 95, 96, 97, 99, 100, 104, 105, 106, 107, 108, 109], "effect": [2, 10, 30, 40, 44, 63, 72, 75, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 108], "offer": [2, 5, 9, 10, 89, 90, 91, 92, 96, 99, 100, 101, 104], "after": [2, 3, 5, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 63, 75, 89, 91, 93, 96, 97, 99, 100, 101, 103, 105, 106, 107, 108, 109], "attribut": [2, 5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 40, 43, 44, 51, 56, 72, 75, 88, 91, 97], "label_issues_df": [2, 75, 93], "similar": [2, 10, 39, 40, 44, 56, 59, 63, 67, 68, 70, 72, 75, 79, 83, 91, 92, 93, 95, 96, 97, 99, 100, 101, 105, 106, 109], "document": [2, 3, 5, 13, 17, 19, 39, 40, 43, 44, 45, 46, 51, 58, 62, 64, 65, 67, 70, 71, 72, 75, 79, 80, 81, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "descript": [2, 5, 7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 45, 59, 68, 75, 91, 92], "were": [2, 3, 5, 10, 39, 44, 54, 64, 70, 83, 88, 90, 95, 99, 101, 103, 105, 107, 109], "present": [2, 3, 5, 10, 13, 15, 16, 23, 39, 59, 72, 80, 85, 93, 97, 99, 100, 106], "actual": [2, 3, 5, 10, 39, 54, 63, 64, 73, 92, 99, 101, 107, 110], "num_class": [2, 39, 43, 59, 62, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 106], "uniqu": [2, 34, 59, 80, 91, 97, 99, 100, 104, 106], "given_label": [2, 5, 11, 28, 33, 39, 49, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109, 110], "normal": [2, 3, 10, 21, 29, 34, 46, 48, 51, 57, 58, 59, 73, 97, 99, 101, 106], "trick": [2, 99], "distribut": [2, 3, 5, 10, 29, 31, 39, 44, 46, 50, 57, 63, 71, 72, 73, 85, 91, 92, 93, 95, 96, 97, 100, 105, 106], "account": [2, 39, 63, 67, 72, 73, 89, 96, 99, 101, 103, 104, 106, 108], "word": [2, 3, 58, 83, 84, 99], "remov": [2, 10, 34, 39, 40, 44, 46, 75, 85, 88, 89, 93, 96, 97, 98, 99, 100, 104, 106, 108], "so": [2, 3, 5, 6, 7, 10, 17, 29, 37, 39, 40, 43, 44, 46, 54, 59, 63, 64, 70, 73, 75, 79, 83, 90, 91, 92, 93, 96, 97, 100, 101, 104, 106, 109], "proportion": [2, 10, 46], "just": [2, 3, 5, 10, 13, 16, 35, 39, 41, 43, 59, 62, 73, 75, 77, 85, 86, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 104, 105, 106, 107, 108, 109], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 16, 34, 40, 41, 44, 46, 51, 57, 58, 59, 63, 65, 67, 72, 73, 75, 76, 77, 85, 88, 89, 90, 93, 96, 97, 98, 99, 100, 101, 106, 107, 108], "detect": [2, 5, 7, 9, 13, 16, 17, 19, 21, 25, 31, 45, 54, 57, 66, 68, 69, 70, 71, 72, 73, 74, 75, 78, 82, 85, 88, 89, 91, 94, 98, 100, 102, 104, 108, 109, 110], "arg": [2, 15, 25, 30, 34, 40, 41, 44, 51, 59, 73, 75, 100], "kwarg": [2, 7, 10, 13, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 45, 51, 54, 62, 71, 75, 77, 79, 80, 81, 99], "test": [2, 5, 10, 29, 44, 51, 54, 62, 75, 85, 88, 89, 91, 92, 93, 95, 96, 102, 107, 108, 110], "expect": [2, 3, 10, 40, 44, 46, 51, 54, 63, 72, 73, 75, 88, 89, 99, 100, 101, 103, 104, 105, 108, 110], "class_predict": 2, "evalu": [2, 10, 40, 41, 42, 43, 44, 71, 75, 88, 89, 90, 91, 92, 93, 99, 101, 103, 107, 108, 109], "simpli": [2, 10, 39, 73, 85, 89, 91, 92, 95, 96, 99, 101, 104, 108, 109, 110], "quantifi": [2, 4, 5, 7, 10, 13, 16, 46, 67, 72, 75, 85, 92, 93, 95, 96, 97, 100, 101, 105], "save_spac": [2, 10, 74, 75], "potenti": [2, 10, 39, 46, 58, 65, 68, 71, 73, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "cach": [2, 89, 96], "panda": [2, 5, 7, 15, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 59, 60, 62, 63, 64, 86, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 108, 109], "unlik": [2, 10, 46, 48, 51, 62, 64, 65, 67, 83, 91, 100, 103, 104, 106, 108], "both": [2, 5, 10, 13, 19, 29, 39, 40, 44, 46, 54, 59, 63, 65, 73, 77, 79, 84, 85, 91, 93, 99, 100, 101, 103, 110], "mask": [2, 43, 46, 58, 59, 65, 68, 73, 75, 77, 79, 80, 85, 98, 99, 103, 105, 109, 110], "prefer": [2, 73, 81, 104], "plan": 2, "subsequ": [2, 3, 40, 44, 56, 89, 96, 99, 101, 105], "invok": [2, 40, 44, 101, 107], "scratch": [2, 54, 75], "To": [2, 5, 7, 9, 10, 12, 13, 16, 19, 29, 38, 40, 43, 44, 45, 46, 62, 63, 65, 67, 71, 72, 73, 75, 76, 77, 79, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 107, 108, 109, 110], "share": [2, 10, 73, 75], "mostli": [2, 59, 70, 75, 100, 104, 108], "longer": [2, 37, 50, 51, 58, 75, 86, 89, 96, 99, 100, 105], "info": [2, 5, 7, 10, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 75, 83, 92, 97, 98, 110], "about": [2, 3, 5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 41, 43, 48, 63, 64, 67, 71, 75, 80, 83, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106], "docstr": [2, 39, 40, 44, 59, 75, 98, 101], "unless": [2, 40, 44, 54, 75, 99], "our": [2, 3, 10, 62, 63, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "is_label_issu": [2, 11, 33, 75, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "entir": [2, 10, 29, 43, 46, 49, 64, 65, 70, 73, 75, 77, 79, 80, 85, 91, 92, 97, 99, 100, 105, 106, 107, 109, 110], "accur": [2, 3, 5, 9, 10, 13, 19, 39, 43, 46, 55, 63, 64, 65, 68, 71, 73, 75, 76, 77, 79, 80, 86, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 103, 104, 106, 108], "label_qu": [2, 63, 75, 89, 101, 103, 108], "measur": [2, 5, 39, 63, 64, 75, 85, 88, 97, 98, 99, 100, 101, 103, 104, 108, 109, 110], "qualiti": [2, 3, 5, 7, 9, 10, 13, 16, 33, 34, 39, 43, 45, 46, 48, 51, 63, 64, 65, 67, 68, 70, 73, 75, 76, 79, 81, 83, 85, 86, 90, 91, 93, 99, 100, 102], "lower": [2, 4, 5, 7, 10, 13, 16, 31, 43, 51, 57, 63, 64, 67, 70, 71, 73, 75, 76, 79, 83, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "eas": 2, "comparison": [2, 40, 44, 71, 100, 101, 103], "against": [2, 40, 44, 91, 95, 97, 99, 100, 103, 104], "predicted_label": [2, 5, 11, 28, 33, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108, 109], "ad": [2, 40, 44, 92, 103, 108], "precis": [2, 55, 57, 65, 68, 71, 97, 98, 99, 101, 109, 110], "definit": [2, 7, 37, 51, 75, 88, 95], "accessor": [2, 75], "describ": [2, 10, 21, 63, 72, 73, 75, 81, 83, 101, 103, 104, 105, 107, 110], "precomput": [2, 4, 5, 49, 54, 75, 98], "clear": [2, 40, 44, 56, 75, 89, 96, 97, 108], "save": [2, 5, 13, 19, 40, 43, 44, 71, 75, 97, 99, 105, 109, 110], "space": [2, 5, 10, 72, 75, 93, 95, 97, 98], "place": [2, 40, 44, 54, 59, 75, 88, 103], "larg": [2, 9, 10, 43, 54, 75, 93, 99, 105, 106, 109, 110], "deploi": [2, 9, 10, 75, 93, 99, 100], "care": [2, 10, 40, 44, 54, 75, 96, 97, 99, 101], "avail": [2, 4, 5, 7, 10, 15, 17, 36, 44, 56, 75, 99, 100, 101, 103, 105, 108], "cannot": [2, 5, 15, 17, 59, 100, 107, 110], "anymor": 2, "classmethod": [2, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 37, 44, 51, 75], "__init_subclass__": [2, 42, 44, 74, 75], "set_": [2, 44, 75], "_request": [2, 44, 75], "pep": [2, 44, 75], "487": [2, 44, 75], "look": [2, 5, 7, 10, 19, 40, 44, 59, 75, 80, 88, 91, 92, 95, 96, 99, 100, 101, 103, 104, 105, 106, 109, 110], "inform": [2, 5, 7, 10, 13, 16, 19, 36, 40, 44, 56, 59, 63, 64, 68, 71, 75, 80, 83, 84, 85, 90, 91, 95, 96, 97, 98, 100, 101, 103, 106, 109, 110], "__metadata_request__": [2, 44, 75], "infer": [2, 44, 59, 75, 80, 84, 88, 89, 93, 103, 104], "signatur": [2, 40, 44, 75], "accept": [2, 40, 44, 56, 57, 73, 75, 91, 92, 99], "metadata": [2, 10, 44, 75, 93, 110], "through": [2, 5, 7, 44, 75, 89, 90, 92, 96, 97, 98, 99, 100, 103, 105, 106], "develop": [2, 9, 44, 56, 75, 99, 101, 110], "request": [2, 44, 75, 88, 89, 92, 96, 97, 98, 104, 110], "those": [2, 3, 4, 10, 43, 44, 46, 53, 62, 63, 65, 71, 75, 79, 83, 84, 85, 90, 93, 97, 99, 100, 105, 109], "http": [2, 4, 5, 7, 9, 10, 12, 21, 38, 40, 41, 43, 44, 48, 56, 59, 68, 71, 72, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "www": [2, 44, 75, 106], "org": [2, 4, 21, 40, 41, 44, 56, 59, 72, 75, 99, 100, 101, 110], "dev": [2, 44, 75], "0487": [2, 44, 75], "get_metadata_rout": [2, 42, 44, 74, 75], "rout": [2, 44, 75], "pleas": [2, 40, 44, 62, 75, 85, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 110], "guid": [2, 7, 10, 44, 75, 86, 90, 91, 92, 93, 94, 95, 96, 97, 100, 101], "mechan": [2, 40, 44, 75], "metadatarequest": [2, 44, 75], "encapsul": [2, 19, 44, 70, 75], "get_param": [2, 42, 44, 61, 62, 74, 75], "subobject": [2, 44, 75], "param": [2, 10, 40, 44, 62, 72, 75, 99], "name": [2, 5, 6, 7, 10, 11, 13, 15, 16, 35, 37, 39, 40, 44, 50, 51, 55, 59, 62, 63, 64, 71, 75, 80, 84, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108, 109, 110], "set_fit_request": [2, 42, 44, 74, 75], "str": [2, 3, 4, 5, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 43, 44, 46, 49, 51, 54, 55, 56, 57, 58, 59, 62, 63, 64, 68, 70, 71, 73, 75, 80, 84, 90, 91, 97, 99, 103, 104, 105, 110], "unchang": [2, 40, 44, 75, 97, 110], "relev": [2, 10, 19, 29, 44, 75, 93, 95, 97], "enable_metadata_rout": [2, 44, 75], "set_config": [2, 44, 75], "meta": [2, 44, 75], "rais": [2, 4, 5, 13, 15, 16, 37, 40, 44, 48, 51, 54, 57, 75, 99], "alia": [2, 40, 44, 75], "metadata_rout": [2, 44, 75], "retain": [2, 44, 59, 75], "chang": [2, 35, 37, 40, 43, 44, 48, 75, 83, 88, 89, 90, 91, 96, 99, 100, 105, 106, 110], "version": [2, 4, 5, 7, 9, 10, 12, 14, 18, 24, 27, 32, 38, 40, 42, 44, 47, 48, 59, 61, 62, 73, 75, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108, 110], "sub": [2, 44, 70, 75], "pipelin": [2, 44, 75, 108], "otherwis": [2, 4, 7, 10, 37, 39, 40, 43, 44, 46, 52, 55, 57, 58, 59, 65, 75, 77, 79, 80, 84, 85, 89, 96, 99, 100], "updat": [2, 13, 16, 40, 43, 44, 54, 62, 75, 86, 91, 93, 100], "set_param": [2, 42, 44, 61, 62, 74, 75], "simpl": [2, 40, 44, 46, 63, 73, 75, 88, 89, 91, 92, 93, 95, 96, 100, 103, 106, 108], "well": [2, 3, 9, 10, 40, 44, 48, 49, 63, 65, 71, 73, 75, 80, 83, 84, 86, 91, 92, 93, 95, 96, 99, 100, 101, 103, 105, 106], "nest": [2, 40, 44, 45, 60, 75, 81, 83, 84, 110], "latter": [2, 40, 44, 75, 106], "compon": [2, 44, 75], "__": [2, 44, 75], "set_score_request": [2, 74, 75], "structur": [3, 72, 95, 97, 99, 100], "unobserv": 3, "less": [3, 4, 5, 10, 34, 43, 51, 63, 72, 73, 77, 79, 83, 93, 95, 97, 98, 99, 100, 101, 105, 110], "channel": [3, 90, 101], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 39, 49, 59, 64, 89, 92, 98], "inv": 3, "confident_joint": [3, 25, 39, 46, 59, 64, 65, 86, 99, 101], "un": 3, "under": [3, 10, 40, 44, 64, 71, 72, 92, 97, 100, 106], "joint": [3, 39, 46, 49, 59, 64, 65, 98], "num_label_issu": [3, 43, 46, 65, 80, 84, 86], "estimation_method": [3, 43], "off_diagon": 3, "multi_label": [3, 39, 46, 59, 60, 65, 104], "don": [3, 10, 85, 92, 93, 96, 101, 105, 108], "statis": 3, "compute_confident_joint": [3, 39, 46, 59, 65, 101], "off": [3, 46, 59, 70, 93, 101, 105, 106], "j": [3, 5, 39, 40, 44, 45, 46, 65, 68, 71, 72, 81, 83, 84, 91, 92, 101, 109, 110], "confident_learn": [3, 46, 65, 101], "off_diagonal_calibr": 3, "calibr": [3, 4, 46, 59, 63, 103], "cj": [3, 49, 59], "axi": [3, 34, 49, 51, 57, 77, 80, 90, 91, 92, 93, 97, 99, 100, 101, 103, 104, 106, 108, 109], "bincount": [3, 91, 92, 101, 103, 104], "alwai": [3, 10, 40, 44, 59, 88, 89, 90, 101, 108], "estimate_issu": 3, "over": [3, 5, 10, 40, 43, 44, 70, 71, 77, 79, 88, 92, 93, 95, 97, 98, 99, 100, 101, 106, 108], "As": [3, 7, 85, 91, 92, 96, 100, 101, 108, 110], "add": [3, 5, 7, 13, 15, 16, 40, 44, 62, 71, 89, 90, 91, 92, 93, 96, 97, 99, 100, 101, 104], "approach": [3, 39, 43, 46, 62, 88, 95, 97, 100, 101, 104, 106, 108], "custom": [3, 7, 10, 12, 33, 40, 43, 44, 51, 58, 73, 89, 92, 96, 97, 101, 108], "know": [3, 10, 91, 92, 93, 96, 99, 101, 103, 108], "cut": [3, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 35, 105, 106, 110], "underestim": 3, "few": [3, 9, 10, 71, 85, 97, 99, 103, 104, 105, 106, 110], "4": [3, 4, 5, 10, 11, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 50, 51, 58, 67, 68, 70, 71, 73, 76, 83, 98, 99, 104, 109, 110], "detail": [3, 4, 5, 10, 13, 17, 19, 36, 39, 40, 44, 45, 51, 56, 59, 62, 63, 64, 65, 67, 68, 70, 71, 72, 79, 80, 81, 85, 86, 90, 97, 99, 100, 104, 106, 110], "num_issu": [3, 7, 43, 90, 91, 92, 93, 95, 96, 97, 100, 101], "calibrate_confident_joint": 3, "up": [3, 7, 10, 20, 29, 30, 33, 46, 51, 53, 62, 63, 89, 98, 99, 105, 108, 110], "p_": [3, 39, 46], "pair": [3, 5, 10, 39, 46, 101], "v": [3, 10, 43, 64, 65, 67, 73, 91, 92, 102, 104, 105, 106, 107], "rest": [3, 5, 7, 9, 10, 12, 38, 64, 65, 67, 75, 88, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 108], "fashion": [3, 5, 77, 88], "2x2": 3, "incorrectli": [3, 39, 64, 65, 68, 95, 100, 110], "calibrated_cj": 3, "c": [3, 10, 57, 58, 65, 73, 85, 88, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 105, 106, 107, 108], "whose": [3, 4, 5, 10, 31, 40, 44, 49, 54, 58, 63, 67, 70, 76, 79, 83, 84, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 105, 106, 109, 110], "truli": [3, 106, 109], "estimate_joint": [3, 39, 101], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 65, 71, 101, 105, 107, 109, 110], "return_indices_of_off_diagon": 3, "frequenc": [3, 29, 63, 64, 71, 80, 105, 106], "done": [3, 10, 62, 75, 91, 99, 101, 104, 106, 107], "overfit": [3, 10, 68, 71, 88, 90, 91, 92, 93, 95, 96, 107], "classifict": 3, "singl": [3, 5, 9, 10, 15, 29, 39, 40, 44, 45, 51, 52, 59, 63, 64, 70, 71, 72, 73, 83, 88, 90, 91, 97, 99, 101, 104, 105], "baselin": [3, 40, 46, 89, 106, 108], "proxi": 3, "union": [3, 5, 15, 29, 51, 54, 55, 56, 59, 60, 65, 71, 75, 83, 99], "tupl": [3, 34, 40, 44, 45, 49, 50, 52, 54, 58, 59, 63, 65, 71, 79, 81, 83, 84, 90, 110], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 43, 49, 54, 55, 63, 72, 77, 79, 85, 89, 93, 97, 99, 100, 109], "practic": [3, 88, 89, 92, 93, 100, 101, 106, 108], "complet": [3, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "gist": 3, "cj_ish": 3, "guess": [3, 49, 101, 103], "8": [3, 5, 7, 8, 50, 51, 52, 58, 67, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 103, 104, 105, 106, 108, 109, 110], "parallel": [3, 46, 71, 81, 98], "again": [3, 62, 88, 99, 106], "simplifi": [3, 17, 99], "understand": [3, 9, 10, 39, 64, 71, 92, 97, 101, 102, 108, 109, 110], "100": [3, 4, 40, 44, 54, 55, 57, 72, 73, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 101, 104, 105, 106, 110], "optim": [3, 40, 41, 44, 62, 88, 89, 92, 93, 95, 96, 97, 98, 101, 103, 104, 106, 108], "speed": [3, 46, 89, 98, 99, 108], "dtype": [3, 26, 28, 29, 34, 40, 44, 58, 59, 67, 83, 90, 97, 100, 105], "enumer": [3, 40, 44, 90, 91, 92, 93, 97, 110], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 44, 51, 59, 83, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "num_confident_bin": 3, "argmax": [3, 46, 73, 77, 80, 90, 97, 99, 101, 105, 106, 109], "elif": 3, "estimate_lat": 3, "py_method": [3, 49], "cnt": [3, 49], "1d": [3, 5, 13, 15, 19, 35, 43, 46, 51, 52, 54, 59, 60, 67, 76, 88, 90, 97], "eqn": [3, 49], "margin": [3, 46, 49, 51, 73], "marginal_p": [3, 49], "shorthand": [3, 13, 16], "proport": [3, 10, 39, 64, 101, 107], "poorli": [3, 49, 88, 97], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 101], "variabl": [3, 7, 17, 30, 59, 75, 76, 90, 91, 95, 101, 104, 108], "exact": [3, 10, 49, 54, 88, 91, 92, 93, 95, 97, 100], "within": [3, 4, 5, 10, 14, 18, 35, 40, 41, 44, 45, 47, 65, 70, 79, 81, 83, 91, 92, 93, 99, 105, 109], "percent": 3, "often": [3, 39, 49, 64, 99, 101, 107, 109], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 59, 60, 71, 88, 89, 90, 91, 93, 95, 96, 99, 100, 104, 105, 106, 108], "wai": [3, 5, 10, 54, 62, 85, 86, 88, 89, 90, 91, 92, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107], "pro": 3, "con": 3, "pred_proba": [3, 107], "combin": [3, 39, 91, 93, 97, 98, 99, 100, 101, 107, 108], "becaus": [3, 10, 49, 55, 59, 70, 96, 97, 99, 100, 101, 103, 105, 107], "littl": [3, 43, 98, 105, 110], "uniform": [3, 73, 98, 99, 101], "20": [3, 7, 45, 84, 90, 93, 96, 97, 98, 99, 100, 101, 105, 108, 109, 110], "Such": [3, 93, 106], "bound": [3, 26, 28, 40, 44, 58, 67, 68, 70, 71, 105], "reason": [3, 10, 25, 40, 44, 55, 72], "comment": [3, 58, 97, 110], "end": [3, 5, 40, 44, 56, 71], "file": [3, 5, 15, 42, 43, 61, 71, 88, 90, 91, 95, 96, 98, 99, 105, 106, 109, 110], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 101], "handl": [3, 5, 7, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 43, 44, 54, 55, 56, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 104, 106, 108, 109, 110], "five": [3, 68, 71, 101, 105], "estimate_cv_predicted_prob": [3, 101], "estimate_noise_matric": 3, "get_confident_threshold": [3, 42, 43], "amongst": [3, 10, 100, 105], "confident_threshold": [3, 10, 25, 26, 43, 72], "point": [4, 5, 7, 9, 10, 21, 29, 40, 44, 54, 56, 85, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "valuat": [4, 9, 21], "help": [4, 39, 40, 44, 71, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 106, 108, 109, 110], "u": [4, 88, 89, 90, 91, 93, 95, 97, 99, 101, 103, 104, 107, 108, 109, 110], "assess": [4, 10, 97, 100, 105], "contribut": [4, 10, 21, 97, 105], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 13, 19, 21, 22, 29, 31, 34, 47, 53, 95, 97], "metric": [4, 5, 10, 21, 22, 24, 29, 31, 34, 47, 53, 54, 56, 57, 59, 62, 71, 72, 88, 89, 90, 93, 95, 96, 97, 100, 101, 108], "10": [4, 10, 21, 22, 26, 29, 31, 34, 40, 41, 54, 71, 72, 73, 84, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "shaplei": [4, 10, 21], "nearest": [4, 5, 10, 13, 19, 26, 29, 31, 53, 54, 55, 56, 57, 72, 92, 96, 97, 106], "neighbor": [4, 5, 10, 13, 19, 21, 26, 29, 31, 47, 54, 55, 56, 57, 72, 91, 92, 93, 95, 96, 97, 99, 106], "knn": [4, 10, 13, 16, 21, 29, 31, 34, 53, 54, 55, 56, 57, 72, 95, 106], "graph": [4, 5, 10, 13, 16, 19, 21, 29, 34, 53, 54], "calcul": [4, 10, 21, 29, 43, 51, 53, 54, 57, 63, 67, 68, 70, 71, 72, 75, 79, 93, 98, 100], "directli": [4, 5, 10, 13, 17, 19, 36, 37, 43, 56, 62, 63, 89, 92, 96, 97, 99, 100, 104, 105, 108], "lowest": [4, 10, 63, 71, 92, 93, 95, 97, 99, 100, 103, 104, 105, 109], "fall": [4, 10, 70, 79, 83, 101, 106], "flag": [4, 10, 25, 29, 46, 51, 64, 65, 68, 75, 85, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 106, 108, 109], "approxim": [4, 10, 21, 43, 56, 72, 97, 103], "top": [4, 5, 10, 39, 43, 45, 46, 59, 65, 68, 71, 73, 80, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 104, 105, 106, 108, 110], "found": [4, 5, 7, 10, 13, 16, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 104, 106, 108, 110], "arxiv": [4, 21, 101], "ab": [4, 21, 101, 105], "1908": 4, "08619": 4, "1911": [4, 21], "07128": [4, 21], "embed": [4, 5, 10, 13, 19, 72, 85, 89, 90, 91, 92, 95, 96, 97, 100, 101, 104, 108], "represent": [4, 5, 10, 13, 19, 37, 40, 44, 52, 54, 65, 85, 89, 90, 91, 92, 93, 96, 99, 100, 101, 106], "suppli": [4, 104, 105, 108], "2d": [4, 5, 13, 19, 35, 43, 51, 52, 54, 58, 59, 63, 88, 90, 97, 104], "num_exampl": [4, 5, 13, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 39, 64, 90, 91, 92, 93, 95, 96, 100, 101], "num_featur": [4, 5, 13, 19, 40, 44, 62], "distanc": [4, 5, 10, 13, 19, 21, 29, 31, 34, 53, 54, 55, 56, 57, 70, 72, 95, 97, 106], "construct": [4, 5, 7, 10, 13, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 40, 44, 51, 53, 54, 56, 62, 97, 100], "nearestneighbor": [4, 5, 10, 21, 54, 56, 72, 95, 106], "cosin": [4, 10, 54, 55, 57, 72, 97, 106], "dim": [4, 72, 93, 109], "euclidean": [4, 5, 10, 54, 55, 57, 70, 72, 95], "dimension": [4, 29, 55, 59, 90, 101, 106], "scikit": [4, 44, 55, 56, 59, 72, 85, 88, 89, 90, 91, 92, 95, 96, 97, 99, 108], "fewer": [4, 10, 46, 59, 72, 97, 105], "stabl": [4, 14, 18, 24, 27, 32, 42, 47, 56, 59, 61, 72, 86, 90, 91, 92, 93, 95, 96, 100, 101], "exce": [4, 54, 93, 97], "transform": [4, 10, 35, 51, 54, 57, 59, 72, 73, 88, 89, 92, 93, 96, 97, 100, 106, 110], "rel": [4, 10, 39, 54, 63, 64, 72, 91, 92, 93, 95, 96, 100, 101, 106], "adjust": [4, 41, 46, 54, 67, 72, 73, 85, 97, 100, 101], "closer": [4, 10, 70, 97, 105], "highli": [4, 92, 93], "influenti": 4, "posit": [4, 5, 10, 40, 44, 57, 59, 71, 97, 98, 106], "convers": 4, "neg": [4, 10, 70, 71, 91, 92, 97, 98], "valueerror": [4, 5, 13, 15, 16, 37, 48, 51, 54, 57, 99], "neither": [4, 5, 10, 17, 55, 105], "nor": [4, 5, 10, 17], "larger": [4, 21, 55, 75, 77, 79, 93, 96, 98, 99], "55": [4, 58, 97, 98, 105, 108], "525": 4, "unifi": 5, "audit": [5, 9, 13, 15, 16, 19, 90, 93, 94, 95, 96, 97, 99, 100, 101, 104, 105, 108], "kind": [5, 6, 7, 10, 97, 98], "addit": [5, 7, 9, 12, 13, 16, 36, 38, 40, 44, 51, 54, 56, 60, 63, 71, 80, 81, 88, 89, 90, 91, 95, 96, 97, 100, 101, 103, 106, 107], "depend": [5, 7, 9, 12, 13, 15, 16, 38, 42, 46, 48, 59, 61, 65, 72, 75, 76, 85, 97, 107], "instal": [5, 7, 9, 12, 38, 40, 42, 43, 44, 46, 61, 62, 77, 79, 97], "pip": [5, 7, 9, 12, 38, 62, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "development": [5, 7, 9, 12, 38], "git": [5, 7, 9, 12, 38, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "github": [5, 7, 9, 12, 38, 40, 41, 59, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 100, 101, 103, 104, 105, 106, 108], "com": [5, 7, 9, 12, 38, 40, 41, 43, 48, 59, 72, 85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "egg": [5, 7, 9, 12, 38, 85, 98], "label_nam": [5, 7, 8, 10, 11, 15, 21, 34, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 105, 108], "image_kei": [5, 10, 13, 93, 97], "interfac": [5, 9, 10, 56, 85, 88, 89, 92, 95, 96, 98, 99, 100, 101, 104, 106, 108], "librari": [5, 10, 44, 56, 68, 71, 72, 85, 89, 91, 96, 97, 98, 99], "goal": [5, 108], "track": [5, 7, 16, 17, 85, 91, 98, 99, 101], "intermedi": [5, 9, 92], "statist": [5, 10, 13, 16, 25, 29, 39, 63, 64, 71, 92, 95, 96, 97, 100, 101], "convert": [5, 10, 15, 37, 40, 44, 52, 57, 60, 63, 70, 79, 83, 86, 89, 90, 93, 96, 97, 98, 99, 100, 103, 104, 105], "hug": [5, 10, 15, 93], "face": [5, 10, 15, 19, 93, 98, 104], "kei": [5, 7, 10, 13, 15, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 51, 63, 64, 70, 72, 91, 92, 93, 96, 99, 101, 103, 105], "string": [5, 10, 13, 15, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 55, 59, 63, 64, 76, 80, 83, 84, 89, 95, 96, 97, 99, 103, 104, 110], "dictionari": [5, 7, 10, 13, 15, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 40, 44, 50, 59, 63, 64, 67, 68, 70, 71, 91, 92, 95, 96, 101, 103, 104, 105], "path": [5, 15, 40, 43, 44, 71, 90, 91, 97, 99, 105], "local": [5, 7, 10, 15, 40, 41, 44, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "text": [5, 7, 10, 15, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 45, 51, 72, 81, 83, 84, 85, 87, 91, 92, 94, 98, 99, 100, 101, 102, 103, 106], "txt": [5, 15, 110], "csv": [5, 15, 88, 89, 95, 96, 100, 108], "json": [5, 15], "hub": [5, 15], "multiclass": [5, 15, 18, 51, 59, 63, 104], "regress": [5, 7, 10, 11, 13, 15, 17, 19, 24, 33, 35, 37, 89, 91, 92, 96, 102, 103, 106], "multilabel": [5, 10, 11, 15, 17, 18, 24, 28, 35, 37, 52, 104], "imag": [5, 9, 13, 39, 44, 68, 70, 71, 72, 77, 79, 80, 85, 91, 92, 94, 98, 99, 100, 102, 103, 104, 105, 107, 109], "field": [5, 10, 40, 44], "themselv": [5, 88, 89, 97, 108], "pil": [5, 93], "cleanvis": [5, 10, 13, 97], "level": [5, 10, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36, 39, 54, 58, 81, 83, 92, 93, 99, 102, 104, 109], "load_dataset": [5, 15, 93], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 15, 16, 37, 40, 44, 97], "has_label": [5, 15], "class_nam": [5, 15, 23, 39, 45, 64, 71, 80, 84, 85, 98, 101, 105, 109, 110], "empti": [5, 15, 49, 63, 92, 97, 99, 104], "find_issu": [5, 6, 7, 8, 10, 11, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 85, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_typ": [5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "sort": [5, 13, 19, 43, 46, 51, 63, 65, 68, 70, 71, 73, 79, 81, 83, 88, 89, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 104, 105, 108, 109, 110], "common": [5, 10, 13, 16, 19, 85, 92, 94, 97, 98, 99, 100, 101, 104, 105, 109], "real": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "world": [5, 13, 19, 85, 91, 92, 97, 99, 100, 101, 103, 108, 109], "interact": [5, 13, 19, 96, 99], "thereof": [5, 13, 19], "insight": [5, 13, 19, 71, 103], "best": [5, 9, 10, 13, 19, 50, 63, 73, 88, 89, 91, 92, 93, 95, 97, 99, 100, 103, 104, 106, 107, 108, 110], "properli": [5, 10, 43, 50, 54, 59, 60, 77, 90, 91, 92, 93, 95, 96, 99, 100, 101, 104, 106, 108, 109], "respect": [5, 40, 44, 68, 71, 90, 91, 92, 93, 95, 96, 100, 101, 104, 105], "lexicograph": [5, 50, 59, 90, 91, 92, 93, 95, 96, 100, 101, 104], "squar": [5, 59, 75, 98, 108], "csr": [5, 54, 97], "evenli": 5, "omit": [5, 70, 71, 93, 97, 105], "itself": [5, 35, 40, 44, 54, 97, 105], "three": [5, 10, 39, 63, 64, 75, 80, 88, 90, 91, 92, 95, 98, 101, 103, 107, 108, 109, 110], "indptr": [5, 97], "wise": 5, "start": [5, 7, 10, 37, 40, 41, 44, 51, 85, 104, 110], "th": [5, 10, 45, 50, 58, 59, 63, 65, 68, 70, 71, 72, 81, 83, 84, 96, 104, 105, 110], "ascend": [5, 39, 64, 93, 101], "segment": [5, 77, 79, 80, 102], "reflect": [5, 10, 54, 88, 89, 95, 96, 100, 103, 105, 106, 108], "maintain": [5, 62], "kneighbors_graph": [5, 21, 56, 95], "illustr": [5, 97], "todens": 5, "second": [5, 51, 59, 71, 73, 91, 95, 99, 101, 110], "duplic": [5, 9, 24, 25, 40, 44, 54, 85, 91, 97, 100, 101, 108], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 63, 97, 99, 103, 110], "unspecifi": [5, 13, 19, 46, 65], "interest": [5, 13, 19, 25, 80, 84, 88, 89, 96, 97, 100, 101, 108, 109, 110], "constructor": [5, 10, 11, 13, 19, 26, 33, 54, 56], "issuemanag": [5, 9, 13, 16, 17, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36], "respons": [5, 13, 19, 25, 56, 75, 76, 97, 98, 108, 110], "random_st": [5, 88, 90, 91, 92, 93, 97, 100, 101, 104, 106], "lab": [5, 6, 8, 10, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 43, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 108], "comprehens": [5, 85, 93, 97, 100, 104, 108], "nbr": 5, "n_neighbor": [5, 10, 21, 54, 56, 72, 97], "mode": [5, 12, 21, 40, 43, 44, 95, 106], "4x4": 5, "float64": [5, 29, 40, 44, 83], "compress": [5, 10, 54, 59, 77, 79, 97], "toarrai": [5, 54, 97], "NOT": [5, 43, 96], "23606798": 5, "41421356": [5, 54], "configur": [5, 19, 51, 92], "suppos": [5, 10, 68, 88, 89, 106, 108], "who": [5, 70, 88, 95, 97, 101, 110], "manag": [5, 8, 9, 10, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 62, 91, 99], "clean_learning_kwarg": [5, 10, 11, 26, 33, 99, 108], "labelissuemanag": [5, 10, 17, 24, 26], "prune_method": [5, 86], "prune_by_noise_r": [5, 46, 65, 101], "report": [5, 7, 10, 12, 13, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 64, 84, 85, 90, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108, 110], "include_descript": [5, 13, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36], "show_summary_scor": [5, 13, 36, 97, 100], "show_all_issu": [5, 13, 36, 97, 100], "summari": [5, 7, 13, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 45, 61, 62, 64, 69, 78, 79, 81, 82, 83, 86, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 105, 108, 109, 110], "show": [5, 7, 29, 40, 44, 50, 59, 71, 80, 84, 88, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 106, 108, 109, 110], "suffer": [5, 10, 13, 16, 25, 65, 73, 84, 97, 110], "onc": [5, 10, 25, 39, 40, 44, 88, 91, 99, 100, 101, 104, 105], "familiar": [5, 97], "overal": [5, 7, 10, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 45, 51, 63, 64, 67, 70, 71, 75, 79, 80, 81, 83, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 103, 105, 110], "sever": [5, 7, 10, 13, 15, 16, 25, 40, 43, 44, 46, 67, 70, 72, 73, 79, 83, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 105, 106, 110], "compar": [5, 63, 72, 83, 91, 92, 95, 97, 100, 101, 105], "issue_summari": [5, 7, 10, 13, 16, 97], "With": [5, 9, 10, 43, 89, 96, 99, 101, 103, 108, 109, 110], "usag": [5, 43, 62], "usual": [5, 15, 35, 36, 93, 103, 108], "ti": [5, 63], "exhibit": [5, 7, 10, 13, 16, 80, 90, 91, 92, 93, 95, 96, 100, 101, 105], "ie": [5, 75], "likelihood": [5, 10, 43, 45, 46, 65, 70, 72, 73, 77, 81, 97], "wherea": [5, 10, 59, 65, 88, 89, 97, 107], "outlier": [5, 9, 11, 17, 24, 25, 34, 47, 54, 73, 85, 91, 92, 97, 100, 101, 102, 108], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 101, 108], "global": [5, 7, 10, 25, 40, 44, 98], "non_iid": [5, 10, 11, 17, 29, 92, 93, 95, 96, 97, 100, 101], "hypothesi": [5, 97], "iid": [5, 7, 9, 29, 85, 95, 100, 101], "never": [5, 90, 100, 101, 104, 106, 107], "someth": [5, 7, 10, 40, 44, 73, 105], "123": [5, 91, 92], "456": [5, 88, 89, 90], "nearest_neighbor": 5, "7": [5, 10, 51, 52, 62, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 103, 104, 105, 106, 108, 109, 110], "9": [5, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 45, 51, 52, 67, 81, 83, 88, 89, 90, 91, 92, 95, 96, 97, 98, 101, 103, 104, 105, 106, 108, 109, 110], "distance_to_nearest_neighbor": [5, 11, 91, 92, 93, 95, 96, 100, 101], "789": 5, "get_issu": [5, 10, 13, 16, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 104, 108], "issue_nam": [5, 6, 7, 10, 13, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 90, 91, 92, 93, 95, 96, 97, 100, 101], "focu": [5, 10, 13, 16, 96, 97, 100, 109, 110], "full": [5, 10, 13, 16, 43, 62, 71, 93, 100, 110], "summar": [5, 13, 16, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 39, 64, 80, 84, 85, 109], "specific_issu": [5, 13, 16], "lie": [5, 10, 72, 73, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101], "get_issue_summari": [5, 10, 13, 16, 92, 97], "get_info": [5, 10, 13, 16, 92, 96, 97, 98], "yet": [5, 20, 30, 62, 98, 100, 103], "list_possible_issue_typ": [5, 17, 18], "regist": [5, 7, 17, 18, 20, 30, 40, 44, 91], "rtype": [5, 17, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44], "registri": [5, 17, 18], "list_default_issue_typ": [5, 17, 18], "folder": [5, 90, 91, 93], "load": [5, 15, 43, 71, 93, 98, 99, 100, 101, 105, 106, 109, 110], "futur": [5, 10, 25, 40, 44, 63, 85, 91, 96], "overwrit": [5, 91], "separ": [5, 39, 51, 67, 91, 92, 93, 97, 99, 100, 105, 107], "static": 5, "rememb": [5, 96, 99, 100, 101], "part": [5, 10, 40, 44, 46, 68, 70, 71, 90, 91, 97, 98, 100, 109, 110], "ident": [5, 10, 25, 59, 96, 97], "datalab": [6, 8, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 85, 88, 89, 98, 100, 103, 108], "walk": [7, 100], "alongsid": [7, 13, 40, 44, 91, 99], "pre": [7, 8, 10, 40, 44, 85, 91, 92, 108], "runtim": [7, 40, 43, 44, 75, 77, 79, 90, 93, 99, 100], "issue_manager_factori": [7, 17, 91], "myissuemanag": [7, 17], "myissuemanagerforregress": 7, "decor": [7, 17], "ll": [7, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 107, 108, 110], "thing": [7, 44, 89, 97, 101, 108], "next": [7, 63, 85, 88, 89, 90, 95, 96, 97, 99, 103, 105, 108, 110], "dummi": 7, "randint": [7, 34, 51, 91, 92, 97], "mark": [7, 10, 86, 105, 106, 108], "regard": [7, 92, 100, 101], "rand": [7, 51, 54, 91, 92, 97], "is_": [7, 10, 91], "_issu": [7, 10, 91], "issue_score_kei": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "whole": [7, 10, 29, 40, 44, 92, 97], "make_summari": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 91], "popul": [7, 96, 100], "verbosity_level": [7, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "std": [7, 105], "raw_scor": 7, "bit": 7, "involv": [7, 43, 80, 84, 97, 99, 104], "intermediate_arg": 7, "min": [7, 51, 70, 83, 91, 99, 106], "sin_filt": 7, "sin": 7, "arang": [7, 97], "kernel": [7, 97], "affect": [7, 10, 40, 44, 55, 77, 83, 96, 97, 99], "easili": [7, 10, 49, 86, 88, 89, 90, 92, 95, 96, 100, 101, 103, 104, 106, 107, 108, 109], "hard": [7, 44, 85, 98, 106], "sai": [7, 10, 40, 44, 97, 104, 109], "anoth": [7, 10, 25, 39, 43, 55, 58, 70, 73, 89, 95, 96, 97, 99, 101, 103, 106], "try": [7, 9, 10, 43, 46, 62, 63, 77, 79, 85, 88, 89, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 106, 107, 108, 109], "won": [7, 40, 44, 91, 92, 99, 104], "issue_manag": [7, 10, 12, 13, 16, 18, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 91], "instanti": [7, 19, 43, 62, 72, 89, 90, 92, 95], "477762": 7, "286455": 7, "term": [7, 10, 49, 59, 71, 90, 91, 92, 93, 95, 96, 100, 101], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 22, 31, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 105, 106, 108, 109, 110], "003042": 7, "058117": 7, "11": [7, 10, 62, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "121908": 7, "15": [7, 57, 62, 75, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "169312": 7, "17": [7, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 91, 92, 97, 98, 100, 101], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 34, 85, 100], "group": [8, 9, 29, 34, 85, 98, 100, 105, 110], "dbscan": [8, 10, 34], "hdbscan": 8, "etc": [8, 10, 25, 35, 40, 44, 49, 62, 63, 81, 85, 91, 92, 95, 96, 97, 99, 100, 101, 104, 108], "sensit": [8, 10, 57, 97, 100], "ep": [8, 34, 71], "radiu": 8, "min_sampl": [8, 34], "kmean": [8, 97], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 34, 97], "cluster_id": [8, 10, 11, 34, 97], "labels_": 8, "underperforming_group": [8, 10, 11, 17, 24, 92, 93, 95, 96, 97, 100, 101], "search": [9, 10, 23, 29, 30, 47, 53, 54, 55, 58, 75, 97, 99, 100, 107], "nondefault": 9, "Near": [9, 99], "imbal": [9, 24, 67, 72, 73, 92], "spuriou": [9, 13, 93], "correl": [9, 13, 93], "null": [9, 11, 17, 24, 92, 93, 96, 100, 101], "togeth": [9, 10, 49, 89, 91, 92, 93, 95, 96, 100, 101, 108, 110], "built": [9, 51, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "own": [9, 40, 42, 44, 56, 61, 67, 68, 71, 77, 81, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 108, 109, 110], "prerequisit": 9, "basic": [9, 44, 62, 97, 100, 106], "fulli": [9, 10, 40, 44, 62, 99], "platform": [9, 10, 85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 107, 108], "write": [9, 10], "code": [9, 10, 40, 44, 49, 59, 62, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 98, 99, 103, 104, 105, 106, 108, 109, 110], "being": [9, 10, 13, 16, 39, 40, 44, 46, 51, 58, 59, 73, 88, 95, 99, 100, 101, 108, 109], "100x": [9, 10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "faster": [9, 10, 43, 72, 75, 77, 79, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 108], "intellig": [9, 10, 100], "quickli": [9, 10, 41, 88, 90, 93, 95, 96, 99, 100, 104, 106, 107, 109, 110], "fix": [9, 10, 63, 88, 89, 92, 95, 96, 97, 98, 100, 101, 104, 106, 107, 108], "scientist": [9, 10], "million": [9, 10, 110], "thank": [9, 10], "ai": [9, 10, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 108, 110], "suggest": [9, 10, 39, 63, 64, 70, 89, 93, 96, 97, 99, 108], "power": [9, 10, 93, 98, 101, 110], "automl": [9, 10, 85, 88, 89, 92, 95, 96, 98, 99, 101, 104, 106, 107, 108], "system": [9, 10, 90, 93, 109], "foundat": [9, 10, 85, 88, 89, 92, 95, 96, 97, 98, 101, 104, 106, 107, 108], "improv": [9, 10, 63, 88, 89, 92, 93, 98, 99, 101, 102, 108, 109], "click": [9, 10, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "tune": [9, 10, 89, 90, 96, 98, 100, 106], "serv": [9, 10, 16, 19, 103], "auto": [9, 10, 88, 89, 92, 98, 99, 100, 108], "free": [9, 10, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "page": [10, 92, 99, 100, 101], "variou": [10, 16, 33, 42, 60, 61, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105], "why": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "matter": [10, 39, 64], "didn": [10, 97, 100], "plu": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "ye": [10, 11], "near_dupl": [10, 11, 17, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "class_imbal": [10, 11, 17, 23, 92, 93, 95, 96, 97, 100, 101], "data_valu": [10, 11, 17, 24, 97], "No": [10, 11, 88, 89, 96, 97, 99], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 70, 88, 89, 110], "issue_scor": 10, "atyp": [10, 72, 91, 92, 93, 95, 96, 100, 101, 106], "datapoint": [10, 34, 46, 51, 59, 73, 76, 85, 88, 89, 90, 91, 92, 95, 96, 99, 100, 107, 108], "is_issu": [10, 25], "primarili": 10, "former": [10, 40, 44], "investig": [10, 90, 97], "expertis": [10, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "interpret": [10, 98, 99, 101, 104, 108], "annot": [10, 39, 50, 63, 64, 65, 67, 68, 70, 71, 80, 83, 84, 85, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 105, 109], "dissimilar": [10, 95, 96], "preced": 10, "incorrect": [10, 70, 73, 76, 88, 90, 91, 92, 93, 95, 96, 97, 100, 101, 105, 108], "due": [10, 43, 46, 73, 77, 79, 90, 91, 92, 93, 95, 96, 97, 100, 101, 108], "appear": [10, 39, 50, 64, 65, 68, 76, 92, 93, 95, 96, 97, 100, 108, 109], "now": [10, 13, 43, 86, 88, 89, 90, 92, 97, 99, 100, 103, 105, 106, 108, 110], "token": [10, 45, 58, 79, 80, 81, 82, 83, 84, 99, 101, 102], "hamper": [10, 93, 98], "analyt": [10, 85, 97, 99, 103], "lead": [10, 70, 73, 93, 97, 100, 105], "draw": [10, 91, 92], "conclus": [10, 96], "let": [10, 40, 44, 72, 73, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 103, 104, 105, 106, 108, 109, 110], "sort_valu": [10, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 108], "head": [10, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 103, 108], "97": [10, 88, 98, 99, 100, 101, 105, 108, 110], "064045": 10, "58": [10, 88, 92, 97, 98, 101, 105], "680894": 10, "41": [10, 97, 98, 100, 105, 108], "746043": 10, "794894": 10, "98": [10, 98, 99, 100, 108], "802911": 10, "give": [10, 51, 73, 101, 103, 109], "li": [10, 72], "especi": [10, 88, 89, 93, 97, 99, 108], "veri": [10, 39, 64, 68, 70, 89, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 108], "rare": [10, 46, 71, 91, 92, 93, 95, 96, 99, 100, 101], "anomal": [10, 73, 91, 92, 93, 95, 96, 100, 101], "articl": [10, 43, 99], "blog": 10, "unexpect": [10, 40, 44, 96], "consequ": 10, "inspect": [10, 89, 90, 92, 93, 100, 101, 105, 108], "011562": 10, "62": [10, 97, 100, 101, 105, 108], "019657": 10, "22": [10, 90, 91, 93, 97, 98, 100, 101, 104, 105, 110], "035243": 10, "040907": 10, "42": [10, 51, 96, 97, 98, 105, 110], "056865": 10, "smaller": [10, 72, 104, 105], "extrem": [10, 13, 91, 92, 93, 95, 96, 97, 99, 100, 101], "record": [10, 40, 44, 90, 95, 108], "abbrevi": 10, "misspel": 10, "typo": [10, 84], "resolut": 10, "video": [10, 98], "audio": [10, 91, 92, 94, 99], "minor": [10, 58], "variat": 10, "translat": [10, 100], "d": [10, 57, 88, 95, 96, 97, 99, 100, 101, 104, 108, 110], "constant": [10, 34, 75], "median": [10, 33, 57], "question": [10, 25, 85, 101], "nearli": [10, 25, 92, 93, 95, 96], "awar": [10, 86, 101], "presenc": [10, 54, 56, 101], "36": [10, 97, 98, 100, 110], "066009": 10, "80": [10, 41, 88, 95, 100, 104, 108], "003906": 10, "093245": 10, "005599": 10, "27": [10, 95, 97, 98, 100, 101, 105, 110], "156720": 10, "009751": 10, "72": [10, 97, 98, 100, 101, 104, 108], "signific": [10, 88, 89, 92, 95, 96, 98, 100, 101, 104, 106, 108], "violat": [10, 85, 95, 96, 97, 100, 101], "assumpt": [10, 95, 96, 97, 100, 101], "changepoint": [10, 95, 96, 100, 101], "shift": [10, 54, 56, 95, 96, 100, 101], "drift": [10, 92, 95, 97, 100, 101], "autocorrel": [10, 95, 96, 100, 101], "almost": [10, 95, 96, 100, 101], "adjac": [10, 54, 95, 96, 100, 101], "tend": [10, 39, 49, 95, 96, 100, 101, 109, 110], "sequenti": [10, 40, 44, 62, 93], "pai": [10, 96, 97], "attent": [10, 97], "realli": [10, 89, 96, 100, 103, 109], "mere": 10, "highlight": [10, 80, 84, 91, 92, 95, 97, 109], "necessarili": [10, 63, 71, 96, 100, 101], "wrong": [10, 63, 68, 70, 86, 89, 91, 92, 96, 99, 100, 101, 105], "gap": 10, "b": [10, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 39, 58, 59, 83, 88, 95, 96, 97, 98, 99, 100, 101, 107, 110], "x1": [10, 68, 71, 105], "x2": [10, 68, 71, 105], "10th": 10, "100th": 10, "90": [10, 83, 88, 95, 100, 101, 107, 108], "similarli": [10, 40, 44, 91, 93, 95, 99, 100, 105], "associ": [10, 15, 19, 35, 37, 40, 44, 71, 103], "blogpost": 10, "proper": [10, 59, 63, 68, 71, 88, 93, 96, 99, 103, 105], "scenario": [10, 54, 56, 73, 91, 92], "underli": [10, 45, 56, 72, 81, 83, 110], "stem": [10, 72, 106], "evolv": 10, "influenc": 10, "act": [10, 70, 91], "accordingli": [10, 35, 54], "emploi": [10, 104, 106], "partit": [10, 107], "ahead": 10, "good": [10, 40, 44, 57, 62, 64, 70, 73, 77, 79, 80, 85, 93, 97, 100], "problem": [10, 35, 43, 51, 80, 85, 91, 92, 93, 96, 97, 99], "deploy": [10, 88, 89, 101, 108], "overlook": [10, 70, 105], "fact": 10, "thu": [10, 39, 44, 64, 88, 90, 95, 96, 100, 101, 107, 110], "diagnos": [10, 92, 99], "24": [10, 90, 97, 98, 100, 101, 103, 105, 108], "681458": 10, "37": [10, 91, 97, 98, 100], "804582": 10, "64": [10, 44, 88, 93, 95, 97, 101, 105], "810646": 10, "815691": 10, "78": [10, 88, 95, 98, 100, 101, 105, 108], "834293": 10, "Be": [10, 44], "cautiou": 10, "behavior": [10, 19, 39, 40, 44, 71, 99], "rarest": [10, 92, 100], "q": [10, 97, 105], "subpar": 10, "special": [10, 54, 58], "techniqu": [10, 105], "smote": 10, "asymmetr": [10, 39], "28": [10, 93, 96, 97, 98, 100, 101, 103, 110], "75": [10, 51, 91, 92, 97, 98, 100, 103, 104, 105, 108, 110], "33": [10, 40, 44, 97, 98, 100, 105], "68": [10, 88, 98, 100, 101, 105], "excess": [10, 93], "dark": [10, 97, 109], "bright": [10, 110], "blurri": [10, 93, 97], "lack": [10, 62, 97, 100], "unusu": [10, 105, 106], "discuss": [10, 99], "earlier": [10, 89, 110], "unintend": [10, 95, 96, 97], "relationship": [10, 39], "irrelev": 10, "exploit": 10, "fail": [10, 15], "unseen": 10, "hold": [10, 15], "aris": 10, "captur": [10, 39, 90, 105, 106, 109], "environment": 10, "preprocess": [10, 88, 89, 92, 95, 97, 106, 108], "systemat": [10, 80, 84, 103], "photograph": 10, "uncorrelated": [10, 97], "strongli": [10, 96, 97], "minu": [10, 73], "sole": [10, 75, 88, 91, 100, 103, 106], "review": [10, 88, 89, 92, 95, 96, 98, 99, 100, 101, 105, 108, 109, 110], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 97], "correlations_df": [10, 97], "blurry_scor": [10, 97], "559": [10, 100], "dark_scor": [10, 93, 97], "808": 10, "light_scor": [10, 97], "723": [10, 95, 100], "odd_size_scor": [10, 97], "957": 10, "odd_aspect_ratio_scor": [10, 97], "835": 10, "grayscale_scor": [10, 97], "003": 10, "spurious": 10, "low_information_scor": [10, 93, 97], "688": [10, 100, 108], "categor": [10, 72, 87, 88, 91, 92, 94, 99, 100, 108], "characterist": [10, 39, 97], "grayscal": [10, 93, 97], "cluster": [10, 21, 34, 100], "slice": [10, 100], "poor": [10, 97, 100], "subpopul": [10, 100], "faq": [10, 85, 92, 93, 95, 96, 102], "get_self_confidence_for_each_label": [10, 51, 73], "r": [10, 43, 75, 91, 92, 97, 108, 109], "tabular": [10, 85, 87, 91, 92, 94, 97, 99, 100, 103], "encod": [10, 52, 71, 77, 80, 88, 89, 95, 96, 99, 100, 108, 109], "71": [10, 97, 98, 100, 101, 105, 108], "70": [10, 83, 95, 97, 100], "69": [10, 100, 101, 108], "subgroup": [10, 97], "wors": [10, 97, 103], "ratio": [10, 97], "miss": [10, 30, 40, 44, 59, 68, 70, 99, 100, 105, 108], "pattern": [10, 97], "isn": [10, 20, 30], "scalabl": 10, "sacrific": 10, "One": [10, 59, 72, 99], "quantif": 10, "39": [10, 89, 90, 91, 93, 96, 97, 98, 99, 100, 105, 108, 109, 110], "32": [10, 90, 91, 97, 98, 100, 103, 105], "valuabl": [10, 21, 97], "exert": [10, 92], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 24, 26, 33], "health_summari": [10, 26, 39, 85, 98], "health_summary_kwarg": 10, "tandem": [10, 98], "view": [10, 40, 44, 45, 46, 79, 81, 83, 85, 88, 89, 90, 91, 92, 95, 96, 98, 100, 101, 103, 104, 105, 106, 107, 108, 110], "strength": [10, 57, 71, 97], "scaling_factor": [10, 31, 57], "ood_kwarg": 10, "outofdistribut": [10, 31, 72, 106], "outsid": [10, 99, 104], "outlierissuemanag": [10, 17, 24, 31], "nearduplicateissuemanag": [10, 17, 22, 24], "noniidissuemanag": [10, 17, 24, 29], "num_permut": [10, 29], "permut": [10, 29], "significance_threshold": [10, 29], "signic": 10, "noniid": [10, 24], "classimbalanceissuemanag": [10, 17, 23, 24], "underperforminggroupissuemanag": [10, 17, 24, 34], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 34], "filter_cluster_id": [10, 24, 34], "clustering_kwarg": [10, 34], "nullissuemanag": [10, 17, 24, 30], "datavaluationissuemanag": [10, 17, 21, 24], "codeblock": 10, "demonstr": [10, 43, 54, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103, 104, 105, 107, 108, 109], "howev": [10, 40, 44, 54, 59, 88, 89, 90, 93, 95, 96, 97, 100, 103, 107, 109], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 64], "versa": [10, 64], "light": [10, 93, 97, 98, 105, 109], "29": [10, 93, 97, 98, 100, 103, 104, 105, 109, 110], "low_inform": [10, 93, 97], "odd_aspect_ratio": [10, 93, 97], "35": [10, 91, 97, 98, 100, 103, 104, 105], "odd_siz": [10, 93, 97], "doc": [10, 40, 44, 72, 85, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 106, 108, 110], "spurious_correlations_kwarg": 10, "enough": [10, 43, 59, 97, 99], "label_scor": [11, 26, 28, 33, 90, 91, 92, 93, 95, 96, 97, 100, 101, 104, 108], "is_outlier_issu": [11, 91, 92, 93, 95, 96, 97, 100, 101], "outlier_scor": [11, 31, 91, 92, 93, 95, 96, 97, 100, 101, 106], "is_near_duplicate_issu": [11, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_scor": [11, 22, 91, 92, 93, 95, 96, 97, 99, 100, 101], "near_duplicate_set": [11, 22, 24, 91, 92, 93, 95, 96, 99, 100, 101], "is_non_iid_issu": [11, 92, 95, 96, 97, 100, 101], "non_iid_scor": [11, 29, 92, 95, 96, 97, 100, 101], "is_class_imbalance_issu": [11, 92, 97, 100], "class_imbalance_scor": [11, 23, 92, 97, 100], "is_underperforming_group_issu": [11, 92, 97, 100], "underperforming_group_scor": [11, 34, 92, 97, 100], "is_null_issu": [11, 92, 97, 100], "null_scor": [11, 30, 92, 97, 100], "is_data_valuation_issu": [11, 97], "data_valuation_scor": [11, 21, 97], "studio": [12, 85, 88, 89, 92, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108], "data_issu": [12, 13, 18, 19, 36], "issue_find": [12, 18], "factori": [12, 18, 19], "model_output": [12, 18], "incorpor": [13, 86, 101], "vision": [13, 93], "create_imagelab": [13, 14], "huggingfac": [13, 90, 91, 92, 93, 99], "imagelabdataissuesadapt": [13, 14], "strategi": [13, 16, 51, 97, 99], "dataissu": [13, 16, 18, 19, 36], "_infostrategi": [13, 16], "basi": [13, 16], "filter_based_on_max_preval": 13, "max_num": 13, "collect_issues_from_imagelab": [13, 16], "collect_issues_from_issue_manag": [13, 16], "collect_statist": [13, 16], "reus": [13, 16, 25], "avoid": [13, 16, 40, 43, 44, 46, 54, 59, 65, 68, 71, 75, 77, 79, 91, 92, 99, 100], "recomput": [13, 16, 89], "weighted_knn_graph": [13, 16], "issue_manager_that_computes_knn_graph": [13, 16], "set_health_scor": [13, 16], "health": [13, 16, 26, 39, 64, 85], "correlationvisu": [13, 14], "visual": [13, 68, 69, 71, 88, 91, 92, 93, 108, 110], "title_info": 13, "ncol": [13, 93, 106], "cell_siz": 13, "correlationreport": [13, 14], "anyth": [13, 101], "imagelabreporteradapt": [13, 14], "get_report": [13, 36], "report_str": [13, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 36], "imagelabissuefinderadapt": [13, 14], "issuefind": [13, 18, 19, 36], "get_available_issue_typ": [13, 19], "handle_spurious_correl": [13, 14], "imagelab_issu": 13, "_": [13, 22, 23, 25, 26, 28, 29, 30, 33, 34, 51, 58, 59, 88, 90, 91, 93, 97, 98, 101, 104], "imagelab": [14, 16, 18], "except": [15, 40, 44, 62, 73, 91, 92, 93, 100, 103], "dataformaterror": [15, 18], "add_not": 15, "with_traceback": 15, "tb": 15, "__traceback__": 15, "datasetdicterror": [15, 18], "datasetdict": 15, "datasetloaderror": [15, 18], "dataset_typ": 15, "sublist": 15, "map_to_int": 15, "abc": [15, 25, 35], "is_avail": [15, 93], "central": [16, 110], "repositori": 16, "get_data_statist": [16, 18], "concret": 17, "subclass": [17, 40, 44, 72, 91], "regressionlabelissuemanag": [17, 24, 32, 33], "multilabelissuemanag": [17, 24, 27, 28], "from_str": [17, 37, 47, 51], "my_issu": 17, "logic": [17, 37, 43, 46, 77, 79, 100], "modeloutput": [18, 35], "multiclasspredprob": [18, 35], "regressionpredict": [18, 35], "multilabelpredprob": [18, 35], "instati": 19, "public": [19, 97, 100, 101, 105, 109, 110], "creation": [19, 44, 97], "execut": [19, 40, 44, 91, 99, 105], "coordin": [19, 68, 70, 71, 105, 110], "At": [19, 71, 99], "direct": [20, 30, 40, 44, 56, 62], "vstack": [21, 59, 93, 98, 99, 101, 103, 104], "25": [21, 29, 40, 51, 57, 92, 93, 97, 98, 100, 101, 103, 104, 105, 110], "classvar": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "short": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 58, 59], "item": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 40, 44, 59, 91, 92, 93, 99, 101, 103, 104], "some_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "additional_info_kei": [21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34], "default_threshold": [21, 24, 31], "collect_info": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "info_to_omit": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "compos": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 40, 44, 89, 96, 106], "is_x_issu": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "x_score": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_a": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b1": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "val_b2": [21, 22, 23, 25, 26, 28, 29, 31, 33, 34], "occurr": [22, 23, 25, 29, 30, 31, 34, 58], "median_nn_dist": 22, "bleed": [24, 27, 32, 42], "edg": [24, 27, 32, 42, 70, 85, 88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108, 110], "sharp": [24, 27, 32, 42], "get_health_summari": [24, 26], "ood": [24, 31, 72, 73, 106], "simplified_kolmogorov_smirnov_test": [24, 29], "outlier_cluster_label": [24, 34], "no_underperforming_cluster_id": [24, 34], "perform_clust": [24, 34], "get_underperforming_clust": [24, 34], "find_issues_with_predict": [24, 32, 33], "find_issues_with_featur": [24, 32, 33], "believ": [25, 109], "priori": [25, 101], "abstract": [25, 35], "applic": [26, 63, 97, 99, 101, 103, 110], "typevar": [26, 28, 40, 44, 58, 67, 70, 71], "scalartyp": [26, 28], "covari": [26, 28, 75, 108], "summary_dict": 26, "neighbor_histogram": 29, "non_neighbor_histogram": 29, "kolmogorov": 29, "smirnov": 29, "largest": [29, 43, 51, 54, 73, 77, 79, 105, 109], "empir": [29, 50, 63], "cumul": 29, "ecdf": 29, "histogram": [29, 95, 97, 108], "absolut": [29, 33], "trial": 29, "null_track": 30, "extend": [30, 52, 62, 93, 97, 100, 105, 106, 110], "superclass": 30, "arbitrari": [30, 39, 79, 83, 91, 106, 108], "prompt": 30, "address": [30, 89, 91, 92, 96, 99], "enabl": [30, 44, 56, 100], "37037": 31, "q3_avg_dist": 31, "iqr_avg_dist": 31, "median_outlier_scor": 31, "issue_threshold": 31, "multipli": [33, 57], "deleg": 33, "confus": [34, 35, 39, 40, 44, 46, 59, 71, 89, 110], "50": [34, 44, 97, 99, 100, 101, 103, 105, 106, 108], "keepdim": [34, 99], "signifi": 34, "absenc": 34, "int64": [34, 90, 100, 103], "npt": 34, "int_": 34, "id": [34, 63, 91, 93, 97, 99, 103], "unique_cluster_id": 34, "exclud": [34, 36, 45, 80, 84, 91, 110], "worst": [34, 51, 103], "performed_clust": 34, "worst_cluster_id": 34, "convent": [35, 37], "subject": [35, 37, 100], "meant": [35, 37], "Not": [35, 56], "mainli": [35, 106, 110], "content": [35, 72, 90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "fetch": [35, 43, 90, 92, 97, 99], "datset": 36, "enum": [37, 51], "qualnam": [37, 51], "boundari": [37, 51, 91, 92], "continu": [37, 62, 88, 89, 93, 96, 99, 103, 105, 108, 110], "binari": [37, 51, 59, 65, 67, 101, 110], "simultan": [37, 108], "task_str": 37, "is_classif": 37, "__contains__": [37, 47, 51], "member": [37, 40, 44, 51, 91], "typeerror": [37, 51], "12": [37, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 108, 109, 110], "__getitem__": [37, 47, 51], "match": [37, 39, 40, 44, 46, 51, 63, 64, 73, 91, 92, 93, 98, 105, 107, 109], "__iter__": [37, 47, 51], "__len__": [37, 47, 51], "alias": [37, 51], "is_regress": 37, "is_multilabel": 37, "overview": [39, 54, 88, 89, 90, 92, 93, 95, 96, 103, 105, 106, 108, 110], "modifi": [39, 40, 43, 44, 54, 56, 59, 99, 100, 101], "rank_classes_by_label_qu": [39, 92], "merg": [39, 54, 58, 85, 98, 99, 100, 110], "find_overlapping_class": [39, 99, 101], "problemat": [39, 64, 80, 84, 90, 105, 110], "unnorm": [39, 64, 101], "abov": [39, 40, 43, 44, 56, 59, 63, 70, 71, 73, 79, 83, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 107, 108, 109, 110], "model_select": [39, 51, 88, 89, 90, 91, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 106, 108], "cross_val_predict": [39, 44, 88, 89, 90, 91, 92, 95, 96, 97, 100, 101, 103, 107, 108], "get_data_labels_from_dataset": 39, "yourfavoritemodel": [39, 101], "cv": [39, 51, 88, 90, 91, 92, 95, 97, 100, 101, 103], "df": [39, 59, 84, 90, 97, 99], "overall_label_qu": [39, 64], "col": 39, "prob": [39, 58, 101, 107], "divid": [39, 64, 73], "label_nois": [39, 64], "human": [39, 98, 109, 110], "clearli": [39, 73, 93, 105, 109], "num": [39, 64, 98, 101], "overlap": [39, 85, 97, 98, 99, 101], "ontolog": 39, "publish": [39, 110], "therefor": [39, 73, 97, 100], "vehicl": [39, 98], "truck": [39, 97, 98, 106, 109], "intuit": [39, 64], "car": [39, 98, 105, 109], "frequent": [39, 63, 97, 99, 100, 108], "l": [39, 40, 44, 68, 70, 71], "class1": 39, "class2": 39, "dog": [39, 59, 64, 66, 80, 98, 99, 106, 107, 110], "cat": [39, 59, 64, 66, 98, 99, 106, 107], "co": [39, 40, 41], "noisy_label": [39, 91, 92, 104], "overlapping_class": 39, "descend": [39, 40, 44, 51, 64, 71], "overall_label_health_scor": [39, 64, 101], "half": [39, 40, 42, 44, 64, 98, 110], "health_scor": [39, 64], "classes_by_label_qu": [39, 92], "cnn": [40, 42, 44, 93], "cifar": [40, 41, 97, 98, 106], "teach": [40, 41], "bhanml": 40, "blob": [40, 97], "master": [40, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 104, 105, 106, 108], "call_bn": [40, 42], "bn": 40, "input_channel": 40, "n_output": 40, "dropout_r": 40, "top_bn": 40, "architectur": [40, 44], "shown": [40, 71, 90, 91, 92, 93, 95, 96, 99, 100, 101, 103, 106, 107, 109, 110], "forward": [40, 41, 42, 44, 93, 103], "overridden": [40, 44], "although": [40, 44, 72, 88, 95, 100], "recip": [40, 44], "afterward": [40, 44], "sinc": [40, 44, 48, 60, 64, 71, 79, 83, 99, 100, 103, 104, 105, 107, 110], "hook": [40, 44, 98], "silent": [40, 43, 44], "t_destin": [40, 42, 44], "__call__": [40, 42, 44, 47, 51], "add_modul": [40, 42, 44], "child": [40, 44], "fn": [40, 44, 71], "recurs": [40, 44, 51], "submodul": [40, 44, 53], "children": [40, 42, 44, 110], "nn": [40, 41, 44, 54, 93], "init": [40, 44, 101], "no_grad": [40, 44, 93, 106], "init_weight": [40, 44], "linear": [40, 44, 89, 93, 96], "fill_": [40, 44], "net": [40, 44, 90, 93, 98], "in_featur": [40, 44], "out_featur": [40, 44], "bia": [40, 44, 93], "tensor": [40, 41, 44, 90, 93, 106], "requires_grad": [40, 44], "bfloat16": [40, 42, 44], "cast": [40, 44, 90], "buffer": [40, 42, 44], "datatyp": [40, 44], "xdoctest": [40, 44], "undefin": [40, 44], "var": [40, 44], "buf": [40, 44], "20l": [40, 44], "1l": [40, 44], "5l": [40, 44], "call_super_init": [40, 42, 44], "immedi": [40, 44, 106], "compil": [40, 42, 44, 62], "cpu": [40, 42, 44, 46, 90, 93], "move": [40, 44, 51, 86, 98], "cuda": [40, 42, 44, 90, 93], "devic": [40, 44, 90, 93, 100], "gpu": [40, 44, 89, 90, 96], "live": [40, 44], "copi": [40, 44, 75, 88, 90, 91, 92, 95, 97, 99, 100, 104, 107, 108], "doubl": [40, 42, 44], "dump_patch": [40, 42, 44], "eval": [40, 42, 44, 93, 104, 106], "dropout": [40, 44], "batchnorm": [40, 44], "grad": [40, 44], "extra_repr": [40, 42, 44], "line": [40, 44, 85, 91, 97, 98, 103, 106, 110], "get_buff": [40, 42, 44], "target": [40, 41, 44, 75, 76, 97, 106, 108], "throw": [40, 44], "get_submodul": [40, 42, 44], "explan": [40, 44], "qualifi": [40, 44], "referenc": [40, 44], "attributeerror": [40, 44], "invalid": [40, 44, 96], "resolv": [40, 44, 97, 110], "get_extra_st": [40, 42, 44], "state_dict": [40, 42, 44], "set_extra_st": [40, 42, 44], "build": [40, 44, 54, 93, 97, 109], "picklabl": [40, 44], "serial": [40, 44], "backward": [40, 44, 93], "break": [40, 44, 93, 105], "pickl": [40, 44, 105], "get_paramet": [40, 42, 44], "net_b": [40, 44], "net_c": [40, 44], "conv": [40, 44], "conv2d": [40, 44, 93], "16": [40, 44, 51, 54, 62, 79, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 105, 106, 109, 110], "kernel_s": [40, 44], "stride": [40, 44], "200": [40, 44, 73, 97, 98, 105, 110], "diagram": [40, 44, 107], "degre": [40, 44], "queri": [40, 44, 54, 56, 92, 93, 97, 99, 100, 104], "named_modul": [40, 42, 44], "o": [40, 44, 57, 58, 90, 91, 92, 98, 99, 100, 101, 104, 105, 110], "transit": [40, 44], "ipu": [40, 42, 44], "load_state_dict": [40, 42, 44], "strict": [40, 44, 51], "persist": [40, 44], "strictli": [40, 44], "inplac": [40, 44, 97, 103], "preserv": [40, 44, 59], "namedtupl": [40, 44], "missing_kei": [40, 44], "unexpected_kei": [40, 44], "runtimeerror": [40, 44], "idx": [40, 44, 59, 60, 71, 91, 93, 97, 99, 100, 101, 103, 105, 106], "named_buff": [40, 42, 44], "prefix": [40, 44, 90, 110], "remove_dupl": [40, 44], "prepend": [40, 44], "running_var": [40, 44], "named_children": [40, 42, 44], "conv4": [40, 44], "conv5": [40, 44], "memo": [40, 44], "named_paramet": [40, 42, 44], "register_backward_hook": [40, 42, 44], "deprec": [40, 44, 48], "favor": [40, 44], "register_full_backward_hook": [40, 42, 44], "removablehandl": [40, 44], "register_buff": [40, 42, 44], "running_mean": [40, 44], "register_forward_hook": [40, 42, 44], "with_kwarg": [40, 44], "always_cal": [40, 44], "possibli": [40, 44, 88, 95], "fire": [40, 44, 98], "register_module_forward_hook": [40, 44], "regardless": [40, 44, 91, 92], "register_forward_pre_hook": [40, 42, 44], "And": [40, 44], "forward_pr": [40, 44], "register_module_forward_pre_hook": [40, 44], "gradient": [40, 44, 93, 95, 108], "grad_input": [40, 44], "grad_output": [40, 44], "technic": [40, 44], "caller": [40, 44], "register_module_full_backward_hook": [40, 44], "register_full_backward_pre_hook": [40, 42, 44], "backward_pr": [40, 44], "register_module_full_backward_pre_hook": [40, 44], "register_load_state_dict_post_hook": [40, 42, 44], "post": [40, 44, 54], "incompatible_kei": [40, 44], "modif": [40, 44, 54], "thrown": [40, 44], "register_modul": [40, 42, 44], "register_paramet": [40, 42, 44], "register_state_dict_pre_hook": [40, 42, 44], "keep_var": [40, 44], "requires_grad_": [40, 42, 44], "autograd": [40, 44], "freez": [40, 44, 89, 90, 96], "finetun": [40, 44], "gan": [40, 44], "share_memori": [40, 42, 44], "share_memory_": [40, 44], "destin": [40, 44], "shallow": [40, 44], "releas": [40, 44, 62, 86, 99], "design": [40, 44, 54], "ordereddict": [40, 44], "detach": [40, 44, 93], "non_block": [40, 44], "memory_format": [40, 44], "channels_last": [40, 44], "Its": [40, 44, 51, 64, 70], "complex": [40, 44, 100], "integr": [40, 44, 56, 85, 99], "asynchron": [40, 44], "host": [40, 44], "pin": [40, 44, 89, 96, 98], "desir": [40, 44, 54, 58, 71], "4d": [40, 44], "ignore_w": [40, 44], "determinist": [40, 44, 90], "1913": [40, 44], "3420": [40, 44], "5113": [40, 44], "2325": [40, 44], "env": [40, 44], "torch_doctest_cuda1": [40, 44], "gpu1": [40, 44], "1914": [40, 44], "5112": [40, 44], "2324": [40, 44], "float16": [40, 44], "cdoubl": [40, 44], "3741": [40, 44], "2382": [40, 44], "5593": [40, 44], "4443": [40, 44], "complex128": [40, 44], "6122": [40, 44], "1150": [40, 44], "to_empti": [40, 42, 44], "storag": [40, 44], "dst_type": [40, 44], "xpu": [40, 42, 44], "zero_grad": [40, 42, 44, 93], "set_to_non": [40, 44], "reset": [40, 44], "context": [40, 44, 105], "noisili": [41, 101], "han": 41, "2018": 41, "cifar_cnn": [41, 42], "loss_coteach": [41, 42], "y_1": 41, "y_2": 41, "forget_r": 41, "class_weight": 41, "logit": [41, 62, 93], "decim": [41, 59], "forget": [41, 51, 110], "rate_schedul": 41, "epoch": [41, 42, 44, 93, 99], "initialize_lr_schedul": [41, 42], "lr": [41, 42, 44], "001": [41, 73, 97, 99], "250": [41, 91, 92, 101, 105], "epoch_decay_start": 41, "schedul": 41, "beta": 41, "adam": 41, "adjust_learning_r": [41, 42], "alpha_plan": 41, "beta1_plan": 41, "forget_rate_schedul": [41, 42], "num_gradu": 41, "expon": 41, "tell": [41, 89, 93, 96, 101], "train_load": [41, 44], "model1": [41, 101], "optimizer1": 41, "model2": [41, 101], "optimizer2": 41, "dataload": [41, 93, 106], "parser": 41, "parse_arg": 41, "num_iter_per_epoch": 41, "print_freq": 41, "topk": 41, "top1": 41, "top5": 41, "test_load": 41, "offici": [42, 61, 97, 110], "wish": [42, 61, 100, 106, 109, 110], "adj_confident_thresholds_shar": [42, 43], "labels_shar": [42, 43], "pred_probs_shar": [42, 43], "labelinspector": [42, 43, 99], "get_num_issu": [42, 43], "get_quality_scor": [42, 43], "update_confident_threshold": [42, 43], "score_label_qu": [42, 43], "split_arr": [42, 43], "span_classif": 42, "display_issu": [42, 45, 78, 79, 80, 81, 82, 83, 84, 109, 110], "mnist_pytorch": 42, "get_mnist_dataset": [42, 44], "get_sklearn_digits_dataset": [42, 44], "simplenet": [42, 44], "batch_siz": [42, 43, 44, 77, 79, 93, 99, 106, 109], "log_interv": [42, 44], "momentum": [42, 44], "no_cuda": [42, 44], "test_batch_s": [42, 44, 93], "loader": [42, 44, 93], "set_predict_proba_request": [42, 44], "set_predict_request": [42, 44], "coteach": [42, 86], "mini": [43, 77, 79, 99], "low_self_confid": [43, 46, 65], "self_confid": [43, 46, 47, 51, 65, 67, 73, 81, 83, 88, 89, 99, 101], "conveni": [43, 56, 88, 89, 90, 96, 100], "script": 43, "labels_fil": [43, 99], "pred_probs_fil": [43, 99], "quality_score_kwarg": 43, "num_issue_kwarg": 43, "return_mask": 43, "variant": [43, 63, 109], "read": [43, 48, 92, 99, 101, 106, 110], "zarr": [43, 99], "memmap": [43, 109], "pythonspe": 43, "mmap": [43, 99], "hdf5": 43, "further": [43, 45, 64, 65, 67, 70, 71, 79, 80, 90, 97, 99, 100], "yourfil": 43, "npy": [43, 98, 99, 109], "mmap_mod": [43, 109], "tip": [43, 46, 62, 99], "save_arrai": 43, "your_arrai": 43, "disk": [43, 98, 99], "npz": [43, 110], "maxim": [43, 63, 77, 79, 100, 109], "multiprocess": [43, 46, 65, 77, 79, 93, 99], "linux": [43, 77, 79], "physic": [43, 46, 77, 79, 105], "psutil": [43, 46, 77, 79], "labels_arrai": [43, 60], "predprob": 43, "pred_probs_arrai": 43, "back": [43, 54, 71, 91, 99, 100, 105, 106], "store_result": 43, "becom": [43, 97, 106], "verifi": [43, 56, 99, 100, 103, 106], "long": [43, 63, 72, 100, 103], "chunk": [43, 107], "ram": [43, 98], "end_index": 43, "labels_batch": 43, "pred_probs_batch": 43, "batch_result": 43, "indices_of_examples_with_issu": [43, 99], "shortcut": 43, "encount": [43, 46, 77], "1000": [43, 90, 96, 99, 106], "aggreg": [43, 47, 51, 63, 67, 70, 73, 83, 99, 101, 103], "seen": [43, 99, 100, 106, 110], "far": [43, 63, 100], "label_quality_scor": [43, 67, 70, 73, 76, 101, 105], "method1": 43, "method2": 43, "normalized_margin": [43, 46, 47, 51, 65, 67, 73, 81, 83], "low_normalized_margin": [43, 46, 65], "issue_indic": [43, 70, 93], "update_num_issu": 43, "arr": [43, 99], "chunksiz": 43, "convnet": 44, "bespok": [44, 62], "download": [44, 90, 97, 99, 106], "mnist": [44, 85, 90, 98], "handwritten": 44, "digit": [44, 90, 98], "last": [44, 51, 68, 71, 91, 92, 99, 100, 103, 105, 110], "sklearn_digits_test_s": 44, "01": [44, 73, 75, 90, 97, 101, 104, 105], "templat": 44, "flexibli": 44, "among": [44, 63, 101], "test_set": 44, "overrid": 44, "train_idx": [44, 59, 106], "train_label": [44, 89, 100, 106], "span": [45, 100], "sentenc": [45, 58, 81, 83, 84, 89, 96], "token_classif": [45, 58, 81, 83, 84, 99], "encourag": [46, 65, 73, 76], "multilabel_classif": [46, 64, 65, 67, 73, 99, 104], "pred_probs_by_class": 46, "prune_count_matrix_col": 46, "rank_by_kwarg": [46, 65, 73, 101], "num_to_remove_per_class": [46, 65], "bad": [46, 54, 65, 70, 73, 96, 99], "seem": [46, 101, 104], "aren": 46, "confidence_weighted_entropi": [46, 47, 51, 65, 67, 73, 81, 83], "label_issues_idx": [46, 73, 100], "entropi": [46, 48, 50, 51, 72, 73], "prune_by_class": [46, 65, 101], "predicted_neq_given": [46, 65, 101], "prune_counts_matrix": 46, "smallest": [46, 73], "unus": 46, "number_of_mislabeled_examples_in_class_k": 46, "delet": [46, 85, 89, 99], "too": [46, 51, 54, 72, 93, 99, 100, 105], "thread": [46, 65], "window": [46, 98], "shorter": [46, 68], "find_predicted_neq_given": 46, "find_label_issues_using_argmax_confusion_matrix": 46, "remove_noise_from_class": [47, 59], "clip_noise_r": [47, 59], "clip_valu": [47, 59], "value_count": [47, 59, 99], "value_counts_fill_missing_class": [47, 59], "get_missing_class": [47, 59], "round_preserving_sum": [47, 59], "round_preserving_row_tot": [47, 59], "estimate_pu_f1": [47, 59], "confusion_matrix": [47, 59], "print_square_matrix": [47, 59], "print_noise_matrix": [47, 59, 101], "print_inverse_noise_matrix": [47, 59], "print_joint_matrix": [47, 59, 101], "compress_int_arrai": [47, 59], "train_val_split": [47, 59], "subset_x_i": [47, 59], "subset_label": [47, 59], "subset_data": [47, 59], "extract_indices_tf": [47, 59], "unshuffle_tensorflow_dataset": [47, 59], "is_torch_dataset": [47, 59], "is_tensorflow_dataset": [47, 59], "csr_vstack": [47, 59], "append_extra_datapoint": [47, 59], "get_num_class": [47, 59], "num_unique_class": [47, 59], "get_unique_class": [47, 59], "format_label": [47, 59], "smart_display_datafram": [47, 59], "force_two_dimens": [47, 59], "latent_algebra": [47, 86], "compute_ps_py_inv_noise_matrix": [47, 49], "compute_py_inv_noise_matrix": [47, 49], "compute_inv_noise_matrix": [47, 49], "compute_noise_matrix_from_invers": [47, 49], "compute_pi": [47, 49], "compute_pyx": [47, 49], "label_quality_util": 47, "get_normalized_entropi": [47, 48], "multilabel_util": [47, 104], "stack_compl": [47, 52], "get_onehot_num_class": [47, 52], "int2onehot": [47, 52, 104], "onehot2int": [47, 52, 104], "multilabel_scor": [47, 67], "classlabelscor": [47, 51], "exponential_moving_averag": [47, 51, 67], "softmin": [47, 51, 67, 70, 79, 83], "possible_method": [47, 51], "multilabelscor": [47, 51], "get_class_label_quality_scor": [47, 51], "multilabel_pi": [47, 51], "get_cross_validated_multilabel_pred_prob": [47, 51], "default_k": [47, 53, 54], "features_to_knn": [47, 53, 54], "construct_knn_graph_from_index": [47, 53, 54, 56], "create_knn_graph_and_index": [47, 53, 54], "correct_knn_graph": [47, 53, 54, 97], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [47, 53, 54], "correct_knn_distances_and_indic": [47, 53, 54], "high_dimension_cutoff": [47, 53, 55], "row_count_cutoff": [47, 53, 55], "decide_euclidean_metr": [47, 53, 55], "decide_default_metr": [47, 53, 55], "construct_knn": [47, 53, 56], "transform_distances_to_scor": [47, 57], "correct_precision_error": [47, 57], "token_classification_util": [47, 110], "get_sent": [47, 58, 110], "filter_sent": [47, 58, 110], "process_token": [47, 58], "merge_prob": [47, 58], "color_sent": [47, 58], "assert_valid_input": [47, 60], "assert_valid_class_label": [47, 60], "assert_nonempty_input": [47, 60], "assert_indexing_work": [47, 60], "labels_to_arrai": [47, 60], "labels_to_list_multilabel": [47, 60], "min_allowed_prob": 48, "wikipedia": 48, "activ": [48, 50, 62, 63, 85, 103], "towardsdatasci": 48, "cheatsheet": 48, "ec57bc067c0b": 48, "clip": [48, 59, 90, 97], "behav": 48, "unnecessari": [48, 99], "slightli": [48, 88, 89], "interv": [48, 51, 106], "herein": 49, "inexact": 49, "cours": [49, 100], "propag": 49, "throughout": [49, 59, 75, 84, 90, 103, 109, 110], "increas": [49, 57, 70, 72, 73, 90, 91, 97, 99, 103, 104, 110], "dot": [49, 83, 99], "true_labels_class_count": 49, "pyx": 49, "multiannot": 50, "assert_valid_inputs_multiannot": 50, "labels_multiannot": [50, 63], "ensembl": [50, 51, 63, 73, 88, 95, 99, 104, 106, 108], "allow_single_label": 50, "annotator_id": 50, "assert_valid_pred_prob": 50, "pred_probs_unlabel": [50, 63], "format_multiannotator_label": [50, 63, 103], "formatted_label": [50, 59], "old": [50, 59, 86, 98], "check_consensus_label_class": 50, "consensus_label": [50, 63, 103], "consensus_method": [50, 63], "consensu": [50, 63, 85, 102, 110], "establish": [50, 62, 89, 108], "compute_soft_cross_entropi": 50, "soft": [50, 98], "find_best_temp_scal": 50, "coarse_search_rang": [50, 75, 99], "fine_search_s": [50, 75, 99], "temperatur": [50, 51, 70, 79, 83], "scale": [50, 57, 88, 97, 98, 99, 106, 109], "factor": [50, 51, 57, 77, 79], "minim": [50, 70, 106], "temp_scale_pred_prob": 50, "temp": 50, "sharpen": [50, 98], "smoothen": 50, "get_normalized_margin_for_each_label": [51, 73], "get_confidence_weighted_entropy_for_each_label": [51, 73], "scorer": 51, "alpha": [51, 67, 70, 91, 92, 97, 101, 104, 108], "exponenti": 51, "ema": 51, "s_1": 51, "s_k": 51, "ema_k": 51, "accord": [51, 65, 95, 96, 101, 110], "formula": [51, 57], "_t": 51, "cdot": 51, "s_t": 51, "qquad": 51, "leq": 51, "_1": 51, "recent": [51, 110], "success": 51, "previou": [51, 54, 93, 95, 99, 105], "discount": 51, "s_ema": 51, "175": [51, 93, 100, 101, 105], "underflow": 51, "nan": [51, 63, 88, 95, 97, 100, 103, 108], "aggregated_scor": 51, "base_scor": [51, 100], "base_scorer_kwarg": 51, "aggregator_kwarg": [51, 67], "n_sampl": [51, 97], "n_label": 51, "class_label_quality_scor": 51, "452": 51, "new_scor": 51, "575": [51, 100], "get_label_quality_scores_per_class": [51, 66, 67], "ml_scorer": 51, "binar": [51, 52], "reformat": [51, 90], "wider": 51, "splitter": 51, "kfold": [51, 93], "onevsrestclassifi": [51, 104], "randomforestclassifi": [51, 101, 104], "n_split": [51, 93, 104], "pred_prob_slic": 52, "onehot": 52, "hot": [52, 65, 71, 77, 80, 88, 95, 98, 99, 108, 109], "onehot_matrix": 52, "pairwis": [53, 55, 72], "reli": [54, 72, 89, 90, 91, 92, 96, 105, 106, 108], "sklearn_knn_kwarg": 54, "correction_featur": 54, "discourag": 54, "flexibl": [54, 99], "manner": [54, 67, 88, 89, 97, 103, 108], "701": 54, "900": [54, 88, 95, 108], "436": [54, 100], "000": [54, 89, 93, 96, 97, 98, 110], "idea": [54, 73, 100, 105], "dens": [54, 62, 97], "33140006": 54, "76210367": 54, "correct_exact_dupl": 54, "mutual": [54, 64, 104], "vari": [54, 70, 92], "exact_duplicate_set": 54, "main": [54, 63], "front": [54, 98], "consider": 54, "capabl": [54, 85, 100], "come": [54, 59, 91, 92, 99, 109], "misidentif": 54, "corrected_dist": 54, "corrected_indic": 54, "sqrt": 54, "distant": 54, "suitabl": [55, 63, 88, 95, 97, 100], "slower": 55, "decid": [55, 63, 89, 96, 98, 103, 108, 110], "predefin": 55, "met": [55, 110], "euclidean_dist": [55, 72], "spatial": [55, 72], "decis": [55, 88, 91, 92, 100], "That": [55, 88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "cosine_dist": 55, "knn_kwarg": 56, "html": [56, 59, 68, 71, 72, 90, 91, 92, 93, 95, 96, 99, 100, 101], "kneighbor": 56, "metric_param": 56, "n_features_in_": 56, "effective_metric_params_": 56, "effective_metric_": 56, "n_samples_fit_": 56, "__sklearn_is_fitted__": 56, "conduct": 56, "is_fit": 56, "trail": 56, "underscor": 56, "avg_dist": 57, "exp": [57, 72, 73, 91], "dt": 57, "right": [57, 68, 71, 89, 96, 104, 105, 106], "pronounc": 57, "differenti": 57, "ly": 57, "rule": [57, 58, 85, 98], "thumb": 57, "ood_features_scor": [57, 72, 106], "88988177": 57, "80519832": 57, "toler": 57, "minkowski": 57, "noth": 57, "epsilon": 57, "sensibl": 57, "fixed_scor": 57, "readabl": 58, "lambda": [58, 90, 91, 99, 100, 103], "long_sent": 58, "headlin": 58, "charact": [58, 59], "s1": 58, "s2": 58, "processed_token": 58, "alecnlcb": 58, "entiti": [58, 85, 99, 110], "mapped_ent": 58, "unique_ident": 58, "loc": [58, 91, 92, 93, 95, 97, 110], "nbitbas": [58, 67], "probs_merg": 58, "0125": [58, 83], "0375": 58, "075": 58, "025": 58, "color": [58, 80, 91, 92, 95, 97, 101, 104, 106, 108, 109], "red": [58, 71, 91, 92, 97, 98, 101, 104, 105, 106, 109], "colored_sent": 58, "termcolor": 58, "31msentenc": 58, "0m": 58, "ancillari": 59, "class_without_nois": 59, "any_other_class": 59, "choos": [59, 73, 88, 95, 99, 101, 108], "tradition": 59, "new_sum": 59, "fill": 59, "major": [59, 63, 86, 93, 106], "versu": [59, 101], "obviou": 59, "cgdeboer": 59, "iteround": 59, "reach": 59, "prob_s_eq_1": 59, "claesen": 59, "f1": [59, 71, 96, 101], "BE": 59, "left_nam": 59, "top_nam": 59, "titl": [59, 91, 92, 97, 101, 104, 106], "short_titl": 59, "round_plac": 59, "pretti": [59, 101], "joint_matrix": 59, "num_possible_valu": 59, "holdout_idx": 59, "extract": [59, 72, 89, 90, 95, 96, 100, 103, 106, 109], "allow_shuffl": 59, "turn": [59, 85, 105], "shuffledataset": 59, "histori": 59, "pre_x": 59, "buffer_s": 59, "csr_matric": 59, "append": [59, 90, 93, 98, 99, 100, 101, 103, 104, 105, 106, 110], "bottom": [59, 68, 71, 97, 105], "to_data": 59, "from_data": 59, "taken": 59, "label_matrix": 59, "canon": 59, "displai": [59, 71, 80, 84, 89, 90, 95, 96, 97, 101, 110], "jupyt": [59, 90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "notebook": [59, 63, 90, 92, 98, 99, 100, 101, 103, 104, 105, 107, 109, 110], "consol": 59, "allow_missing_class": 60, "allow_one_class": 60, "length_x": 60, "labellik": 60, "labels_list": [60, 65], "keraswrappermodel": [61, 62, 85], "keraswrappersequenti": [61, 62], "tf": [62, 90], "legaci": 62, "newer": 62, "interim": 62, "advis": [62, 104], "stabil": [62, 72], "until": 62, "accommod": 62, "keraswrapp": 62, "huggingface_keras_imdb": 62, "unit": [62, 110], "model_kwarg": [62, 75], "compile_kwarg": 62, "sparsecategoricalcrossentropi": 62, "layer": [62, 89, 90, 96, 106], "my_keras_model": 62, "from_logit": 62, "declar": 62, "apply_softmax": 62, "analysi": 63, "analyz": [63, 85, 97, 101, 103, 104], "get_label_quality_multiannot": [63, 103], "vote": 63, "crowdsourc": [63, 85, 103], "dawid": [63, 103], "skene": [63, 103], "analog": [63, 98, 103], "chosen": [63, 73, 99, 103], "crowdlab": [63, 103], "unlabel": [63, 93, 103, 106, 109], "get_active_learning_scor": [63, 103], "activelab": [63, 103], "priorit": [63, 70, 105, 109, 110], "showcas": 63, "best_qual": 63, "quality_method": 63, "calibrate_prob": 63, "return_detailed_qu": 63, "return_annotator_stat": 63, "return_weight": 63, "label_quality_score_kwarg": 63, "did": [63, 64, 88, 89, 90, 95, 101, 103, 108], "majority_vot": 63, "broken": [63, 71, 98, 108], "highest": [63, 71, 91, 93, 100, 107], "0th": 63, "consensus_quality_scor": [63, 103], "annotator_agr": [63, 103], "reman": 63, "1st": 63, "2nd": [63, 77], "3rd": 63, "consensus_label_suffix": 63, "consensus_quality_score_suffix": 63, "suffix": 63, "emsembl": 63, "weigh": [63, 98], "agreement": [63, 103], "agre": 63, "prevent": [63, 99], "overconfid": [63, 107], "detailed_label_qu": [63, 103], "annotator_stat": [63, 103], "model_weight": 63, "annotator_weight": 63, "warn": 63, "labels_info": 63, "num_annot": [63, 103], "deriv": [63, 103], "quality_annotator_1": 63, "quality_annotator_2": 63, "quality_annotator_m": 63, "annotator_qu": [63, 103], "num_examples_label": [63, 103], "agreement_with_consensu": [63, 103], "worst_class": [63, 103], "trustworthi": [63, 103, 108], "get_label_quality_multiannotator_ensembl": 63, "weigtht": 63, "budget": 63, "retrain": [63, 89, 108], "active_learning_scor": 63, "active_learning_scores_unlabel": 63, "get_active_learning_scores_ensembl": 63, "henc": [63, 90, 91, 100, 103], "get_majority_vote_label": [63, 103], "event": 63, "lastli": [63, 95], "convert_long_to_wide_dataset": 63, "labels_multiannotator_long": 63, "wide": [63, 88, 89, 90], "labels_multiannotator_wid": 63, "common_multilabel_issu": [64, 66], "exclus": [64, 104], "rank_classes_by_multilabel_qu": [64, 66], "overall_multilabel_health_scor": [64, 66], "multilabel_health_summari": [64, 66], "classes_by_multilabel_qu": 64, "inner": [65, 79, 97], "find_multilabel_issues_per_class": [65, 66], "per_class_label_issu": 65, "label_issues_list": 65, "pred_probs_list": [65, 73, 93, 101], "anim": [66, 106], "rat": 66, "predat": 66, "pet": 66, "reptil": 66, "box": [68, 70, 71, 98, 105], "object_detect": [68, 70, 71, 105], "return_indices_ranked_by_scor": [68, 105], "overlapping_label_check": [68, 70], "suboptim": [68, 70], "locat": [68, 70, 97, 105, 109, 110], "bbox": [68, 71, 105], "image_nam": [68, 71], "y1": [68, 71, 105], "y2": [68, 71, 105], "later": [68, 71, 72, 89, 100, 110], "corner": [68, 71, 105], "xyxi": [68, 71, 105], "io": [68, 71, 90, 97, 98], "keras_cv": [68, 71], "bounding_box": [68, 71, 105], "detectron": [68, 71, 105], "detectron2": [68, 71, 105], "readthedoc": [68, 71], "en": [68, 71], "latest": [68, 71], "draw_box": [68, 71], "mmdetect": [68, 71, 105], "swap": [68, 70, 80, 84], "penal": [68, 70], "concern": [68, 70, 85, 92], "issues_from_scor": [69, 70, 78, 79, 80, 82, 83, 84, 105, 109, 110], "compute_overlooked_box_scor": [69, 70], "compute_badloc_box_scor": [69, 70], "compute_swap_box_scor": [69, 70], "pool_box_scores_per_imag": [69, 70], "object_counts_per_imag": [69, 71, 105], "bounding_box_size_distribut": [69, 71, 105], "class_label_distribut": [69, 71, 105], "get_sorted_bbox_count_idx": [69, 71], "plot_class_size_distribut": [69, 71], "plot_class_distribut": [69, 71], "get_average_per_class_confusion_matrix": [69, 71], "calculate_per_class_metr": [69, 71], "aggregation_weight": 70, "imperfect": [70, 99, 100], "chose": [70, 103, 105], "imperfectli": [70, 105], "dirti": [70, 73, 76, 108], "subtyp": 70, "badloc": 70, "nonneg": 70, "high_probability_threshold": 70, "auxiliary_input": [70, 71], "iou": [70, 71], "heavili": 70, "auxiliarytypesdict": 70, "pred_label": [70, 89], "pred_label_prob": 70, "pred_bbox": 70, "lab_label": 70, "lab_bbox": 70, "similarity_matrix": 70, "min_possible_similar": 70, "scores_overlook": 70, "low_probability_threshold": 70, "scores_badloc": 70, "accident": [70, 89, 95, 96, 99], "scores_swap": 70, "box_scor": 70, "image_scor": [70, 79, 109], "discov": [71, 92, 97, 110], "abnorm": [71, 93, 105], "auxiliari": [71, 106, 109], "_get_valid_inputs_for_compute_scor": 71, "object_count": 71, "down": 71, "bbox_siz": 71, "class_distribut": 71, "plot": [71, 91, 92, 97, 101, 104, 106, 108, 109], "sorted_idx": [71, 106], "class_to_show": 71, "hidden": [71, 106], "max_class_to_show": 71, "plt": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "matplotlib": [71, 80, 91, 92, 93, 97, 101, 104, 105, 106, 108], "pyplot": [71, 80, 91, 92, 93, 97, 101, 104, 106, 108], "prediction_threshold": 71, "overlai": [71, 105], "figsiz": [71, 91, 92, 93, 97, 101, 104, 106], "save_path": [71, 105], "blue": [71, 98, 101, 105], "overlaid": 71, "side": [71, 98, 105], "figur": [71, 97, 101, 104, 106, 108], "extens": [71, 101, 103], "png": [71, 105], "pdf": [71, 72], "svg": 71, "num_proc": [71, 93], "intersect": [71, 99], "tp": 71, "fp": 71, "ground": [71, 98, 101, 103, 108], "truth": [71, 101, 103, 108], "bias": [71, 97], "avg_metr": 71, "distionari": 71, "95": [71, 81, 83, 95, 98, 100, 101, 108], "per_class_metr": 71, "Of": 72, "find_top_issu": [72, 73, 106], "behind": [72, 101], "dist_metr": 72, "subtract": [72, 73], "renorm": [72, 73, 99], "least_confid": 72, "sum_": 72, "log": [72, 73, 86], "softmax": [72, 79, 83, 93], "literatur": 72, "gen": 72, "liu": 72, "lochman": 72, "zach": 72, "openaccess": 72, "thecvf": 72, "cvpr2023": 72, "liu_gen_pushing_the_limits_of_softmax": 72, "based_out": 72, "distribution_detection_cvpr_2023_pap": 72, "fit_scor": [72, 106], "ood_predictions_scor": 72, "pretrain": [72, 89, 90, 96, 100, 106], "adjust_confident_threshold": 72, "probabilist": [72, 88, 90, 91, 92, 95, 96, 106, 107], "order_label_issu": [73, 86], "whichev": [73, 107], "argsort": [73, 89, 93, 96, 101, 105, 106, 108], "max_": 73, "get_label_quality_ensemble_scor": [73, 99, 101], "weight_ensemble_members_bi": 73, "custom_weight": 73, "log_loss_search_t_valu": 73, "0001": [73, 98], "scheme": 73, "log_loss_search": 73, "log_loss": [73, 96], "1e0": 73, "1e1": 73, "1e2": 73, "2e2": 73, "quality_scor": [73, 106], "forth": 73, "top_issue_indic": 73, "rank_bi": [73, 86], "weird": [73, 84], "prob_label": 73, "max_prob_not_label": 73, "AND": [73, 96], "get_epistemic_uncertainti": [74, 75], "get_aleatoric_uncertainti": [74, 75], "corrupt": [75, 108], "linearregress": [75, 99, 108], "y_with_nois": 75, "n_boot": [75, 99], "include_aleatoric_uncertainti": [75, 99], "bootstrap": [75, 99, 108], "resampl": [75, 90, 99], "epistem": [75, 99, 106, 108], "aleator": [75, 99, 108], "model_final_kwarg": 75, "coars": 75, "thorough": [75, 99], "fine": [75, 89, 90, 96, 106], "grain": 75, "grid": [75, 100], "varianc": [75, 101], "epistemic_uncertainti": 75, "residu": [75, 76, 99], "deviat": [75, 105, 108], "aleatoric_uncertainti": 75, "outr": 76, "contin": 76, "raw": [76, 85, 86, 92, 93, 98, 99, 100, 103, 105, 106, 108], "aka": [76, 90, 101, 105, 108, 110], "00323821": 76, "33692597": 76, "00191686": 76, "semant": [77, 79, 80, 102], "pixel": [77, 79, 80, 93, 106, 109], "h": [77, 79, 80, 109], "height": [77, 79, 80, 109], "w": [77, 79, 80, 109], "width": [77, 79, 80, 109], "labels_one_hot": [77, 80, 109], "stream": [77, 106, 110], "downsampl": [77, 79, 109], "shrink": [77, 79], "divis": [77, 79, 91], "common_label_issu": [78, 80, 82, 84, 109, 110], "filter_by_class": [78, 80, 109], "segmant": [79, 80], "num_pixel_issu": [79, 109], "product": [79, 93, 97, 99, 100], "pixel_scor": [79, 109], "enter": 80, "legend": [80, 91, 92, 97, 104, 105, 108, 109], "colormap": 80, "background": [80, 97], "person": [80, 99, 105, 109, 110], "ambigu": [80, 84, 89, 90, 96, 98, 101, 110], "misunderstood": [80, 84], "issues_df": [80, 93], "class_index": 80, "issues_subset": [80, 84], "filter_by_token": [82, 84, 110], "token_score_method": 83, "sentence_score_method": 83, "sentence_score_kwarg": 83, "compris": [83, 84], "token_scor": [83, 110], "converg": 83, "toward": [83, 97], "_softmin_sentence_scor": 83, "sentence_scor": [83, 110], "token_info": 83, "02": [83, 91, 92, 97, 101, 105], "03": [83, 95, 97, 98, 100, 101, 105, 106, 110], "04": [83, 95, 97, 105], "08": [83, 97, 101, 105, 108, 110], "commonli": [84, 86, 91, 92, 104, 110], "But": [84, 96, 100, 101, 108, 110], "restrict": [84, 99], "reliabl": [85, 88, 90, 97, 99, 100, 103, 109], "thousand": 85, "imagenet": [85, 98], "popular": [85, 103, 105], "centric": [85, 93, 102], "minut": [85, 88, 89, 90, 95, 96, 98, 103, 104, 105, 108, 109, 110], "conda": 85, "feature_embed": [85, 106], "your_dataset": [85, 90, 91, 92, 93, 95, 96, 99], "column_name_of_label": [85, 90, 91, 92, 93, 95, 96], "tool": [85, 98, 101, 103], "catch": [85, 100], "dive": [85, 96, 97, 100], "plagu": [85, 92], "untrain": 85, "\u30c4": 85, "label_issues_info": [85, 92], "sklearn_compatible_model": 85, "framework": [85, 104, 105], "complianc": 85, "tag": [85, 104, 110], "sequenc": 85, "recognit": [85, 90, 99, 110], "train_data": [85, 88, 89, 106, 108], "gotten": 85, "test_data": [85, 88, 89, 101, 104, 106, 108], "deal": [85, 92, 97, 100], "feel": [85, 90, 92, 99], "ask": [85, 99], "slack": [85, 99], "project": [85, 100, 108], "welcom": 85, "commun": [85, 99], "guidelin": [85, 105], "piec": 85, "smart": [85, 88, 89, 92, 93, 95, 96, 98, 99, 101, 104, 106, 108], "edit": [85, 99, 100], "unreli": [85, 88, 90, 95, 96, 97, 100], "link": [85, 90, 98, 105], "older": 86, "outlin": 86, "substitut": [86, 100], "v2": [86, 88, 95], "get_noise_indic": 86, "psx": 86, "sorted_index_method": 86, "order_label_error": 86, "label_errors_bool": 86, "latent_estim": 86, "num_label_error": 86, "learningwithnoisylabel": 86, "neatli": 86, "organ": [86, 88, 95, 97, 98, 110], "reorgan": 86, "baseline_method": 86, "research": [86, 101], "polyplex": 86, "terminologi": 86, "label_error": 86, "quickstart": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 103, 104, 105, 106, 108, 109, 110], "sql": [88, 95], "databas": [88, 95], "excel": [88, 95], "parquet": [88, 95], "student": [88, 95, 100, 108, 110], "grade": [88, 95, 100, 108], "exam": [88, 95, 100, 108], "letter": [88, 95, 110], "hundr": [88, 95], "mistak": [88, 89, 93, 95, 96, 100], "extratreesclassifi": 88, "extratre": 88, "Then": [88, 89, 93, 99], "ranked_label_issu": [88, 89], "branch": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108], "standardscal": [88, 95, 100, 106], "labelencod": [88, 89, 100], "train_test_split": [88, 89, 91, 92, 106], "accuracy_scor": [88, 89, 90, 96, 100, 101], "grades_data": [88, 95], "read_csv": [88, 89, 95, 96, 97, 100, 108], "demo": [88, 92, 95, 104], "stud_id": [88, 95, 100], "exam_1": [88, 95, 100, 108], "exam_2": [88, 95, 100, 108], "exam_3": [88, 95, 100, 108], "letter_grad": [88, 95], "f48f73": [88, 95], "53": [88, 91, 92, 95, 97, 98, 100, 104, 105], "00": [88, 91, 92, 95, 97, 98, 100, 106], "77": [88, 91, 92, 95, 100, 105], "0bd4e7": [88, 95], "81": [88, 95, 96, 100, 105, 108, 110], "great": [88, 95, 98, 100], "particip": [88, 95, 100], "cb9d7a": [88, 95], "61": [88, 95, 97, 101, 105, 108], "94": [88, 95, 98, 100, 101, 105, 108], "9acca4": [88, 95], "48": [88, 95, 97, 98, 101, 105], "x_raw": [88, 95], "labels_raw": 88, "interg": [88, 89], "categorical_featur": [88, 108], "x_encod": [88, 95], "get_dummi": [88, 95, 108], "drop_first": [88, 95], "numeric_featur": [88, 95], "scaler": [88, 95, 106], "x_process": [88, 95], "fit_transform": [88, 95, 97, 100], "bring": [88, 89, 93, 95, 96, 103, 108], "byod": [88, 89, 93, 95, 96, 103, 108], "tress": 88, "held": [88, 90, 95, 96, 98, 105, 106, 107], "straightforward": [88, 90, 95], "benefit": [88, 90, 107, 109], "num_crossval_fold": [88, 90, 95, 100, 103], "tabl": [88, 95, 98, 103], "212": [88, 100, 101], "iloc": [88, 89, 90, 95, 96, 100, 108], "92": [88, 91, 100, 101, 105], "93": [88, 98, 100, 105, 108, 110], "827": 88, "99": [88, 97, 98, 100, 101], "86": [88, 92, 93, 95, 100, 101, 105, 108], "74": [88, 97, 100, 105, 108], "637": [88, 95], "79": [88, 98, 100, 105], "65": [88, 91, 97, 100, 105], "cheat": [88, 100], "0pt": [88, 100], "120": [88, 91, 92, 100], "233": 88, "83": [88, 100, 101, 105, 108, 110], "76": [88, 100, 101, 104, 105, 108], "suspici": [88, 95], "carefulli": [88, 93, 95, 96, 100], "examin": [88, 91, 92, 95, 97, 100, 105], "labels_train": 88, "labels_test": 88, "test_siz": [88, 89, 91, 92], "acc_og": [88, 89], "783068783068783": 88, "robustli": [88, 89, 108], "14": [88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "acc_cl": [88, 89], "8095238095238095": 88, "blindli": [88, 89, 90, 99, 100, 108], "trust": [88, 89, 90, 99, 100, 101, 103, 107, 108], "effort": [88, 89, 100, 108], "cumbersom": [88, 89, 92, 95, 96, 98, 101, 104, 106, 108], "intent": [89, 96], "servic": [89, 96, 99], "onlin": [89, 96], "bank": [89, 96, 98], "banking77": [89, 96], "oo": [89, 96], "categori": [89, 93, 96, 97, 100], "shortlist": [89, 96, 108], "scope": [89, 96], "logist": [89, 91, 92, 96, 103, 106], "probabilit": [89, 90], "drop": [89, 95, 97, 99, 100, 103, 108], "sentence_transform": [89, 96], "sentencetransform": [89, 96], "payment": [89, 96], "cancel_transf": [89, 96], "transfer": [89, 96], "fund": [89, 96], "cancel": [89, 96], "transact": [89, 96], "my": [89, 96], "revert": [89, 96], "morn": [89, 96], "realis": [89, 96], "yesterdai": [89, 96], "rent": [89, 96], "tomorrow": [89, 96], "raw_text": [89, 96], "raw_label": 89, "raw_train_text": 89, "raw_test_text": 89, "raw_train_label": 89, "raw_test_label": 89, "getting_spare_card": [89, 96], "card_payment_fee_charg": [89, 96], "supported_cards_and_curr": [89, 96], "beneficiary_not_allow": [89, 96], "apple_pay_or_google_pai": [89, 96], "change_pin": [89, 96], "visa_or_mastercard": [89, 96], "lost_or_stolen_phon": [89, 96], "card_about_to_expir": [89, 96], "card": [89, 96, 98], "utter": [89, 96], "encond": 89, "test_label": [89, 100, 101, 104, 106], "suit": [89, 96, 97, 98, 99], "electra": [89, 96], "discrimin": [89, 96], "googl": [89, 96], "train_text": 89, "test_text": 89, "home": [89, 96, 98], "runner": [89, 96], "google_electra": [89, 96], "pool": [89, 96, 99, 106], "leverag": [89, 90, 96, 99, 101, 103], "computation": [89, 90, 96], "intens": [89, 90, 96], "400": [89, 96, 100], "858371": 89, "547274": 89, "826228": 89, "966008": 89, "792449": 89, "identified_issu": [89, 108], "lowest_quality_label": [89, 90, 96, 101, 108], "to_numpi": [89, 96, 97, 100, 108], "44": [89, 97, 98, 104, 105], "646": 89, "390": 89, "628": 89, "121": [89, 101], "702": 89, "863": 89, "135": 89, "337": [89, 100, 105], "735": 89, "print_as_df": 89, "inverse_transform": 89, "charg": [89, 96], "cash": [89, 96], "holidai": [89, 96], "sent": [89, 96, 97, 110], "mine": [89, 96], "expir": [89, 96], "fight": 89, "hors": [89, 98, 106], "duck": [89, 98], "me": [89, 96, 97], "whoever": [89, 96], "consum": [89, 108], "18": [89, 90, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "baseline_model": [89, 108], "87": [89, 92, 93, 100, 105, 108], "acceler": [89, 108], "19": [89, 90, 93, 96, 97, 98, 99, 100, 101, 105, 106, 108, 109], "89": [89, 91, 95, 100, 105, 108], "spoken": 90, "500": [90, 97, 100, 106, 110], "english": [90, 98], "pronunci": 90, "wav": 90, "voxceleb": 90, "speech": [90, 110], "your_pred_prob": [90, 91, 92, 95, 96], "tensorflow_io": 90, "huggingface_hub": 90, "reproduc": [90, 95, 97, 100, 101, 103], "command": 90, "wget": [90, 97, 105, 109, 110], "navig": 90, "browser": 90, "jakobovski": 90, "archiv": [90, 110], "v1": 90, "tar": [90, 106], "gz": [90, 106], "mkdir": [90, 110], "spoken_digit": 90, "xf": 90, "6_nicolas_32": 90, "data_path": 90, "listdir": 90, "nondeterminist": 90, "file_nam": 90, "endswith": 90, "file_path": 90, "join": [90, 93, 97, 99, 100], "7_george_26": 90, "0_nicolas_24": 90, "0_nicolas_6": 90, "listen": 90, "display_exampl": 90, "expand": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "pulldown": [90, 91, 92, 93, 98, 100, 101, 103, 104, 106, 108, 110], "colab": [90, 91, 92, 93, 98, 99, 100, 101, 103, 104, 106, 108, 110], "tfio": 90, "pathlib": 90, "ipython": [90, 97], "load_wav_16k_mono": 90, "filenam": 90, "khz": 90, "file_cont": 90, "read_fil": 90, "sample_r": 90, "decode_wav": 90, "desired_channel": 90, "squeez": 90, "rate_in": 90, "rate_out": 90, "16000": 90, "wav_file_nam": 90, "audio_r": 90, "wav_file_exampl": 90, "plai": [90, 98, 99], "button": 90, "wav_file_name_exampl": 90, "7_jackson_43": 90, "hear": 90, "extractor": 90, "encoderclassifi": 90, "spkrec": 90, "xvect": 90, "feature_extractor": 90, "from_hparam": 90, "run_opt": 90, "uncom": [90, 97], "ffmpeg": 90, "backend": 90, "wav_audio_file_path": 90, "torchaudio": 90, "extract_audio_embed": 90, "emb": [90, 93], "signal": 90, "encode_batch": 90, "embeddings_list": [90, 93], "embeddings_arrai": 90, "512": [90, 93], "196311": 90, "319459": 90, "478975": 90, "2890875": 90, "8170238": 90, "89265": 90, "898056": 90, "256195": 90, "559641": 90, "559721": 90, "62067": 90, "285245": 90, "21": [90, 91, 97, 98, 100, 101, 105, 108, 110], "709627": 90, "5033693": 90, "913803": 90, "819831": 90, "1831515": 90, "208763": 90, "084257": 90, "3210397": 90, "005453": 90, "216152": 90, "478235": 90, "6821785": 90, "053807": 90, "242471": 90, "091424": 90, "78334856": 90, "03954": 90, "23": [90, 93, 97, 98, 100, 101, 105, 108], "569176": 90, "761097": 90, "1258295": 90, "753237": 90, "3508866": 90, "598274": 90, "23712": 90, "2500": 90, "tol": 90, "decreas": [90, 99], "cv_accuraci": 90, "9708": 90, "issue_type_descript": [90, 91, 92, 93, 95, 96, 100, 101], "lt": [90, 91, 92, 93, 95, 96, 97, 98, 100, 101, 103, 106], "gt": [90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 110], "9976": 90, "986": 90, "002161": 90, "176": [90, 98, 101, 104], "002483": 90, "2318": 90, "004411": 90, "1005": 90, "004857": 90, "1871": 90, "007494": 90, "040587": 90, "999207": 90, "999377": 90, "975220": 90, "999367": 90, "identified_label_issu": [90, 96], "516": [90, 100], "1946": 90, "469": 90, "2132": 90, "worth": [90, 101], "6_yweweler_25": 90, "7_nicolas_43": 90, "6_theo_27": 90, "6_yweweler_36": 90, "6_yweweler_14": 90, "6_yweweler_35": 90, "6_nicolas_8": 90, "sound": 90, "quit": [90, 106], "underneath": 91, "hood": [91, 97, 99], "alert": 91, "introduct": 91, "mayb": [91, 92, 96], "your_feature_matrix": [91, 92], "toi": [91, 92, 93, 97, 98, 101, 103, 107], "inf": [91, 92], "mid": [91, 92], "bins_map": [91, 92], "create_data": [91, 92], "y_bin": [91, 92], "y_i": [91, 92], "y_bin_idx": [91, 92], "y_train": [91, 92, 101, 108], "y_test": [91, 92, 101, 108], "y_train_idx": [91, 92], "y_test_idx": [91, 92], "slide": [91, 92, 98], "frame": [91, 92], "x_out": [91, 92], "tini": [91, 92], "concaten": [91, 92, 107], "y_out": [91, 92], "y_out_bin": [91, 92], "y_out_bin_idx": [91, 92], "exact_duplicate_idx": [91, 92], "x_duplic": [91, 92], "y_duplic": [91, 92], "y_duplicate_idx": [91, 92], "noisy_labels_idx": [91, 92, 104], "scatter": [91, 92, 97, 101, 104, 108], "black": [91, 92, 98, 108], "cyan": [91, 92], "plot_data": [91, 92, 97, 101, 104, 108], "fig": [91, 92, 93, 98, 106, 108], "ax": [91, 92, 93, 97, 106, 108], "subplot": [91, 92, 93, 106], "set_titl": [91, 92, 93, 106], "set_xlabel": [91, 92], "x_1": [91, 92], "fontsiz": [91, 92, 93, 97, 101, 104], "set_ylabel": [91, 92], "x_2": [91, 92], "set_xlim": [91, 92], "set_ylim": [91, 92], "linestyl": [91, 92, 97], "circl": [91, 92, 101, 104], "misclassifi": [91, 92], "zip": [91, 92, 93, 97, 105, 110], "label_err": [91, 92], "180": [91, 92, 97, 105], "marker": [91, 92], "facecolor": [91, 92, 97], "edgecolor": [91, 92, 97], "linewidth": [91, 92, 97, 106], "dup": [91, 92], "first_legend": [91, 92], "align": [91, 92], "title_fontproperti": [91, 92], "semibold": [91, 92], "second_legend": [91, 92], "45": [91, 92, 97, 98, 100, 101, 105], "gca": [91, 92], "add_artist": [91, 92], "tight_layout": [91, 92, 97], "ideal": [91, 92], "remaind": 91, "modal": [91, 92, 99, 100, 103], "132": [91, 92, 100, 101, 105], "9318": 91, "006940": 91, "007830": 91, "40": [91, 92, 96, 97, 98, 100], "014828": 91, "107": [91, 92, 97, 101, 104], "021241": 91, "026407": 91, "notic": [91, 101, 103, 105], "3558": [91, 92], "126": [91, 92, 101, 105], "006636": [91, 92], "130": [91, 92], "012571": [91, 92], "129": [91, 92], "127": [91, 92, 100], "014909": [91, 92], "128": [91, 92, 93], "017443": [91, 92], "6160": [91, 92], "131": [91, 92, 100, 109], "000000e": [91, 92, 100], "000002": [91, 92], "463180e": [91, 92], "07": [91, 92, 93, 95, 97, 101, 105, 108], "51": [91, 92, 95, 97, 98, 101, 105], "161148": [91, 92], "859087e": [91, 92], "30": [91, 92, 93, 97, 98, 99, 100, 104, 109, 110], "3453": 91, "029542": 91, "031182": 91, "057961": 91, "058244": 91, "54": [91, 97, 98, 101, 105], "039122": 91, "044598": 91, "105": [91, 105], "105196": 91, "133654": 91, "43": [91, 97, 98, 100, 101, 105], "168033": 91, "125": 91, "101107": 91, "183382": 91, "109": [91, 97, 98, 100, 105], "209259": 91, "211042": 91, "221316": 91, "average_ood_scor": 91, "34530442089193386": 91, "52": [91, 97, 98, 100, 105, 110], "169820": 91, "087324e": 91, "259024": 91, "583757e": 91, "91": [91, 100, 105], "346458": 91, "341292e": 91, "specfi": 91, "new_lab": 91, "scoring_funct": 91, "div": 91, "rem": 91, "inv_scal": 91, "49": [91, 97, 98, 101, 105], "superstitionissuemanag": 91, "unlucki": 91, "superstit": 91, "to_seri": 91, "issues_mask": 91, "summary_scor": 91, "9242": 91, "is_superstition_issu": 91, "superstition_scor": 91, "26": [91, 93, 97, 98, 100, 101, 103, 105, 110], "047581": 91, "090635": 91, "129591": 91, "164840": 91, "lurk": [92, 93, 100, 101], "thoroughli": 92, "8561": 92, "001908": 92, "003564": 92, "007331": 92, "008963": 92, "009664": 92, "0227": 92, "022727": 92, "conceptu": 92, "856061": 92, "355772": 92, "616034": 92, "821750": 92, "926818": 92, "betweeen": 92, "859131": 92, "417707": 92, "664083": 92, "970324": 92, "816953": 92, "375317": 92, "641516": 92, "890575": 92, "910232": 92, "531021": 92, "460593": 92, "601188": 92, "826147": 92, "752808": 92, "321635": 92, "562539": 92, "948362": 92, "890169": 92, "090243": 92, "472909": 92, "746763": 92, "878267": 92, "examples_w_issu": [92, 99], "013445": 92, "025184": 92, "026376": 92, "inde": [92, 96], "miscellan": [92, 94, 110], "428571": 92, "111111": 92, "571429": 92, "407407": 92, "592593": 92, "337838": 92, "092593": 92, "662162": 92, "333333": [92, 98], "952381": 92, "666667": [92, 97], "portion": 92, "huge": [92, 101], "worri": [92, 96, 100], "critic": [92, 107], "60": [93, 97, 101, 108], "torchvis": [93, 97, 106], "tensordataset": 93, "stratifiedkfold": [93, 104], "tqdm": 93, "autonotebook": 93, "math": [93, 100], "fashion_mnist": 93, "num_row": 93, "60000": 93, "transformed_dataset": 93, "with_format": 93, "255": [93, 98], "cpu_count": 93, "torch_dataset": 93, "quick": [93, 104, 106], "super": 93, "relu": 93, "batchnorm2d": 93, "maxpool2d": 93, "lazylinear": 93, "flatten": 93, "get_test_accuraci": 93, "testload": [93, 106], "energi": 93, "trainload": [93, 106], "n_epoch": 93, "patienc": 93, "criterion": 93, "crossentropyloss": 93, "adamw": 93, "best_test_accuraci": 93, "start_epoch": 93, "running_loss": 93, "best_epoch": 93, "end_epoch": 93, "3f": [93, 108], "acc": [93, 101], "time_taken": 93, "compute_embed": 93, "compute_pred_prob": 93, "train_batch_s": 93, "num_work": 93, "worker": [93, 110], "train_id_list": 93, "test_id_list": 93, "train_id": 93, "test_id": 93, "embeddings_model": 93, "ntrain": 93, "trainset": 93, "testset": 93, "pin_memori": 93, "fold_embed": 93, "fold_pred_prob": 93, "finish": 93, "482": 93, "720": 93, "965": [93, 98], "329": [93, 95, 100, 105], "88": [93, 98, 100, 101, 104, 105, 108], "195": [93, 97, 100], "763": 93, "493": 93, "060": 93, "062": 93, "330": [93, 100, 105], "505": 93, "901": 93, "476": [93, 100], "340": [93, 100], "009": [93, 97], "328": [93, 105], "310": 93, "800": 93, "reorder": 93, "hstack": [93, 99, 101, 103], "max_preval": [93, 97], "7714": 93, "3772": 93, "3585": 93, "166": 93, "3651": 93, "27080": 93, "873833e": 93, "40378": 93, "915575e": 93, "25316": 93, "390277e": 93, "06": [93, 100, 101, 105, 110], "2090": 93, "751164e": 93, "14999": 93, "881301e": 93, "9569": 93, "11262": 93, "000003": 93, "coat": [93, 98], "shirt": [93, 98], "19228": 93, "000010": 93, "dress": 93, "32657": 93, "000013": 93, "bag": [93, 98, 106, 107], "21282": 93, "000016": [93, 100], "53564": 93, "000018": [93, 100], "pullov": 93, "6321": 93, "30968": 93, "001267": 93, "30659": 93, "000022": [93, 110], "47824": 93, "001454": 93, "3370": 93, "000026": 93, "54565": 93, "001854": 93, "9762": 93, "258": 93, "47139": 93, "000033": 93, "166980": 93, "986195": 93, "997205": 93, "sandal": [93, 98], "948781": 93, "999358": 93, "54078": 93, "17371": 93, "000025": 93, "plot_label_issue_exampl": 93, "nrow": [93, 106], "ceil": [93, 100], "axes_list": 93, "label_issue_indic": 93, "gl": 93, "sl": 93, "fontdict": 93, "imshow": [93, 106], "cmap": [93, 97, 108], "grai": 93, "subplots_adjust": 93, "hspace": 93, "outsiz": 93, "outlier_issu": [93, 96], "outlier_issues_df": 93, "depict": [93, 104, 105, 106, 107, 109], "plot_outlier_issues_exampl": 93, "n_comparison_imag": 93, "sample_from_class": 93, "number_of_sampl": 93, "non_outlier_indic": 93, "isnul": [93, 97], "non_outlier_indices_excluding_curr": 93, "sampled_indic": 93, "label_scores_of_sampl": 93, "top_score_indic": 93, "top_label_indic": 93, "sampled_imag": 93, "get_image_given_label_and_sampl": 93, "image_from_dataset": 93, "corresponding_label": 93, "comparison_imag": 93, "images_to_plot": 93, "idlist": 93, "iterrow": 93, "near_duplicate_issu": [93, 99], "closest": 93, "counterpart": 93, "near_duplicate_issues_df": 93, "plot_near_duplicate_issue_exampl": 93, "seen_id_pair": 93, "get_image_and_given_label_and_predicted_label": 93, "duplicate_imag": 93, "nd_set": 93, "challeng": 93, "dark_issu": 93, "reveal": [93, 105, 109], "dark_issues_df": 93, "is_dark_issu": [93, 97], "34848": 93, "203922": 93, "50270": 93, "204588": 93, "3936": 93, "213098": 93, "733": 93, "217686": 93, "8094": 93, "230118": 93, "plot_image_issue_exampl": 93, "difficult": 93, "disproportion": [93, 97], "lowinfo_issu": 93, "lowinfo_issues_df": 93, "is_low_information_issu": 93, "53050": 93, "067975": 93, "40875": 93, "089929": 93, "9594": 93, "092601": 93, "34825": 93, "107744": 93, "37530": 93, "108516": 93, "lot": 93, "workflow": [94, 99, 100, 102, 108], "histgradientboostingclassifi": 95, "cat_featur": 95, "boost": [95, 99, 103, 108], "xgboost": [95, 99, 100, 108], "think": [95, 96, 99, 104, 109, 110], "nonzero": 95, "358": 95, "941": 95, "294": [95, 105], "46": [95, 97, 98, 100, 101, 105], "7109": 95, "000005": [95, 96], "886": 95, "000059": 95, "709": [95, 100], "000104": 95, "000169": 95, "689": 95, "000181": 95, "3590": 95, "051882e": 95, "683133e": 95, "536582e": 95, "406589e": 95, "324246e": 95, "6165": 95, "582": [95, 100], "185": [95, 97, 98, 105, 110], "187": [95, 98, 100], "898": 95, "0000": [95, 96, 98, 100, 101], "865": 95, "515002": 95, "837": 95, "556480": 95, "622": 95, "593068": 95, "593207": 95, "920": 95, "618041": 95, "4386345844794593e": 95, "issue_result": 95, "000842": 95, "555944": 95, "004374": 95, "sorted_issu": 95, "73": [95, 97, 98, 100, 104, 105, 108], "deserv": 95, "outlier_result": 95, "sorted_outli": 95, "56": [95, 97, 98, 108], "96": [95, 97, 98, 100, 101, 104, 105, 108], "style": [95, 97, 109], "font": 95, "18px": 95, "ff00ff": 95, "bac": 95, "duplicate_result": 95, "lowest_scoring_dupl": 95, "idxmin": [95, 99], "indices_to_displai": 95, "tolist": [95, 99, 100, 104], "perhap": [95, 101, 103], "second_lowest_scoring_dupl": 95, "next_indices_to_displai": 95, "wari": [95, 96, 99], "your_featur": 96, "text_embed": 96, "data_dict": [96, 101, 103], "85": [96, 100, 105], "38": [96, 97, 98, 105], "9710": 96, "981": 96, "974": 96, "000146": 96, "982": [96, 98], "000224": 96, "971": 96, "000507": 96, "980": [96, 98], "000960": 96, "3584": 96, "994": 96, "009642": 96, "999": 96, "013067": 96, "013841": 96, "433": 96, "014722": 96, "989": 96, "018224": 96, "6070": 96, "160": [96, 108], "095724": 96, "148": 96, "006237": 96, "546": [96, 100], "099341": 96, "514": 96, "006485": 96, "481": 96, "123418": 96, "008165": 96, "313": [96, 100, 105], "564102": 96, "572258": 96, "574915": 96, "31": [96, 97, 98, 100, 101, 103, 105], "575507": 96, "575874": 96, "792090": 96, "257611": 96, "698710": 96, "182121": 96, "771619": 96, "data_with_suggested_label": 96, "suggested_label": 96, "withdraw": 96, "monei": 96, "lowest_quality_outli": 96, "OR": 96, "636c65616e6c616220697320617765736f6d6521": 96, "phone": [96, 98], "gone": 96, "samp": 96, "br": 96, "press": [96, 110], "nonsens": 96, "sens": 96, "detriment": 96, "duplicate_issu": 96, "fee": 96, "go": [96, 97, 98, 101], "p_valu": 96, "benign": 96, "curat": [96, 102], "bigger": 97, "make_classif": 97, "5000": [97, 106], "n_featur": 97, "n_inform": 97, "n_redund": 97, "n_repeat": 97, "n_class": 97, "n_clusters_per_class": 97, "flip_i": 97, "class_sep": 97, "faiss": 97, "x_faiss": 97, "float32": [97, 105], "normalize_l2": 97, "index_factori": 97, "hnsw32": 97, "flat": [97, 98], "metric_inner_product": 97, "a_min": 97, "a_max": 97, "create_knn_graph": 97, "assert": 97, "indices_1d": 97, "ravel": 97, "distances_1d": 97, "sort_graph_by_row_valu": 97, "warn_when_not_sort": 97, "50000": 97, "524": 97, "991400": 97, "356924": 97, "363": [97, 100], "619581": 97, "108": [97, 105], "500000": 97, "651838": 97, "999827": 97, "031217": 97, "933716": 97, "627345": 97, "998540": 97, "530909": 97, "296974": 97, "646765": 97, "942721": 97, "332824": 97, "803246": 97, "625202": 97, "999816": 97, "474031": 97, "706253": 97, "655108": 97, "997703": 97, "131466": 97, "912389": 97, "639200": 97, "4995": 97, "998646": 97, "504755": 97, "746777": 97, "680033": 97, "4996": 97, "894230": 97, "340986": 97, "816472": 97, "640711": 97, "4997": 97, "999100": 97, "428545": 97, "592421": 97, "658949": 97, "4998": 97, "986792": 97, "273710": 97, "618033": 97, "4999": 97, "986776": 97, "273524": 97, "618084": 97, "instabl": 97, "proxim": 97, "analys": 97, "comfort": 97, "explor": [97, 105, 106], "third": 97, "parti": [97, 110], "newsgroup": 97, "alt": [97, 98], "atheism": [97, 98], "sci": [97, 98], "fetch_20newsgroup": 97, "newsgroups_train": 97, "header": 97, "footer": 97, "quot": 97, "df_text": 97, "target_nam": 97, "enlighten": 97, "omnipot": 97, "19apr199320262420": 97, "kelvin": 97, "jpl": 97, "nasa": 97, "gov": 97, "baa": 97, "nhenri": 97, "he": 97, "nno": 97, "ge": 97, "nlucki": 97, "babi": [97, 98], "tfidfvector": 97, "feature_extract": 97, "x_vector": 97, "data_valuation_issu": 97, "147": [97, 101, 105], "500047": 97, "500093": 97, "499953": 97, "1068": 97, "1069": 97, "1070": 97, "1071": 97, "1072": 97, "1073": 97, "concentr": 97, "seaborn": 97, "sn": 97, "distinguish": [97, 100], "strip": 97, "stripplot": 97, "hue": [97, 108], "dodg": 97, "jitter": 97, "axvlin": [97, 106], "xlabel": 97, "ourselv": 97, "make_blob": 97, "center": [97, 98], "cluster_std": 97, "n_noisy_label": 97, "meaning": [97, 99, 100, 106], "silhouette_scor": 97, "gridsearchcv": 97, "silhouett": 97, "cluster_label": 97, "fit_predict": 97, "param_grid": [97, 100], "grid_search": 97, "best_kmean": 97, "best_estimator_": 97, "underperforming_group_issu": 97, "328308": 97, "tab10": 97, "domain": 97, "knowledg": [97, 101], "dataset_tsv": 97, "ag": [97, 108], "gender": 97, "educ": 97, "experi": 97, "highsalari": 97, "indiana": 97, "phd": 97, "male": 97, "bachelor": 97, "femal": 97, "kansa": 97, "school": [97, 98], "ohio": 97, "57": [97, 98, 100, 101, 110], "california": 97, "59": [97, 98, 105], "34": [97, 98, 101, 103, 105, 110], "63": [97, 100, 101, 105, 108], "47": [97, 98, 105], "stringio": 97, "sep": [97, 110], "easier": [97, 101], "simplic": [97, 104], "ordinalencod": 97, "columns_to_encod": 97, "encoded_df": 97, "salari": 97, "573681": 97, "underpin": 97, "caught": 97, "whenev": 97, "generate_data_depend": 97, "num_sampl": 97, "a1": 97, "a2": 97, "a3": 97, "375": 97, "975": 97, "non_iid_issu": 97, "796474": 97, "842432": 97, "922562": 97, "820759": 97, "873136": 97, "887373": 97, "825101": 97, "855875": 97, "751795": 97, "835796": 97, "ylabel": [97, 106], "coolwarm": 97, "colorbar": [97, 108], "strong": 97, "evid": [97, 100], "inter": 97, "mitig": 97, "risk": [97, 100], "deeper": 97, "tsv": 97, "tab": 97, "pars": 97, "annual_spend": 97, "number_of_transact": 97, "last_purchase_d": 97, "rural": 97, "4099": 97, "2024": [97, 110], "6421": 97, "nat": 97, "suburban": 97, "5436": 97, "4046": 97, "66": [97, 98, 100], "3467": 97, "67": [97, 98, 100, 105, 108, 110], "4757": 97, "4199": 97, "4991": 97, "4655": 97, "82": [97, 98, 100, 101, 105, 108], "5584": 97, "urban": 97, "3102": 97, "6637": 97, "9167": 97, "6790": 97, "5327": 97, "parse_d": 97, "lose": 97, "intact": 97, "encode_categorical_column": 97, "placehold": 97, "dropna": [97, 103], "category_to_numb": 97, "_encod": 97, "gender_encod": 97, "location_encod": 97, "focus": [97, 100, 101, 103, 104, 108], "null_issu": 97, "833333": 97, "sorted_indic": [97, 105], "sorted_df": 97, "nice": 97, "styler": 97, "combined_df": 97, "concat": [97, 100, 108], "highlight_null_valu": 97, "val": [97, 101], "yellow": [97, 98], "highlight_datalab_column": 97, "lightblu": 97, "highlight_is_null_issu": 97, "orang": [97, 98], "styled_df": 97, "nbsp": [97, 99, 100, 101], "160000": 97, "820000": 97, "460000": 97, "470000": 97, "960000": 97, "620000": 97, "550000": 97, "660000": 97, "670000": [97, 98], "370000": 97, "530000": 97, "710000": 97, "020000": 97, "320000": 97, "990000": 97, "rarer": 97, "fairer": 97, "randomli": [97, 100, 101], "class_imbalance_issu": 97, "countplot": 97, "xtick": 97, "rotat": 97, "ytick": 97, "filtered_df": 97, "xy": 97, "va": 97, "textual": 97, "get_ytick": 97, "nbar": 97, "nimbal": 97, "get_legend_handles_label": 97, "title_fonts": 97, "aspect": 97, "anomali": [97, 105], "enhanc": [97, 101, 103, 105], "artifici": 97, "directori": [97, 110], "subdirectori": 97, "nc": [97, 105, 109, 110], "unzip": [97, 105, 110], "09": [97, 100, 104, 105, 108, 110], "199": [97, 100, 105], "111": [97, 103, 108], "153": [97, 100, 105], "110": [97, 105], "connect": [97, 110], "443": [97, 110], "await": [97, 110], "ok": [97, 107, 110], "986707": 97, "964k": 97, "963": 97, "58k": 97, "kb": [97, 110], "mb": [97, 110], "imagefold": 97, "load_image_dataset": 97, "data_dir": 97, "root": [97, 106], "image_dataset": 97, "img": [97, 106, 108], "from_dict": [97, 99], "darkened_imag": 97, "job": 97, "015": 97, "label_uncorrelatedness_scor": 97, "image_issu": 97, "nimag": 97, "237196": 97, "197229": 97, "254188": 97, "229170": 97, "208907": 97, "793840": 97, "196": [97, 100, 101, 105], "197": [97, 101, 105], "971560": 97, "198": [97, 101, 105], "862236": 97, "973533": 97, "stronger": 97, "frog": [97, 98, 106], "darken": 97, "concept": 97, "notabl": 97, "preval": 97, "warrant": 97, "programmat": 97, "plot_scores_label": 97, "issues_copi": 97, "boxplot": 97, "refin": 98, "instruct": [98, 99, 100], "studi": [98, 105], "mnist_test_set": 98, "imagenet_val_set": 98, "tench": 98, "goldfish": 98, "white": [98, 110], "shark": 98, "tiger": 98, "hammerhead": 98, "electr": 98, "rai": 98, "stingrai": 98, "cock": 98, "hen": 98, "ostrich": 98, "brambl": 98, "goldfinch": 98, "hous": 98, "finch": 98, "junco": 98, "indigo": 98, "bunt": 98, "american": [98, 110], "robin": 98, "bulbul": 98, "jai": 98, "magpi": 98, "chickade": 98, "dipper": 98, "kite": 98, "bald": 98, "eagl": 98, "vultur": 98, "grei": 98, "owl": 98, "salamand": 98, "smooth": 98, "newt": 98, "spot": [98, 99, 105], "axolotl": 98, "bullfrog": 98, "tree": 98, "tail": 98, "loggerhead": 98, "sea": 98, "turtl": 98, "leatherback": 98, "mud": 98, "terrapin": 98, "band": 98, "gecko": 98, "green": [98, 110], "iguana": 98, "carolina": 98, "anol": 98, "desert": 98, "grassland": 98, "whiptail": 98, "lizard": 98, "agama": 98, "frill": 98, "neck": 98, "allig": 98, "gila": 98, "monster": 98, "european": 98, "chameleon": 98, "komodo": 98, "dragon": 98, "nile": 98, "crocodil": 98, "triceratop": 98, "worm": 98, "snake": 98, "ring": 98, "eastern": 98, "hog": 98, "nose": 98, "kingsnak": 98, "garter": 98, "water": 98, "vine": 98, "night": 98, "boa": 98, "constrictor": 98, "african": 98, "rock": 98, "indian": 98, "cobra": 98, "mamba": 98, "saharan": 98, "horn": 98, "viper": 98, "diamondback": 98, "rattlesnak": 98, "sidewind": 98, "trilobit": 98, "harvestman": 98, "scorpion": 98, "garden": 98, "spider": 98, "barn": 98, "southern": 98, "widow": 98, "tarantula": 98, "wolf": 98, "tick": 98, "centiped": 98, "grous": 98, "ptarmigan": 98, "ruf": 98, "prairi": 98, "peacock": 98, "quail": 98, "partridg": 98, "parrot": 98, "macaw": 98, "sulphur": 98, "crest": 98, "cockatoo": 98, "lorikeet": 98, "coucal": 98, "bee": 98, "eater": 98, "hornbil": 98, "hummingbird": 98, "jacamar": 98, "toucan": 98, "breast": 98, "mergans": 98, "goos": 98, "swan": 98, "tusker": 98, "echidna": 98, "platypu": 98, "wallabi": 98, "koala": 98, "wombat": 98, "jellyfish": 98, "anemon": 98, "brain": 98, "coral": 98, "flatworm": 98, "nematod": 98, "conch": 98, "snail": 98, "slug": 98, "chiton": 98, "chamber": 98, "nautilu": 98, "dung": 98, "crab": 98, "fiddler": 98, "king": 98, "lobster": 98, "spini": 98, "crayfish": 98, "hermit": 98, "isopod": 98, "stork": 98, "spoonbil": 98, "flamingo": 98, "heron": 98, "egret": 98, "bittern": 98, "crane": 98, "bird": [98, 106], "limpkin": 98, "gallinul": 98, "coot": 98, "bustard": 98, "ruddi": 98, "turnston": 98, "dunlin": 98, "redshank": 98, "dowitch": 98, "oystercatch": 98, "pelican": 98, "penguin": 98, "albatross": 98, "whale": 98, "killer": 98, "dugong": 98, "lion": 98, "chihuahua": 98, "japanes": 98, "chin": 98, "maltes": 98, "pekinges": 98, "shih": 98, "tzu": 98, "charl": 98, "spaniel": 98, "papillon": 98, "terrier": 98, "rhodesian": 98, "ridgeback": 98, "afghan": [98, 110], "hound": 98, "basset": 98, "beagl": 98, "bloodhound": 98, "bluetick": 98, "coonhound": 98, "tan": 98, "walker": 98, "foxhound": 98, "redbon": 98, "borzoi": 98, "irish": 98, "wolfhound": 98, "italian": 98, "greyhound": 98, "whippet": 98, "ibizan": 98, "norwegian": 98, "elkhound": 98, "otterhound": 98, "saluki": 98, "scottish": 98, "deerhound": 98, "weimaran": 98, "staffordshir": 98, "bull": 98, "bedlington": 98, "border": 98, "kerri": 98, "norfolk": 98, "norwich": 98, "yorkshir": 98, "wire": 98, "fox": 98, "lakeland": 98, "sealyham": 98, "airedal": 98, "cairn": 98, "australian": 98, "dandi": 98, "dinmont": 98, "boston": 98, "miniatur": 98, "schnauzer": 98, "giant": 98, "tibetan": 98, "silki": 98, "wheaten": 98, "west": 98, "highland": 98, "lhasa": 98, "apso": 98, "retriev": 98, "curli": 98, "golden": 98, "labrador": 98, "chesapeak": 98, "bai": 98, "german": [98, 110], "shorthair": 98, "pointer": 98, "vizsla": 98, "setter": 98, "gordon": 98, "brittani": 98, "clumber": 98, "springer": 98, "welsh": 98, "cocker": 98, "sussex": 98, "kuvasz": 98, "schipperk": 98, "groenendael": 98, "malinoi": 98, "briard": 98, "kelpi": 98, "komondor": 98, "sheepdog": 98, "shetland": 98, "colli": 98, "bouvier": 98, "de": 98, "flandr": 98, "rottweil": 98, "shepherd": 98, "dobermann": 98, "pinscher": 98, "swiss": [98, 110], "mountain": 98, "bernes": 98, "appenzel": 98, "sennenhund": 98, "entlebuch": 98, "boxer": 98, "bullmastiff": 98, "mastiff": 98, "french": 98, "bulldog": 98, "dane": 98, "st": 98, "bernard": 98, "huski": 98, "alaskan": 98, "malamut": 98, "siberian": 98, "dalmatian": 98, "affenpinsch": 98, "basenji": 98, "pug": 98, "leonberg": 98, "newfoundland": 98, "pyrenean": 98, "samoi": 98, "pomeranian": 98, "chow": 98, "keeshond": 98, "griffon": 98, "bruxelloi": 98, "pembrok": 98, "corgi": 98, "cardigan": 98, "poodl": 98, "mexican": 98, "hairless": 98, "tundra": 98, "coyot": 98, "dingo": 98, "dhole": 98, "wild": 98, "hyena": 98, "kit": 98, "arctic": 98, "tabbi": 98, "persian": 98, "siames": 98, "egyptian": 98, "mau": 98, "cougar": 98, "lynx": 98, "leopard": 98, "snow": 98, "jaguar": 98, "cheetah": 98, "brown": [98, 109], "bear": 98, "polar": 98, "sloth": 98, "mongoos": 98, "meerkat": 98, "beetl": 98, "ladybug": 98, "longhorn": 98, "leaf": 98, "rhinocero": 98, "weevil": 98, "fly": 98, "ant": 98, "grasshopp": 98, "cricket": 98, "stick": 98, "insect": 98, "cockroach": 98, "manti": 98, "cicada": 98, "leafhopp": 98, "lacew": 98, "dragonfli": 98, "damselfli": 98, "admir": 98, "ringlet": 98, "monarch": 98, "butterfli": 98, "gossam": 98, "wing": 98, "starfish": 98, "urchin": 98, "cucumb": 98, "cottontail": 98, "rabbit": 98, "hare": 98, "angora": 98, "hamster": 98, "porcupin": 98, "squirrel": 98, "marmot": 98, "beaver": 98, "guinea": 98, "pig": 98, "sorrel": 98, "zebra": 98, "boar": 98, "warthog": 98, "hippopotamu": 98, "ox": 98, "buffalo": 98, "bison": 98, "bighorn": 98, "sheep": 98, "alpin": 98, "ibex": 98, "hartebeest": 98, "impala": 98, "gazel": 98, "dromedari": 98, "llama": 98, "weasel": 98, "mink": 98, "polecat": 98, "foot": 98, "ferret": 98, "otter": 98, "skunk": 98, "badger": 98, "armadillo": 98, "toed": 98, "orangutan": 98, "gorilla": 98, "chimpanze": 98, "gibbon": 98, "siamang": 98, "guenon": 98, "pata": 98, "monkei": 98, "baboon": 98, "macaqu": 98, "langur": 98, "colobu": 98, "probosci": 98, "marmoset": 98, "capuchin": 98, "howler": 98, "titi": 98, "geoffroi": 98, "lemur": 98, "indri": 98, "asian": 98, "eleph": 98, "bush": 98, "snoek": 98, "eel": 98, "coho": 98, "salmon": 98, "beauti": 98, "clownfish": 98, "sturgeon": 98, "garfish": 98, "lionfish": 98, "pufferfish": 98, "abacu": 98, "abaya": 98, "academ": 98, "gown": 98, "accordion": 98, "acoust": 98, "guitar": 98, "aircraft": 98, "carrier": 98, "airlin": 98, "airship": 98, "altar": 98, "ambul": 98, "amphibi": 98, "clock": [98, 110], "apiari": 98, "apron": 98, "wast": 98, "assault": 98, "rifl": 98, "backpack": 98, "bakeri": 98, "balanc": 98, "beam": 98, "balloon": 98, "ballpoint": 98, "pen": 98, "aid": 98, "banjo": 98, "balust": 98, "barbel": 98, "barber": 98, "chair": [98, 105], "barbershop": 98, "baromet": 98, "barrel": 98, "wheelbarrow": 98, "basebal": 98, "basketbal": 98, "bassinet": 98, "bassoon": 98, "swim": 98, "cap": 98, "bath": 98, "towel": 98, "bathtub": 98, "station": 98, "wagon": 98, "lighthous": 98, "beaker": 98, "militari": 98, "beer": 98, "bottl": 98, "glass": 98, "bell": 98, "cot": 98, "bib": 98, "bicycl": [98, 109], "bikini": 98, "binder": 98, "binocular": 98, "birdhous": 98, "boathous": 98, "bobsleigh": 98, "bolo": 98, "tie": 98, "poke": 98, "bonnet": 98, "bookcas": 98, "bookstor": 98, "bow": 98, "brass": 98, "bra": 98, "breakwat": 98, "breastplat": 98, "broom": 98, "bucket": 98, "buckl": 98, "bulletproof": 98, "vest": 98, "butcher": 98, "shop": 98, "taxicab": 98, "cauldron": 98, "candl": 98, "cannon": 98, "cano": 98, "mirror": [98, 105], "carousel": 98, "carton": 98, "wheel": 98, "teller": 98, "cassett": 98, "player": 98, "castl": 98, "catamaran": 98, "cd": 98, "cello": 98, "mobil": [98, 110], "chain": 98, "fenc": [98, 109], "mail": 98, "chainsaw": 98, "chest": 98, "chiffoni": 98, "chime": 98, "china": 98, "cabinet": 98, "christma": 98, "stock": 98, "church": 98, "movi": 98, "theater": 98, "cleaver": 98, "cliff": 98, "dwell": 98, "cloak": 98, "clog": 98, "cocktail": 98, "shaker": 98, "coffe": 98, "mug": 98, "coffeemak": 98, "coil": 98, "lock": 98, "keyboard": 98, "confectioneri": 98, "ship": [98, 106], "corkscrew": 98, "cornet": 98, "cowboi": 98, "boot": 98, "hat": 98, "cradl": 98, "crash": 98, "helmet": 98, "crate": 98, "infant": 98, "bed": 98, "crock": 98, "pot": 98, "croquet": 98, "crutch": 98, "cuirass": 98, "dam": 98, "desk": 98, "desktop": 98, "rotari": 98, "dial": 98, "telephon": 98, "diaper": 98, "watch": 98, "dine": 98, "dishcloth": 98, "dishwash": 98, "disc": 98, "brake": 98, "dock": 98, "sled": 98, "dome": 98, "doormat": 98, "drill": 98, "rig": 98, "drum": 98, "drumstick": 98, "dumbbel": 98, "dutch": 98, "oven": 98, "fan": 98, "locomot": 98, "entertain": 98, "envelop": 98, "espresso": 98, "powder": 98, "feather": 98, "fireboat": 98, "engin": [98, 109], "screen": 98, "sheet": 98, "flagpol": 98, "flute": 98, "footbal": 98, "forklift": 98, "fountain": 98, "poster": 98, "freight": 98, "fry": 98, "pan": 98, "fur": 98, "garbag": 98, "ga": 98, "pump": 98, "goblet": 98, "kart": 98, "golf": 98, "cart": 98, "gondola": 98, "gong": 98, "grand": 98, "piano": 98, "greenhous": 98, "grill": 98, "groceri": 98, "guillotin": 98, "barrett": 98, "hair": 98, "sprai": 98, "hammer": 98, "dryer": 98, "hand": [98, 101], "handkerchief": 98, "drive": 98, "harmonica": 98, "harp": 98, "harvest": 98, "hatchet": 98, "holster": 98, "honeycomb": 98, "hoop": 98, "skirt": 98, "horizont": 98, "bar": 98, "drawn": 98, "hourglass": 98, "ipod": 98, "cloth": 98, "iron": 98, "jack": 98, "lantern": 98, "jean": 98, "jeep": 98, "jigsaw": 98, "puzzl": 98, "pull": 98, "rickshaw": 98, "joystick": 98, "kimono": 98, "knee": 98, "pad": 98, "knot": 98, "ladl": 98, "lampshad": 98, "laptop": 98, "lawn": 98, "mower": 98, "knife": 98, "lifeboat": 98, "lighter": 98, "limousin": 98, "ocean": 98, "liner": 98, "lipstick": 98, "slip": 98, "shoe": 98, "lotion": 98, "speaker": 98, "loup": 98, "sawmil": 98, "magnet": 98, "compass": 98, "mailbox": 98, "tight": 98, "tank": 98, "manhol": 98, "maraca": 98, "marimba": 98, "maypol": 98, "maze": 98, "cup": [98, 105], "medicin": 98, "megalith": 98, "microphon": 98, "microwav": 98, "milk": 98, "minibu": 98, "miniskirt": 98, "minivan": 98, "missil": 98, "mitten": [98, 99], "mix": 98, "bowl": 98, "modem": 98, "monasteri": 98, "monitor": 98, "mope": 98, "mortar": 98, "mosqu": 98, "mosquito": 98, "scooter": 98, "bike": 98, "tent": 98, "mous": [98, 99], "mousetrap": 98, "van": 98, "muzzl": 98, "nail": 98, "brace": 98, "necklac": 98, "nippl": 98, "obelisk": 98, "obo": 98, "ocarina": 98, "odomet": 98, "oil": 98, "oscilloscop": 98, "overskirt": 98, "bullock": 98, "oxygen": 98, "packet": 98, "paddl": 98, "padlock": 98, "paintbrush": 98, "pajama": 98, "palac": [98, 110], "parachut": 98, "park": 98, "bench": 98, "meter": 98, "passeng": 98, "patio": 98, "payphon": 98, "pedest": 98, "pencil": 98, "perfum": 98, "petri": 98, "dish": 98, "photocopi": 98, "plectrum": 98, "pickelhaub": 98, "picket": 98, "pickup": 98, "pier": 98, "piggi": 98, "pill": 98, "pillow": 98, "ping": 98, "pong": 98, "pinwheel": 98, "pirat": 98, "pitcher": 98, "plane": 98, "planetarium": 98, "plastic": 98, "plate": 98, "rack": 98, "plow": 98, "plunger": 98, "polaroid": 98, "camera": 98, "pole": [98, 109], "polic": 98, "poncho": 98, "billiard": 98, "soda": 98, "potter": 98, "prayer": 98, "rug": 98, "printer": 98, "prison": 98, "projectil": 98, "projector": 98, "hockei": 98, "puck": 98, "punch": 98, "purs": 98, "quill": 98, "quilt": 98, "race": 98, "racket": 98, "radiat": 98, "radio": 98, "telescop": 98, "rain": 98, "recreat": 98, "reel": 98, "reflex": 98, "refriger": 98, "remot": 98, "restaur": 98, "revolv": 98, "rotisseri": 98, "eras": 98, "rugbi": 98, "ruler": 98, "safe": 98, "safeti": 98, "salt": 98, "sarong": 98, "saxophon": 98, "scabbard": 98, "bu": [98, 109], "schooner": 98, "scoreboard": 98, "crt": 98, "screw": 98, "screwdriv": 98, "seat": 98, "belt": 98, "sew": 98, "shield": 98, "shoji": 98, "basket": 98, "shovel": 98, "shower": 98, "curtain": 98, "ski": 98, "sleep": 98, "door": 98, "slot": 98, "snorkel": 98, "snowmobil": 98, "snowplow": 98, "soap": 98, "dispens": 98, "soccer": [98, 110], "sock": [98, 99], "solar": 98, "thermal": 98, "collector": 98, "sombrero": 98, "soup": 98, "heater": 98, "shuttl": 98, "spatula": 98, "motorboat": 98, "web": 98, "spindl": 98, "sport": [98, 110], "spotlight": 98, "stage": 98, "steam": 98, "arch": 98, "bridg": 98, "steel": 98, "stethoscop": 98, "scarf": 98, "stone": 98, "wall": [98, 109], "stopwatch": 98, "stove": 98, "strainer": 98, "tram": 98, "stretcher": 98, "couch": 98, "stupa": 98, "submarin": 98, "sundial": 98, "sunglass": 98, "sunscreen": 98, "suspens": 98, "mop": 98, "sweatshirt": 98, "swimsuit": 98, "swing": 98, "switch": 98, "syring": 98, "lamp": 98, "tape": 98, "teapot": 98, "teddi": 98, "televis": [98, 110], "tenni": 98, "thatch": 98, "roof": 98, "thimbl": 98, "thresh": 98, "throne": 98, "tile": 98, "toaster": 98, "tobacco": 98, "toilet": 98, "totem": 98, "tow": 98, "tractor": 98, "semi": 98, "trailer": 98, "trai": 98, "trench": 98, "tricycl": 98, "trimaran": 98, "tripod": 98, "triumphal": 98, "trolleybu": 98, "trombon": 98, "tub": 98, "turnstil": 98, "typewrit": 98, "umbrella": 98, "unicycl": 98, "upright": 98, "vacuum": 98, "cleaner": [98, 100], "vase": 98, "vault": 98, "velvet": 98, "vend": 98, "vestment": 98, "viaduct": 98, "violin": 98, "volleybal": 98, "waffl": 98, "wallet": 98, "wardrob": 98, "sink": 98, "wash": 98, "jug": 98, "tower": 98, "whiskei": 98, "whistl": 98, "wig": 98, "shade": [98, 109], "windsor": 98, "wine": 98, "wok": 98, "wooden": 98, "spoon": 98, "wool": 98, "rail": 98, "shipwreck": 98, "yawl": 98, "yurt": 98, "websit": 98, "comic": 98, "book": 98, "crossword": 98, "traffic": [98, 105, 109], "sign": [98, 109, 110], "dust": 98, "jacket": [98, 105], "menu": 98, "guacamol": 98, "consomm": 98, "trifl": 98, "ic": 98, "cream": 98, "pop": 98, "baguett": 98, "bagel": 98, "pretzel": 98, "cheeseburg": 98, "mash": 98, "potato": 98, "cabbag": 98, "broccoli": 98, "cauliflow": 98, "zucchini": 98, "spaghetti": 98, "squash": 98, "acorn": 98, "butternut": 98, "artichok": 98, "pepper": [98, 99], "cardoon": 98, "mushroom": 98, "granni": 98, "smith": 98, "strawberri": 98, "lemon": 98, "pineappl": 98, "banana": 98, "jackfruit": 98, "custard": 98, "appl": 98, "pomegran": 98, "hai": 98, "carbonara": 98, "chocol": 98, "syrup": 98, "dough": 98, "meatloaf": 98, "pizza": 98, "pie": 98, "burrito": 98, "eggnog": 98, "alp": 98, "bubbl": 98, "reef": 98, "geyser": 98, "lakeshor": 98, "promontori": 98, "shoal": 98, "seashor": 98, "vallei": 98, "volcano": 98, "bridegroom": 98, "scuba": 98, "diver": 98, "rapese": 98, "daisi": 98, "ladi": 98, "slipper": 98, "corn": 98, "rose": 98, "hip": 98, "chestnut": 98, "fungu": 98, "agar": 98, "gyromitra": 98, "stinkhorn": 98, "earth": 98, "star": 98, "wood": 98, "bolet": 98, "ear": 98, "cifar10_test_set": 98, "airplan": [98, 106], "automobil": [98, 106], "deer": [98, 106], "cifar100_test_set": 98, "aquarium_fish": 98, "boi": 98, "camel": 98, "caterpillar": 98, "cattl": [98, 110], "cloud": 98, "dinosaur": 98, "dolphin": 98, "flatfish": 98, "forest": 98, "girl": 98, "kangaroo": 98, "lawn_mow": 98, "man": 98, "maple_tre": 98, "motorcycl": [98, 109], "oak_tre": 98, "orchid": 98, "palm_tre": 98, "pear": 98, "pickup_truck": 98, "pine_tre": 98, "plain": 98, "poppi": 98, "possum": 98, "raccoon": 98, "road": [98, 109], "rocket": 98, "seal": 98, "shrew": 98, "skyscrap": 98, "streetcar": 98, "sunflow": 98, "sweet_pepp": 98, "trout": 98, "tulip": 98, "willow_tre": 98, "woman": [98, 105], "caltech256": 98, "ak47": 98, "bat": 98, "glove": 98, "birdbath": 98, "blimp": 98, "bonsai": 98, "boom": 98, "breadmak": 98, "buddha": 98, "bulldoz": 98, "cactu": 98, "cake": 98, "tire": 98, "cartman": 98, "cereal": 98, "chandeli": 98, "chess": 98, "board": 98, "chimp": 98, "chopstick": 98, "coffin": 98, "coin": 98, "comet": 98, "cormor": 98, "globe": 98, "diamond": 98, "dice": 98, "doorknob": 98, "drink": 98, "straw": 98, "dumb": 98, "eiffel": 98, "elk": 98, "ewer": 98, "eyeglass": 98, "fern": 98, "fighter": 98, "jet": [98, 108], "extinguish": 98, "hydrant": 98, "firework": 98, "flashlight": 98, "floppi": 98, "fri": 98, "frisbe": 98, "galaxi": 98, "giraff": 98, "goat": 98, "gate": 98, "grape": 98, "pick": [98, 99], "hamburg": 98, "hammock": 98, "harpsichord": 98, "hawksbil": 98, "helicopt": 98, "hibiscu": 98, "homer": 98, "simpson": 98, "horsesho": 98, "air": 98, "skeleton": 98, "ibi": 98, "cone": 98, "iri": 98, "jesu": 98, "christ": 98, "joi": 98, "kayak": 98, "ketch": 98, "ladder": 98, "lath": 98, "licens": 98, "lightbulb": 98, "lightn": 98, "mandolin": 98, "mar": 98, "mattress": 98, "megaphon": 98, "menorah": 98, "microscop": 98, "minaret": 98, "minotaur": 98, "motorbik": 98, "mussel": 98, "neckti": 98, "octopu": 98, "palm": 98, "pilot": 98, "paperclip": 98, "shredder": 98, "pci": 98, "peopl": [98, 105], "pez": 98, "picnic": 98, "pram": 98, "prai": 98, "pyramid": 98, "rainbow": 98, "roulett": 98, "saddl": 98, "saturn": 98, "segwai": 98, "propel": 98, "sextant": 98, "music": 98, "skateboard": 98, "smokestack": 98, "sneaker": 98, "boat": 98, "stain": 98, "steer": 98, "stirrup": 98, "superman": 98, "sushi": 98, "armi": [98, 110], "sword": 98, "tambourin": 98, "teepe": 98, "court": 98, "theodolit": 98, "tomato": 98, "tombston": 98, "tour": 98, "pisa": 98, "treadmil": 98, "fork": 98, "tweezer": 98, "unicorn": 98, "vcr": 98, "waterfal": 98, "watermelon": 98, "weld": 98, "windmil": 98, "xylophon": 98, "yarmulk": 98, "yo": 98, "toad": 98, "twenty_news_test_set": 98, "comp": 98, "graphic": [98, 109], "misc": [98, 110], "sy": 98, "ibm": 98, "pc": 98, "hardwar": 98, "mac": 98, "forsal": 98, "rec": 98, "crypt": 98, "electron": 98, "med": 98, "soc": 98, "religion": 98, "christian": [98, 110], "talk": [98, 110], "polit": 98, "gun": 98, "mideast": 98, "amazon": 98, "neutral": 98, "imdb_test_set": 98, "all_class": 98, "20news_test_set": 98, "_load_classes_predprobs_label": 98, "dataset_nam": 98, "labelerror": 98, "url_bas": 98, "5392f6c71473055060be3044becdde1cbc18284d": 98, "url_label": 98, "original_test_label": 98, "_original_label": 98, "url_prob": 98, "cross_validated_predicted_prob": 98, "_pyx": 98, "num_part": 98, "datatset": 98, "bytesio": 98, "allow_pickl": 98, "pred_probs_part": 98, "url": 98, "_of_": 98, "nload": 98, "imdb": 98, "ve": [98, 99, 100, 101, 103, 105], "capit": 98, "29780": 98, "256": [98, 99, 100, 105], "780": 98, "medic": [98, 110], "doctor": 98, "254": [98, 105], "359223": 98, "640777": 98, "184": [98, 101], "258427": 98, "341176": 98, "263158": 98, "658824": 98, "337349": 98, "246575": 98, "662651": 98, "248": 98, "330000": 98, "355769": 98, "251": [98, 105], "167": [98, 101, 105], "252": [98, 100], "112": [98, 100], "253": [98, 105], "022989": 98, "049505": 98, "190": [98, 101, 105], "002216": 98, "000974": 98, "000873": 98, "000739": 98, "32635": 98, "32636": 98, "32637": 98, "32638": 98, "32639": 98, "32640": 98, "051": 98, "002242": 98, "997758": 98, "002088": 98, "001045": 98, "997912": 98, "002053": 98, "997947": 98, "001980": 98, "000991": 98, "998020": 98, "001946": 98, "002915": 98, "998054": 98, "001938": 98, "002904": 98, "998062": 98, "001020": 98, "998980": 98, "001018": 98, "002035": 98, "998982": 98, "999009": 98, "0003": 98, "0002": 98, "071": 98, "067269": 98, "929": 98, "046": 98, "058243": 98, "954": 98, "035": 98, "032096": 98, "031": 98, "012232": 98, "969": 98, "022": 98, "025896": 98, "978": 98, "020": [98, 101], "013092": 98, "018": 98, "013065": 98, "016": 98, "030542": 98, "984": 98, "013": 98, "020833": 98, "987": 98, "012": 98, "010020": 98, "988": 98, "0073": 98, "0020": 98, "0016": 98, "0015": 98, "0014": 98, "0013": 98, "0012": 98, "0010": 98, "0008": 98, "0007": 98, "0006": 98, "0005": 98, "0004": 98, "244": [98, 105], "452381": 98, "459770": 98, "523364": 98, "460784": 98, "446602": 98, "103774": 98, "030612": 98, "110092": 98, "049020": 98, "0034": 98, "0032": 98, "0026": 98, "0025": 98, "4945": 98, "4946": 98, "4947": 98, "4948": 98, "4949": 98, "4950": 98, "846": 98, "7532": 98, "532": 98, "034483": 98, "009646": 98, "965517": 98, "030457": 98, "020513": 98, "969543": 98, "028061": 98, "035443": 98, "971939": 98, "025316": 98, "005168": 98, "974684": 98, "049751": 98, "979487": 98, "019920": 98, "042802": 98, "980080": 98, "017677": 98, "005115": 98, "982323": 98, "012987": 98, "005236": 98, "987013": 98, "012723": 98, "025126": 98, "987277": 98, "010989": 98, "008264": 98, "989011": 98, "010283": 98, "027778": 98, "989717": 98, "009677": 98, "990323": 98, "007614": 98, "010127": 98, "992386": 98, "005051": 98, "994949": 98, "005025": 98, "994975": 98, "005013": 98, "994987": 98, "001859": 98, "001328": 98, "000929": 98, "000664": 98, "186": [98, 101], "188": [98, 101, 104], "189": [98, 101], "snippet": 99, "nlp": [99, 110], "mind": [99, 101], "alphanumer": 99, "facilit": 99, "seamless": 99, "classlabel": 99, "guidanc": 99, "labels_str": 99, "datalab_str": 99, "labels_int": 99, "remap": 99, "datalab_int": 99, "my_dict": 99, "pet_nam": 99, "rover": 99, "rocki": 99, "speci": 99, "datalab_dataset": 99, "number_of_class": 99, "total_number_of_data_point": 99, "feed": 99, "alphabet": 99, "labels_proper_format": 99, "your_classifi": 99, "issues_datafram": 99, "class_predicted_for_flagged_exampl": 99, "class_predicted_for_all_exampl": 99, "grant": 99, "On": [99, 100, 101, 105], "merged_dataset": 99, "label_column_nam": 99, "datataset": 99, "fair": [99, 101], "game": 99, "speedup": [99, 106], "tempfil": 99, "mkdtemp": 99, "sped": 99, "anywai": 99, "pred_probs_merg": 99, "merge_rare_class": 99, "count_threshold": 99, "class_mapping_orig2new": 99, "heath_summari": 99, "num_examples_per_class": 99, "rare_class": 99, "num_classes_merg": 99, "other_class": 99, "labels_merg": 99, "new_c": 99, "merged_prob": 99, "new_class": 99, "original_class": 99, "num_check": 99, "ones_array_ref": 99, "isclos": 99, "though": [99, 101, 110], "successfulli": 99, "virtuou": [99, 103], "cycl": [99, 103], "jointli": 99, "junk": 99, "clutter": 99, "unknown": 99, "caltech": 99, "combined_boolean_mask": 99, "mask1": 99, "mask2": 99, "gradientboostingclassifi": [99, 101], "true_error": [99, 101, 104], "101": [99, 100, 105], "102": [99, 104, 105], "104": [99, 101, 105], "model_to_find_error": 99, "model_to_return": 99, "cl0": 99, "randomizedsearchcv": 99, "expens": 99, "param_distribut": 99, "learning_r": [99, 100, 101], "max_depth": [99, 100, 101], "magnitud": 99, "coeffici": [99, 108], "optin": 99, "environ": [99, 100, 101], "rerun": [99, 100, 101], "cell": [99, 100, 101], "unabl": [99, 100, 101], "render": [99, 100, 101], "nbviewer": [99, 100, 101], "cleanlearninginot": [99, 101], "fittedcleanlearn": [99, 101], "linearregressionlinearregress": 99, "unexpectedli": 99, "emphas": 99, "crucial": 99, "merge_duplicate_set": 99, "merge_kei": 99, "construct_group_kei": 99, "merged_set": 99, "consolidate_set": 99, "issubset": 99, "frozenset": [99, 100], "sets_list": 99, "mutabl": 99, "new_set": 99, "current_set": 99, "intersecting_set": 99, "lowest_score_strategi": 99, "sub_df": 99, "filter_near_dupl": 99, "strategy_fn": 99, "strategy_kwarg": 99, "duplicate_row": 99, "group_kei": 99, "to_keep_indic": 99, "groupbi": 99, "explod": 99, "to_remov": 99, "isin": [99, 106], "kept": 99, "ids_to_remove_seri": 99, "assist": 99, "streamlin": [99, 100], "ux": 99, "agpl": 99, "compani": 99, "commerci": 99, "alter": [99, 100], "email": 99, "team": 99, "anywher": 99, "profession": 99, "expert": 99, "recogn": 100, "vital": 100, "leakag": 100, "comparion": 100, "leak": 100, "blueprint": 100, "divers": 100, "parameter": 100, "tldr": 100, "answer": [100, 101], "subtl": 100, "faith": 100, "danger": 100, "inevit": [100, 106], "xgbclassifi": 100, "123456": 100, "df_train": 100, "s3": [100, 105, 109, 110], "amazonaw": [100, 105, 109, 110], "clos_train_data": 100, "df_test": 100, "clos_test_data": 100, "noisy_letter_grad": 100, "018bff": 100, "076d92": 100, "c80059": 100, "e38f8a": 100, "d57e1a": 100, "grade_l": 100, "notes_l": 100, "train_featur": 100, "train_features_v2": 100, "train_labels_v2": 100, "test_featur": 100, "preprocessed_train_data": 100, "preprocessed_test_data": 100, "haven": 100, "features_df": 100, "heterogenou": 100, "full_df": 100, "reset_index": [100, 103], "749": 100, "583745": 100, "291382": 100, "5837": 100, "748": 100, "604": 100, "510": 100, "227": [100, 104, 105], "719": 100, "690": 100, "444": 100, "547": 100, "647": 100, "2914": 100, "611": 100, "687869": 100, "610": 100, "687883": 100, "612": 100, "688146": 100, "609": 100, "688189": 100, "613": 100, "688713": 100, "2913818469137725": 100, "came": [100, 110], "full_duplicate_result": 100, "train_idx_cutoff": 100, "nd_set_has_index_over_training_cutoff": 100, "exact_dupl": 100, "627": 100, "678": 100, "615": 100, "292": 100, "620": 100, "420": 100, "704": 100, "431": 100, "459": 100, "672": 100, "564": 100, "696": 100, "605": 100, "exact_duplicates_indic": 100, "indices_of_duplicates_to_drop": 100, "4a3f75": 100, "d030b5": 100, "ddd0ba": 100, "8e6d24": 100, "464aab": 100, "ee3387": 100, "61e807": 100, "71d7b9": 100, "83e31f": 100, "edeb53": 100, "cd52b5": 100, "84": [100, 105, 108], "454e51": 100, "042686": 100, "12a73f": 100, "tree_method": 100, "hist": [100, 106], "enable_categor": 100, "booster": 100, "callback": 100, "colsample_bylevel": 100, "colsample_bynod": 100, "colsample_bytre": 100, "early_stopping_round": 100, "eval_metr": 100, "feature_typ": 100, "gamma": 100, "grow_polici": 100, "importance_typ": 100, "interaction_constraint": 100, "max_bin": 100, "max_cat_threshold": 100, "max_cat_to_onehot": 100, "max_delta_step": 100, "max_leav": 100, "min_child_weight": 100, "monotone_constraint": 100, "multi_strategi": 100, "n_estim": [100, 101], "num_parallel_tre": 100, "x27": [100, 101], "softprob": 100, "xgbclassifierifittedxgbclassifi": 100, "test_pred_prob": [100, 106], "test_lab": 100, "test_features_arrai": 100, "134": 100, "798507": 100, "370259": 100, "625352": 100, "524042": 100, "097015": 100, "7985": 100, "000537": 100, "000903": 100, "001743": 100, "106": 100, "001853": 100, "002121": 100, "3703": 100, "752463e": 100, "784418e": 100, "477741e": 100, "134230e": 100, "153555e": 100, "6254": 100, "143272": 100, "146501": 100, "161431": 100, "5240": 100, "765240": 100, "771221": 100, "801589": 100, "801652": 100, "810735": 100, "5240417899434826": 100, "0970": 100, "na": [100, 103], "test_label_issue_result": 100, "test_label_issues_ord": 100, "2bd759": 100, "34ccdd": 100, "bb3bab": 100, "103": [100, 101, 105], "bf1b14": 100, "4787de": 100, "865cbd": 100, "32d53f": 100, "5b2f76": 100, "28f8b4": 100, "df814d": 100, "f17261": 100, "1db3ff": 100, "ded944": 100, "124": [100, 105], "343dd3": 100, "homework": [100, 108], "8d904d": 100, "e4f0d5": 100, "d6d208": 100, "76c083": 100, "695f96": 100, "745c23": 100, "13b36e": 100, "5ba892": 100, "9f0216": 100, "003628": 100, "004006": 100, "004031": 100, "007930": 100, "013226": 100, "015255": 100, "017692": 100, "019767": 100, "036197": 100, "054746": 100, "055110": 100, "062675": 100, "112695": 100, "121059": 100, "171280": 100, "181689": 100, "208001": 100, "275028": 100, "346032": 100, "396350": 100, "401493": 100, "474349": 100, "mislead": 100, "breviti": 100, "indices_to_drop_from_test_data": 100, "df_test_clean": 100, "acc_origin": 100, "tediou": 100, "train_features_arrai": 100, "train_lab": 100, "318": [100, 108], "601": 100, "740433": 100, "344154": 100, "588290": 100, "437267": 100, "146423": 100, "977223": 100, "7404": 100, "162": 100, "000072": 100, "348": 100, "000161": 100, "232": [100, 105], "000256": 100, "205": [100, 105], "000458": 100, "000738": 100, "3442": 100, "588": 100, "358961e": 100, "336": [100, 105], "490911e": 100, "269": 100, "122475e": 100, "321": [100, 105], "374139e": 100, "311": 100, "358617e": 100, "5883": 100, "600": 100, "592": 100, "593": 100, "594": 100, "595": 100, "596": 100, "597": 100, "598": 100, "599": 100, "221": 100, "222": [100, 101], "315": 100, "332": [100, 105], "791060e": 100, "243": [100, 105, 110], "540": 100, "379106e": 100, "396": 100, "397": 100, "398": 100, "399": 100, "4373": 100, "165": [100, 104], "550374": 100, "627357": 100, "627496": 100, "627502": 100, "627919": 100, "43726734378061227": 100, "1464": 100, "506": 100, "393": 100, "508": 100, "9772": 100, "402": 100, "401": 100, "aggress": 100, "faithfulli": 100, "label_issue_result": 100, "566": 100, "568": 100, "571": 100, "572": 100, "574": 100, "576": 100, "578": 100, "585": 100, "587": 100, "590": 100, "near_duplicates_idx": 100, "117": [100, 101, 108], "122": [100, 101, 105], "146": 100, "155": [100, 101, 105], "156": [100, 101], "173": [100, 105], "224": [100, 105], "272": 100, "277": [100, 105], "279": [100, 105], "288": 100, "300": [100, 103, 110], "342": 100, "352": 100, "365": 100, "366": 100, "384": 100, "388": 100, "394": 100, "404": 100, "474": 100, "480": 100, "494": 100, "515": 100, "536": 100, "537": 100, "539": 100, "542": 100, "outliers_idx": 100, "143": [100, 104, 105], "159": [100, 104, 105], "163": [100, 101], "193": [100, 101], "194": [100, 101], "208": 100, "240": [100, 105], "241": 100, "242": [100, 105], "247": [100, 105], "287": [100, 105], "295": [100, 105], "299": [100, 105], "307": [100, 105], "350": 100, "361": 100, "378": 100, "379": 100, "392": 100, "419": 100, "432": 100, "479": 100, "484": 100, "485": 100, "489": 100, "492": 100, "504": 100, "511": 100, "522": 100, "523": 100, "535": 100, "543": 100, "567": 100, "579": 100, "591": 100, "idx_to_drop": 100, "276": [100, 105], "df_train_cur": 100, "clean_clf": 100, "clean_pr": 100, "acc_clean": 100, "inaccur": 100, "hybrid": 100, "quantit": 100, "hyper": 100, "default_edit_param": 100, "drop_label_issu": 100, "drop_outli": 100, "drop_near_dupl": 100, "candid": [100, 105], "edit_data": 100, "percentag": [100, 101], "num_label_issues_to_drop": 100, "num_outliers_to_drop": 100, "dedupl": 100, "unique_clust": 100, "unique_clusters_list": 100, "near_duplicates_idx_to_drop": 100, "n_drop": 100, "label_issues_idx_to_drop": 100, "outliers_idx_to_drop": 100, "train_features_clean": 100, "train_labels_clean": 100, "itertool": 100, "finer": 100, "param_combin": 100, "best_scor": 100, "best_param": 100, "train_features_preprocess": 100, "train_labels_preprocess": 100, "depth": 101, "survei": [101, 110], "scienc": 101, "multivariate_norm": [101, 103, 104], "make_data": [101, 103], "cov": [101, 103, 104], "avg_trac": [101, 104], "py_tru": 101, "noise_matrix_tru": 101, "noise_marix": 101, "s_test": 101, "noisy_test_label": 101, "purpl": 101, "namespac": 101, "exec": 101, "markerfacecolor": [101, 104], "markeredgecolor": [101, 104, 108], "markers": [101, 104, 108], "markeredgewidth": [101, 104, 108], "realist": 101, "7560": 101, "637318e": 101, "896262e": 101, "548391e": 101, "923417e": 101, "375075e": 101, "3454": 101, "014051": 101, "020451": 101, "249": [101, 105], "042594": 101, "043859": 101, "045954": 101, "6120": 101, "023714": 101, "007136": 101, "119": [101, 105, 110], "107266": 101, "033738": 101, "238": [101, 105], "119505": 101, "236": [101, 105], "037843": 101, "614915": 101, "624422": 101, "625965": 101, "626079": 101, "118": 101, "627675": 101, "695223": 101, "323529": 101, "523015": 101, "013720": 101, "675727": 101, "646521": 101, "magic": 101, "liter": 101, "identif": 101, "logisticregressionlogisticregress": 101, "ever": 101, "092": 101, "040": 101, "024": 101, "004": 101, "surpris": 101, "1705": 101, "01936": 101, "ton": 101, "yourfavoritemodel1": 101, "merged_label": 101, "merged_test_label": 101, "newli": [101, 103], "yourfavoritemodel2": 101, "yourfavoritemodel3": 101, "cl3": 101, "takeawai": 101, "my_test_pred_prob": 101, "my_test_pr": 101, "issues_test": 101, "corrected_test_label": 101, "pretend": 101, "cl_test_pr": 101, "fairli": 101, "label_acc": 101, "offset": 101, "nquestion": 101, "overestim": 101, "experienc": 101, "prioiri": 101, "known": 101, "versatil": 101, "label_issues_indic": 101, "213": [101, 105], "218": [101, 105], "152": 101, "170": 101, "214": 101, "164": [101, 104], "191": [101, 105], "206": [101, 105], "115": [101, 105], "201": [101, 105], "174": 101, "150": [101, 103, 105], "169": 101, "151": [101, 105], "168": 101, "precision_scor": 101, "recall_scor": 101, "f1_score": 101, "true_label_issu": 101, "filter_by_list": 101, "718750": [101, 103], "807018": 101, "912": 101, "733333": 101, "800000": 101, "721311": 101, "792793": 101, "908": 101, "676923": 101, "765217": 101, "892": 101, "567901": 101, "702290": 101, "844": 101, "gaug": 101, "label_issues_count": 101, "172": [101, 104], "157": 101, "easiest": 101, "modular": 101, "penalti": 101, "l2": 101, "model3": 101, "cv_pred_probs_1": 101, "cv_pred_probs_2": 101, "cv_pred_probs_3": 101, "label_quality_scores_best": 101, "cv_pred_probs_ensembl": 101, "label_quality_scores_bett": 101, "superior": [101, 107], "timm": 102, "glad": 103, "multiannotator_label": 103, "noisier": 103, "local_data": [103, 104], "true_labels_train": [103, 104], "noise_matrix_bett": 103, "noise_matrix_wors": 103, "transpos": [103, 106], "zfill": 103, "row_na_check": 103, "notna": 103, "a0001": 103, "a0002": 103, "a0003": 103, "a0004": 103, "a0005": 103, "a0006": 103, "a0007": 103, "a0008": 103, "a0009": 103, "a0010": 103, "a0041": 103, "a0042": 103, "a0043": 103, "a0044": 103, "a0045": 103, "a0046": 103, "a0047": 103, "a0048": 103, "a0049": 103, "a0050": 103, "60856743": 103, "41693214": 103, "40908785": 103, "87147629": 103, "64941785": 103, "10774851": 103, "0524466": 103, "71853246": 103, "37169848": 103, "66031048": 103, "multiannotator_util": 103, "crude": 103, "straight": 103, "majority_vote_label": 103, "736118": 103, "757751": 103, "782232": 103, "715565": 103, "824256": 103, "quality_annotator_a0001": 103, "quality_annotator_a0002": 103, "quality_annotator_a0003": 103, "quality_annotator_a0004": 103, "quality_annotator_a0005": 103, "quality_annotator_a0006": 103, "quality_annotator_a0007": 103, "quality_annotator_a0008": 103, "quality_annotator_a0009": 103, "quality_annotator_a0010": 103, "quality_annotator_a0041": 103, "quality_annotator_a0042": 103, "quality_annotator_a0043": 103, "quality_annotator_a0044": 103, "quality_annotator_a0045": 103, "quality_annotator_a0046": 103, "quality_annotator_a0047": 103, "quality_annotator_a0048": 103, "quality_annotator_a0049": 103, "quality_annotator_a0050": 103, "070564": 103, "216078": 103, "119188": 103, "alongisd": 103, "244981": 103, "208333": 103, "295979": 103, "294118": 103, "324197": 103, "310345": 103, "355316": 103, "346154": 103, "439732": 103, "480000": 103, "a0031": 103, "523205": 103, "580645": 103, "a0034": 103, "535313": 103, "607143": 103, "a0021": 103, "606999": 103, "a0015": 103, "609526": 103, "678571": 103, "a0011": 103, "621103": 103, "692308": 103, "improved_consensus_label": 103, "majority_vote_accuraci": 103, "cleanlab_label_accuraci": 103, "8581081081081081": 103, "9797297297297297": 103, "besid": 103, "sorted_consensus_quality_scor": 103, "worst_qual": 103, "better_qu": 103, "worst_quality_accuraci": 103, "better_quality_accuraci": 103, "9893238434163701": 103, "improved_pred_prob": 103, "treat": [103, 104, 108, 110], "analzi": 103, "copyright": 104, "advertis": 104, "violenc": 104, "nsfw": 104, "celeba": 104, "make_multilabel_data": 104, "boxes_coordin": 104, "box_multilabel": 104, "make_multi": 104, "bx1": 104, "by1": 104, "bx2": 104, "by2": 104, "label_list": 104, "ur": 104, "upper": 104, "inidx": 104, "logical_and": 104, "inv_d": 104, "labels_idx": 104, "true_labels_test": 104, "dict_unique_label": 104, "get_color_arrai": 104, "dcolor": 104, "aa4400": 104, "55227f": 104, "55a100": 104, "00ff00": 104, "007f7f": 104, "386b55": 104, "0000ff": 104, "y_onehot": 104, "single_class_label": 104, "stratifi": [104, 107], "kf": 104, "train_index": 104, "test_index": 104, "clf_cv": 104, "x_train_cv": 104, "x_test_cv": 104, "y_train_cv": 104, "y_test_cv": 104, "y_pred_cv": 104, "saw": 104, "num_to_displai": 104, "275": 104, "267": 104, "225": 104, "171": [104, 110], "234": 104, "262": [104, 105], "263": [104, 105], "266": [104, 105], "139": 104, "216": [104, 105], "265": 104, "despit": [104, 110], "suspect": 104, "888": 104, "8224": 104, "9632": 104, "968": 104, "6512": 104, "0444": 104, "774": 104, "labels_binary_format": 104, "labels_list_format": 104, "surround": 105, "scene": 105, "coco": 105, "everydai": 105, "has_label_issu": 105, "objectdetectionbenchmark": 105, "tutorial_obj": 105, "pkl": 105, "example_imag": 105, "_separate_label": 105, "_separate_predict": 105, "begin": 105, "image_path": 105, "rb": 105, "image_to_visu": 105, "seg_map": 105, "334": 105, "bboxes_ignor": 105, "290": 105, "286": 105, "285": 105, "231": 105, "293": 105, "235": 105, "289": 105, "282": 105, "281": 105, "271": 105, "280": 105, "326": 105, "333": 105, "261": 105, "319": 105, "257": 105, "283": 105, "303": 105, "316": 105, "323": 105, "327": 105, "226": 105, "228": 105, "219": 105, "239": 105, "209": 105, "202": 105, "230": 105, "215": 105, "220": 105, "229": 105, "217": [105, 110], "237": 105, "207": [105, 110], "204": 105, "223": 105, "149": 105, "140": 105, "246": 105, "268": 105, "273": 105, "284": 105, "136": 105, "145": 105, "297": 105, "317": 105, "192": 105, "324": 105, "203": 105, "320": 105, "314": 105, "291": 105, "000000481413": 105, "jpg": 105, "42398": 105, "44503": 105, "29968": 105, "21005": 105, "9978472": 105, "forgot": 105, "drew": 105, "label_issue_idx": 105, "num_examples_to_show": 105, "138": 105, "97489622": 105, "70610878": 105, "98764951": 105, "88899237": 105, "99085805": 105, "issue_idx": 105, "95569726e": 105, "03354841e": 105, "57510169e": 105, "58447666e": 105, "39755858e": 105, "issue_to_visu": 105, "000000009483": 105, "95569726168054e": 105, "addition": [105, 109], "visibl": 105, "missmatch": 105, "likelei": 105, "agnost": 105, "vaidat": 105, "inconsist": 105, "000000395701": 105, "033548411774308e": 105, "armchair": 105, "tv": 105, "000000154004": 105, "38300759625496356": 105, "foreground": 105, "000000448410": 105, "0008575101690203273": 105, "crowd": 105, "alon": 105, "resembl": [105, 106], "000000499768": 105, "9748962231208227": 105, "000000521141": 105, "8889923658893665": 105, "000000143931": 105, "9876495074395956": 105, "bonu": 105, "uncov": 105, "irregular": 105, "object_detection_util": 105, "calculate_bounding_box_area": 105, "num_imgs_to_show": 105, "lab_object_count": 105, "pred_object_count": 105, "000000430073": 105, "000000183709": 105, "000000189475": 105, "label_norm": 105, "pred_norm": 105, "area": [105, 109], "lab_area": 105, "pred_area": 105, "lab_area_mean": 105, "lab_area_std": 105, "max_deviation_valu": 105, "max_deviation_class": 105, "deviation_valu": 105, "deviation_class": 105, "mean_area": 105, "std_area": 105, "class_area": 105, "deviations_awai": 105, "max_deviation_index": 105, "num_imgs_to_show_per_class": 105, "class_num": 105, "000000422886": 105, "000000341828": 105, "000000461009": 105, "train_feature_embed": 106, "ood_train_feature_scor": 106, "test_feature_embed": 106, "ood_test_feature_scor": 106, "ood_train_predictions_scor": 106, "train_pred_prob": 106, "ood_test_predictions_scor": 106, "pylab": 106, "rcparam": 106, "baggingclassifi": 106, "therebi": 106, "rescal": 106, "transform_norm": 106, "totensor": 106, "animal_class": 106, "non_animal_class": 106, "animal_idx": 106, "test_idx": 106, "toronto": 106, "edu": 106, "kriz": 106, "170498071": 106, "49690890": 106, "85it": 106, "plot_imag": 106, "visualize_outli": 106, "txt_class": 106, "npimg": 106, "show_label": 106, "data_subset": 106, "resnet50": 106, "corpu": 106, "2048": 106, "embed_imag": 106, "create_model": 106, "strang": 106, "odd": 106, "train_ood_features_scor": 106, "top_train_ood_features_idx": 106, "fun": 106, "negat": 106, "homogen": 106, "bottom_train_ood_features_idx": 106, "test_ood_features_scor": 106, "top_ood_features_idx": 106, "trade": 106, "5th": 106, "percentil": 106, "fifth_percentil": 106, "plt_rang": 106, "train_outlier_scor": 106, "test_outlier_scor": 106, "ood_features_indic": 106, "revisit": 106, "return_invers": 106, "train_feature_embeddings_sc": 106, "test_feature_embeddings_sc": 106, "train_pred_label": 106, "9702": 106, "train_ood_predictions_scor": 106, "test_ood_predictions_scor": 106, "lost": 106, "unsuit": 107, "convention": 107, "aforement": 107, "hypothet": 107, "contrast": 107, "tradit": 107, "disjoint": 107, "out_of_sample_pred_probs_for_a": 107, "out_of_sample_pred_probs_for_b": 107, "out_of_sample_pred_probs_for_c": 107, "out_of_sample_pred_prob": 107, "unsur": 107, "price": 108, "incom": 108, "sensor": 108, "histgradientboostingregressor": 108, "r2_score": 108, "student_grades_r": 108, "final_scor": 108, "true_final_scor": 108, "3d": 108, "mpl_toolkit": 108, "mplot3d": 108, "axes3d": 108, "errors_idx": 108, "add_subplot": 108, "z": 108, "errors_mask": 108, "feature_column": 108, "predicted_column": 108, "x_train_raw": 108, "x_test_raw": 108, "randomforestregressor": 108, "385101": 108, "499503": 108, "698255": 108, "776647": 108, "109373": 108, "170547": 108, "481096": 108, "984759": 108, "645270": 108, "795928": 108, "141": 108, "659": 108, "367": 108, "305": 108, "560": 108, "657": 108, "view_datapoint": 108, "preds_og": 108, "r2_og": 108, "838": 108, "found_label_issu": 108, "preds_cl": 108, "r2_cl": 108, "926": 108, "favorit": 108, "968627e": 108, "228799": 108, "646674e": 108, "402962": 108, "323818e": 108, "952758": 108, "422144e": 108, "456908": 108, "465815e": 108, "753968": 108, "791186e": 108, "110719": 108, "485156e": 108, "670640": 108, "225300e": 108, "749976": 108, "499679e": 108, "947007": 108, "067882e": 108, "648396": 108, "synthia": 109, "imagesegment": 109, "given_mask": 109, "predicted_mask": 109, "set_printopt": [109, 110], "sky": 109, "sidewalk": 109, "veget": 109, "terrain": 109, "rider": 109, "pred_probs_filepath": 109, "1088": 109, "1920": 109, "label_filepath": 109, "synthia_class": 109, "maunal": 109, "100000": 109, "244800": 109, "leftmost": 109, "middl": [109, 110], "infact": 109, "rightmost": 109, "discrep": 109, "3263230": 109, "783381": 109, "275110": 109, "255917": 109, "78225": 109, "55990": 109, "54315": 109, "33591": 109, "24645": 109, "21054": 109, "15045": 109, "14171": 109, "13832": 109, "13498": 109, "11490": 109, "9164": 109, "8769": 109, "6999": 109, "6031": 109, "5011": 109, "mistakenli": 109, "class_issu": 109, "aim": [109, 110], "domin": 109, "bunch": 110, "conll": 110, "2003": 110, "love": 110, "n_i": 110, "optional_list_of_ordered_class_nam": 110, "deepai": 110, "conll2003": 110, "rm": 110, "tokenclassif": 110, "2400": 110, "52e0": 110, "1a00": 110, "940": 110, "982975": 110, "960k": 110, "959": 110, "94k": 110, "inflat": 110, "17045998": 110, "16m": 110, "octet": 110, "26m": 110, "2mb": 110, "bert": 110, "read_npz": 110, "filepath": 110, "corrsespond": 110, "iob2": 110, "given_ent": 110, "entity_map": 110, "readfil": 110, "startswith": 110, "docstart": 110, "isalpha": 110, "isupp": 110, "indices_to_preview": 110, "nsentenc": 110, "eu": 110, "reject": 110, "boycott": 110, "british": 110, "lamb": 110, "00030412": 110, "00023826": 110, "99936208": 110, "00007009": 110, "00002545": 110, "99998795": 110, "00000401": 110, "00000218": 110, "00000455": 110, "00000131": 110, "00000749": 110, "99996115": 110, "00001371": 110, "0000087": 110, "00000895": 110, "99998936": 110, "00000382": 110, "00000178": 110, "00000366": 110, "00000137": 110, "99999101": 110, "00000266": 110, "00000174": 110, "0000035": 110, "00000109": 110, "99998768": 110, "00000482": 110, "00000202": 110, "00000438": 110, "0000011": 110, "00000465": 110, "99996392": 110, "00001105": 110, "0000116": 110, "00000878": 110, "99998671": 110, "00000364": 110, "00000213": 110, "00000472": 110, "00000281": 110, "99999073": 110, "00000211": 110, "00000159": 110, "00000442": 110, "00000115": 110, "peter": 110, "blackburn": 110, "00000358": 110, "00000529": 110, "99995623": 110, "0000129": 110, "0000024": 110, "00001812": 110, "99994141": 110, "00001645": 110, "00002162": 110, "brussel": 110, "1996": 110, "00001172": 110, "00000821": 110, "00004661": 110, "0000618": 110, "99987167": 110, "99999061": 110, "00000201": 110, "00000195": 110, "00000408": 110, "00000135": 110, "2254": 110, "2907": 110, "19392": 110, "9962": 110, "8904": 110, "19303": 110, "12918": 110, "9256": 110, "11855": 110, "18392": 110, "20426": 110, "19402": 110, "14744": 110, "19371": 110, "4645": 110, "10331": 110, "9430": 110, "6143": 110, "18367": 110, "12914": 110, "todai": 110, "weather": 110, "march": 110, "scalfaro": 110, "northern": 110, "himself": 110, "said": 110, "germani": 110, "nastja": 110, "rysich": 110, "north": 110, "spla": 110, "fought": 110, "khartoum": 110, "govern": 110, "south": 110, "1983": 110, "autonomi": 110, "animist": 110, "region": 110, "moslem": 110, "arabis": 110, "mayor": 110, "antonio": 110, "gonzalez": 110, "garcia": 110, "revolutionari": 110, "wednesdai": 110, "troop": 110, "raid": 110, "farm": 110, "stole": 110, "rape": 110, "women": 110, "spring": 110, "chg": 110, "hrw": 110, "12pct": 110, "princ": 110, "photo": 110, "moment": 110, "spokeswoman": 110, "rainier": 110, "told": 110, "reuter": 110, "danila": 110, "carib": 110, "w224": 110, "equip": 110, "radiomet": 110, "earn": 110, "19996": 110, "london": 110, "denom": 110, "sale": 110, "uk": 110, "jp": 110, "fr": 110, "maccabi": 110, "hapoel": 110, "haifa": 110, "tel": 110, "aviv": 110, "hospit": 110, "rever": 110, "roman": 110, "cathol": 110, "nun": 110, "admit": 110, "calcutta": 110, "week": 110, "ago": 110, "fever": 110, "vomit": 110, "allianc": 110, "embattl": 110, "kabul": 110, "salang": 110, "highwai": 110, "mondai": 110, "tuesdai": 110, "suprem": 110, "council": 110, "led": 110, "jumbish": 110, "milli": 110, "movement": 110, "warlord": 110, "abdul": 110, "rashid": 110, "dostum": 110, "dollar": 110, "exchang": 110, "3570": 110, "12049": 110, "born": 110, "1937": 110, "provinc": 110, "anhui": 110, "dai": 110, "shanghai": 110, "citi": 110, "prolif": 110, "author": 110, "teacher": 110, "chines": 110, "16764": 110, "1990": 110, "historian": 110, "alan": 110, "john": 110, "percival": 110, "taylor": 110, "di": 110, "20446": 110, "pace": 110, "bowler": 110, "ian": 110, "harvei": 110, "claim": 110, "victoria": 110, "15514": 110, "cotti": 110, "osc": 110, "foreign": 110, "minist": 110, "7525": 110, "sultan": 110, "specter": 110, "crown": 110, "abdullah": 110, "defenc": 110, "aviat": 110, "jeddah": 110, "saudi": 110, "agenc": 110, "2288": 110, "hi": 110, "customari": 110, "outfit": 110, "champion": 110, "damp": 110, "scalp": 110, "canada": 110, "reign": 110, "olymp": 110, "donovan": 110, "bailei": 110, "1992": 110, "linford": 110, "christi": 110, "britain": 110, "1984": 110, "1988": 110, "carl": 110, "lewi": 110, "ambigi": 110, "punctuat": 110, "chicago": 110, "digest": 110, "philadelphia": 110, "usda": 110, "york": 110, "token_issu": 110, "471": 110, "kean": 110, "year": 110, "contract": 110, "manchest": 110, "19072": 110, "societi": 110, "bite": 110, "deliv": 110, "19910": 110, "father": 110, "clarenc": 110, "woolmer": 110, "renam": 110, "uttar": 110, "pradesh": 110, "india": 110, "ranji": 110, "trophi": 110, "nation": 110, "championship": 110, "captain": 110, "1949": 110, "15658": 110, "19879": 110, "iii": 110, "brian": 110, "shimer": 110, "randi": 110, "jone": 110, "19104": 110}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [39, 0, 0, "-", "dataset"], [42, 0, 0, "-", "experimental"], [46, 0, 0, "-", "filter"], [47, 0, 0, "-", "internal"], [61, 0, 0, "-", "models"], [63, 0, 0, "-", "multiannotator"], [66, 0, 0, "-", "multilabel_classification"], [69, 0, 0, "-", "object_detection"], [72, 0, 0, "-", "outlier"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "regression"], [78, 0, 0, "-", "segmentation"], [82, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [18, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal.adapter": [[13, 0, 0, "-", "imagelab"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, 2, 1, "", "CorrelationReporter"], [13, 2, 1, "", "CorrelationVisualizer"], [13, 2, 1, "", "ImagelabDataIssuesAdapter"], [13, 2, 1, "", "ImagelabIssueFinderAdapter"], [13, 2, 1, "", "ImagelabReporterAdapter"], [13, 1, 1, "", "create_imagelab"], [13, 1, 1, "", "handle_spurious_correlations"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter": [[13, 3, 1, "", "report"]], "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer": [[13, 3, 1, "", "visualize"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "filter_based_on_max_prevalence"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter": [[13, 3, 1, "", "get_report"], [13, 3, 1, "", "report"]], "cleanlab.datalab.internal": [[15, 0, 0, "-", "data"], [16, 0, 0, "-", "data_issues"], [19, 0, 0, "-", "issue_finder"], [17, 0, 0, "-", "issue_manager_factory"], [35, 0, 0, "-", "model_outputs"], [36, 0, 0, "-", "report"], [37, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[15, 2, 1, "", "Data"], [15, 5, 1, "", "DataFormatError"], [15, 5, 1, "", "DatasetDictError"], [15, 5, 1, "", "DatasetLoadError"], [15, 2, 1, "", "Label"], [15, 2, 1, "", "MultiClass"], [15, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[15, 3, 1, "", "add_note"], [15, 6, 1, "", "args"], [15, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[15, 4, 1, "", "class_names"], [15, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[16, 2, 1, "", "DataIssues"], [16, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[16, 3, 1, "", "collect_issues_from_imagelab"], [16, 3, 1, "", "collect_issues_from_issue_manager"], [16, 3, 1, "", "collect_statistics"], [16, 3, 1, "", "get_info"], [16, 3, 1, "", "get_issue_summary"], [16, 3, 1, "", "get_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_summary"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "set_health_score"], [16, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[19, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[21, 0, 0, "-", "data_valuation"], [22, 0, 0, "-", "duplicate"], [23, 0, 0, "-", "imbalance"], [25, 0, 0, "-", "issue_manager"], [26, 0, 0, "-", "label"], [29, 0, 0, "-", "noniid"], [30, 0, 0, "-", "null"], [31, 0, 0, "-", "outlier"], [34, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[21, 6, 1, "", "DEFAULT_THRESHOLD"], [21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "near_duplicate_sets"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[26, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_health_summary"], [26, 6, 1, "", "health_summary_parameters"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, 2, 1, "", "NonIIDIssueManager"], [29, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[30, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[31, 6, 1, "", "DEFAULT_THRESHOLDS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 6, 1, "", "metric"], [31, 6, 1, "", "ood"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[33, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, 2, 1, "", "RegressionLabelIssueManager"], [33, 1, 1, "", "find_issues_with_features"], [33, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[33, 3, 1, "", "collect_info"], [33, 6, 1, "", "description"], [33, 3, 1, "", "find_issues"], [33, 6, 1, "", "info"], [33, 6, 1, "", "issue_name"], [33, 6, 1, "", "issue_score_key"], [33, 6, 1, "", "issues"], [33, 3, 1, "", "make_summary"], [33, 3, 1, "", "report"], [33, 6, 1, "", "summary"], [33, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[34, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [34, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [34, 3, 1, "", "collect_info"], [34, 6, 1, "", "description"], [34, 3, 1, "", "filter_cluster_ids"], [34, 3, 1, "", "find_issues"], [34, 3, 1, "", "get_underperforming_clusters"], [34, 6, 1, "", "info"], [34, 6, 1, "", "issue_name"], [34, 6, 1, "", "issue_score_key"], [34, 6, 1, "", "issues"], [34, 3, 1, "", "make_summary"], [34, 3, 1, "", "perform_clustering"], [34, 3, 1, "", "report"], [34, 6, 1, "", "summary"], [34, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, 7, 1, "", "REGISTRY"], [17, 1, 1, "", "list_default_issue_types"], [17, 1, 1, "", "list_possible_issue_types"], [17, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[35, 2, 1, "", "ModelOutput"], [35, 2, 1, "", "MultiClassPredProbs"], [35, 2, 1, "", "MultiLabelPredProbs"], [35, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[35, 6, 1, "", "argument"], [35, 3, 1, "", "collect"], [35, 6, 1, "", "data"], [35, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[36, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[36, 3, 1, "", "get_report"], [36, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[37, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[37, 6, 1, "", "CLASSIFICATION"], [37, 6, 1, "", "MULTILABEL"], [37, 6, 1, "", "REGRESSION"], [37, 3, 1, "", "__contains__"], [37, 3, 1, "", "__getitem__"], [37, 3, 1, "", "__iter__"], [37, 3, 1, "", "__len__"], [37, 3, 1, "", "from_str"], [37, 4, 1, "", "is_classification"], [37, 4, 1, "", "is_multilabel"], [37, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[39, 1, 1, "", "find_overlapping_classes"], [39, 1, 1, "", "health_summary"], [39, 1, 1, "", "overall_label_health_score"], [39, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[40, 0, 0, "-", "cifar_cnn"], [41, 0, 0, "-", "coteaching"], [43, 0, 0, "-", "label_issues_batched"], [44, 0, 0, "-", "mnist_pytorch"], [45, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[40, 2, 1, "", "CNN"], [40, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[40, 6, 1, "", "T_destination"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "add_module"], [40, 3, 1, "", "apply"], [40, 3, 1, "", "bfloat16"], [40, 3, 1, "", "buffers"], [40, 6, 1, "", "call_super_init"], [40, 3, 1, "", "children"], [40, 3, 1, "", "compile"], [40, 3, 1, "", "cpu"], [40, 3, 1, "", "cuda"], [40, 3, 1, "", "double"], [40, 6, 1, "", "dump_patches"], [40, 3, 1, "", "eval"], [40, 3, 1, "", "extra_repr"], [40, 3, 1, "", "float"], [40, 3, 1, "id0", "forward"], [40, 3, 1, "", "get_buffer"], [40, 3, 1, "", "get_extra_state"], [40, 3, 1, "", "get_parameter"], [40, 3, 1, "", "get_submodule"], [40, 3, 1, "", "half"], [40, 3, 1, "", "ipu"], [40, 3, 1, "", "load_state_dict"], [40, 3, 1, "", "modules"], [40, 3, 1, "", "named_buffers"], [40, 3, 1, "", "named_children"], [40, 3, 1, "", "named_modules"], [40, 3, 1, "", "named_parameters"], [40, 3, 1, "", "parameters"], [40, 3, 1, "", "register_backward_hook"], [40, 3, 1, "", "register_buffer"], [40, 3, 1, "", "register_forward_hook"], [40, 3, 1, "", "register_forward_pre_hook"], [40, 3, 1, "", "register_full_backward_hook"], [40, 3, 1, "", "register_full_backward_pre_hook"], [40, 3, 1, "", "register_load_state_dict_post_hook"], [40, 3, 1, "", "register_module"], [40, 3, 1, "", "register_parameter"], [40, 3, 1, "", "register_state_dict_pre_hook"], [40, 3, 1, "", "requires_grad_"], [40, 3, 1, "", "set_extra_state"], [40, 3, 1, "", "share_memory"], [40, 3, 1, "", "state_dict"], [40, 3, 1, "", "to"], [40, 3, 1, "", "to_empty"], [40, 3, 1, "", "train"], [40, 6, 1, "", "training"], [40, 3, 1, "", "type"], [40, 3, 1, "", "xpu"], [40, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[41, 1, 1, "", "adjust_learning_rate"], [41, 1, 1, "", "evaluate"], [41, 1, 1, "", "forget_rate_scheduler"], [41, 1, 1, "", "initialize_lr_scheduler"], [41, 1, 1, "", "loss_coteaching"], [41, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[43, 2, 1, "", "LabelInspector"], [43, 7, 1, "", "adj_confident_thresholds_shared"], [43, 1, 1, "", "find_label_issues_batched"], [43, 7, 1, "", "labels_shared"], [43, 7, 1, "", "pred_probs_shared"], [43, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[43, 3, 1, "", "get_confident_thresholds"], [43, 3, 1, "", "get_label_issues"], [43, 3, 1, "", "get_num_issues"], [43, 3, 1, "", "get_quality_scores"], [43, 3, 1, "", "score_label_quality"], [43, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[44, 2, 1, "", "CNN"], [44, 2, 1, "", "SimpleNet"], [44, 1, 1, "", "get_mnist_dataset"], [44, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[44, 3, 1, "", "__init_subclass__"], [44, 6, 1, "", "batch_size"], [44, 6, 1, "", "dataset"], [44, 6, 1, "", "epochs"], [44, 3, 1, "id0", "fit"], [44, 3, 1, "", "get_metadata_routing"], [44, 3, 1, "", "get_params"], [44, 6, 1, "", "loader"], [44, 6, 1, "", "log_interval"], [44, 6, 1, "", "lr"], [44, 6, 1, "", "momentum"], [44, 6, 1, "", "no_cuda"], [44, 3, 1, "id1", "predict"], [44, 3, 1, "id4", "predict_proba"], [44, 6, 1, "", "seed"], [44, 3, 1, "", "set_fit_request"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "set_predict_proba_request"], [44, 3, 1, "", "set_predict_request"], [44, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[44, 6, 1, "", "T_destination"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "add_module"], [44, 3, 1, "", "apply"], [44, 3, 1, "", "bfloat16"], [44, 3, 1, "", "buffers"], [44, 6, 1, "", "call_super_init"], [44, 3, 1, "", "children"], [44, 3, 1, "", "compile"], [44, 3, 1, "", "cpu"], [44, 3, 1, "", "cuda"], [44, 3, 1, "", "double"], [44, 6, 1, "", "dump_patches"], [44, 3, 1, "", "eval"], [44, 3, 1, "", "extra_repr"], [44, 3, 1, "", "float"], [44, 3, 1, "", "forward"], [44, 3, 1, "", "get_buffer"], [44, 3, 1, "", "get_extra_state"], [44, 3, 1, "", "get_parameter"], [44, 3, 1, "", "get_submodule"], [44, 3, 1, "", "half"], [44, 3, 1, "", "ipu"], [44, 3, 1, "", "load_state_dict"], [44, 3, 1, "", "modules"], [44, 3, 1, "", "named_buffers"], [44, 3, 1, "", "named_children"], [44, 3, 1, "", "named_modules"], [44, 3, 1, "", "named_parameters"], [44, 3, 1, "", "parameters"], [44, 3, 1, "", "register_backward_hook"], [44, 3, 1, "", "register_buffer"], [44, 3, 1, "", "register_forward_hook"], [44, 3, 1, "", "register_forward_pre_hook"], [44, 3, 1, "", "register_full_backward_hook"], [44, 3, 1, "", "register_full_backward_pre_hook"], [44, 3, 1, "", "register_load_state_dict_post_hook"], [44, 3, 1, "", "register_module"], [44, 3, 1, "", "register_parameter"], [44, 3, 1, "", "register_state_dict_pre_hook"], [44, 3, 1, "", "requires_grad_"], [44, 3, 1, "", "set_extra_state"], [44, 3, 1, "", "share_memory"], [44, 3, 1, "", "state_dict"], [44, 3, 1, "", "to"], [44, 3, 1, "", "to_empty"], [44, 3, 1, "", "train"], [44, 6, 1, "", "training"], [44, 3, 1, "", "type"], [44, 3, 1, "", "xpu"], [44, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[45, 1, 1, "", "display_issues"], [45, 1, 1, "", "find_label_issues"], [45, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[46, 1, 1, "", "find_label_issues"], [46, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [46, 1, 1, "", "find_predicted_neq_given"], [46, 7, 1, "", "pred_probs_by_class"], [46, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[48, 0, 0, "-", "label_quality_utils"], [49, 0, 0, "-", "latent_algebra"], [50, 0, 0, "-", "multiannotator_utils"], [51, 0, 0, "-", "multilabel_scorer"], [52, 0, 0, "-", "multilabel_utils"], [53, 0, 0, "-", "neighbor"], [57, 0, 0, "-", "outlier"], [58, 0, 0, "-", "token_classification_utils"], [59, 0, 0, "-", "util"], [60, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[48, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, 1, 1, "", "compute_inv_noise_matrix"], [49, 1, 1, "", "compute_noise_matrix_from_inverse"], [49, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [49, 1, 1, "", "compute_py"], [49, 1, 1, "", "compute_py_inv_noise_matrix"], [49, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[50, 1, 1, "", "assert_valid_inputs_multiannotator"], [50, 1, 1, "", "assert_valid_pred_probs"], [50, 1, 1, "", "check_consensus_label_classes"], [50, 1, 1, "", "compute_soft_cross_entropy"], [50, 1, 1, "", "find_best_temp_scaler"], [50, 1, 1, "", "format_multiannotator_labels"], [50, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[51, 2, 1, "", "Aggregator"], [51, 2, 1, "", "ClassLabelScorer"], [51, 2, 1, "", "MultilabelScorer"], [51, 1, 1, "", "exponential_moving_average"], [51, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [51, 1, 1, "", "get_label_quality_scores"], [51, 1, 1, "", "multilabel_py"], [51, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[51, 3, 1, "", "__call__"], [51, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[51, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [51, 6, 1, "", "NORMALIZED_MARGIN"], [51, 6, 1, "", "SELF_CONFIDENCE"], [51, 3, 1, "", "__call__"], [51, 3, 1, "", "__contains__"], [51, 3, 1, "", "__getitem__"], [51, 3, 1, "", "__iter__"], [51, 3, 1, "", "__len__"], [51, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[51, 3, 1, "", "__call__"], [51, 3, 1, "", "aggregate"], [51, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[52, 1, 1, "", "get_onehot_num_classes"], [52, 1, 1, "", "int2onehot"], [52, 1, 1, "", "onehot2int"], [52, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[54, 0, 0, "-", "knn_graph"], [55, 0, 0, "-", "metric"], [56, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[54, 7, 1, "", "DEFAULT_K"], [54, 1, 1, "", "construct_knn_graph_from_index"], [54, 1, 1, "", "correct_knn_distances_and_indices"], [54, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [54, 1, 1, "", "correct_knn_graph"], [54, 1, 1, "", "create_knn_graph_and_index"], [54, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[55, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [55, 7, 1, "", "ROW_COUNT_CUTOFF"], [55, 1, 1, "", "decide_default_metric"], [55, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[57, 1, 1, "", "correct_precision_errors"], [57, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, 1, 1, "", "color_sentence"], [58, 1, 1, "", "filter_sentence"], [58, 1, 1, "", "get_sentence"], [58, 1, 1, "", "mapping"], [58, 1, 1, "", "merge_probs"], [58, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[59, 1, 1, "", "append_extra_datapoint"], [59, 1, 1, "", "clip_noise_rates"], [59, 1, 1, "", "clip_values"], [59, 1, 1, "", "compress_int_array"], [59, 1, 1, "", "confusion_matrix"], [59, 1, 1, "", "csr_vstack"], [59, 1, 1, "", "estimate_pu_f1"], [59, 1, 1, "", "extract_indices_tf"], [59, 1, 1, "", "force_two_dimensions"], [59, 1, 1, "", "format_labels"], [59, 1, 1, "", "get_missing_classes"], [59, 1, 1, "", "get_num_classes"], [59, 1, 1, "", "get_unique_classes"], [59, 1, 1, "", "is_tensorflow_dataset"], [59, 1, 1, "", "is_torch_dataset"], [59, 1, 1, "", "num_unique_classes"], [59, 1, 1, "", "print_inverse_noise_matrix"], [59, 1, 1, "", "print_joint_matrix"], [59, 1, 1, "", "print_noise_matrix"], [59, 1, 1, "", "print_square_matrix"], [59, 1, 1, "", "remove_noise_from_class"], [59, 1, 1, "", "round_preserving_row_totals"], [59, 1, 1, "", "round_preserving_sum"], [59, 1, 1, "", "smart_display_dataframe"], [59, 1, 1, "", "subset_X_y"], [59, 1, 1, "", "subset_data"], [59, 1, 1, "", "subset_labels"], [59, 1, 1, "", "train_val_split"], [59, 1, 1, "", "unshuffle_tensorflow_dataset"], [59, 1, 1, "", "value_counts"], [59, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[60, 1, 1, "", "assert_indexing_works"], [60, 1, 1, "", "assert_nonempty_input"], [60, 1, 1, "", "assert_valid_class_labels"], [60, 1, 1, "", "assert_valid_inputs"], [60, 1, 1, "", "labels_to_array"], [60, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[62, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[62, 2, 1, "", "KerasWrapperModel"], [62, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "get_params"], [62, 3, 1, "", "predict"], [62, 3, 1, "", "predict_proba"], [62, 3, 1, "", "set_params"], [62, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[63, 1, 1, "", "convert_long_to_wide_dataset"], [63, 1, 1, "", "get_active_learning_scores"], [63, 1, 1, "", "get_active_learning_scores_ensemble"], [63, 1, 1, "", "get_label_quality_multiannotator"], [63, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [63, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[64, 0, 0, "-", "dataset"], [65, 0, 0, "-", "filter"], [67, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[64, 1, 1, "", "common_multilabel_issues"], [64, 1, 1, "", "multilabel_health_summary"], [64, 1, 1, "", "overall_multilabel_health_score"], [64, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, 1, 1, "", "find_label_issues"], [65, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[68, 0, 0, "-", "filter"], [70, 0, 0, "-", "rank"], [71, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[68, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[70, 1, 1, "", "compute_badloc_box_scores"], [70, 1, 1, "", "compute_overlooked_box_scores"], [70, 1, 1, "", "compute_swap_box_scores"], [70, 1, 1, "", "get_label_quality_scores"], [70, 1, 1, "", "issues_from_scores"], [70, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[71, 1, 1, "", "bounding_box_size_distribution"], [71, 1, 1, "", "calculate_per_class_metrics"], [71, 1, 1, "", "class_label_distribution"], [71, 1, 1, "", "get_average_per_class_confusion_matrix"], [71, 1, 1, "", "get_sorted_bbox_count_idxs"], [71, 1, 1, "", "object_counts_per_image"], [71, 1, 1, "", "plot_class_distribution"], [71, 1, 1, "", "plot_class_size_distributions"], [71, 1, 1, "", "visualize"]], "cleanlab.outlier": [[72, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[72, 3, 1, "", "fit"], [72, 3, 1, "", "fit_score"], [72, 3, 1, "", "score"]], "cleanlab.rank": [[73, 1, 1, "", "find_top_issues"], [73, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [73, 1, 1, "", "get_label_quality_ensemble_scores"], [73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "get_normalized_margin_for_each_label"], [73, 1, 1, "", "get_self_confidence_for_each_label"], [73, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[75, 0, 0, "-", "learn"], [76, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[75, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[75, 3, 1, "", "__init_subclass__"], [75, 3, 1, "", "find_label_issues"], [75, 3, 1, "", "fit"], [75, 3, 1, "", "get_aleatoric_uncertainty"], [75, 3, 1, "", "get_epistemic_uncertainty"], [75, 3, 1, "", "get_label_issues"], [75, 3, 1, "", "get_metadata_routing"], [75, 3, 1, "", "get_params"], [75, 3, 1, "", "predict"], [75, 3, 1, "", "save_space"], [75, 3, 1, "", "score"], [75, 3, 1, "", "set_fit_request"], [75, 3, 1, "", "set_params"], [75, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[76, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[77, 0, 0, "-", "filter"], [79, 0, 0, "-", "rank"], [80, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[77, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[79, 1, 1, "", "get_label_quality_scores"], [79, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[80, 1, 1, "", "common_label_issues"], [80, 1, 1, "", "display_issues"], [80, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[81, 0, 0, "-", "filter"], [83, 0, 0, "-", "rank"], [84, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[81, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[83, 1, 1, "", "get_label_quality_scores"], [83, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[84, 1, 1, "", "common_label_issues"], [84, 1, 1, "", "display_issues"], [84, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 88, 89, 93, 95, 96, 99, 101, 104, 110], "count": [3, 101], "data_valu": [4, 21], "datalab": [5, 7, 9, 10, 12, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 104], "creat": [7, 91, 92, 101, 103], "your": [7, 85, 91, 92, 96, 97, 99, 101], "own": 7, "issu": [7, 9, 10, 24, 33, 85, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 104, 105, 109, 110], "manag": [7, 24], "prerequisit": 7, "implement": 7, "issuemanag": [7, 91], "basic": 7, "check": [7, 85, 97, 100], "intermedi": 7, "advanc": [7, 91], "us": [7, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 103, 104, 105, 106, 108, 109, 110], "gener": [8, 97], "cluster": [8, 97, 99], "id": 8, "guid": [9, 12], "type": [9, 10, 101], "custom": [9, 91], "cleanlab": [9, 10, 85, 88, 89, 90, 93, 95, 96, 99, 101, 103, 104, 105, 106, 108, 109, 110], "studio": [9, 10], "easi": [9, 10, 85, 93], "mode": [9, 10, 85, 93], "can": [10, 92, 98, 99, 101, 103], "detect": [10, 90, 92, 93, 95, 96, 97, 99, 101, 105, 106], "estim": [10, 101, 103, 104], "each": 10, "input": 10, "label": [10, 26, 28, 33, 85, 88, 89, 90, 92, 93, 95, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 31, 57, 72, 93, 95, 96, 104, 106], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 92, 93, 95, 96], "duplic": [10, 22, 92, 93, 95, 96, 99, 104], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 96, 97], "iid": [10, 96, 97], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 86, 97, 101, 109], "imbal": [10, 23, 97], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 93, 97, 106], "specif": [10, 24, 109], "spuriou": [10, 97], "correl": [10, 97], "between": 10, "properti": 10, "score": [10, 97, 101, 103, 104, 105, 109, 110], "underperform": [10, 97, 99], "group": [10, 97, 99], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 30, 97], "is_null_issu": 10, "null_scor": 10, "data": [10, 15, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110], "valuat": [10, 97], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 97], "paramet": [10, 101], "get": [12, 91, 92, 103, 104, 105, 109, 110], "start": [12, 98], "api": 12, "refer": 12, "imagelab": 13, "adapt": 14, "data_issu": 16, "factori": 17, "intern": [18, 47], "issue_find": 19, "issue_manag": [24, 25], "regist": 24, "ml": [24, 99, 100, 101], "task": [24, 37], "multilabel": 27, "noniid": 29, "regress": [32, 74, 75, 76, 99, 108], "prioriti": 33, "order": 33, "find": [33, 88, 89, 90, 92, 93, 95, 96, 97, 99, 101, 103, 104, 105, 106, 108, 109, 110], "underperforming_group": 34, "model_output": 35, "report": [36, 93], "dataset": [39, 64, 85, 89, 90, 92, 93, 96, 97, 98, 99, 101, 104, 105, 106, 108, 109, 110], "cifar_cnn": 40, "coteach": 41, "experiment": 42, "label_issues_batch": 43, "mnist_pytorch": 44, "span_classif": 45, "filter": [46, 65, 68, 77, 81, 101], "label_quality_util": 48, "latent_algebra": 49, "multiannotator_util": 50, "multilabel_scor": 51, "multilabel_util": 52, "neighbor": 53, "knn_graph": 54, "metric": 55, "search": [56, 91], "token_classification_util": 58, "util": 59, "valid": [60, 93, 107], "model": [61, 85, 88, 89, 90, 93, 95, 96, 99, 100, 101, 103, 104, 105, 106, 108], "kera": 62, "multiannot": [63, 103], "multilabel_classif": 66, "rank": [67, 70, 73, 76, 79, 83, 101], "object_detect": 69, "summari": [71, 80, 84], "learn": [75, 92, 99, 101], "segment": [78, 109], "token_classif": [82, 110], "open": [85, 99], "sourc": [85, 99], "document": 85, "quickstart": 85, "1": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "instal": [85, 88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "2": [85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "all": [85, 92, 101], "sort": [85, 97], "3": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 104, 105, 106, 108, 109, 110], "handl": [85, 99], "error": [85, 89, 93, 99, 101, 103, 104, 105, 108, 109, 110], "train": [85, 88, 89, 90, 97, 99, 100, 106, 108], "robust": [85, 88, 89, 101, 108], "noisi": [85, 88, 89, 100, 101, 108], "4": [85, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 101, 103, 105, 106, 108], "curat": [85, 100], "fix": [85, 99], "level": [85, 98, 101, 110], "5": [85, 88, 90, 92, 93, 95, 97, 100, 101, 103, 108], "improv": [85, 100, 103], "via": [85, 100, 101, 103], "mani": [85, 101], "other": [85, 103, 105, 108], "techniqu": [85, 100], "contribut": 85, "how": [86, 99, 101, 103, 104, 110], "migrat": 86, "version": 86, "0": 86, "from": [86, 88, 89, 91, 92, 100, 101, 108], "pre": [86, 90, 97, 99, 106], "function": [86, 91], "name": 86, "chang": 86, "modul": [86, 101], "new": 86, "remov": 86, "common": [86, 110], "argument": [86, 91], "variabl": 86, "cleanlearn": [87, 99, 101], "tutori": [87, 94, 98, 100, 102], "structur": 88, "tabular": [88, 95], "requir": [88, 89, 91, 92, 93, 95, 96, 103, 104, 105, 106, 108, 109, 110], "depend": [88, 89, 90, 91, 92, 93, 95, 96, 98, 100, 101, 103, 104, 105, 106, 108, 109, 110], "load": [88, 89, 90, 91, 92, 95, 96, 97, 108], "process": [88, 95, 106, 108], "select": [88, 95], "comput": [88, 90, 93, 95, 96, 97, 99, 100, 103, 107], "out": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "sampl": [88, 90, 91, 92, 93, 95, 96, 100, 103, 107], "predict": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 104, 105, 107], "probabl": [88, 90, 91, 92, 93, 95, 96, 97, 100, 103, 107], "more": [88, 89, 92, 101, 108], "spend": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "too": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "much": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "time": [88, 89, 92, 95, 96, 98, 101, 104, 106, 107, 108], "qualiti": [88, 89, 92, 95, 96, 98, 101, 103, 104, 105, 106, 107, 108, 109, 110], "text": [89, 96, 97, 110], "format": [89, 96, 99, 104, 105], "defin": [89, 93, 96, 97, 108], "potenti": [89, 103, 108], "an": [90, 93, 99], "audio": 90, "import": [90, 91, 92, 93, 98, 101, 103], "them": [90, 98, 100, 101], "speechbrain": 90, "featur": [90, 93, 106], "fit": 90, "linear": 90, "workflow": [91, 97, 101], "audit": [91, 92], "classifi": [91, 92, 97], "instanti": 91, "object": [91, 105], "increment": 91, "specifi": [91, 99], "nondefault": 91, "save": 91, "ad": 91, "A": 92, "unifi": 92, "kind": [92, 105], "skip": [92, 98, 101, 103], "detail": [92, 98, 101, 103], "about": 92, "addit": 92, "inform": [92, 93], "fetch": [93, 98], "normal": 93, "fashion": 93, "mnist": 93, "prepar": [93, 97], "k": [93, 95, 107], "fold": [93, 107], "cross": [93, 107], "embed": [93, 106], "7": [93, 100, 101], "view": 93, "most": [93, 110], "like": 93, "exampl": [93, 99, 101, 106], "sever": 93, "set": [93, 101], "dark": 93, "top": [93, 109], "low": 93, "numer": 95, "categor": [95, 97], "column": 95, "construct": 95, "nearest": 95, "neighbour": 95, "graph": [95, 97], "drift": [96, 104], "miscellan": 97, "acceler": 97, "knn": 97, "obtain": 97, "identifi": [97, 99, 100, 105], "explan": 97, "vector": 97, "perform": [97, 100], "visual": [97, 101, 105, 106, 109], "synthet": 97, "result": 97, "predefin": 97, "slice": [97, 99], "i": [97, 99, 101, 107], "catch": 97, "valu": 97, "encod": 97, "initi": [97, 103], "6": [97, 100, 101], "run": [97, 99], "analysi": [97, 105], "interpret": 97, "understand": 98, "evalu": [98, 100], "health": [98, 101], "8": [98, 100, 101], "popular": 98, "faq": 99, "what": [99, 101, 107], "do": [99, 101], "infer": 99, "correct": [99, 100], "ha": 99, "flag": 99, "should": 99, "v": [99, 100], "test": [99, 100, 101, 106], "big": 99, "limit": 99, "memori": 99, "why": [99, 100], "isn": 99, "t": 99, "work": [99, 101, 103, 110], "me": 99, "differ": [99, 105], "clean": [99, 100, 101], "final": 99, "hyperparamet": [99, 100], "tune": 99, "onli": 99, "one": [99, 101, 104, 109], "doe": [99, 103, 110], "take": 99, "so": 99, "long": 99, "when": [99, 101], "licens": 99, "under": 99, "answer": 99, "question": 99, "split": 100, "did": 100, "you": [100, 101], "make": 100, "thi": [100, 101], "preprocess": 100, "fundament": 100, "problem": 100, "setup": 100, "origin": 100, "baselin": 100, "manual": 100, "address": 100, "algorithm": 100, "better": [100, 103], "strategi": 100, "optim": 100, "9": 100, "conclus": 100, "The": 101, "centric": 101, "ai": 101, "machin": 101, "find_label_issu": 101, "line": 101, "code": 101, "twenti": 101, "lowest": 101, "see": 101, "now": 101, "let": 101, "": 101, "happen": 101, "we": 101, "merg": 101, "seafoam": 101, "green": 101, "yellow": 101, "re": 101, "One": 101, "rule": 101, "overal": [101, 109], "accur": 101, "directli": 101, "fulli": 101, "character": 101, "nois": 101, "matrix": [101, 104], "joint": 101, "prior": 101, "true": 101, "distribut": 101, "flip": 101, "rate": 101, "ani": 101, "again": 101, "support": 101, "lot": 101, "method": 101, "filter_bi": 101, "automat": 101, "everi": 101, "uniqu": 101, "num_label_issu": 101, "threshold": 101, "found": 101, "Not": 101, "sure": 101, "ensembl": 101, "multipl": [101, 103], "predictor": 101, "consensu": 103, "annot": 103, "major": 103, "vote": 103, "statist": 103, "compar": 103, "inspect": 103, "retrain": 103, "further": 103, "multi": 104, "beyond": 104, "mislabel": [104, 109, 110], "given": 104, "hot": 104, "binari": 104, "without": 104, "applic": 104, "real": 104, "download": [105, 109, 110], "objectlab": 105, "exploratori": 105, "pytorch": 106, "timm": 106, "cifar10": 106, "some": 106, "pred_prob": [106, 109, 110], "wai": 108, "semant": 109, "which": 109, "ar": 109, "commonli": 109, "focus": 109, "token": 110, "word": 110, "sentenc": 110, "contain": 110, "particular": 110}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [21, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Spurious Correlations Issue Parameters": [[10, "spurious-correlations-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "adapter": [[14, "adapter"]], "data": [[15, "module-cleanlab.datalab.internal.data"]], "data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[18, "internal"], [47, "internal"]], "issue_finder": [[19, "issue-finder"]], "duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[24, "issue-manager"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[24, "registered-issue-managers"]], "ML task-specific issue managers": [[24, "ml-task-specific-issue-managers"]], "label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[27, "multilabel"]], "noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[30, "null"]], "outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [57, "module-cleanlab.internal.outlier"], [72, "module-cleanlab.outlier"]], "regression": [[32, "regression"], [74, "regression"]], "Priority Order for finding issues:": [[33, null]], "underperforming_group": [[34, "underperforming-group"]], "model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[36, "report"]], "task": [[37, "task"]], "dataset": [[39, "module-cleanlab.dataset"], [64, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "experimental": [[42, "experimental"]], "label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "filter": [[46, "module-cleanlab.filter"], [65, "module-cleanlab.multilabel_classification.filter"], [68, "filter"], [77, "filter"], [81, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[53, "neighbor"]], "knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "search": [[56, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "util": [[59, "module-cleanlab.internal.util"]], "validation": [[60, "module-cleanlab.internal.validation"]], "models": [[61, "models"]], "keras": [[62, "module-cleanlab.models.keras"]], "multiannotator": [[63, "module-cleanlab.multiannotator"]], "multilabel_classification": [[66, "multilabel-classification"]], "rank": [[67, "module-cleanlab.multilabel_classification.rank"], [70, "module-cleanlab.object_detection.rank"], [73, "module-cleanlab.rank"], [79, "module-cleanlab.segmentation.rank"], [83, "module-cleanlab.token_classification.rank"]], "object_detection": [[69, "object-detection"]], "summary": [[71, "summary"], [80, "module-cleanlab.segmentation.summary"], [84, "module-cleanlab.token_classification.summary"]], "regression.learn": [[75, "module-cleanlab.regression.learn"]], "regression.rank": [[76, "module-cleanlab.regression.rank"]], "segmentation": [[78, "segmentation"]], "token_classification": [[82, "token-classification"]], "cleanlab open-source documentation": [[85, "cleanlab-open-source-documentation"]], "Quickstart": [[85, "quickstart"]], "1. Install cleanlab": [[85, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[85, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[85, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[85, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[85, "improve-your-data-via-many-other-techniques"]], "Contributing": [[85, "contributing"]], "Easy Mode": [[85, "easy-mode"], [93, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[86, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[86, "function-and-class-name-changes"]], "Module name changes": [[86, "module-name-changes"]], "New modules": [[86, "new-modules"]], "Removed modules": [[86, "removed-modules"]], "Common argument and variable name changes": [[86, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[87, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[88, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[88, "1.-Install-required-dependencies"], [89, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"], [108, "1.-Install-required-dependencies"]], "2. Load and process the data": [[88, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"], [108, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[88, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[88, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[88, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[88, "Spending-too-much-time-on-data-quality?"], [89, "Spending-too-much-time-on-data-quality?"], [92, "Spending-too-much-time-on-data-quality?"], [95, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [98, "Spending-too-much-time-on-data-quality?"], [101, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [106, "Spending-too-much-time-on-data-quality?"], [107, "spending-too-much-time-on-data-quality"], [108, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[89, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[89, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[89, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[89, "4.-Train-a-more-robust-model-from-noisy-labels"], [108, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[90, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[90, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[90, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[90, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[90, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[90, "5.-Use-cleanlab-to-find-label-issues"], [95, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[91, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[91, "Install-and-import-required-dependencies"]], "Create and load the data": [[91, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[91, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[91, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[91, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[91, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[91, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[91, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[92, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[92, "1.-Install-and-import-required-dependencies"], [93, "1.-Install-and-import-required-dependencies"], [103, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[92, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[92, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[92, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[92, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[92, "Get-additional-information"]], "Near duplicate issues": [[92, "Near-duplicate-issues"], [93, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[93, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[93, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[93, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[93, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[93, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[93, "7.-Use-cleanlab-to-find-issues"]], "View report": [[93, "View-report"]], "Label issues": [[93, "Label-issues"], [95, "Label-issues"], [96, "Label-issues"]], "View most likely examples with label errors": [[93, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[93, "Outlier-issues"], [95, "Outlier-issues"], [96, "Outlier-issues"]], "View most severe outliers": [[93, "View-most-severe-outliers"]], "View sets of near duplicate images": [[93, "View-sets-of-near-duplicate-images"]], "Dark images": [[93, "Dark-images"]], "View top examples of dark images": [[93, "View-top-examples-of-dark-images"]], "Low information images": [[93, "Low-information-images"]], "Datalab Tutorials": [[94, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[95, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[95, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[95, "Near-duplicate-issues"], [96, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[96, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[96, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[96, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[96, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[97, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[97, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[97, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[97, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[97, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[97, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[97, "Explanation:"]], "Data Valuation": [[97, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[97, "1.-Load-and-Prepare-the-Dataset"], [97, "id2"], [97, "id5"]], "2. Vectorize the Text Data": [[97, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[97, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[97, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[97, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[97, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[97, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [97, "id3"]], "3. (Optional) Cluster the Data": [[97, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[97, "4.-Identify-Underperforming-Groups-with-Datalab"], [97, "id4"]], "5. (Optional) Visualize the Results": [[97, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[97, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[97, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[97, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[97, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[97, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[97, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[97, "1.-Load-the-Dataset"], [97, "id8"]], "2: Encode Categorical Values": [[97, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[97, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[97, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[97, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[97, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[97, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[97, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[97, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[97, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[97, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[97, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[97, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[98, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[98, "Install-dependencies-and-import-them"], [101, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[98, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[98, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[99, "FAQ"]], "What data can cleanlab detect issues in?": [[99, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[99, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[99, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[99, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[99, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[99, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[99, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[99, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[99, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[99, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[99, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[99, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[99, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[99, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[100, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[100, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[100, "1.-Install-dependencies"]], "2. Preprocess the data": [[100, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[100, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[100, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[100, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[100, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[100, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[100, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[100, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[100, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[100, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[101, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[101, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[101, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[101, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[101, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[101, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[101, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[101, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[101, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[101, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[101, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[101, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[101, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[101, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[101, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[101, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[101, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[101, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[101, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[101, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[102, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[103, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[103, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[103, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[103, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[103, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[103, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[103, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[103, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[103, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[104, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[104, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[104, "2.-Format-data,-labels,-and-model-predictions"], [105, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[104, "3.-Use-cleanlab-to-find-label-issues"], [105, "3.-Use-cleanlab-to-find-label-issues"], [109, "3.-Use-cleanlab-to-find-label-issues"], [110, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[104, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[104, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[104, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[104, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[104, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[105, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[105, "1.-Install-required-dependencies-and-download-data"], [109, "1.-Install-required-dependencies-and-download-data"], [110, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[105, "Get-label-quality-scores"], [109, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[105, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[105, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[105, "Other-uses-of-visualize"]], "Exploratory data analysis": [[105, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[106, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[106, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[106, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[106, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[106, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[106, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[107, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[107, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[107, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[108, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[108, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[108, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[109, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[109, "2.-Get-data,-labels,-and-pred_probs"], [110, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[109, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[109, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[109, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[110, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[110, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[110, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[110, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[110, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.adapter.imagelab"], [15, "module-cleanlab.datalab.internal.data"], [16, "module-cleanlab.datalab.internal.data_issues"], [17, "module-cleanlab.datalab.internal.issue_manager_factory"], [18, "module-cleanlab.datalab.internal"], [19, "module-cleanlab.datalab.internal.issue_finder"], [21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [22, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [23, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [26, "module-cleanlab.datalab.internal.issue_manager.label"], [28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [29, "module-cleanlab.datalab.internal.issue_manager.noniid"], [30, "module-cleanlab.datalab.internal.issue_manager.null"], [31, "module-cleanlab.datalab.internal.issue_manager.outlier"], [33, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [35, "module-cleanlab.datalab.internal.model_outputs"], [36, "module-cleanlab.datalab.internal.report"], [37, "module-cleanlab.datalab.internal.task"], [39, "module-cleanlab.dataset"], [40, "module-cleanlab.experimental.cifar_cnn"], [41, "module-cleanlab.experimental.coteaching"], [42, "module-cleanlab.experimental"], [43, "module-cleanlab.experimental.label_issues_batched"], [44, "module-cleanlab.experimental.mnist_pytorch"], [45, "module-cleanlab.experimental.span_classification"], [46, "module-cleanlab.filter"], [47, "module-cleanlab.internal"], [48, "module-cleanlab.internal.label_quality_utils"], [49, "module-cleanlab.internal.latent_algebra"], [50, "module-cleanlab.internal.multiannotator_utils"], [51, "module-cleanlab.internal.multilabel_scorer"], [52, "module-cleanlab.internal.multilabel_utils"], [53, "module-cleanlab.internal.neighbor"], [54, "module-cleanlab.internal.neighbor.knn_graph"], [55, "module-cleanlab.internal.neighbor.metric"], [56, "module-cleanlab.internal.neighbor.search"], [57, "module-cleanlab.internal.outlier"], [58, "module-cleanlab.internal.token_classification_utils"], [59, "module-cleanlab.internal.util"], [60, "module-cleanlab.internal.validation"], [61, "module-cleanlab.models"], [62, "module-cleanlab.models.keras"], [63, "module-cleanlab.multiannotator"], [64, "module-cleanlab.multilabel_classification.dataset"], [65, "module-cleanlab.multilabel_classification.filter"], [66, "module-cleanlab.multilabel_classification"], [67, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.filter"], [69, "module-cleanlab.object_detection"], [70, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.object_detection.summary"], [72, "module-cleanlab.outlier"], [73, "module-cleanlab.rank"], [74, "module-cleanlab.regression"], [75, "module-cleanlab.regression.learn"], [76, "module-cleanlab.regression.rank"], [77, "module-cleanlab.segmentation.filter"], [78, "module-cleanlab.segmentation"], [79, "module-cleanlab.segmentation.rank"], [80, "module-cleanlab.segmentation.summary"], [81, "module-cleanlab.token_classification.filter"], [82, "module-cleanlab.token_classification"], [83, "module-cleanlab.token_classification.rank"], [84, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "correlationreporter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter"]], "correlationvisualizer (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer"]], "imagelabdataissuesadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter"]], "imagelabissuefinderadapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter"]], "imagelabreporteradapter (class in cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter"]], "cleanlab.datalab.internal.adapter.imagelab": [[13, "module-cleanlab.datalab.internal.adapter.imagelab"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.collect_statistics"]], "create_imagelab() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.create_imagelab"]], "filter_based_on_max_prevalence() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.filter_based_on_max_prevalence"]], "find_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.adapter.imagelab.imagelabissuefinderadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabIssueFinderAdapter.get_available_issue_types"]], "get_info() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.get_issues"]], "get_report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.get_report"]], "handle_spurious_correlations() (in module cleanlab.datalab.internal.adapter.imagelab)": [[13, "cleanlab.datalab.internal.adapter.imagelab.handle_spurious_correlations"]], "report() (cleanlab.datalab.internal.adapter.imagelab.correlationreporter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationReporter.report"]], "report() (cleanlab.datalab.internal.adapter.imagelab.imagelabreporteradapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabReporterAdapter.report"]], "set_health_score() (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.set_health_score"]], "statistics (cleanlab.datalab.internal.adapter.imagelab.imagelabdataissuesadapter property)": [[13, "cleanlab.datalab.internal.adapter.imagelab.ImagelabDataIssuesAdapter.statistics"]], "visualize() (cleanlab.datalab.internal.adapter.imagelab.correlationvisualizer method)": [[13, "cleanlab.datalab.internal.adapter.imagelab.CorrelationVisualizer.visualize"]], "data (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[15, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[15, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[15, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[15, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[15, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[15, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[15, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[15, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[15, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[15, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[15, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[15, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[15, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[16, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[16, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[16, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[17, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[17, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[18, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[19, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[19, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[21, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[22, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[23, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[25, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[26, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[28, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[29, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[30, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[31, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[33, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[33, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[34, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[34, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[35, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[35, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[35, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[35, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[36, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[36, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[36, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[37, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[37, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[37, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[37, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[37, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[39, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[39, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[40, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[40, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.forward"], [40, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[40, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[40, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[41, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[41, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[42, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[43, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[43, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[43, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[44, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [44, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[44, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [44, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [44, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[44, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[44, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[45, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[45, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[46, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[46, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[46, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[46, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[47, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[48, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[48, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[49, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[49, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[50, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[50, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[51, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[51, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[51, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[51, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[51, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[52, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[52, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[53, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[54, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[54, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[55, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[55, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[56, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[56, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[57, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[57, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[58, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[58, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[59, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[59, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[60, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[60, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[61, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[62, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[62, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[62, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[62, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[63, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[63, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[64, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[64, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[65, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[65, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[66, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[67, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[67, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[68, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[68, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[69, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[70, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[70, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[71, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[71, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[72, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[72, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[72, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[73, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[73, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[73, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[74, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[75, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[75, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[75, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[75, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[76, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[76, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[77, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[77, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[78, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[79, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[79, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[80, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[80, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[81, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[81, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[82, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[83, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[83, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[84, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[84, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb
index 9d1517aad..1310c3072 100644
--- a/master/tutorials/clean_learning/tabular.ipynb
+++ b/master/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:51.069638Z",
-     "iopub.status.busy": "2024-09-06T19:32:51.069457Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.310694Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.310136Z"
+     "iopub.execute_input": "2024-09-26T14:46:49.976999Z",
+     "iopub.status.busy": "2024-09-26T14:46:49.976816Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.290105Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.289537Z"
     },
     "nbsphinx": "hidden"
    },
@@ -126,7 +126,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -151,10 +151,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.313494Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.312922Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.331174Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.330732Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.292353Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.291898Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.324181Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.323699Z"
     }
    },
    "outputs": [],
@@ -195,10 +195,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.333414Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.333012Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.616135Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.615552Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.326351Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.325915Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.516296Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.515685Z"
     }
    },
    "outputs": [
@@ -305,10 +305,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.647632Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.647448Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.650810Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.650339Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.550190Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.549718Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.556194Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.555704Z"
     }
    },
    "outputs": [],
@@ -329,10 +329,10 @@
    "execution_count": 5,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.652810Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.652474Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.660488Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.660065Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.558094Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.557801Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.566504Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.566057Z"
     }
    },
    "outputs": [],
@@ -384,10 +384,10 @@
    "execution_count": 6,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.662789Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.662453Z",
-     "iopub.status.idle": "2024-09-06T19:32:52.664910Z",
-     "shell.execute_reply": "2024-09-06T19:32:52.664468Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.568613Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.568153Z",
+     "iopub.status.idle": "2024-09-26T14:46:51.571064Z",
+     "shell.execute_reply": "2024-09-26T14:46:51.570501Z"
     }
    },
    "outputs": [],
@@ -409,10 +409,10 @@
    "execution_count": 7,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:52.667005Z",
-     "iopub.status.busy": "2024-09-06T19:32:52.666677Z",
-     "iopub.status.idle": "2024-09-06T19:32:53.186834Z",
-     "shell.execute_reply": "2024-09-06T19:32:53.186291Z"
+     "iopub.execute_input": "2024-09-26T14:46:51.573000Z",
+     "iopub.status.busy": "2024-09-26T14:46:51.572679Z",
+     "iopub.status.idle": "2024-09-26T14:46:52.105207Z",
+     "shell.execute_reply": "2024-09-26T14:46:52.104691Z"
     }
    },
    "outputs": [],
@@ -446,10 +446,10 @@
    "execution_count": 8,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:53.189445Z",
-     "iopub.status.busy": "2024-09-06T19:32:53.189066Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.090605Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.089933Z"
+     "iopub.execute_input": "2024-09-26T14:46:52.107319Z",
+     "iopub.status.busy": "2024-09-26T14:46:52.107018Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.109749Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.109008Z"
     }
    },
    "outputs": [
@@ -481,10 +481,10 @@
    "execution_count": 9,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.093443Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.092787Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.103390Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.102831Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.112432Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.111599Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.122786Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.122299Z"
     }
    },
    "outputs": [
@@ -605,10 +605,10 @@
    "execution_count": 10,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.105571Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.105237Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.109432Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.108857Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.124636Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.124305Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.128711Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.128162Z"
     }
    },
    "outputs": [],
@@ -633,10 +633,10 @@
    "execution_count": 11,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.111438Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.111142Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.120139Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.119708Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.130465Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.130125Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.138888Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.138403Z"
     }
    },
    "outputs": [],
@@ -658,10 +658,10 @@
    "execution_count": 12,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.122107Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.121935Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.235206Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.234622Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.140677Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.140309Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.256974Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.256488Z"
     }
    },
    "outputs": [
@@ -691,10 +691,10 @@
    "execution_count": 13,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.237464Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.237015Z",
-     "iopub.status.idle": "2024-09-06T19:32:55.240074Z",
-     "shell.execute_reply": "2024-09-06T19:32:55.239512Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.258978Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.258613Z",
+     "iopub.status.idle": "2024-09-26T14:46:54.261400Z",
+     "shell.execute_reply": "2024-09-26T14:46:54.260928Z"
     }
    },
    "outputs": [],
@@ -715,10 +715,10 @@
    "execution_count": 14,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:55.242072Z",
-     "iopub.status.busy": "2024-09-06T19:32:55.241898Z",
-     "iopub.status.idle": "2024-09-06T19:32:57.303999Z",
-     "shell.execute_reply": "2024-09-06T19:32:57.303194Z"
+     "iopub.execute_input": "2024-09-26T14:46:54.263212Z",
+     "iopub.status.busy": "2024-09-26T14:46:54.262873Z",
+     "iopub.status.idle": "2024-09-26T14:46:56.458045Z",
+     "shell.execute_reply": "2024-09-26T14:46:56.457352Z"
     }
    },
    "outputs": [],
@@ -738,10 +738,10 @@
    "execution_count": 15,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:57.307062Z",
-     "iopub.status.busy": "2024-09-06T19:32:57.306412Z",
-     "iopub.status.idle": "2024-09-06T19:32:57.318236Z",
-     "shell.execute_reply": "2024-09-06T19:32:57.317761Z"
+     "iopub.execute_input": "2024-09-26T14:46:56.460937Z",
+     "iopub.status.busy": "2024-09-26T14:46:56.459991Z",
+     "iopub.status.idle": "2024-09-26T14:46:56.471759Z",
+     "shell.execute_reply": "2024-09-26T14:46:56.471273Z"
     }
    },
    "outputs": [
@@ -786,10 +786,10 @@
    "execution_count": 16,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-09-06T19:32:57.320219Z",
-     "iopub.status.busy": "2024-09-06T19:32:57.320039Z",
-     "iopub.status.idle": "2024-09-06T19:32:57.425487Z",
-     "shell.execute_reply": "2024-09-06T19:32:57.424961Z"
+     "iopub.execute_input": "2024-09-26T14:46:56.473438Z",
+     "iopub.status.busy": "2024-09-26T14:46:56.473240Z",
+     "iopub.status.idle": "2024-09-26T14:46:56.529027Z",
+     "shell.execute_reply": "2024-09-26T14:46:56.528533Z"
     },
     "nbsphinx": "hidden"
    },
@@ -827,7 +827,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.9"
+   "version": "3.11.10"
   }
  },
  "nbformat": 4,
diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html
index 9f22a5e70..e78e1c343 100644
--- a/master/tutorials/clean_learning/text.html
+++ b/master/tutorials/clean_learning/text.html
@@ -821,7 +821,7 @@ 

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'cancel_transfer', 'change_pin', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'card_payment_fee_charged'}
+Classes: {'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire'}
 

Let’s print the first example in the train set.

@@ -884,43 +884,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1223,7 +1223,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 7c3947e74..81bd9574d 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:00.675758Z", - "iopub.status.busy": "2024-09-06T19:33:00.675584Z", - "iopub.status.idle": "2024-09-06T19:33:03.510616Z", - "shell.execute_reply": "2024-09-06T19:33:03.510057Z" + "iopub.execute_input": "2024-09-26T14:47:00.005766Z", + "iopub.status.busy": "2024-09-26T14:47:00.005598Z", + "iopub.status.idle": "2024-09-26T14:47:03.458146Z", + "shell.execute_reply": "2024-09-26T14:47:03.457580Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.513184Z", - "iopub.status.busy": "2024-09-06T19:33:03.512761Z", - "iopub.status.idle": "2024-09-06T19:33:03.516199Z", - "shell.execute_reply": "2024-09-06T19:33:03.515742Z" + "iopub.execute_input": "2024-09-26T14:47:03.460102Z", + "iopub.status.busy": "2024-09-26T14:47:03.459810Z", + "iopub.status.idle": "2024-09-26T14:47:03.463418Z", + "shell.execute_reply": "2024-09-26T14:47:03.462845Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.518261Z", - "iopub.status.busy": "2024-09-06T19:33:03.517871Z", - "iopub.status.idle": "2024-09-06T19:33:03.520905Z", - "shell.execute_reply": "2024-09-06T19:33:03.520432Z" + "iopub.execute_input": "2024-09-26T14:47:03.465142Z", + "iopub.status.busy": "2024-09-26T14:47:03.464800Z", + "iopub.status.idle": "2024-09-26T14:47:03.467949Z", + "shell.execute_reply": "2024-09-26T14:47:03.467483Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.522785Z", - "iopub.status.busy": "2024-09-06T19:33:03.522608Z", - "iopub.status.idle": "2024-09-06T19:33:03.678565Z", - "shell.execute_reply": "2024-09-06T19:33:03.678029Z" + "iopub.execute_input": "2024-09-26T14:47:03.469646Z", + "iopub.status.busy": "2024-09-26T14:47:03.469283Z", + "iopub.status.idle": "2024-09-26T14:47:03.521848Z", + "shell.execute_reply": "2024-09-26T14:47:03.521259Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.680851Z", - "iopub.status.busy": "2024-09-06T19:33:03.680423Z", - "iopub.status.idle": "2024-09-06T19:33:03.684124Z", - "shell.execute_reply": "2024-09-06T19:33:03.683591Z" + "iopub.execute_input": "2024-09-26T14:47:03.523805Z", + "iopub.status.busy": "2024-09-26T14:47:03.523447Z", + "iopub.status.idle": "2024-09-26T14:47:03.527108Z", + "shell.execute_reply": "2024-09-26T14:47:03.526668Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.686150Z", - "iopub.status.busy": "2024-09-06T19:33:03.685759Z", - "iopub.status.idle": "2024-09-06T19:33:03.689186Z", - "shell.execute_reply": "2024-09-06T19:33:03.688640Z" + "iopub.execute_input": "2024-09-26T14:47:03.528762Z", + "iopub.status.busy": "2024-09-26T14:47:03.528492Z", + "iopub.status.idle": "2024-09-26T14:47:03.532073Z", + "shell.execute_reply": "2024-09-26T14:47:03.531625Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'change_pin', 'visa_or_mastercard', 'getting_spare_card', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'card_payment_fee_charged'}\n" + "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_about_to_expire'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.691223Z", - "iopub.status.busy": "2024-09-06T19:33:03.690802Z", - "iopub.status.idle": "2024-09-06T19:33:03.693946Z", - "shell.execute_reply": "2024-09-06T19:33:03.693394Z" + "iopub.execute_input": "2024-09-26T14:47:03.533776Z", + "iopub.status.busy": "2024-09-26T14:47:03.533438Z", + "iopub.status.idle": "2024-09-26T14:47:03.536702Z", + "shell.execute_reply": "2024-09-26T14:47:03.536252Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.695918Z", - "iopub.status.busy": "2024-09-06T19:33:03.695618Z", - "iopub.status.idle": "2024-09-06T19:33:03.698740Z", - "shell.execute_reply": "2024-09-06T19:33:03.698281Z" + "iopub.execute_input": "2024-09-26T14:47:03.538408Z", + "iopub.status.busy": "2024-09-26T14:47:03.538094Z", + "iopub.status.idle": "2024-09-26T14:47:03.541437Z", + "shell.execute_reply": "2024-09-26T14:47:03.540871Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:03.700642Z", - "iopub.status.busy": "2024-09-06T19:33:03.700468Z", - "iopub.status.idle": "2024-09-06T19:33:08.790650Z", - "shell.execute_reply": "2024-09-06T19:33:08.789991Z" + "iopub.execute_input": "2024-09-26T14:47:03.543307Z", + "iopub.status.busy": "2024-09-26T14:47:03.542863Z", + "iopub.status.idle": "2024-09-26T14:47:08.488107Z", + "shell.execute_reply": "2024-09-26T14:47:08.487533Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "501ba738bb5947ccaad0e2cd1f842b14", + "model_id": "7bf569b1ec4240fbb7f1457722fe46c9", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "31304fdb61a94d1eb88890ad65421b88", + "model_id": "dc4eb1dc64da457a9d83b0bad4f4fd96", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5a73d7a796fe45fca51bb3d3b1eb08df", + "model_id": "47dd26560f0f4f14ae1d6235bf187f43", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4b2323ffd9349f1ad2d4d50a0288dc5", + "model_id": "6692a301895241f7894a3bace80aec4a", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "620076f191a74b5c914c7a2b17db4f55", + "model_id": "21332e3c65394cf38141b89a7102833d", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e6b938e7ce354e6ebb9c5105fe3bde01", + "model_id": "37b540a8453d4401b5a798e49297b5a2", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "122704b7d1124989a50bdf83f04c3039", + "model_id": "c550a7da6dee4658a5e958b278220075", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:08.793264Z", - "iopub.status.busy": "2024-09-06T19:33:08.793080Z", - "iopub.status.idle": "2024-09-06T19:33:08.795949Z", - "shell.execute_reply": "2024-09-06T19:33:08.795369Z" + "iopub.execute_input": "2024-09-26T14:47:08.490505Z", + "iopub.status.busy": "2024-09-26T14:47:08.490089Z", + "iopub.status.idle": "2024-09-26T14:47:08.493151Z", + "shell.execute_reply": "2024-09-26T14:47:08.492644Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:08.797847Z", - "iopub.status.busy": "2024-09-06T19:33:08.797676Z", - "iopub.status.idle": "2024-09-06T19:33:08.800380Z", - "shell.execute_reply": "2024-09-06T19:33:08.799925Z" + "iopub.execute_input": "2024-09-26T14:47:08.494934Z", + "iopub.status.busy": "2024-09-26T14:47:08.494590Z", + "iopub.status.idle": "2024-09-26T14:47:08.497376Z", + "shell.execute_reply": "2024-09-26T14:47:08.496905Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:08.802410Z", - "iopub.status.busy": "2024-09-06T19:33:08.802073Z", - "iopub.status.idle": "2024-09-06T19:33:11.565675Z", - "shell.execute_reply": "2024-09-06T19:33:11.564900Z" + "iopub.execute_input": "2024-09-26T14:47:08.499043Z", + "iopub.status.busy": "2024-09-26T14:47:08.498709Z", + "iopub.status.idle": "2024-09-26T14:47:11.411424Z", + "shell.execute_reply": "2024-09-26T14:47:11.410600Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.569102Z", - "iopub.status.busy": "2024-09-06T19:33:11.568193Z", - "iopub.status.idle": "2024-09-06T19:33:11.576067Z", - "shell.execute_reply": "2024-09-06T19:33:11.575576Z" + "iopub.execute_input": "2024-09-26T14:47:11.414407Z", + "iopub.status.busy": "2024-09-26T14:47:11.413552Z", + "iopub.status.idle": "2024-09-26T14:47:11.421686Z", + "shell.execute_reply": "2024-09-26T14:47:11.421111Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.578560Z", - "iopub.status.busy": "2024-09-06T19:33:11.578144Z", - "iopub.status.idle": "2024-09-06T19:33:11.582288Z", - "shell.execute_reply": "2024-09-06T19:33:11.581717Z" + "iopub.execute_input": "2024-09-26T14:47:11.423755Z", + "iopub.status.busy": "2024-09-26T14:47:11.423300Z", + "iopub.status.idle": "2024-09-26T14:47:11.427791Z", + "shell.execute_reply": "2024-09-26T14:47:11.427280Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.584328Z", - "iopub.status.busy": "2024-09-06T19:33:11.583988Z", - "iopub.status.idle": "2024-09-06T19:33:11.587376Z", - "shell.execute_reply": "2024-09-06T19:33:11.586902Z" + "iopub.execute_input": "2024-09-26T14:47:11.429713Z", + "iopub.status.busy": "2024-09-26T14:47:11.429285Z", + "iopub.status.idle": "2024-09-26T14:47:11.432675Z", + "shell.execute_reply": "2024-09-26T14:47:11.432217Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.589547Z", - "iopub.status.busy": "2024-09-06T19:33:11.589216Z", - "iopub.status.idle": "2024-09-06T19:33:11.592104Z", - "shell.execute_reply": "2024-09-06T19:33:11.591660Z" + "iopub.execute_input": "2024-09-26T14:47:11.434490Z", + "iopub.status.busy": "2024-09-26T14:47:11.434156Z", + "iopub.status.idle": "2024-09-26T14:47:11.437228Z", + "shell.execute_reply": "2024-09-26T14:47:11.436765Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.594213Z", - "iopub.status.busy": "2024-09-06T19:33:11.593882Z", - "iopub.status.idle": "2024-09-06T19:33:11.600605Z", - "shell.execute_reply": "2024-09-06T19:33:11.600152Z" + "iopub.execute_input": "2024-09-26T14:47:11.438815Z", + "iopub.status.busy": "2024-09-26T14:47:11.438635Z", + "iopub.status.idle": "2024-09-26T14:47:11.446087Z", + "shell.execute_reply": "2024-09-26T14:47:11.445615Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.602671Z", - "iopub.status.busy": "2024-09-06T19:33:11.602343Z", - "iopub.status.idle": "2024-09-06T19:33:11.828596Z", - "shell.execute_reply": "2024-09-06T19:33:11.828033Z" + "iopub.execute_input": "2024-09-26T14:47:11.447943Z", + "iopub.status.busy": "2024-09-26T14:47:11.447610Z", + "iopub.status.idle": "2024-09-26T14:47:11.721319Z", + "shell.execute_reply": "2024-09-26T14:47:11.720698Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:11.831240Z", - "iopub.status.busy": "2024-09-06T19:33:11.830841Z", - "iopub.status.idle": "2024-09-06T19:33:12.009186Z", - "shell.execute_reply": "2024-09-06T19:33:12.008615Z" + "iopub.execute_input": "2024-09-26T14:47:11.723702Z", + "iopub.status.busy": "2024-09-26T14:47:11.723282Z", + "iopub.status.idle": "2024-09-26T14:47:11.904646Z", + "shell.execute_reply": "2024-09-26T14:47:11.904102Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:12.011827Z", - "iopub.status.busy": "2024-09-06T19:33:12.011435Z", - "iopub.status.idle": "2024-09-06T19:33:12.015256Z", - "shell.execute_reply": "2024-09-06T19:33:12.014755Z" + "iopub.execute_input": "2024-09-26T14:47:11.906952Z", + "iopub.status.busy": "2024-09-26T14:47:11.906556Z", + "iopub.status.idle": "2024-09-26T14:47:11.910954Z", + "shell.execute_reply": "2024-09-26T14:47:11.910437Z" }, "nbsphinx": "hidden" }, @@ -1115,12 +1115,30 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0459048c4f99420aa195e714b5d9a0fd": { + "03473efde97f4db7aeb4bf94a8dcb6ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06bdd0de78584b4d8c963a129ebf2a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,56 +1191,76 @@ "width": null } }, - "0828f51c6fc84a0da65b7ec09b69d580": { + "076de96beb79463ab6936bf1bcf942f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_60ed3679f364477387473b90089b8273", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9c60afb1733442418ab367430bbb0d68", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "08df668bdad845f9a6fca994bd1ecd5d": { - "model_module": "@jupyter-widgets/controls", + "0988aba1120e44e194591113d57b63d3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66ad826330ec48dcbbb58f5f351a1112", - "placeholder": "​", - "style": "IPY_MODEL_8adb666a2a6e4976a7051e3074b29507", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "094ab3c4cb4649dbb35cf60d64c57d3d": { + "09d4dbd7007b4cfda79c92844565bfd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1313,7 @@ "width": null } }, - "10da9ba1022e498b8f5f3f98c7898223": { + "0a9bbe4ae4a7460aa182a6b390e2126a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1328,49 +1366,92 @@ "width": null } }, - "122704b7d1124989a50bdf83f04c3039": { + "0b20d7b224384162a625ab6b3d0f9b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f6577867a1c041f490b073388151f1be", - "IPY_MODEL_3e00fec335784d3d8f67aef8d5205c3a", - "IPY_MODEL_9692da0a0ad949f39b93867a9112ab58" - ], - "layout": "IPY_MODEL_c876ccec48d84a04bb874ff6b48f8030", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_159894c2bd95445e89e4038c12c6bb9f", + "placeholder": "​", + "style": "IPY_MODEL_cf82eb1ddad343378d886f2d760e8e19", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 95.5MB/s]" } }, - "154d34bbb18c4e6bb7471d21431c8407": { + "0bfe9f713e2d4b6ba3ef62402a269ffb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ecf47058d5624d17a0cd5595cc9a9ea1", + "placeholder": "​", + "style": "IPY_MODEL_5f805e6909fa4676b560df990b1225b3", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "12a2c923802042bbaf7afcb489317fc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1fc253a07301484fbf34df123112adf2", + "placeholder": "​", + "style": "IPY_MODEL_2745511db571407b909eadcf1041fbbb", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 33.8MB/s]" + } + }, + "13323479403a4c6ba63c87932eb6b7d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "18fbcd7e9e6f47f89dbd1bf8da0aac40": { + "159894c2bd95445e89e4038c12c6bb9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1423,7 +1504,7 @@ "width": null } }, - "1b4847f4ce0741c391f613e88b131aaa": { + "16a4915303e24ee999326b95f314a277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1476,67 +1557,60 @@ "width": null } }, - "27cccac5127445d09232f53a08657063": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "290f1d04116240fbaa62e5ec4b1a24a2": { - "model_module": "@jupyter-widgets/controls", + "17d77342577f4828b221978f61b1cca1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2b4d16d0c52d49b4b207e9e5d8450870": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0459048c4f99420aa195e714b5d9a0fd", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_49e660a0942a4523b89e94f5b3f10d5e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2fa841989e734ca59ab3392a1c472375": { + "18587e575408498d91cc167ce94971e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1589,72 +1663,60 @@ "width": null } }, - "31304fdb61a94d1eb88890ad65421b88": { - "model_module": "@jupyter-widgets/controls", + "1b45076c459847edb676c5da860e7c63": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87bd24bf12c243a6b9cca97e02ea6f70", - "IPY_MODEL_ea5aad74db984381a9502d15f7877dc9", - "IPY_MODEL_b917898a95b64706aca98aba5a2b9969" - ], - "layout": "IPY_MODEL_748657e3cb9543698e92e614f2b8352c", - "tabbable": null, - "tooltip": null - } - }, - "3248bde1a32e421da1664cd2d4d3419e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8283fed28004000b84e2f53babadac1", - "placeholder": "​", - "style": "IPY_MODEL_8d94e369761f41d087d990935dbe60c2", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "34ddf006f73a4753b211a5999ec0d671": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "390080de929440ada6a97f2e0d2dc60f": { + "1c9880baaa514557b939f1bc383fd6dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1672,33 +1734,7 @@ "text_color": null } }, - "3e00fec335784d3d8f67aef8d5205c3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_908e91876b774d93a02042ae9035283d", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_290f1d04116240fbaa62e5ec4b1a24a2", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "4071e96fc1124ad3bff4e7fe0f035295": { + "1f782846199a4cd886bc9a2d8b267db5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1751,57 +1787,7 @@ "width": null } }, - "470a184131ad4f9789eb904333469e81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "49e660a0942a4523b89e94f5b3f10d5e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4bb99f8cedeb4182a94727c634341364": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4cb28f8d4c2846bba02492de8371ef86": { + "1fc253a07301484fbf34df123112adf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1854,30 +1840,7 @@ "width": null } }, - "4dd3d95d46d846b98d4c8e1fca170cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7f7d73c85274703989c1a758316f306", - "placeholder": "​", - "style": "IPY_MODEL_96ad5243a28540c1bbd13701050cd8c8", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 44.9MB/s]" - } - }, - "501ba738bb5947ccaad0e2cd1f842b14": { + "21332e3c65394cf38141b89a7102833d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1892,63 +1855,50 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5b8638296ff64c2abc68c70b1b8b7469", - "IPY_MODEL_0828f51c6fc84a0da65b7ec09b69d580", - "IPY_MODEL_dc79b458bbac454fbab119272509e252" + "IPY_MODEL_723beeec471a4b999f642afe6f412d4f", + "IPY_MODEL_6a1338550c7e47f2ace913c6db6703dc", + "IPY_MODEL_60390240aff543d7947dd2f2f3272bde" ], - "layout": "IPY_MODEL_094ab3c4cb4649dbb35cf60d64c57d3d", + "layout": "IPY_MODEL_1b45076c459847edb676c5da860e7c63", "tabbable": null, "tooltip": null } }, - "5a73d7a796fe45fca51bb3d3b1eb08df": { + "2745511db571407b909eadcf1041fbbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08df668bdad845f9a6fca994bd1ecd5d", - "IPY_MODEL_88b14d6b576d4c358576ada8914fc9ae", - "IPY_MODEL_efcccd1f66e4459cb1a7709eadb26866" - ], - "layout": "IPY_MODEL_18fbcd7e9e6f47f89dbd1bf8da0aac40", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b8638296ff64c2abc68c70b1b8b7469": { + "27f46a8464f6451d9729e0085ec07516": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd603ce908534d83a9e5812536cbaecf", - "placeholder": "​", - "style": "IPY_MODEL_87f402b0764744998c823bf8713ee0ae", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5bed445f56a545b89b799f73d2462bd9": { + "2b2f96f6470846f1bd8aae7cb5dbeed7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1964,137 +1914,48 @@ "description_width": "" } }, - "5f624de673e9405cb01619e550cd02b5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "60ed3679f364477387473b90089b8273": { - "model_module": "@jupyter-widgets/base", + "2b379296834846fa97be92e4b2d6df99": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "620076f191a74b5c914c7a2b17db4f55": { + "2b51658eec434f6c8284bd799690104b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3248bde1a32e421da1664cd2d4d3419e", - "IPY_MODEL_2b4d16d0c52d49b4b207e9e5d8450870", - "IPY_MODEL_4dd3d95d46d846b98d4c8e1fca170cc1" - ], - "layout": "IPY_MODEL_4071e96fc1124ad3bff4e7fe0f035295", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e06dfc4b5e33464b8b271badc88425c4", + "placeholder": "​", + "style": "IPY_MODEL_1c9880baaa514557b939f1bc383fd6dd", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "626cdb8c3d374c168811bd920a5a68f8": { + "2b64f899a53543fb8a6355d358ad40dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2147,46 +2008,57 @@ "width": null } }, - "62cc1ededdbc4ebaa9a9455fc402d06e": { + "3127352d799744d391cc01252a89de9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1eada512714499a9689453bf4dd17bb", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_27f46a8464f6451d9729e0085ec07516", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "65182ed5c6764915b44ed26f3452c6e8": { + "37b540a8453d4401b5a798e49297b5a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93a4c1dfcfc44589926437f1ffdd3a85", - "placeholder": "​", - "style": "IPY_MODEL_c4c2ce7cae784b2093ba53e3609cc2c9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f85452b3a7ee4bd8b96746e8f9cbd2a8", + "IPY_MODEL_6431ceb1e80c48e09225d44e2f40b86d", + "IPY_MODEL_a8240a8e7877465086dc27694c472f92" + ], + "layout": "IPY_MODEL_604c0d5a866c4704a89f806366a61376", "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "tooltip": null } }, - "66ad826330ec48dcbbb58f5f351a1112": { + "3d76c17d5f61437bbb3f8fdefd0c78fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2222,42 +2094,24 @@ "height": null, "justify_content": null, "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "673761d4701d4ee5aaabc0e22e4ec6cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6b23b979b2f7419a924a8685e13b11a7": { + "3e46cd86409a4a129a6d5d33c5d96e40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2310,25 +2164,7 @@ "width": null } }, - "73e88da4acc94040992fd88d0a0d19ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "748657e3cb9543698e92e614f2b8352c": { + "40e898ed62284e21bf36ba199efb74ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2381,7 +2217,33 @@ "width": null } }, - "766a43c7b32e464cb876b478a34ad457": { + "4493cbda5ade4530a4f0dad6cc558cfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d76c17d5f61437bbb3f8fdefd0c78fa", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_13323479403a4c6ba63c87932eb6b7d1", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "45bfcc5c5c3e4a10b411f71fb3237d72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2397,33 +2259,54 @@ "description_width": "" } }, - "84060f74615349bd9e7f70b839d37c3e": { + "46c6e93fc99f4795bfc2b82c11b1a4d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b23b979b2f7419a924a8685e13b11a7", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_766a43c7b32e464cb876b478a34ad457", + "layout": "IPY_MODEL_1f782846199a4cd886bc9a2d8b267db5", + "placeholder": "​", + "style": "IPY_MODEL_f350410541a947db9efae73d4e6d000d", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 665/665 [00:00<00:00, 129kB/s]" + } + }, + "47dd26560f0f4f14ae1d6235bf187f43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_adcd6fe3722a404cbb4578c43dfb8622", + "IPY_MODEL_6ef5403b4f904ab5bad25124da8132c1", + "IPY_MODEL_46c6e93fc99f4795bfc2b82c11b1a4d6" + ], + "layout": "IPY_MODEL_fb13c0f13bd34a04a46ba3462d87a3cb", + "tabbable": null, + "tooltip": null } }, - "846cc1a5fbd9438da4609b439141f308": { + "4e78d34c35c64a8ba9e42340cface541": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2476,30 +2359,25 @@ "width": null } }, - "87bd24bf12c243a6b9cca97e02ea6f70": { + "5d9fbb50ea574e9f80a04d65984ec3fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa4036e56d43472283e556f828cf84fd", - "placeholder": "​", - "style": "IPY_MODEL_470a184131ad4f9789eb904333469e81", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "87f402b0764744998c823bf8713ee0ae": { + "5f805e6909fa4676b560df990b1225b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2517,33 +2395,30 @@ "text_color": null } }, - "88b14d6b576d4c358576ada8914fc9ae": { + "60390240aff543d7947dd2f2f3272bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c634f1241a9e40659957b6a8dd57b66b", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4bb99f8cedeb4182a94727c634341364", + "layout": "IPY_MODEL_7d0ebaac4f0b43a498272ea2a11b15a3", + "placeholder": "​", + "style": "IPY_MODEL_2b379296834846fa97be92e4b2d6df99", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 466k/466k [00:00<00:00, 14.0MB/s]" } }, - "89c1af10a3bf46378b2d5ad1570f4844": { + "604c0d5a866c4704a89f806366a61376": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2596,7 +2471,7 @@ "width": null } }, - "8adb666a2a6e4976a7051e3074b29507": { + "617bb9dddcf14ecb9bae9c187156bb6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2614,7 +2489,57 @@ "text_color": null } }, - "8d94e369761f41d087d990935dbe60c2": { + "6431ceb1e80c48e09225d44e2f40b86d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0988aba1120e44e194591113d57b63d3", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8944d62a93fe49f991ff8bacfeac322c", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "6692a301895241f7894a3bace80aec4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0bfe9f713e2d4b6ba3ef62402a269ffb", + "IPY_MODEL_4493cbda5ade4530a4f0dad6cc558cfa", + "IPY_MODEL_0b20d7b224384162a625ab6b3d0f9b75" + ], + "layout": "IPY_MODEL_18587e575408498d91cc167ce94971e8", + "tabbable": null, + "tooltip": null + } + }, + "69666c8921454e55aebdd3cb6ea39a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2632,60 +2557,77 @@ "text_color": null } }, - "908e91876b774d93a02042ae9035283d": { - "model_module": "@jupyter-widgets/base", + "6a1338550c7e47f2ace913c6db6703dc": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_06bdd0de78584b4d8c963a129ebf2a90", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_076de96beb79463ab6936bf1bcf942f5", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "6b9cbd8a34764f13b850393a56c2c764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6ef5403b4f904ab5bad25124da8132c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_77b2da3b157a4e658101eddffc7a0c02", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b2f96f6470846f1bd8aae7cb5dbeed7", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "93a4c1dfcfc44589926437f1ffdd3a85": { + "70176e26d6ca48bda5d33005335369ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2738,7 +2680,7 @@ "width": null } }, - "9692da0a0ad949f39b93867a9112ab58": { + "723beeec471a4b999f642afe6f412d4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2753,33 +2695,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4493c8ca6d74012b8cda7556ffcfcbb", + "layout": "IPY_MODEL_0a9bbe4ae4a7460aa182a6b390e2126a", "placeholder": "​", - "style": "IPY_MODEL_154d34bbb18c4e6bb7471d21431c8407", + "style": "IPY_MODEL_617bb9dddcf14ecb9bae9c187156bb6c", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 3.64MB/s]" - } - }, - "96ad5243a28540c1bbd13701050cd8c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "tokenizer.json: 100%" } }, - "98a1dc889ed543ddb76c46e918f80a38": { + "723f6f685bea42f196189855c383ef77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2794,15 +2718,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2fa841989e734ca59ab3392a1c472375", + "layout": "IPY_MODEL_7b295c74e39947a6b06414e1b23aef24", "placeholder": "​", - "style": "IPY_MODEL_73e88da4acc94040992fd88d0a0d19ed", + "style": "IPY_MODEL_6b9cbd8a34764f13b850393a56c2c764", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 2.21k/2.21k [00:00<00:00, 409kB/s]" + } + }, + "77b2da3b157a4e658101eddffc7a0c02": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "99072ca746ea485cbb170400eb0e5a45": { + "7b295c74e39947a6b06414e1b23aef24": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,23 +2832,31 @@ "width": null } }, - "9c60afb1733442418ab367430bbb0d68": { + "7bf569b1ec4240fbb7f1457722fe46c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f585c8f15e5c4595a88ccd3bd0205013", + "IPY_MODEL_9116b550551046e580f470834f6b5b3a", + "IPY_MODEL_b46d0225e69b453dac54123c7dfe9aa9" + ], + "layout": "IPY_MODEL_16a4915303e24ee999326b95f314a277", + "tabbable": null, + "tooltip": null } }, - "aa7d45a4b72346af98fb57bd52e6b237": { + "7d0ebaac4f0b43a498272ea2a11b15a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,67 +2909,134 @@ "width": null } }, - "ae26881588fc4f9695b5cbd0549eb30a": { + "8944d62a93fe49f991ff8bacfeac322c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "af41f929d6ed42e8b6fa4fd762ea4ebe": { + "8ad231daa0c44bdbabf3c3cc6a0548db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e46cd86409a4a129a6d5d33c5d96e40", + "placeholder": "​", + "style": "IPY_MODEL_69666c8921454e55aebdd3cb6ea39a73", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "9116b550551046e580f470834f6b5b3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5f98261e33e4e68983283a794b3ce3e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9c07f5c15bae4ce8b5469d47f4fedca6", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "9c07f5c15bae4ce8b5469d47f4fedca6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b4b2323ffd9349f1ad2d4d50a0288dc5": { + "a8240a8e7877465086dc27694c472f92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_65182ed5c6764915b44ed26f3452c6e8", - "IPY_MODEL_84060f74615349bd9e7f70b839d37c3e", - "IPY_MODEL_b76df53d2353433cb2fea0cde0c2d1dd" - ], - "layout": "IPY_MODEL_626cdb8c3d374c168811bd920a5a68f8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70176e26d6ca48bda5d33005335369ce", + "placeholder": "​", + "style": "IPY_MODEL_f8e1af21c2314931b28a2ffdccd38cc1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.68kB/s]" + } + }, + "adcd6fe3722a404cbb4578c43dfb8622": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bfef1d0d61ca4f1f8e1818ed08702bea", + "placeholder": "​", + "style": "IPY_MODEL_ec66181f622246e6b126cf01ee0e0c1f", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" } }, - "b76df53d2353433cb2fea0cde0c2d1dd": { + "b46d0225e69b453dac54123c7dfe9aa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2999,15 +3051,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4cb28f8d4c2846bba02492de8371ef86", + "layout": "IPY_MODEL_4e78d34c35c64a8ba9e42340cface541", "placeholder": "​", - "style": "IPY_MODEL_673761d4701d4ee5aaabc0e22e4ec6cb", + "style": "IPY_MODEL_5d9fbb50ea574e9f80a04d65984ec3fb", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 206MB/s]" + "value": " 391/391 [00:00<00:00, 62.9kB/s]" + } + }, + "bfef1d0d61ca4f1f8e1818ed08702bea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b8283fed28004000b84e2f53babadac1": { + "c1eada512714499a9689453bf4dd17bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3060,71 +3165,99 @@ "width": null } }, - "b917898a95b64706aca98aba5a2b9969": { + "c550a7da6dee4658a5e958b278220075": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2b51658eec434f6c8284bd799690104b", + "IPY_MODEL_d117d190931044b78c7d6506f9a291f8", + "IPY_MODEL_12a2c923802042bbaf7afcb489317fc2" + ], + "layout": "IPY_MODEL_2b64f899a53543fb8a6355d358ad40dc", + "tabbable": null, + "tooltip": null + } + }, + "cf82eb1ddad343378d886f2d760e8e19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_846cc1a5fbd9438da4609b439141f308", - "placeholder": "​", - "style": "IPY_MODEL_af41f929d6ed42e8b6fa4fd762ea4ebe", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 314kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bc14afac06eb4c26bf5c7c100334328e": { + "d117d190931044b78c7d6506f9a291f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10da9ba1022e498b8f5f3f98c7898223", - "placeholder": "​", - "style": "IPY_MODEL_34ddf006f73a4753b211a5999ec0d671", + "layout": "IPY_MODEL_40e898ed62284e21bf36ba199efb74ca", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45bfcc5c5c3e4a10b411f71fb3237d72", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.65kB/s]" + "value": 231508.0 } }, - "c4c2ce7cae784b2093ba53e3609cc2c9": { + "dc4eb1dc64da457a9d83b0bad4f4fd96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8ad231daa0c44bdbabf3c3cc6a0548db", + "IPY_MODEL_3127352d799744d391cc01252a89de9a", + "IPY_MODEL_723f6f685bea42f196189855c383ef77" + ], + "layout": "IPY_MODEL_e996d9e989544a01a9db1b3ba3e4bdb6", + "tabbable": null, + "tooltip": null } }, - "c634f1241a9e40659957b6a8dd57b66b": { + "e06dfc4b5e33464b8b271badc88425c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3177,7 +3310,7 @@ "width": null } }, - "c876ccec48d84a04bb874ff6b48f8030": { + "e5f98261e33e4e68983283a794b3ce3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3230,7 +3363,7 @@ "width": null } }, - "d4493c8ca6d74012b8cda7556ffcfcbb": { + "e996d9e989544a01a9db1b3ba3e4bdb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3283,30 +3416,43 @@ "width": null } }, - "dc79b458bbac454fbab119272509e252": { + "ec66181f622246e6b126cf01ee0e0c1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99072ca746ea485cbb170400eb0e5a45", - "placeholder": "​", - "style": "IPY_MODEL_ae26881588fc4f9695b5cbd0549eb30a", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 56.2kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eca51dd4d6224552b6d374e90dd7f129": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "dd603ce908534d83a9e5812536cbaecf": { + "ecf47058d5624d17a0cd5595cc9a9ea1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3359,57 +3505,25 @@ "width": null } }, - "e6b938e7ce354e6ebb9c5105fe3bde01": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_98a1dc889ed543ddb76c46e918f80a38", - "IPY_MODEL_fbbd836ae0ab4f63bed278c2565cd3f1", - "IPY_MODEL_bc14afac06eb4c26bf5c7c100334328e" - ], - "layout": "IPY_MODEL_aa7d45a4b72346af98fb57bd52e6b237", - "tabbable": null, - "tooltip": null - } - }, - "ea5aad74db984381a9502d15f7877dc9": { + "f350410541a947db9efae73d4e6d000d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5f624de673e9405cb01619e550cd02b5", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_62cc1ededdbc4ebaa9a9455fc402d06e", - "tabbable": null, - "tooltip": null, - "value": 2211.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "efcccd1f66e4459cb1a7709eadb26866": { + "f585c8f15e5c4595a88ccd3bd0205013": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3424,15 +3538,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f94845de837b4883b0f99fb9f3b7ead2", + "layout": "IPY_MODEL_17d77342577f4828b221978f61b1cca1", "placeholder": "​", - "style": "IPY_MODEL_27cccac5127445d09232f53a08657063", + "style": "IPY_MODEL_03473efde97f4db7aeb4bf94a8dcb6ac", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 124kB/s]" + "value": ".gitattributes: 100%" } }, - "f6577867a1c041f490b073388151f1be": { + "f85452b3a7ee4bd8b96746e8f9cbd2a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3447,121 +3561,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_89c1af10a3bf46378b2d5ad1570f4844", + "layout": "IPY_MODEL_09d4dbd7007b4cfda79c92844565bfd3", "placeholder": "​", - "style": "IPY_MODEL_390080de929440ada6a97f2e0d2dc60f", + "style": "IPY_MODEL_eca51dd4d6224552b6d374e90dd7f129", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "f7f7d73c85274703989c1a758316f306": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "tokenizer_config.json: 100%" } }, - "f94845de837b4883b0f99fb9f3b7ead2": { - "model_module": "@jupyter-widgets/base", + "f8e1af21c2314931b28a2ffdccd38cc1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa4036e56d43472283e556f828cf84fd": { + "fb13c0f13bd34a04a46ba3462d87a3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3613,32 +3639,6 @@ "visibility": null, "width": null } - }, - "fbbd836ae0ab4f63bed278c2565cd3f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1b4847f4ce0741c391f613e88b131aaa", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5bed445f56a545b89b799f73d2462bd9", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index f932534b5..5e61abbb0 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1351,7 +1351,7 @@

5. Use cleanlab to find label issues -{"state": {"0e3467cf59954459ab486aee2ba9c3a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c036dfeb50042c8984a6a6692fc0f9b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "318a448eedbf4c68b4b67978734a1ae9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e3467cf59954459ab486aee2ba9c3a5", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6c036dfeb50042c8984a6a6692fc0f9b", "tabbable": null, "tooltip": null, "value": 2041.0}}, "700bb6482b2c4111b4ed9390c8470861": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9b3a44be9f34f6e93de758ee46b92ec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ef0ba41ae31d4fca866f944d42378821": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_700bb6482b2c4111b4ed9390c8470861", "placeholder": "\u200b", "style": "IPY_MODEL_f9b3a44be9f34f6e93de758ee46b92ec", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "2741fbda14764533a6d7865887e84821": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "132a82bf8c9844f59e250a9598747c76": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6fc0bc69349045329fcb28a46a2fe14b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2741fbda14764533a6d7865887e84821", "placeholder": "\u200b", "style": "IPY_MODEL_132a82bf8c9844f59e250a9598747c76", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007482kB/s]"}}, "2a2e0134b1234019be47ad459a2c7e6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53dafb78e671406e89f3754d23b34684": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ef0ba41ae31d4fca866f944d42378821", "IPY_MODEL_318a448eedbf4c68b4b67978734a1ae9", "IPY_MODEL_6fc0bc69349045329fcb28a46a2fe14b"], "layout": "IPY_MODEL_2a2e0134b1234019be47ad459a2c7e6e", "tabbable": null, "tooltip": null}}, "8b0da1e1f92449e49814a4792b3a0a18": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa5d63111e8040c8a46a0ef606a7b541": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9a1d64682df846808b68e96652571971": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b0da1e1f92449e49814a4792b3a0a18", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fa5d63111e8040c8a46a0ef606a7b541", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "f948f7fae2bd4b23b89c1a9f86de6cdc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b18f93966c84db6bd40967285652faf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a89c26dda78427781977305cd34e44b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f948f7fae2bd4b23b89c1a9f86de6cdc", "placeholder": "\u200b", "style": "IPY_MODEL_0b18f93966c84db6bd40967285652faf", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d563179a4e534dd4b15465aa4a240b93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0dd17ee1b414e0dbba6940c708a7553": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08327f8f533f49bb8518d3413af11e27": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d563179a4e534dd4b15465aa4a240b93", "placeholder": "\u200b", "style": "IPY_MODEL_c0dd17ee1b414e0dbba6940c708a7553", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007169MB/s]"}}, "819ab4db9b9249cfb05199eec4ffe2ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4e9c1fa715d49009ec1097cf561d5f6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6a89c26dda78427781977305cd34e44b", "IPY_MODEL_9a1d64682df846808b68e96652571971", "IPY_MODEL_08327f8f533f49bb8518d3413af11e27"], "layout": "IPY_MODEL_819ab4db9b9249cfb05199eec4ffe2ae", "tabbable": null, "tooltip": null}}, "7ba99fd178de4f25867b6e37949a6d85": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f321f0e3281b4b478dffcfb404472020": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5aded6b96abc4bfebf8a38a3dcad2d6f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ba99fd178de4f25867b6e37949a6d85", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f321f0e3281b4b478dffcfb404472020", "tabbable": null, "tooltip": null, "value": 3201.0}}, "71c1b39c84cf47b5a477e26da271fef9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ca38434b4e44b5b86b173c7855b4ff3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b4b3cc9f4e4c408998a1c0ebec86d5bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71c1b39c84cf47b5a477e26da271fef9", "placeholder": "\u200b", "style": "IPY_MODEL_7ca38434b4e44b5b86b173c7855b4ff3", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "46e0a3db3d4b44aea458c9d15b1b45b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b420c63e4f174bba8f48175457a23dfe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c2a6bff30b84735af3cf83ab6de7ddf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46e0a3db3d4b44aea458c9d15b1b45b8", "placeholder": "\u200b", "style": "IPY_MODEL_b420c63e4f174bba8f48175457a23dfe", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007804kB/s]"}}, "6eec35a271e4402b8f28109615706306": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ee4ab99d955426daf559df8bf71c44f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b4b3cc9f4e4c408998a1c0ebec86d5bc", "IPY_MODEL_5aded6b96abc4bfebf8a38a3dcad2d6f", "IPY_MODEL_4c2a6bff30b84735af3cf83ab6de7ddf"], "layout": "IPY_MODEL_6eec35a271e4402b8f28109615706306", "tabbable": null, "tooltip": null}}, "c920632573cc4fe0976140070f9677ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b97eebf068ca4e9c85cbadbb4cc103c4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "31da699ce27d4748a3b0908daaeff226": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c920632573cc4fe0976140070f9677ec", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b97eebf068ca4e9c85cbadbb4cc103c4", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "dd83345f7f5c46a38920bb555c0f6b9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0dc2781328864c55a124d3ba0119a934": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "30eda8d6d1724ca0a98cb1391ef57cf4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd83345f7f5c46a38920bb555c0f6b9a", "placeholder": "\u200b", "style": "IPY_MODEL_0dc2781328864c55a124d3ba0119a934", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "4c6822f78a694818a65c111aed9cd2c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3c6b0d1ab4745c796d69b14cb880bf5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c979e50a880a49aeaf6e580f1f3ff7e8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c6822f78a694818a65c111aed9cd2c2", "placeholder": "\u200b", "style": "IPY_MODEL_e3c6b0d1ab4745c796d69b14cb880bf5", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007212MB/s]"}}, "e41b0c6637564566b921cc1987c4bf9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a4a612a6d2846bca788bddf1043cc09": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_30eda8d6d1724ca0a98cb1391ef57cf4", "IPY_MODEL_31da699ce27d4748a3b0908daaeff226", "IPY_MODEL_c979e50a880a49aeaf6e580f1f3ff7e8"], "layout": "IPY_MODEL_e41b0c6637564566b921cc1987c4bf9a", "tabbable": null, "tooltip": null}}, "9f5000cf7d6a4079b14d5f3c666d8d9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c12a918e266b40caa2ad3eb5ba27297c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15a248e8576b4e1cace7306d79423606": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f5000cf7d6a4079b14d5f3c666d8d9a", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c12a918e266b40caa2ad3eb5ba27297c", "tabbable": null, "tooltip": null, "value": 128619.0}}, "701065566fa2417290be013d76599838": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "798cb5dd7eb545d5a4188e416dce6f88": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a79c4f7046b44587aab8c79e98299302": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_701065566fa2417290be013d76599838", "placeholder": "\u200b", "style": "IPY_MODEL_798cb5dd7eb545d5a4188e416dce6f88", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "10945e8601a446f2bb59fa1211f86f5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "214135184cdb4c61851d09d4776b8681": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de328081cf5143bda2f18a1f732277b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_10945e8601a446f2bb59fa1211f86f5b", "placeholder": "\u200b", "style": "IPY_MODEL_214135184cdb4c61851d09d4776b8681", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200724.4MB/s]"}}, "b8e950254c7c4bfc904715885aa32fa1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f814d21bb5204a479acad09d629678fa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a79c4f7046b44587aab8c79e98299302", "IPY_MODEL_15a248e8576b4e1cace7306d79423606", "IPY_MODEL_de328081cf5143bda2f18a1f732277b0"], "layout": "IPY_MODEL_b8e950254c7c4bfc904715885aa32fa1", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2d3c1dc1060c4165802a43d8a1506254": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "946fc47d18224c0287afaa056d02fa86": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c26558f6f8394f7483fa04455db2ead3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d3c1dc1060c4165802a43d8a1506254", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_946fc47d18224c0287afaa056d02fa86", "tabbable": null, "tooltip": null, "value": 2041.0}}, "419fb750a9174f9dbee80f1946cac5e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04992c51b0da458e880d33ce9b344519": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fdc61f1ca4794f988ad26aa36f51cded": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_419fb750a9174f9dbee80f1946cac5e2", "placeholder": "\u200b", "style": "IPY_MODEL_04992c51b0da458e880d33ce9b344519", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "59de9bdd6b4e4c99946071c77765c06e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a77c2cc33dd84816aca2750dfa77985f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "34e4112c8e594ad7811823c85546de7c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59de9bdd6b4e4c99946071c77765c06e", "placeholder": "\u200b", "style": "IPY_MODEL_a77c2cc33dd84816aca2750dfa77985f", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007485kB/s]"}}, "da43246f2ddc4df9968898f36b1bfc0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86394b0091ab4767834e877eb97c7f29": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fdc61f1ca4794f988ad26aa36f51cded", "IPY_MODEL_c26558f6f8394f7483fa04455db2ead3", "IPY_MODEL_34e4112c8e594ad7811823c85546de7c"], "layout": "IPY_MODEL_da43246f2ddc4df9968898f36b1bfc0c", "tabbable": null, "tooltip": null}}, "e7fc281836224420a165582ad5a1f00e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "367f32394edb4f978af0778e4a33a113": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "54fd655fb2ea4e58ba287b8a699358a4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7fc281836224420a165582ad5a1f00e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_367f32394edb4f978af0778e4a33a113", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "7f6ff60608894304be071471768422d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89ca8bee4d29420391f60780a4e5bb37": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e83d24db49ae4489ac3ce5c785ee2c56": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7f6ff60608894304be071471768422d5", "placeholder": "\u200b", "style": "IPY_MODEL_89ca8bee4d29420391f60780a4e5bb37", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "a7073edae4e4487fb17ec295efaf2195": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62b1b0b90a684d3488af171459b2e05b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fb154ca6183045b2bcadfc5b92658f12": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7073edae4e4487fb17ec295efaf2195", "placeholder": "\u200b", "style": "IPY_MODEL_62b1b0b90a684d3488af171459b2e05b", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200756.5MB/s]"}}, "5704c0dc0c934dab903a45047e08bfa1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aea522f486884287934824875f65568c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e83d24db49ae4489ac3ce5c785ee2c56", "IPY_MODEL_54fd655fb2ea4e58ba287b8a699358a4", "IPY_MODEL_fb154ca6183045b2bcadfc5b92658f12"], "layout": "IPY_MODEL_5704c0dc0c934dab903a45047e08bfa1", "tabbable": null, "tooltip": null}}, "b67e2b3c22e243868a621e764d7615bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cf8422c429b489fa3609423681b6f05": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "99c304eddb9d4f808e1444eda066b707": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b67e2b3c22e243868a621e764d7615bd", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3cf8422c429b489fa3609423681b6f05", "tabbable": null, "tooltip": null, "value": 3201.0}}, "f841644ac2b04256b2f3c4ad9a4db82f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67269dc6c7a64c2a85d31a7de8c68e5a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "78baba5e6db44fa6a19c704bf00fb60c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f841644ac2b04256b2f3c4ad9a4db82f", "placeholder": "\u200b", "style": "IPY_MODEL_67269dc6c7a64c2a85d31a7de8c68e5a", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "8c24d36de7d04ba8a98dbc6243bffa1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4f6d1fdbf7f4c11b3b58973c52c1d0d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "be4a812783c5484dbde2feef6424ebe3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c24d36de7d04ba8a98dbc6243bffa1e", "placeholder": "\u200b", "style": "IPY_MODEL_c4f6d1fdbf7f4c11b3b58973c52c1d0d", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007792kB/s]"}}, "9198ec1e4cbc45a5bbf7c1f0e8976f79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9001078dd11947c3b743e880d41d89e0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_78baba5e6db44fa6a19c704bf00fb60c", "IPY_MODEL_99c304eddb9d4f808e1444eda066b707", "IPY_MODEL_be4a812783c5484dbde2feef6424ebe3"], "layout": "IPY_MODEL_9198ec1e4cbc45a5bbf7c1f0e8976f79", "tabbable": null, "tooltip": null}}, "73e424d16cbf4e40ad3206856f075d5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e538bcb8e2a4e88a9d22def0a5b4c06": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db99e931b4c94d2fb4385e2ccfaa8522": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73e424d16cbf4e40ad3206856f075d5b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e538bcb8e2a4e88a9d22def0a5b4c06", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d12f8fa702da44f6b81f1b84c1c76383": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cd21c0f3c7d4b668b81735903eedb1b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6aef8917b0084643af4ba12c5101c4a0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d12f8fa702da44f6b81f1b84c1c76383", "placeholder": "\u200b", "style": "IPY_MODEL_6cd21c0f3c7d4b668b81735903eedb1b", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "b831f552387747248fdc25346996cacd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78c7d82d53664b95a386ec96a27b6453": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "21a62ae51e6d4cf38d4e04afa3c63d08": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b831f552387747248fdc25346996cacd", "placeholder": "\u200b", "style": "IPY_MODEL_78c7d82d53664b95a386ec96a27b6453", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200775.8MB/s]"}}, "355467884efe4ca683c9294faddd8e67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4187151778314617bdd65072c0c39e18": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6aef8917b0084643af4ba12c5101c4a0", "IPY_MODEL_db99e931b4c94d2fb4385e2ccfaa8522", "IPY_MODEL_21a62ae51e6d4cf38d4e04afa3c63d08"], "layout": "IPY_MODEL_355467884efe4ca683c9294faddd8e67", "tabbable": null, "tooltip": null}}, "6801e67ee9a2448e90812fa8fea0d356": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9789735e7aa44fb8c6bcf3f8ceeebf2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4a0472fddab34db383019c14f53513c2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6801e67ee9a2448e90812fa8fea0d356", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c9789735e7aa44fb8c6bcf3f8ceeebf2", "tabbable": null, "tooltip": null, "value": 128619.0}}, "73080f2ef1784e73947c31dfebce4e08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe5e77a095e54cad8e7f53fae0f07637": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99009d85bc164733af718beec07a0dd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73080f2ef1784e73947c31dfebce4e08", "placeholder": "\u200b", "style": "IPY_MODEL_fe5e77a095e54cad8e7f53fae0f07637", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "0ef4fd968d284787a6d3621ab522b0f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb8ea71a45ce49d1bc0bf64d3de435a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "467e4df618db47e2aa4db7b4eeb1b07e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ef4fd968d284787a6d3621ab522b0f4", "placeholder": "\u200b", "style": "IPY_MODEL_fb8ea71a45ce49d1bc0bf64d3de435a1", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20075.74MB/s]"}}, "14d064897b934c9fa649860e4a0d136f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7aac7a5b86074e509ae85dca28a96569": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99009d85bc164733af718beec07a0dd3", "IPY_MODEL_4a0472fddab34db383019c14f53513c2", "IPY_MODEL_467e4df618db47e2aa4db7b4eeb1b07e"], "layout": "IPY_MODEL_14d064897b934c9fa649860e4a0d136f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 29bf50217..25d6d5a74 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:15.412497Z", - "iopub.status.busy": "2024-09-06T19:33:15.412315Z", - "iopub.status.idle": "2024-09-06T19:33:20.744505Z", - "shell.execute_reply": "2024-09-06T19:33:20.743930Z" + "iopub.execute_input": "2024-09-26T14:47:15.535813Z", + "iopub.status.busy": "2024-09-26T14:47:15.535636Z", + "iopub.status.idle": "2024-09-26T14:47:21.234346Z", + "shell.execute_reply": "2024-09-26T14:47:21.233674Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:20.747320Z", - "iopub.status.busy": "2024-09-06T19:33:20.746730Z", - "iopub.status.idle": "2024-09-06T19:33:20.750172Z", - "shell.execute_reply": "2024-09-06T19:33:20.749624Z" + "iopub.execute_input": "2024-09-26T14:47:21.236766Z", + "iopub.status.busy": "2024-09-26T14:47:21.236377Z", + "iopub.status.idle": "2024-09-26T14:47:21.239643Z", + "shell.execute_reply": "2024-09-26T14:47:21.239185Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:20.752397Z", - "iopub.status.busy": "2024-09-06T19:33:20.751947Z", - "iopub.status.idle": "2024-09-06T19:33:20.756917Z", - "shell.execute_reply": "2024-09-06T19:33:20.756445Z" + "iopub.execute_input": "2024-09-26T14:47:21.241324Z", + "iopub.status.busy": "2024-09-26T14:47:21.240999Z", + "iopub.status.idle": "2024-09-26T14:47:21.245772Z", + "shell.execute_reply": "2024-09-26T14:47:21.245316Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:20.758862Z", - "iopub.status.busy": "2024-09-06T19:33:20.758684Z", - "iopub.status.idle": "2024-09-06T19:33:22.662809Z", - "shell.execute_reply": "2024-09-06T19:33:22.662142Z" + "iopub.execute_input": "2024-09-26T14:47:21.247572Z", + "iopub.status.busy": "2024-09-26T14:47:21.247248Z", + "iopub.status.idle": "2024-09-26T14:47:23.090757Z", + "shell.execute_reply": "2024-09-26T14:47:23.089916Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:22.665411Z", - "iopub.status.busy": "2024-09-06T19:33:22.665209Z", - "iopub.status.idle": "2024-09-06T19:33:22.675958Z", - "shell.execute_reply": "2024-09-06T19:33:22.675514Z" + "iopub.execute_input": "2024-09-26T14:47:23.093045Z", + "iopub.status.busy": "2024-09-26T14:47:23.092832Z", + "iopub.status.idle": "2024-09-26T14:47:23.103750Z", + "shell.execute_reply": "2024-09-26T14:47:23.103275Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:22.677986Z", - "iopub.status.busy": "2024-09-06T19:33:22.677801Z", - "iopub.status.idle": "2024-09-06T19:33:22.684956Z", - "shell.execute_reply": "2024-09-06T19:33:22.684474Z" + "iopub.execute_input": "2024-09-26T14:47:23.105636Z", + "iopub.status.busy": "2024-09-26T14:47:23.105213Z", + "iopub.status.idle": "2024-09-26T14:47:23.110875Z", + "shell.execute_reply": "2024-09-26T14:47:23.110416Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:22.686790Z", - "iopub.status.busy": "2024-09-06T19:33:22.686606Z", - "iopub.status.idle": "2024-09-06T19:33:23.132191Z", - "shell.execute_reply": "2024-09-06T19:33:23.131660Z" + "iopub.execute_input": "2024-09-26T14:47:23.112413Z", + "iopub.status.busy": "2024-09-26T14:47:23.112235Z", + "iopub.status.idle": "2024-09-26T14:47:23.593390Z", + "shell.execute_reply": "2024-09-26T14:47:23.592868Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:23.134446Z", - "iopub.status.busy": "2024-09-06T19:33:23.134077Z", - "iopub.status.idle": "2024-09-06T19:33:24.169658Z", - "shell.execute_reply": "2024-09-06T19:33:24.169048Z" + "iopub.execute_input": "2024-09-26T14:47:23.595287Z", + "iopub.status.busy": "2024-09-26T14:47:23.594919Z", + "iopub.status.idle": "2024-09-26T14:47:24.771320Z", + "shell.execute_reply": "2024-09-26T14:47:24.770797Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:24.172059Z", - "iopub.status.busy": "2024-09-06T19:33:24.171874Z", - "iopub.status.idle": "2024-09-06T19:33:24.191001Z", - "shell.execute_reply": "2024-09-06T19:33:24.190537Z" + "iopub.execute_input": "2024-09-26T14:47:24.773502Z", + "iopub.status.busy": "2024-09-26T14:47:24.773132Z", + "iopub.status.idle": "2024-09-26T14:47:24.791888Z", + "shell.execute_reply": "2024-09-26T14:47:24.791419Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:24.193080Z", - "iopub.status.busy": "2024-09-06T19:33:24.192898Z", - "iopub.status.idle": "2024-09-06T19:33:24.196091Z", - "shell.execute_reply": "2024-09-06T19:33:24.195633Z" + "iopub.execute_input": "2024-09-26T14:47:24.793633Z", + "iopub.status.busy": "2024-09-26T14:47:24.793274Z", + "iopub.status.idle": "2024-09-26T14:47:24.796512Z", + "shell.execute_reply": "2024-09-26T14:47:24.796062Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:24.198156Z", - "iopub.status.busy": "2024-09-06T19:33:24.197822Z", - "iopub.status.idle": "2024-09-06T19:33:38.175563Z", - "shell.execute_reply": "2024-09-06T19:33:38.174995Z" + "iopub.execute_input": "2024-09-26T14:47:24.798106Z", + "iopub.status.busy": "2024-09-26T14:47:24.797929Z", + "iopub.status.idle": "2024-09-26T14:47:39.925585Z", + "shell.execute_reply": "2024-09-26T14:47:39.924902Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:38.178313Z", - "iopub.status.busy": "2024-09-06T19:33:38.177918Z", - "iopub.status.idle": "2024-09-06T19:33:38.181776Z", - "shell.execute_reply": "2024-09-06T19:33:38.181209Z" + "iopub.execute_input": "2024-09-26T14:47:39.927963Z", + "iopub.status.busy": "2024-09-26T14:47:39.927564Z", + "iopub.status.idle": "2024-09-26T14:47:39.931572Z", + "shell.execute_reply": "2024-09-26T14:47:39.931070Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:38.183755Z", - "iopub.status.busy": "2024-09-06T19:33:38.183579Z", - "iopub.status.idle": "2024-09-06T19:33:38.879592Z", - "shell.execute_reply": "2024-09-06T19:33:38.878973Z" + "iopub.execute_input": "2024-09-26T14:47:39.933402Z", + "iopub.status.busy": "2024-09-26T14:47:39.933168Z", + "iopub.status.idle": "2024-09-26T14:47:40.683130Z", + "shell.execute_reply": "2024-09-26T14:47:40.682533Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:38.882730Z", - "iopub.status.busy": "2024-09-06T19:33:38.882295Z", - "iopub.status.idle": "2024-09-06T19:33:38.887349Z", - "shell.execute_reply": "2024-09-06T19:33:38.886834Z" + "iopub.execute_input": "2024-09-26T14:47:40.685556Z", + "iopub.status.busy": "2024-09-26T14:47:40.684983Z", + "iopub.status.idle": "2024-09-26T14:47:40.690268Z", + "shell.execute_reply": "2024-09-26T14:47:40.689730Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:38.889963Z", - "iopub.status.busy": "2024-09-06T19:33:38.889560Z", - "iopub.status.idle": "2024-09-06T19:33:38.996371Z", - "shell.execute_reply": "2024-09-06T19:33:38.995754Z" + "iopub.execute_input": "2024-09-26T14:47:40.693275Z", + "iopub.status.busy": "2024-09-26T14:47:40.692350Z", + "iopub.status.idle": "2024-09-26T14:47:40.818191Z", + "shell.execute_reply": "2024-09-26T14:47:40.817594Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:38.998935Z", - "iopub.status.busy": "2024-09-06T19:33:38.998516Z", - "iopub.status.idle": "2024-09-06T19:33:39.011487Z", - "shell.execute_reply": "2024-09-06T19:33:39.010948Z" + "iopub.execute_input": "2024-09-26T14:47:40.820305Z", + "iopub.status.busy": "2024-09-26T14:47:40.819910Z", + "iopub.status.idle": "2024-09-26T14:47:40.832452Z", + "shell.execute_reply": "2024-09-26T14:47:40.831961Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.013725Z", - "iopub.status.busy": "2024-09-06T19:33:39.013368Z", - "iopub.status.idle": "2024-09-06T19:33:39.021505Z", - "shell.execute_reply": "2024-09-06T19:33:39.020914Z" + "iopub.execute_input": "2024-09-26T14:47:40.834307Z", + "iopub.status.busy": "2024-09-26T14:47:40.833985Z", + "iopub.status.idle": "2024-09-26T14:47:40.842566Z", + "shell.execute_reply": "2024-09-26T14:47:40.842095Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.023705Z", - "iopub.status.busy": "2024-09-06T19:33:39.023358Z", - "iopub.status.idle": "2024-09-06T19:33:39.027633Z", - "shell.execute_reply": "2024-09-06T19:33:39.027085Z" + "iopub.execute_input": "2024-09-26T14:47:40.844168Z", + "iopub.status.busy": "2024-09-26T14:47:40.843976Z", + "iopub.status.idle": "2024-09-26T14:47:40.848543Z", + "shell.execute_reply": "2024-09-26T14:47:40.847986Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.029757Z", - "iopub.status.busy": "2024-09-06T19:33:39.029380Z", - "iopub.status.idle": "2024-09-06T19:33:39.035357Z", - "shell.execute_reply": "2024-09-06T19:33:39.034867Z" + "iopub.execute_input": "2024-09-26T14:47:40.850235Z", + "iopub.status.busy": "2024-09-26T14:47:40.850049Z", + "iopub.status.idle": "2024-09-26T14:47:40.856001Z", + "shell.execute_reply": "2024-09-26T14:47:40.855443Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.037583Z", - "iopub.status.busy": "2024-09-06T19:33:39.037235Z", - "iopub.status.idle": "2024-09-06T19:33:39.148961Z", - "shell.execute_reply": "2024-09-06T19:33:39.148428Z" + "iopub.execute_input": "2024-09-26T14:47:40.857876Z", + "iopub.status.busy": "2024-09-26T14:47:40.857600Z", + "iopub.status.idle": "2024-09-26T14:47:40.971332Z", + "shell.execute_reply": "2024-09-26T14:47:40.970730Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.151080Z", - "iopub.status.busy": "2024-09-06T19:33:39.150801Z", - "iopub.status.idle": "2024-09-06T19:33:39.254384Z", - "shell.execute_reply": "2024-09-06T19:33:39.253890Z" + "iopub.execute_input": "2024-09-26T14:47:40.973220Z", + "iopub.status.busy": "2024-09-26T14:47:40.972870Z", + "iopub.status.idle": "2024-09-26T14:47:41.080277Z", + "shell.execute_reply": "2024-09-26T14:47:41.079768Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.256524Z", - "iopub.status.busy": "2024-09-06T19:33:39.256169Z", - "iopub.status.idle": "2024-09-06T19:33:39.357567Z", - "shell.execute_reply": "2024-09-06T19:33:39.356999Z" + "iopub.execute_input": "2024-09-26T14:47:41.082132Z", + "iopub.status.busy": "2024-09-26T14:47:41.081755Z", + "iopub.status.idle": "2024-09-26T14:47:41.187047Z", + "shell.execute_reply": "2024-09-26T14:47:41.186551Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.359754Z", - "iopub.status.busy": "2024-09-06T19:33:39.359388Z", - "iopub.status.idle": "2024-09-06T19:33:39.459179Z", - "shell.execute_reply": "2024-09-06T19:33:39.458626Z" + "iopub.execute_input": "2024-09-26T14:47:41.188688Z", + "iopub.status.busy": "2024-09-26T14:47:41.188508Z", + "iopub.status.idle": "2024-09-26T14:47:41.292182Z", + "shell.execute_reply": "2024-09-26T14:47:41.291705Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:39.461397Z", - "iopub.status.busy": "2024-09-06T19:33:39.461068Z", - "iopub.status.idle": "2024-09-06T19:33:39.464273Z", - "shell.execute_reply": "2024-09-06T19:33:39.463742Z" + "iopub.execute_input": "2024-09-26T14:47:41.294034Z", + "iopub.status.busy": "2024-09-26T14:47:41.293720Z", + "iopub.status.idle": "2024-09-26T14:47:41.297083Z", + "shell.execute_reply": "2024-09-26T14:47:41.296508Z" }, "nbsphinx": "hidden" }, @@ -1387,53 +1387,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08327f8f533f49bb8518d3413af11e27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d563179a4e534dd4b15465aa4a240b93", - "placeholder": "​", - "style": "IPY_MODEL_c0dd17ee1b414e0dbba6940c708a7553", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 169MB/s]" - } - }, - "0b18f93966c84db6bd40967285652faf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0dc2781328864c55a124d3ba0119a934": { + "04992c51b0da458e880d33ce9b344519": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1451,7 +1410,7 @@ "text_color": null } }, - "0e3467cf59954459ab486aee2ba9c3a5": { + "0ef4fd968d284787a6d3621ab522b0f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1504,7 +1463,7 @@ "width": null } }, - "10945e8601a446f2bb59fa1211f86f5b": { + "14d064897b934c9fa649860e4a0d136f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1557,69 +1516,30 @@ "width": null } }, - "132a82bf8c9844f59e250a9598747c76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "15a248e8576b4e1cace7306d79423606": { + "21a62ae51e6d4cf38d4e04afa3c63d08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f5000cf7d6a4079b14d5f3c666d8d9a", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c12a918e266b40caa2ad3eb5ba27297c", + "layout": "IPY_MODEL_b831f552387747248fdc25346996cacd", + "placeholder": "​", + "style": "IPY_MODEL_78c7d82d53664b95a386ec96a27b6453", "tabbable": null, "tooltip": null, - "value": 128619.0 - } - }, - "214135184cdb4c61851d09d4776b8681": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 15.9M/15.9M [00:00<00:00, 75.8MB/s]" } }, - "2741fbda14764533a6d7865887e84821": { + "2d3c1dc1060c4165802a43d8a1506254": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1672,7 +1592,46 @@ "width": null } }, - "2a2e0134b1234019be47ad459a2c7e6e": { + "2e538bcb8e2a4e88a9d22def0a5b4c06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34e4112c8e594ad7811823c85546de7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59de9bdd6b4e4c99946071c77765c06e", + "placeholder": "​", + "style": "IPY_MODEL_a77c2cc33dd84816aca2750dfa77985f", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 485kB/s]" + } + }, + "355467884efe4ca683c9294faddd8e67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1725,7 +1684,39 @@ "width": null } }, - "2a4a612a6d2846bca788bddf1043cc09": { + "367f32394edb4f978af0778e4a33a113": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3cf8422c429b489fa3609423681b6f05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4187151778314617bdd65072c0c39e18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1740,16 +1731,69 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_30eda8d6d1724ca0a98cb1391ef57cf4", - "IPY_MODEL_31da699ce27d4748a3b0908daaeff226", - "IPY_MODEL_c979e50a880a49aeaf6e580f1f3ff7e8" + "IPY_MODEL_6aef8917b0084643af4ba12c5101c4a0", + "IPY_MODEL_db99e931b4c94d2fb4385e2ccfaa8522", + "IPY_MODEL_21a62ae51e6d4cf38d4e04afa3c63d08" ], - "layout": "IPY_MODEL_e41b0c6637564566b921cc1987c4bf9a", + "layout": "IPY_MODEL_355467884efe4ca683c9294faddd8e67", "tabbable": null, "tooltip": null } }, - "30eda8d6d1724ca0a98cb1391ef57cf4": { + "419fb750a9174f9dbee80f1946cac5e2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "467e4df618db47e2aa4db7b4eeb1b07e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1764,15 +1808,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dd83345f7f5c46a38920bb555c0f6b9a", + "layout": "IPY_MODEL_0ef4fd968d284787a6d3621ab522b0f4", "placeholder": "​", - "style": "IPY_MODEL_0dc2781328864c55a124d3ba0119a934", + "style": "IPY_MODEL_fb8ea71a45ce49d1bc0bf64d3de435a1", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": " 129k/129k [00:00<00:00, 5.74MB/s]" } }, - "318a448eedbf4c68b4b67978734a1ae9": { + "4a0472fddab34db383019c14f53513c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1788,17 +1832,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e3467cf59954459ab486aee2ba9c3a5", - "max": 2041.0, + "layout": "IPY_MODEL_6801e67ee9a2448e90812fa8fea0d356", + "max": 128619.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6c036dfeb50042c8984a6a6692fc0f9b", + "style": "IPY_MODEL_c9789735e7aa44fb8c6bcf3f8ceeebf2", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 128619.0 } }, - "31da699ce27d4748a3b0908daaeff226": { + "54fd655fb2ea4e58ba287b8a699358a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1814,17 +1858,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c920632573cc4fe0976140070f9677ec", - "max": 15856877.0, + "layout": "IPY_MODEL_e7fc281836224420a165582ad5a1f00e", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b97eebf068ca4e9c85cbadbb4cc103c4", + "style": "IPY_MODEL_367f32394edb4f978af0778e4a33a113", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 16887676.0 } }, - "46e0a3db3d4b44aea458c9d15b1b45b8": { + "5704c0dc0c934dab903a45047e08bfa1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1877,30 +1921,7 @@ "width": null } }, - "4c2a6bff30b84735af3cf83ab6de7ddf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46e0a3db3d4b44aea458c9d15b1b45b8", - "placeholder": "​", - "style": "IPY_MODEL_b420c63e4f174bba8f48175457a23dfe", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 804kB/s]" - } - }, - "4c6822f78a694818a65c111aed9cd2c2": { + "59de9bdd6b4e4c99946071c77765c06e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,120 +1974,43 @@ "width": null } }, - "53dafb78e671406e89f3754d23b34684": { + "62b1b0b90a684d3488af171459b2e05b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ef0ba41ae31d4fca866f944d42378821", - "IPY_MODEL_318a448eedbf4c68b4b67978734a1ae9", - "IPY_MODEL_6fc0bc69349045329fcb28a46a2fe14b" - ], - "layout": "IPY_MODEL_2a2e0134b1234019be47ad459a2c7e6e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5aded6b96abc4bfebf8a38a3dcad2d6f": { + "67269dc6c7a64c2a85d31a7de8c68e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ba99fd178de4f25867b6e37949a6d85", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f321f0e3281b4b478dffcfb404472020", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "5ee4ab99d955426daf559df8bf71c44f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b4b3cc9f4e4c408998a1c0ebec86d5bc", - "IPY_MODEL_5aded6b96abc4bfebf8a38a3dcad2d6f", - "IPY_MODEL_4c2a6bff30b84735af3cf83ab6de7ddf" - ], - "layout": "IPY_MODEL_6eec35a271e4402b8f28109615706306", - "tabbable": null, - "tooltip": null - } - }, - "6a89c26dda78427781977305cd34e44b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f948f7fae2bd4b23b89c1a9f86de6cdc", - "placeholder": "​", - "style": "IPY_MODEL_0b18f93966c84db6bd40967285652faf", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "6c036dfeb50042c8984a6a6692fc0f9b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6eec35a271e4402b8f28109615706306": { + "6801e67ee9a2448e90812fa8fea0d356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2119,7 +2063,7 @@ "width": null } }, - "6fc0bc69349045329fcb28a46a2fe14b": { + "6aef8917b0084643af4ba12c5101c4a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2134,68 +2078,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2741fbda14764533a6d7865887e84821", + "layout": "IPY_MODEL_d12f8fa702da44f6b81f1b84c1c76383", "placeholder": "​", - "style": "IPY_MODEL_132a82bf8c9844f59e250a9598747c76", + "style": "IPY_MODEL_6cd21c0f3c7d4b668b81735903eedb1b", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" + "value": "classifier.ckpt: 100%" } }, - "700bb6482b2c4111b4ed9390c8470861": { - "model_module": "@jupyter-widgets/base", + "6cd21c0f3c7d4b668b81735903eedb1b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "701065566fa2417290be013d76599838": { + "73080f2ef1784e73947c31dfebce4e08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2248,7 +2157,7 @@ "width": null } }, - "71c1b39c84cf47b5a477e26da271fef9": { + "73e424d16cbf4e40ad3206856f075d5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2301,7 +2210,30 @@ "width": null } }, - "798cb5dd7eb545d5a4188e416dce6f88": { + "78baba5e6db44fa6a19c704bf00fb60c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f841644ac2b04256b2f3c4ad9a4db82f", + "placeholder": "​", + "style": "IPY_MODEL_67269dc6c7a64c2a85d31a7de8c68e5a", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "78c7d82d53664b95a386ec96a27b6453": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2319,7 +2251,31 @@ "text_color": null } }, - "7ba99fd178de4f25867b6e37949a6d85": { + "7aac7a5b86074e509ae85dca28a96569": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99009d85bc164733af718beec07a0dd3", + "IPY_MODEL_4a0472fddab34db383019c14f53513c2", + "IPY_MODEL_467e4df618db47e2aa4db7b4eeb1b07e" + ], + "layout": "IPY_MODEL_14d064897b934c9fa649860e4a0d136f", + "tabbable": null, + "tooltip": null + } + }, + "7f6ff60608894304be071471768422d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2372,7 +2328,31 @@ "width": null } }, - "7ca38434b4e44b5b86b173c7855b4ff3": { + "86394b0091ab4767834e877eb97c7f29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fdc61f1ca4794f988ad26aa36f51cded", + "IPY_MODEL_c26558f6f8394f7483fa04455db2ead3", + "IPY_MODEL_34e4112c8e594ad7811823c85546de7c" + ], + "layout": "IPY_MODEL_da43246f2ddc4df9968898f36b1bfc0c", + "tabbable": null, + "tooltip": null + } + }, + "89ca8bee4d29420391f60780a4e5bb37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2390,7 +2370,7 @@ "text_color": null } }, - "819ab4db9b9249cfb05199eec4ffe2ae": { + "8c24d36de7d04ba8a98dbc6243bffa1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2443,7 +2423,31 @@ "width": null } }, - "8b0da1e1f92449e49814a4792b3a0a18": { + "9001078dd11947c3b743e880d41d89e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_78baba5e6db44fa6a19c704bf00fb60c", + "IPY_MODEL_99c304eddb9d4f808e1444eda066b707", + "IPY_MODEL_be4a812783c5484dbde2feef6424ebe3" + ], + "layout": "IPY_MODEL_9198ec1e4cbc45a5bbf7c1f0e8976f79", + "tabbable": null, + "tooltip": null + } + }, + "9198ec1e4cbc45a5bbf7c1f0e8976f79": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2496,7 +2500,46 @@ "width": null } }, - "9a1d64682df846808b68e96652571971": { + "946fc47d18224c0287afaa056d02fa86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "99009d85bc164733af718beec07a0dd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_73080f2ef1784e73947c31dfebce4e08", + "placeholder": "​", + "style": "IPY_MODEL_fe5e77a095e54cad8e7f53fae0f07637", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "99c304eddb9d4f808e1444eda066b707": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2512,17 +2555,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8b0da1e1f92449e49814a4792b3a0a18", - "max": 16887676.0, + "layout": "IPY_MODEL_b67e2b3c22e243868a621e764d7615bd", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fa5d63111e8040c8a46a0ef606a7b541", + "style": "IPY_MODEL_3cf8422c429b489fa3609423681b6f05", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": 3201.0 } }, - "9f5000cf7d6a4079b14d5f3c666d8d9a": { + "a7073edae4e4487fb17ec295efaf2195": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2575,30 +2618,7 @@ "width": null } }, - "a79c4f7046b44587aab8c79e98299302": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_701065566fa2417290be013d76599838", - "placeholder": "​", - "style": "IPY_MODEL_798cb5dd7eb545d5a4188e416dce6f88", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "b420c63e4f174bba8f48175457a23dfe": { + "a77c2cc33dd84816aca2750dfa77985f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2616,30 +2636,31 @@ "text_color": null } }, - "b4b3cc9f4e4c408998a1c0ebec86d5bc": { + "aea522f486884287934824875f65568c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71c1b39c84cf47b5a477e26da271fef9", - "placeholder": "​", - "style": "IPY_MODEL_7ca38434b4e44b5b86b173c7855b4ff3", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e83d24db49ae4489ac3ce5c785ee2c56", + "IPY_MODEL_54fd655fb2ea4e58ba287b8a699358a4", + "IPY_MODEL_fb154ca6183045b2bcadfc5b92658f12" + ], + "layout": "IPY_MODEL_5704c0dc0c934dab903a45047e08bfa1", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "b8e950254c7c4bfc904715885aa32fa1": { + "b67e2b3c22e243868a621e764d7615bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2692,57 +2713,7 @@ "width": null } }, - "b97eebf068ca4e9c85cbadbb4cc103c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c0dd17ee1b414e0dbba6940c708a7553": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c12a918e266b40caa2ad3eb5ba27297c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c920632573cc4fe0976140070f9677ec": { + "b831f552387747248fdc25346996cacd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2795,7 +2766,7 @@ "width": null } }, - "c979e50a880a49aeaf6e580f1f3ff7e8": { + "be4a812783c5484dbde2feef6424ebe3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2810,15 +2781,75 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c6822f78a694818a65c111aed9cd2c2", + "layout": "IPY_MODEL_8c24d36de7d04ba8a98dbc6243bffa1e", "placeholder": "​", - "style": "IPY_MODEL_e3c6b0d1ab4745c796d69b14cb880bf5", + "style": "IPY_MODEL_c4f6d1fdbf7f4c11b3b58973c52c1d0d", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 212MB/s]" + "value": " 3.20k/3.20k [00:00<00:00, 792kB/s]" } }, - "d563179a4e534dd4b15465aa4a240b93": { + "c26558f6f8394f7483fa04455db2ead3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d3c1dc1060c4165802a43d8a1506254", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_946fc47d18224c0287afaa056d02fa86", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "c4f6d1fdbf7f4c11b3b58973c52c1d0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9789735e7aa44fb8c6bcf3f8ceeebf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d12f8fa702da44f6b81f1b84c1c76383": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2871,7 +2902,7 @@ "width": null } }, - "dd83345f7f5c46a38920bb555c0f6b9a": { + "da43246f2ddc4df9968898f36b1bfc0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,48 +2955,33 @@ "width": null } }, - "de328081cf5143bda2f18a1f732277b0": { + "db99e931b4c94d2fb4385e2ccfaa8522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_10945e8601a446f2bb59fa1211f86f5b", - "placeholder": "​", - "style": "IPY_MODEL_214135184cdb4c61851d09d4776b8681", + "layout": "IPY_MODEL_73e424d16cbf4e40ad3206856f075d5b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e538bcb8e2a4e88a9d22def0a5b4c06", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 24.4MB/s]" - } - }, - "e3c6b0d1ab4745c796d69b14cb880bf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "e41b0c6637564566b921cc1987c4bf9a": { + "e7fc281836224420a165582ad5a1f00e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3018,31 +3034,7 @@ "width": null } }, - "e4e9c1fa715d49009ec1097cf561d5f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6a89c26dda78427781977305cd34e44b", - "IPY_MODEL_9a1d64682df846808b68e96652571971", - "IPY_MODEL_08327f8f533f49bb8518d3413af11e27" - ], - "layout": "IPY_MODEL_819ab4db9b9249cfb05199eec4ffe2ae", - "tabbable": null, - "tooltip": null - } - }, - "ef0ba41ae31d4fca866f944d42378821": { + "e83d24db49ae4489ac3ce5c785ee2c56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3057,55 +3049,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_700bb6482b2c4111b4ed9390c8470861", + "layout": "IPY_MODEL_7f6ff60608894304be071471768422d5", "placeholder": "​", - "style": "IPY_MODEL_f9b3a44be9f34f6e93de758ee46b92ec", + "style": "IPY_MODEL_89ca8bee4d29420391f60780a4e5bb37", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "f321f0e3281b4b478dffcfb404472020": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f814d21bb5204a479acad09d629678fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a79c4f7046b44587aab8c79e98299302", - "IPY_MODEL_15a248e8576b4e1cace7306d79423606", - "IPY_MODEL_de328081cf5143bda2f18a1f732277b0" - ], - "layout": "IPY_MODEL_b8e950254c7c4bfc904715885aa32fa1", - "tabbable": null, - "tooltip": null + "value": "embedding_model.ckpt: 100%" } }, - "f948f7fae2bd4b23b89c1a9f86de6cdc": { + "f841644ac2b04256b2f3c4ad9a4db82f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3158,7 +3110,30 @@ "width": null } }, - "f9b3a44be9f34f6e93de758ee46b92ec": { + "fb154ca6183045b2bcadfc5b92658f12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7073edae4e4487fb17ec295efaf2195", + "placeholder": "​", + "style": "IPY_MODEL_62b1b0b90a684d3488af171459b2e05b", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 56.5MB/s]" + } + }, + "fb8ea71a45ce49d1bc0bf64d3de435a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3176,20 +3151,45 @@ "text_color": null } }, - "fa5d63111e8040c8a46a0ef606a7b541": { + "fdc61f1ca4794f988ad26aa36f51cded": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_419fb750a9174f9dbee80f1946cac5e2", + "placeholder": "​", + "style": "IPY_MODEL_04992c51b0da458e880d33ce9b344519", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "fe5e77a095e54cad8e7f53fae0f07637": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 5f0020f03..db4995cbb 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1295,7 +1295,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1570,7 +1570,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"ec547a92716a409bb8eb86bc364258c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba52f0b8569f404584f54443a28a0baf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4440624d361b4a39a470c6b36d42b8d3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ec547a92716a409bb8eb86bc364258c9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ba52f0b8569f404584f54443a28a0baf", "tabbable": null, "tooltip": null, "value": 132.0}}, "55ed31e23a4a443bbb5e734bb143d697": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd6266d59b69432181af01e5eb3c389d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "890c901184904e0883bb0bded31d86de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55ed31e23a4a443bbb5e734bb143d697", "placeholder": "\u200b", "style": "IPY_MODEL_fd6266d59b69432181af01e5eb3c389d", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "eae4cf97733c4548920387dc447b9d98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b84860876254aa29989a5bb614dca8d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e898dc9dd204b2f8ba985adc383a396": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eae4cf97733c4548920387dc447b9d98", "placeholder": "\u200b", "style": "IPY_MODEL_1b84860876254aa29989a5bb614dca8d", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713525.06\u2007examples/s]"}}, "94329361a5b3479e804741fa80c47e78": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8a80b5b1ace4f0e9399969281df7d06": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_890c901184904e0883bb0bded31d86de", "IPY_MODEL_4440624d361b4a39a470c6b36d42b8d3", "IPY_MODEL_8e898dc9dd204b2f8ba985adc383a396"], "layout": "IPY_MODEL_94329361a5b3479e804741fa80c47e78", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"ed4df9f1de274611a1946fa0e269d33e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e56307db7d2e450c9f2c4b97981eee9d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ec22ebaf4e91499784ef8ac8e966a147": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed4df9f1de274611a1946fa0e269d33e", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e56307db7d2e450c9f2c4b97981eee9d", "tabbable": null, "tooltip": null, "value": 132.0}}, "37952b8d6afc47f2b9ed08ee7e66d264": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da7692e003c04b5f8f1de02ea7e688c1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b144d01abdc746e495df91b32d9d09e8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_37952b8d6afc47f2b9ed08ee7e66d264", "placeholder": "\u200b", "style": "IPY_MODEL_da7692e003c04b5f8f1de02ea7e688c1", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "c51595d098f645f0a7967c34f586fa27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48eeb0e9ec1b440e9b49518e8338af15": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4567689e9ee49d28457ae1b5cdc262a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c51595d098f645f0a7967c34f586fa27", "placeholder": "\u200b", "style": "IPY_MODEL_48eeb0e9ec1b440e9b49518e8338af15", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711171.72\u2007examples/s]"}}, "9602309f72214bd0b17e007cb02789b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84640571afb64f84bab623cedce4b8ca": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b144d01abdc746e495df91b32d9d09e8", "IPY_MODEL_ec22ebaf4e91499784ef8ac8e966a147", "IPY_MODEL_f4567689e9ee49d28457ae1b5cdc262a"], "layout": "IPY_MODEL_9602309f72214bd0b17e007cb02789b7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 1028deca4..f581760ef 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:42.774016Z", - "iopub.status.busy": "2024-09-06T19:33:42.773836Z", - "iopub.status.idle": "2024-09-06T19:33:43.987649Z", - "shell.execute_reply": "2024-09-06T19:33:43.987087Z" + "iopub.execute_input": "2024-09-26T14:47:45.611697Z", + "iopub.status.busy": "2024-09-26T14:47:45.611515Z", + "iopub.status.idle": "2024-09-26T14:47:46.872000Z", + "shell.execute_reply": "2024-09-26T14:47:46.871368Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:43.990323Z", - "iopub.status.busy": "2024-09-06T19:33:43.989863Z", - "iopub.status.idle": "2024-09-06T19:33:43.992901Z", - "shell.execute_reply": "2024-09-06T19:33:43.992377Z" + "iopub.execute_input": "2024-09-26T14:47:46.874219Z", + "iopub.status.busy": "2024-09-26T14:47:46.873943Z", + "iopub.status.idle": "2024-09-26T14:47:46.877182Z", + "shell.execute_reply": "2024-09-26T14:47:46.876630Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:43.995557Z", - "iopub.status.busy": "2024-09-06T19:33:43.995114Z", - "iopub.status.idle": "2024-09-06T19:33:44.005313Z", - "shell.execute_reply": "2024-09-06T19:33:44.004712Z" + "iopub.execute_input": "2024-09-26T14:47:46.878965Z", + "iopub.status.busy": "2024-09-26T14:47:46.878784Z", + "iopub.status.idle": "2024-09-26T14:47:46.887523Z", + "shell.execute_reply": "2024-09-26T14:47:46.887072Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.007445Z", - "iopub.status.busy": "2024-09-06T19:33:44.007143Z", - "iopub.status.idle": "2024-09-06T19:33:44.012113Z", - "shell.execute_reply": "2024-09-06T19:33:44.011528Z" + "iopub.execute_input": "2024-09-26T14:47:46.889337Z", + "iopub.status.busy": "2024-09-26T14:47:46.889146Z", + "iopub.status.idle": "2024-09-26T14:47:46.893734Z", + "shell.execute_reply": "2024-09-26T14:47:46.893242Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.014273Z", - "iopub.status.busy": "2024-09-06T19:33:44.013973Z", - "iopub.status.idle": "2024-09-06T19:33:44.198978Z", - "shell.execute_reply": "2024-09-06T19:33:44.198432Z" + "iopub.execute_input": "2024-09-26T14:47:46.895681Z", + "iopub.status.busy": "2024-09-26T14:47:46.895273Z", + "iopub.status.idle": "2024-09-26T14:47:47.085029Z", + "shell.execute_reply": "2024-09-26T14:47:47.084376Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.201674Z", - "iopub.status.busy": "2024-09-06T19:33:44.201189Z", - "iopub.status.idle": "2024-09-06T19:33:44.572697Z", - "shell.execute_reply": "2024-09-06T19:33:44.572078Z" + "iopub.execute_input": "2024-09-26T14:47:47.087608Z", + "iopub.status.busy": "2024-09-26T14:47:47.087115Z", + "iopub.status.idle": "2024-09-26T14:47:47.421574Z", + "shell.execute_reply": "2024-09-26T14:47:47.420964Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.574957Z", - "iopub.status.busy": "2024-09-06T19:33:44.574618Z", - "iopub.status.idle": "2024-09-06T19:33:44.598417Z", - "shell.execute_reply": "2024-09-06T19:33:44.597853Z" + "iopub.execute_input": "2024-09-26T14:47:47.423413Z", + "iopub.status.busy": "2024-09-26T14:47:47.423220Z", + "iopub.status.idle": "2024-09-26T14:47:47.447494Z", + "shell.execute_reply": "2024-09-26T14:47:47.447007Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.600565Z", - "iopub.status.busy": "2024-09-06T19:33:44.600242Z", - "iopub.status.idle": "2024-09-06T19:33:44.611542Z", - "shell.execute_reply": "2024-09-06T19:33:44.611124Z" + "iopub.execute_input": "2024-09-26T14:47:47.449677Z", + "iopub.status.busy": "2024-09-26T14:47:47.449174Z", + "iopub.status.idle": "2024-09-26T14:47:47.542304Z", + "shell.execute_reply": "2024-09-26T14:47:47.541668Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:44.613571Z", - "iopub.status.busy": "2024-09-06T19:33:44.613277Z", - "iopub.status.idle": "2024-09-06T19:33:46.668917Z", - "shell.execute_reply": "2024-09-06T19:33:46.668293Z" + "iopub.execute_input": "2024-09-26T14:47:47.544443Z", + "iopub.status.busy": "2024-09-26T14:47:47.544249Z", + "iopub.status.idle": "2024-09-26T14:47:49.580917Z", + "shell.execute_reply": "2024-09-26T14:47:49.580350Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.671429Z", - "iopub.status.busy": "2024-09-06T19:33:46.670969Z", - "iopub.status.idle": "2024-09-06T19:33:46.692283Z", - "shell.execute_reply": "2024-09-06T19:33:46.691706Z" + "iopub.execute_input": "2024-09-26T14:47:49.583198Z", + "iopub.status.busy": "2024-09-26T14:47:49.582700Z", + "iopub.status.idle": "2024-09-26T14:47:49.606247Z", + "shell.execute_reply": "2024-09-26T14:47:49.605757Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.694643Z", - "iopub.status.busy": "2024-09-06T19:33:46.694120Z", - "iopub.status.idle": "2024-09-06T19:33:46.711969Z", - "shell.execute_reply": "2024-09-06T19:33:46.711526Z" + "iopub.execute_input": "2024-09-26T14:47:49.608105Z", + "iopub.status.busy": "2024-09-26T14:47:49.607920Z", + "iopub.status.idle": "2024-09-26T14:47:49.626258Z", + "shell.execute_reply": "2024-09-26T14:47:49.625780Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.713865Z", - "iopub.status.busy": "2024-09-06T19:33:46.713694Z", - "iopub.status.idle": "2024-09-06T19:33:46.728067Z", - "shell.execute_reply": "2024-09-06T19:33:46.727609Z" + "iopub.execute_input": "2024-09-26T14:47:49.628144Z", + "iopub.status.busy": "2024-09-26T14:47:49.627801Z", + "iopub.status.idle": "2024-09-26T14:47:49.641555Z", + "shell.execute_reply": "2024-09-26T14:47:49.641075Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.729970Z", - "iopub.status.busy": "2024-09-06T19:33:46.729797Z", - "iopub.status.idle": "2024-09-06T19:33:46.748313Z", - "shell.execute_reply": "2024-09-06T19:33:46.747746Z" + "iopub.execute_input": "2024-09-26T14:47:49.643368Z", + "iopub.status.busy": "2024-09-26T14:47:49.643024Z", + "iopub.status.idle": "2024-09-26T14:47:49.664797Z", + "shell.execute_reply": "2024-09-26T14:47:49.664316Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8a80b5b1ace4f0e9399969281df7d06", + "model_id": "84640571afb64f84bab623cedce4b8ca", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.750540Z", - "iopub.status.busy": "2024-09-06T19:33:46.750202Z", - "iopub.status.idle": "2024-09-06T19:33:46.765277Z", - "shell.execute_reply": "2024-09-06T19:33:46.764810Z" + "iopub.execute_input": "2024-09-26T14:47:49.666763Z", + "iopub.status.busy": "2024-09-26T14:47:49.666313Z", + "iopub.status.idle": "2024-09-26T14:47:49.681745Z", + "shell.execute_reply": "2024-09-26T14:47:49.681144Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.767376Z", - "iopub.status.busy": "2024-09-06T19:33:46.767048Z", - "iopub.status.idle": "2024-09-06T19:33:46.772946Z", - "shell.execute_reply": "2024-09-06T19:33:46.772447Z" + "iopub.execute_input": "2024-09-26T14:47:49.683800Z", + "iopub.status.busy": "2024-09-26T14:47:49.683338Z", + "iopub.status.idle": "2024-09-26T14:47:49.689263Z", + "shell.execute_reply": "2024-09-26T14:47:49.688776Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:46.774871Z", - "iopub.status.busy": "2024-09-06T19:33:46.774606Z", - "iopub.status.idle": "2024-09-06T19:33:46.792743Z", - "shell.execute_reply": "2024-09-06T19:33:46.792272Z" + "iopub.execute_input": "2024-09-26T14:47:49.691065Z", + "iopub.status.busy": "2024-09-26T14:47:49.690751Z", + "iopub.status.idle": "2024-09-26T14:47:49.709104Z", + "shell.execute_reply": "2024-09-26T14:47:49.708511Z" } }, "outputs": [ @@ -1437,7 +1437,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "vscode": { "interpreter": { @@ -1447,51 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b84860876254aa29989a5bb614dca8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4440624d361b4a39a470c6b36d42b8d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ec547a92716a409bb8eb86bc364258c9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ba52f0b8569f404584f54443a28a0baf", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "55ed31e23a4a443bbb5e734bb143d697": { + "37952b8d6afc47f2b9ed08ee7e66d264": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1544,53 +1500,49 @@ "width": null } }, - "890c901184904e0883bb0bded31d86de": { + "48eeb0e9ec1b440e9b49518e8338af15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55ed31e23a4a443bbb5e734bb143d697", - "placeholder": "​", - "style": "IPY_MODEL_fd6266d59b69432181af01e5eb3c389d", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8e898dc9dd204b2f8ba985adc383a396": { + "84640571afb64f84bab623cedce4b8ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eae4cf97733c4548920387dc447b9d98", - "placeholder": "​", - "style": "IPY_MODEL_1b84860876254aa29989a5bb614dca8d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b144d01abdc746e495df91b32d9d09e8", + "IPY_MODEL_ec22ebaf4e91499784ef8ac8e966a147", + "IPY_MODEL_f4567689e9ee49d28457ae1b5cdc262a" + ], + "layout": "IPY_MODEL_9602309f72214bd0b17e007cb02789b7", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13525.06 examples/s]" + "tooltip": null } }, - "94329361a5b3479e804741fa80c47e78": { + "9602309f72214bd0b17e007cb02789b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1643,47 +1595,30 @@ "width": null } }, - "ba52f0b8569f404584f54443a28a0baf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8a80b5b1ace4f0e9399969281df7d06": { + "b144d01abdc746e495df91b32d9d09e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_890c901184904e0883bb0bded31d86de", - "IPY_MODEL_4440624d361b4a39a470c6b36d42b8d3", - "IPY_MODEL_8e898dc9dd204b2f8ba985adc383a396" - ], - "layout": "IPY_MODEL_94329361a5b3479e804741fa80c47e78", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_37952b8d6afc47f2b9ed08ee7e66d264", + "placeholder": "​", + "style": "IPY_MODEL_da7692e003c04b5f8f1de02ea7e688c1", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "eae4cf97733c4548920387dc447b9d98": { + "c51595d098f645f0a7967c34f586fa27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1671,67 @@ "width": null } }, - "ec547a92716a409bb8eb86bc364258c9": { + "da7692e003c04b5f8f1de02ea7e688c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e56307db7d2e450c9f2c4b97981eee9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec22ebaf4e91499784ef8ac8e966a147": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed4df9f1de274611a1946fa0e269d33e", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e56307db7d2e450c9f2c4b97981eee9d", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "ed4df9f1de274611a1946fa0e269d33e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,22 +1784,27 @@ "width": null } }, - "fd6266d59b69432181af01e5eb3c389d": { + "f4567689e9ee49d28457ae1b5cdc262a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c51595d098f645f0a7967c34f586fa27", + "placeholder": "​", + "style": "IPY_MODEL_48eeb0e9ec1b440e9b49518e8338af15", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11171.72 examples/s]" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index a75ce5d83..767bffe7d 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:49.692668Z", - "iopub.status.busy": "2024-09-06T19:33:49.692505Z", - "iopub.status.idle": "2024-09-06T19:33:50.890931Z", - "shell.execute_reply": "2024-09-06T19:33:50.890368Z" + "iopub.execute_input": "2024-09-26T14:47:52.531871Z", + "iopub.status.busy": "2024-09-26T14:47:52.531690Z", + "iopub.status.idle": "2024-09-26T14:47:53.801759Z", + "shell.execute_reply": "2024-09-26T14:47:53.801164Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:50.893481Z", - "iopub.status.busy": "2024-09-06T19:33:50.892976Z", - "iopub.status.idle": "2024-09-06T19:33:50.895994Z", - "shell.execute_reply": "2024-09-06T19:33:50.895546Z" + "iopub.execute_input": "2024-09-26T14:47:53.804080Z", + "iopub.status.busy": "2024-09-26T14:47:53.803489Z", + "iopub.status.idle": "2024-09-26T14:47:53.806671Z", + "shell.execute_reply": "2024-09-26T14:47:53.806214Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:50.898095Z", - "iopub.status.busy": "2024-09-06T19:33:50.897919Z", - "iopub.status.idle": "2024-09-06T19:33:50.907050Z", - "shell.execute_reply": "2024-09-06T19:33:50.906577Z" + "iopub.execute_input": "2024-09-26T14:47:53.808602Z", + "iopub.status.busy": "2024-09-26T14:47:53.808274Z", + "iopub.status.idle": "2024-09-26T14:47:53.817439Z", + "shell.execute_reply": "2024-09-26T14:47:53.816846Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:50.908860Z", - "iopub.status.busy": "2024-09-06T19:33:50.908672Z", - "iopub.status.idle": "2024-09-06T19:33:50.913284Z", - "shell.execute_reply": "2024-09-06T19:33:50.912693Z" + "iopub.execute_input": "2024-09-26T14:47:53.819218Z", + "iopub.status.busy": "2024-09-26T14:47:53.818813Z", + "iopub.status.idle": "2024-09-26T14:47:53.823869Z", + "shell.execute_reply": "2024-09-26T14:47:53.823416Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:50.915417Z", - "iopub.status.busy": "2024-09-06T19:33:50.915238Z", - "iopub.status.idle": "2024-09-06T19:33:51.099306Z", - "shell.execute_reply": "2024-09-06T19:33:51.098789Z" + "iopub.execute_input": "2024-09-26T14:47:53.825624Z", + "iopub.status.busy": "2024-09-26T14:47:53.825446Z", + "iopub.status.idle": "2024-09-26T14:47:54.012981Z", + "shell.execute_reply": "2024-09-26T14:47:54.012359Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:51.101790Z", - "iopub.status.busy": "2024-09-06T19:33:51.101450Z", - "iopub.status.idle": "2024-09-06T19:33:51.473593Z", - "shell.execute_reply": "2024-09-06T19:33:51.473003Z" + "iopub.execute_input": "2024-09-26T14:47:54.015114Z", + "iopub.status.busy": "2024-09-26T14:47:54.014923Z", + "iopub.status.idle": "2024-09-26T14:47:54.396149Z", + "shell.execute_reply": "2024-09-26T14:47:54.395584Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:51.475866Z", - "iopub.status.busy": "2024-09-06T19:33:51.475414Z", - "iopub.status.idle": "2024-09-06T19:33:51.478399Z", - "shell.execute_reply": "2024-09-06T19:33:51.477816Z" + "iopub.execute_input": "2024-09-26T14:47:54.398064Z", + "iopub.status.busy": "2024-09-26T14:47:54.397698Z", + "iopub.status.idle": "2024-09-26T14:47:54.400577Z", + "shell.execute_reply": "2024-09-26T14:47:54.400116Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:51.480745Z", - "iopub.status.busy": "2024-09-06T19:33:51.480341Z", - "iopub.status.idle": "2024-09-06T19:33:51.514306Z", - "shell.execute_reply": "2024-09-06T19:33:51.513859Z" + "iopub.execute_input": "2024-09-26T14:47:54.402366Z", + "iopub.status.busy": "2024-09-26T14:47:54.402019Z", + "iopub.status.idle": "2024-09-26T14:47:54.437650Z", + "shell.execute_reply": "2024-09-26T14:47:54.437009Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:51.516441Z", - "iopub.status.busy": "2024-09-06T19:33:51.516020Z", - "iopub.status.idle": "2024-09-06T19:33:53.590850Z", - "shell.execute_reply": "2024-09-06T19:33:53.590263Z" + "iopub.execute_input": "2024-09-26T14:47:54.439903Z", + "iopub.status.busy": "2024-09-26T14:47:54.439564Z", + "iopub.status.idle": "2024-09-26T14:47:56.611360Z", + "shell.execute_reply": "2024-09-26T14:47:56.610777Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.593403Z", - "iopub.status.busy": "2024-09-06T19:33:53.592894Z", - "iopub.status.idle": "2024-09-06T19:33:53.611543Z", - "shell.execute_reply": "2024-09-06T19:33:53.610984Z" + "iopub.execute_input": "2024-09-26T14:47:56.613533Z", + "iopub.status.busy": "2024-09-26T14:47:56.612962Z", + "iopub.status.idle": "2024-09-26T14:47:56.632035Z", + "shell.execute_reply": "2024-09-26T14:47:56.631583Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.613666Z", - "iopub.status.busy": "2024-09-06T19:33:53.613354Z", - "iopub.status.idle": "2024-09-06T19:33:53.619845Z", - "shell.execute_reply": "2024-09-06T19:33:53.619296Z" + "iopub.execute_input": "2024-09-26T14:47:56.633836Z", + "iopub.status.busy": "2024-09-26T14:47:56.633486Z", + "iopub.status.idle": "2024-09-26T14:47:56.639903Z", + "shell.execute_reply": "2024-09-26T14:47:56.639463Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.621866Z", - "iopub.status.busy": "2024-09-06T19:33:53.621559Z", - "iopub.status.idle": "2024-09-06T19:33:53.628504Z", - "shell.execute_reply": "2024-09-06T19:33:53.627959Z" + "iopub.execute_input": "2024-09-26T14:47:56.641707Z", + "iopub.status.busy": "2024-09-26T14:47:56.641368Z", + "iopub.status.idle": "2024-09-26T14:47:56.647367Z", + "shell.execute_reply": "2024-09-26T14:47:56.646803Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.630721Z", - "iopub.status.busy": "2024-09-06T19:33:53.630404Z", - "iopub.status.idle": "2024-09-06T19:33:53.640976Z", - "shell.execute_reply": "2024-09-06T19:33:53.640522Z" + "iopub.execute_input": "2024-09-26T14:47:56.649030Z", + "iopub.status.busy": "2024-09-26T14:47:56.648855Z", + "iopub.status.idle": "2024-09-26T14:47:56.659402Z", + "shell.execute_reply": "2024-09-26T14:47:56.658957Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.643037Z", - "iopub.status.busy": "2024-09-06T19:33:53.642719Z", - "iopub.status.idle": "2024-09-06T19:33:53.651678Z", - "shell.execute_reply": "2024-09-06T19:33:53.651115Z" + "iopub.execute_input": "2024-09-26T14:47:56.661038Z", + "iopub.status.busy": "2024-09-26T14:47:56.660772Z", + "iopub.status.idle": "2024-09-26T14:47:56.669970Z", + "shell.execute_reply": "2024-09-26T14:47:56.669408Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.653852Z", - "iopub.status.busy": "2024-09-06T19:33:53.653447Z", - "iopub.status.idle": "2024-09-06T19:33:53.660374Z", - "shell.execute_reply": "2024-09-06T19:33:53.659816Z" + "iopub.execute_input": "2024-09-26T14:47:56.671720Z", + "iopub.status.busy": "2024-09-26T14:47:56.671331Z", + "iopub.status.idle": "2024-09-26T14:47:56.678074Z", + "shell.execute_reply": "2024-09-26T14:47:56.677629Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.662428Z", - "iopub.status.busy": "2024-09-06T19:33:53.662108Z", - "iopub.status.idle": "2024-09-06T19:33:53.671181Z", - "shell.execute_reply": "2024-09-06T19:33:53.670717Z" + "iopub.execute_input": "2024-09-26T14:47:56.679875Z", + "iopub.status.busy": "2024-09-26T14:47:56.679423Z", + "iopub.status.idle": "2024-09-26T14:47:56.689042Z", + "shell.execute_reply": "2024-09-26T14:47:56.688474Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:53.673080Z", - "iopub.status.busy": "2024-09-06T19:33:53.672905Z", - "iopub.status.idle": "2024-09-06T19:33:53.689334Z", - "shell.execute_reply": "2024-09-06T19:33:53.688736Z" + "iopub.execute_input": "2024-09-26T14:47:56.690832Z", + "iopub.status.busy": "2024-09-26T14:47:56.690435Z", + "iopub.status.idle": "2024-09-26T14:47:56.707572Z", + "shell.execute_reply": "2024-09-26T14:47:56.706989Z" }, "nbsphinx": "hidden" }, @@ -1648,7 +1648,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "vscode": { "interpreter": { diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 116c9e30a..832682f21 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -731,31 +731,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1068,7 +1068,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1100,7 +1100,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1132,7 +1132,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2046,35 +2046,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2102,7 +2102,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index d0e19982d..81904fb5e 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:56.342254Z", - "iopub.status.busy": "2024-09-06T19:33:56.341754Z", - "iopub.status.idle": "2024-09-06T19:33:59.356819Z", - "shell.execute_reply": "2024-09-06T19:33:59.356183Z" + "iopub.execute_input": "2024-09-26T14:47:59.485196Z", + "iopub.status.busy": "2024-09-26T14:47:59.485011Z", + "iopub.status.idle": "2024-09-26T14:48:02.622875Z", + "shell.execute_reply": "2024-09-26T14:48:02.622306Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:59.359528Z", - "iopub.status.busy": "2024-09-06T19:33:59.359236Z", - "iopub.status.idle": "2024-09-06T19:33:59.363077Z", - "shell.execute_reply": "2024-09-06T19:33:59.362504Z" + "iopub.execute_input": "2024-09-26T14:48:02.625172Z", + "iopub.status.busy": "2024-09-26T14:48:02.624685Z", + "iopub.status.idle": "2024-09-26T14:48:02.628360Z", + "shell.execute_reply": "2024-09-26T14:48:02.627898Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:33:59.365205Z", - "iopub.status.busy": "2024-09-06T19:33:59.364886Z", - "iopub.status.idle": "2024-09-06T19:34:04.314293Z", - "shell.execute_reply": "2024-09-06T19:34:04.313807Z" + "iopub.execute_input": "2024-09-26T14:48:02.630127Z", + "iopub.status.busy": "2024-09-26T14:48:02.629815Z", + "iopub.status.idle": "2024-09-26T14:48:05.745420Z", + "shell.execute_reply": "2024-09-26T14:48:05.744938Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7bcf07287e5846bcade12829a0129e5a", + "model_id": "517b83c613bb49c9ab0cd319caf77fa4", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3273abc0b1474d17ad8e620a0b9cd685", + "model_id": "157b0b5de92c4dd39861100e0048c0b7", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "468f054b84de4a46abae17b5d6030a66", + "model_id": "dc9f46273db144d982f466b186d6ea8d", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "85a6da0e361d4bb78dac486525795dad", + "model_id": "77e4c9ec41b8452c8963af0b77b5555f", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16923bdba0af47908931030b52eaedca", + "model_id": "cd9cd1e986f74424b60db3510b43826d", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:04.316479Z", - "iopub.status.busy": "2024-09-06T19:34:04.316130Z", - "iopub.status.idle": "2024-09-06T19:34:04.319984Z", - "shell.execute_reply": "2024-09-06T19:34:04.319538Z" + "iopub.execute_input": "2024-09-26T14:48:05.747100Z", + "iopub.status.busy": "2024-09-26T14:48:05.746916Z", + "iopub.status.idle": "2024-09-26T14:48:05.750921Z", + "shell.execute_reply": "2024-09-26T14:48:05.750358Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:04.321997Z", - "iopub.status.busy": "2024-09-06T19:34:04.321665Z", - "iopub.status.idle": "2024-09-06T19:34:15.824023Z", - "shell.execute_reply": "2024-09-06T19:34:15.823467Z" + "iopub.execute_input": "2024-09-26T14:48:05.752502Z", + "iopub.status.busy": "2024-09-26T14:48:05.752202Z", + "iopub.status.idle": "2024-09-26T14:48:17.148896Z", + "shell.execute_reply": "2024-09-26T14:48:17.148237Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bfcb4b6339d14370bc404a61e757edfd", + "model_id": "5e114e4103d94679910f2192af574f94", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:15.826734Z", - "iopub.status.busy": "2024-09-06T19:34:15.826342Z", - "iopub.status.idle": "2024-09-06T19:34:34.591212Z", - "shell.execute_reply": "2024-09-06T19:34:34.590672Z" + "iopub.execute_input": "2024-09-26T14:48:17.151191Z", + "iopub.status.busy": "2024-09-26T14:48:17.150948Z", + "iopub.status.idle": "2024-09-26T14:48:35.261693Z", + "shell.execute_reply": "2024-09-26T14:48:35.261069Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:34.593912Z", - "iopub.status.busy": "2024-09-06T19:34:34.593533Z", - "iopub.status.idle": "2024-09-06T19:34:34.599439Z", - "shell.execute_reply": "2024-09-06T19:34:34.598956Z" + "iopub.execute_input": "2024-09-26T14:48:35.264037Z", + "iopub.status.busy": "2024-09-26T14:48:35.263651Z", + "iopub.status.idle": "2024-09-26T14:48:35.269633Z", + "shell.execute_reply": "2024-09-26T14:48:35.269145Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:34.601473Z", - "iopub.status.busy": "2024-09-06T19:34:34.601136Z", - "iopub.status.idle": "2024-09-06T19:34:34.604946Z", - "shell.execute_reply": "2024-09-06T19:34:34.604479Z" + "iopub.execute_input": "2024-09-26T14:48:35.271336Z", + "iopub.status.busy": "2024-09-26T14:48:35.270995Z", + "iopub.status.idle": "2024-09-26T14:48:35.274864Z", + "shell.execute_reply": "2024-09-26T14:48:35.274455Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:34.607009Z", - "iopub.status.busy": "2024-09-06T19:34:34.606678Z", - "iopub.status.idle": "2024-09-06T19:34:34.615441Z", - "shell.execute_reply": "2024-09-06T19:34:34.614962Z" + "iopub.execute_input": "2024-09-26T14:48:35.276663Z", + "iopub.status.busy": "2024-09-26T14:48:35.276341Z", + "iopub.status.idle": "2024-09-26T14:48:35.285167Z", + "shell.execute_reply": "2024-09-26T14:48:35.284719Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:34.617637Z", - "iopub.status.busy": "2024-09-06T19:34:34.617189Z", - "iopub.status.idle": "2024-09-06T19:34:34.644027Z", - "shell.execute_reply": "2024-09-06T19:34:34.643475Z" + "iopub.execute_input": "2024-09-26T14:48:35.286904Z", + "iopub.status.busy": "2024-09-26T14:48:35.286584Z", + "iopub.status.idle": "2024-09-26T14:48:35.314453Z", + "shell.execute_reply": "2024-09-26T14:48:35.313973Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:34:34.646190Z", - "iopub.status.busy": "2024-09-06T19:34:34.645869Z", - "iopub.status.idle": "2024-09-06T19:35:07.856682Z", - "shell.execute_reply": "2024-09-06T19:35:07.856077Z" + "iopub.execute_input": "2024-09-26T14:48:35.316272Z", + "iopub.status.busy": "2024-09-26T14:48:35.315932Z", + "iopub.status.idle": "2024-09-26T14:49:09.563750Z", + "shell.execute_reply": "2024-09-26T14:49:09.563113Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.923\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.965\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.597\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.763\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "60b6605a27b343f3a046b38e2ee92eb3", + "model_id": "8c99cd03c2204dd69d220e1911ef407b", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "328179309f4646028e9f8909eefb6c74", + "model_id": "ccc0d279330845b8b34f60a57e76743f", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.922\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.062\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.912\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.901\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "958c94ac86804e8fbd31685a6f87d389", + "model_id": "c01e10af9cd04c4c90430d0afbaa6da0", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "593399f7ed16479cabf5d6887e2046b5", + "model_id": "60160531292f49f6912a5e7fa5c1cd4a", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.879\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.009\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.556\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.800\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0a3d18201bb14d5c9e73af43adbe2cd8", + "model_id": "e20ec2fb456e4bb9bfb446110e53d341", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cef86182d7ef449481f59dfea70aa34a", + "model_id": "9c97151f1d7f4a49a3e2278cddb3c604", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:35:07.859270Z", - "iopub.status.busy": "2024-09-06T19:35:07.859022Z", - "iopub.status.idle": "2024-09-06T19:35:07.875302Z", - "shell.execute_reply": "2024-09-06T19:35:07.874880Z" + "iopub.execute_input": "2024-09-26T14:49:09.565771Z", + "iopub.status.busy": "2024-09-26T14:49:09.565547Z", + "iopub.status.idle": "2024-09-26T14:49:09.582928Z", + "shell.execute_reply": "2024-09-26T14:49:09.582459Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:35:07.877195Z", - "iopub.status.busy": "2024-09-06T19:35:07.877017Z", - "iopub.status.idle": "2024-09-06T19:35:08.338418Z", - "shell.execute_reply": "2024-09-06T19:35:08.337844Z" + "iopub.execute_input": "2024-09-26T14:49:09.584801Z", + "iopub.status.busy": "2024-09-26T14:49:09.584617Z", + "iopub.status.idle": "2024-09-26T14:49:10.073024Z", + "shell.execute_reply": "2024-09-26T14:49:10.072472Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:35:08.340738Z", - "iopub.status.busy": "2024-09-06T19:35:08.340554Z", - "iopub.status.idle": "2024-09-06T19:36:59.451053Z", - "shell.execute_reply": "2024-09-06T19:36:59.450444Z" + "iopub.execute_input": "2024-09-26T14:49:10.074957Z", + "iopub.status.busy": "2024-09-26T14:49:10.074773Z", + "iopub.status.idle": "2024-09-26T14:51:03.811106Z", + "shell.execute_reply": "2024-09-26T14:51:03.810393Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b8c0903ec57a4db09eef7c66d76ad798", + "model_id": "48ba164541954d109266e55290018b2b", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:36:59.453745Z", - "iopub.status.busy": "2024-09-06T19:36:59.453098Z", - "iopub.status.idle": "2024-09-06T19:36:59.910431Z", - "shell.execute_reply": "2024-09-06T19:36:59.909867Z" + "iopub.execute_input": "2024-09-26T14:51:03.813379Z", + "iopub.status.busy": "2024-09-26T14:51:03.812973Z", + "iopub.status.idle": "2024-09-26T14:51:04.287434Z", + "shell.execute_reply": "2024-09-26T14:51:04.286542Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:36:59.913045Z", - "iopub.status.busy": "2024-09-06T19:36:59.912484Z", - "iopub.status.idle": "2024-09-06T19:36:59.974160Z", - "shell.execute_reply": "2024-09-06T19:36:59.973682Z" + "iopub.execute_input": "2024-09-26T14:51:04.289772Z", + "iopub.status.busy": "2024-09-26T14:51:04.289550Z", + "iopub.status.idle": "2024-09-26T14:51:04.352405Z", + "shell.execute_reply": "2024-09-26T14:51:04.351866Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:36:59.976368Z", - "iopub.status.busy": "2024-09-06T19:36:59.976019Z", - "iopub.status.idle": "2024-09-06T19:36:59.984805Z", - "shell.execute_reply": "2024-09-06T19:36:59.984360Z" + "iopub.execute_input": "2024-09-26T14:51:04.354105Z", + "iopub.status.busy": "2024-09-26T14:51:04.353929Z", + "iopub.status.idle": "2024-09-26T14:51:04.362590Z", + "shell.execute_reply": "2024-09-26T14:51:04.362148Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:36:59.986926Z", - "iopub.status.busy": "2024-09-06T19:36:59.986597Z", - "iopub.status.idle": "2024-09-06T19:36:59.991039Z", - "shell.execute_reply": "2024-09-06T19:36:59.990559Z" + "iopub.execute_input": "2024-09-26T14:51:04.364304Z", + "iopub.status.busy": "2024-09-26T14:51:04.364127Z", + "iopub.status.idle": "2024-09-26T14:51:04.368705Z", + "shell.execute_reply": "2024-09-26T14:51:04.368265Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:36:59.992932Z", - "iopub.status.busy": "2024-09-06T19:36:59.992715Z", - "iopub.status.idle": "2024-09-06T19:37:00.505081Z", - "shell.execute_reply": "2024-09-06T19:37:00.504451Z" + "iopub.execute_input": "2024-09-26T14:51:04.370241Z", + "iopub.status.busy": "2024-09-26T14:51:04.370067Z", + "iopub.status.idle": "2024-09-26T14:51:04.889724Z", + "shell.execute_reply": "2024-09-26T14:51:04.889048Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:00.507663Z", - "iopub.status.busy": "2024-09-06T19:37:00.507293Z", - "iopub.status.idle": "2024-09-06T19:37:00.516488Z", - "shell.execute_reply": "2024-09-06T19:37:00.515888Z" + "iopub.execute_input": "2024-09-26T14:51:04.892026Z", + "iopub.status.busy": "2024-09-26T14:51:04.891753Z", + "iopub.status.idle": "2024-09-26T14:51:04.901156Z", + "shell.execute_reply": "2024-09-26T14:51:04.900641Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:00.518970Z", - "iopub.status.busy": "2024-09-06T19:37:00.518520Z", - "iopub.status.idle": "2024-09-06T19:37:00.525985Z", - "shell.execute_reply": "2024-09-06T19:37:00.525525Z" + "iopub.execute_input": "2024-09-26T14:51:04.903329Z", + "iopub.status.busy": "2024-09-26T14:51:04.902914Z", + "iopub.status.idle": "2024-09-26T14:51:04.911571Z", + "shell.execute_reply": "2024-09-26T14:51:04.910975Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:00.528061Z", - "iopub.status.busy": "2024-09-06T19:37:00.527749Z", - "iopub.status.idle": "2024-09-06T19:37:00.996315Z", - "shell.execute_reply": "2024-09-06T19:37:00.995664Z" + "iopub.execute_input": "2024-09-26T14:51:04.913701Z", + "iopub.status.busy": "2024-09-26T14:51:04.913094Z", + "iopub.status.idle": "2024-09-26T14:51:05.388394Z", + "shell.execute_reply": "2024-09-26T14:51:05.387783Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:00.998663Z", - "iopub.status.busy": "2024-09-06T19:37:00.998226Z", - "iopub.status.idle": "2024-09-06T19:37:01.014613Z", - "shell.execute_reply": "2024-09-06T19:37:01.014119Z" + "iopub.execute_input": "2024-09-26T14:51:05.390453Z", + "iopub.status.busy": "2024-09-26T14:51:05.390012Z", + "iopub.status.idle": "2024-09-26T14:51:05.406956Z", + "shell.execute_reply": "2024-09-26T14:51:05.406349Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:01.016951Z", - "iopub.status.busy": "2024-09-06T19:37:01.016496Z", - "iopub.status.idle": "2024-09-06T19:37:01.022189Z", - "shell.execute_reply": "2024-09-06T19:37:01.021616Z" + "iopub.execute_input": "2024-09-26T14:51:05.408881Z", + "iopub.status.busy": "2024-09-26T14:51:05.408597Z", + "iopub.status.idle": "2024-09-26T14:51:05.415372Z", + "shell.execute_reply": "2024-09-26T14:51:05.414805Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:01.024335Z", - "iopub.status.busy": "2024-09-06T19:37:01.024003Z", - "iopub.status.idle": "2024-09-06T19:37:01.818216Z", - "shell.execute_reply": "2024-09-06T19:37:01.817601Z" + "iopub.execute_input": "2024-09-26T14:51:05.417178Z", + "iopub.status.busy": "2024-09-26T14:51:05.416863Z", + "iopub.status.idle": "2024-09-26T14:51:06.140962Z", + "shell.execute_reply": "2024-09-26T14:51:06.140485Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:01.821086Z", - "iopub.status.busy": "2024-09-06T19:37:01.820573Z", - "iopub.status.idle": "2024-09-06T19:37:01.831141Z", - "shell.execute_reply": "2024-09-06T19:37:01.830605Z" + "iopub.execute_input": "2024-09-26T14:51:06.143001Z", + "iopub.status.busy": "2024-09-26T14:51:06.142640Z", + "iopub.status.idle": "2024-09-26T14:51:06.151972Z", + "shell.execute_reply": "2024-09-26T14:51:06.151393Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:01.833972Z", - "iopub.status.busy": "2024-09-06T19:37:01.833571Z", - "iopub.status.idle": "2024-09-06T19:37:01.839439Z", - "shell.execute_reply": "2024-09-06T19:37:01.838936Z" + "iopub.execute_input": "2024-09-26T14:51:06.154615Z", + "iopub.status.busy": "2024-09-26T14:51:06.153791Z", + "iopub.status.idle": "2024-09-26T14:51:06.159002Z", + "shell.execute_reply": "2024-09-26T14:51:06.158561Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:01.841836Z", - "iopub.status.busy": "2024-09-06T19:37:01.841454Z", - "iopub.status.idle": "2024-09-06T19:37:02.045788Z", - "shell.execute_reply": "2024-09-06T19:37:02.045180Z" + "iopub.execute_input": "2024-09-26T14:51:06.160864Z", + "iopub.status.busy": "2024-09-26T14:51:06.160545Z", + "iopub.status.idle": "2024-09-26T14:51:06.329043Z", + "shell.execute_reply": "2024-09-26T14:51:06.328546Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:02.048026Z", - "iopub.status.busy": "2024-09-06T19:37:02.047682Z", - "iopub.status.idle": "2024-09-06T19:37:02.055980Z", - "shell.execute_reply": "2024-09-06T19:37:02.055509Z" + "iopub.execute_input": "2024-09-26T14:51:06.331161Z", + "iopub.status.busy": "2024-09-26T14:51:06.330733Z", + "iopub.status.idle": "2024-09-26T14:51:06.339030Z", + "shell.execute_reply": "2024-09-26T14:51:06.338452Z" } }, "outputs": [ @@ -2411,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:02.058027Z", - "iopub.status.busy": "2024-09-06T19:37:02.057684Z", - "iopub.status.idle": "2024-09-06T19:37:02.256206Z", - "shell.execute_reply": "2024-09-06T19:37:02.255652Z" + "iopub.execute_input": "2024-09-26T14:51:06.340715Z", + "iopub.status.busy": "2024-09-26T14:51:06.340434Z", + "iopub.status.idle": "2024-09-26T14:51:06.519948Z", + "shell.execute_reply": "2024-09-26T14:51:06.519447Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:02.258543Z", - "iopub.status.busy": "2024-09-06T19:37:02.258213Z", - "iopub.status.idle": "2024-09-06T19:37:02.262761Z", - "shell.execute_reply": "2024-09-06T19:37:02.262194Z" + "iopub.execute_input": "2024-09-26T14:51:06.522000Z", + "iopub.status.busy": "2024-09-26T14:51:06.521573Z", + "iopub.status.idle": "2024-09-26T14:51:06.526439Z", + "shell.execute_reply": "2024-09-26T14:51:06.525860Z" }, "nbsphinx": "hidden" }, @@ -2550,12 +2550,95 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "024f58b175f14cdca925ad2ec59e5f75": { + "01a52525efc245dbbd179fb0a46c9b73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "047ffcbda41946e19a08ad3b61bf841f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39045bc38857424e8dd68bde536fe596", + "placeholder": "​", + "style": "IPY_MODEL_edbabb45d56b40b7a43858d7ec51dcae", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0944754e93274569967afe6d608ae5bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0ec72a2a0065496b8b3b6ff239cb643d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22cbf5fe8ee943da90f0599eabdc47e9", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fd121ab479e40598a964ef1fe640df7", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "0fc0d5f5c5fd4be8b001f46a67af29e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,25 +2691,33 @@ "width": null } }, - "0445112b7e674aa2a14ea027dc8bc2f8": { + "0fefa1fafea24c19b8f8733109f29d90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be38efba8d3b4a918b3d7486ef513b34", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2a6efe50b16d4bb4b79ecb580262a865", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "06c85507cf49495584b002e6aaa044e8": { + "10f1631d161c449eb8c661cb78376e34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2644,30 +2735,25 @@ "text_color": null } }, - "06fc43e80ab4403ca27ca8d667aca1b3": { + "122c68d343034072a896523a1a6f59da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e22cd2b18d5465c8bfc301a968400ec", - "placeholder": "​", - "style": "IPY_MODEL_0445112b7e674aa2a14ea027dc8bc2f8", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "076942f2bb5542e9a9c126f736c4b427": { + "141a122f5b984ea4b8d354438a45f4ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2720,25 +2806,7 @@ "width": null } }, - "07c128e462924e039bd30ffd94caeafe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0a3d18201bb14d5c9e73af43adbe2cd8": { + "157b0b5de92c4dd39861100e0048c0b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2753,57 +2821,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e6d9313a802d4513bc93abf9ffa9fc9b", - "IPY_MODEL_6d3f4ee5439044088f65368ef798b3b6", - "IPY_MODEL_351c45295ff8422c8718ee4bdefa510f" + "IPY_MODEL_46affc3b26cb4f05ba2a6b4d66e4a233", + "IPY_MODEL_e504d10254784e0fb8866b5539c1da25", + "IPY_MODEL_5e794a3967d7453396cb620ce1a5277f" ], - "layout": "IPY_MODEL_7c5730df719649e6ae1137849667983e", + "layout": "IPY_MODEL_b707e815ff5841ea8e23fc04fa7ff454", "tabbable": null, "tooltip": null } }, - "0a606b97ecff4d89be8f66714f909ba3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0b9bdabf441e4113805b54ee83d92f75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34e238c0c2c24406adb5d978aec7e807", - "placeholder": "​", - "style": "IPY_MODEL_511e7568ac814ea8846c93d586063e8e", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 285192.56 examples/s]" - } - }, - "0c2a412a844140bd80a53f2ac3fc325d": { + "1af334042da749e9a2368c61aae4462f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2856,33 +2883,41 @@ "width": null } }, - "0f5233a082d94dddbdb0503eb9250ed4": { + "1af3d41b10be4701a4e58df18c1a38f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_024f58b175f14cdca925ad2ec59e5f75", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0366a87be804af7bcf6f5cd7f11bc3b", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1b540d6d72a748d0ac6d30324dc37e51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0f970e1142174368bfc637a6cd8d6fd5": { + "1ee09afeb3644ffaa25df19feb6d7756": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2897,15 +2932,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_881dec995ffa41c3b5cbe3a2f2955ed3", + "layout": "IPY_MODEL_a199cd7e7b8c46dea72b37e895857807", "placeholder": "​", - "style": "IPY_MODEL_7500e8476ee64140b7338f73ff7b6e53", + "style": "IPY_MODEL_d0d8518db2324e00900b4cc97bf83cba", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 10000/10000 [00:00<00:00, 246828.30 examples/s]" } }, - "10a3911ad0ae43f599855a0ad46d4195": { + "1f4aff5948cf4d0186015296605c7196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2958,7 +2993,41 @@ "width": null } }, - "11645e47817743048239554d8f897a74": { + "1fd121ab479e40598a964ef1fe640df7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20c8eedf90bb40d392876c954589ff68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22cbf5fe8ee943da90f0599eabdc47e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3011,7 +3080,7 @@ "width": null } }, - "118d13a1737e460b986120e1cd8488c6": { + "23438682b36c4a25982847f0236795a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3064,49 +3133,25 @@ "width": null } }, - "11c48316135a461ea55c3d08dc541755": { + "26577822b8d84e4f976ede8bcd034275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d54af3f6955d4b968858d238a0210190", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2fa408e34274722bd36f3791c967fb2", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "13063e602ee246eb9b552b3b781fa85e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1510cd85e1a74691abd66fcc8f87c34c": { + "27d69304db224bf69131404f9ec805dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3159,60 +3204,25 @@ "width": null } }, - "156d3569cd004246a2f548957d78f2bc": { - "model_module": "@jupyter-widgets/base", + "2a62f69b0c2547d89c82d6582f304d32": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "15c77a61cbac476e99fb0331858d1d8c": { + "2a6efe50b16d4bb4b79ecb580262a865": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3228,54 +3238,100 @@ "description_width": "" } }, - "1658cd683cbd496c9ff193ba8d7c35ea": { + "2b2f57b523f849bbb599cc612b663ba6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8a497f4724b458c8448b91e3ce44d15", - "placeholder": "​", - "style": "IPY_MODEL_3c640d11994b4372834d50a9621d95c5", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1138.50it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "16923bdba0af47908931030b52eaedca": { + "2f87fcdad766443d8c4bca6afb07dd5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "309f00f07977438688cb2e2a138942ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31aedd70a4c245c99b7449fba431ce39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37cb8925a1ba4ade99a9002b6b26e8df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_06fc43e80ab4403ca27ca8d667aca1b3", - "IPY_MODEL_0f5233a082d94dddbdb0503eb9250ed4", - "IPY_MODEL_8efceb1c08634d06817a3fa57d1a8f06" - ], - "layout": "IPY_MODEL_a9b1da96fea74c509d14483d998a7cf8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_86ca6bb1495e4902b7bab635f193c7b5", + "placeholder": "​", + "style": "IPY_MODEL_c8b6019d0f094ef6b63a722264c996a6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.07it/s]" } }, - "1e5e214067f448fe820c272b4d8b60b6": { + "3814212d72544fd898cb1f84a4da144b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3291,17 +3347,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_929f19e8f15344c999957b2ce7569264", - "max": 40.0, + "layout": "IPY_MODEL_a7d9118a0a624247afaec6d0c70354df", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6c95b5f8fda84c369cae7cba5624ccfe", + "style": "IPY_MODEL_01a52525efc245dbbd179fb0a46c9b73", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 9015.0 } }, - "210dbd38b6ce4f9e9f8b810ac64d03bf": { + "38e12e1caf544c0db7e643ca4333c637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3317,7 +3373,7 @@ "description_width": "" } }, - "23d399d3b46a4f8d82116059129fd43f": { + "39045bc38857424e8dd68bde536fe596": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3370,7 +3426,7 @@ "width": null } }, - "25c0e4e85ebb41299102ad0b3e0880b4": { + "40c57ff589b84713af0069686d77f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3423,30 +3479,7 @@ "width": null } }, - "26b545a844a84c278f68d51645f7e371": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac970746b6684c3ba6bb43eee4014e2b", - "placeholder": "​", - "style": "IPY_MODEL_c77f86be94734e2ba274bf4267c5a824", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 680.45it/s]" - } - }, - "294184439d7d474cbfc6043c1efa9d3d": { + "41752bd19eff4ad7bd7f964db91e4397": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3499,7 +3532,7 @@ "width": null } }, - "29ace475fdbe4624840332dd0e509ed6": { + "43636151bcde46648bb7aaa89ccb8a51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3552,81 +3585,30 @@ "width": null } }, - "2b755b9c572e43a396e62c74fba5329f": { + "438f1faf1add4ca0bf523ed0c6de324e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_11645e47817743048239554d8f897a74", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c13df622dfc4f04853781143737296f", + "layout": "IPY_MODEL_7a0e1f1ff0db4d01b7ee26a773a3e838", + "placeholder": "​", + "style": "IPY_MODEL_122c68d343034072a896523a1a6f59da", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "3273abc0b1474d17ad8e620a0b9cd685": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a53594c87ee944d2ab253fdeb3aeae5f", - "IPY_MODEL_e38940706f02447996928468d3f523eb", - "IPY_MODEL_e127093a41b442febda97da50e709395" - ], - "layout": "IPY_MODEL_d9bfaf958ae54bdaa41267876482d6af", - "tabbable": null, - "tooltip": null - } - }, - "328179309f4646028e9f8909eefb6c74": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_471bce1ec58f4d4da4ed7ed290449c5f", - "IPY_MODEL_a8fc249e1ca44d4084ed4e8e978d6058", - "IPY_MODEL_f03a0d23baa4409abb0c7271bd76ab8a" - ], - "layout": "IPY_MODEL_bb2fc960507949aea6439fcd3c77de5b", - "tabbable": null, - "tooltip": null + "value": "Downloading readme: 100%" } }, - "33d5aee8319348e485ec3980bc726f23": { + "442d008a589d43729e86f45feea617a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3679,7 +3661,7 @@ "width": null } }, - "34b3d7273cdd4ceca25a11fbb32359ce": { + "44350a751399489a9b7ac94b4aa0544e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3732,60 +3714,33 @@ "width": null } }, - "34e238c0c2c24406adb5d978aec7e807": { - "model_module": "@jupyter-widgets/base", + "4472b003fd7d40f4b054d6725929c2e0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6c8fe2efdded46d4846420593a00bcd9", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_acc0b8fed3ec45c2b61e4cbdd87c0d3f", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "351c45295ff8422c8718ee4bdefa510f": { + "466806dd912b4f9da060546451df881b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3800,15 +3755,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e65bd8055fd45d8999b608481497477", + "layout": "IPY_MODEL_5171002b8b9b40e58bc90a21fd7d4fce", "placeholder": "​", - "style": "IPY_MODEL_82b18a92ec124a52a6892b31409db80e", + "style": "IPY_MODEL_a1491d109915441ca6418a110cd3b606", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.40it/s]" + "value": "100%" } }, - "3c640d11994b4372834d50a9621d95c5": { + "4685982b10924f9aaf548d58e65e7fff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3826,100 +3781,112 @@ "text_color": null } }, - "468f054b84de4a46abae17b5d6030a66": { + "46affc3b26cb4f05ba2a6b4d66e4a233": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_49329574ba97425f8b3b12f07b8d53cf", - "IPY_MODEL_2b755b9c572e43a396e62c74fba5329f", - "IPY_MODEL_861644c40333498094e62f8ac990f5a3" - ], - "layout": "IPY_MODEL_0c2a412a844140bd80a53f2ac3fc325d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1af334042da749e9a2368c61aae4462f", + "placeholder": "​", + "style": "IPY_MODEL_8fbebe50e8c94c68b5af42bcaa77c458", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading data: 100%" } }, - "471bce1ec58f4d4da4ed7ed290449c5f": { + "46d058b0dc32483b92ffc747203adfbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9b3afcffed047abb3d7c9215eacb041", - "placeholder": "​", - "style": "IPY_MODEL_d0dfbf919e5f422689492055a00be836", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "49329574ba97425f8b3b12f07b8d53cf": { + "48ba164541954d109266e55290018b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77caecf6cce84ac885a2c431ec321e76", - "placeholder": "​", - "style": "IPY_MODEL_df804279770c4bbdbba569e996a72047", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb02675b1ffa460abaf2766e247e9e76", + "IPY_MODEL_f5bdc90f13ac4085a6c87c3f16c1db23", + "IPY_MODEL_8e5227fef7bb4af398c777c479c081d2" + ], + "layout": "IPY_MODEL_442d008a589d43729e86f45feea617a0", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "4a900a7bd2894dc2905c92a999845c41": { + "49a7ec98f7764b44b81eb30169e07a30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78ec8846971b49dc8ac35c9865ab7855", - "placeholder": "​", - "style": "IPY_MODEL_a1e0fb35ccfd46ac9b640c1e3a97a83e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf2c49458b23448bbd90dd22355dc406", + "IPY_MODEL_0fefa1fafea24c19b8f8733109f29d90", + "IPY_MODEL_e1863acf55ff485abde9e3dd42efb403" + ], + "layout": "IPY_MODEL_6f45d2ba1fe14a26b1dd8d8cde2b3404", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.88it/s]" + "tooltip": null + } + }, + "49ff26f36c4046ccaa23af5a0e1bd79a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e22cd2b18d5465c8bfc301a968400ec": { + "4afd56e1be684a4ea49cf9bd94feb822": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3972,7 +3939,74 @@ "width": null } }, - "4e5be3b38c73499194dd5bfcb00e9476": { + "4c60fd9ec0a14e40806e9a0ac5d515de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4d78c4c4290346e58aeff13d1e2863f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1f00c2ba7fa42879c2ae82deb9ae36b", + "placeholder": "​", + "style": "IPY_MODEL_10f1631d161c449eb8c661cb78376e34", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 62.27it/s]" + } + }, + "4e00ed69c8994d9990e59ec728ec2a31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5d17f8bb48c489d84f85f8b0e82285e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b2f57b523f849bbb599cc612b663ba6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "4e60241fc8fc4199a601cbd4c617c5e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4025,7 +4059,30 @@ "width": null } }, - "50780f5c92b44525bf711232bc998378": { + "4f30a386d77a45318659e949f29dd3b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b1371d623aa5489ca6e8e84cd59f53d7", + "placeholder": "​", + "style": "IPY_MODEL_31aedd70a4c245c99b7449fba431ce39", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "5171002b8b9b40e58bc90a21fd7d4fce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4078,25 +4135,31 @@ "width": null } }, - "511e7568ac814ea8846c93d586063e8e": { + "517b83c613bb49c9ab0cd319caf77fa4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_438f1faf1add4ca0bf523ed0c6de324e", + "IPY_MODEL_3814212d72544fd898cb1f84a4da144b", + "IPY_MODEL_bf819d4aebc746d595ddad41e330f6dd" + ], + "layout": "IPY_MODEL_959554efc55740f0a1054b9bb02b35ab", + "tabbable": null, + "tooltip": null } }, - "5264eae69a4a44c5af270b7caaa7eeb4": { + "52f3a03aa4994380b8b138695e6993e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4149,54 +4212,7 @@ "width": null } }, - "58bd914194a245c2b1a963606103a9bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65a24ce68aaf46d6b97c06a7d9ffc735", - "placeholder": "​", - "style": "IPY_MODEL_ed24804748ab483289fec871eb4e7ebf", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.43it/s]" - } - }, - "593399f7ed16479cabf5d6887e2046b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9db52ec22ade4fc2a207b214ed54d964", - "IPY_MODEL_7774247051444f258f5cb5a4624a6d83", - "IPY_MODEL_f082a4eab5444b019ea911ae0fb7a92d" - ], - "layout": "IPY_MODEL_8a312c718675404cb5eaf36ae41d943d", - "tabbable": null, - "tooltip": null - } - }, - "5bc3a1038e00432097a539e27f83e00f": { + "5407b52abb3543878bac58e171136ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4249,10 +4265,112 @@ "width": null } }, - "5cf6c3b877784057a47d544871ab0987": { + "545ab14d8bdc4758954170fd6a6c7f2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d16d5292876e41bbb948c7172eb1b022", + "placeholder": "​", + "style": "IPY_MODEL_9d21835857024eaca20e6c75bc8f65eb", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "54d86e58cead41e6ba4d5f91406ed1b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "554fe55159064f65be3faeef3e587efa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44350a751399489a9b7ac94b4aa0544e", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68ce90ceb8c5418fa6b01cf5ea89177d", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "5568c1b377ee44e2baadcd2713472be4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -4267,7 +4385,7 @@ "text_color": null } }, - "5e5e4490daf942669f04f85596a7308d": { + "5a0315cb61bf4e1b9c52127d29ddf405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4282,15 +4400,104 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ace475fdbe4624840332dd0e509ed6", + "layout": "IPY_MODEL_fd18df91f07f4dd2951fcd6f5d643d2e", "placeholder": "​", - "style": "IPY_MODEL_f784e45cbe9248ae9c16491028d6bf8e", + "style": "IPY_MODEL_2a62f69b0c2547d89c82d6582f304d32", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 64.27it/s]" + } + }, + "5a31bc5cecd243f3b3fc5adfc57abc50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5e114e4103d94679910f2192af574f94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c2007b76905c425eb8c5793d5064dd23", + "IPY_MODEL_eb1eb741913649deae955849ad2ff5e8", + "IPY_MODEL_8bf2df37d8174d2faa0d068cc68a2fef" + ], + "layout": "IPY_MODEL_dd4c58e0fd6948c49326bb0bb920e8c2", + "tabbable": null, + "tooltip": null + } + }, + "5e37b90b12544b039698dff9bf1b1167": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b832eb74e64e4a219cb1a39e71503899", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cad31ec6e694b91b3e194e785d6cc13", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5e794a3967d7453396cb620ce1a5277f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aee54ae8933b42d09ef6de4b7c8e9cee", + "placeholder": "​", + "style": "IPY_MODEL_919e7f7fa04b447e977f5978a6008575", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 48.5MB/s]" } }, - "606a0ff67cfd457c88c691c81de63a4c": { + "5f57350bd59941d3b3be376c1389de24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4308,7 +4515,7 @@ "text_color": null } }, - "60b6605a27b343f3a046b38e2ee92eb3": { + "60160531292f49f6912a5e7fa5c1cd4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4323,39 +4530,94 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f9f45d26f74148d5aafa521c2e42894d", - "IPY_MODEL_f11e1a00f1c942a080552a095321e730", - "IPY_MODEL_b323c9ad204c424e81ad897a8a41faa8" + "IPY_MODEL_047ffcbda41946e19a08ad3b61bf841f", + "IPY_MODEL_4472b003fd7d40f4b054d6725929c2e0", + "IPY_MODEL_bdf9a01c9a4d4a6186410cdd21003fa3" ], - "layout": "IPY_MODEL_f1c64d058ec34988a144f78b8ce7cbc8", + "layout": "IPY_MODEL_27d69304db224bf69131404f9ec805dd", "tabbable": null, "tooltip": null } }, - "612a34311c13432a923b885221f461b0": { + "60b1a0d2d540411383054bcc09a9902a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "62dcb057ad134472b2f7163715a51417": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_156d3569cd004246a2f548957d78f2bc", - "placeholder": "​", - "style": "IPY_MODEL_0a606b97ecff4d89be8f66714f909ba3", + "layout": "IPY_MODEL_23438682b36c4a25982847f0236795a6", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a31bc5cecd243f3b3fc5adfc57abc50", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 5175617.0 + } + }, + "63fd06eb481e40ff939a4af2d7ec11e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68ce90ceb8c5418fa6b01cf5ea89177d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "62625d830bc54505aa74a2a30ef3af9d": { + "6bad8602531348f08c403c73528818d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4408,25 +4670,7 @@ "width": null } }, - "63223699d1124f63b67f209182bf8e11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "65a24ce68aaf46d6b97c06a7d9ffc735": { + "6c8fe2efdded46d4846420593a00bcd9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4479,7 +4723,23 @@ "width": null } }, - "6739176497a24677bed9ce1d499ce111": { + "6cad31ec6e694b91b3e194e785d6cc13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f45d2ba1fe14a26b1dd8d8cde2b3404": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4532,7 +4792,31 @@ "width": null } }, - "67956635d769462da5b0f8ec7ca4575b": { + "77e4c9ec41b8452c8963af0b77b5555f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8838da60b00243caa8a1c207f1f8be22", + "IPY_MODEL_b934aa90c70b4cfdae426a9ca50e61a4", + "IPY_MODEL_793b99f043774f62a311dedf0c93aba0" + ], + "layout": "IPY_MODEL_83e0553f47d84eca8ffc9341907dd047", + "tabbable": null, + "tooltip": null + } + }, + "793b99f043774f62a311dedf0c93aba0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4547,15 +4831,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34b3d7273cdd4ceca25a11fbb32359ce", + "layout": "IPY_MODEL_ce14eb0a9f94406f9670f2a1dc1345c7", "placeholder": "​", - "style": "IPY_MODEL_07c128e462924e039bd30ffd94caeafe", + "style": "IPY_MODEL_aafc8b9a1a3a4506b5483ae08647da91", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 60000/60000 [00:00<00:00, 282979.24 examples/s]" } }, - "69af7b2b232142ffa08b9e4439628311": { + "7a0e1f1ff0db4d01b7ee26a773a3e838": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4608,107 +4892,60 @@ "width": null } }, - "6c5276f1cdeb4d6dafd955e313dfb495": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6c95b5f8fda84c369cae7cba5624ccfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6d3f4ee5439044088f65368ef798b3b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10a3911ad0ae43f599855a0ad46d4195", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ac4bae02a5884435aa084f8524ec36ab", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "6dd2d74eb1d04d61844ec3c03149c90b": { - "model_module": "@jupyter-widgets/controls", + "7de683e49bbf4f65959e300da53047ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6e84e471535f4aa89081faaaa485d6c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eec22da0f1c144399d3b96c5a790810e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_747540cae7c946758cd31d80531063d5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e8d203ea1f24d86a8504e8c8f549098": { + "7ef0c36f65034c0f9d5b161441b6e47c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4723,15 +4960,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fdd97c1ed34454aa0a60e98a62224d2", + "layout": "IPY_MODEL_c91d42b9d1c342cf8093443f4eaa5204", "placeholder": "​", - "style": "IPY_MODEL_9bec32080a844b95be00f98699eec0a5", + "style": "IPY_MODEL_20c8eedf90bb40d392876c954589ff68", "tabbable": null, "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" + "value": "Generating test split: 100%" } }, - "6f0a00d7d264477684a40569e5e3fb89": { + "83e0553f47d84eca8ffc9341907dd047": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4784,7 +5021,7 @@ "width": null } }, - "6f4b003f65a3475b87ea4dfb49e22177": { + "86ca6bb1495e4902b7bab635f193c7b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4837,76 +5074,123 @@ "width": null } }, - "6fdd97c1ed34454aa0a60e98a62224d2": { - "model_module": "@jupyter-widgets/base", + "8838da60b00243caa8a1c207f1f8be22": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e34ca479b1cd4338a1b034c9bdb6cdde", + "placeholder": "​", + "style": "IPY_MODEL_5f57350bd59941d3b3be376c1389de24", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "8bf2df37d8174d2faa0d068cc68a2fef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a129d278f5249b2ba66adbc4c7981b4", + "placeholder": "​", + "style": "IPY_MODEL_cbb874850a0f4b8585830f781d02f6c7", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6394.51 examples/s]" + } + }, + "8c99cd03c2204dd69d220e1911ef407b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f30a386d77a45318659e949f29dd3b0", + "IPY_MODEL_e0c002bd6e8c4598837703a0b54dfdd7", + "IPY_MODEL_37cb8925a1ba4ade99a9002b6b26e8df" + ], + "layout": "IPY_MODEL_5407b52abb3543878bac58e171136ce5", + "tabbable": null, + "tooltip": null + } + }, + "8e5227fef7bb4af398c777c479c081d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40c57ff589b84713af0069686d77f3b8", + "placeholder": "​", + "style": "IPY_MODEL_1b540d6d72a748d0ac6d30324dc37e51", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:53<00:00, 1198.28it/s]" } }, - "747540cae7c946758cd31d80531063d5": { + "8f801276525d4e939b2f6a4ae43acb97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dd7812d3359f4747a8d626fa5a9094fb", + "placeholder": "​", + "style": "IPY_MODEL_26577822b8d84e4f976ede8bcd034275", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.80it/s]" } }, - "7500e8476ee64140b7338f73ff7b6e53": { + "8fbebe50e8c94c68b5af42bcaa77c458": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4924,33 +5208,25 @@ "text_color": null } }, - "7774247051444f258f5cb5a4624a6d83": { + "919e7f7fa04b447e977f5978a6008575": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23d399d3b46a4f8d82116059129fd43f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_13063e602ee246eb9b552b3b781fa85e", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77caecf6cce84ac885a2c431ec321e76": { + "959554efc55740f0a1054b9bb02b35ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5003,7 +5279,7 @@ "width": null } }, - "78ec8846971b49dc8ac35c9865ab7855": { + "9a129d278f5249b2ba66adbc4c7981b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5056,25 +5332,30 @@ "width": null } }, - "7acec2eb1b9b4c74860f49bf17a12246": { + "9b43cbe4d995486aa4d260f3e1778a5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ccdd8d1027864d7697480a9f400c528c", + "placeholder": "​", + "style": "IPY_MODEL_2f87fcdad766443d8c4bca6afb07dd5a", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 35.9MB/s]" } }, - "7bcf07287e5846bcade12829a0129e5a": { + "9c97151f1d7f4a49a3e2278cddb3c604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5089,32 +5370,60 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0f970e1142174368bfc637a6cd8d6fd5", - "IPY_MODEL_11c48316135a461ea55c3d08dc541755", - "IPY_MODEL_6e8d203ea1f24d86a8504e8c8f549098" + "IPY_MODEL_fb35e5a84e5942e59aa0f8e4a6d4b045", + "IPY_MODEL_0ec72a2a0065496b8b3b6ff239cb643d", + "IPY_MODEL_4d78c4c4290346e58aeff13d1e2863f2" ], - "layout": "IPY_MODEL_6f4b003f65a3475b87ea4dfb49e22177", + "layout": "IPY_MODEL_e2ddf40e09984deca4602e0c72e8bfd6", "tabbable": null, "tooltip": null } }, - "7c13df622dfc4f04853781143737296f": { + "9d21835857024eaca20e6c75bc8f65eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d4ba4757b8d48bba46623ad8f4b39a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54d86e58cead41e6ba4d5f91406ed1b6", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_38e12e1caf544c0db7e643ca4333c637", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "7c5730df719649e6ae1137849667983e": { + "a02cbe5a9ae843ff95023851f56408fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5167,7 +5476,25 @@ "width": null } }, - "7d5c3f6e3cdc47378b7a095dc828c708": { + "a1491d109915441ca6418a110cd3b606": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a199cd7e7b8c46dea72b37e895857807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5220,30 +5547,7 @@ "width": null } }, - "7e624075712f49aeb75f702d9f7850d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5264eae69a4a44c5af270b7caaa7eeb4", - "placeholder": "​", - "style": "IPY_MODEL_dac3e32ab9a846e79186067c2b27a96c", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "82b18a92ec124a52a6892b31409db80e": { + "a3d204cf9a5a441d9ce00a62738821f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5261,7 +5565,7 @@ "text_color": null } }, - "85965cbbe5ef40678b86b3d3f8e4fc95": { + "a4367ae0bcb046beb0aa7fa55ae59b6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5314,54 +5618,7 @@ "width": null } }, - "85a6da0e361d4bb78dac486525795dad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_612a34311c13432a923b885221f461b0", - "IPY_MODEL_c20bdfdc755d478c8d2c59d296af1748", - "IPY_MODEL_0b9bdabf441e4113805b54ee83d92f75" - ], - "layout": "IPY_MODEL_5bc3a1038e00432097a539e27f83e00f", - "tabbable": null, - "tooltip": null - } - }, - "861644c40333498094e62f8ac990f5a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a77a4e7f5f8140bf8475f4d847910210", - "placeholder": "​", - "style": "IPY_MODEL_5cf6c3b877784057a47d544871ab0987", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 25.9MB/s]" - } - }, - "881dec995ffa41c3b5cbe3a2f2955ed3": { + "a7d9118a0a624247afaec6d0c70354df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5414,7 +5671,7 @@ "width": null } }, - "884d6ce901e24a3797e35af5711b0f35": { + "aafc8b9a1a3a4506b5483ae08647da91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5432,7 +5689,23 @@ "text_color": null } }, - "8a312c718675404cb5eaf36ae41d943d": { + "acc0b8fed3ec45c2b61e4cbdd87c0d3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aee54ae8933b42d09ef6de4b7c8e9cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5485,7 +5758,7 @@ "width": null } }, - "8cf5382c91f64f789a1af9c7918f14bb": { + "afdc4d351896438cb7e9760348393ddc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5500,15 +5773,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5d9319b3ee0495d88f51937931cd00c", + "layout": "IPY_MODEL_6bad8602531348f08c403c73528818d1", "placeholder": "​", - "style": "IPY_MODEL_af8db4b8467844b8be9927dab8c5e3d9", + "style": "IPY_MODEL_0944754e93274569967afe6d608ae5bd", "tabbable": null, "tooltip": null, "value": "100%" } }, - "8e65bd8055fd45d8999b608481497477": { + "b1371d623aa5489ca6e8e84cd59f53d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5551,40 +5824,17 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8efceb1c08634d06817a3fa57d1a8f06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85965cbbe5ef40678b86b3d3f8e4fc95", - "placeholder": "​", - "style": "IPY_MODEL_d86fc4609ac5440a807e454ed938d58e", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 249921.29 examples/s]" + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "92880a6894cd410ba97664fbbbbe340e": { + "b42c916027f0431eb2b8bccc86357bf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5637,7 +5887,7 @@ "width": null } }, - "929f19e8f15344c999957b2ce7569264": { + "b707e815ff5841ea8e23fc04fa7ff454": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5690,31 +5940,7 @@ "width": null } }, - "958c94ac86804e8fbd31685a6f87d389": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac11acf9e07f48d1af94fcdf26f8c615", - "IPY_MODEL_a671667e5adf4b9798a98eda0ac57dc8", - "IPY_MODEL_4a900a7bd2894dc2905c92a999845c41" - ], - "layout": "IPY_MODEL_4e5be3b38c73499194dd5bfcb00e9476", - "tabbable": null, - "tooltip": null - } - }, - "97578dccf99646909cc139834ab78ea9": { + "b826bec48c45487bbcae63716ac684fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5767,133 +5993,7 @@ "width": null } }, - "9bec32080a844b95be00f98699eec0a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9db52ec22ade4fc2a207b214ed54d964": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_62625d830bc54505aa74a2a30ef3af9d", - "placeholder": "​", - "style": "IPY_MODEL_afce32644b8041548c6a8fefb3255e26", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "9fcb012408c9489cb4882ad5d8d37ecf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1e0fb35ccfd46ac9b640c1e3a97a83e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a53594c87ee944d2ab253fdeb3aeae5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_50780f5c92b44525bf711232bc998378", - "placeholder": "​", - "style": "IPY_MODEL_eefff7211ed94c5b90094ff9520c50b5", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "a671667e5adf4b9798a98eda0ac57dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1510cd85e1a74691abd66fcc8f87c34c", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_15c77a61cbac476e99fb0331858d1d8c", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a77a4e7f5f8140bf8475f4d847910210": { + "b832eb74e64e4a219cb1a39e71503899": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5946,7 +6046,33 @@ "width": null } }, - "a88f012a925b438fbc901a161c09cf50": { + "b934aa90c70b4cfdae426a9ca50e61a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f4aff5948cf4d0186015296605c7196", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf1593492574460ca63450ff1667241f", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "badd7c549d834045856ae809d48d9fa6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5999,33 +6125,30 @@ "width": null } }, - "a8fc249e1ca44d4084ed4e8e978d6058": { + "bdf9a01c9a4d4a6186410cdd21003fa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_076942f2bb5542e9a9c126f736c4b427", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6c5276f1cdeb4d6dafd955e313dfb495", + "layout": "IPY_MODEL_41752bd19eff4ad7bd7f964db91e4397", + "placeholder": "​", + "style": "IPY_MODEL_60b1a0d2d540411383054bcc09a9902a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 58.52it/s]" } }, - "a9b1da96fea74c509d14483d998a7cf8": { + "be38efba8d3b4a918b3d7486ef513b34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6078,60 +6201,152 @@ "width": null } }, - "a9e701e6d5bf4ec2a9c900edea6104e5": { - "model_module": "@jupyter-widgets/base", + "bf1593492574460ca63450ff1667241f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bf819d4aebc746d595ddad41e330f6dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d89cbf3e824f490b81fa19d70eb0784a", + "placeholder": "​", + "style": "IPY_MODEL_63fd06eb481e40ff939a4af2d7ec11e1", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 960kB/s]" + } + }, + "c01e10af9cd04c4c90430d0afbaa6da0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_466806dd912b4f9da060546451df881b", + "IPY_MODEL_5e37b90b12544b039698dff9bf1b1167", + "IPY_MODEL_8f801276525d4e939b2f6a4ae43acb97" + ], + "layout": "IPY_MODEL_ca16aad0772747da8b6cf03b6abc3643", + "tabbable": null, + "tooltip": null + } + }, + "c2007b76905c425eb8c5793d5064dd23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4367ae0bcb046beb0aa7fa55ae59b6d", + "placeholder": "​", + "style": "IPY_MODEL_309f00f07977438688cb2e2a138942ee", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "c57636ad3dc54dc0926bb56946b10ab1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b42c916027f0431eb2b8bccc86357bf7", + "placeholder": "​", + "style": "IPY_MODEL_4685982b10924f9aaf548d58e65e7fff", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 54.36it/s]" + } + }, + "c5b4b8f4759d4bac96dbdbe270c10816": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c8b6019d0f094ef6b63a722264c996a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aba8cf45b54448a59ae5e30586981cc2": { + "c91d42b9d1c342cf8093443f4eaa5204": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6184,7 +6399,7 @@ "width": null } }, - "ac11acf9e07f48d1af94fcdf26f8c615": { + "c970c34254fb445a91f6a8570b2ee0a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6199,31 +6414,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_69af7b2b232142ffa08b9e4439628311", + "layout": "IPY_MODEL_43636151bcde46648bb7aaa89ccb8a51", "placeholder": "​", - "style": "IPY_MODEL_9fcb012408c9489cb4882ad5d8d37ecf", + "style": "IPY_MODEL_4c60fd9ec0a14e40806e9a0ac5d515de", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "ac4bae02a5884435aa084f8524ec36ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Downloading data: 100%" } }, - "ac970746b6684c3ba6bb43eee4014e2b": { + "ca16aad0772747da8b6cf03b6abc3643": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6276,25 +6475,30 @@ "width": null } }, - "af8db4b8467844b8be9927dab8c5e3d9": { + "cb02675b1ffa460abaf2766e247e9e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52f3a03aa4994380b8b138695e6993e3", + "placeholder": "​", + "style": "IPY_MODEL_46d058b0dc32483b92ffc747203adfbb", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "afce32644b8041548c6a8fefb3255e26": { + "cbb874850a0f4b8585830f781d02f6c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6312,7 +6516,31 @@ "text_color": null } }, - "b149b2726a33413c8e2fde403bed8e98": { + "ccc0d279330845b8b34f60a57e76743f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afdc4d351896438cb7e9760348393ddc", + "IPY_MODEL_9d4ba4757b8d48bba46623ad8f4b39a3", + "IPY_MODEL_5a0315cb61bf4e1b9c52127d29ddf405" + ], + "layout": "IPY_MODEL_e23cc3c422934dabbc7fa7851f6ab787", + "tabbable": null, + "tooltip": null + } + }, + "ccdd8d1027864d7697480a9f400c528c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6365,46 +6593,31 @@ "width": null } }, - "b1625d60d8254709b2fbc8015a483069": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b323c9ad204c424e81ad897a8a41faa8": { + "cd9cd1e986f74424b60db3510b43826d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_294184439d7d474cbfc6043c1efa9d3d", - "placeholder": "​", - "style": "IPY_MODEL_63223699d1124f63b67f209182bf8e11", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ef0c36f65034c0f9d5b161441b6e47c", + "IPY_MODEL_554fe55159064f65be3faeef3e587efa", + "IPY_MODEL_1ee09afeb3644ffaa25df19feb6d7756" + ], + "layout": "IPY_MODEL_f8bd324861dd4e2ca40f79d16ca6ca8a", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.13it/s]" + "tooltip": null } }, - "b8a497f4724b458c8448b91e3ce44d15": { + "ce14eb0a9f94406f9670f2a1dc1345c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6457,31 +6670,48 @@ "width": null } }, - "b8c0903ec57a4db09eef7c66d76ad798": { + "cf2c49458b23448bbd90dd22355dc406": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e5e4490daf942669f04f85596a7308d", - "IPY_MODEL_c1960242d8a3445da3b5cfd12aa829f9", - "IPY_MODEL_1658cd683cbd496c9ff193ba8d7c35ea" - ], - "layout": "IPY_MODEL_6739176497a24677bed9ce1d499ce111", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0fc0d5f5c5fd4be8b001f46a67af29e6", + "placeholder": "​", + "style": "IPY_MODEL_5568c1b377ee44e2baadcd2713472be4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "d0d8518db2324e00900b4cc97bf83cba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bb2fc960507949aea6439fcd3c77de5b": { + "d16d5292876e41bbb948c7172eb1b022": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6534,7 +6764,7 @@ "width": null } }, - "bcb6b4fdcebe40208119e7b000c67176": { + "d89cbf3e824f490b81fa19d70eb0784a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6587,99 +6817,31 @@ "width": null } }, - "bfcb4b6339d14370bc404a61e757edfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67956635d769462da5b0f8ec7ca4575b", - "IPY_MODEL_6e84e471535f4aa89081faaaa485d6c3", - "IPY_MODEL_f0cb3f6ef1cd478f8be08c7d0285e829" - ], - "layout": "IPY_MODEL_cc31bc3295e7426890cf527d78a13416", - "tabbable": null, - "tooltip": null - } - }, - "c0366a87be804af7bcf6f5cd7f11bc3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c1960242d8a3445da3b5cfd12aa829f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_92880a6894cd410ba97664fbbbbe340e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b1625d60d8254709b2fbc8015a483069", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c20bdfdc755d478c8d2c59d296af1748": { + "dc9f46273db144d982f466b186d6ea8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f0a00d7d264477684a40569e5e3fb89", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_210dbd38b6ce4f9e9f8b810ac64d03bf", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c970c34254fb445a91f6a8570b2ee0a6", + "IPY_MODEL_62dcb057ad134472b2f7163715a51417", + "IPY_MODEL_9b43cbe4d995486aa4d260f3e1778a5b" + ], + "layout": "IPY_MODEL_badd7c549d834045856ae809d48d9fa6", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null } }, - "c65df96729f9462e8df514c9d2bab3e8": { + "dd4c58e0fd6948c49326bb0bb920e8c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6732,25 +6894,7 @@ "width": null } }, - "c77f86be94734e2ba274bf4267c5a824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cc31bc3295e7426890cf527d78a13416": { + "dd7812d3359f4747a8d626fa5a9094fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6803,65 +6947,56 @@ "width": null } }, - "cdf6adba96a64fc5a04910695f01468c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cef86182d7ef449481f59dfea70aa34a": { + "e0c002bd6e8c4598837703a0b54dfdd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8cf5382c91f64f789a1af9c7918f14bb", - "IPY_MODEL_1e5e214067f448fe820c272b4d8b60b6", - "IPY_MODEL_58bd914194a245c2b1a963606103a9bd" - ], - "layout": "IPY_MODEL_25c0e4e85ebb41299102ad0b3e0880b4", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b826bec48c45487bbcae63716ac684fb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f241c4541bfc4e678ceec3ff46602200", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d0dfbf919e5f422689492055a00be836": { + "e1863acf55ff485abde9e3dd42efb403": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc81a44ecf7c4ad1b851ab50894a6d71", + "placeholder": "​", + "style": "IPY_MODEL_c5b4b8f4759d4bac96dbdbe270c10816", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 584.78it/s]" } }, - "d54af3f6955d4b968858d238a0210190": { + "e1f00c2ba7fa42879c2ae82deb9ae36b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6914,7 +7049,31 @@ "width": null } }, - "d5d9319b3ee0495d88f51937931cd00c": { + "e20ec2fb456e4bb9bfb446110e53d341": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_545ab14d8bdc4758954170fd6a6c7f2e", + "IPY_MODEL_4e00ed69c8994d9990e59ec728ec2a31", + "IPY_MODEL_c57636ad3dc54dc0926bb56946b10ab1" + ], + "layout": "IPY_MODEL_141a122f5b984ea4b8d354438a45f4ac", + "tabbable": null, + "tooltip": null + } + }, + "e23cc3c422934dabbc7fa7851f6ab787": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6967,51 +7126,7 @@ "width": null } }, - "d86fc4609ac5440a807e454ed938d58e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d936e9a2111644719473853bc9465d85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aba8cf45b54448a59ae5e30586981cc2", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e06e8dd00ef946db9d9676c674e9f1ff", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "d9b3afcffed047abb3d7c9215eacb041": { + "e2ddf40e09984deca4602e0c72e8bfd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7064,7 +7179,7 @@ "width": null } }, - "d9bfaf958ae54bdaa41267876482d6af": { + "e34ca479b1cd4338a1b034c9bdb6cdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7111,197 +7226,39 @@ "order": null, "overflow": null, "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da5cdaff84244e95b85f4f6729933e89": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dac3e32ab9a846e79186067c2b27a96c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "df804279770c4bbdbba569e996a72047": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e06e8dd00ef946db9d9676c674e9f1ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e127093a41b442febda97da50e709395": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d5c3f6e3cdc47378b7a095dc828c708", - "placeholder": "​", - "style": "IPY_MODEL_7acec2eb1b9b4c74860f49bf17a12246", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 85.2MB/s]" - } - }, - "e38940706f02447996928468d3f523eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97578dccf99646909cc139834ab78ea9", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cdf6adba96a64fc5a04910695f01468c", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e6d9313a802d4513bc93abf9ffa9fc9b": { + "e504d10254784e0fb8866b5539c1da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcb6b4fdcebe40208119e7b000c67176", - "placeholder": "​", - "style": "IPY_MODEL_606a0ff67cfd457c88c691c81de63a4c", + "layout": "IPY_MODEL_4afd56e1be684a4ea49cf9bd94feb822", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1af3d41b10be4701a4e58df18c1a38f8", "tabbable": null, "tooltip": null, - "value": "100%" - } - }, - "ed24804748ab483289fec871eb4e7ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee5568e238c045b59cf17074e12437c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e624075712f49aeb75f702d9f7850d8", - "IPY_MODEL_d936e9a2111644719473853bc9465d85", - "IPY_MODEL_26b545a844a84c278f68d51645f7e371" - ], - "layout": "IPY_MODEL_33d5aee8319348e485ec3980bc726f23", - "tabbable": null, - "tooltip": null + "value": 30931277.0 } }, - "eec22da0f1c144399d3b96c5a790810e": { + "e5d17f8bb48c489d84f85f8b0e82285e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7354,94 +7311,83 @@ "width": null } }, - "eefff7211ed94c5b90094ff9520c50b5": { + "ea25312b42fa433294a739c7e0d5c2a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f03a0d23baa4409abb0c7271bd76ab8a": { + "eb1eb741913649deae955849ad2ff5e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65df96729f9462e8df514c9d2bab3e8", - "placeholder": "​", - "style": "IPY_MODEL_06c85507cf49495584b002e6aaa044e8", + "layout": "IPY_MODEL_a02cbe5a9ae843ff95023851f56408fe", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea25312b42fa433294a739c7e0d5c2a9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.46it/s]" + "value": 60000.0 } }, - "f082a4eab5444b019ea911ae0fb7a92d": { + "edbabb45d56b40b7a43858d7ec51dcae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a88f012a925b438fbc901a161c09cf50", - "placeholder": "​", - "style": "IPY_MODEL_f7b0cd88615641199d9599093664c3f3", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.47it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f0cb3f6ef1cd478f8be08c7d0285e829": { + "f241c4541bfc4e678ceec3ff46602200": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_118d13a1737e460b986120e1cd8488c6", - "placeholder": "​", - "style": "IPY_MODEL_884d6ce901e24a3797e35af5711b0f35", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5023.35 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f11e1a00f1c942a080552a095321e730": { + "f5bdc90f13ac4085a6c87c3f16c1db23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7457,17 +7403,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b149b2726a33413c8e2fde403bed8e98", - "max": 40.0, + "layout": "IPY_MODEL_7de683e49bbf4f65959e300da53047ed", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6dd2d74eb1d04d61844ec3c03149c90b", + "style": "IPY_MODEL_49ff26f36c4046ccaa23af5a0e1bd79a", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "f1c64d058ec34988a144f78b8ce7cbc8": { + "f8bd324861dd4e2ca40f79d16ca6ca8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7520,79 +7466,133 @@ "width": null } }, - "f2fa408e34274722bd36f3791c967fb2": { + "fb35e5a84e5942e59aa0f8e4a6d4b045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e60241fc8fc4199a601cbd4c617c5e6", + "placeholder": "​", + "style": "IPY_MODEL_a3d204cf9a5a441d9ce00a62738821f3", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "f784e45cbe9248ae9c16491028d6bf8e": { - "model_module": "@jupyter-widgets/controls", + "fc81a44ecf7c4ad1b851ab50894a6d71": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f7b0cd88615641199d9599093664c3f3": { - "model_module": "@jupyter-widgets/controls", + "fd18df91f07f4dd2951fcd6f5d643d2e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9f45d26f74148d5aafa521c2e42894d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9e701e6d5bf4ec2a9c900edea6104e5", - "placeholder": "​", - "style": "IPY_MODEL_da5cdaff84244e95b85f4f6729933e89", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 55a26f513..688f732c4 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:06.951842Z", - "iopub.status.busy": "2024-09-06T19:37:06.951670Z", - "iopub.status.idle": "2024-09-06T19:37:08.104160Z", - "shell.execute_reply": "2024-09-06T19:37:08.103605Z" + "iopub.execute_input": "2024-09-26T14:51:11.092091Z", + "iopub.status.busy": "2024-09-26T14:51:11.091687Z", + "iopub.status.idle": "2024-09-26T14:51:12.301495Z", + "shell.execute_reply": "2024-09-26T14:51:12.300906Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.106594Z", - "iopub.status.busy": "2024-09-06T19:37:08.106312Z", - "iopub.status.idle": "2024-09-06T19:37:08.124373Z", - "shell.execute_reply": "2024-09-06T19:37:08.123937Z" + "iopub.execute_input": "2024-09-26T14:51:12.303829Z", + "iopub.status.busy": "2024-09-26T14:51:12.303363Z", + "iopub.status.idle": "2024-09-26T14:51:12.322353Z", + "shell.execute_reply": "2024-09-26T14:51:12.321902Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.126574Z", - "iopub.status.busy": "2024-09-06T19:37:08.126159Z", - "iopub.status.idle": "2024-09-06T19:37:08.148467Z", - "shell.execute_reply": "2024-09-06T19:37:08.148011Z" + "iopub.execute_input": "2024-09-26T14:51:12.324450Z", + "iopub.status.busy": "2024-09-26T14:51:12.324010Z", + "iopub.status.idle": "2024-09-26T14:51:12.348557Z", + "shell.execute_reply": "2024-09-26T14:51:12.348062Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.150542Z", - "iopub.status.busy": "2024-09-06T19:37:08.150195Z", - "iopub.status.idle": "2024-09-06T19:37:08.153510Z", - "shell.execute_reply": "2024-09-06T19:37:08.153043Z" + "iopub.execute_input": "2024-09-26T14:51:12.350597Z", + "iopub.status.busy": "2024-09-26T14:51:12.350164Z", + "iopub.status.idle": "2024-09-26T14:51:12.353712Z", + "shell.execute_reply": "2024-09-26T14:51:12.353237Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.155506Z", - "iopub.status.busy": "2024-09-06T19:37:08.155162Z", - "iopub.status.idle": "2024-09-06T19:37:08.163216Z", - "shell.execute_reply": "2024-09-06T19:37:08.162658Z" + "iopub.execute_input": "2024-09-26T14:51:12.355535Z", + "iopub.status.busy": "2024-09-26T14:51:12.355193Z", + "iopub.status.idle": "2024-09-26T14:51:12.364277Z", + "shell.execute_reply": "2024-09-26T14:51:12.363833Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.165384Z", - "iopub.status.busy": "2024-09-06T19:37:08.164978Z", - "iopub.status.idle": "2024-09-06T19:37:08.167532Z", - "shell.execute_reply": "2024-09-06T19:37:08.167093Z" + "iopub.execute_input": "2024-09-26T14:51:12.366192Z", + "iopub.status.busy": "2024-09-26T14:51:12.365860Z", + "iopub.status.idle": "2024-09-26T14:51:12.368238Z", + "shell.execute_reply": "2024-09-26T14:51:12.367806Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:08.169550Z", - "iopub.status.busy": "2024-09-06T19:37:08.169205Z", - "iopub.status.idle": "2024-09-06T19:37:11.232996Z", - "shell.execute_reply": "2024-09-06T19:37:11.232340Z" + "iopub.execute_input": "2024-09-26T14:51:12.369910Z", + "iopub.status.busy": "2024-09-26T14:51:12.369584Z", + "iopub.status.idle": "2024-09-26T14:51:15.473892Z", + "shell.execute_reply": "2024-09-26T14:51:15.473328Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:11.235550Z", - "iopub.status.busy": "2024-09-06T19:37:11.235362Z", - "iopub.status.idle": "2024-09-06T19:37:11.244291Z", - "shell.execute_reply": "2024-09-06T19:37:11.243862Z" + "iopub.execute_input": "2024-09-26T14:51:15.476275Z", + "iopub.status.busy": "2024-09-26T14:51:15.475917Z", + "iopub.status.idle": "2024-09-26T14:51:15.485407Z", + "shell.execute_reply": "2024-09-26T14:51:15.484796Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:11.246379Z", - "iopub.status.busy": "2024-09-06T19:37:11.246205Z", - "iopub.status.idle": "2024-09-06T19:37:13.219249Z", - "shell.execute_reply": "2024-09-06T19:37:13.218645Z" + "iopub.execute_input": "2024-09-26T14:51:15.487349Z", + "iopub.status.busy": "2024-09-26T14:51:15.487005Z", + "iopub.status.idle": "2024-09-26T14:51:17.515517Z", + "shell.execute_reply": "2024-09-26T14:51:17.514901Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.221677Z", - "iopub.status.busy": "2024-09-06T19:37:13.221173Z", - "iopub.status.idle": "2024-09-06T19:37:13.240218Z", - "shell.execute_reply": "2024-09-06T19:37:13.239749Z" + "iopub.execute_input": "2024-09-26T14:51:17.517807Z", + "iopub.status.busy": "2024-09-26T14:51:17.517109Z", + "iopub.status.idle": "2024-09-26T14:51:17.536120Z", + "shell.execute_reply": "2024-09-26T14:51:17.535624Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.242381Z", - "iopub.status.busy": "2024-09-06T19:37:13.242042Z", - "iopub.status.idle": "2024-09-06T19:37:13.250225Z", - "shell.execute_reply": "2024-09-06T19:37:13.249765Z" + "iopub.execute_input": "2024-09-26T14:51:17.537976Z", + "iopub.status.busy": "2024-09-26T14:51:17.537611Z", + "iopub.status.idle": "2024-09-26T14:51:17.545869Z", + "shell.execute_reply": "2024-09-26T14:51:17.545319Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.252315Z", - "iopub.status.busy": "2024-09-06T19:37:13.251975Z", - "iopub.status.idle": "2024-09-06T19:37:13.260671Z", - "shell.execute_reply": "2024-09-06T19:37:13.260195Z" + "iopub.execute_input": "2024-09-26T14:51:17.547622Z", + "iopub.status.busy": "2024-09-26T14:51:17.547301Z", + "iopub.status.idle": "2024-09-26T14:51:17.556250Z", + "shell.execute_reply": "2024-09-26T14:51:17.555755Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.262712Z", - "iopub.status.busy": "2024-09-06T19:37:13.262373Z", - "iopub.status.idle": "2024-09-06T19:37:13.270531Z", - "shell.execute_reply": "2024-09-06T19:37:13.269960Z" + "iopub.execute_input": "2024-09-26T14:51:17.557888Z", + "iopub.status.busy": "2024-09-26T14:51:17.557705Z", + "iopub.status.idle": "2024-09-26T14:51:17.565685Z", + "shell.execute_reply": "2024-09-26T14:51:17.565225Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.272557Z", - "iopub.status.busy": "2024-09-06T19:37:13.272379Z", - "iopub.status.idle": "2024-09-06T19:37:13.281035Z", - "shell.execute_reply": "2024-09-06T19:37:13.280557Z" + "iopub.execute_input": "2024-09-26T14:51:17.567291Z", + "iopub.status.busy": "2024-09-26T14:51:17.567107Z", + "iopub.status.idle": "2024-09-26T14:51:17.576362Z", + "shell.execute_reply": "2024-09-26T14:51:17.575909Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.283068Z", - "iopub.status.busy": "2024-09-06T19:37:13.282889Z", - "iopub.status.idle": "2024-09-06T19:37:13.290486Z", - "shell.execute_reply": "2024-09-06T19:37:13.290023Z" + "iopub.execute_input": "2024-09-26T14:51:17.577990Z", + "iopub.status.busy": "2024-09-26T14:51:17.577812Z", + "iopub.status.idle": "2024-09-26T14:51:17.585393Z", + "shell.execute_reply": "2024-09-26T14:51:17.584817Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.292532Z", - "iopub.status.busy": "2024-09-06T19:37:13.292191Z", - "iopub.status.idle": "2024-09-06T19:37:13.299536Z", - "shell.execute_reply": "2024-09-06T19:37:13.298963Z" + "iopub.execute_input": "2024-09-26T14:51:17.587245Z", + "iopub.status.busy": "2024-09-26T14:51:17.586929Z", + "iopub.status.idle": "2024-09-26T14:51:17.594347Z", + "shell.execute_reply": "2024-09-26T14:51:17.593795Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:13.301807Z", - "iopub.status.busy": "2024-09-06T19:37:13.301492Z", - "iopub.status.idle": "2024-09-06T19:37:13.309949Z", - "shell.execute_reply": "2024-09-06T19:37:13.309476Z" + "iopub.execute_input": "2024-09-26T14:51:17.596172Z", + "iopub.status.busy": "2024-09-26T14:51:17.595784Z", + "iopub.status.idle": "2024-09-26T14:51:17.604165Z", + "shell.execute_reply": "2024-09-26T14:51:17.603720Z" }, "nbsphinx": "hidden" }, @@ -1373,7 +1373,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index b51846d10..cb95da0ec 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -795,7 +795,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'change_pin'}
+Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'cancel_transfer'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 0357de56a..5b5c4a565 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:16.238148Z", - "iopub.status.busy": "2024-09-06T19:37:16.237968Z", - "iopub.status.idle": "2024-09-06T19:37:19.032647Z", - "shell.execute_reply": "2024-09-06T19:37:19.031997Z" + "iopub.execute_input": "2024-09-26T14:51:20.550084Z", + "iopub.status.busy": "2024-09-26T14:51:20.549919Z", + "iopub.status.idle": "2024-09-26T14:51:23.546779Z", + "shell.execute_reply": "2024-09-26T14:51:23.546140Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.035274Z", - "iopub.status.busy": "2024-09-06T19:37:19.034943Z", - "iopub.status.idle": "2024-09-06T19:37:19.038478Z", - "shell.execute_reply": "2024-09-06T19:37:19.037992Z" + "iopub.execute_input": "2024-09-26T14:51:23.549062Z", + "iopub.status.busy": "2024-09-26T14:51:23.548756Z", + "iopub.status.idle": "2024-09-26T14:51:23.551996Z", + "shell.execute_reply": "2024-09-26T14:51:23.551554Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.040624Z", - "iopub.status.busy": "2024-09-06T19:37:19.040295Z", - "iopub.status.idle": "2024-09-06T19:37:19.043522Z", - "shell.execute_reply": "2024-09-06T19:37:19.043021Z" + "iopub.execute_input": "2024-09-26T14:51:23.553571Z", + "iopub.status.busy": "2024-09-26T14:51:23.553396Z", + "iopub.status.idle": "2024-09-26T14:51:23.556530Z", + "shell.execute_reply": "2024-09-26T14:51:23.556072Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.045678Z", - "iopub.status.busy": "2024-09-06T19:37:19.045330Z", - "iopub.status.idle": "2024-09-06T19:37:19.065598Z", - "shell.execute_reply": "2024-09-06T19:37:19.065087Z" + "iopub.execute_input": "2024-09-26T14:51:23.558190Z", + "iopub.status.busy": "2024-09-26T14:51:23.558016Z", + "iopub.status.idle": "2024-09-26T14:51:23.584373Z", + "shell.execute_reply": "2024-09-26T14:51:23.583877Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.067819Z", - "iopub.status.busy": "2024-09-06T19:37:19.067470Z", - "iopub.status.idle": "2024-09-06T19:37:19.071077Z", - "shell.execute_reply": "2024-09-06T19:37:19.070583Z" + "iopub.execute_input": "2024-09-26T14:51:23.586327Z", + "iopub.status.busy": "2024-09-26T14:51:23.585980Z", + "iopub.status.idle": "2024-09-26T14:51:23.589627Z", + "shell.execute_reply": "2024-09-26T14:51:23.589147Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'change_pin'}\n" + "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'change_pin', 'beneficiary_not_allowed', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'cancel_transfer'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.073199Z", - "iopub.status.busy": "2024-09-06T19:37:19.072859Z", - "iopub.status.idle": "2024-09-06T19:37:19.075873Z", - "shell.execute_reply": "2024-09-06T19:37:19.075346Z" + "iopub.execute_input": "2024-09-26T14:51:23.591183Z", + "iopub.status.busy": "2024-09-26T14:51:23.591009Z", + "iopub.status.idle": "2024-09-26T14:51:23.594239Z", + "shell.execute_reply": "2024-09-26T14:51:23.593788Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:19.077966Z", - "iopub.status.busy": "2024-09-06T19:37:19.077636Z", - "iopub.status.idle": "2024-09-06T19:37:23.171760Z", - "shell.execute_reply": "2024-09-06T19:37:23.171196Z" + "iopub.execute_input": "2024-09-26T14:51:23.595893Z", + "iopub.status.busy": "2024-09-26T14:51:23.595586Z", + "iopub.status.idle": "2024-09-26T14:51:27.775987Z", + "shell.execute_reply": "2024-09-26T14:51:27.775330Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:23.174471Z", - "iopub.status.busy": "2024-09-06T19:37:23.174274Z", - "iopub.status.idle": "2024-09-06T19:37:24.103567Z", - "shell.execute_reply": "2024-09-06T19:37:24.102969Z" + "iopub.execute_input": "2024-09-26T14:51:27.778341Z", + "iopub.status.busy": "2024-09-26T14:51:27.777966Z", + "iopub.status.idle": "2024-09-26T14:51:28.697834Z", + "shell.execute_reply": "2024-09-26T14:51:28.697228Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:24.107438Z", - "iopub.status.busy": "2024-09-06T19:37:24.106451Z", - "iopub.status.idle": "2024-09-06T19:37:24.110626Z", - "shell.execute_reply": "2024-09-06T19:37:24.110110Z" + "iopub.execute_input": "2024-09-26T14:51:28.700329Z", + "iopub.status.busy": "2024-09-26T14:51:28.699942Z", + "iopub.status.idle": "2024-09-26T14:51:28.702874Z", + "shell.execute_reply": "2024-09-26T14:51:28.702381Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:24.114244Z", - "iopub.status.busy": "2024-09-06T19:37:24.113304Z", - "iopub.status.idle": "2024-09-06T19:37:26.122882Z", - "shell.execute_reply": "2024-09-06T19:37:26.122195Z" + "iopub.execute_input": "2024-09-26T14:51:28.704853Z", + "iopub.status.busy": "2024-09-26T14:51:28.704499Z", + "iopub.status.idle": "2024-09-26T14:51:30.723899Z", + "shell.execute_reply": "2024-09-26T14:51:30.723229Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.126146Z", - "iopub.status.busy": "2024-09-06T19:37:26.125493Z", - "iopub.status.idle": "2024-09-06T19:37:26.149493Z", - "shell.execute_reply": "2024-09-06T19:37:26.148954Z" + "iopub.execute_input": "2024-09-26T14:51:30.727734Z", + "iopub.status.busy": "2024-09-26T14:51:30.726555Z", + "iopub.status.idle": "2024-09-26T14:51:30.752360Z", + "shell.execute_reply": "2024-09-26T14:51:30.751847Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.152122Z", - "iopub.status.busy": "2024-09-06T19:37:26.151750Z", - "iopub.status.idle": "2024-09-06T19:37:26.163613Z", - "shell.execute_reply": "2024-09-06T19:37:26.163031Z" + "iopub.execute_input": "2024-09-26T14:51:30.755440Z", + "iopub.status.busy": "2024-09-26T14:51:30.754576Z", + "iopub.status.idle": "2024-09-26T14:51:30.764760Z", + "shell.execute_reply": "2024-09-26T14:51:30.764347Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.165819Z", - "iopub.status.busy": "2024-09-06T19:37:26.165507Z", - "iopub.status.idle": "2024-09-06T19:37:26.169927Z", - "shell.execute_reply": "2024-09-06T19:37:26.169445Z" + "iopub.execute_input": "2024-09-26T14:51:30.767190Z", + "iopub.status.busy": "2024-09-26T14:51:30.766574Z", + "iopub.status.idle": "2024-09-26T14:51:30.771522Z", + "shell.execute_reply": "2024-09-26T14:51:30.771112Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.171802Z", - "iopub.status.busy": "2024-09-06T19:37:26.171622Z", - "iopub.status.idle": "2024-09-06T19:37:26.178323Z", - "shell.execute_reply": "2024-09-06T19:37:26.177759Z" + "iopub.execute_input": "2024-09-26T14:51:30.773863Z", + "iopub.status.busy": "2024-09-26T14:51:30.773237Z", + "iopub.status.idle": "2024-09-26T14:51:30.780343Z", + "shell.execute_reply": "2024-09-26T14:51:30.779939Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.180430Z", - "iopub.status.busy": "2024-09-06T19:37:26.180102Z", - "iopub.status.idle": "2024-09-06T19:37:26.186371Z", - "shell.execute_reply": "2024-09-06T19:37:26.185807Z" + "iopub.execute_input": "2024-09-26T14:51:30.782231Z", + "iopub.status.busy": "2024-09-26T14:51:30.782055Z", + "iopub.status.idle": "2024-09-26T14:51:30.788970Z", + "shell.execute_reply": "2024-09-26T14:51:30.788375Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.188480Z", - "iopub.status.busy": "2024-09-06T19:37:26.188150Z", - "iopub.status.idle": "2024-09-06T19:37:26.194198Z", - "shell.execute_reply": "2024-09-06T19:37:26.193624Z" + "iopub.execute_input": "2024-09-26T14:51:30.790778Z", + "iopub.status.busy": "2024-09-26T14:51:30.790601Z", + "iopub.status.idle": "2024-09-26T14:51:30.796446Z", + "shell.execute_reply": "2024-09-26T14:51:30.795882Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.196327Z", - "iopub.status.busy": "2024-09-06T19:37:26.195981Z", - "iopub.status.idle": "2024-09-06T19:37:26.204376Z", - "shell.execute_reply": "2024-09-06T19:37:26.203913Z" + "iopub.execute_input": "2024-09-26T14:51:30.798232Z", + "iopub.status.busy": "2024-09-26T14:51:30.797967Z", + "iopub.status.idle": "2024-09-26T14:51:30.806498Z", + "shell.execute_reply": "2024-09-26T14:51:30.805933Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.206432Z", - "iopub.status.busy": "2024-09-06T19:37:26.206091Z", - "iopub.status.idle": "2024-09-06T19:37:26.211539Z", - "shell.execute_reply": "2024-09-06T19:37:26.211070Z" + "iopub.execute_input": "2024-09-26T14:51:30.808353Z", + "iopub.status.busy": "2024-09-26T14:51:30.808081Z", + "iopub.status.idle": "2024-09-26T14:51:30.813342Z", + "shell.execute_reply": "2024-09-26T14:51:30.812825Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.213685Z", - "iopub.status.busy": "2024-09-06T19:37:26.213350Z", - "iopub.status.idle": "2024-09-06T19:37:26.218528Z", - "shell.execute_reply": "2024-09-06T19:37:26.218074Z" + "iopub.execute_input": "2024-09-26T14:51:30.814997Z", + "iopub.status.busy": "2024-09-26T14:51:30.814668Z", + "iopub.status.idle": "2024-09-26T14:51:30.819982Z", + "shell.execute_reply": "2024-09-26T14:51:30.819532Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.220571Z", - "iopub.status.busy": "2024-09-06T19:37:26.220232Z", - "iopub.status.idle": "2024-09-06T19:37:26.223906Z", - "shell.execute_reply": "2024-09-06T19:37:26.223327Z" + "iopub.execute_input": "2024-09-26T14:51:30.821669Z", + "iopub.status.busy": "2024-09-26T14:51:30.821337Z", + "iopub.status.idle": "2024-09-26T14:51:30.824940Z", + "shell.execute_reply": "2024-09-26T14:51:30.824366Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:26.226160Z", - "iopub.status.busy": "2024-09-06T19:37:26.225819Z", - "iopub.status.idle": "2024-09-06T19:37:26.231140Z", - "shell.execute_reply": "2024-09-06T19:37:26.230573Z" + "iopub.execute_input": "2024-09-26T14:51:30.826780Z", + "iopub.status.busy": "2024-09-26T14:51:30.826459Z", + "iopub.status.idle": "2024-09-26T14:51:30.831493Z", + "shell.execute_reply": "2024-09-26T14:51:30.831041Z" }, "nbsphinx": "hidden" }, @@ -1497,7 +1497,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index bdff93976..ad7b0db5d 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -837,7 +837,7 @@

4. Identify Data Issues Using Datalab @@ -883,13 +883,13 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3507,16 +3507,16 @@

1. Load the Dataset
---2024-09-06 19:37:46--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+--2024-09-26 14:51:50--  https://s.cleanlab.ai/CIFAR-10-subset.zip
 Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
 Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.005s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.009s
 
-2024-09-06 19:37:46 (176 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-09-26 14:51:50 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3586,7 +3586,7 @@

2. Run Datalab Analysis
-
+
@@ -3930,7 +3930,7 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0c93ce2cb..9404f1540 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:29.604724Z", - "iopub.status.busy": "2024-09-06T19:37:29.604545Z", - "iopub.status.idle": "2024-09-06T19:37:30.035194Z", - "shell.execute_reply": "2024-09-06T19:37:30.034674Z" + "iopub.execute_input": "2024-09-26T14:51:34.296488Z", + "iopub.status.busy": "2024-09-26T14:51:34.296076Z", + "iopub.status.idle": "2024-09-26T14:51:35.016105Z", + "shell.execute_reply": "2024-09-26T14:51:35.015553Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.037845Z", - "iopub.status.busy": "2024-09-06T19:37:30.037406Z", - "iopub.status.idle": "2024-09-06T19:37:30.168185Z", - "shell.execute_reply": "2024-09-06T19:37:30.167636Z" + "iopub.execute_input": "2024-09-26T14:51:35.018426Z", + "iopub.status.busy": "2024-09-26T14:51:35.017967Z", + "iopub.status.idle": "2024-09-26T14:51:35.151580Z", + "shell.execute_reply": "2024-09-26T14:51:35.151068Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.170587Z", - "iopub.status.busy": "2024-09-06T19:37:30.170087Z", - "iopub.status.idle": "2024-09-06T19:37:30.193350Z", - "shell.execute_reply": "2024-09-06T19:37:30.192776Z" + "iopub.execute_input": "2024-09-26T14:51:35.153697Z", + "iopub.status.busy": "2024-09-26T14:51:35.153277Z", + "iopub.status.idle": "2024-09-26T14:51:35.177588Z", + "shell.execute_reply": "2024-09-26T14:51:35.176982Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:30.195997Z", - "iopub.status.busy": "2024-09-06T19:37:30.195790Z", - "iopub.status.idle": "2024-09-06T19:37:32.997740Z", - "shell.execute_reply": "2024-09-06T19:37:32.997128Z" + "iopub.execute_input": "2024-09-26T14:51:35.179788Z", + "iopub.status.busy": "2024-09-26T14:51:35.179361Z", + "iopub.status.idle": "2024-09-26T14:51:37.765581Z", + "shell.execute_reply": "2024-09-26T14:51:37.764993Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 523 issues found in the dataset.\n" + "Audit complete. 524 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:33.000426Z", - "iopub.status.busy": "2024-09-06T19:37:32.999838Z", - "iopub.status.idle": "2024-09-06T19:37:42.839981Z", - "shell.execute_reply": "2024-09-06T19:37:42.839475Z" + "iopub.execute_input": "2024-09-26T14:51:37.767993Z", + "iopub.status.busy": "2024-09-26T14:51:37.767425Z", + "iopub.status.idle": "2024-09-26T14:51:46.526023Z", + "shell.execute_reply": "2024-09-26T14:51:46.525421Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:42.842458Z", - "iopub.status.busy": "2024-09-06T19:37:42.842052Z", - "iopub.status.idle": "2024-09-06T19:37:43.014469Z", - "shell.execute_reply": "2024-09-06T19:37:43.013871Z" + "iopub.execute_input": "2024-09-26T14:51:46.528043Z", + "iopub.status.busy": "2024-09-26T14:51:46.527681Z", + "iopub.status.idle": "2024-09-26T14:51:46.730683Z", + "shell.execute_reply": "2024-09-26T14:51:46.730045Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:43.016817Z", - "iopub.status.busy": "2024-09-06T19:37:43.016641Z", - "iopub.status.idle": "2024-09-06T19:37:44.396004Z", - "shell.execute_reply": "2024-09-06T19:37:44.395431Z" + "iopub.execute_input": "2024-09-26T14:51:46.732793Z", + "iopub.status.busy": "2024-09-26T14:51:46.732448Z", + "iopub.status.idle": "2024-09-26T14:51:48.255623Z", + "shell.execute_reply": "2024-09-26T14:51:48.255118Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.398298Z", - "iopub.status.busy": "2024-09-06T19:37:44.397931Z", - "iopub.status.idle": "2024-09-06T19:37:44.810929Z", - "shell.execute_reply": "2024-09-06T19:37:44.810371Z" + "iopub.execute_input": "2024-09-26T14:51:48.257484Z", + "iopub.status.busy": "2024-09-26T14:51:48.257119Z", + "iopub.status.idle": "2024-09-26T14:51:48.773736Z", + "shell.execute_reply": "2024-09-26T14:51:48.773135Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.813440Z", - "iopub.status.busy": "2024-09-06T19:37:44.812940Z", - "iopub.status.idle": "2024-09-06T19:37:44.826271Z", - "shell.execute_reply": "2024-09-06T19:37:44.825842Z" + "iopub.execute_input": "2024-09-26T14:51:48.775864Z", + "iopub.status.busy": "2024-09-26T14:51:48.775323Z", + "iopub.status.idle": "2024-09-26T14:51:48.790103Z", + "shell.execute_reply": "2024-09-26T14:51:48.789626Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.828390Z", - "iopub.status.busy": "2024-09-06T19:37:44.828044Z", - "iopub.status.idle": "2024-09-06T19:37:44.847179Z", - "shell.execute_reply": "2024-09-06T19:37:44.846760Z" + "iopub.execute_input": "2024-09-26T14:51:48.791833Z", + "iopub.status.busy": "2024-09-26T14:51:48.791503Z", + "iopub.status.idle": "2024-09-26T14:51:48.810723Z", + "shell.execute_reply": "2024-09-26T14:51:48.810137Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:44.849314Z", - "iopub.status.busy": "2024-09-06T19:37:44.848979Z", - "iopub.status.idle": "2024-09-06T19:37:45.077019Z", - "shell.execute_reply": "2024-09-06T19:37:45.076447Z" + "iopub.execute_input": "2024-09-26T14:51:48.812726Z", + "iopub.status.busy": "2024-09-26T14:51:48.812340Z", + "iopub.status.idle": "2024-09-26T14:51:49.055015Z", + "shell.execute_reply": "2024-09-26T14:51:49.054398Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.079688Z", - "iopub.status.busy": "2024-09-06T19:37:45.079281Z", - "iopub.status.idle": "2024-09-06T19:37:45.098946Z", - "shell.execute_reply": "2024-09-06T19:37:45.098466Z" + "iopub.execute_input": "2024-09-26T14:51:49.057480Z", + "iopub.status.busy": "2024-09-26T14:51:49.057052Z", + "iopub.status.idle": "2024-09-26T14:51:49.076673Z", + "shell.execute_reply": "2024-09-26T14:51:49.076195Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.101100Z", - "iopub.status.busy": "2024-09-06T19:37:45.100762Z", - "iopub.status.idle": "2024-09-06T19:37:45.277489Z", - "shell.execute_reply": "2024-09-06T19:37:45.276850Z" + "iopub.execute_input": "2024-09-26T14:51:49.078495Z", + "iopub.status.busy": "2024-09-26T14:51:49.078146Z", + "iopub.status.idle": "2024-09-26T14:51:49.248180Z", + "shell.execute_reply": "2024-09-26T14:51:49.247594Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.279928Z", - "iopub.status.busy": "2024-09-06T19:37:45.279722Z", - "iopub.status.idle": "2024-09-06T19:37:45.290798Z", - "shell.execute_reply": "2024-09-06T19:37:45.290229Z" + "iopub.execute_input": "2024-09-26T14:51:49.250291Z", + "iopub.status.busy": "2024-09-26T14:51:49.249923Z", + "iopub.status.idle": "2024-09-26T14:51:49.260161Z", + "shell.execute_reply": "2024-09-26T14:51:49.259683Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.292867Z", - "iopub.status.busy": "2024-09-06T19:37:45.292672Z", - "iopub.status.idle": "2024-09-06T19:37:45.302178Z", - "shell.execute_reply": "2024-09-06T19:37:45.301745Z" + "iopub.execute_input": "2024-09-26T14:51:49.261950Z", + "iopub.status.busy": "2024-09-26T14:51:49.261604Z", + "iopub.status.idle": "2024-09-26T14:51:49.271258Z", + "shell.execute_reply": "2024-09-26T14:51:49.270689Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.304034Z", - "iopub.status.busy": "2024-09-06T19:37:45.303861Z", - "iopub.status.idle": "2024-09-06T19:37:45.329485Z", - "shell.execute_reply": "2024-09-06T19:37:45.329066Z" + "iopub.execute_input": "2024-09-26T14:51:49.272963Z", + "iopub.status.busy": "2024-09-26T14:51:49.272785Z", + "iopub.status.idle": "2024-09-26T14:51:49.300283Z", + "shell.execute_reply": "2024-09-26T14:51:49.299657Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.331450Z", - "iopub.status.busy": "2024-09-06T19:37:45.331118Z", - "iopub.status.idle": "2024-09-06T19:37:45.333941Z", - "shell.execute_reply": "2024-09-06T19:37:45.333348Z" + "iopub.execute_input": "2024-09-26T14:51:49.302435Z", + "iopub.status.busy": "2024-09-26T14:51:49.302020Z", + "iopub.status.idle": "2024-09-26T14:51:49.304853Z", + "shell.execute_reply": "2024-09-26T14:51:49.304388Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.336081Z", - "iopub.status.busy": "2024-09-06T19:37:45.335742Z", - "iopub.status.idle": "2024-09-06T19:37:45.354797Z", - "shell.execute_reply": "2024-09-06T19:37:45.354315Z" + "iopub.execute_input": "2024-09-26T14:51:49.306559Z", + "iopub.status.busy": "2024-09-26T14:51:49.306373Z", + "iopub.status.idle": "2024-09-26T14:51:49.326211Z", + "shell.execute_reply": "2024-09-26T14:51:49.325620Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.356897Z", - "iopub.status.busy": "2024-09-06T19:37:45.356543Z", - "iopub.status.idle": "2024-09-06T19:37:45.360935Z", - "shell.execute_reply": "2024-09-06T19:37:45.360328Z" + "iopub.execute_input": "2024-09-26T14:51:49.328491Z", + "iopub.status.busy": "2024-09-26T14:51:49.327912Z", + "iopub.status.idle": "2024-09-26T14:51:49.332250Z", + "shell.execute_reply": "2024-09-26T14:51:49.331798Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.363152Z", - "iopub.status.busy": "2024-09-06T19:37:45.362835Z", - "iopub.status.idle": "2024-09-06T19:37:45.390311Z", - "shell.execute_reply": "2024-09-06T19:37:45.389739Z" + "iopub.execute_input": "2024-09-26T14:51:49.334080Z", + "iopub.status.busy": "2024-09-26T14:51:49.333676Z", + "iopub.status.idle": "2024-09-26T14:51:49.363534Z", + "shell.execute_reply": "2024-09-26T14:51:49.362928Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.392321Z", - "iopub.status.busy": "2024-09-06T19:37:45.392005Z", - "iopub.status.idle": "2024-09-06T19:37:45.759141Z", - "shell.execute_reply": "2024-09-06T19:37:45.758581Z" + "iopub.execute_input": "2024-09-26T14:51:49.365331Z", + "iopub.status.busy": "2024-09-26T14:51:49.365032Z", + "iopub.status.idle": "2024-09-26T14:51:49.727339Z", + "shell.execute_reply": "2024-09-26T14:51:49.726743Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.761452Z", - "iopub.status.busy": "2024-09-06T19:37:45.761084Z", - "iopub.status.idle": "2024-09-06T19:37:45.764398Z", - "shell.execute_reply": "2024-09-06T19:37:45.763923Z" + "iopub.execute_input": "2024-09-26T14:51:49.729270Z", + "iopub.status.busy": "2024-09-26T14:51:49.729071Z", + "iopub.status.idle": "2024-09-26T14:51:49.732072Z", + "shell.execute_reply": "2024-09-26T14:51:49.731620Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.766685Z", - "iopub.status.busy": "2024-09-06T19:37:45.766351Z", - "iopub.status.idle": "2024-09-06T19:37:45.779490Z", - "shell.execute_reply": "2024-09-06T19:37:45.779045Z" + "iopub.execute_input": "2024-09-26T14:51:49.733810Z", + "iopub.status.busy": "2024-09-26T14:51:49.733632Z", + "iopub.status.idle": "2024-09-26T14:51:49.747657Z", + "shell.execute_reply": "2024-09-26T14:51:49.747198Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.781428Z", - "iopub.status.busy": "2024-09-06T19:37:45.781250Z", - "iopub.status.idle": "2024-09-06T19:37:45.796041Z", - "shell.execute_reply": "2024-09-06T19:37:45.795601Z" + "iopub.execute_input": "2024-09-26T14:51:49.749243Z", + "iopub.status.busy": "2024-09-26T14:51:49.749065Z", + "iopub.status.idle": "2024-09-26T14:51:49.763193Z", + "shell.execute_reply": "2024-09-26T14:51:49.762714Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.798043Z", - "iopub.status.busy": "2024-09-06T19:37:45.797870Z", - "iopub.status.idle": "2024-09-06T19:37:45.807740Z", - "shell.execute_reply": "2024-09-06T19:37:45.807165Z" + "iopub.execute_input": "2024-09-26T14:51:49.764801Z", + "iopub.status.busy": "2024-09-26T14:51:49.764624Z", + "iopub.status.idle": "2024-09-26T14:51:49.775091Z", + "shell.execute_reply": "2024-09-26T14:51:49.774491Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.809952Z", - "iopub.status.busy": "2024-09-06T19:37:45.809629Z", - "iopub.status.idle": "2024-09-06T19:37:45.818832Z", - "shell.execute_reply": "2024-09-06T19:37:45.818256Z" + "iopub.execute_input": "2024-09-26T14:51:49.777122Z", + "iopub.status.busy": "2024-09-26T14:51:49.776798Z", + "iopub.status.idle": "2024-09-26T14:51:49.786610Z", + "shell.execute_reply": "2024-09-26T14:51:49.786151Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.821154Z", - "iopub.status.busy": "2024-09-06T19:37:45.820691Z", - "iopub.status.idle": "2024-09-06T19:37:45.824900Z", - "shell.execute_reply": "2024-09-06T19:37:45.824317Z" + "iopub.execute_input": "2024-09-26T14:51:49.788278Z", + "iopub.status.busy": "2024-09-26T14:51:49.788101Z", + "iopub.status.idle": "2024-09-26T14:51:49.791818Z", + "shell.execute_reply": "2024-09-26T14:51:49.791364Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.826963Z", - "iopub.status.busy": "2024-09-06T19:37:45.826647Z", - "iopub.status.idle": "2024-09-06T19:37:45.876648Z", - "shell.execute_reply": "2024-09-06T19:37:45.876084Z" + "iopub.execute_input": "2024-09-26T14:51:49.793563Z", + "iopub.status.busy": "2024-09-26T14:51:49.793225Z", + "iopub.status.idle": "2024-09-26T14:51:49.849225Z", + "shell.execute_reply": "2024-09-26T14:51:49.848755Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.878907Z", - "iopub.status.busy": "2024-09-06T19:37:45.878480Z", - "iopub.status.idle": "2024-09-06T19:37:45.884204Z", - "shell.execute_reply": "2024-09-06T19:37:45.883634Z" + "iopub.execute_input": "2024-09-26T14:51:49.851334Z", + "iopub.status.busy": "2024-09-26T14:51:49.850848Z", + "iopub.status.idle": "2024-09-26T14:51:49.856692Z", + "shell.execute_reply": "2024-09-26T14:51:49.856243Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.886291Z", - "iopub.status.busy": "2024-09-06T19:37:45.885973Z", - "iopub.status.idle": "2024-09-06T19:37:45.897008Z", - "shell.execute_reply": "2024-09-06T19:37:45.896438Z" + "iopub.execute_input": "2024-09-26T14:51:49.858413Z", + "iopub.status.busy": "2024-09-26T14:51:49.858094Z", + "iopub.status.idle": "2024-09-26T14:51:49.869805Z", + "shell.execute_reply": "2024-09-26T14:51:49.869218Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:45.899243Z", - "iopub.status.busy": "2024-09-06T19:37:45.898904Z", - "iopub.status.idle": "2024-09-06T19:37:46.075809Z", - "shell.execute_reply": "2024-09-06T19:37:46.075226Z" + "iopub.execute_input": "2024-09-26T14:51:49.871476Z", + "iopub.status.busy": "2024-09-26T14:51:49.871161Z", + "iopub.status.idle": "2024-09-26T14:51:50.098032Z", + "shell.execute_reply": "2024-09-26T14:51:50.097456Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.078430Z", - "iopub.status.busy": "2024-09-06T19:37:46.077957Z", - "iopub.status.idle": "2024-09-06T19:37:46.085812Z", - "shell.execute_reply": "2024-09-06T19:37:46.085244Z" + "iopub.execute_input": "2024-09-26T14:51:50.099892Z", + "iopub.status.busy": "2024-09-26T14:51:50.099599Z", + "iopub.status.idle": "2024-09-26T14:51:50.107584Z", + "shell.execute_reply": "2024-09-26T14:51:50.107015Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.087762Z", - "iopub.status.busy": "2024-09-06T19:37:46.087589Z", - "iopub.status.idle": "2024-09-06T19:37:46.522443Z", - "shell.execute_reply": "2024-09-06T19:37:46.521749Z" + "iopub.execute_input": "2024-09-26T14:51:50.109288Z", + "iopub.status.busy": "2024-09-26T14:51:50.109111Z", + "iopub.status.idle": "2024-09-26T14:51:50.496608Z", + "shell.execute_reply": "2024-09-26T14:51:50.495787Z" } }, "outputs": [ @@ -3767,7 +3767,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:37:46-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-09-26 14:51:50-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", "HTTP request sent, awaiting response... " @@ -3783,9 +3783,9 @@ "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.005s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.009s \r\n", "\r\n", - "2024-09-06 19:37:46 (176 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-26 14:51:50 (107 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:46.525178Z", - "iopub.status.busy": "2024-09-06T19:37:46.524748Z", - "iopub.status.idle": "2024-09-06T19:37:48.452276Z", - "shell.execute_reply": "2024-09-06T19:37:48.451758Z" + "iopub.execute_input": "2024-09-26T14:51:50.499275Z", + "iopub.status.busy": "2024-09-26T14:51:50.498755Z", + "iopub.status.idle": "2024-09-26T14:51:52.468119Z", + "shell.execute_reply": "2024-09-26T14:51:52.467505Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:48.454913Z", - "iopub.status.busy": "2024-09-06T19:37:48.454468Z", - "iopub.status.idle": "2024-09-06T19:37:49.092778Z", - "shell.execute_reply": "2024-09-06T19:37:49.092169Z" + "iopub.execute_input": "2024-09-26T14:51:52.470295Z", + "iopub.status.busy": "2024-09-26T14:51:52.470006Z", + "iopub.status.idle": "2024-09-26T14:51:53.135612Z", + "shell.execute_reply": "2024-09-26T14:51:53.134933Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a5793cf283c046f188f735beef4577a5", + "model_id": "819cd513a50348b98c0ff3c8dd72c7bd", "version_major": 2, "version_minor": 0 }, @@ -4008,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.095580Z", - "iopub.status.busy": "2024-09-06T19:37:49.095115Z", - "iopub.status.idle": "2024-09-06T19:37:49.108940Z", - "shell.execute_reply": "2024-09-06T19:37:49.108334Z" + "iopub.execute_input": "2024-09-26T14:51:53.138593Z", + "iopub.status.busy": "2024-09-26T14:51:53.138086Z", + "iopub.status.idle": "2024-09-26T14:51:53.152674Z", + "shell.execute_reply": "2024-09-26T14:51:53.152106Z" } }, "outputs": [ @@ -4257,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.112413Z", - "iopub.status.busy": "2024-09-06T19:37:49.112212Z", - "iopub.status.idle": "2024-09-06T19:37:49.262201Z", - "shell.execute_reply": "2024-09-06T19:37:49.261645Z" + "iopub.execute_input": "2024-09-26T14:51:53.155019Z", + "iopub.status.busy": "2024-09-26T14:51:53.154607Z", + "iopub.status.idle": "2024-09-26T14:51:53.305855Z", + "shell.execute_reply": "2024-09-26T14:51:53.305327Z" } }, "outputs": [ @@ -4325,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.264493Z", - "iopub.status.busy": "2024-09-06T19:37:49.264138Z", - "iopub.status.idle": "2024-09-06T19:37:49.776468Z", - "shell.execute_reply": "2024-09-06T19:37:49.775810Z" + "iopub.execute_input": "2024-09-26T14:51:53.308217Z", + "iopub.status.busy": "2024-09-26T14:51:53.307686Z", + "iopub.status.idle": "2024-09-26T14:51:53.823497Z", + "shell.execute_reply": "2024-09-26T14:51:53.822950Z" }, "nbsphinx": "hidden" }, @@ -4344,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e53b81d02870488ca1d70faf1534371f", + "model_id": "ac8a16cb60b04919938bc00b2f1342f7", "version_major": 2, "version_minor": 0 }, @@ -4598,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:49.778901Z", - "iopub.status.busy": "2024-09-06T19:37:49.778528Z", - "iopub.status.idle": "2024-09-06T19:37:49.924980Z", - "shell.execute_reply": "2024-09-06T19:37:49.924477Z" + "iopub.execute_input": "2024-09-26T14:51:53.825382Z", + "iopub.status.busy": "2024-09-26T14:51:53.825164Z", + "iopub.status.idle": "2024-09-26T14:51:53.978845Z", + "shell.execute_reply": "2024-09-26T14:51:53.978305Z" }, "nbsphinx": "hidden" }, @@ -4648,12 +4648,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "021a50164b8c491ebb069bd57b11ce1a": { + "0cd32d52503a444d88252596c7202d70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,30 +4706,7 @@ "width": null } }, - "2cb88e5e7d0f4849b336950480e87a06": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5349f02a0bb24786bba46192aa1d90ff", - "placeholder": "​", - "style": "IPY_MODEL_b93c4b8b97f34f0b93a2d334e5065e1b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "313b234230ce4ce4850b3fa6a5e1b1ee": { + "1e281a0c15b84c80941bc82a97097993": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4782,7 +4759,7 @@ "width": null } }, - "41bdd318b6d1453a8daca74a0776e419": { + "2680a7b149fd4520bb536ef2dfbaa7c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4835,7 +4812,7 @@ "width": null } }, - "5349f02a0bb24786bba46192aa1d90ff": { + "2ea4ee3035ec4460b45119db4b86c88e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4888,105 +4865,25 @@ "width": null } }, - "5664879b48124f5cac1e0a8c43742995": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da820a1ccd2b42d4a8c12ea0328d1169", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_da8ad4a548a8409389fab7ddc0e601bc", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "6529bc3e5e35424f967dab0385030a5c": { + "305f6e33eec84265b93317eacfe9b6b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41bdd318b6d1453a8daca74a0776e419", - "placeholder": "​", - "style": "IPY_MODEL_dfac24cbd04d4a6a9c6a2f3d7e34c87e", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 682.83it/s]" - } - }, - "733b0d114c6e48e6af9ced8acfb5bf3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_953f4c82aabd472c9e8dfebdf70939d8", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86445ca79c764836a406520c67b4b945", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "7b9c39c715b849dbb886ceaeb96e5c35": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fb3eb018b9d446294207573ca64cda2", - "placeholder": "​", - "style": "IPY_MODEL_ec3f09ac595d4dadbd0cf34793d57087", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fb3eb018b9d446294207573ca64cda2": { + "31a345d79d134ece901060efdb94b165": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5039,23 +4936,7 @@ "width": null } }, - "86445ca79c764836a406520c67b4b945": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "953f4c82aabd472c9e8dfebdf70939d8": { + "31b855e014d84579b8434de0e51b2846": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5108,7 +4989,97 @@ "width": null } }, - "9ffc7a8014b64edfad1dd643172601d1": { + "4a9cf0b92b274885a650766f05b77292": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31b855e014d84579b8434de0e51b2846", + "placeholder": "​", + "style": "IPY_MODEL_77f44dc1b8c84ab4aef3e983303eb4a2", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 696.05it/s]" + } + }, + "56f377970b0e41d0a3ab38bfadd0c51b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2680a7b149fd4520bb536ef2dfbaa7c2", + "placeholder": "​", + "style": "IPY_MODEL_a9661f0b7a8d447c8c47dfe0b78f61ef", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "59cfff3ec22848b6944ba0bf323bd24b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5f01f9c656284899b3a91282330101c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_829ff0aad29b4270b40cd9499bc93cc7", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77633068b2ef4937bf213a3297280a11", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "769fa00f56a8417b92d2a48b7c419f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5123,15 +5094,73 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_021a50164b8c491ebb069bd57b11ce1a", + "layout": "IPY_MODEL_31a345d79d134ece901060efdb94b165", "placeholder": "​", - "style": "IPY_MODEL_da74a2af2dfa4378a23a6009ae2f264c", + "style": "IPY_MODEL_305f6e33eec84265b93317eacfe9b6b0", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 785.38it/s]" + "value": " 200/200 [00:00<00:00, 735.07it/s]" + } + }, + "77633068b2ef4937bf213a3297280a11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "77f44dc1b8c84ab4aef3e983303eb4a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a185cb088b4a4b50933699f586275482": { + "819cd513a50348b98c0ff3c8dd72c7bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92ac731fb51746b9a27792595b65bd81", + "IPY_MODEL_e345abf69b7b4519a731b4da99441fe1", + "IPY_MODEL_769fa00f56a8417b92d2a48b7c419f62" + ], + "layout": "IPY_MODEL_2ea4ee3035ec4460b45119db4b86c88e", + "tabbable": null, + "tooltip": null + } + }, + "829ff0aad29b4270b40cd9499bc93cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5184,31 +5213,30 @@ "width": null } }, - "a5793cf283c046f188f735beef4577a5": { + "92ac731fb51746b9a27792595b65bd81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b9c39c715b849dbb886ceaeb96e5c35", - "IPY_MODEL_5664879b48124f5cac1e0a8c43742995", - "IPY_MODEL_9ffc7a8014b64edfad1dd643172601d1" - ], - "layout": "IPY_MODEL_313b234230ce4ce4850b3fa6a5e1b1ee", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0cd32d52503a444d88252596c7202d70", + "placeholder": "​", + "style": "IPY_MODEL_59cfff3ec22848b6944ba0bf323bd24b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "b93c4b8b97f34f0b93a2d334e5065e1b": { + "a9661f0b7a8d447c8c47dfe0b78f61ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5226,25 +5254,31 @@ "text_color": null } }, - "da74a2af2dfa4378a23a6009ae2f264c": { + "ac8a16cb60b04919938bc00b2f1342f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56f377970b0e41d0a3ab38bfadd0c51b", + "IPY_MODEL_5f01f9c656284899b3a91282330101c8", + "IPY_MODEL_4a9cf0b92b274885a650766f05b77292" + ], + "layout": "IPY_MODEL_b805213db2034e85bcf8aa102ab8cd3c", + "tabbable": null, + "tooltip": null } }, - "da820a1ccd2b42d4a8c12ea0328d1169": { + "b805213db2034e85bcf8aa102ab8cd3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5297,7 +5331,7 @@ "width": null } }, - "da8ad4a548a8409389fab7ddc0e601bc": { + "c28c38c2f92e4620b4be9878c38511ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5313,64 +5347,30 @@ "description_width": "" } }, - "dfac24cbd04d4a6a9c6a2f3d7e34c87e": { + "e345abf69b7b4519a731b4da99441fe1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e53b81d02870488ca1d70faf1534371f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2cb88e5e7d0f4849b336950480e87a06", - "IPY_MODEL_733b0d114c6e48e6af9ced8acfb5bf3a", - "IPY_MODEL_6529bc3e5e35424f967dab0385030a5c" - ], - "layout": "IPY_MODEL_a185cb088b4a4b50933699f586275482", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e281a0c15b84c80941bc82a97097993", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c28c38c2f92e4620b4be9878c38511ce", "tabbable": null, - "tooltip": null - } - }, - "ec3f09ac595d4dadbd0cf34793d57087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 200.0 } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index e932968f7..c8c374ab4 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:53.970574Z", - "iopub.status.busy": "2024-09-06T19:37:53.970388Z", - "iopub.status.idle": "2024-09-06T19:37:55.134808Z", - "shell.execute_reply": "2024-09-06T19:37:55.134157Z" + "iopub.execute_input": "2024-09-26T14:51:59.182546Z", + "iopub.status.busy": "2024-09-26T14:51:59.182366Z", + "iopub.status.idle": "2024-09-26T14:52:00.393643Z", + "shell.execute_reply": "2024-09-26T14:52:00.393076Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.137505Z", - "iopub.status.busy": "2024-09-06T19:37:55.137230Z", - "iopub.status.idle": "2024-09-06T19:37:55.140659Z", - "shell.execute_reply": "2024-09-06T19:37:55.140221Z" + "iopub.execute_input": "2024-09-26T14:52:00.395685Z", + "iopub.status.busy": "2024-09-26T14:52:00.395388Z", + "iopub.status.idle": "2024-09-26T14:52:00.398322Z", + "shell.execute_reply": "2024-09-26T14:52:00.397857Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.142857Z", - "iopub.status.busy": "2024-09-06T19:37:55.142554Z", - "iopub.status.idle": "2024-09-06T19:37:55.154394Z", - "shell.execute_reply": "2024-09-06T19:37:55.153913Z" + "iopub.execute_input": "2024-09-26T14:52:00.400144Z", + "iopub.status.busy": "2024-09-26T14:52:00.399840Z", + "iopub.status.idle": "2024-09-26T14:52:00.412193Z", + "shell.execute_reply": "2024-09-26T14:52:00.411697Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:37:55.156367Z", - "iopub.status.busy": "2024-09-06T19:37:55.156193Z", - "iopub.status.idle": "2024-09-06T19:38:03.213180Z", - "shell.execute_reply": "2024-09-06T19:38:03.212490Z" + "iopub.execute_input": "2024-09-26T14:52:00.414113Z", + "iopub.status.busy": "2024-09-26T14:52:00.413741Z", + "iopub.status.idle": "2024-09-26T14:52:05.730687Z", + "shell.execute_reply": "2024-09-26T14:52:05.730191Z" }, "id": "dhTHOg8Pyv5G" }, @@ -3119,7 +3119,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 5da9f6de6..13b6a03e5 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -835,13 +835,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1706,7 +1706,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index cec52a458..6f20431e7 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:05.442254Z", - "iopub.status.busy": "2024-09-06T19:38:05.441754Z", - "iopub.status.idle": "2024-09-06T19:38:06.608058Z", - "shell.execute_reply": "2024-09-06T19:38:06.607439Z" + "iopub.execute_input": "2024-09-26T14:52:08.034662Z", + "iopub.status.busy": "2024-09-26T14:52:08.034481Z", + "iopub.status.idle": "2024-09-26T14:52:09.304690Z", + "shell.execute_reply": "2024-09-26T14:52:09.304102Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:06.610846Z", - "iopub.status.busy": "2024-09-06T19:38:06.610375Z", - "iopub.status.idle": "2024-09-06T19:38:06.613802Z", - "shell.execute_reply": "2024-09-06T19:38:06.613322Z" + "iopub.execute_input": "2024-09-26T14:52:09.306879Z", + "iopub.status.busy": "2024-09-26T14:52:09.306585Z", + "iopub.status.idle": "2024-09-26T14:52:09.310196Z", + "shell.execute_reply": "2024-09-26T14:52:09.309631Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:06.615798Z", - "iopub.status.busy": "2024-09-06T19:38:06.615518Z", - "iopub.status.idle": "2024-09-06T19:38:09.981363Z", - "shell.execute_reply": "2024-09-06T19:38:09.980664Z" + "iopub.execute_input": "2024-09-26T14:52:09.311928Z", + "iopub.status.busy": "2024-09-26T14:52:09.311543Z", + "iopub.status.idle": "2024-09-26T14:52:12.757719Z", + "shell.execute_reply": "2024-09-26T14:52:12.756901Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:09.984620Z", - "iopub.status.busy": "2024-09-06T19:38:09.983724Z", - "iopub.status.idle": "2024-09-06T19:38:10.027299Z", - "shell.execute_reply": "2024-09-06T19:38:10.026694Z" + "iopub.execute_input": "2024-09-26T14:52:12.760355Z", + "iopub.status.busy": "2024-09-26T14:52:12.759696Z", + "iopub.status.idle": "2024-09-26T14:52:12.813184Z", + "shell.execute_reply": "2024-09-26T14:52:12.812421Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.030074Z", - "iopub.status.busy": "2024-09-06T19:38:10.029673Z", - "iopub.status.idle": "2024-09-06T19:38:10.069413Z", - "shell.execute_reply": "2024-09-06T19:38:10.068633Z" + "iopub.execute_input": "2024-09-26T14:52:12.815571Z", + "iopub.status.busy": "2024-09-26T14:52:12.815173Z", + "iopub.status.idle": "2024-09-26T14:52:12.861989Z", + "shell.execute_reply": "2024-09-26T14:52:12.861319Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.072131Z", - "iopub.status.busy": "2024-09-06T19:38:10.071875Z", - "iopub.status.idle": "2024-09-06T19:38:10.075127Z", - "shell.execute_reply": "2024-09-06T19:38:10.074582Z" + "iopub.execute_input": "2024-09-26T14:52:12.864397Z", + "iopub.status.busy": "2024-09-26T14:52:12.863906Z", + "iopub.status.idle": "2024-09-26T14:52:12.867232Z", + "shell.execute_reply": "2024-09-26T14:52:12.866761Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.077352Z", - "iopub.status.busy": "2024-09-06T19:38:10.077011Z", - "iopub.status.idle": "2024-09-06T19:38:10.079576Z", - "shell.execute_reply": "2024-09-06T19:38:10.079132Z" + "iopub.execute_input": "2024-09-26T14:52:12.868891Z", + "iopub.status.busy": "2024-09-26T14:52:12.868591Z", + "iopub.status.idle": "2024-09-26T14:52:12.871312Z", + "shell.execute_reply": "2024-09-26T14:52:12.870766Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.081910Z", - "iopub.status.busy": "2024-09-06T19:38:10.081719Z", - "iopub.status.idle": "2024-09-06T19:38:10.109741Z", - "shell.execute_reply": "2024-09-06T19:38:10.109183Z" + "iopub.execute_input": "2024-09-26T14:52:12.873230Z", + "iopub.status.busy": "2024-09-26T14:52:12.872884Z", + "iopub.status.idle": "2024-09-26T14:52:12.897801Z", + "shell.execute_reply": "2024-09-26T14:52:12.897165Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "10e11ec38b13425280381ff5281c4450", + "model_id": "554f0bffd2414657b0244763906a1e3d", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e2d5adb59434e2081db18c696100263", + "model_id": "d70c6118368a40e3b8c24ac57cc4db26", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.115104Z", - "iopub.status.busy": "2024-09-06T19:38:10.114762Z", - "iopub.status.idle": "2024-09-06T19:38:10.121297Z", - "shell.execute_reply": "2024-09-06T19:38:10.120726Z" + "iopub.execute_input": "2024-09-26T14:52:12.900530Z", + "iopub.status.busy": "2024-09-26T14:52:12.900181Z", + "iopub.status.idle": "2024-09-26T14:52:12.907197Z", + "shell.execute_reply": "2024-09-26T14:52:12.906763Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.123497Z", - "iopub.status.busy": "2024-09-06T19:38:10.123043Z", - "iopub.status.idle": "2024-09-06T19:38:10.126503Z", - "shell.execute_reply": "2024-09-06T19:38:10.126056Z" + "iopub.execute_input": "2024-09-26T14:52:12.908993Z", + "iopub.status.busy": "2024-09-26T14:52:12.908664Z", + "iopub.status.idle": "2024-09-26T14:52:12.911903Z", + "shell.execute_reply": "2024-09-26T14:52:12.911461Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.128505Z", - "iopub.status.busy": "2024-09-06T19:38:10.128204Z", - "iopub.status.idle": "2024-09-06T19:38:10.134549Z", - "shell.execute_reply": "2024-09-06T19:38:10.134003Z" + "iopub.execute_input": "2024-09-26T14:52:12.913714Z", + "iopub.status.busy": "2024-09-26T14:52:12.913385Z", + "iopub.status.idle": "2024-09-26T14:52:12.919520Z", + "shell.execute_reply": "2024-09-26T14:52:12.919085Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.136656Z", - "iopub.status.busy": "2024-09-06T19:38:10.136338Z", - "iopub.status.idle": "2024-09-06T19:38:10.179181Z", - "shell.execute_reply": "2024-09-06T19:38:10.178556Z" + "iopub.execute_input": "2024-09-26T14:52:12.921164Z", + "iopub.status.busy": "2024-09-26T14:52:12.920839Z", + "iopub.status.idle": "2024-09-26T14:52:12.968393Z", + "shell.execute_reply": "2024-09-26T14:52:12.967757Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.181945Z", - "iopub.status.busy": "2024-09-06T19:38:10.181555Z", - "iopub.status.idle": "2024-09-06T19:38:10.218200Z", - "shell.execute_reply": "2024-09-06T19:38:10.217453Z" + "iopub.execute_input": "2024-09-26T14:52:12.970571Z", + "iopub.status.busy": "2024-09-26T14:52:12.970308Z", + "iopub.status.idle": "2024-09-26T14:52:13.022776Z", + "shell.execute_reply": "2024-09-26T14:52:13.022011Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.220958Z", - "iopub.status.busy": "2024-09-06T19:38:10.220569Z", - "iopub.status.idle": "2024-09-06T19:38:10.349381Z", - "shell.execute_reply": "2024-09-06T19:38:10.348725Z" + "iopub.execute_input": "2024-09-26T14:52:13.025203Z", + "iopub.status.busy": "2024-09-26T14:52:13.024937Z", + "iopub.status.idle": "2024-09-26T14:52:13.170260Z", + "shell.execute_reply": "2024-09-26T14:52:13.169652Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:10.352202Z", - "iopub.status.busy": "2024-09-06T19:38:10.351437Z", - "iopub.status.idle": "2024-09-06T19:38:13.390257Z", - "shell.execute_reply": "2024-09-06T19:38:13.389586Z" + "iopub.execute_input": "2024-09-26T14:52:13.172750Z", + "iopub.status.busy": "2024-09-26T14:52:13.171949Z", + "iopub.status.idle": "2024-09-26T14:52:16.250921Z", + "shell.execute_reply": "2024-09-26T14:52:16.250318Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.392707Z", - "iopub.status.busy": "2024-09-06T19:38:13.392511Z", - "iopub.status.idle": "2024-09-06T19:38:13.450827Z", - "shell.execute_reply": "2024-09-06T19:38:13.450261Z" + "iopub.execute_input": "2024-09-26T14:52:16.253054Z", + "iopub.status.busy": "2024-09-26T14:52:16.252685Z", + "iopub.status.idle": "2024-09-26T14:52:16.313315Z", + "shell.execute_reply": "2024-09-26T14:52:16.312808Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.453108Z", - "iopub.status.busy": "2024-09-06T19:38:13.452688Z", - "iopub.status.idle": "2024-09-06T19:38:13.493414Z", - "shell.execute_reply": "2024-09-06T19:38:13.492941Z" + "iopub.execute_input": "2024-09-26T14:52:16.315165Z", + "iopub.status.busy": "2024-09-26T14:52:16.314831Z", + "iopub.status.idle": "2024-09-26T14:52:16.358568Z", + "shell.execute_reply": "2024-09-26T14:52:16.358096Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "368f0547", + "id": "52d078eb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "dc65d1a9", + "id": "79b5500c", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "e31bf904", + "id": "f114fab1", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0365a86d", + "id": "a6fcaf91", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.495546Z", - "iopub.status.busy": "2024-09-06T19:38:13.495269Z", - "iopub.status.idle": "2024-09-06T19:38:13.502952Z", - "shell.execute_reply": "2024-09-06T19:38:13.502358Z" + "iopub.execute_input": "2024-09-26T14:52:16.360590Z", + "iopub.status.busy": "2024-09-26T14:52:16.360173Z", + "iopub.status.idle": "2024-09-26T14:52:16.368057Z", + "shell.execute_reply": "2024-09-26T14:52:16.367484Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "1c944acb", + "id": "fe87ea59", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "c713e4cb", + "id": "6c7bf69f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.504946Z", - "iopub.status.busy": "2024-09-06T19:38:13.504608Z", - "iopub.status.idle": "2024-09-06T19:38:13.523104Z", - "shell.execute_reply": "2024-09-06T19:38:13.522534Z" + "iopub.execute_input": "2024-09-26T14:52:16.369947Z", + "iopub.status.busy": "2024-09-26T14:52:16.369620Z", + "iopub.status.idle": "2024-09-26T14:52:16.389325Z", + "shell.execute_reply": "2024-09-26T14:52:16.388736Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "59184bfc", + "id": "c73832aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:13.525068Z", - "iopub.status.busy": "2024-09-06T19:38:13.524743Z", - "iopub.status.idle": "2024-09-06T19:38:13.528122Z", - "shell.execute_reply": "2024-09-06T19:38:13.527552Z" + "iopub.execute_input": "2024-09-26T14:52:16.391059Z", + "iopub.status.busy": "2024-09-26T14:52:16.390763Z", + "iopub.status.idle": "2024-09-26T14:52:16.394252Z", + "shell.execute_reply": "2024-09-26T14:52:16.393690Z" } }, "outputs": [ @@ -1617,12 +1617,30 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a20db80d8ee4c558ba192d544a0f48a": { + "01c2b1694c624296b114bf1d67d63cff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0b91ac3abe0a43e4b471a93ba3834871": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1693,25 @@ "width": null } }, - "0e1e83d9b67447b1a76b3a2c668a8439": { + "1c5e90fb88e44d4280704d7ea69107fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f603edcaca0493985e74b52602fd4e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,25 +1764,46 @@ "width": null } }, - "0ea8c549fffe4418b122c5d1daacdcf9": { + "24e8217d30ae40ec8e547d17a79c5035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "4d41deb2547b43daa3622e6c0f359568": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_853967e0e61449b5b519cbd25c8830fc", + "placeholder": "​", + "style": "IPY_MODEL_70ee3acf89114ab190c8c886bcad952a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "10e11ec38b13425280381ff5281c4450": { + "554f0bffd2414657b0244763906a1e3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1761,16 +1818,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_98a30ff8d08f40f5a59fa3959a1bfd7a", - "IPY_MODEL_9e361a1c4f7d49d28575030ed31684b4", - "IPY_MODEL_5d93e4fbfc844d82994983ca2900ac04" + "IPY_MODEL_c8c65a735e994d1792a82e7140824616", + "IPY_MODEL_77dcb3bbbcad4620bbed6ca47c4c44db", + "IPY_MODEL_e241857383f5412490f7baca022471b6" ], - "layout": "IPY_MODEL_4c9d550f7159424fb6452da47b5cb51f", + "layout": "IPY_MODEL_af8c576b995749f49b6a3ff1a3ef7338", "tabbable": null, "tooltip": null } }, - "1989c2b222ef4983ba1d80fd96d80f9d": { + "5569a8600bc64dfebf5774ddc1b6543c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1823,23 +1880,48 @@ "width": null } }, - "278fa17d981b49c5a5afac9215c11437": { + "70745b2f7b374dbb8bf3ac849b0ce45e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f603edcaca0493985e74b52602fd4e9", + "placeholder": "​", + "style": "IPY_MODEL_01c2b1694c624296b114bf1d67d63cff", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1566266.10it/s]" + } + }, + "70ee3acf89114ab190c8c886bcad952a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4c9d550f7159424fb6452da47b5cb51f": { + "74ffd9bb94c34169aa80dd9d157cd10d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1892,30 +1974,33 @@ "width": null } }, - "5d93e4fbfc844d82994983ca2900ac04": { + "77dcb3bbbcad4620bbed6ca47c4c44db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a20db80d8ee4c558ba192d544a0f48a", - "placeholder": "​", - "style": "IPY_MODEL_85eb048e0015452a98d2585ecd3acea6", + "layout": "IPY_MODEL_c8f68f3e3778452dbb68e37345ea22a9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7a5057a16474398af969c555e555a5d", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 908211.86it/s]" + "value": 50.0 } }, - "62148dc5598f487787910111c96b2850": { + "853967e0e61449b5b519cbd25c8830fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1968,30 +2053,7 @@ "width": null } }, - "663eab6313474ab4b43a56ac15375332": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e1e83d9b67447b1a76b3a2c668a8439", - "placeholder": "​", - "style": "IPY_MODEL_c8b6ee68eda04b79b9d7e8ba44708601", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "71bf8e249c8e494a8293a1368b4cde75": { + "af8c576b995749f49b6a3ff1a3ef7338": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2044,67 +2106,72 @@ "width": null } }, - "7e2d5adb59434e2081db18c696100263": { + "c7a5057a16474398af969c555e555a5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_663eab6313474ab4b43a56ac15375332", - "IPY_MODEL_cb19cecdebc048139ef9e5b0697091e8", - "IPY_MODEL_b09565a1c786456187dacb880907b06f" - ], - "layout": "IPY_MODEL_62148dc5598f487787910111c96b2850", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "85eb048e0015452a98d2585ecd3acea6": { + "c7fe0e5fdfd74b84af9f7585515c62f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fead4528991a4aafb24e155e68de7bc9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24e8217d30ae40ec8e547d17a79c5035", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "8a29c209506d4b1f809b0eee618845ff": { + "c8c65a735e994d1792a82e7140824616": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b91ac3abe0a43e4b471a93ba3834871", + "placeholder": "​", + "style": "IPY_MODEL_1c5e90fb88e44d4280704d7ea69107fc", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "8a7564586c364ea6ab0b8036f15d75de": { + "c8f68f3e3778452dbb68e37345ea22a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2157,56 +2224,31 @@ "width": null } }, - "98a30ff8d08f40f5a59fa3959a1bfd7a": { + "d70c6118368a40e3b8c24ac57cc4db26": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbbdcb4211b04decb44b6be6dae0e74f", - "placeholder": "​", - "style": "IPY_MODEL_0ea8c549fffe4418b122c5d1daacdcf9", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "9e361a1c4f7d49d28575030ed31684b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a7564586c364ea6ab0b8036f15d75de", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_278fa17d981b49c5a5afac9215c11437", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d41deb2547b43daa3622e6c0f359568", + "IPY_MODEL_c7fe0e5fdfd74b84af9f7585515c62f8", + "IPY_MODEL_70745b2f7b374dbb8bf3ac849b0ce45e" + ], + "layout": "IPY_MODEL_74ffd9bb94c34169aa80dd9d157cd10d", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "b09565a1c786456187dacb880907b06f": { + "e241857383f5412490f7baca022471b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2221,15 +2263,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_71bf8e249c8e494a8293a1368b4cde75", + "layout": "IPY_MODEL_5569a8600bc64dfebf5774ddc1b6543c", "placeholder": "​", - "style": "IPY_MODEL_8a29c209506d4b1f809b0eee618845ff", + "style": "IPY_MODEL_f6897d47a5094424a94e9a8a0a058c31", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1197722.38it/s]" + "value": " 10000/? [00:00<00:00, 1012407.73it/s]" } }, - "c8b6ee68eda04b79b9d7e8ba44708601": { + "f6897d47a5094424a94e9a8a0a058c31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2247,33 +2289,7 @@ "text_color": null } }, - "cb19cecdebc048139ef9e5b0697091e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1989c2b222ef4983ba1d80fd96d80f9d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd96842c5f86404599e6a57c4439dccf", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cbbdcb4211b04decb44b6be6dae0e74f": { + "fead4528991a4aafb24e155e68de7bc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2325,22 +2341,6 @@ "visibility": null, "width": null } - }, - "cd96842c5f86404599e6a57c4439dccf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 0126898fa..d59d7a26c 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:17.966921Z", - "iopub.status.busy": "2024-09-06T19:38:17.966743Z", - "iopub.status.idle": "2024-09-06T19:38:19.153643Z", - "shell.execute_reply": "2024-09-06T19:38:19.153020Z" + "iopub.execute_input": "2024-09-26T14:52:19.810405Z", + "iopub.status.busy": "2024-09-26T14:52:19.810223Z", + "iopub.status.idle": "2024-09-26T14:52:21.040404Z", + "shell.execute_reply": "2024-09-26T14:52:21.039829Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.156468Z", - "iopub.status.busy": "2024-09-06T19:38:19.155927Z", - "iopub.status.idle": "2024-09-06T19:38:19.159820Z", - "shell.execute_reply": "2024-09-06T19:38:19.159280Z" + "iopub.execute_input": "2024-09-26T14:52:21.042734Z", + "iopub.status.busy": "2024-09-26T14:52:21.042166Z", + "iopub.status.idle": "2024-09-26T14:52:21.046124Z", + "shell.execute_reply": "2024-09-26T14:52:21.045639Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.161985Z", - "iopub.status.busy": "2024-09-06T19:38:19.161628Z", - "iopub.status.idle": "2024-09-06T19:38:19.848074Z", - "shell.execute_reply": "2024-09-06T19:38:19.847540Z" + "iopub.execute_input": "2024-09-26T14:52:21.047800Z", + "iopub.status.busy": "2024-09-26T14:52:21.047493Z", + "iopub.status.idle": "2024-09-26T14:52:21.500478Z", + "shell.execute_reply": "2024-09-26T14:52:21.499906Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.850305Z", - "iopub.status.busy": "2024-09-06T19:38:19.849961Z", - "iopub.status.idle": "2024-09-06T19:38:19.855710Z", - "shell.execute_reply": "2024-09-06T19:38:19.855268Z" + "iopub.execute_input": "2024-09-26T14:52:21.502342Z", + "iopub.status.busy": "2024-09-26T14:52:21.502065Z", + "iopub.status.idle": "2024-09-26T14:52:21.509359Z", + "shell.execute_reply": "2024-09-26T14:52:21.508870Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.857664Z", - "iopub.status.busy": "2024-09-06T19:38:19.857483Z", - "iopub.status.idle": "2024-09-06T19:38:19.864510Z", - "shell.execute_reply": "2024-09-06T19:38:19.863928Z" + "iopub.execute_input": "2024-09-26T14:52:21.511294Z", + "iopub.status.busy": "2024-09-26T14:52:21.510958Z", + "iopub.status.idle": "2024-09-26T14:52:21.518230Z", + "shell.execute_reply": "2024-09-26T14:52:21.517794Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.866738Z", - "iopub.status.busy": "2024-09-06T19:38:19.866419Z", - "iopub.status.idle": "2024-09-06T19:38:19.871181Z", - "shell.execute_reply": "2024-09-06T19:38:19.870718Z" + "iopub.execute_input": "2024-09-26T14:52:21.520016Z", + "iopub.status.busy": "2024-09-26T14:52:21.519670Z", + "iopub.status.idle": "2024-09-26T14:52:21.524522Z", + "shell.execute_reply": "2024-09-26T14:52:21.524038Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.873167Z", - "iopub.status.busy": "2024-09-06T19:38:19.872989Z", - "iopub.status.idle": "2024-09-06T19:38:19.879315Z", - "shell.execute_reply": "2024-09-06T19:38:19.878873Z" + "iopub.execute_input": "2024-09-26T14:52:21.526279Z", + "iopub.status.busy": "2024-09-26T14:52:21.525942Z", + "iopub.status.idle": "2024-09-26T14:52:21.531374Z", + "shell.execute_reply": "2024-09-26T14:52:21.530921Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.881299Z", - "iopub.status.busy": "2024-09-06T19:38:19.881109Z", - "iopub.status.idle": "2024-09-06T19:38:19.885448Z", - "shell.execute_reply": "2024-09-06T19:38:19.884866Z" + "iopub.execute_input": "2024-09-26T14:52:21.533093Z", + "iopub.status.busy": "2024-09-26T14:52:21.532754Z", + "iopub.status.idle": "2024-09-26T14:52:21.536654Z", + "shell.execute_reply": "2024-09-26T14:52:21.536203Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.887541Z", - "iopub.status.busy": "2024-09-06T19:38:19.887226Z", - "iopub.status.idle": "2024-09-06T19:38:19.952333Z", - "shell.execute_reply": "2024-09-06T19:38:19.951659Z" + "iopub.execute_input": "2024-09-26T14:52:21.538466Z", + "iopub.status.busy": "2024-09-26T14:52:21.538138Z", + "iopub.status.idle": "2024-09-26T14:52:21.605533Z", + "shell.execute_reply": "2024-09-26T14:52:21.604911Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.955055Z", - "iopub.status.busy": "2024-09-06T19:38:19.954571Z", - "iopub.status.idle": "2024-09-06T19:38:19.965639Z", - "shell.execute_reply": "2024-09-06T19:38:19.965092Z" + "iopub.execute_input": "2024-09-26T14:52:21.608178Z", + "iopub.status.busy": "2024-09-26T14:52:21.607735Z", + "iopub.status.idle": "2024-09-26T14:52:21.620493Z", + "shell.execute_reply": "2024-09-26T14:52:21.619924Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.968612Z", - "iopub.status.busy": "2024-09-06T19:38:19.968081Z", - "iopub.status.idle": "2024-09-06T19:38:19.989523Z", - "shell.execute_reply": "2024-09-06T19:38:19.988990Z" + "iopub.execute_input": "2024-09-26T14:52:21.623400Z", + "iopub.status.busy": "2024-09-26T14:52:21.622546Z", + "iopub.status.idle": "2024-09-26T14:52:21.644716Z", + "shell.execute_reply": "2024-09-26T14:52:21.644193Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:19.992484Z", - "iopub.status.busy": "2024-09-06T19:38:19.991953Z", - "iopub.status.idle": "2024-09-06T19:38:19.996496Z", - "shell.execute_reply": "2024-09-06T19:38:19.995963Z" + "iopub.execute_input": "2024-09-26T14:52:21.647639Z", + "iopub.status.busy": "2024-09-26T14:52:21.646753Z", + "iopub.status.idle": "2024-09-26T14:52:21.652233Z", + "shell.execute_reply": "2024-09-26T14:52:21.651741Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.000004Z", - "iopub.status.busy": "2024-09-06T19:38:19.999084Z", - "iopub.status.idle": "2024-09-06T19:38:20.005225Z", - "shell.execute_reply": "2024-09-06T19:38:20.004698Z" + "iopub.execute_input": "2024-09-26T14:52:21.654600Z", + "iopub.status.busy": "2024-09-26T14:52:21.654175Z", + "iopub.status.idle": "2024-09-26T14:52:21.659391Z", + "shell.execute_reply": "2024-09-26T14:52:21.658868Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.008748Z", - "iopub.status.busy": "2024-09-06T19:38:20.007824Z", - "iopub.status.idle": "2024-09-06T19:38:20.018446Z", - "shell.execute_reply": "2024-09-06T19:38:20.018010Z" + "iopub.execute_input": "2024-09-26T14:52:21.661608Z", + "iopub.status.busy": "2024-09-26T14:52:21.661407Z", + "iopub.status.idle": "2024-09-26T14:52:21.671252Z", + "shell.execute_reply": "2024-09-26T14:52:21.670825Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.020571Z", - "iopub.status.busy": "2024-09-06T19:38:20.020204Z", - "iopub.status.idle": "2024-09-06T19:38:20.024666Z", - "shell.execute_reply": "2024-09-06T19:38:20.024096Z" + "iopub.execute_input": "2024-09-26T14:52:21.673132Z", + "iopub.status.busy": "2024-09-26T14:52:21.672789Z", + "iopub.status.idle": "2024-09-26T14:52:21.677167Z", + "shell.execute_reply": "2024-09-26T14:52:21.676751Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.026677Z", - "iopub.status.busy": "2024-09-06T19:38:20.026505Z", - "iopub.status.idle": "2024-09-06T19:38:20.138981Z", - "shell.execute_reply": "2024-09-06T19:38:20.138473Z" + "iopub.execute_input": "2024-09-26T14:52:21.678723Z", + "iopub.status.busy": "2024-09-26T14:52:21.678550Z", + "iopub.status.idle": "2024-09-26T14:52:21.827660Z", + "shell.execute_reply": "2024-09-26T14:52:21.827142Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.141251Z", - "iopub.status.busy": "2024-09-06T19:38:20.140804Z", - "iopub.status.idle": "2024-09-06T19:38:20.147269Z", - "shell.execute_reply": "2024-09-06T19:38:20.146678Z" + "iopub.execute_input": "2024-09-26T14:52:21.829459Z", + "iopub.status.busy": "2024-09-26T14:52:21.829100Z", + "iopub.status.idle": "2024-09-26T14:52:21.835627Z", + "shell.execute_reply": "2024-09-26T14:52:21.835049Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:20.149710Z", - "iopub.status.busy": "2024-09-06T19:38:20.149204Z", - "iopub.status.idle": "2024-09-06T19:38:22.175679Z", - "shell.execute_reply": "2024-09-06T19:38:22.175042Z" + "iopub.execute_input": "2024-09-26T14:52:21.837607Z", + "iopub.status.busy": "2024-09-26T14:52:21.837231Z", + "iopub.status.idle": "2024-09-26T14:52:23.851625Z", + "shell.execute_reply": "2024-09-26T14:52:23.850969Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.179907Z", - "iopub.status.busy": "2024-09-06T19:38:22.178817Z", - "iopub.status.idle": "2024-09-06T19:38:22.193599Z", - "shell.execute_reply": "2024-09-06T19:38:22.193081Z" + "iopub.execute_input": "2024-09-26T14:52:23.853998Z", + "iopub.status.busy": "2024-09-26T14:52:23.853506Z", + "iopub.status.idle": "2024-09-26T14:52:23.867378Z", + "shell.execute_reply": "2024-09-26T14:52:23.866868Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.197201Z", - "iopub.status.busy": "2024-09-06T19:38:22.196240Z", - "iopub.status.idle": "2024-09-06T19:38:22.200280Z", - "shell.execute_reply": "2024-09-06T19:38:22.199770Z" + "iopub.execute_input": "2024-09-26T14:52:23.869442Z", + "iopub.status.busy": "2024-09-26T14:52:23.869086Z", + "iopub.status.idle": "2024-09-26T14:52:23.871992Z", + "shell.execute_reply": "2024-09-26T14:52:23.871490Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.203753Z", - "iopub.status.busy": "2024-09-06T19:38:22.202840Z", - "iopub.status.idle": "2024-09-06T19:38:22.208375Z", - "shell.execute_reply": "2024-09-06T19:38:22.207870Z" + "iopub.execute_input": "2024-09-26T14:52:23.873901Z", + "iopub.status.busy": "2024-09-26T14:52:23.873567Z", + "iopub.status.idle": "2024-09-26T14:52:23.878299Z", + "shell.execute_reply": "2024-09-26T14:52:23.877773Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.211876Z", - "iopub.status.busy": "2024-09-06T19:38:22.210955Z", - "iopub.status.idle": "2024-09-06T19:38:22.243013Z", - "shell.execute_reply": "2024-09-06T19:38:22.242528Z" + "iopub.execute_input": "2024-09-26T14:52:23.880472Z", + "iopub.status.busy": "2024-09-26T14:52:23.880009Z", + "iopub.status.idle": "2024-09-26T14:52:23.917031Z", + "shell.execute_reply": "2024-09-26T14:52:23.916497Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.246118Z", - "iopub.status.busy": "2024-09-06T19:38:22.245468Z", - "iopub.status.idle": "2024-09-06T19:38:22.754137Z", - "shell.execute_reply": "2024-09-06T19:38:22.753573Z" + "iopub.execute_input": "2024-09-26T14:52:23.919143Z", + "iopub.status.busy": "2024-09-26T14:52:23.918754Z", + "iopub.status.idle": "2024-09-26T14:52:24.441145Z", + "shell.execute_reply": "2024-09-26T14:52:24.440578Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.757125Z", - "iopub.status.busy": "2024-09-06T19:38:22.756730Z", - "iopub.status.idle": "2024-09-06T19:38:22.893326Z", - "shell.execute_reply": "2024-09-06T19:38:22.892578Z" + "iopub.execute_input": "2024-09-26T14:52:24.443535Z", + "iopub.status.busy": "2024-09-26T14:52:24.443148Z", + "iopub.status.idle": "2024-09-26T14:52:24.581215Z", + "shell.execute_reply": "2024-09-26T14:52:24.580592Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.896382Z", - "iopub.status.busy": "2024-09-06T19:38:22.896143Z", - "iopub.status.idle": "2024-09-06T19:38:22.903618Z", - "shell.execute_reply": "2024-09-06T19:38:22.903032Z" + "iopub.execute_input": "2024-09-26T14:52:24.583982Z", + "iopub.status.busy": "2024-09-26T14:52:24.583021Z", + "iopub.status.idle": "2024-09-26T14:52:24.591560Z", + "shell.execute_reply": "2024-09-26T14:52:24.591052Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.906322Z", - "iopub.status.busy": "2024-09-06T19:38:22.906102Z", - "iopub.status.idle": "2024-09-06T19:38:22.914842Z", - "shell.execute_reply": "2024-09-06T19:38:22.914319Z" + "iopub.execute_input": "2024-09-26T14:52:24.594472Z", + "iopub.status.busy": "2024-09-26T14:52:24.593722Z", + "iopub.status.idle": "2024-09-26T14:52:24.601463Z", + "shell.execute_reply": "2024-09-26T14:52:24.600918Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.917418Z", - "iopub.status.busy": "2024-09-06T19:38:22.917212Z", - "iopub.status.idle": "2024-09-06T19:38:22.924586Z", - "shell.execute_reply": "2024-09-06T19:38:22.924068Z" + "iopub.execute_input": "2024-09-26T14:52:24.604404Z", + "iopub.status.busy": "2024-09-26T14:52:24.603652Z", + "iopub.status.idle": "2024-09-26T14:52:24.610627Z", + "shell.execute_reply": "2024-09-26T14:52:24.610123Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.927978Z", - "iopub.status.busy": "2024-09-06T19:38:22.927001Z", - "iopub.status.idle": "2024-09-06T19:38:22.932989Z", - "shell.execute_reply": "2024-09-06T19:38:22.932417Z" + "iopub.execute_input": "2024-09-26T14:52:24.613514Z", + "iopub.status.busy": "2024-09-26T14:52:24.612748Z", + "iopub.status.idle": "2024-09-26T14:52:24.618379Z", + "shell.execute_reply": "2024-09-26T14:52:24.617862Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.935455Z", - "iopub.status.busy": "2024-09-06T19:38:22.935286Z", - "iopub.status.idle": "2024-09-06T19:38:22.940366Z", - "shell.execute_reply": "2024-09-06T19:38:22.939926Z" + "iopub.execute_input": "2024-09-26T14:52:24.621206Z", + "iopub.status.busy": "2024-09-26T14:52:24.620459Z", + "iopub.status.idle": "2024-09-26T14:52:24.625372Z", + "shell.execute_reply": "2024-09-26T14:52:24.624794Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:22.942577Z", - "iopub.status.busy": "2024-09-06T19:38:22.942242Z", - "iopub.status.idle": "2024-09-06T19:38:23.018404Z", - "shell.execute_reply": "2024-09-06T19:38:23.017754Z" + "iopub.execute_input": "2024-09-26T14:52:24.627070Z", + "iopub.status.busy": "2024-09-26T14:52:24.626899Z", + "iopub.status.idle": "2024-09-26T14:52:24.703448Z", + "shell.execute_reply": "2024-09-26T14:52:24.702825Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.021060Z", - "iopub.status.busy": "2024-09-06T19:38:23.020492Z", - "iopub.status.idle": "2024-09-06T19:38:23.034062Z", - "shell.execute_reply": "2024-09-06T19:38:23.033451Z" + "iopub.execute_input": "2024-09-26T14:52:24.705665Z", + "iopub.status.busy": "2024-09-26T14:52:24.705281Z", + "iopub.status.idle": "2024-09-26T14:52:24.718371Z", + "shell.execute_reply": "2024-09-26T14:52:24.717910Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.036553Z", - "iopub.status.busy": "2024-09-06T19:38:23.036240Z", - "iopub.status.idle": "2024-09-06T19:38:23.039008Z", - "shell.execute_reply": "2024-09-06T19:38:23.038465Z" + "iopub.execute_input": "2024-09-26T14:52:24.719953Z", + "iopub.status.busy": "2024-09-26T14:52:24.719774Z", + "iopub.status.idle": "2024-09-26T14:52:24.722525Z", + "shell.execute_reply": "2024-09-26T14:52:24.721993Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.041147Z", - "iopub.status.busy": "2024-09-06T19:38:23.040695Z", - "iopub.status.idle": "2024-09-06T19:38:23.050646Z", - "shell.execute_reply": "2024-09-06T19:38:23.050044Z" + "iopub.execute_input": "2024-09-26T14:52:24.724217Z", + "iopub.status.busy": "2024-09-26T14:52:24.723890Z", + "iopub.status.idle": "2024-09-26T14:52:24.733856Z", + "shell.execute_reply": "2024-09-26T14:52:24.733386Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.053067Z", - "iopub.status.busy": "2024-09-06T19:38:23.052637Z", - "iopub.status.idle": "2024-09-06T19:38:23.059254Z", - "shell.execute_reply": "2024-09-06T19:38:23.058781Z" + "iopub.execute_input": "2024-09-26T14:52:24.735568Z", + "iopub.status.busy": "2024-09-26T14:52:24.735390Z", + "iopub.status.idle": "2024-09-26T14:52:24.741960Z", + "shell.execute_reply": "2024-09-26T14:52:24.741508Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.061114Z", - "iopub.status.busy": "2024-09-06T19:38:23.060934Z", - "iopub.status.idle": "2024-09-06T19:38:23.064369Z", - "shell.execute_reply": "2024-09-06T19:38:23.063906Z" + "iopub.execute_input": "2024-09-26T14:52:24.743631Z", + "iopub.status.busy": "2024-09-26T14:52:24.743288Z", + "iopub.status.idle": "2024-09-26T14:52:24.746500Z", + "shell.execute_reply": "2024-09-26T14:52:24.746046Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:23.066492Z", - "iopub.status.busy": "2024-09-06T19:38:23.066088Z", - "iopub.status.idle": "2024-09-06T19:38:27.075896Z", - "shell.execute_reply": "2024-09-06T19:38:27.075361Z" + "iopub.execute_input": "2024-09-26T14:52:24.748147Z", + "iopub.status.busy": "2024-09-26T14:52:24.747796Z", + "iopub.status.idle": "2024-09-26T14:52:28.830714Z", + "shell.execute_reply": "2024-09-26T14:52:28.830201Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:27.079119Z", - "iopub.status.busy": "2024-09-06T19:38:27.078209Z", - "iopub.status.idle": "2024-09-06T19:38:27.082469Z", - "shell.execute_reply": "2024-09-06T19:38:27.082025Z" + "iopub.execute_input": "2024-09-26T14:52:28.832745Z", + "iopub.status.busy": "2024-09-26T14:52:28.832361Z", + "iopub.status.idle": "2024-09-26T14:52:28.835718Z", + "shell.execute_reply": "2024-09-26T14:52:28.835165Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:27.084613Z", - "iopub.status.busy": "2024-09-06T19:38:27.084277Z", - "iopub.status.idle": "2024-09-06T19:38:27.087400Z", - "shell.execute_reply": "2024-09-06T19:38:27.086984Z" + "iopub.execute_input": "2024-09-26T14:52:28.837752Z", + "iopub.status.busy": "2024-09-26T14:52:28.837357Z", + "iopub.status.idle": "2024-09-26T14:52:28.840312Z", + "shell.execute_reply": "2024-09-26T14:52:28.839737Z" }, "nbsphinx": "hidden" }, @@ -3492,7 +3492,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index d4d06d3f8..f81022c48 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:29.945055Z", - "iopub.status.busy": "2024-09-06T19:38:29.944859Z", - "iopub.status.idle": "2024-09-06T19:38:31.152677Z", - "shell.execute_reply": "2024-09-06T19:38:31.152154Z" + "iopub.execute_input": "2024-09-26T14:52:32.169125Z", + "iopub.status.busy": "2024-09-26T14:52:32.168956Z", + "iopub.status.idle": "2024-09-26T14:52:33.431499Z", + "shell.execute_reply": "2024-09-26T14:52:33.430884Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.155349Z", - "iopub.status.busy": "2024-09-06T19:38:31.154914Z", - "iopub.status.idle": "2024-09-06T19:38:31.333867Z", - "shell.execute_reply": "2024-09-06T19:38:31.333299Z" + "iopub.execute_input": "2024-09-26T14:52:33.434100Z", + "iopub.status.busy": "2024-09-26T14:52:33.433789Z", + "iopub.status.idle": "2024-09-26T14:52:33.621182Z", + "shell.execute_reply": "2024-09-26T14:52:33.620609Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.336296Z", - "iopub.status.busy": "2024-09-06T19:38:31.336106Z", - "iopub.status.idle": "2024-09-06T19:38:31.347492Z", - "shell.execute_reply": "2024-09-06T19:38:31.347045Z" + "iopub.execute_input": "2024-09-26T14:52:33.623560Z", + "iopub.status.busy": "2024-09-26T14:52:33.623109Z", + "iopub.status.idle": "2024-09-26T14:52:33.635370Z", + "shell.execute_reply": "2024-09-26T14:52:33.634790Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.349587Z", - "iopub.status.busy": "2024-09-06T19:38:31.349239Z", - "iopub.status.idle": "2024-09-06T19:38:31.559000Z", - "shell.execute_reply": "2024-09-06T19:38:31.558435Z" + "iopub.execute_input": "2024-09-26T14:52:33.637192Z", + "iopub.status.busy": "2024-09-26T14:52:33.636918Z", + "iopub.status.idle": "2024-09-26T14:52:33.875845Z", + "shell.execute_reply": "2024-09-26T14:52:33.875224Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.561389Z", - "iopub.status.busy": "2024-09-06T19:38:31.561027Z", - "iopub.status.idle": "2024-09-06T19:38:31.587035Z", - "shell.execute_reply": "2024-09-06T19:38:31.586568Z" + "iopub.execute_input": "2024-09-26T14:52:33.877984Z", + "iopub.status.busy": "2024-09-26T14:52:33.877640Z", + "iopub.status.idle": "2024-09-26T14:52:33.905047Z", + "shell.execute_reply": "2024-09-26T14:52:33.904562Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:31.589259Z", - "iopub.status.busy": "2024-09-06T19:38:31.588898Z", - "iopub.status.idle": "2024-09-06T19:38:33.659672Z", - "shell.execute_reply": "2024-09-06T19:38:33.658986Z" + "iopub.execute_input": "2024-09-26T14:52:33.906945Z", + "iopub.status.busy": "2024-09-26T14:52:33.906618Z", + "iopub.status.idle": "2024-09-26T14:52:36.066124Z", + "shell.execute_reply": "2024-09-26T14:52:36.065509Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:33.662234Z", - "iopub.status.busy": "2024-09-06T19:38:33.661770Z", - "iopub.status.idle": "2024-09-06T19:38:33.679880Z", - "shell.execute_reply": "2024-09-06T19:38:33.679304Z" + "iopub.execute_input": "2024-09-26T14:52:36.068327Z", + "iopub.status.busy": "2024-09-26T14:52:36.067791Z", + "iopub.status.idle": "2024-09-26T14:52:36.085955Z", + "shell.execute_reply": "2024-09-26T14:52:36.085444Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:33.682125Z", - "iopub.status.busy": "2024-09-06T19:38:33.681797Z", - "iopub.status.idle": "2024-09-06T19:38:35.246559Z", - "shell.execute_reply": "2024-09-06T19:38:35.245952Z" + "iopub.execute_input": "2024-09-26T14:52:36.087636Z", + "iopub.status.busy": "2024-09-26T14:52:36.087436Z", + "iopub.status.idle": "2024-09-26T14:52:37.714159Z", + "shell.execute_reply": "2024-09-26T14:52:37.713482Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.249384Z", - "iopub.status.busy": "2024-09-06T19:38:35.248692Z", - "iopub.status.idle": "2024-09-06T19:38:35.262909Z", - "shell.execute_reply": "2024-09-06T19:38:35.262437Z" + "iopub.execute_input": "2024-09-26T14:52:37.716539Z", + "iopub.status.busy": "2024-09-26T14:52:37.715812Z", + "iopub.status.idle": "2024-09-26T14:52:37.730102Z", + "shell.execute_reply": "2024-09-26T14:52:37.729543Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.265091Z", - "iopub.status.busy": "2024-09-06T19:38:35.264657Z", - "iopub.status.idle": "2024-09-06T19:38:35.347361Z", - "shell.execute_reply": "2024-09-06T19:38:35.346752Z" + "iopub.execute_input": "2024-09-26T14:52:37.731957Z", + "iopub.status.busy": "2024-09-26T14:52:37.731617Z", + "iopub.status.idle": "2024-09-26T14:52:37.821262Z", + "shell.execute_reply": "2024-09-26T14:52:37.820618Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.349859Z", - "iopub.status.busy": "2024-09-06T19:38:35.349553Z", - "iopub.status.idle": "2024-09-06T19:38:35.568160Z", - "shell.execute_reply": "2024-09-06T19:38:35.567596Z" + "iopub.execute_input": "2024-09-26T14:52:37.823300Z", + "iopub.status.busy": "2024-09-26T14:52:37.822839Z", + "iopub.status.idle": "2024-09-26T14:52:38.038920Z", + "shell.execute_reply": "2024-09-26T14:52:38.038375Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.570518Z", - "iopub.status.busy": "2024-09-06T19:38:35.570156Z", - "iopub.status.idle": "2024-09-06T19:38:35.587030Z", - "shell.execute_reply": "2024-09-06T19:38:35.586565Z" + "iopub.execute_input": "2024-09-26T14:52:38.040759Z", + "iopub.status.busy": "2024-09-26T14:52:38.040570Z", + "iopub.status.idle": "2024-09-26T14:52:38.058165Z", + "shell.execute_reply": "2024-09-26T14:52:38.057614Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.589095Z", - "iopub.status.busy": "2024-09-06T19:38:35.588739Z", - "iopub.status.idle": "2024-09-06T19:38:35.598220Z", - "shell.execute_reply": "2024-09-06T19:38:35.597755Z" + "iopub.execute_input": "2024-09-26T14:52:38.060074Z", + "iopub.status.busy": "2024-09-26T14:52:38.059687Z", + "iopub.status.idle": "2024-09-26T14:52:38.069888Z", + "shell.execute_reply": "2024-09-26T14:52:38.069309Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.600262Z", - "iopub.status.busy": "2024-09-06T19:38:35.599918Z", - "iopub.status.idle": "2024-09-06T19:38:35.692538Z", - "shell.execute_reply": "2024-09-06T19:38:35.691918Z" + "iopub.execute_input": "2024-09-26T14:52:38.071813Z", + "iopub.status.busy": "2024-09-26T14:52:38.071379Z", + "iopub.status.idle": "2024-09-26T14:52:38.170054Z", + "shell.execute_reply": "2024-09-26T14:52:38.169477Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.694934Z", - "iopub.status.busy": "2024-09-06T19:38:35.694629Z", - "iopub.status.idle": "2024-09-06T19:38:35.833017Z", - "shell.execute_reply": "2024-09-06T19:38:35.832312Z" + "iopub.execute_input": "2024-09-26T14:52:38.171925Z", + "iopub.status.busy": "2024-09-26T14:52:38.171696Z", + "iopub.status.idle": "2024-09-26T14:52:38.324224Z", + "shell.execute_reply": "2024-09-26T14:52:38.323549Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.835595Z", - "iopub.status.busy": "2024-09-06T19:38:35.835206Z", - "iopub.status.idle": "2024-09-06T19:38:35.839051Z", - "shell.execute_reply": "2024-09-06T19:38:35.838497Z" + "iopub.execute_input": "2024-09-26T14:52:38.326329Z", + "iopub.status.busy": "2024-09-26T14:52:38.325951Z", + "iopub.status.idle": "2024-09-26T14:52:38.329903Z", + "shell.execute_reply": "2024-09-26T14:52:38.329357Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.841055Z", - "iopub.status.busy": "2024-09-06T19:38:35.840887Z", - "iopub.status.idle": "2024-09-06T19:38:35.844523Z", - "shell.execute_reply": "2024-09-06T19:38:35.843987Z" + "iopub.execute_input": "2024-09-26T14:52:38.331907Z", + "iopub.status.busy": "2024-09-26T14:52:38.331482Z", + "iopub.status.idle": "2024-09-26T14:52:38.335196Z", + "shell.execute_reply": "2024-09-26T14:52:38.334746Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.846624Z", - "iopub.status.busy": "2024-09-06T19:38:35.846289Z", - "iopub.status.idle": "2024-09-06T19:38:35.883516Z", - "shell.execute_reply": "2024-09-06T19:38:35.883025Z" + "iopub.execute_input": "2024-09-26T14:52:38.336922Z", + "iopub.status.busy": "2024-09-26T14:52:38.336603Z", + "iopub.status.idle": "2024-09-26T14:52:38.376114Z", + "shell.execute_reply": "2024-09-26T14:52:38.375641Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.885707Z", - "iopub.status.busy": "2024-09-06T19:38:35.885360Z", - "iopub.status.idle": "2024-09-06T19:38:35.926415Z", - "shell.execute_reply": "2024-09-06T19:38:35.925951Z" + "iopub.execute_input": "2024-09-26T14:52:38.378083Z", + "iopub.status.busy": "2024-09-26T14:52:38.377733Z", + "iopub.status.idle": "2024-09-26T14:52:38.419996Z", + "shell.execute_reply": "2024-09-26T14:52:38.419527Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:35.928488Z", - "iopub.status.busy": "2024-09-06T19:38:35.928146Z", - "iopub.status.idle": "2024-09-06T19:38:36.031351Z", - "shell.execute_reply": "2024-09-06T19:38:36.030698Z" + "iopub.execute_input": "2024-09-26T14:52:38.421872Z", + "iopub.status.busy": "2024-09-26T14:52:38.421510Z", + "iopub.status.idle": "2024-09-26T14:52:38.531907Z", + "shell.execute_reply": "2024-09-26T14:52:38.531268Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.034301Z", - "iopub.status.busy": "2024-09-06T19:38:36.033912Z", - "iopub.status.idle": "2024-09-06T19:38:36.132017Z", - "shell.execute_reply": "2024-09-06T19:38:36.131369Z" + "iopub.execute_input": "2024-09-26T14:52:38.534145Z", + "iopub.status.busy": "2024-09-26T14:52:38.533766Z", + "iopub.status.idle": "2024-09-26T14:52:38.651268Z", + "shell.execute_reply": "2024-09-26T14:52:38.650679Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.134718Z", - "iopub.status.busy": "2024-09-06T19:38:36.134254Z", - "iopub.status.idle": "2024-09-06T19:38:36.372737Z", - "shell.execute_reply": "2024-09-06T19:38:36.372155Z" + "iopub.execute_input": "2024-09-26T14:52:38.653171Z", + "iopub.status.busy": "2024-09-26T14:52:38.652916Z", + "iopub.status.idle": "2024-09-26T14:52:38.868009Z", + "shell.execute_reply": "2024-09-26T14:52:38.867481Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.374987Z", - "iopub.status.busy": "2024-09-06T19:38:36.374694Z", - "iopub.status.idle": "2024-09-06T19:38:36.587886Z", - "shell.execute_reply": "2024-09-06T19:38:36.587278Z" + "iopub.execute_input": "2024-09-26T14:52:38.870022Z", + "iopub.status.busy": "2024-09-26T14:52:38.869668Z", + "iopub.status.idle": "2024-09-26T14:52:39.116995Z", + "shell.execute_reply": "2024-09-26T14:52:39.116409Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.590343Z", - "iopub.status.busy": "2024-09-06T19:38:36.589956Z", - "iopub.status.idle": "2024-09-06T19:38:36.595878Z", - "shell.execute_reply": "2024-09-06T19:38:36.595334Z" + "iopub.execute_input": "2024-09-26T14:52:39.119063Z", + "iopub.status.busy": "2024-09-26T14:52:39.118651Z", + "iopub.status.idle": "2024-09-26T14:52:39.124659Z", + "shell.execute_reply": "2024-09-26T14:52:39.124212Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.598057Z", - "iopub.status.busy": "2024-09-06T19:38:36.597740Z", - "iopub.status.idle": "2024-09-06T19:38:36.811700Z", - "shell.execute_reply": "2024-09-06T19:38:36.811079Z" + "iopub.execute_input": "2024-09-26T14:52:39.126372Z", + "iopub.status.busy": "2024-09-26T14:52:39.126025Z", + "iopub.status.idle": "2024-09-26T14:52:39.360620Z", + "shell.execute_reply": "2024-09-26T14:52:39.360015Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:36.813989Z", - "iopub.status.busy": "2024-09-06T19:38:36.813680Z", - "iopub.status.idle": "2024-09-06T19:38:37.873549Z", - "shell.execute_reply": "2024-09-06T19:38:37.872901Z" + "iopub.execute_input": "2024-09-26T14:52:39.362552Z", + "iopub.status.busy": "2024-09-26T14:52:39.362361Z", + "iopub.status.idle": "2024-09-26T14:52:40.445531Z", + "shell.execute_reply": "2024-09-26T14:52:40.444958Z" }, "id": "wL3ngCnuLEWd" }, @@ -2419,7 +2419,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 0b05cce8c..f2aa83ef9 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:41.455901Z", - "iopub.status.busy": "2024-09-06T19:38:41.455732Z", - "iopub.status.idle": "2024-09-06T19:38:42.611358Z", - "shell.execute_reply": "2024-09-06T19:38:42.610733Z" + "iopub.execute_input": "2024-09-26T14:52:44.089068Z", + "iopub.status.busy": "2024-09-26T14:52:44.088906Z", + "iopub.status.idle": "2024-09-26T14:52:45.299550Z", + "shell.execute_reply": "2024-09-26T14:52:45.298928Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.614152Z", - "iopub.status.busy": "2024-09-06T19:38:42.613703Z", - "iopub.status.idle": "2024-09-06T19:38:42.617474Z", - "shell.execute_reply": "2024-09-06T19:38:42.616914Z" + "iopub.execute_input": "2024-09-26T14:52:45.301912Z", + "iopub.status.busy": "2024-09-26T14:52:45.301449Z", + "iopub.status.idle": "2024-09-26T14:52:45.304645Z", + "shell.execute_reply": "2024-09-26T14:52:45.304094Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.619686Z", - "iopub.status.busy": "2024-09-06T19:38:42.619396Z", - "iopub.status.idle": "2024-09-06T19:38:42.627253Z", - "shell.execute_reply": "2024-09-06T19:38:42.626804Z" + "iopub.execute_input": "2024-09-26T14:52:45.306413Z", + "iopub.status.busy": "2024-09-26T14:52:45.306142Z", + "iopub.status.idle": "2024-09-26T14:52:45.314151Z", + "shell.execute_reply": "2024-09-26T14:52:45.313702Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.629251Z", - "iopub.status.busy": "2024-09-06T19:38:42.628912Z", - "iopub.status.idle": "2024-09-06T19:38:42.675739Z", - "shell.execute_reply": "2024-09-06T19:38:42.675250Z" + "iopub.execute_input": "2024-09-26T14:52:45.315923Z", + "iopub.status.busy": "2024-09-26T14:52:45.315583Z", + "iopub.status.idle": "2024-09-26T14:52:45.364795Z", + "shell.execute_reply": "2024-09-26T14:52:45.364189Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.677746Z", - "iopub.status.busy": "2024-09-06T19:38:42.677566Z", - "iopub.status.idle": "2024-09-06T19:38:42.695187Z", - "shell.execute_reply": "2024-09-06T19:38:42.694600Z" + "iopub.execute_input": "2024-09-26T14:52:45.371300Z", + "iopub.status.busy": "2024-09-26T14:52:45.370858Z", + "iopub.status.idle": "2024-09-26T14:52:45.389579Z", + "shell.execute_reply": "2024-09-26T14:52:45.389064Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.697240Z", - "iopub.status.busy": "2024-09-06T19:38:42.696927Z", - "iopub.status.idle": "2024-09-06T19:38:42.700805Z", - "shell.execute_reply": "2024-09-06T19:38:42.700357Z" + "iopub.execute_input": "2024-09-26T14:52:45.391559Z", + "iopub.status.busy": "2024-09-26T14:52:45.391112Z", + "iopub.status.idle": "2024-09-26T14:52:45.395156Z", + "shell.execute_reply": "2024-09-26T14:52:45.394627Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.703011Z", - "iopub.status.busy": "2024-09-06T19:38:42.702619Z", - "iopub.status.idle": "2024-09-06T19:38:42.719152Z", - "shell.execute_reply": "2024-09-06T19:38:42.718696Z" + "iopub.execute_input": "2024-09-26T14:52:45.397035Z", + "iopub.status.busy": "2024-09-26T14:52:45.396725Z", + "iopub.status.idle": "2024-09-26T14:52:45.414290Z", + "shell.execute_reply": "2024-09-26T14:52:45.413687Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.721153Z", - "iopub.status.busy": "2024-09-06T19:38:42.720797Z", - "iopub.status.idle": "2024-09-06T19:38:42.746197Z", - "shell.execute_reply": "2024-09-06T19:38:42.745739Z" + "iopub.execute_input": "2024-09-26T14:52:45.416157Z", + "iopub.status.busy": "2024-09-26T14:52:45.415806Z", + "iopub.status.idle": "2024-09-26T14:52:45.442358Z", + "shell.execute_reply": "2024-09-26T14:52:45.441883Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:42.748111Z", - "iopub.status.busy": "2024-09-06T19:38:42.747776Z", - "iopub.status.idle": "2024-09-06T19:38:44.708904Z", - "shell.execute_reply": "2024-09-06T19:38:44.708307Z" + "iopub.execute_input": "2024-09-26T14:52:45.444293Z", + "iopub.status.busy": "2024-09-26T14:52:45.443936Z", + "iopub.status.idle": "2024-09-26T14:52:47.450691Z", + "shell.execute_reply": "2024-09-26T14:52:47.450163Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.711480Z", - "iopub.status.busy": "2024-09-06T19:38:44.710993Z", - "iopub.status.idle": "2024-09-06T19:38:44.717750Z", - "shell.execute_reply": "2024-09-06T19:38:44.717182Z" + "iopub.execute_input": "2024-09-26T14:52:47.452884Z", + "iopub.status.busy": "2024-09-26T14:52:47.452391Z", + "iopub.status.idle": "2024-09-26T14:52:47.459433Z", + "shell.execute_reply": "2024-09-26T14:52:47.458958Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.719963Z", - "iopub.status.busy": "2024-09-06T19:38:44.719631Z", - "iopub.status.idle": "2024-09-06T19:38:44.732695Z", - "shell.execute_reply": "2024-09-06T19:38:44.732259Z" + "iopub.execute_input": "2024-09-26T14:52:47.461250Z", + "iopub.status.busy": "2024-09-26T14:52:47.460913Z", + "iopub.status.idle": "2024-09-26T14:52:47.473767Z", + "shell.execute_reply": "2024-09-26T14:52:47.473271Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.734719Z", - "iopub.status.busy": "2024-09-06T19:38:44.734386Z", - "iopub.status.idle": "2024-09-06T19:38:44.740630Z", - "shell.execute_reply": "2024-09-06T19:38:44.740080Z" + "iopub.execute_input": "2024-09-26T14:52:47.475532Z", + "iopub.status.busy": "2024-09-26T14:52:47.475187Z", + "iopub.status.idle": "2024-09-26T14:52:47.481746Z", + "shell.execute_reply": "2024-09-26T14:52:47.481272Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.742715Z", - "iopub.status.busy": "2024-09-06T19:38:44.742407Z", - "iopub.status.idle": "2024-09-06T19:38:44.745203Z", - "shell.execute_reply": "2024-09-06T19:38:44.744635Z" + "iopub.execute_input": "2024-09-26T14:52:47.483691Z", + "iopub.status.busy": "2024-09-26T14:52:47.483212Z", + "iopub.status.idle": "2024-09-26T14:52:47.486088Z", + "shell.execute_reply": "2024-09-26T14:52:47.485626Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.747300Z", - "iopub.status.busy": "2024-09-06T19:38:44.746906Z", - "iopub.status.idle": "2024-09-06T19:38:44.750594Z", - "shell.execute_reply": "2024-09-06T19:38:44.750021Z" + "iopub.execute_input": "2024-09-26T14:52:47.487800Z", + "iopub.status.busy": "2024-09-26T14:52:47.487397Z", + "iopub.status.idle": "2024-09-26T14:52:47.491109Z", + "shell.execute_reply": "2024-09-26T14:52:47.490533Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.752864Z", - "iopub.status.busy": "2024-09-06T19:38:44.752447Z", - "iopub.status.idle": "2024-09-06T19:38:44.755290Z", - "shell.execute_reply": "2024-09-06T19:38:44.754743Z" + "iopub.execute_input": "2024-09-26T14:52:47.493003Z", + "iopub.status.busy": "2024-09-26T14:52:47.492607Z", + "iopub.status.idle": "2024-09-26T14:52:47.495261Z", + "shell.execute_reply": "2024-09-26T14:52:47.494806Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.757347Z", - "iopub.status.busy": "2024-09-06T19:38:44.757015Z", - "iopub.status.idle": "2024-09-06T19:38:44.761164Z", - "shell.execute_reply": "2024-09-06T19:38:44.760669Z" + "iopub.execute_input": "2024-09-26T14:52:47.497043Z", + "iopub.status.busy": "2024-09-26T14:52:47.496706Z", + "iopub.status.idle": "2024-09-26T14:52:47.500642Z", + "shell.execute_reply": "2024-09-26T14:52:47.500187Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.763225Z", - "iopub.status.busy": "2024-09-06T19:38:44.762830Z", - "iopub.status.idle": "2024-09-06T19:38:44.791503Z", - "shell.execute_reply": "2024-09-06T19:38:44.790922Z" + "iopub.execute_input": "2024-09-26T14:52:47.502313Z", + "iopub.status.busy": "2024-09-26T14:52:47.502139Z", + "iopub.status.idle": "2024-09-26T14:52:47.531332Z", + "shell.execute_reply": "2024-09-26T14:52:47.530848Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:44.793778Z", - "iopub.status.busy": "2024-09-06T19:38:44.793374Z", - "iopub.status.idle": "2024-09-06T19:38:44.798051Z", - "shell.execute_reply": "2024-09-06T19:38:44.797497Z" + "iopub.execute_input": "2024-09-26T14:52:47.533361Z", + "iopub.status.busy": "2024-09-26T14:52:47.532995Z", + "iopub.status.idle": "2024-09-26T14:52:47.537680Z", + "shell.execute_reply": "2024-09-26T14:52:47.537223Z" }, "nbsphinx": "hidden" }, @@ -1571,7 +1571,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "vscode": { "interpreter": { diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 7626ff8d8..9b60292d7 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:47.803342Z", - "iopub.status.busy": "2024-09-06T19:38:47.803172Z", - "iopub.status.idle": "2024-09-06T19:38:49.010459Z", - "shell.execute_reply": "2024-09-06T19:38:49.009894Z" + "iopub.execute_input": "2024-09-26T14:52:50.516908Z", + "iopub.status.busy": "2024-09-26T14:52:50.516724Z", + "iopub.status.idle": "2024-09-26T14:52:51.779618Z", + "shell.execute_reply": "2024-09-26T14:52:51.779002Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.013219Z", - "iopub.status.busy": "2024-09-06T19:38:49.012725Z", - "iopub.status.idle": "2024-09-06T19:38:49.210289Z", - "shell.execute_reply": "2024-09-06T19:38:49.209783Z" + "iopub.execute_input": "2024-09-26T14:52:51.781880Z", + "iopub.status.busy": "2024-09-26T14:52:51.781585Z", + "iopub.status.idle": "2024-09-26T14:52:51.979199Z", + "shell.execute_reply": "2024-09-26T14:52:51.978560Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.212873Z", - "iopub.status.busy": "2024-09-06T19:38:49.212501Z", - "iopub.status.idle": "2024-09-06T19:38:49.226305Z", - "shell.execute_reply": "2024-09-06T19:38:49.225843Z" + "iopub.execute_input": "2024-09-26T14:52:51.981718Z", + "iopub.status.busy": "2024-09-26T14:52:51.981227Z", + "iopub.status.idle": "2024-09-26T14:52:51.994745Z", + "shell.execute_reply": "2024-09-26T14:52:51.994150Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:49.228339Z", - "iopub.status.busy": "2024-09-06T19:38:49.227999Z", - "iopub.status.idle": "2024-09-06T19:38:51.870134Z", - "shell.execute_reply": "2024-09-06T19:38:51.869617Z" + "iopub.execute_input": "2024-09-26T14:52:51.996498Z", + "iopub.status.busy": "2024-09-26T14:52:51.996168Z", + "iopub.status.idle": "2024-09-26T14:52:54.626693Z", + "shell.execute_reply": "2024-09-26T14:52:54.626198Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:51.872305Z", - "iopub.status.busy": "2024-09-06T19:38:51.872107Z", - "iopub.status.idle": "2024-09-06T19:38:53.221496Z", - "shell.execute_reply": "2024-09-06T19:38:53.220930Z" + "iopub.execute_input": "2024-09-26T14:52:54.628558Z", + "iopub.status.busy": "2024-09-26T14:52:54.628209Z", + "iopub.status.idle": "2024-09-26T14:52:55.959728Z", + "shell.execute_reply": "2024-09-26T14:52:55.959162Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:53.223970Z", - "iopub.status.busy": "2024-09-06T19:38:53.223773Z", - "iopub.status.idle": "2024-09-06T19:38:53.227537Z", - "shell.execute_reply": "2024-09-06T19:38:53.226991Z" + "iopub.execute_input": "2024-09-26T14:52:55.962013Z", + "iopub.status.busy": "2024-09-26T14:52:55.961551Z", + "iopub.status.idle": "2024-09-26T14:52:55.965395Z", + "shell.execute_reply": "2024-09-26T14:52:55.964876Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:53.229541Z", - "iopub.status.busy": "2024-09-06T19:38:53.229360Z", - "iopub.status.idle": "2024-09-06T19:38:55.301308Z", - "shell.execute_reply": "2024-09-06T19:38:55.300645Z" + "iopub.execute_input": "2024-09-26T14:52:55.967241Z", + "iopub.status.busy": "2024-09-26T14:52:55.966882Z", + "iopub.status.idle": "2024-09-26T14:52:58.123639Z", + "shell.execute_reply": "2024-09-26T14:52:58.123040Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:55.303915Z", - "iopub.status.busy": "2024-09-06T19:38:55.303372Z", - "iopub.status.idle": "2024-09-06T19:38:55.311571Z", - "shell.execute_reply": "2024-09-06T19:38:55.311093Z" + "iopub.execute_input": "2024-09-26T14:52:58.126062Z", + "iopub.status.busy": "2024-09-26T14:52:58.125463Z", + "iopub.status.idle": "2024-09-26T14:52:58.134883Z", + "shell.execute_reply": "2024-09-26T14:52:58.134421Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:55.313528Z", - "iopub.status.busy": "2024-09-06T19:38:55.313186Z", - "iopub.status.idle": "2024-09-06T19:38:58.079187Z", - "shell.execute_reply": "2024-09-06T19:38:58.078607Z" + "iopub.execute_input": "2024-09-26T14:52:58.136727Z", + "iopub.status.busy": "2024-09-26T14:52:58.136398Z", + "iopub.status.idle": "2024-09-26T14:53:00.725562Z", + "shell.execute_reply": "2024-09-26T14:53:00.724908Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.081586Z", - "iopub.status.busy": "2024-09-06T19:38:58.081221Z", - "iopub.status.idle": "2024-09-06T19:38:58.084505Z", - "shell.execute_reply": "2024-09-06T19:38:58.083969Z" + "iopub.execute_input": "2024-09-26T14:53:00.727650Z", + "iopub.status.busy": "2024-09-26T14:53:00.727262Z", + "iopub.status.idle": "2024-09-26T14:53:00.731306Z", + "shell.execute_reply": "2024-09-26T14:53:00.730747Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.086650Z", - "iopub.status.busy": "2024-09-06T19:38:58.086312Z", - "iopub.status.idle": "2024-09-06T19:38:58.089596Z", - "shell.execute_reply": "2024-09-06T19:38:58.089116Z" + "iopub.execute_input": "2024-09-26T14:53:00.733136Z", + "iopub.status.busy": "2024-09-26T14:53:00.732824Z", + "iopub.status.idle": "2024-09-26T14:53:00.736387Z", + "shell.execute_reply": "2024-09-26T14:53:00.735914Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:38:58.091573Z", - "iopub.status.busy": "2024-09-06T19:38:58.091252Z", - "iopub.status.idle": "2024-09-06T19:38:58.095249Z", - "shell.execute_reply": "2024-09-06T19:38:58.094671Z" + "iopub.execute_input": "2024-09-26T14:53:00.738211Z", + "iopub.status.busy": "2024-09-26T14:53:00.737791Z", + "iopub.status.idle": "2024-09-26T14:53:00.740949Z", + "shell.execute_reply": "2024-09-26T14:53:00.740494Z" }, "nbsphinx": "hidden" }, @@ -804,7 +804,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index d7703f8af..1a465fa59 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:00.696602Z", - "iopub.status.busy": "2024-09-06T19:39:00.696186Z", - "iopub.status.idle": "2024-09-06T19:39:01.907009Z", - "shell.execute_reply": "2024-09-06T19:39:01.906453Z" + "iopub.execute_input": "2024-09-26T14:53:03.303111Z", + "iopub.status.busy": "2024-09-26T14:53:03.302931Z", + "iopub.status.idle": "2024-09-26T14:53:04.571865Z", + "shell.execute_reply": "2024-09-26T14:53:04.571288Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:01.909568Z", - "iopub.status.busy": "2024-09-06T19:39:01.909050Z", - "iopub.status.idle": "2024-09-06T19:39:04.631163Z", - "shell.execute_reply": "2024-09-06T19:39:04.630426Z" + "iopub.execute_input": "2024-09-26T14:53:04.574087Z", + "iopub.status.busy": "2024-09-26T14:53:04.573598Z", + "iopub.status.idle": "2024-09-26T14:53:06.166960Z", + "shell.execute_reply": "2024-09-26T14:53:06.166164Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.633881Z", - "iopub.status.busy": "2024-09-06T19:39:04.633499Z", - "iopub.status.idle": "2024-09-06T19:39:04.637616Z", - "shell.execute_reply": "2024-09-06T19:39:04.637024Z" + "iopub.execute_input": "2024-09-26T14:53:06.169408Z", + "iopub.status.busy": "2024-09-26T14:53:06.168985Z", + "iopub.status.idle": "2024-09-26T14:53:06.172322Z", + "shell.execute_reply": "2024-09-26T14:53:06.171868Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.639736Z", - "iopub.status.busy": "2024-09-06T19:39:04.639557Z", - "iopub.status.idle": "2024-09-06T19:39:04.646473Z", - "shell.execute_reply": "2024-09-06T19:39:04.646014Z" + "iopub.execute_input": "2024-09-26T14:53:06.174071Z", + "iopub.status.busy": "2024-09-26T14:53:06.173721Z", + "iopub.status.idle": "2024-09-26T14:53:06.180705Z", + "shell.execute_reply": "2024-09-26T14:53:06.180264Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:04.648396Z", - "iopub.status.busy": "2024-09-06T19:39:04.648219Z", - "iopub.status.idle": "2024-09-06T19:39:05.143459Z", - "shell.execute_reply": "2024-09-06T19:39:05.142840Z" + "iopub.execute_input": "2024-09-26T14:53:06.182537Z", + "iopub.status.busy": "2024-09-26T14:53:06.182190Z", + "iopub.status.idle": "2024-09-26T14:53:06.687592Z", + "shell.execute_reply": "2024-09-26T14:53:06.686965Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.146327Z", - "iopub.status.busy": "2024-09-06T19:39:05.146000Z", - "iopub.status.idle": "2024-09-06T19:39:05.151442Z", - "shell.execute_reply": "2024-09-06T19:39:05.150979Z" + "iopub.execute_input": "2024-09-26T14:53:06.689555Z", + "iopub.status.busy": "2024-09-26T14:53:06.689377Z", + "iopub.status.idle": "2024-09-26T14:53:06.695403Z", + "shell.execute_reply": "2024-09-26T14:53:06.694799Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.153485Z", - "iopub.status.busy": "2024-09-06T19:39:05.153173Z", - "iopub.status.idle": "2024-09-06T19:39:05.157137Z", - "shell.execute_reply": "2024-09-06T19:39:05.156658Z" + "iopub.execute_input": "2024-09-26T14:53:06.697090Z", + "iopub.status.busy": "2024-09-26T14:53:06.696909Z", + "iopub.status.idle": "2024-09-26T14:53:06.700584Z", + "shell.execute_reply": "2024-09-26T14:53:06.700149Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:05.159200Z", - "iopub.status.busy": "2024-09-06T19:39:05.158859Z", - "iopub.status.idle": "2024-09-06T19:39:06.019168Z", - "shell.execute_reply": "2024-09-06T19:39:06.018545Z" + "iopub.execute_input": "2024-09-26T14:53:06.702385Z", + "iopub.status.busy": "2024-09-26T14:53:06.702049Z", + "iopub.status.idle": "2024-09-26T14:53:07.596906Z", + "shell.execute_reply": "2024-09-26T14:53:07.596232Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.021668Z", - "iopub.status.busy": "2024-09-06T19:39:06.021221Z", - "iopub.status.idle": "2024-09-06T19:39:06.237090Z", - "shell.execute_reply": "2024-09-06T19:39:06.236553Z" + "iopub.execute_input": "2024-09-26T14:53:07.599111Z", + "iopub.status.busy": "2024-09-26T14:53:07.598647Z", + "iopub.status.idle": "2024-09-26T14:53:07.803313Z", + "shell.execute_reply": "2024-09-26T14:53:07.802716Z" } }, "outputs": [ @@ -627,7 +627,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered.\n" + "Pruning 0 predictions out of 138 using threshold==0.0. These predictions are no longer considered as potential candidates for identifying label issues as their similarity with the given labels is no longer considered." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] }, { @@ -660,10 +667,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.239343Z", - "iopub.status.busy": "2024-09-06T19:39:06.238930Z", - "iopub.status.idle": "2024-09-06T19:39:06.243194Z", - "shell.execute_reply": "2024-09-06T19:39:06.242735Z" + "iopub.execute_input": "2024-09-26T14:53:07.805415Z", + "iopub.status.busy": "2024-09-26T14:53:07.804927Z", + "iopub.status.idle": "2024-09-26T14:53:07.809280Z", + "shell.execute_reply": "2024-09-26T14:53:07.808847Z" } }, "outputs": [ @@ -700,10 +707,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.245282Z", - "iopub.status.busy": "2024-09-06T19:39:06.244951Z", - "iopub.status.idle": "2024-09-06T19:39:06.697627Z", - "shell.execute_reply": "2024-09-06T19:39:06.697015Z" + "iopub.execute_input": "2024-09-26T14:53:07.810942Z", + "iopub.status.busy": "2024-09-26T14:53:07.810764Z", + "iopub.status.idle": "2024-09-26T14:53:08.277163Z", + "shell.execute_reply": "2024-09-26T14:53:08.276574Z" } }, "outputs": [ @@ -762,10 +769,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:06.700924Z", - "iopub.status.busy": "2024-09-06T19:39:06.700539Z", - "iopub.status.idle": "2024-09-06T19:39:07.035472Z", - "shell.execute_reply": "2024-09-06T19:39:07.034925Z" + "iopub.execute_input": "2024-09-26T14:53:08.279934Z", + "iopub.status.busy": "2024-09-26T14:53:08.279727Z", + "iopub.status.idle": "2024-09-26T14:53:08.615867Z", + "shell.execute_reply": "2024-09-26T14:53:08.615304Z" } }, "outputs": [ @@ -812,10 +819,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.038382Z", - "iopub.status.busy": "2024-09-06T19:39:07.038001Z", - "iopub.status.idle": "2024-09-06T19:39:07.401507Z", - "shell.execute_reply": "2024-09-06T19:39:07.400918Z" + "iopub.execute_input": "2024-09-26T14:53:08.617985Z", + "iopub.status.busy": "2024-09-26T14:53:08.617788Z", + "iopub.status.idle": "2024-09-26T14:53:08.987995Z", + "shell.execute_reply": "2024-09-26T14:53:08.987382Z" } }, "outputs": [ @@ -862,10 +869,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.404511Z", - "iopub.status.busy": "2024-09-06T19:39:07.404090Z", - "iopub.status.idle": "2024-09-06T19:39:07.846501Z", - "shell.execute_reply": "2024-09-06T19:39:07.845952Z" + "iopub.execute_input": "2024-09-26T14:53:08.990870Z", + "iopub.status.busy": "2024-09-26T14:53:08.990636Z", + "iopub.status.idle": "2024-09-26T14:53:09.438626Z", + "shell.execute_reply": "2024-09-26T14:53:09.438065Z" } }, "outputs": [ @@ -925,10 +932,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:07.851154Z", - "iopub.status.busy": "2024-09-06T19:39:07.850706Z", - "iopub.status.idle": "2024-09-06T19:39:08.296657Z", - "shell.execute_reply": "2024-09-06T19:39:08.296063Z" + "iopub.execute_input": "2024-09-26T14:53:09.442663Z", + "iopub.status.busy": "2024-09-26T14:53:09.442289Z", + "iopub.status.idle": "2024-09-26T14:53:09.875533Z", + "shell.execute_reply": "2024-09-26T14:53:09.874886Z" } }, "outputs": [ @@ -971,10 +978,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.300087Z", - "iopub.status.busy": "2024-09-06T19:39:08.299623Z", - "iopub.status.idle": "2024-09-06T19:39:08.513354Z", - "shell.execute_reply": "2024-09-06T19:39:08.512755Z" + "iopub.execute_input": "2024-09-26T14:53:09.878235Z", + "iopub.status.busy": "2024-09-26T14:53:09.877876Z", + "iopub.status.idle": "2024-09-26T14:53:10.074349Z", + "shell.execute_reply": "2024-09-26T14:53:10.073721Z" } }, "outputs": [ @@ -1017,10 +1024,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.515572Z", - "iopub.status.busy": "2024-09-06T19:39:08.515168Z", - "iopub.status.idle": "2024-09-06T19:39:08.694654Z", - "shell.execute_reply": "2024-09-06T19:39:08.694085Z" + "iopub.execute_input": "2024-09-26T14:53:10.076454Z", + "iopub.status.busy": "2024-09-26T14:53:10.076093Z", + "iopub.status.idle": "2024-09-26T14:53:10.258000Z", + "shell.execute_reply": "2024-09-26T14:53:10.257430Z" } }, "outputs": [ @@ -1067,10 +1074,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.697419Z", - "iopub.status.busy": "2024-09-06T19:39:08.697030Z", - "iopub.status.idle": "2024-09-06T19:39:08.699909Z", - "shell.execute_reply": "2024-09-06T19:39:08.699453Z" + "iopub.execute_input": "2024-09-26T14:53:10.260221Z", + "iopub.status.busy": "2024-09-26T14:53:10.259868Z", + "iopub.status.idle": "2024-09-26T14:53:10.262670Z", + "shell.execute_reply": "2024-09-26T14:53:10.262238Z" } }, "outputs": [], @@ -1090,10 +1097,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:08.701948Z", - "iopub.status.busy": "2024-09-06T19:39:08.701622Z", - "iopub.status.idle": "2024-09-06T19:39:09.635839Z", - "shell.execute_reply": "2024-09-06T19:39:09.635227Z" + "iopub.execute_input": "2024-09-26T14:53:10.264357Z", + "iopub.status.busy": "2024-09-26T14:53:10.264032Z", + "iopub.status.idle": "2024-09-26T14:53:11.303194Z", + "shell.execute_reply": "2024-09-26T14:53:11.302561Z" } }, "outputs": [ @@ -1172,10 +1179,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.637949Z", - "iopub.status.busy": "2024-09-06T19:39:09.637773Z", - "iopub.status.idle": "2024-09-06T19:39:09.767317Z", - "shell.execute_reply": "2024-09-06T19:39:09.766833Z" + "iopub.execute_input": "2024-09-26T14:53:11.305028Z", + "iopub.status.busy": "2024-09-26T14:53:11.304725Z", + "iopub.status.idle": "2024-09-26T14:53:11.509799Z", + "shell.execute_reply": "2024-09-26T14:53:11.509285Z" } }, "outputs": [ @@ -1214,10 +1221,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.769238Z", - "iopub.status.busy": "2024-09-06T19:39:09.769067Z", - "iopub.status.idle": "2024-09-06T19:39:09.969227Z", - "shell.execute_reply": "2024-09-06T19:39:09.968617Z" + "iopub.execute_input": "2024-09-26T14:53:11.511395Z", + "iopub.status.busy": "2024-09-26T14:53:11.511212Z", + "iopub.status.idle": "2024-09-26T14:53:11.718820Z", + "shell.execute_reply": "2024-09-26T14:53:11.718199Z" } }, "outputs": [], @@ -1266,10 +1273,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:09.971377Z", - "iopub.status.busy": "2024-09-06T19:39:09.971032Z", - "iopub.status.idle": "2024-09-06T19:39:10.691109Z", - "shell.execute_reply": "2024-09-06T19:39:10.690570Z" + "iopub.execute_input": "2024-09-26T14:53:11.720947Z", + "iopub.status.busy": "2024-09-26T14:53:11.720765Z", + "iopub.status.idle": "2024-09-26T14:53:12.421538Z", + "shell.execute_reply": "2024-09-26T14:53:12.420820Z" } }, "outputs": [ @@ -1351,10 +1358,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:10.693528Z", - "iopub.status.busy": "2024-09-06T19:39:10.693149Z", - "iopub.status.idle": "2024-09-06T19:39:10.697005Z", - "shell.execute_reply": "2024-09-06T19:39:10.696512Z" + "iopub.execute_input": "2024-09-26T14:53:12.423286Z", + "iopub.status.busy": "2024-09-26T14:53:12.423091Z", + "iopub.status.idle": "2024-09-26T14:53:12.427074Z", + "shell.execute_reply": "2024-09-26T14:53:12.426599Z" }, "nbsphinx": "hidden" }, @@ -1387,7 +1394,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 16e86eb51..b18d3d052 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -784,7 +784,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 46456493.64it/s]
+100%|██████████| 170498071/170498071 [00:03<00:00, 49690890.85it/s]
 

-
+
@@ -1134,7 +1134,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index ab02f6a16..82b2532b4 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:13.100046Z", - "iopub.status.busy": "2024-09-06T19:39:13.099622Z", - "iopub.status.idle": "2024-09-06T19:39:15.925691Z", - "shell.execute_reply": "2024-09-06T19:39:15.925058Z" + "iopub.execute_input": "2024-09-26T14:53:14.827019Z", + "iopub.status.busy": "2024-09-26T14:53:14.826845Z", + "iopub.status.idle": "2024-09-26T14:53:17.796587Z", + "shell.execute_reply": "2024-09-26T14:53:17.795936Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:15.928762Z", - "iopub.status.busy": "2024-09-06T19:39:15.928196Z", - "iopub.status.idle": "2024-09-06T19:39:16.252610Z", - "shell.execute_reply": "2024-09-06T19:39:16.252054Z" + "iopub.execute_input": "2024-09-26T14:53:17.798905Z", + "iopub.status.busy": "2024-09-26T14:53:17.798584Z", + "iopub.status.idle": "2024-09-26T14:53:18.137749Z", + "shell.execute_reply": "2024-09-26T14:53:18.137173Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:16.255233Z", - "iopub.status.busy": "2024-09-06T19:39:16.254751Z", - "iopub.status.idle": "2024-09-06T19:39:16.259089Z", - "shell.execute_reply": "2024-09-06T19:39:16.258660Z" + "iopub.execute_input": "2024-09-26T14:53:18.139715Z", + "iopub.status.busy": "2024-09-26T14:53:18.139407Z", + "iopub.status.idle": "2024-09-26T14:53:18.143870Z", + "shell.execute_reply": "2024-09-26T14:53:18.143450Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:16.261376Z", - "iopub.status.busy": "2024-09-06T19:39:16.260945Z", - "iopub.status.idle": "2024-09-06T19:39:23.300858Z", - "shell.execute_reply": "2024-09-06T19:39:23.300244Z" + "iopub.execute_input": "2024-09-26T14:53:18.145657Z", + "iopub.status.busy": "2024-09-26T14:53:18.145384Z", + "iopub.status.idle": "2024-09-26T14:53:24.392739Z", + "shell.execute_reply": "2024-09-26T14:53:24.392209Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<09:50, 288460.96it/s]" + " 1%| | 1212416/170498071 [00:00<00:14, 12024376.95it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:31, 1124759.70it/s]" + " 4%|▎ | 6160384/170498071 [00:00<00:04, 33857865.84it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:52, 3225591.40it/s]" + " 6%|▌ | 10518528/170498071 [00:00<00:04, 38150209.28it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3571712/170498071 [00:00<00:14, 11574707.14it/s]" + " 9%|▉ | 15400960/170498071 [00:00<00:03, 42330857.28it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9633792/170498071 [00:00<00:06, 25807611.79it/s]" + " 12%|█▏ | 20250624/170498071 [00:00<00:03, 44424970.42it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15892480/170498071 [00:00<00:04, 35393042.76it/s]" + " 15%|█▍ | 24739840/170498071 [00:00<00:03, 44347437.97it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22052864/170498071 [00:00<00:03, 41375940.12it/s]" + " 17%|█▋ | 29294592/170498071 [00:00<00:03, 44719226.63it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 27918336/170498071 [00:00<00:03, 46336247.02it/s]" + " 20%|██ | 34144256/170498071 [00:00<00:02, 45791541.93it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32604160/170498071 [00:01<00:03, 45410241.06it/s]" + " 23%|██▎ | 38731776/170498071 [00:00<00:02, 45062771.26it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37978112/170498071 [00:01<00:02, 46512554.13it/s]" + " 25%|██▌ | 43253760/170498071 [00:01<00:02, 45089662.43it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44072960/170498071 [00:01<00:02, 50196826.35it/s]" + " 28%|██▊ | 47874048/170498071 [00:01<00:02, 45213443.22it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49217536/170498071 [00:01<00:02, 50515326.91it/s]" + " 31%|███ | 52494336/170498071 [00:01<00:02, 45379651.12it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54296576/170498071 [00:01<00:02, 49331301.44it/s]" + " 33%|███▎ | 57049088/170498071 [00:01<00:02, 44930180.76it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 60129280/170498071 [00:01<00:02, 51745509.08it/s]" + " 36%|███▌ | 61571072/170498071 [00:01<00:02, 43892355.61it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 65339392/170498071 [00:01<00:02, 51498978.62it/s]" + " 39%|███▊ | 65994752/170498071 [00:01<00:02, 43763301.63it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 70516736/170498071 [00:01<00:01, 50172708.54it/s]" + " 41%|████▏ | 70385664/170498071 [00:01<00:02, 43438744.69it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76251136/170498071 [00:01<00:01, 52173671.62it/s]" + " 44%|████▍ | 75104256/170498071 [00:01<00:02, 44425115.39it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 81559552/170498071 [00:01<00:01, 52429909.15it/s]" + " 47%|████▋ | 79855616/170498071 [00:01<00:02, 45166993.85it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 86835200/170498071 [00:02<00:01, 50316420.17it/s]" + " 49%|████▉ | 84377600/170498071 [00:01<00:01, 43789983.48it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92438528/170498071 [00:02<00:01, 51729464.30it/s]" + " 52%|█████▏ | 88768512/170498071 [00:02<00:01, 43106787.26it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 97878016/170498071 [00:02<00:01, 52469802.74it/s]" + " 55%|█████▍ | 93093888/170498071 [00:02<00:01, 42763173.18it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 103153664/170498071 [00:02<00:01, 51263628.20it/s]" + " 57%|█████▋ | 97386496/170498071 [00:02<00:01, 42678693.69it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 108396544/170498071 [00:02<00:01, 51439851.19it/s]" + " 60%|█████▉ | 101679104/170498071 [00:02<00:01, 42558052.16it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 114130944/170498071 [00:02<00:01, 53113973.23it/s]" + " 62%|██████▏ | 106102784/170498071 [00:02<00:01, 43049601.15it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 119472128/170498071 [00:02<00:00, 51879482.02it/s]" + " 65%|██████▍ | 110592000/170498071 [00:02<00:01, 43553293.68it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 124682240/170498071 [00:02<00:00, 50047274.18it/s]" + " 67%|██████▋ | 114950144/170498071 [00:02<00:01, 43398814.53it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130547712/170498071 [00:02<00:00, 52494107.90it/s]" + " 70%|██████▉ | 119308288/170498071 [00:02<00:01, 43218682.93it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 135823360/170498071 [00:03<00:00, 52004524.51it/s]" + " 73%|███████▎ | 125075456/170498071 [00:02<00:00, 47414945.57it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141066240/170498071 [00:03<00:00, 50983301.18it/s]" + " 78%|███████▊ | 133234688/170498071 [00:02<00:00, 57528916.08it/s]" ] }, { @@ -484,7 +484,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146636800/170498071 [00:03<00:00, 52034590.57it/s]" + " 83%|████████▎ | 141262848/170498071 [00:03<00:00, 64272093.96it/s]" ] }, { @@ -492,7 +492,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 151879680/170498071 [00:03<00:00, 52140968.39it/s]" + " 87%|████████▋ | 149127168/170498071 [00:03<00:00, 68499385.74it/s]" ] }, { @@ -500,7 +500,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 157122560/170498071 [00:03<00:00, 50962142.96it/s]" + " 92%|█████████▏| 157024256/170498071 [00:03<00:00, 71592148.49it/s]" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162463744/170498071 [00:03<00:00, 51228143.58it/s]" + " 97%|█████████▋| 165117952/170498071 [00:03<00:00, 74385700.68it/s]" ] }, { @@ -516,15 +516,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 168329216/170498071 [00:03<00:00, 53366850.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 46456493.64it/s]" + "100%|██████████| 170498071/170498071 [00:03<00:00, 49690890.85it/s]" ] }, { @@ -642,10 +634,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.303328Z", - "iopub.status.busy": "2024-09-06T19:39:23.302943Z", - "iopub.status.idle": "2024-09-06T19:39:23.307938Z", - "shell.execute_reply": "2024-09-06T19:39:23.307365Z" + "iopub.execute_input": "2024-09-26T14:53:24.394624Z", + "iopub.status.busy": "2024-09-26T14:53:24.394340Z", + "iopub.status.idle": "2024-09-26T14:53:24.399279Z", + "shell.execute_reply": "2024-09-26T14:53:24.398789Z" }, "nbsphinx": "hidden" }, @@ -696,10 +688,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.310122Z", - "iopub.status.busy": "2024-09-06T19:39:23.309822Z", - "iopub.status.idle": "2024-09-06T19:39:23.850296Z", - "shell.execute_reply": "2024-09-06T19:39:23.849793Z" + "iopub.execute_input": "2024-09-26T14:53:24.400938Z", + "iopub.status.busy": "2024-09-26T14:53:24.400609Z", + "iopub.status.idle": "2024-09-26T14:53:24.953810Z", + "shell.execute_reply": "2024-09-26T14:53:24.953168Z" } }, "outputs": [ @@ -732,10 +724,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:23.852466Z", - "iopub.status.busy": "2024-09-06T19:39:23.852115Z", - "iopub.status.idle": "2024-09-06T19:39:24.358610Z", - "shell.execute_reply": "2024-09-06T19:39:24.358030Z" + "iopub.execute_input": "2024-09-26T14:53:24.955849Z", + "iopub.status.busy": "2024-09-26T14:53:24.955452Z", + "iopub.status.idle": "2024-09-26T14:53:25.472907Z", + "shell.execute_reply": "2024-09-26T14:53:25.472351Z" } }, "outputs": [ @@ -773,10 +765,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:24.360839Z", - "iopub.status.busy": "2024-09-06T19:39:24.360464Z", - "iopub.status.idle": "2024-09-06T19:39:24.363781Z", - "shell.execute_reply": "2024-09-06T19:39:24.363295Z" + "iopub.execute_input": "2024-09-26T14:53:25.474962Z", + "iopub.status.busy": "2024-09-26T14:53:25.474606Z", + "iopub.status.idle": "2024-09-26T14:53:25.478282Z", + "shell.execute_reply": "2024-09-26T14:53:25.477855Z" } }, "outputs": [], @@ -799,17 +791,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:24.365783Z", - "iopub.status.busy": "2024-09-06T19:39:24.365442Z", - "iopub.status.idle": "2024-09-06T19:39:36.716347Z", - "shell.execute_reply": "2024-09-06T19:39:36.715721Z" + "iopub.execute_input": "2024-09-26T14:53:25.479985Z", + "iopub.status.busy": "2024-09-26T14:53:25.479646Z", + "iopub.status.idle": "2024-09-26T14:53:38.119311Z", + "shell.execute_reply": "2024-09-26T14:53:38.118760Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ceaa047f5ed4611b974d3fa414e2507", + "model_id": "502208beacbc4eb2877f50728ccb04c0", "version_major": 2, "version_minor": 0 }, @@ -868,10 +860,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:36.718898Z", - "iopub.status.busy": "2024-09-06T19:39:36.718487Z", - "iopub.status.idle": "2024-09-06T19:39:38.825920Z", - "shell.execute_reply": "2024-09-06T19:39:38.825316Z" + "iopub.execute_input": "2024-09-26T14:53:38.121453Z", + "iopub.status.busy": "2024-09-26T14:53:38.121019Z", + "iopub.status.idle": "2024-09-26T14:53:40.226608Z", + "shell.execute_reply": "2024-09-26T14:53:40.226078Z" } }, "outputs": [ @@ -915,10 +907,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:38.828812Z", - "iopub.status.busy": "2024-09-06T19:39:38.828333Z", - "iopub.status.idle": "2024-09-06T19:39:39.084401Z", - "shell.execute_reply": "2024-09-06T19:39:39.083812Z" + "iopub.execute_input": "2024-09-26T14:53:40.228769Z", + "iopub.status.busy": "2024-09-26T14:53:40.228334Z", + "iopub.status.idle": "2024-09-26T14:53:40.460757Z", + "shell.execute_reply": "2024-09-26T14:53:40.459979Z" } }, "outputs": [ @@ -954,10 +946,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:39.087122Z", - "iopub.status.busy": "2024-09-06T19:39:39.086611Z", - "iopub.status.idle": "2024-09-06T19:39:39.754107Z", - "shell.execute_reply": "2024-09-06T19:39:39.753534Z" + "iopub.execute_input": "2024-09-26T14:53:40.462963Z", + "iopub.status.busy": "2024-09-26T14:53:40.462510Z", + "iopub.status.idle": "2024-09-26T14:53:41.139530Z", + "shell.execute_reply": "2024-09-26T14:53:41.138920Z" } }, "outputs": [ @@ -1007,10 +999,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:39.756937Z", - "iopub.status.busy": "2024-09-06T19:39:39.756623Z", - "iopub.status.idle": "2024-09-06T19:39:40.092242Z", - "shell.execute_reply": "2024-09-06T19:39:40.091655Z" + "iopub.execute_input": "2024-09-26T14:53:41.141576Z", + "iopub.status.busy": "2024-09-26T14:53:41.141387Z", + "iopub.status.idle": "2024-09-26T14:53:41.442674Z", + "shell.execute_reply": "2024-09-26T14:53:41.442054Z" } }, "outputs": [ @@ -1058,10 +1050,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.094221Z", - "iopub.status.busy": "2024-09-06T19:39:40.094058Z", - "iopub.status.idle": "2024-09-06T19:39:40.335215Z", - "shell.execute_reply": "2024-09-06T19:39:40.334660Z" + "iopub.execute_input": "2024-09-26T14:53:41.444606Z", + "iopub.status.busy": "2024-09-26T14:53:41.444407Z", + "iopub.status.idle": "2024-09-26T14:53:41.692450Z", + "shell.execute_reply": "2024-09-26T14:53:41.691834Z" } }, "outputs": [ @@ -1117,10 +1109,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.337846Z", - "iopub.status.busy": "2024-09-06T19:39:40.337645Z", - "iopub.status.idle": "2024-09-06T19:39:40.434888Z", - "shell.execute_reply": "2024-09-06T19:39:40.434380Z" + "iopub.execute_input": "2024-09-26T14:53:41.694792Z", + "iopub.status.busy": "2024-09-26T14:53:41.694309Z", + "iopub.status.idle": "2024-09-26T14:53:41.786453Z", + "shell.execute_reply": "2024-09-26T14:53:41.785871Z" } }, "outputs": [], @@ -1141,10 +1133,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:40.437135Z", - "iopub.status.busy": "2024-09-06T19:39:40.436969Z", - "iopub.status.idle": "2024-09-06T19:39:50.846992Z", - "shell.execute_reply": "2024-09-06T19:39:50.846365Z" + "iopub.execute_input": "2024-09-26T14:53:41.788692Z", + "iopub.status.busy": "2024-09-26T14:53:41.788289Z", + "iopub.status.idle": "2024-09-26T14:53:52.391383Z", + "shell.execute_reply": "2024-09-26T14:53:52.390803Z" } }, "outputs": [ @@ -1181,10 +1173,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:50.849274Z", - "iopub.status.busy": "2024-09-06T19:39:50.849079Z", - "iopub.status.idle": "2024-09-06T19:39:53.085840Z", - "shell.execute_reply": "2024-09-06T19:39:53.085209Z" + "iopub.execute_input": "2024-09-26T14:53:52.393513Z", + "iopub.status.busy": "2024-09-26T14:53:52.393049Z", + "iopub.status.idle": "2024-09-26T14:53:54.671283Z", + "shell.execute_reply": "2024-09-26T14:53:54.670780Z" } }, "outputs": [ @@ -1215,10 +1207,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.088386Z", - "iopub.status.busy": "2024-09-06T19:39:53.087986Z", - "iopub.status.idle": "2024-09-06T19:39:53.295938Z", - "shell.execute_reply": "2024-09-06T19:39:53.295309Z" + "iopub.execute_input": "2024-09-26T14:53:54.673751Z", + "iopub.status.busy": "2024-09-26T14:53:54.673100Z", + "iopub.status.idle": "2024-09-26T14:53:54.874229Z", + "shell.execute_reply": "2024-09-26T14:53:54.873718Z" } }, "outputs": [], @@ -1232,10 +1224,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.298578Z", - "iopub.status.busy": "2024-09-06T19:39:53.298149Z", - "iopub.status.idle": "2024-09-06T19:39:53.301396Z", - "shell.execute_reply": "2024-09-06T19:39:53.300847Z" + "iopub.execute_input": "2024-09-26T14:53:54.876098Z", + "iopub.status.busy": "2024-09-26T14:53:54.875918Z", + "iopub.status.idle": "2024-09-26T14:53:54.879013Z", + "shell.execute_reply": "2024-09-26T14:53:54.878602Z" } }, "outputs": [], @@ -1273,10 +1265,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:53.303545Z", - "iopub.status.busy": "2024-09-06T19:39:53.303235Z", - "iopub.status.idle": "2024-09-06T19:39:53.311553Z", - "shell.execute_reply": "2024-09-06T19:39:53.311013Z" + "iopub.execute_input": "2024-09-26T14:53:54.880796Z", + "iopub.status.busy": "2024-09-26T14:53:54.880464Z", + "iopub.status.idle": "2024-09-26T14:53:54.888465Z", + "shell.execute_reply": "2024-09-26T14:53:54.888011Z" }, "nbsphinx": "hidden" }, @@ -1316,12 +1308,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2a68a2d432424faba9fe0b5e6944b5e9": { + "19f8d7cfcb2441f39ec909950206b100": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1374,47 +1366,30 @@ "width": null } }, - "3ceaa047f5ed4611b974d3fa414e2507": { + "3dbde950338e4819980320793264b8f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c213a022f9994559b2b3155f2f77656c", - "IPY_MODEL_d04af2b6417a48e88c2bb6ac7a1a352f", - "IPY_MODEL_d330cb5a3ec245d28c20140821dff479" - ], - "layout": "IPY_MODEL_8965ea1fe0204e49bbde2ee4ed6b5dbe", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_444a8341757540238acd548381d3cf78", + "placeholder": "​", + "style": "IPY_MODEL_c63ffa48637c4cf790d73142dcbf1bca", "tabbable": null, - "tooltip": null - } - }, - "653de3cf6239488fa0adf55f2a1ae049": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "8965ea1fe0204e49bbde2ee4ed6b5dbe": { + "444a8341757540238acd548381d3cf78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1467,7 +1442,91 @@ "width": null } }, - "b06f361a24974d5a8b8c89476e47f817": { + "4b5509bd08094575af9bfd6e1b39af74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "502208beacbc4eb2877f50728ccb04c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3dbde950338e4819980320793264b8f6", + "IPY_MODEL_55906b2e5cc7451a90a629cf8eaf9dfa", + "IPY_MODEL_e08a4a5cd5a34519a67999d955a20b6a" + ], + "layout": "IPY_MODEL_f0529d443cdc4ef783433718b133c35d", + "tabbable": null, + "tooltip": null + } + }, + "55906b2e5cc7451a90a629cf8eaf9dfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6577ec2ef7f4efc9edc61cb0c210c81", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6428955d0d764798b409d0eed1cd24c0", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "6428955d0d764798b409d0eed1cd24c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a6577ec2ef7f4efc9edc61cb0c210c81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1520,7 +1579,7 @@ "width": null } }, - "b895588a207f4f0ca89d7c4764c3d066": { + "c63ffa48637c4cf790d73142dcbf1bca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1538,7 +1597,7 @@ "text_color": null } }, - "c213a022f9994559b2b3155f2f77656c": { + "e08a4a5cd5a34519a67999d955a20b6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1553,15 +1612,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ccda1205dcc748f99c76cf1800b182ef", + "layout": "IPY_MODEL_19f8d7cfcb2441f39ec909950206b100", "placeholder": "​", - "style": "IPY_MODEL_b895588a207f4f0ca89d7c4764c3d066", + "style": "IPY_MODEL_4b5509bd08094575af9bfd6e1b39af74", "tabbable": null, "tooltip": null, - "value": "model.safetensors: 100%" + "value": " 102M/102M [00:00<00:00, 297MB/s]" } }, - "ccda1205dcc748f99c76cf1800b182ef": { + "f0529d443cdc4ef783433718b133c35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,73 +1672,6 @@ "visibility": null, "width": null } - }, - "cd03cf3d325849b9a2597fce8db90de1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d04af2b6417a48e88c2bb6ac7a1a352f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2a68a2d432424faba9fe0b5e6944b5e9", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_653de3cf6239488fa0adf55f2a1ae049", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "d330cb5a3ec245d28c20140821dff479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b06f361a24974d5a8b8c89476e47f817", - "placeholder": "​", - "style": "IPY_MODEL_cd03cf3d325849b9a2597fce8db90de1", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 304MB/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 4e72a9c31..5670e5e42 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:57.671183Z", - "iopub.status.busy": "2024-09-06T19:39:57.671012Z", - "iopub.status.idle": "2024-09-06T19:39:58.889426Z", - "shell.execute_reply": "2024-09-06T19:39:58.888863Z" + "iopub.execute_input": "2024-09-26T14:53:59.188556Z", + "iopub.status.busy": "2024-09-26T14:53:59.188370Z", + "iopub.status.idle": "2024-09-26T14:54:00.464944Z", + "shell.execute_reply": "2024-09-26T14:54:00.464378Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.892009Z", - "iopub.status.busy": "2024-09-06T19:39:58.891558Z", - "iopub.status.idle": "2024-09-06T19:39:58.909420Z", - "shell.execute_reply": "2024-09-06T19:39:58.908966Z" + "iopub.execute_input": "2024-09-26T14:54:00.467202Z", + "iopub.status.busy": "2024-09-26T14:54:00.466665Z", + "iopub.status.idle": "2024-09-26T14:54:00.486020Z", + "shell.execute_reply": "2024-09-26T14:54:00.485402Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.911380Z", - "iopub.status.busy": "2024-09-06T19:39:58.911122Z", - "iopub.status.idle": "2024-09-06T19:39:58.914071Z", - "shell.execute_reply": "2024-09-06T19:39:58.913630Z" + "iopub.execute_input": "2024-09-26T14:54:00.488158Z", + "iopub.status.busy": "2024-09-26T14:54:00.487625Z", + "iopub.status.idle": "2024-09-26T14:54:00.490770Z", + "shell.execute_reply": "2024-09-26T14:54:00.490324Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:58.916066Z", - "iopub.status.busy": "2024-09-06T19:39:58.915883Z", - "iopub.status.idle": "2024-09-06T19:39:59.147435Z", - "shell.execute_reply": "2024-09-06T19:39:59.146903Z" + "iopub.execute_input": "2024-09-26T14:54:00.492476Z", + "iopub.status.busy": "2024-09-26T14:54:00.492170Z", + "iopub.status.idle": "2024-09-26T14:54:00.593026Z", + "shell.execute_reply": "2024-09-26T14:54:00.592503Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.149566Z", - "iopub.status.busy": "2024-09-06T19:39:59.149370Z", - "iopub.status.idle": "2024-09-06T19:39:59.331007Z", - "shell.execute_reply": "2024-09-06T19:39:59.330438Z" + "iopub.execute_input": "2024-09-26T14:54:00.595033Z", + "iopub.status.busy": "2024-09-26T14:54:00.594676Z", + "iopub.status.idle": "2024-09-26T14:54:00.781165Z", + "shell.execute_reply": "2024-09-26T14:54:00.780607Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.333486Z", - "iopub.status.busy": "2024-09-06T19:39:59.333040Z", - "iopub.status.idle": "2024-09-06T19:39:59.576590Z", - "shell.execute_reply": "2024-09-06T19:39:59.575968Z" + "iopub.execute_input": "2024-09-26T14:54:00.783347Z", + "iopub.status.busy": "2024-09-26T14:54:00.782969Z", + "iopub.status.idle": "2024-09-26T14:54:01.032458Z", + "shell.execute_reply": "2024-09-26T14:54:01.031929Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.578938Z", - "iopub.status.busy": "2024-09-06T19:39:59.578553Z", - "iopub.status.idle": "2024-09-06T19:39:59.582923Z", - "shell.execute_reply": "2024-09-06T19:39:59.582473Z" + "iopub.execute_input": "2024-09-26T14:54:01.034452Z", + "iopub.status.busy": "2024-09-26T14:54:01.034056Z", + "iopub.status.idle": "2024-09-26T14:54:01.038763Z", + "shell.execute_reply": "2024-09-26T14:54:01.038275Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.584759Z", - "iopub.status.busy": "2024-09-06T19:39:59.584580Z", - "iopub.status.idle": "2024-09-06T19:39:59.590790Z", - "shell.execute_reply": "2024-09-06T19:39:59.590351Z" + "iopub.execute_input": "2024-09-26T14:54:01.040507Z", + "iopub.status.busy": "2024-09-26T14:54:01.040163Z", + "iopub.status.idle": "2024-09-26T14:54:01.046197Z", + "shell.execute_reply": "2024-09-26T14:54:01.045737Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.592686Z", - "iopub.status.busy": "2024-09-06T19:39:59.592515Z", - "iopub.status.idle": "2024-09-06T19:39:59.595225Z", - "shell.execute_reply": "2024-09-06T19:39:59.594766Z" + "iopub.execute_input": "2024-09-26T14:54:01.048092Z", + "iopub.status.busy": "2024-09-26T14:54:01.047754Z", + "iopub.status.idle": "2024-09-26T14:54:01.050568Z", + "shell.execute_reply": "2024-09-26T14:54:01.050000Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:39:59.597032Z", - "iopub.status.busy": "2024-09-06T19:39:59.596865Z", - "iopub.status.idle": "2024-09-06T19:40:08.597697Z", - "shell.execute_reply": "2024-09-06T19:40:08.597120Z" + "iopub.execute_input": "2024-09-26T14:54:01.052488Z", + "iopub.status.busy": "2024-09-26T14:54:01.052092Z", + "iopub.status.idle": "2024-09-26T14:54:10.157589Z", + "shell.execute_reply": "2024-09-26T14:54:10.157001Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.600635Z", - "iopub.status.busy": "2024-09-06T19:40:08.599991Z", - "iopub.status.idle": "2024-09-06T19:40:08.607726Z", - "shell.execute_reply": "2024-09-06T19:40:08.607259Z" + "iopub.execute_input": "2024-09-26T14:54:10.160258Z", + "iopub.status.busy": "2024-09-26T14:54:10.159589Z", + "iopub.status.idle": "2024-09-26T14:54:10.167515Z", + "shell.execute_reply": "2024-09-26T14:54:10.167054Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.609816Z", - "iopub.status.busy": "2024-09-06T19:40:08.609470Z", - "iopub.status.idle": "2024-09-06T19:40:08.613036Z", - "shell.execute_reply": "2024-09-06T19:40:08.612542Z" + "iopub.execute_input": "2024-09-26T14:54:10.169285Z", + "iopub.status.busy": "2024-09-26T14:54:10.168935Z", + "iopub.status.idle": "2024-09-26T14:54:10.172611Z", + "shell.execute_reply": "2024-09-26T14:54:10.172168Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.615042Z", - "iopub.status.busy": "2024-09-06T19:40:08.614643Z", - "iopub.status.idle": "2024-09-06T19:40:08.618056Z", - "shell.execute_reply": "2024-09-06T19:40:08.617486Z" + "iopub.execute_input": "2024-09-26T14:54:10.174288Z", + "iopub.status.busy": "2024-09-26T14:54:10.173947Z", + "iopub.status.idle": "2024-09-26T14:54:10.177369Z", + "shell.execute_reply": "2024-09-26T14:54:10.176897Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.620104Z", - "iopub.status.busy": "2024-09-06T19:40:08.619791Z", - "iopub.status.idle": "2024-09-06T19:40:08.622907Z", - "shell.execute_reply": "2024-09-06T19:40:08.622416Z" + "iopub.execute_input": "2024-09-26T14:54:10.179183Z", + "iopub.status.busy": "2024-09-26T14:54:10.178849Z", + "iopub.status.idle": "2024-09-26T14:54:10.182081Z", + "shell.execute_reply": "2024-09-26T14:54:10.181652Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.624768Z", - "iopub.status.busy": "2024-09-06T19:40:08.624594Z", - "iopub.status.idle": "2024-09-06T19:40:08.632747Z", - "shell.execute_reply": "2024-09-06T19:40:08.632288Z" + "iopub.execute_input": "2024-09-26T14:54:10.183707Z", + "iopub.status.busy": "2024-09-26T14:54:10.183367Z", + "iopub.status.idle": "2024-09-26T14:54:10.191340Z", + "shell.execute_reply": "2024-09-26T14:54:10.190898Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.634564Z", - "iopub.status.busy": "2024-09-06T19:40:08.634392Z", - "iopub.status.idle": "2024-09-06T19:40:08.637116Z", - "shell.execute_reply": "2024-09-06T19:40:08.636642Z" + "iopub.execute_input": "2024-09-26T14:54:10.193003Z", + "iopub.status.busy": "2024-09-26T14:54:10.192665Z", + "iopub.status.idle": "2024-09-26T14:54:10.195213Z", + "shell.execute_reply": "2024-09-26T14:54:10.194766Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.639192Z", - "iopub.status.busy": "2024-09-06T19:40:08.638877Z", - "iopub.status.idle": "2024-09-06T19:40:08.766647Z", - "shell.execute_reply": "2024-09-06T19:40:08.765685Z" + "iopub.execute_input": "2024-09-26T14:54:10.196853Z", + "iopub.status.busy": "2024-09-26T14:54:10.196518Z", + "iopub.status.idle": "2024-09-26T14:54:10.322626Z", + "shell.execute_reply": "2024-09-26T14:54:10.322078Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.769173Z", - "iopub.status.busy": "2024-09-06T19:40:08.768972Z", - "iopub.status.idle": "2024-09-06T19:40:08.878186Z", - "shell.execute_reply": "2024-09-06T19:40:08.877593Z" + "iopub.execute_input": "2024-09-26T14:54:10.324771Z", + "iopub.status.busy": "2024-09-26T14:54:10.324359Z", + "iopub.status.idle": "2024-09-26T14:54:10.435194Z", + "shell.execute_reply": "2024-09-26T14:54:10.434642Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:08.880641Z", - "iopub.status.busy": "2024-09-06T19:40:08.880289Z", - "iopub.status.idle": "2024-09-06T19:40:09.386974Z", - "shell.execute_reply": "2024-09-06T19:40:09.386324Z" + "iopub.execute_input": "2024-09-26T14:54:10.437396Z", + "iopub.status.busy": "2024-09-26T14:54:10.436936Z", + "iopub.status.idle": "2024-09-26T14:54:10.943293Z", + "shell.execute_reply": "2024-09-26T14:54:10.942658Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.389675Z", - "iopub.status.busy": "2024-09-06T19:40:09.389308Z", - "iopub.status.idle": "2024-09-06T19:40:09.485553Z", - "shell.execute_reply": "2024-09-06T19:40:09.484996Z" + "iopub.execute_input": "2024-09-26T14:54:10.945562Z", + "iopub.status.busy": "2024-09-26T14:54:10.945188Z", + "iopub.status.idle": "2024-09-26T14:54:11.045547Z", + "shell.execute_reply": "2024-09-26T14:54:11.044913Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.487964Z", - "iopub.status.busy": "2024-09-06T19:40:09.487496Z", - "iopub.status.idle": "2024-09-06T19:40:09.496128Z", - "shell.execute_reply": "2024-09-06T19:40:09.495570Z" + "iopub.execute_input": "2024-09-26T14:54:11.047649Z", + "iopub.status.busy": "2024-09-26T14:54:11.047228Z", + "iopub.status.idle": "2024-09-26T14:54:11.055699Z", + "shell.execute_reply": "2024-09-26T14:54:11.055230Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.498303Z", - "iopub.status.busy": "2024-09-06T19:40:09.497989Z", - "iopub.status.idle": "2024-09-06T19:40:09.500756Z", - "shell.execute_reply": "2024-09-06T19:40:09.500274Z" + "iopub.execute_input": "2024-09-26T14:54:11.057456Z", + "iopub.status.busy": "2024-09-26T14:54:11.057092Z", + "iopub.status.idle": "2024-09-26T14:54:11.059706Z", + "shell.execute_reply": "2024-09-26T14:54:11.059257Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:09.502626Z", - "iopub.status.busy": "2024-09-06T19:40:09.502453Z", - "iopub.status.idle": "2024-09-06T19:40:15.134668Z", - "shell.execute_reply": "2024-09-06T19:40:15.134055Z" + "iopub.execute_input": "2024-09-26T14:54:11.061497Z", + "iopub.status.busy": "2024-09-26T14:54:11.061113Z", + "iopub.status.idle": "2024-09-26T14:54:16.702766Z", + "shell.execute_reply": "2024-09-26T14:54:16.702139Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:15.137003Z", - "iopub.status.busy": "2024-09-06T19:40:15.136794Z", - "iopub.status.idle": "2024-09-06T19:40:15.145626Z", - "shell.execute_reply": "2024-09-06T19:40:15.145149Z" + "iopub.execute_input": "2024-09-26T14:54:16.704653Z", + "iopub.status.busy": "2024-09-26T14:54:16.704460Z", + "iopub.status.idle": "2024-09-26T14:54:16.712980Z", + "shell.execute_reply": "2024-09-26T14:54:16.712530Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:15.147739Z", - "iopub.status.busy": "2024-09-06T19:40:15.147560Z", - "iopub.status.idle": "2024-09-06T19:40:15.212105Z", - "shell.execute_reply": "2024-09-06T19:40:15.211592Z" + "iopub.execute_input": "2024-09-26T14:54:16.714897Z", + "iopub.status.busy": "2024-09-26T14:54:16.714556Z", + "iopub.status.idle": "2024-09-26T14:54:16.786785Z", + "shell.execute_reply": "2024-09-26T14:54:16.786234Z" }, "nbsphinx": "hidden" }, @@ -1452,7 +1452,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 9c9811712..ff97a230b 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -804,13 +804,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1200,7 +1200,7 @@

Get label quality scores -{"state": {"fefad91592514c8b93cde6a9aa658432": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26c9d71cd2b144f5a62f2e547396cf9d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5050585031b24c079460a52a9a4fc488": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fefad91592514c8b93cde6a9aa658432", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26c9d71cd2b144f5a62f2e547396cf9d", "tabbable": null, "tooltip": null, "value": 30.0}}, "08c7a2f2c6804a7da25a3555d45832fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5428bca92792410db3731a76852725a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "42d03e2415284486b25cf67ccd387444": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08c7a2f2c6804a7da25a3555d45832fe", "placeholder": "\u200b", "style": "IPY_MODEL_5428bca92792410db3731a76852725a2", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "474187191bb2423bbeaab8075807fc8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5aa47fe7e6cf4464bcbe167e6d3ba68a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b1848abf52f742ed9f7657ba08af06f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_474187191bb2423bbeaab8075807fc8d", "placeholder": "\u200b", "style": "IPY_MODEL_5aa47fe7e6cf4464bcbe167e6d3ba68a", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007787.55it/s]"}}, "d73b0ac161c9411fb176d09cfe007d5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00ec60662f03441f8733d768775a0ed1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_42d03e2415284486b25cf67ccd387444", "IPY_MODEL_5050585031b24c079460a52a9a4fc488", "IPY_MODEL_b1848abf52f742ed9f7657ba08af06f7"], "layout": "IPY_MODEL_d73b0ac161c9411fb176d09cfe007d5d", "tabbable": null, "tooltip": null}}, "71cc03f01ffb487095fef61fe310cb72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "428890bcca0c4c398b4c85e7b197ef23": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5e211e7a482d4ffc95757eed7f7aa9cc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71cc03f01ffb487095fef61fe310cb72", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_428890bcca0c4c398b4c85e7b197ef23", "tabbable": null, "tooltip": null, "value": 30.0}}, "733932bb0ae3401390e27945e01e9afa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72aa2b7d62f44bfba1fef33687cd2d9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ac71e20e794944a5ad10d81bd3802d6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_733932bb0ae3401390e27945e01e9afa", "placeholder": "\u200b", "style": "IPY_MODEL_72aa2b7d62f44bfba1fef33687cd2d9c", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "8b4141a6045142c1b9ba131103d924f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62e07c87b8f14d10ae3081dc89c264cb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "56086d38b6e24dd381b3d2d8adfc7dee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b4141a6045142c1b9ba131103d924f0", "placeholder": "\u200b", "style": "IPY_MODEL_62e07c87b8f14d10ae3081dc89c264cb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.19it/s]"}}, "71d9c9ff1e934321985ce73f6d70432d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af401850ebaa408dae00a90bb34bc54a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ac71e20e794944a5ad10d81bd3802d6a", "IPY_MODEL_5e211e7a482d4ffc95757eed7f7aa9cc", "IPY_MODEL_56086d38b6e24dd381b3d2d8adfc7dee"], "layout": "IPY_MODEL_71d9c9ff1e934321985ce73f6d70432d", "tabbable": null, "tooltip": null}}, "0555e6f1fc524e749446c0929d265eab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4ff48b5ef42475cb8d931380feef05a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c44f5cb10834552b9f054ccff28de8f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0555e6f1fc524e749446c0929d265eab", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b4ff48b5ef42475cb8d931380feef05a", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "31810f3656744673bb829bd7c19b4796": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71684d8531234f3d9d16e15f5e2a1318": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e7a051930ecf4f8da5a7114fa550bc7c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31810f3656744673bb829bd7c19b4796", "placeholder": "\u200b", "style": "IPY_MODEL_71684d8531234f3d9d16e15f5e2a1318", "tabbable": null, "tooltip": null, "value": "100%"}}, "23f68f6bcc9f4247ac306e707ae76a3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f26c903e03a409eb8eb23a06ad068a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "abb55722ee8a4e9383f54ba9776bfb21": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23f68f6bcc9f4247ac306e707ae76a3e", "placeholder": "\u200b", "style": "IPY_MODEL_0f26c903e03a409eb8eb23a06ad068a1", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:33<00:00,\u2007147431.29it/s]"}}, "44a941086c164d5bb775c41c7d4ac57f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8ef1d6ee6da4d52bd3aa4ef30d9915f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e7a051930ecf4f8da5a7114fa550bc7c", "IPY_MODEL_8c44f5cb10834552b9f054ccff28de8f", "IPY_MODEL_abb55722ee8a4e9383f54ba9776bfb21"], "layout": "IPY_MODEL_44a941086c164d5bb775c41c7d4ac57f", "tabbable": null, "tooltip": null}}, "d8f70224ecee42f48ecf14d646040c54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e468d38bc9454ebf87117d355645f3f1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "90fef083c08c4c3c927458dfb8b00fe9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8f70224ecee42f48ecf14d646040c54", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e468d38bc9454ebf87117d355645f3f1", "tabbable": null, "tooltip": null, "value": 30.0}}, "fa2dd8d15728476eac598aeb95576e3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a247c69930644302aed767d71b7ec676": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6901169080b04ad499942dc391b9b336": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa2dd8d15728476eac598aeb95576e3b", "placeholder": "\u200b", "style": "IPY_MODEL_a247c69930644302aed767d71b7ec676", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "7b66b5652e59476aab6385c55f338eaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c70c5f7b514a4120b47fe4694b8aa561": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "219cc478643a4ee5ac3bd50beeb53306": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b66b5652e59476aab6385c55f338eaf", "placeholder": "\u200b", "style": "IPY_MODEL_c70c5f7b514a4120b47fe4694b8aa561", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.35it/s]"}}, "571062df41e24ec2a51ede636c1c40ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33547ea19ce34215b8f9bbd75c870924": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6901169080b04ad499942dc391b9b336", "IPY_MODEL_90fef083c08c4c3c927458dfb8b00fe9", "IPY_MODEL_219cc478643a4ee5ac3bd50beeb53306"], "layout": "IPY_MODEL_571062df41e24ec2a51ede636c1c40ae", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"d5f572bcf9e34ff5b3f799cfc3b2c03c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc418d04bfd44dc999d29a7cfbaf1bf5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "03edd2e8077d415a86a42428227957c1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d5f572bcf9e34ff5b3f799cfc3b2c03c", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc418d04bfd44dc999d29a7cfbaf1bf5", "tabbable": null, "tooltip": null, "value": 30.0}}, "a6ce96bd4a1f4a83b1164ac6cbe3d02f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38f90d531db8409db73b7389ee4986c2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5d4af35c70b14d9b95542e9fbacf5ee2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6ce96bd4a1f4a83b1164ac6cbe3d02f", "placeholder": "\u200b", "style": "IPY_MODEL_38f90d531db8409db73b7389ee4986c2", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "aad869b6d41d459097999efed9f5aabb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7211d82a11904799ba5182ef4f7e1762": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d408f59a6c4642dbacacf8536dd5bb86": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aad869b6d41d459097999efed9f5aabb", "placeholder": "\u200b", "style": "IPY_MODEL_7211d82a11904799ba5182ef4f7e1762", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007761.55it/s]"}}, "b25023ee46574f0987d4401430bdbe95": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d3c194b71ae41699ecaf593bb466ee6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5d4af35c70b14d9b95542e9fbacf5ee2", "IPY_MODEL_03edd2e8077d415a86a42428227957c1", "IPY_MODEL_d408f59a6c4642dbacacf8536dd5bb86"], "layout": "IPY_MODEL_b25023ee46574f0987d4401430bdbe95", "tabbable": null, "tooltip": null}}, "496448b9dfc748d7b07ed9a700cc1ab7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c19fb70e50ef4b3aa215c397be2fa0ed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "477c45c2e60a4cc7bc955c274f038c75": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_496448b9dfc748d7b07ed9a700cc1ab7", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c19fb70e50ef4b3aa215c397be2fa0ed", "tabbable": null, "tooltip": null, "value": 30.0}}, "cbe2b73a42764a2aacaeaee0b9c612b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d26696e0cc9f4eef935b52e6f5301e41": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "21f930a5e16b44e6896cab16aadf76b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cbe2b73a42764a2aacaeaee0b9c612b7", "placeholder": "\u200b", "style": "IPY_MODEL_d26696e0cc9f4eef935b52e6f5301e41", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "ffca702bd3444f1690f1f5f85493ca09": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "008823ad1c554e5fa5b1815e6e7eee3a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "15a01925ca5e45e5bb086a7b185ac53c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffca702bd3444f1690f1f5f85493ca09", "placeholder": "\u200b", "style": "IPY_MODEL_008823ad1c554e5fa5b1815e6e7eee3a", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.22it/s]"}}, "6fc3fa5fef38489287ed8d9f7c6e1c3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f246aefc67174f658fc6990471fd838b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_21f930a5e16b44e6896cab16aadf76b0", "IPY_MODEL_477c45c2e60a4cc7bc955c274f038c75", "IPY_MODEL_15a01925ca5e45e5bb086a7b185ac53c"], "layout": "IPY_MODEL_6fc3fa5fef38489287ed8d9f7c6e1c3e", "tabbable": null, "tooltip": null}}, "3539b50ce0e843448d49322ce25b2b2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ab8498d427444c6b4d07bf8d5bc6157": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c126cab8ab9c4826849b4c390465afaf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3539b50ce0e843448d49322ce25b2b2e", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5ab8498d427444c6b4d07bf8d5bc6157", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "6c7533cc89b74b90bdcf06dda9d4297f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aedea8fe506b40c1933ac0b06c3dc5c7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2e397451daaa420aac06b58d115ddb89": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c7533cc89b74b90bdcf06dda9d4297f", "placeholder": "\u200b", "style": "IPY_MODEL_aedea8fe506b40c1933ac0b06c3dc5c7", "tabbable": null, "tooltip": null, "value": "100%"}}, "11d7b29b91e94ee382b5c3abbb5da356": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2cada3550c7444318e24a19d4c5bac92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1b8ddda746534779bbbb5fd4b8f8df0b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11d7b29b91e94ee382b5c3abbb5da356", "placeholder": "\u200b", "style": "IPY_MODEL_2cada3550c7444318e24a19d4c5bac92", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007153968.10it/s]"}}, "60825090590c4420817f531a12ba0cb9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6f8c999233c44e6b60c123e18607ca1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2e397451daaa420aac06b58d115ddb89", "IPY_MODEL_c126cab8ab9c4826849b4c390465afaf", "IPY_MODEL_1b8ddda746534779bbbb5fd4b8f8df0b"], "layout": "IPY_MODEL_60825090590c4420817f531a12ba0cb9", "tabbable": null, "tooltip": null}}, "414724ec89444e8ebc1105e3c21216d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0780c5558e44bdf9cd38943fbc6879f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db3abba05009401583103fd3bfc35643": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_414724ec89444e8ebc1105e3c21216d3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c0780c5558e44bdf9cd38943fbc6879f", "tabbable": null, "tooltip": null, "value": 30.0}}, "038939be2791404a8d8b3535498c5720": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7222a4d37404d41a68f2bf782915ef2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e15e2d1b74894e47b98ed243861d83d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_038939be2791404a8d8b3535498c5720", "placeholder": "\u200b", "style": "IPY_MODEL_e7222a4d37404d41a68f2bf782915ef2", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "aeabc766c99c4e2b8edffb93d948620a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbf3bc2871f144bda8f96df51315cc6a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4db5293fd3e94b6eb261d17cfdd19337": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aeabc766c99c4e2b8edffb93d948620a", "placeholder": "\u200b", "style": "IPY_MODEL_cbf3bc2871f144bda8f96df51315cc6a", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.31it/s]"}}, "c41365fd01984997be6e7450cfa7d4d5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5444a2dc1c4c403ab396248114105df7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e15e2d1b74894e47b98ed243861d83d8", "IPY_MODEL_db3abba05009401583103fd3bfc35643", "IPY_MODEL_4db5293fd3e94b6eb261d17cfdd19337"], "layout": "IPY_MODEL_c41365fd01984997be6e7450cfa7d4d5", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 3d1ba85ed..6779478cb 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:18.378801Z", - "iopub.status.busy": "2024-09-06T19:40:18.378438Z", - "iopub.status.idle": "2024-09-06T19:40:21.013953Z", - "shell.execute_reply": "2024-09-06T19:40:21.013191Z" + "iopub.execute_input": "2024-09-26T14:54:20.095591Z", + "iopub.status.busy": "2024-09-26T14:54:20.095416Z", + "iopub.status.idle": "2024-09-26T14:54:23.030061Z", + "shell.execute_reply": "2024-09-26T14:54:23.029312Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:40:21.016497Z", - "iopub.status.busy": "2024-09-06T19:40:21.016297Z", - "iopub.status.idle": "2024-09-06T19:41:26.205588Z", - "shell.execute_reply": "2024-09-06T19:41:26.204905Z" + "iopub.execute_input": "2024-09-26T14:54:23.032402Z", + "iopub.status.busy": "2024-09-26T14:54:23.032024Z", + "iopub.status.idle": "2024-09-26T14:55:28.921952Z", + "shell.execute_reply": "2024-09-26T14:55:28.921155Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:26.208261Z", - "iopub.status.busy": "2024-09-06T19:41:26.207954Z", - "iopub.status.idle": "2024-09-06T19:41:27.363762Z", - "shell.execute_reply": "2024-09-06T19:41:27.363213Z" + "iopub.execute_input": "2024-09-26T14:55:28.924172Z", + "iopub.status.busy": "2024-09-26T14:55:28.923971Z", + "iopub.status.idle": "2024-09-26T14:55:30.137143Z", + "shell.execute_reply": "2024-09-26T14:55:30.136538Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.366273Z", - "iopub.status.busy": "2024-09-06T19:41:27.365850Z", - "iopub.status.idle": "2024-09-06T19:41:27.369197Z", - "shell.execute_reply": "2024-09-06T19:41:27.368626Z" + "iopub.execute_input": "2024-09-26T14:55:30.139396Z", + "iopub.status.busy": "2024-09-26T14:55:30.139106Z", + "iopub.status.idle": "2024-09-26T14:55:30.142481Z", + "shell.execute_reply": "2024-09-26T14:55:30.141914Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.371272Z", - "iopub.status.busy": "2024-09-06T19:41:27.370943Z", - "iopub.status.idle": "2024-09-06T19:41:27.374872Z", - "shell.execute_reply": "2024-09-06T19:41:27.374336Z" + "iopub.execute_input": "2024-09-26T14:55:30.144228Z", + "iopub.status.busy": "2024-09-26T14:55:30.144050Z", + "iopub.status.idle": "2024-09-26T14:55:30.147926Z", + "shell.execute_reply": "2024-09-26T14:55:30.147419Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.377058Z", - "iopub.status.busy": "2024-09-06T19:41:27.376708Z", - "iopub.status.idle": "2024-09-06T19:41:27.380273Z", - "shell.execute_reply": "2024-09-06T19:41:27.379824Z" + "iopub.execute_input": "2024-09-26T14:55:30.149873Z", + "iopub.status.busy": "2024-09-26T14:55:30.149499Z", + "iopub.status.idle": "2024-09-26T14:55:30.153440Z", + "shell.execute_reply": "2024-09-26T14:55:30.152904Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.382286Z", - "iopub.status.busy": "2024-09-06T19:41:27.381955Z", - "iopub.status.idle": "2024-09-06T19:41:27.384835Z", - "shell.execute_reply": "2024-09-06T19:41:27.384366Z" + "iopub.execute_input": "2024-09-26T14:55:30.155269Z", + "iopub.status.busy": "2024-09-26T14:55:30.154919Z", + "iopub.status.idle": "2024-09-26T14:55:30.158026Z", + "shell.execute_reply": "2024-09-26T14:55:30.157441Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:41:27.386838Z", - "iopub.status.busy": "2024-09-06T19:41:27.386506Z", - "iopub.status.idle": "2024-09-06T19:42:04.890778Z", - "shell.execute_reply": "2024-09-06T19:42:04.890135Z" + "iopub.execute_input": "2024-09-26T14:55:30.159991Z", + "iopub.status.busy": "2024-09-26T14:55:30.159527Z", + "iopub.status.idle": "2024-09-26T14:56:07.853263Z", + "shell.execute_reply": "2024-09-26T14:56:07.852683Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "00ec60662f03441f8733d768775a0ed1", + "model_id": "0d3c194b71ae41699ecaf593bb466ee6", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "af401850ebaa408dae00a90bb34bc54a", + "model_id": "f246aefc67174f658fc6990471fd838b", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:04.893407Z", - "iopub.status.busy": "2024-09-06T19:42:04.893064Z", - "iopub.status.idle": "2024-09-06T19:42:05.569760Z", - "shell.execute_reply": "2024-09-06T19:42:05.569193Z" + "iopub.execute_input": "2024-09-26T14:56:07.855727Z", + "iopub.status.busy": "2024-09-26T14:56:07.855280Z", + "iopub.status.idle": "2024-09-26T14:56:08.539218Z", + "shell.execute_reply": "2024-09-26T14:56:08.538732Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:05.572221Z", - "iopub.status.busy": "2024-09-06T19:42:05.571699Z", - "iopub.status.idle": "2024-09-06T19:42:08.487750Z", - "shell.execute_reply": "2024-09-06T19:42:08.487151Z" + "iopub.execute_input": "2024-09-26T14:56:08.541245Z", + "iopub.status.busy": "2024-09-26T14:56:08.540794Z", + "iopub.status.idle": "2024-09-26T14:56:11.382690Z", + "shell.execute_reply": "2024-09-26T14:56:11.382214Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:08.490015Z", - "iopub.status.busy": "2024-09-06T19:42:08.489812Z", - "iopub.status.idle": "2024-09-06T19:42:42.122207Z", - "shell.execute_reply": "2024-09-06T19:42:42.121639Z" + "iopub.execute_input": "2024-09-26T14:56:11.384692Z", + "iopub.status.busy": "2024-09-26T14:56:11.384341Z", + "iopub.status.idle": "2024-09-26T14:56:43.908330Z", + "shell.execute_reply": "2024-09-26T14:56:43.907746Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8ef1d6ee6da4d52bd3aa4ef30d9915f", + "model_id": "b6f8c999233c44e6b60c123e18607ca1", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:42.124501Z", - "iopub.status.busy": "2024-09-06T19:42:42.124158Z", - "iopub.status.idle": "2024-09-06T19:42:57.234866Z", - "shell.execute_reply": "2024-09-06T19:42:57.234293Z" + "iopub.execute_input": "2024-09-26T14:56:43.910328Z", + "iopub.status.busy": "2024-09-26T14:56:43.909998Z", + "iopub.status.idle": "2024-09-26T14:56:59.179852Z", + "shell.execute_reply": "2024-09-26T14:56:59.179195Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:42:57.237390Z", - "iopub.status.busy": "2024-09-06T19:42:57.237016Z", - "iopub.status.idle": "2024-09-06T19:43:00.971913Z", - "shell.execute_reply": "2024-09-06T19:43:00.971312Z" + "iopub.execute_input": "2024-09-26T14:56:59.182094Z", + "iopub.status.busy": "2024-09-26T14:56:59.181790Z", + "iopub.status.idle": "2024-09-26T14:57:03.058054Z", + "shell.execute_reply": "2024-09-26T14:57:03.057557Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:00.974009Z", - "iopub.status.busy": "2024-09-06T19:43:00.973827Z", - "iopub.status.idle": "2024-09-06T19:43:02.404764Z", - "shell.execute_reply": "2024-09-06T19:43:02.404239Z" + "iopub.execute_input": "2024-09-26T14:57:03.059722Z", + "iopub.status.busy": "2024-09-26T14:57:03.059541Z", + "iopub.status.idle": "2024-09-26T14:57:04.551144Z", + "shell.execute_reply": "2024-09-26T14:57:04.550565Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "33547ea19ce34215b8f9bbd75c870924", + "model_id": "5444a2dc1c4c403ab396248114105df7", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:02.407222Z", - "iopub.status.busy": "2024-09-06T19:43:02.406914Z", - "iopub.status.idle": "2024-09-06T19:43:02.435740Z", - "shell.execute_reply": "2024-09-06T19:43:02.435223Z" + "iopub.execute_input": "2024-09-26T14:57:04.553436Z", + "iopub.status.busy": "2024-09-26T14:57:04.552948Z", + "iopub.status.idle": "2024-09-26T14:57:04.584746Z", + "shell.execute_reply": "2024-09-26T14:57:04.584077Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:02.438408Z", - "iopub.status.busy": "2024-09-06T19:43:02.438030Z", - "iopub.status.idle": "2024-09-06T19:43:08.523002Z", - "shell.execute_reply": "2024-09-06T19:43:08.522439Z" + "iopub.execute_input": "2024-09-26T14:57:04.587085Z", + "iopub.status.busy": "2024-09-26T14:57:04.586688Z", + "iopub.status.idle": "2024-09-26T14:57:10.717190Z", + "shell.execute_reply": "2024-09-26T14:57:10.716706Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:08.525189Z", - "iopub.status.busy": "2024-09-06T19:43:08.524868Z", - "iopub.status.idle": "2024-09-06T19:43:08.580916Z", - "shell.execute_reply": "2024-09-06T19:43:08.580242Z" + "iopub.execute_input": "2024-09-26T14:57:10.719179Z", + "iopub.status.busy": "2024-09-26T14:57:10.718830Z", + "iopub.status.idle": "2024-09-26T14:57:10.774462Z", + "shell.execute_reply": "2024-09-26T14:57:10.773892Z" }, "nbsphinx": "hidden" }, @@ -1033,36 +1033,30 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ec60662f03441f8733d768775a0ed1": { + "008823ad1c554e5fa5b1815e6e7eee3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_42d03e2415284486b25cf67ccd387444", - "IPY_MODEL_5050585031b24c079460a52a9a4fc488", - "IPY_MODEL_b1848abf52f742ed9f7657ba08af06f7" - ], - "layout": "IPY_MODEL_d73b0ac161c9411fb176d09cfe007d5d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0555e6f1fc524e749446c0929d265eab": { + "038939be2791404a8d8b3535498c5720": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,7 +1109,57 @@ "width": null } }, - "08c7a2f2c6804a7da25a3555d45832fe": { + "03edd2e8077d415a86a42428227957c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5f572bcf9e34ff5b3f799cfc3b2c03c", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc418d04bfd44dc999d29a7cfbaf1bf5", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "0d3c194b71ae41699ecaf593bb466ee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d4af35c70b14d9b95542e9fbacf5ee2", + "IPY_MODEL_03edd2e8077d415a86a42428227957c1", + "IPY_MODEL_d408f59a6c4642dbacacf8536dd5bb86" + ], + "layout": "IPY_MODEL_b25023ee46574f0987d4401430bdbe95", + "tabbable": null, + "tooltip": null + } + }, + "11d7b29b91e94ee382b5c3abbb5da356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1168,7 +1212,76 @@ "width": null } }, - "0f26c903e03a409eb8eb23a06ad068a1": { + "15a01925ca5e45e5bb086a7b185ac53c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ffca702bd3444f1690f1f5f85493ca09", + "placeholder": "​", + "style": "IPY_MODEL_008823ad1c554e5fa5b1815e6e7eee3a", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.22it/s]" + } + }, + "1b8ddda746534779bbbb5fd4b8f8df0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11d7b29b91e94ee382b5c3abbb5da356", + "placeholder": "​", + "style": "IPY_MODEL_2cada3550c7444318e24a19d4c5bac92", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 153968.10it/s]" + } + }, + "21f930a5e16b44e6896cab16aadf76b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cbe2b73a42764a2aacaeaee0b9c612b7", + "placeholder": "​", + "style": "IPY_MODEL_d26696e0cc9f4eef935b52e6f5301e41", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "2cada3550c7444318e24a19d4c5bac92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1186,7 +1299,7 @@ "text_color": null } }, - "219cc478643a4ee5ac3bd50beeb53306": { + "2e397451daaa420aac06b58d115ddb89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1201,15 +1314,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b66b5652e59476aab6385c55f338eaf", + "layout": "IPY_MODEL_6c7533cc89b74b90bdcf06dda9d4297f", "placeholder": "​", - "style": "IPY_MODEL_c70c5f7b514a4120b47fe4694b8aa561", + "style": "IPY_MODEL_aedea8fe506b40c1933ac0b06c3dc5c7", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.35it/s]" + "value": "100%" } }, - "23f68f6bcc9f4247ac306e707ae76a3e": { + "3539b50ce0e843448d49322ce25b2b2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1262,23 +1375,104 @@ "width": null } }, - "26c9d71cd2b144f5a62f2e547396cf9d": { + "38f90d531db8409db73b7389ee4986c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "414724ec89444e8ebc1105e3c21216d3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "477c45c2e60a4cc7bc955c274f038c75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_496448b9dfc748d7b07ed9a700cc1ab7", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c19fb70e50ef4b3aa215c397be2fa0ed", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "31810f3656744673bb829bd7c19b4796": { + "496448b9dfc748d7b07ed9a700cc1ab7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1331,7 +1525,30 @@ "width": null } }, - "33547ea19ce34215b8f9bbd75c870924": { + "4db5293fd3e94b6eb261d17cfdd19337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aeabc766c99c4e2b8edffb93d948620a", + "placeholder": "​", + "style": "IPY_MODEL_cbf3bc2871f144bda8f96df51315cc6a", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.31it/s]" + } + }, + "5444a2dc1c4c403ab396248114105df7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1346,16 +1563,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6901169080b04ad499942dc391b9b336", - "IPY_MODEL_90fef083c08c4c3c927458dfb8b00fe9", - "IPY_MODEL_219cc478643a4ee5ac3bd50beeb53306" + "IPY_MODEL_e15e2d1b74894e47b98ed243861d83d8", + "IPY_MODEL_db3abba05009401583103fd3bfc35643", + "IPY_MODEL_4db5293fd3e94b6eb261d17cfdd19337" ], - "layout": "IPY_MODEL_571062df41e24ec2a51ede636c1c40ae", + "layout": "IPY_MODEL_c41365fd01984997be6e7450cfa7d4d5", "tabbable": null, "tooltip": null } }, - "428890bcca0c4c398b4c85e7b197ef23": { + "5ab8498d427444c6b4d07bf8d5bc6157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1371,7 +1588,7 @@ "description_width": "" } }, - "42d03e2415284486b25cf67ccd387444": { + "5d4af35c70b14d9b95542e9fbacf5ee2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1386,15 +1603,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_08c7a2f2c6804a7da25a3555d45832fe", + "layout": "IPY_MODEL_a6ce96bd4a1f4a83b1164ac6cbe3d02f", "placeholder": "​", - "style": "IPY_MODEL_5428bca92792410db3731a76852725a2", + "style": "IPY_MODEL_38f90d531db8409db73b7389ee4986c2", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: 100%" } }, - "44a941086c164d5bb775c41c7d4ac57f": { + "60825090590c4420817f531a12ba0cb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1447,7 +1664,7 @@ "width": null } }, - "474187191bb2423bbeaab8075807fc8d": { + "6c7533cc89b74b90bdcf06dda9d4297f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,81 +1717,14 @@ "width": null } }, - "5050585031b24c079460a52a9a4fc488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fefad91592514c8b93cde6a9aa658432", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26c9d71cd2b144f5a62f2e547396cf9d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "5428bca92792410db3731a76852725a2": { - "model_module": "@jupyter-widgets/controls", + "6fc3fa5fef38489287ed8d9f7c6e1c3e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56086d38b6e24dd381b3d2d8adfc7dee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b4141a6045142c1b9ba131103d924f0", - "placeholder": "​", - "style": "IPY_MODEL_62e07c87b8f14d10ae3081dc89c264cb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.19it/s]" - } - }, - "571062df41e24ec2a51ede636c1c40ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1620,7 +1770,7 @@ "width": null } }, - "5aa47fe7e6cf4464bcbe167e6d3ba68a": { + "7211d82a11904799ba5182ef4f7e1762": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1638,92 +1788,7 @@ "text_color": null } }, - "5e211e7a482d4ffc95757eed7f7aa9cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71cc03f01ffb487095fef61fe310cb72", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_428890bcca0c4c398b4c85e7b197ef23", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "62e07c87b8f14d10ae3081dc89c264cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6901169080b04ad499942dc391b9b336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa2dd8d15728476eac598aeb95576e3b", - "placeholder": "​", - "style": "IPY_MODEL_a247c69930644302aed767d71b7ec676", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "71684d8531234f3d9d16e15f5e2a1318": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "71cc03f01ffb487095fef61fe310cb72": { + "a6ce96bd4a1f4a83b1164ac6cbe3d02f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1776,7 +1841,7 @@ "width": null } }, - "71d9c9ff1e934321985ce73f6d70432d": { + "aad869b6d41d459097999efed9f5aabb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1829,25 +1894,7 @@ "width": null } }, - "72aa2b7d62f44bfba1fef33687cd2d9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "733932bb0ae3401390e27945e01e9afa": { + "aeabc766c99c4e2b8edffb93d948620a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1900,60 +1947,25 @@ "width": null } }, - "7b66b5652e59476aab6385c55f338eaf": { - "model_module": "@jupyter-widgets/base", + "aedea8fe506b40c1933ac0b06c3dc5c7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8b4141a6045142c1b9ba131103d924f0": { + "b25023ee46574f0987d4401430bdbe95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,77 +2018,7 @@ "width": null } }, - "8c44f5cb10834552b9f054ccff28de8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0555e6f1fc524e749446c0929d265eab", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b4ff48b5ef42475cb8d931380feef05a", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "90fef083c08c4c3c927458dfb8b00fe9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d8f70224ecee42f48ecf14d646040c54", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e468d38bc9454ebf87117d355645f3f1", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "a247c69930644302aed767d71b7ec676": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8ef1d6ee6da4d52bd3aa4ef30d9915f": { + "b6f8c999233c44e6b60c123e18607ca1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2091,109 +2033,58 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e7a051930ecf4f8da5a7114fa550bc7c", - "IPY_MODEL_8c44f5cb10834552b9f054ccff28de8f", - "IPY_MODEL_abb55722ee8a4e9383f54ba9776bfb21" + "IPY_MODEL_2e397451daaa420aac06b58d115ddb89", + "IPY_MODEL_c126cab8ab9c4826849b4c390465afaf", + "IPY_MODEL_1b8ddda746534779bbbb5fd4b8f8df0b" ], - "layout": "IPY_MODEL_44a941086c164d5bb775c41c7d4ac57f", + "layout": "IPY_MODEL_60825090590c4420817f531a12ba0cb9", "tabbable": null, "tooltip": null } }, - "abb55722ee8a4e9383f54ba9776bfb21": { + "c0780c5558e44bdf9cd38943fbc6879f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_23f68f6bcc9f4247ac306e707ae76a3e", - "placeholder": "​", - "style": "IPY_MODEL_0f26c903e03a409eb8eb23a06ad068a1", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:33<00:00, 147431.29it/s]" - } - }, - "ac71e20e794944a5ad10d81bd3802d6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_733932bb0ae3401390e27945e01e9afa", - "placeholder": "​", - "style": "IPY_MODEL_72aa2b7d62f44bfba1fef33687cd2d9c", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "af401850ebaa408dae00a90bb34bc54a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac71e20e794944a5ad10d81bd3802d6a", - "IPY_MODEL_5e211e7a482d4ffc95757eed7f7aa9cc", - "IPY_MODEL_56086d38b6e24dd381b3d2d8adfc7dee" - ], - "layout": "IPY_MODEL_71d9c9ff1e934321985ce73f6d70432d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b1848abf52f742ed9f7657ba08af06f7": { + "c126cab8ab9c4826849b4c390465afaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_474187191bb2423bbeaab8075807fc8d", - "placeholder": "​", - "style": "IPY_MODEL_5aa47fe7e6cf4464bcbe167e6d3ba68a", + "layout": "IPY_MODEL_3539b50ce0e843448d49322ce25b2b2e", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5ab8498d427444c6b4d07bf8d5bc6157", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 787.55it/s]" + "value": 4997683.0 } }, - "b4ff48b5ef42475cb8d931380feef05a": { + "c19fb70e50ef4b3aa215c397be2fa0ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2209,25 +2100,7 @@ "description_width": "" } }, - "c70c5f7b514a4120b47fe4694b8aa561": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d73b0ac161c9411fb176d09cfe007d5d": { + "c41365fd01984997be6e7450cfa7d4d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2280,7 +2153,7 @@ "width": null } }, - "d8f70224ecee42f48ecf14d646040c54": { + "cbe2b73a42764a2aacaeaee0b9c612b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2333,23 +2206,43 @@ "width": null } }, - "e468d38bc9454ebf87117d355645f3f1": { + "cbf3bc2871f144bda8f96df51315cc6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e7a051930ecf4f8da5a7114fa550bc7c": { + "d26696e0cc9f4eef935b52e6f5301e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d408f59a6c4642dbacacf8536dd5bb86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2364,15 +2257,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31810f3656744673bb829bd7c19b4796", + "layout": "IPY_MODEL_aad869b6d41d459097999efed9f5aabb", "placeholder": "​", - "style": "IPY_MODEL_71684d8531234f3d9d16e15f5e2a1318", + "style": "IPY_MODEL_7211d82a11904799ba5182ef4f7e1762", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 761.55it/s]" } }, - "fa2dd8d15728476eac598aeb95576e3b": { + "d5f572bcf9e34ff5b3f799cfc3b2c03c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,7 +2318,114 @@ "width": null } }, - "fefad91592514c8b93cde6a9aa658432": { + "db3abba05009401583103fd3bfc35643": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_414724ec89444e8ebc1105e3c21216d3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0780c5558e44bdf9cd38943fbc6879f", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "e15e2d1b74894e47b98ed243861d83d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_038939be2791404a8d8b3535498c5720", + "placeholder": "​", + "style": "IPY_MODEL_e7222a4d37404d41a68f2bf782915ef2", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "e7222a4d37404d41a68f2bf782915ef2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f246aefc67174f658fc6990471fd838b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21f930a5e16b44e6896cab16aadf76b0", + "IPY_MODEL_477c45c2e60a4cc7bc955c274f038c75", + "IPY_MODEL_15a01925ca5e45e5bb086a7b185ac53c" + ], + "layout": "IPY_MODEL_6fc3fa5fef38489287ed8d9f7c6e1c3e", + "tabbable": null, + "tooltip": null + } + }, + "fc418d04bfd44dc999d29a7cfbaf1bf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ffca702bd3444f1690f1f5f85493ca09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index bad7e549d..413046fc5 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -714,16 +714,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index c988c12c2..9d0e0764f 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:11.117353Z", - "iopub.status.busy": "2024-09-06T19:43:11.117178Z", - "iopub.status.idle": "2024-09-06T19:43:13.210573Z", - "shell.execute_reply": "2024-09-06T19:43:13.209958Z" + "iopub.execute_input": "2024-09-26T14:57:13.331707Z", + "iopub.status.busy": "2024-09-26T14:57:13.331541Z", + "iopub.status.idle": "2024-09-26T14:57:15.936866Z", + "shell.execute_reply": "2024-09-26T14:57:15.936192Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:43:11-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-26 14:57:13-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.167, 2400:52e0:1a01::907:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.167|:443... connected.\r\n", + "185.93.1.243, 2400:52e0:1a00::940:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -118,7 +118,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-09-06 19:43:11 (7.82 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-26 14:57:13 (7.67 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -127,33 +127,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "Archive: conll2003.zip\r\n", - " inflating: data/metadata \r\n", - " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + "Archive: conll2003.zip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-09-06 19:43:11-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.201.17, 52.217.193.233, 52.217.81.84, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.201.17|:443... " + " inflating: data/metadata \r\n", + " inflating: data/test.txt \r\n", + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "--2024-09-26 14:57:14-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.27.119, 52.217.207.97, 52.217.171.81, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.27.119|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,7 +174,31 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 142.53K 668KB/s " + "pred_probs.npz 2%[ ] 482.32K 2.17MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 7%[> ] 1.23M 2.84MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 14%[=> ] 2.42M 3.72MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 26%[====> ] 4.26M 4.90MB/s " ] }, { @@ -182,7 +206,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 8%[> ] 1.35M 3.16MB/s " + "pred_probs.npz 43%[=======> ] 7.12M 6.54MB/s " ] }, { @@ -190,7 +214,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 50%[=========> ] 8.28M 12.9MB/s " + "pred_probs.npz 71%[=============> ] 11.56M 8.85MB/s " ] }, { @@ -198,9 +222,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 20.4MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 11.2MB/s in 1.5s \r\n", "\r\n", - "2024-09-06 19:43:13 (20.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-26 14:57:15 (11.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +241,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:13.213109Z", - "iopub.status.busy": "2024-09-06T19:43:13.212725Z", - "iopub.status.idle": "2024-09-06T19:43:14.513752Z", - "shell.execute_reply": "2024-09-06T19:43:14.513226Z" + "iopub.execute_input": "2024-09-26T14:57:15.939149Z", + "iopub.status.busy": "2024-09-26T14:57:15.938782Z", + "iopub.status.idle": "2024-09-26T14:57:17.187528Z", + "shell.execute_reply": "2024-09-26T14:57:17.186884Z" }, "nbsphinx": "hidden" }, @@ -231,7 +255,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@9c563ed5c55574f3f6fa5ce0532b0ef711a5f774\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@82901442916cd9aa0a85cf88d058b89f5506a1fb\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +281,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.516436Z", - "iopub.status.busy": "2024-09-06T19:43:14.515941Z", - "iopub.status.idle": "2024-09-06T19:43:14.519305Z", - "shell.execute_reply": "2024-09-06T19:43:14.518871Z" + "iopub.execute_input": "2024-09-26T14:57:17.190094Z", + "iopub.status.busy": "2024-09-26T14:57:17.189576Z", + "iopub.status.idle": "2024-09-26T14:57:17.193093Z", + "shell.execute_reply": "2024-09-26T14:57:17.192623Z" } }, "outputs": [], @@ -310,10 +334,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.521508Z", - "iopub.status.busy": "2024-09-06T19:43:14.521171Z", - "iopub.status.idle": "2024-09-06T19:43:14.524052Z", - "shell.execute_reply": "2024-09-06T19:43:14.523615Z" + "iopub.execute_input": "2024-09-26T14:57:17.194944Z", + "iopub.status.busy": "2024-09-26T14:57:17.194599Z", + "iopub.status.idle": "2024-09-26T14:57:17.197554Z", + "shell.execute_reply": "2024-09-26T14:57:17.197086Z" }, "nbsphinx": "hidden" }, @@ -331,10 +355,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:14.526149Z", - "iopub.status.busy": "2024-09-06T19:43:14.525818Z", - "iopub.status.idle": "2024-09-06T19:43:23.627822Z", - "shell.execute_reply": "2024-09-06T19:43:23.627249Z" + "iopub.execute_input": "2024-09-26T14:57:17.199051Z", + "iopub.status.busy": "2024-09-26T14:57:17.198872Z", + "iopub.status.idle": "2024-09-26T14:57:26.446906Z", + "shell.execute_reply": "2024-09-26T14:57:26.446343Z" } }, "outputs": [], @@ -408,10 +432,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.630427Z", - "iopub.status.busy": "2024-09-06T19:43:23.630129Z", - "iopub.status.idle": "2024-09-06T19:43:23.635623Z", - "shell.execute_reply": "2024-09-06T19:43:23.635160Z" + "iopub.execute_input": "2024-09-26T14:57:26.449170Z", + "iopub.status.busy": "2024-09-26T14:57:26.448693Z", + "iopub.status.idle": "2024-09-26T14:57:26.454297Z", + "shell.execute_reply": "2024-09-26T14:57:26.453763Z" }, "nbsphinx": "hidden" }, @@ -451,10 +475,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.637682Z", - "iopub.status.busy": "2024-09-06T19:43:23.637404Z", - "iopub.status.idle": "2024-09-06T19:43:23.985761Z", - "shell.execute_reply": "2024-09-06T19:43:23.985192Z" + "iopub.execute_input": "2024-09-26T14:57:26.456078Z", + "iopub.status.busy": "2024-09-26T14:57:26.455769Z", + "iopub.status.idle": "2024-09-26T14:57:26.817319Z", + "shell.execute_reply": "2024-09-26T14:57:26.816634Z" } }, "outputs": [], @@ -491,10 +515,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.988095Z", - "iopub.status.busy": "2024-09-06T19:43:23.987906Z", - "iopub.status.idle": "2024-09-06T19:43:23.992118Z", - "shell.execute_reply": "2024-09-06T19:43:23.991556Z" + "iopub.execute_input": "2024-09-26T14:57:26.819374Z", + "iopub.status.busy": "2024-09-26T14:57:26.819176Z", + "iopub.status.idle": "2024-09-26T14:57:26.823791Z", + "shell.execute_reply": "2024-09-26T14:57:26.823316Z" } }, "outputs": [ @@ -566,10 +590,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:23.994018Z", - "iopub.status.busy": "2024-09-06T19:43:23.993843Z", - "iopub.status.idle": "2024-09-06T19:43:26.637725Z", - "shell.execute_reply": "2024-09-06T19:43:26.636888Z" + "iopub.execute_input": "2024-09-26T14:57:26.825588Z", + "iopub.status.busy": "2024-09-26T14:57:26.825150Z", + "iopub.status.idle": "2024-09-26T14:57:29.558927Z", + "shell.execute_reply": "2024-09-26T14:57:29.558069Z" } }, "outputs": [], @@ -591,10 +615,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.641128Z", - "iopub.status.busy": "2024-09-06T19:43:26.640324Z", - "iopub.status.idle": "2024-09-06T19:43:26.644620Z", - "shell.execute_reply": "2024-09-06T19:43:26.644038Z" + "iopub.execute_input": "2024-09-26T14:57:29.561613Z", + "iopub.status.busy": "2024-09-26T14:57:29.560961Z", + "iopub.status.idle": "2024-09-26T14:57:29.565280Z", + "shell.execute_reply": "2024-09-26T14:57:29.564687Z" } }, "outputs": [ @@ -630,10 +654,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.646963Z", - "iopub.status.busy": "2024-09-06T19:43:26.646497Z", - "iopub.status.idle": "2024-09-06T19:43:26.651999Z", - "shell.execute_reply": "2024-09-06T19:43:26.651546Z" + "iopub.execute_input": "2024-09-26T14:57:29.567105Z", + "iopub.status.busy": "2024-09-26T14:57:29.566772Z", + "iopub.status.idle": "2024-09-26T14:57:29.572163Z", + "shell.execute_reply": "2024-09-26T14:57:29.571688Z" } }, "outputs": [ @@ -811,10 +835,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.654071Z", - "iopub.status.busy": "2024-09-06T19:43:26.653731Z", - "iopub.status.idle": "2024-09-06T19:43:26.680854Z", - "shell.execute_reply": "2024-09-06T19:43:26.680272Z" + "iopub.execute_input": "2024-09-26T14:57:29.573957Z", + "iopub.status.busy": "2024-09-26T14:57:29.573552Z", + "iopub.status.idle": "2024-09-26T14:57:29.601023Z", + "shell.execute_reply": "2024-09-26T14:57:29.600416Z" } }, "outputs": [ @@ -916,10 +940,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.683063Z", - "iopub.status.busy": "2024-09-06T19:43:26.682748Z", - "iopub.status.idle": "2024-09-06T19:43:26.687165Z", - "shell.execute_reply": "2024-09-06T19:43:26.686677Z" + "iopub.execute_input": "2024-09-26T14:57:29.602952Z", + "iopub.status.busy": "2024-09-26T14:57:29.602606Z", + "iopub.status.idle": "2024-09-26T14:57:29.607644Z", + "shell.execute_reply": "2024-09-26T14:57:29.607163Z" } }, "outputs": [ @@ -993,10 +1017,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:26.689077Z", - "iopub.status.busy": "2024-09-06T19:43:26.688908Z", - "iopub.status.idle": "2024-09-06T19:43:28.095086Z", - "shell.execute_reply": "2024-09-06T19:43:28.094529Z" + "iopub.execute_input": "2024-09-26T14:57:29.609321Z", + "iopub.status.busy": "2024-09-26T14:57:29.608970Z", + "iopub.status.idle": "2024-09-26T14:57:31.052597Z", + "shell.execute_reply": "2024-09-26T14:57:31.052050Z" } }, "outputs": [ @@ -1168,10 +1192,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-09-06T19:43:28.097561Z", - "iopub.status.busy": "2024-09-06T19:43:28.097109Z", - "iopub.status.idle": "2024-09-06T19:43:28.101190Z", - "shell.execute_reply": "2024-09-06T19:43:28.100749Z" + "iopub.execute_input": "2024-09-26T14:57:31.054589Z", + "iopub.status.busy": "2024-09-26T14:57:31.054180Z", + "iopub.status.idle": "2024-09-26T14:57:31.058507Z", + "shell.execute_reply": "2024-09-26T14:57:31.057947Z" }, "nbsphinx": "hidden" }, @@ -1204,7 +1228,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/versioning.js b/versioning.js index 0d909dd7e..4f9ffb8d0 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "9c563ed5c55574f3f6fa5ce0532b0ef711a5f774", + commit_hash: "82901442916cd9aa0a85cf88d058b89f5506a1fb", }; \ No newline at end of file

dl zG@B#%VhZzSa&(rX-#NuCl3%D>Ya7iXazj1`iB_TD3BV4%%sl6QGf&YC0Fhn>e|H zqeC3w@+io|MNSYs`fg$Q3TL6pN0K5#+`A3Pw! zds>L_Ruv+=6@myai4ftn0V2F2K!hjIo*520VL@`8b;{S>x(pgKJ-wc_a>9{dSo+Y@K{xdR+oo@~biR^8%(osHsqCm91_VJP*8ZJ*gYi<hpk1T64s>9M#vWO~f z;Mh|JsOS=HIF>9abHcw|{?1Kpvp;nc1`cMFJ~2D+bf zWNVEBR?8rFtm8LHjt_QMbtWc0n?qMTvaE#@`53`sS~BKk4dcqGdgC*t|yxW3~|@nkhC_C9OVc-OzZIl~CSY(*Y}msRBxdSvldmsQsJ8ab;&>vESmY z|I12zcDVlX$eI~&(qZ|Bxcy=8D`=~-6(0f?|LLJ)WiH$0z*7P&P$oO@1Tx)Hk?v?5 z*Bnj1vAmq_2x})+aMzRFeeDYMtDrcJv@WJzp^n`1z@Z7x4kawzrWUF0$eI5=OZtzB z(`f4x|EoS|2&{g7rW|ek6Y6$2@`|$|LEf~zhAOVAg7`P5#cpZbEF*t$2c?>KJ zT40cjfx@681}|aI41+Nk?82Z81|u*?!QfL2T4AsjgOwOu!eA-}hcW1ZL9b=)AsmI` zcNqME!6pnEVlV-NNf?~LpfLswF!%uj7Y2JV7=l5LJ-?#+O)nq3%EHdOt$)c4v!3qB z4fMh5ZF+SC)xF`eYjvvZuHl0hy7W5M&@;JpeelwoUU%lncWYQjD!YAQ?`u$j4T)iY za9_R#r$<@2k8-1+_@7qQFn4tyycDNbwU(5=Ulrg3YfzZGrVn0`(?hJGweN=j+-m(0 z=8l716fcFjYy038IX%)E_wLqcI3d=r;*N*y?s`>$9K0;2SF+Ymx?c%e!(UZ;nAQ91 z`(cp!22a7~-bO&Q&}tX%?g+b`&klFL1U<+OcRv?| zw-1nqw+|4(-nbF&W)<-E0a9ozM0ooEQGqo$!rheiO@!1vD>K6VA{Yp;qE!^^E{7*2 zKi|5`{YrF7Q?QL*q&opNhU*>aP6|L9$HEM*1DRGr1$Q-TXCw^bI_prRJE8_HNWvq) zE9`LG_yHX4=BK3`+b_yJvrP=%gR9EH5Rg<4HZ^1Eb=b^|rLM4xnOb1)f7e~~Yuj0< zzvX!dNIKlfNPoe$W6b{Zs*z$-jFbdBjB)N}*jh}@n&{Uw&-QEj;97YX-uJ6Hux%Ib z`1L95*TvG`uu&IF4VN3q1zU45E4AK8Nw66gv#7mB+5o$6F{=;TZjqFxKK!yoiQyUP z72o;b-9Cdp=<{}izI}%Gv5x&)*54l4@j>ewym+DliuUlIA=%Qm>M* z{}QpSrHphGHl|{B%GXE_97gKzZ=_viQL-0bc+jk!3m;R|$FPF}@0{=mc1~bv9Bi4u z(iPY%fu$+1djU%)VA}$g=EHskEG5Cd1T2-EWu)t{H375pumb^0XBQgj{!%o4gWa?C z!~V~=#b+ed61?^EW&ye2grB8U@TAYuF>sL2k{kTqvospK*^`u}a$p02;nvBP|AgAn zeIM3u+XbJu)D3VW&ra*(P8w-4xQS=>Hu#5U>059N&r%g|0MF71krsdtcy-wRX3fLD zVx9N^rzV2OcJ}^$1YEVNo%VvW54*kQ#HTs6G7ktz?ZD@{x@P;-&wnl4`4i@CEnQOY zn-)_BC3|qY{LVF_@qtgx0$<+j!~0UWmeSM*AthnDSmQ%#Hnc+q=O+d_@u^U?jRy^q zW`M_Qb<^%XHvd{;3_c^Oy6u6GG#%V3v-C$tBh5-i$$l?0|8#8Bb<|Jj1B9e;;LVt& z^mkFR-@K5&%jv|2O!e|;AS8u;fs!5P&M(uZE_u^kkq(3;%QDg-@NG*hO??60bfFJJ z=hu(3r!{@Fw`yz=*7)xCph1!ao?uyWW@;%-Em)4F(&Ma?c~Nopx*m_h5}g~d+{E3W zLy{NxKUEv;3sW8)s2PLLx#|u$0cDq?4bK~?I{4#cRu>#`s+IQ9A0It#nuHI;DjR%Y zvQN%{A|ssvub0fCyu7uv+#4nP@!dxcLR|O^t@eX=NOs`Z4%|Yrv`-{o@bbuPut-C} z(Ic~s5k{&KX{3lKBc+1dMbEJ1lrPskl zpvtpv%`7M#9K8m$7W4u_(r9q)M^c(<0}vWof3Znr>z>`p&yHVSu(VoBd~u+TgBLOO zKXw`1hq1H){D!gg*<~X+ZfGe@H8@ArovhTklGS-zYp31fKtbx1F8Jm_tp(3q><28x zQA$e%enuJ=V5Dtjjg%W?B=7P@vO-a^b6zXl-Lwb3%1{HtfRMDeijnf-jdW_dksiU7 ziS>HG4FpR+i!>Of1T$}VU82s}{?iH<1Ut833%?x#LQ-XTMpxVH?TZQ%)VtLN>d9@m%>pEuF*Yo(N0H6uMoRohsTR52H@+JVX7Gn2jq4>)3v%?@}0-E zn3FjVkqGTsueC(U*!uLC>O${I<^#}hUER6)8A1uuPXCEvr11}#e!L-y; zdvN2yZ1wX-x(9wcm~8`x9W1>Jo;p~%11>sP`o4WB6z%MmPksoBI)kR10N)zymZJ$c z)nI90H_wWJFOwly%lWl&U(@*&@10AckD^SP=9=zrLKb82X({leDz6D z^`sR@27w<3_5d*q95}Ev1spf9)ML4kE`X~BwZb0fQ*=7bwH8ZefU5;|(l8!eEUA zXa8oTS>OkO*+<|2fu;As@c~QO;PF69;Oc-S|I0>t6`UI|s|!vHSn~SQNF}ZtsX6#B zpxiih5j+>LVj;LJV5!32MoI#o1kARRWRD+PlvShU6CAZ~!MOmtCGZ0$0xaDVDGU4v zFq;nk14v3!zqsMJW>~w@->qcNURso#fFiFwUv|MawyHn81>=vo z&%k>rmVSnhuvw}LuX0$b2``FRnsm-c8{q8;vr2bR${IV-%gcLI)Jd%PP7xrIrg@jq zQhQ&Nb}TCCmG)kXO{moYzH#QSqc=wxX$E}M%&ZlB&CJpk_>7sQ_u%_wwJEDhzmi@# z^Si(W0B#;$07O!1J0pG3!AReBHc}h-s+jd&=x(HnJ&n||H%eL4y}i9QMtU93`cE}) zukE!1&qE8t)Tf`6fx`>WkV74J!?I%9dwWf(>yK})RRnw*tA5SeHQd{4UNa}Y#a5%> zV^{u6HU++NRg1HR{NU|XCDiM7R{9=quaWWo_*z?i4d0h4J1a2H+bgt5jSGlc!v~}M VscBpIQk0}L<=Br+r=`8!;D3h>zg7SM delta 397860 zcmc${Wpq_X*fz{QE;;Tl!2(3l;1n%T2=0&oL4pOBAi*s_$R-R@Ah<)&!3pl}9ttf` zEV#6VcVwRcectu1ulqb}eLs?!d(X@@*DWJk&$Bz}vZL42WujDZreLOMX>^zFJ-ZAl zJt!eEreo)lF$ty0CUoqam{=;IOUKgXV#}85Sgur==%_AbqsnwF+p%=nveAh%uXmOO z8f~e;+;%d}S)bd-#In^=jcj(NhVANhG41|!?36oH)<3c5(Ef@2x^H>!?j=x0mGMT$ zmMp!?Q@I@VE%t5GAm8qzt6yaof12D?>8&0X5@fg$@uR-<3x7u)2V+XEAw~! z@5W%~`z=g&3609&u57NsN@-v0NtF?`dtTs!R(YBCI z+o@+_Lhqgl9V7b;9MH3SVn0?J8p$|7wbG-^Y=a~z>qszxbmI^)LMjSgfmcP@A#Lp- z>f;PEI^tn3Y_PNa+m>Ytf>&Qhxk1%hNfNeQq>;@kBw-y%PR0ukoT}z>fFKijZP zMRRw`Mir9GkGnH|(>1~`~%;mv$L7EqP#>;Lf8Uj9l9c9zaN>k_e z*{RRK-UHZ89qgdm3U4T=645x6EtB8@8Ewbv*^V6wGL=Bzx6zf5rcRa_;$&ZxsK`!9 z4@I&SFjuv9HmjqFjY^QRwK^3hv5?~n#cnAG?vHC-nDvH7vidfK*%ocWKx&gnC1@BM ziCu0+?l7=%Nu}9og}iKB;RrUnXd%|uwH)IFx=pW~Y-({E`#Q|c4nx|<8=NBcRkuRy zgUB!@YKtmLTpZkQr;lW3wsEkB3frk$Vj{!Yyb@6iji&rQ>UPtBV&!7Z#6`FR62FF7 zY5y}qH+FL||B9mTqK4>?U_-$HZL?70|1cs7H5?O&XkpIo-^CKx_<3wWFthDg19k@v zT~=G746z0?i`BI$!mcTyU~g{FQLnNW+E!%+xkWW;s{ELV?2^zIXj+Z6Vjoklum=j8 zMZFTbCgQ=xMz=SiLD=_CcM%dJ+HQpn`7s!Y=8FM|XaaG7(c;$*)F+K%GB`-&fT}CJ z1=%Xy-N*x@Ure!zaCEXvQW*(HsX^hW@5gVsHdY+xf;1Z#tsQ4WhWXcoz&`I{0NEE` ziLoykZk#L*bs<~U`gmSKf#}2$gJ+D9)9pZeYo;QjXefyPJl4YsI~lmZLZkjbD>PtM#urAT zD~wHTqhvLm%CbL)ImiH}aT^#zXk3ucjj~4T(Xr@4PB(k5cyUlQqOqUM9$;q6u?|66 z1eob69)WCt%v&VS%%|=;)seKO>20l zA|M-xUiHexmMav(hP1VD(-1oTZI<0KE~%_=)H_ju0#l>~x>p)9#3xDGM5KhjD-($& z(!;Jl6KNTho;4uSaw0vs*pNt1h&238Ga?-((&V>PI!dI9rJ9qnn?zb%ol1vB5izU_ z6*GwR=C_ul>Tx1vt!qW3xkPGwg-R!hlq~B&%FYp~hM!6=i8S(ScT%>KNXD5xiFANS z@(;aYd_c8hln3YVRpM@BJCrRIEhMGL~^w2N6O9f+f;*B#oLPRTr2=#Al??%+4m#H6krt zMx`}G5*p`_vUx+}tz>@1PyDE1QRE0#t{cmGDk zJ*3e0c0Vb6O{8#34v`9ov74q2q|)D{tg7T7Da#{Lf!2qJw3J8tsv6Y*o#EEL!`H-sdR-%V)tcImPw>Kg>MjP36ahX zyGf+yM4B~+O1p@3HTO0t+fSsYqsHVC5fU+M>wO~4CQ|LF2Sl1frAAa*K%|;64@ub< zA}#rcN*jpO-26K!yHBK_1&@hznMgCbJSEaXB8fbso)hr`5g(R(Nu+;>bgM0u?h=Vyjw0fEB5sZO zNTl~fYT3HLP&_5ABGMD3fJjG()P4k&&JgLqK`PxQ(y!;Jw38E085s@DKozGeHIzLvpbWcgo1d+<+Qu~b?&KzKzK1=!&Ci|wWRnKhk4!Koq-Scv*HfD8?2UAM-sAIbIDh zV#RzrJ5fDf05T!}Fg`0)vtN-aUq+eOnp4C6b#{u&9Jq@g;PLYMZ}@lV)$+Sw_kkEe zTAP3MQf;*DdlcpXJ9*|$EN)kQTr4XYTZ0`x_9u4cM$MqXq=k) z!0M(H|Cj0BPSfIY;Qh6v_D9%%8B&UO07z3dVMeX*xVzbXQ>wA!##a9k_glos)06OS zfosXeu~pgR>49KHv6W9B`S<(yImLP=m0@!x$1%TR+RXR(~W71#;i+Pm2u z6Lp~8UZIYCla9Fk8i-~*^x{`2*%xVg_NQ^>*;-SJlHvB_04kT}K#~3zyJ)tB)vU3z z-Ut!vpI(zKwWbW)Yg!F<>rO4}U91M#r(3Fj-XsNxG#yjn zJA+Z5{onXzOlz^uD1WEHq-vQ{;*F3neDzuV6GzDm;c`BOpR|X^qmt1By{ST(7%6T z|A^$FDA2E?Nhz959880m%p3baDdrhDJai=IePv?rfxT#hHLQA}kFnu-4Ya>oM)ITi z<#>yS6iEA?X52~*+k3u)Z9KPx9B=ymZ{=s^)?x0E6(f9}Lyot9xK>HlJ_PP_23EHp zh5&nbTfy%ZE4;KtE~LvCo=3lnYvwh(e^G>>fSA=R^s=Fwq7aY2$(q_DE1bzggjmD~Vp}GCXBHGV8B1b+pn?ong4Hc{0k6K91__nEt3Gyd z1nTZ0niIWj)KDXPX>~#7Rba(qO0Wsbe5`$G2)loWoveYgw}=00(T-p7;1fRu=xjzM0sV-yLzIm8>W-AKsZ`^L_ILDM9vlj;2=&dwZ2h zjd$p{jyobEG9m&r+Su8qKw}GU)iEi}VziQZGu9YEyr4@+Ad=gLdM+7jXIFJrx)HT z#C>O@iR*{|zj)#afFC@BmEP|Z(58G&!1x>$7 z;J7rHFuzMi(;pdHGAVz*y}_Y$Z?KyExTWm>*qi=)esKMJqsZ+aFJ%WtSsKIj9zSV@)L-igK+IOJ}XqFC_vmbVpMF)=&AEJY7I#e@T z(Oh6*??MyXW}ObDv}y?Q4L+5^VOp3y2c5v{A1M=~HQy#*?A1Mk!G6^n344C;K(H_5jf_3H zZ!p*}2}n@U05)#V2)6Ft5p21fkswcnN^9>Q$ZpRW&eqsBf<3cGj#%zxD<2pMzBE}P zXX_pw!sZ+r%~m=%hTVH06)e)ck+a7R4gq<|E9C5%BSY9KsPy3B(Lkj|CAAI?2`L@b zAvz+tcUNT5gKVRt2=v%w_S(_+ppR-7M&G@q)o~lc+(KnNL8>lC4@MafjZY^BgJeCz z_;g}0`|`|Kw*RS-Z1UMrOZ%K-*t`=8W;nQzc_5L^Jv{?>ji}y`b3@p^Cr7b;&ZM%* zrxom{GlRkDbNgkeiydsr`4_TM9ij*icJ%pV5ZC8`Y)jt@@eEkB;(&}zxHtsW+rpl{ zG=|A$8(tm?@~jB6^z}hth85W^{KgFV``QR_y3>6bTl4Aw)^#%lWY_#n&Q`kC zpUt^4irsy6D7e+)z8sYfVyj#o2HM(wld-FB^k-LHA1;cH?GVLUZ~2)g?4n!I=)?v8 zKScg#uorF>Vdj$j4Yv60_RIrz%I(U`yDcYf_h~r8Bd|2dK8B-;HMw%&U9T zr2id;^$qZY`lqcH5WkQK+4A;LZ-&_fbS>4j*)>nL{&ze=3(TJ+aD%+Ud1ChXpKo}8 z%$y|Xye010ClSB4BiIkGviLP^&t`osv8C~wyAqJst+bA<_W3e@pi*0||8-PAfi`~O zakmd3LtsWdz?oW1dub+9fGJR*z_w&&2ZK@du)Kh|AS4|Cr-b=62&yne%DkjpL5hOu z!V?N6E17A8oDQm0%q=eaSZzMqMp)^=Vn4Gf7${RgrXOe1Ifa>oV4(ICVH$H5^n@{=IJ1R?GaG_IofpCEp#)*q zXl7-ggObczF@IPy>=Vnhk%1v4OPk=mYRpWI?C6?I5M#g$5ULEO*J2uRj9=Gb>T%fy z^_Vr({ZQVB*)JlI0BE{e2uucYS2vZw+`&u~N7px!F>~2E5=6ghaDH_; z16;U}IpQFifYm!01Bg=!>~Q%m=4vnoqSydo%V5a^%&(j`at||6oV$D{nFgF9sb`sn zTsHS&ezxkh{A|`O<|$X<*IZ^2=ljwRnCDVzm6A`HX>yvq@Rs?5J9_+YCQb-)dxsb@ zO9|@8GX-Q8El>b#>L{$2c}!4|wlFe+Y_7!>ncx^V7S<~SuQ;k3wSv9e(GhyVJ7o|y zSAyK4d7&`UBd{y5&CRewm|&4GXheVzCGbGFpgyOGyR<;fnXFQ*pe~o4Q%UfZQ)*Rp z!BQ@~+SV1^}_>!ZG(I3nDqy;s*-uaM=bag7aL3$W%eJ?7tftqNTVb!?0iz>#GA)Qv@6T zI|khxp-YJxuyb3(&fvqzL_J8ECeT1IRWO>*Ca~IGVO4PMwZH?klSEp$W18Sk0mH(j z>4Gs<~!EKzbd@69`c1K?b=J4@jfbKjVwnJ?jfHTG+W{|tlW`z2;f=!4DIQ&77 z83dXezW*pFAqAe8C@rYEU!usYDf}sf+h`Rikn|!9d|`x+3TYF0KkfxEa~Q!0r`ZwT zMny$Nc-|qLhx`G0xP|F_$s<4+9ODrl;u$v$06{qI6E?&ybrupXvc&VwvnHcBj zG~rx~AJ0F26iixQ356$RNRf1<0=!@ZzTN2|FXZfYBR;i}_+4$`-E2Jo;|o&tvjdp$YR?1ciJ~ zSCCDU;iDZwGIPz{!-oe%7{nASa)gWcn&OWG!rj;uOAhm)fG4zMQ1OH?1RgyitbpTM za7?%xr~8fzw`2PZJS|-N-^sy7XVAR(-`f#FFzvi>DptyRNw|hDMyJcdG@kQmGEBcJ z?1c$@xh`DBmq7KK!VumT$h%FKm8tjmSf5()TCQ*vZvx(j!bR8uIe!TGoR*T|p?NGk z$lC?|{uBB9ahkeY zB*E##y`ozw< zC=AQnazzJmyCDxm53$_tkw}5%ZcjwNpa_H8UyCFdZ|_GDS(1i+7EQ$Um@lHT0x+Br zt1=si2goz42Cf2J5Qxiws76Cez=Di;9#(O`O#BL2c;zOA7$a{E5%0$c{j}nX*zh&= z;#AD=s99VRAOCC@!s2n5%d>FtFCi!`UtZkJ ziPELb#VXwCrdHyUe9q7hbQ8A+J?GRjfYf^7NpNDkm_c0WX~}}l;x{}9Lxgz(bDG*y zOd>t8w|E*hz?*(zGj^R~h&YZX*XCg5#?C&b?~3$FkzBxNHc}iWqrj6Uh!irV!{@^W6-fVP~;*b~{PIfUi*5+z7)v_9upM^5JQ(EOEgFYqen^%aQ`TYmrp?d zfaQdf$4H)FANL<8S%8CCH(6rD!CiQ&q%IHT;o@{jB%gN7Y{?BAbGPP7X5jvN{3_{< zWA5f+Npl{%Cy3O1*&GZ!F42Rmhf+`G6zMe3Lf18pyu!C?LCdYJX!(KG zw0vw^=|f!JtrIOTl1R(XccJAO-K5uXd5=D{yjWjaeyJZV&m17l#^tqAXt{U0N>`?ICzarv9=w0!dpTHabG`<9$q{<5N8P|ls{Bbh0ZCeIPPn6B(OQ6*xSv%e?s4;;B-yiCUD zvJ>&EXN4>htJ83eY|wwFLWfq9wXzPF&z5zvkC@N8Y#E>HJ%rEin`9#}pHAEPn1=G{ z1ZD3qk5;>7OZe(Ed5v~;Kaa?U^Ht*QQRfBFc_mQEtKa-(nbC$t`Jedy{k9{MHLt`CY{wTYKtF8Mii^s=RUt~Q6Ahm@|F6c59 zB!tRafJI+rejs7wvGPn^;QCP12U%f|BO6l@E@tFq6{z72rM#aRrS<*t9vFB>5xGH+ z($lf>&T^DSSC^v;70Y03Z8@)bzM4Q01xU z?Z0abk(qNe0X@xnML9l02Z1yId9CFV@ViT)16dtqT3FhsjA1~EOW_1r zZK|MC*@&NF;6%Fu@7Ex3Dk|ZSyy8<3e=Z1B5Pyy;tRRM2UQ9s@GcsJU7uTy;QXxVt zVYQzW=;qlnc&3J;FOG{U4HXJBQeoXTia)WTOLtbFi`&bfqKo1@PH%Np?8WKa?utz~ zt=B`bo~MGfV4r@9X1J3h!xTGX{=2CGiiUC^Cru^+RSzm;K)F$FfU*sWW`QsRTQ(@T zL9=LwB1Rre7Z7zZ4qNWXF$JSW>9H${`gjBx|4^L5p_KcaT58)%#T9Issjn31i~(8l zjiMM1#ep9by?C66Qzi56{SgKSd{tN&aI3G<0P1@My38HQHTYr~iP-6@Wo9^zQI1gs zLeHU5w&ruOi5QjiCp9Y3Lkr8`b&K*Lj)}bmm0mnI+%2Xgu>`}FNBNv+%&ZtPDE}Tr zD*?=mQLez2s#r?-3R^a!y0SEm&CZRLBsTM!Dxcyox!q1lVsTRkC9&|t1SPR>txhx* zCo0Qf4^>W5+W4HLV9jC9K;>36$J1$Qa+vaIuoCVnvoJQ}GnGYMt@|w%V`_N(J`H_^nDWw$h3{$~(OL{x7f0KTN&y(@|w2 z_R6Zu%7fUtJ#JF3e7LPdH!7CF;SZH{aC+pa65ahk<$21@ICa0H-g@(%dh5hTWlh{( z^F^6101c9r*36uc4N~;=2mEY1?8$`m;zb)9D!ouhao9@|Qr{Nv+*waZE54qC2yPl) z{M^wYO|WYH%7wh(wOUmS*@j(LyGqC%?3zM#LN4*r@n5dd#)Xgp0~>{q0kb+j#D)jV zp*|tSFy9x0LWoPsjtn6#xicoD3^u)SQV1D9PbPlr_r?144VF(9?}}u zZ!tS$2=6H?Cv2x3^#7`Gz+MYOhU)^3`LZ#jIxicL0f8|kMx`2F+!}&zaxTZ!M9OaG(BUMch7rZ!_;OcQIIiK@G6mkSu24g0wN@3NyPE(OhTjUHC*|h00 zRAkducD9NvwA#5Ua`o-W0#zoSPex^_w&3}sC?rd z9;!A8LHfvcI#BJgipQgm5MlM>v+$sHjiB(QY7n0t6>0oeo@$*6Jhinq!98D89~lte zN>dSNg=z&5GV1$a|1XG0lF}tI>N8SZ#RCs4k_TS*J&RgF7nm zsfWnu(HUXtL)_6$#nq_-dh~6$x(e5bhJuv%0#SfoD))zk0x!7V7Ds zTANue@YOrA#OwxP#lg6iYMznm2Hw(nN?@8QNB})657&cx%e?3nn^9^Ryw*xRfr@oS4t>eLNETxWF(&-PlarW|l5sksN`lM~fxLgoqhr<;035Qq>V zGSVObK<*f|4BRMhGk`U%hAZIyzUnn9#H-r*5hgfll)AeB2~S3=hX>IIM14eyg8;xJ z)nLy#wGK46p|ygI!kX=%ce47ph!SVxM7Q@YV^4C6L93YdP%Sb+Wt}<8jQ=}!dEna{&}OG8!Qv(9d3}FU@8OJFdA0My@m*$F`634iqQg15MkC1 z_7!T9g0Nsam?F`j2Zx`4H!@8SvqC!<=$L5D>%B`6{_?HV%fH#jv5_{ViS_|&C28t@upF4(Vk{VXW=5;TfeM}zF$+KTX( z4w|Y;e)fUqlQa!NP|%P&vLy#=QuuO1K=ncV1DOO?AEueBLEGLtlQp;S_IT%1joyON z(@QjG+JpA*&<(gjfDvmQY))Q`G*d{gb4Ab4SfE;nfc-hDBrKh!T@oxm4p05atpLf* z3TZ)>)FTCZTiK%FmL=LfreG|2uF6XZ5N2s(VCYWm+@P3ZC|G&7_J%naLf+3>If%G{ z{-Hb{I%{GGOXfj+f$=>4oG@Izf) zg3nxIpI68mk9K;$TOad57YE1j^`Kl3WBIgc~+RQS*I0&xXgn( zxMjPp3wrAoXN&FBZB@|h%R@T!Lowtib5B>0t5D{?&c|iDJC*2#aLiH~?bTa{iZL6;z%7E-aXkEI-=wtKuaGQQ(%7U5#eMQy!)%w0Tow!zymhuc(XTAOymbKY>^u37;cyNopE|yi>^&@ebwu9FDWtV<6uK!`T z{w_X#b)Wt=uD|7=egKw>9?|#2Y34Eg9Gpg+)DOk!s?)T6_p`L0=nML6-0ru_w4d;6 zw4Zf1XuV#yXg`)a`g^$jhkN>5T>tt5{V*&y`9mL#Qu?OX+{gM9e9-h%FA|~D{!+gX z%R67`-{UmxdFYroB=;84c9T}OBw^Q zO&z_V4L-iiXh4scX25qg!&%(zVTS=d2b}@Xi)u!YHO8O-&piey{MltdpP9*k13d=x zrf>#q<1-Zep&DH1H#lUdWLGf*ar!^u2IBN3(FWr5`y~y;>8>)ASg&#h;uJ{*Lt~6Y zUX$xp(eN{dhm{QbaXPq)0o|fUo~veP5U2!DB^6xwlc6Ri^st73#K`PA1`;Fp>l%{q z@%q0QNGz!u8c1wBYh)m?aiSU3zj8|hiMj07v|it~1`>0z9SkHE{_IHcN+(jhtgf_P zLU+SHjPLDfScvVpzYn$d$G%jpIs**o)=383GtAH(GyY~r&nRTadczF~xcT~#hGd+& zM;m$tszGG#5NyKrQ>Y2^rco1S&ZH*1%u*9-XVbpo=TIFk&ZFGeU#Sjl7Ezn1mQo#B zE~h#iT1o4TTTN}!X&tpm)of~$ZJQ}xk!`fzAd9HjNGAEGt^ zN2yK9oTN7CbDHwpf7b9C+hp?g*8SZK^O zp!9^rNFrg1&3FzUZ|yMN#A#`l5j}pE0i_<}2!sa5moO@E?=vHe=!-~bmWnc-!fCS@ zBYGSo0~Rl3L@!Kbz~`lnc(g-LIpcj3N|^@6Ckm84ZD}M!<3ej=j0VY~B;x=aAwzo^ zW92B_GRR0`y8jU45sVW%%$SI+vM81EiyvbgiR<4RZ+wR9pPpeXiPG(JjS)B~A{QG6 z;o=p`j9auQZM}^)b3mg64`BZu<3$YnZZD+?_Z!h885wZY0b@LFpL@bMBLt<%SB+CK zy}y5__4Yk7zQgslJ~1xAPH6GMI0E-`<(09b7R0$2vpiEpCK~kJ!6<>LJ}Mg_FcDK! z5t;hox|^k@w@Q?*G?-ps)66!ThznX-O=(#E!)|(w`?%pWp;t`Nu=bgB`1s^d(;Iwz zL?KfN3rg2iG(E$n1hq{QQTa+wT@$Y6t#3l#szURB1Jg}h{J5p5E4Ex*2NN;Lv5qG6 zARij@Nv5i}{SpENY@#MWNg!kmJw|AGlhrPUU zi}@3_=IVpyQJ8PoF>`sLpr!~Uo;0s#B7pCb`4))Tv`DY@dcFQ0y?gu1dqchPC76P|)F$*#zRRm_z>urdX=b z+?X^=0?oahZpmgyy>00hNRN$REsH5iB(RjH$A-d6QtRQZeU>?t!nhpEISSbMkmWpWT=SSEi5|;2Vetr<<8)i}_LL=s9!@=Lc}uH~ zzi63Gj}^RP`Ge*h*DV_;_{|%Ztu(jjRzT;U?^qVnV;}EY7SP;^TuTim(9PHTmO2!u zd1PO1}vhZ_PVPJz6UHXo(UNSJnQmoi>=aaQ>`l)Q1yl2XE0V^tw^e$7g(>*>f1$DW1u>GBDM||NHg_x z+w0pYs|FXztkr23Z&X$;rpoB7Tuj|ETDh3ATdZ76HMd#0m|Eema=xwNw*C~b0@zi^ zssh6*8f@TsK`Z)6-^zwkK;^YwB+T->){T@|wjc2($GR4@Rt~g=sC8qiy{o8|3(9lF ztz1yrBdo1y>G&us7sj<>tXwD-DsAOLQ4nk8LUC{fD;M}rDg|1ssbb{RUIUM|AIM^{{nA>on@JkBzOIYonV5Y%;oqwV{M)b-$gpRlen0 zb+C4$ye}qL<7uvXXKOoD0U}R&Wu(c)UI7=F`UYIEYe2vSp9Te7Pdy(ZP|XYUapl*5 z1t(+$`na$p&_~7PffoO)Ko%rg?pbZ+#zvd<0Rzt37|`h9ChGtxGZ$YD=nqcswDNhn zZDRX01&-X4UNv$9C> zl!TNt#hW=d>-qR&=|17~gPYzC?o6XbYxDVK`hHVqyS&{%;u4VhcDSW%G ztte*^Q=IKBXAyg2+egl1p)G6!x$NpTwx77{-yLjb9yhJX2qtzy6g*@dshVhW@i#^a zeZaC@7aRJS9um(*dfATg#~Tax_O>;pN&+mT?Pwhyp{@r`6;q_J?rU|Tj9Gku2H zHU-1wWs2?ZAYx|tw>7NoC>ytiZ69qz_u9x9J3hv?oy*P`XG`N2pAu7SCxanPHf!10w&vVgQu2zeaZp-R1vUvt zE%aUt!fuD62iEc*zqxnIR+!Vre$V!iTk=95*w7tdGHpG7m_Kc8{lg~V>mhW0RRLuC zJypRACo-e`g-y$MaSTA!f*)Sn%5f`m)sMEroUu&**h&S3eV(z;14SGj8%Pt_&+;5{ zge5|Xgj$h(s0jV;3jOB9o%)O&Zj{+8bHu->>|!2IVgxq&6+rwkw->bc*tNj3Gx7T; zs~X$viF|{Gu*b*{As6Hf%ZA$ba8VIo$X)#4 zurC*oIT_R(iM}A5*V|@?5vlfu-0C)cjJ;>jova*d_wb#P^Qi)aq6Tr3>^jh4m%R)) zKEZw_SY`whB24b=04zAI?S4kZpV;2qMNs zgD@ZZO{YCHTC^}`r#&iIC?2n_1|p*ah{~}`!SsW6?v3WLd+m#;-9gC%_SO6YnIc1k zJUR&Har~kNmv+#HPQy>yuToc9PuY3zr;r1`A)}v#?4p&xl(Y6uG&JDL^Y%(Sp2rN# zflWcGz@Y(qp4(;M*2!=Kxq7kvhCM?|C$t+k0u$QhC-%8qIF5W~pTX1GX!53ALe%A; zAkM445m$qkFYSEeD!|7KdVLDSRhw7#+gx1Ld1vSGa@h~YCCF}g;=TPvu zLfqf>Ag&1z^KsO!{9`{T0#A)aEFj(NFo5%iY^A`t_xmJZo6@ES+5ezX=Mp;Z2I+DO zsL;ER0{k)^=>;51kH=*KzQ9o0=|JagKDTuI~_VbBV8^;}AbC z5Si&Q7t3Ky9SixMLLiuaz;iUz0khC!dm%I&PIPf>;k~MJfHL~VU!5d}Uq-_?rJrLt zx~_oFMxuv1PH|f=)kud_Nsktq>`3B5J}cdEhpR9>!_kO4d&~ol6WmG6$%T%iT!qD1 zjwM{S=@Lias-t6>V=LEN?s~@yZv5Qa?5GjcSdTCM*aoJze(9LK%OL``hixOEc88-h z-(aU_o&n75yBtM1{bF+*xqN+!K_NXI<+mV{iInHqL^5&vr8)vYcmmPsS zjl-`x7W3WepdRaeyB!QK-EqV-%sG6cyABwB&#{=t!|v!7eG!m1AkP41Tr5-qZq0R| zPh_5h_Z~WCh`{DoJ$?qc1>J?f?I#YN4*(PaxdZcL^z%NgHk1yX-Nhva6`nfU@*9vK z-ry_=&CeX=_>LS50M5MNJ@JwDkzX9#R#=hNEVXTh+72xS!|l=;{hG#_9TIH$oi0_Rb_vkWp- zD|!zrOy-oK8^vZzHbcq0JfZg?9YJqm5Qv^>|bcXZP1N;D$1a4Mx8o-lkP7f?u#rck} zg4)K;8gNG~XLkXOpE5t^$Iqd9yyFL>g5wRGYIvc(vnyYP2{(lDH_tH-5kQ|HI&T8q zO`T`>j!e{fEjXgJ)5|w>5I{}fNpRB80Vs4LRwlQ12BFY5xFnbo?<~XjqEB{TXMJ$9 zM>IOm&p}tJw4cyP=!_w*if~6aCwey%PekBjcNCs+0;e4=>ghz6vB{M5wKwmOLVY%d zs$^#ip87)s@GG6LVY`9OE_}U$U}^w$ic1lhdN*IoMbT)L`b*!Mi>DYHrnYA zN|)5}P92$?NQ40tVKOjyyz^raS^x`qf#Duk+65I%A=5iL)KubHlzXoak~E9wo5ND(9bE zw)q<8ZZ7Lz=R~Kiq{5Z;&P7~y{6^;iF56<0a~+p8Zpp8EY-@hq!P}ka1_nW>y2E)O zlxFp}ork%jkM1}Z@SSUsKEpUw+WhVeu~6_Ke>-JC>};u>0kX3WJbU424`LlIW9+KP z0lkv(-+%s~D!r$$3dwnJQf zVAC*HUpbv#ZpOI!axu`hw5u0SFCggJux%Mvb-vRJ0%!?xce}K(NjcXRF&#&i%C2~B zbWQrnHJ!^AsqN~;cXXj{F7Z?`s->$9JU`x5gn^?QxVmyS`xNJz#UHQ}tk~G~fUnIE zqfYQ_Q&->|vtbKYCO<9^K^^C7Q`EL5s4&}A3hr&^S{Q^fHQ}=ku48;3d_gqIgN40Z zdf;8=ihx6VxE2M$r94DXCHQhl9`C9Qn+|dPETMyJ^GMfvE?|;JyQc7S62Pcn$~c!A zW{h$5=Br!)h3B0Eh}xq^!pO#U=wug1@gP}KUJlF7boJ&t9uP`hh{nUUAUsqTprOzZewgD*3nB)qfIib*A<(|e zbv+0!6a}p52EMP`ER|M!Y8wE%EbFKx!cn~7IXF&{_SP*~DWyOm~DOl+a z{{;;j8zQLZe7T_gBe~PzflvQ*rHh!I^p(h7l}eWaA6~k6-_WVr#T^2E^Nt<_UaCv$ zKzenX5_Edy>dbRhLU7e!)7LJeVD=@y4i0_m8YIHG?Vns$zPoUY30gjose$~xONW2z zxIO5gbQ@!r2X_*LakrgzKV?A9dZ7nIz3HfcPXz8I3?>YI6}i)cFhb^OH$D5gCU&O? z@kb6WNGe%?mvQJ|f4N)Echn-%9qEs%R1R?u6cVb3HEzBuFM>;g2A#WE5YDN;-Rh1O z1Iu=w2@G+%(UY6K+;-UC<*rMD0G#!>`Ch0%^y<&Hx@Dk237-V!dfiL;P6j_Bg@wAG z5Zl4fBJQGM602=XxZe`j!-NR;7dbhWT+Z#FxnHXVa>whs5A(g+^aBfkSa9KdLgX>V zW(OV49qC=L)HwGeq7xX>+|A=V=VVVtBI8sGH}5x|5I`sV#uG$u?V?xu@pN#gts7Dk zPi^nsPIHap-LJ_M0h%Scd3>QBlZB|SUxOG?Nid_kdmD|`mOb4o_>cP}xV4v?_sd1Z z=5LeTJ1LcY{oN~rq2d_m=KanUp|W|fTSTXrW5e9rgP~G#xSQ`=Xn;^DH_H8#TBXz& zH{U1r2-5tq?l(cqA~>cy!bKC@RcQRaoajDI;`$YzyE!vasH`9Grl-9gtiRcvqY4HJ zc}oFOkGZ+8Q8zr`Hd4dDA&1>vf|$*SzZ4KbA0S2*OuhgvMCnSwNvGVysBsNv-1`({ zO8)JddxV6pb$8uw_};4s_;)j0|H$p&)VTAf`*g5s*vUt!VZsZynhY|S`r5sR>hQ~3 zcOlAr>}R);uHmb`y6r*`|JhXr#19iIpi=0$6_mfLrnu#^Md;Nj^pZ>jJRzpC8RiGHTRZzcCblq{ovTl%ELdpRa8y_}=d+M?F!csOK>Cm@(WlKB##kKGp4l z4N7{@+aY+~fFH_u7SY*aWqD7jprB8-vyVVumiAnv$k(cQY6WG9VF`8*yj;VBzJG-G zJLBtkY6h{f{s}~C-A356p~og9+iN(lvFC0O0muQ`n|WGMFO6&MnMu7=xPxaK9aqod zJ)3E6V@J=*An1R0(gp=d9ti`M{V|{Z%phpg!^8IpM>ab_3LEwGtmWsaFpxLjQwLO8 z;Pt>geLT|y%mG-ppJxb84-N37OHkT0#e=@-c>tar;c0|ZZ>lFph|>FGJ!^vQ71W#P z;qhaHXrIebkDun@o>!bX$ul1D0+uw-Dqc$wMT7{E=N)(g(3PHcXlHqT79lpR=LEy1 z4?H>7!{=9Juz?`*Z53>hs6`%rufh|B`oK+D9-dc8IeJ*QCU0M`o74*ss`0~f6H z=yB*}uknQQ8;gWcBj7ybk--_8JimJo+Q18*vdC3%{T0thoR+xhsgKj4cRiDEDtO?z zh10u_JS%ZJ;hASKPK&#P)R>$RETY3xOsrGpN|j zYX@I2XaMN_>7kUrca2RUJk4)z)6HRG}g6TLis z;`E#80$ql{lastw?3D*;RIAm~z0;&fE<4-XHHeW%mYP${VtTzcv2f!Ekh;*z_j)aC zu*jRn^JEAXUgk|?fTrzOHJrQLTUp9{prkzOz3ceCZjd@9PYX+K@a__VhRxdQ;FnF_ z7y->z+v>IR3qL=ISNbY}ySuz<_;I^;8wCXWc6w*>noB7jM0n^$2tsq@es2qo<{t;V z6S$)zj(T}syZMeWK#X-@y~x)dNDg_`Rg#LMPa~#n3FhJ+LH`**i&x=#y?kG*A}^s#rRlKTF_8?TphxZtC=0+(&@xA%|)oPX&H0fmJ=e(&>t>zdz9 zXVSh0*-hoYi8n}?|CXUx9t{Lbfy<(iSV@&I}(Z!Vna@^w?vs8omfW(J`wL8Y(efe)p9 zYOuDtPY=5#IjjPh7UBC-OrvUIDc@2#%~q)FL$B(QdB#%JhhEhq*~of6^r{}ou4(K; zuj-NPoTfhXsvgOHZskL->XGc_cprLIk7U<&^r2@SNw$4wA9_`fWD9lip;z@t_Rl`P z=Ufaw9^iBHTO5e}>i+93y_Z9Mh57B0euPVf^@sb=D;Z>txHHn1&AEHw7+(n)vkxyq zF8FwgZ!5!d70PI@X4|DZp?jK7C}8$M{|p~`KI}K|$U5L7>&xbeIy=*Mkyl_B133bJ zGZ6bgrG_(R`*=Rm^&JX`oa^KF^Z^0s0~TKKaVy7$c|J7xZQL|c2ktHOJ>;(+0d>PQ zS-$4{mJg2F^GcyIu%Swr0X|&iE2#oEj*T?I65D+;A!S)}r;p#c?KgZiJiN=do?j$? zk5Xr^?_;pKs)2R4PY0^bMcV`KE1xm;elQz@@7+s&C42TUpIA%{x9+qrCusLJIqOsL zn>)WzbHmyfeES5HmHD!7e-Nx7isZ7v5P}P@``&R}mfi9l4uT6FRc_euj?WYfA&OEj z7q6#eSeAR>I}$XjhYx+FgJ!k;vF|=d>h+(#qd}8e^vuWe;hPA}US+*k?*D0;0awMxP}Y`1w8N$FW+e@So>cO;Y*!eMXdnDx>kY;de4l z=A#sl>MDx9{$nkQUd(z~VgP(+_8TcRXt()yF~oN8ce}qbzX$zEFUcVLvQG(8cZG?; z%g`7T?P@~7{I1p(&hKhaQGXGBw{*C!(r@}SK$9Fk1By%KcTlWMeh2T$`l|%hLDg!0 zJ=9kBKjZAAs^v#7%itJ;zt#4mkJpmynxFG~99S>^Xr*8L!k{|e*9>*;Z0TNv|kj&{w5jVuHeft ze)P?M!u`g0|2fXHJ16>k2Vwo%pz3cr2gn*1ZUm{?Vn4&G>Hd~MnEV@_9rn)5x4^?W z{=J;tH!tv`5B?A}7A^J<3Sznl^kpwt4?0)-S8I9B?dWuXgYrI#Fv84T{$!4;dA~nF zM!8Np=6@um+0=7>^mSFDLEQ^}bk0Yzx=a30u0qY5{yrSSk-Pr&Tz2dOzngCU;O58v z>zobdKl3*VDhwm~7h46}zwxWN*ckCHe|*>ckk2mUlYdcA-Jm&B4BG84& zb*Dn16lo!8(lpv8O`BBHNCkI?;ts`Sp%hu%ZE%XaEOr(zEUv{DTZ%gr7T4e0xs#UN z_x z+BOCq1o=CYPb`~nOh}~hTMU3wWA$42J zE@mEbadrDJU3^%8$fICvmUuhmQlqALH=CUSmba#WhBFE#)D`2gF;Pj624dFG7}FR9 zUX8@e(G>xx)Kq+ia{1g`%o-3As5vdgI#$1%I!oLU<$6`C$}iyWZzul4h1by7&df&R z0F{HHtN0_U<&>iM^bp^tx)SAx_p+G}D#csXTl_;ft111&$0@5$1OErCd}qe>!QJ9F^-N%UFe^RE3!sM z_yzb{uNl(0u<=cakzIIOVorFl;F6GaJ!+E;JAzwYZ@guE+a*oS%Tv-QY>SU;JAzwuUI8GE+a*+ z8WJ3rk>Z3p5*(M2Vn#y=j>|}KU^5Ah%SbW1l_Xt&^>;#=zEP{8Oa}>$%Lt&llf>bZ z-ghoxx38;&@v;Qc5p*LV8Q_p?8hy>VzLLQLcy~m-21$MjzW@!9;7E^1aB8Sz25V!& zbxDGwFsS;Q#7!hR#RqJ?#z>e0w(ylWU>i3UE0}4}p-0;N5;O8Gj0i)`CP>)!d=ij8 z{E0stwY_x4f^C{AdB)CY2n?Jqxy#n86E-bMqcw!1H969LE9V8B=1C$vFgY%6Lm>+! zIJe6tNhq9MD!Jl>zh1dQ!nO~Re3&s0gD5a5dZt`GbV*A~phttNH&Yp4+lp;tsWUOSWJ&&egcsD1=CtOA^KqPQUZIBncZbO1{l%7;~;ma!Kxuw?z`hWVQMdj7#?<*Eo%AdMIJr zK~)OX;j!c`qnU7YP{A3ECs?0JPH=quUJBte=XtCr9DOC(Er1VJu_ttUBRR&=(Y=!# zV>6f%P2YbnX~5{iF-GT-b+8W5`@7_u3o2}!sDc&F5wqDg-EsBS5~c2oa79~Y;Nd@B z_UZ(^Jt7SFkkc>xA*X{Aq&3iZpNOhxVSiNsh`l15*a9T}U5*GX6#1$n+d;pw5o6fK z$~;`o@DIMozXr}FPS%O?s;L4{jb}p|K}LAQI9z9NzFI^MqyHqjalF6>DoP_Bx?w~o zRm23gfs`JKVd>Z=_99xuHhZ2)uzQF=9U_ zf31{=+jvw3YIB5!ZH)G_joefCBh3tHFe-eYs0Z^iBRtqP!0S;?vxrXo!qU!$5ser- zbHFGUIK^37MVxWLp8@S6o^yYH?-((hv6*qq>LVPUREOa`BUZD;C`7*ch=eDvhezaa z+}e(g=#58OaA{J+2Y38=dRD{0eDqs9otkA z>C?@CN9z?uqQ`vjkaIp_6YFZvmR0z?Le83E7npn@qNf{rc6)&@cwCF{cIApbqFOTp zl(DF`QR9kITaI#t)_+Hgbe-AuNe04ijYn$T>QGv}}DNwdWS`R&W zgKw%2dmO>G?~s7>=fjq%Pa;-1&(wYnK=v0AmznxK0yhl)c^Pqz%|r-5>(aml(EEt1 zuIQv0@2Kwd5xdW6!O~FJ@-?El6Jc8EM+95;!_pV|?Wijq!RCa20zuUqNCRNKlhi1J z7tYc@T|H=j`U`CKl=?=ptCMKMkHa5jydY#Pim>euICgpLLX>wcUb>Z?*Dz>jk}|G1 z5h}yrN1}8YUyoZ;q-@C|C{lu1${4ID05_v}-tO1hrEGKYlto;I^tb>^8U|Ohqy@Y} z*3^`Okh+PhEzM`^G!&?gi!2*yd%VJT*PKyC!Lf$Y6}-U=ZN_XcrI>|tdh&;BpG=|mvJD_|~PKB5X{Ej@o!P2sXBj|pW z?iO*r3%(DP{>?VLr7BQ=Rn7zL7zc90aSr703DOin$W<~UqIlwe%y7Wpn&p6BGe=ro z5PbMT+|e9ZEPcVNWZzQkgo#RKESCabYPQnxwuse^?_R8t=CZ|c4ux^si_UJ7`tk35 zvBQD91Ef3o_YU19Z7#^^?Dv;fC7XR9yg(}EU)11`)G7$HRqns$vF{#tAeTEOtt7}! zbDB!Y3Ys@MaKXbLo#|3W59t@ADt^EM<9>*o6$gp!aj>K+;XZr&m(O z#X4$AcI2w(uYnw{YN4h zv>HgXninO@A-y|@G_p1x#ESaH$sW0rQnwV@F1|uy z%`)1`zoyB={C~AsvR?eNTWZNR@}-{jWmR}vT+~GN7q5gdEoA*!EAwALP5>NhFYE3h zLVVn}C`}WImiLgcMqnssXK{J-NhNOsPkPE$vi10Q6L7e^E!w+B)(WlZEn{0(h(bBe zkquG)a5+8ywYZOLzB9VrrCtEa93VT%)G?QWR)L~{vNLRUNKvK@)zI@_1Bc6Ue9@Yk z^@8E+B-sxqo~6$;8SB13B09$RgWl6+M%G#=K|$;H$O6!k%8?b&7H3-vcrjCE=T!+- zB)j24_=0w!3|#r*$E7lSij&hdoLer#r#MM*>plCsJTwIlOmMeT=Lkn zEhUdF-dgflhwZXg^sx>g8_zalTdID1qIHjqEzB>qgmRE$QM7e}RtIE@95r`Hwpp-! zjr&u^7z>tis{$2{$`(>qM~}x{{oiF)nER z%u0Gmh7&Fj5Apnpj4kl_8L#_aGRENbXB5#5SuSNY?Upc)fSq9#aJ?=2llsAHcV+7Y z>%Pu?*>Q>|e=J)s7;otl8S_~=?6C%d|0@|j2}-I_`c_Co91fe_$u0=+p2MN(N7*G( zd4VY9i;V3mVPXu!;mlXrV?kV|{E!`^hSbq1atm8U0akHi5i0EK;f>0;<3%IaZsI7E zE2=gIO?QoK%LdAI)x+VmTjUnXZ?b1(yvJ-O{$K)HChNOb?0xcu2dt^hmL)Wbt7>O3^L#et{=IM77H6h;!UjN+hvU+ z@ioe%*r7?}dft+tYV*hlH~!nkZAuVy?Me_{wl6^_=vaaE9F32>W)GIp^jX>oku~Vpb@Jp$#;7|A;TLoz zYsJufY9!trOBlz`h{U^NNik$rI=?t5h`}ai*ALDM6U48MeZv={f$uS0gVgVGDj7P zHaS)HghEewvH%q~LIr+ucZ3(ByMZ=9{+hAbas7BBRA;o@1Nje;greL2^15IRkym5v zoB+=Q^bv_3p%I%?GtjTqbVV!oLpdtBoAIuYg-U`u zhF_F!6eGXtjEZ~VvkA!t`2)rdAM>07-tqGDtX78sa&T5djR)WqIPPv}{wZ-VoV3Zk zD7Ob0a@N@o2ecn_$db2a9W$4ppuz_70N7YVK8{ceg!DS{-&v;~{)Ngq^?*Uf&{>DY zP2~HW_}c8=T+Vu)4g*espq6sx2?qjjptXE2BO5%fyg29 zd$h4u%9XR8ZpEwyxbOxHqvWjTb%|`vev>oL986mxpTVC6{Ww8>j1nrG%G{zb-h3D} zU4EC<{Sbhrv*b8`4Dr<_BxgOjOQ2rPl`}`Z1Ypqu`B}~zUno}b120x!$KLODKYMZ_9^ zq2%2SE|q*+>5BX{>*P$qBl&2u2N}K>$wOTD5rN`?Jb}?(00SyqdA47l%W?Qkh@X8~ zQp_)w<4Bx*+wP4VN8+Ry_D+6@cL3n>S^ki9EKIcOh~maWeNmLdI0iXKwZ~Iv2{=vo z50|J!{;f4!qb9rfIOe>5>H5b|bf;3aAb8~&b%2!u_KKOMfgj)`H1k=5j(PFV?I(eREfedA1R8fMfDaiG<4ABV!lQ4sAa4%Uny-8^93YC;h2vQoRJcR zV?I)J$%w)+A1QvV9fe~)QaoBW3dek;IJtflj`>LOV6!M3^O2&tbrg>INbyIzC>-;V zqPj~Ij`>Kje2=IatW`&>#}VYMfGd5Y@L@-S`mTSJqYdsGSVD31;HWu*-sK1YL;2kz zeegIrWpPZ12iZiy2@?&O~i@LEb&%gTZnkDxNjqEP)0L-H)#dID9>7pNJ>{X51_( zX8#?vk$zjHC~CYb|ARjsl>A`Kqmp8SCndiPe1_c||Jz>0Q8#$yLi4v#23D_)IX6Lm zX$rbMqLZs)n2Y=D7W~GbfI#P3p!HIu`4Z)<9$Q{P>vL|Xf_2Kk@kYO$l@!b~1`d!g ze6xq*In{%zn&LIpjwVupI~T4kz$dw)fEG_G6nKLK`F5B}(Z-E0zS1cy^f8N3QGwOL zI4B8d(LK4D24|iN8l9nF+f^RLIhO(8nx$Z#V;}(YYAEuZh>B2FZ3W{ZCeP($9R>3o z1L4xXz5*xrCB9A9NWr$xo$6&*V+HdZ1L3m2nPL~^GOne9b)lI+`LY?M+NxV_9b%+9pKNoib1UX0ETLcrscl!;U*Hg zL5F3E&aATq92DejR5-JpTP3E_^rytM;Um=Z;N32T!JQxMq#jgc3NUB_T>%;%Ry?F# zX^m5g`mBKm(c5j8C%%BQ(e`xW8Q#697)pEhURM>&OUNbI2&bR*h16>b99@ucK;@eX z99@v&w_A$$0_>+L3g-?S`{$@a0UtQ7z*=Y6gQk?uB=Dz>KfhKauudoZ3ojI$KPd2Y z0ugxdX9b>4AjR|_3Ot=aih5^dMW;D`;JXsKxhlo~gSUoC+?{5NP@RD8Rgo%076p^N zl#>LESE+W$EW@3ON<7Ozc()B#;#me#ycDU#vkatoTB~#n1n0yk@hk)RwxwQ)XBkLw zdV&(qGLT|GsuIsKkm5P363;S_;`dA?o@F4#M>Um7LFV17kmiQp45TN zI_AgEcjlLh2M$tha28!dlA+40Y(p=E!E)fpFy#qWCx!v)p(!=+mICgo6jWthOD|~s zn{u}+=0!5)swXPHJK;Z6Q z4Q8!YGA20%jAIhe5_6#adL_>BbPZM9q&y@<8LKxdnFBeZj8$8ezjH*I>`)#QLgd~~ zC36%v zA|bc*y7DD!PxK$C4!4vGIdV=#%=Yjf#A$bwpZ-VWTHjZ0;K=zr`d?`-|FQBG>kx>@ zSy=vw56T-PodSnnDa&GVaP777qzHem_(yq*?f4(wxw=f%q$E`py`kmUS04Z7cY?oT zwF*x?7s+F;L$aGH7|*@B@^i0sy;M<*PKijQt@MN@7Y_7M5s74es!NajO2@7@~QCiZQ=c6e3kXUPqR* z3`wffoKZQas&Ia*YjDr3YAZ+*|Jyi_*fLV<2H(?FPXx6~2b2d&Er?8l+gU2HqyC_L z9aRda`NoY^B5oAkw7Kdy_gO7lg)>)OgEH+^VuYdkE@;jMLBAKp51 z`>E8d^C!4-P5N&ry=S;e#~Rd@-~qmAW;iE!_&60#<#i2SPU01EW133BTCvz$G(g3> zwN+5fzER_$0aD=$zpp{Nd3^I!EKuRhTR2zvLREXlR{(y63rBm$N>xop3}V`_dA({Y zN3QKA)hbU>0k@!&UCUJmp~ZVutR8?=D7m!q!b4Sz zD_^0(&sD4^PDzC>c%fpB!U#Z2v1)}A&*jk@73(?xf$IJiyGb_d1PqWsP3Yz)6>CIK zXmt9bVvfZKK(Ft(hvZdKL!{o#C{ebPI*m0pB{Xtf)p(CLY4$Zd)NDzth#MM=u6U{^ zI?wk01--hyDjrQ6=HUg4ywoDb%HmwxVCe0m9z*GQlu( zJVwZqsY5|GULD5j{)xbjm-wI+)6@ZI!95jCSCv0mP19A$Caa71aRh|SRI{F%CHjSw zdFq3%{BSOKiF!EiLt*7IHSZ4|rt)c?k0_I>IU)|l*Hc%jhXkQy&<5`j-1QRC%JQk;8Ijh8n`@wc<; zMyzTmc^6E(tiHj#gz3-#;3dq_l;MtNYP@<$7|PzN@#-ZhhJ97z)k{)*@=c9bFG+FB z5A`ve(D#hU6UMu0>eFvuxM{{YyU(u1PakRB{X@}YFU>jrksjU}ytGN4R`_f1(k3Z3 z3)bMJO;WT}&_uIFgxES-au>x^;S)744AXpOgo5G-4P)|MJmtS~Lk$e*jy%wcrp zB_U)OTry}vMWPM-iP*}81EW#rcnxc8JEK(vzB!x|TIF9Lk( zxVHe4><@*xn(LSdtRJcAi>nX9#%ZpI@aOySnyuXD+KC!GEA|p{CTnEe@8(X^yuxh@ z#?98~S=~HQ5q@zPdUjsZ2UV`GVVxGoNQ`sJESZ1#sp-M?F* zVV-;-0IODOj&ekLtkYZ+LPWJe!#eZ8OLBjc<~~Q{#P6DGLWoS=reU6YAR767r{*?C zWcn`6UqXm9+M{7!2PQ3jmwQ5oJDNv=8QJb@u5*mS9|>Z_tLU+YHLmBy+S0S7CoF%axymv6^(DIj zI`nNR)^uR?GDX z4#>|Hqc3xYUKkcVnNx2oNwl3)?@C3q5cLwm9%zatT7Zsu5ZJ7ZKFcXOR~J3A9BYmJ zJZ}*I_p+ib-pD+!e+KH=D0)BZ#7fc2Vi{WBIGS+}Fc@0p zMwfBsS>=w1X57C3c_X8lcO~LyXQ240(E(^~+ZcZs^IP;$*1@3ziZRO=sVlNe;qtE+-J(P!D}3d1df33H=a=LyL3Sqq|ZRxiRNc5yUgI7*PdFNtQIC?L-tUKah4 zGC8v{nsLs8AT3-S%{o&+oYxHkN=KlyWScn zrlX*8I9L?ToZ-0?<<`CE0BX`d9!9fH#FgURejFXhI*j5_04pq!5~}>_e?aJ4adaB% zz_wJZ^mozKDXZllqwlg=)K8T+`7^U8`Uz#$w`g~s)$9#1j85PuxG_#KtnRTC1x26(m1&08iP}g5!W!=LpVRw%PS`Rr%2$=;qrQT>J?*Qbfl%6A=Wnr=iDPqWBg-I z3$9+bz?fXtVA5f9-ak#D-KY=~!MYkkTGefF%tY3?5JJdb9a9ckYh&IBK>=-2Oraov z+nF)G0szLMoVGFez=9jSFu`p%?m7<& z#20rSj$z*ILM-X*HL)+kX&pl0&gGaacV4d4TQMenYy=bU#Nd4{giFJFF?gQ~DOP$A z!<?F^yP#g1?(? z*p6b|HW!qiDQ2AE2MqFIbMf%L6PE{RGq^*_NM6^)-lSe!#Nzt z51_gZ=Wrm!xH>w#(TNn_HPGRWPNXPlro$VZNYS^It{>}!9ara&-ClQq^WC{K= zbbe^oBwYul3a^C17wT*@r8zGyn~pt7F^W zLg0GA(|Nk5Y=gc^fE5zpOjx8X(Jf%tYA=|ZuWQTJLr^hxEZ1#tB2@aU(k&7~<>YD| z<4vWM%FK1TWjq!8Mqyf6xJk#D&xcT{i;4<#9_X5>LJ)d3yt@~g;-+s8f9%xFa7KxR zO@g8IZru=`>C?Ts9_&gZFY*JY{W`ONN~{Z*Zi*{ciJ(2I+r>7@DV017RXL@{2e2;b z%A)XeJ=>U{z;)uMp&y;ndGh8iI;UI6uC89tq)^AWoum@V|EQ~nw2NQ4pdUp#x;-&$ zkX|H$Kdd%PRO-V(_qm3qpQj&Az(%t*0zYB zZ4E=d=zfTJ9#g*Qs(7GY?s`|0^-;$*va5tgc6z*3obx+qt(U%<`|Mx%k=+R|{chfB zXZh;qF`5MiZ-b@=>D{2nPtQ0*UI{r+%A+3zI)9wZq_P|Z2I|>%j+MgAU>B+>8dpJ2 z8+mbAy@_`}2_bs6ZHmyl zL(K^NXx=XF%7lrF;TbbcQhgmz=zr&_j8N-W3(*&*B7?UY{aMC#&6#LZbRb0Ug%x%{G957M_^<;`nJz@)2cuPR7cRg`~9(DAS_&&p{zWz8P-kb^g<|wy={-^O7EN-Uv z;$0-{Yo))=o7|c&&f$gV<$W5*{*1>M2Jl3tnbWw zF8A*Gb!=8a)PjNdOzZ=C=y&jliM{o!{uhX=`!KshOszfIFx=tsu{WH?b1V2&fV2d% z3d9f7vkv7rUVwSg5Ua~b{aR*CQ8q=R^p_YN#Lfx&MD|wK0{xh(_kVY0==0hh8iu@2cg1Ex=`r3NZ(I@ z-eAHC{dC^%DOc-{G9sb;tGLGiy$3AWq!&|fcXg}7+a21$>g@>dPS7)lpp=*&@;#*w z_-O=~yqkFh_%q}v<31rr(s0m%6^CverOpB2;ox>C+@~MIcN3iom z;mkV1JTTKY`cx#w)BN zLBL401hk&ED95003*Y}{ANpYi&A|VGUc=a_bINFjFn}LAHACMKHGM?KeO!rnn~Ko; zu|9~=AwuB`{co()@Uxvz@dC`MXR-bg8I7X&R}LRI`nA5R0Npo3IV)bdp`La0gCOve zK8SaRhA;XYwpAE1y=3F&gu|ebb1d#m(nbYlpdy!8#*2MokbYA*zADTu_AyG`93B9; zG{XsL&j$v;GSAo;kz+*#k@MBhy<&07P41spyki-!0;+`ay2r+$&VI3MTVD9*;mJd4>LXZk-U*3y z<}u-2#n?xT&4bf-Dtgr})&p{?#d-vY{^HM-OxDHr;j0??8)Cb&jUh_F{h(Z2Y;%e? z(ioc~7;lm(7GG0CtgR>|7T+vNic`~K%hMuQWABOhZ`a#nUpa~yu~{zsw{A6KeVmd1 zz;b~gsT13bemk{6>Xtpu3cBT8dXuh_XlXdKLmy(z$O(?L5hwxyH9W|s|)4G_@k(-B6) zStmOByFr7Yv9oF8`aC>#5jBoAqhnvPPU~W=nNjLrPrOm>@)dQc&G=Zh!~evilp?vp z#|gM)IaJVja_oL;zHu{Smr&l1P%K{MCN1RBg4ny>qUZdg=z(tGeyGk`zYru@6U&;* z0cl-cd%)*4xFS$qrZo_{tdIT5+To@yHR#aLZLu^tebY^`Z5Zu~LjvRG*u$(9=Agpb zgz@w7sL0t+4z_HM&Bb>n{A~_EDSyPWu2wkkszBbZ*xy;l9Rwx&0e1KM3SyfDp{CNb zU{GF)9e^v3Be?BKY%g|=$0H2w2ivd4GH(8>gd7CJVE(n(G`9UCr6__ck1Ua+)OLw3 zu;F2B5WWzD(^BEn*f~P9gw3J~cs!3?BA}fR{cwd8~LN+OIW8_UH^R_aFdmW`9#Fi=^8Z0yo{cgT2xtk^B2rX_W|Y-BjbW+)DFK^plz=`P z6MBN<(1KWl8=uW^PMl#r>ofr|F2(CuZzxDHEEI%t)@JaA=jjIKIVi$KTO-^9>xc zhcC4Z>jc#s2L&;84I$2Gp~{N4B{eY2!BKiUhpF_xY5?olW`jY zH&#hR)4t#l&+Q(9JTH%e&b@K+Ku`L62SKMCLsd$9UVp1t%Ua1C6ksShtJxBOrqc~Kg)l%Ezz5Z| zHnPCGnTEHl9UA7MMRl^UN@mV8EM+7F7=>{UZzaGMTtPtZQUg8e?;Q+oD-5pGS}UzJ zFi%C1=2ZMUHns(u4QCkDK^i4slqkwb0S1}3=qeZS;<#Y9XCO*#;dcdP9yU}$1)7az z(UyjR8np9I!#jra@d0ZBaGu9jeloP;xWOMaIfkzr-`C2oH7q@1@OBfeT^s&H~aqT_nV;|yH)5lW2$4T)d>By#mkmnZP*Cm)%%rCzT zn-$qL*!`DZx^AfJj9y2(hC&7J_;CE5vKd^4fc@ia*4xJqMyY zI%^Gc1CuU(dN42F&5ZbL-UC6+TJd3w_N#-!2Js0Mc&6b!ASWmOO+}tx z-%0T&sQzotjPK*le_J>|{zyf(SCD=n43&rYouc{tWN`2w@v9iXmTpOvApc$Q|NP&h zqu!NXS3?C?<25jPcl-*5=%@q$tvwjeFx6N3y!==^-5LAxP`s-%*2&u=@!N%ngb@!j zj0+u<;*jFJgHrzK_?{f4GKKLBk$VXuU_=X}mH}6j$^~;EN%EX-#-Cu7ZHvsPgF1KO z_xL!_!e7QOcfx-hE{em3{{>T~=G z?sL}n`03oI)X7-g1^F*>mB3;*V~WTj${Tm17tT7)pEE>t=JX3iWxb6n8SSV z$BQ9&DHWn+lyLyZ;gZt0j9s&Jp@Q0YU63;7XpQwaB2QwB4Cl>C1(NHHM;X?;N&#lX z8(VWk-k4Zx1>st$3$cmDOMlsH1G5XQ&I zlxkDb!`Ox6Fr}9;-+D2}cveuYSo<35a71SJ7v@_p4=|n*R4bMt#$FteZ9|1=PNL8Q%-4ng?Tzxg3%96NHSB>cWPJ#;1ZbVw}no`D3~u zB0Faafj)J?aw7>2QdSAG)$yy1 zcQ{k)w$3}-blj3nVW?5!k0G-91b+wYMj9d^kTaplZDuw#*TtaC3%-|7)NC9 z9^)z@nswc0>@0|ge}QokM`Y6>VH$b=r*Rx35hy%re8X}0^MsM%RBfqi^*d!8#K?j7 z0P?fOejJg-g~B?Ud*_WTDSJyLX?@AKmLuYM)yQzIW+_gyzXXm0PF*+Vb40q|66Q&E z{%vHrzMxc+h&#r89FcqXj2neC7~KQoZ9(1djz>m(3D0~q?5Xj0HX@Ms%*c`&pi~+4 zUK$HI4&v9wZEPHPdmsEppq;*Zi$_(M$n_6KhKp`X1=4>qvK)^k0C><{4|aXwi7ftZ z+$}^SUw#-L334I7Ih&?(8VPnYO+gDQ+5J)eXd}ah_)^_;b~g>>5FdD&1a!i6d`gxa zy1wm+Ue8MjMcX}0cr{lpN`j%@rcK;C6n-X#Grgr;2bD4XDX4Y*9bh7@YgJhj>qIh{ zO8FLSYREWi%Qua8mH2x6EzBgSgFYK>swl{yCW%dBxvD8EH3^D4TFFdzIUIA8X|#|Q z(ph1`7xB$U?KGwpj5wsluGgB#P%K$zV%Q@_Ob(A5>OpV4=^iIn!#LA2Mn1%1=Es|K zf+{K}!PI~wawN&bx~f8mIHi~#2x>zU%%(vc5ofE3agvyC0(P58D@Y?1GE7Z4B7L$< zf+lFURyQ3Iq>=Kq_^Rn%$0TU7YkghQ3QnLp4NSv?*ji3Q(-jUUy@^TCEZ}cVO~NMM z{92g$b3{hBGA$J%(DBx$EQalNq!s&jHR1GSn=6z>wQ}u6u(qR#O!!pjVq#nZ0*n~I zExT3g$?P&QL{sS3%e0nrbyfN@yE=l?qo0Xe5JS#`m>VR)sWsSiopl8f10=wXT$75c zZf-qt^@ltYYwPB~(D)^GKbSGfRESj#?Z%m01Q>uGUQ9MkX9R%4nWj#x{sBLm4u!K# zrx>o zG^Eh3M)$UvZZbA;jvQd58*Z3VrM;$|9JPxFOzzy@H;$P0`3e9=m0sKX!Q@M(?VKH@ zT{Fp8t&->vqxr+<8zw31=#QXe-Z%Nern{z40cNEEjIzQV3-$7u={jERh7&JLjTmy> zI=rMFE$M0UM+ueF+wBNRSn7r<&NNBkv0Flx5SFNwG`%0lJQE&^oM!)m3PnK?$Uj5v zg|cs$SmPF=LyYSW=e-jyVvhqW{SuyYDwyG)5Xi6zxzwNwDjjcvN_TCue$-B|OzOvV>?s&Dg(gx;Io&CY0q+b=m}B2941I;CW1fOpw|>rzH45 zzA53F5Xk_e?C0A4E=$4`KLNT&+QI4gmhf`bgHZAP^m>p`KLOunJ|FHi7N{(YTNaiy zOR%si3-@e#6yC?=1O3`2G#An*K%H(0%>}tK4B!LtJrmw?4M^2Hp^$4p-}@wZa8=+w zAVJQ3Mh{MS#Hp@AZo*X|bWy?D^gv`&>H|Tsq4?*U~@k7Htr%!>8*AwJIbcP&I0RXoXf;sJ-d63YD;da21UIz-k zChQT!2?GT4L%Z@$iJM)Jq0khIa*mAjMe)&rl|k*E_|(~dc4ulo5-|9Q6QS+VJhJA%}X0lcAQM&ee^Rr=RRd?lpUg1qL5v0k|O z?Cg-pIulDqMi{3&oava@n{((XofEmKS9sYqu@d*`-6OF-$96P5LJK<6WQ7 zWq4v4?(e}P5+f_)&t;1f|K^?_k)L>9kdC~MWh9`gs}dP*fGcSr2!r^-)YXY~T`{FQ z8xqN2@9d_;h%!R_OhH(Z8){LIh+Y3(lNxsHPYf3{)aCF1;|=!3EU%nNyviwX)49a0 z+-IBfiD$S^&Ba7(pkUTh-81p|M027mN_d#akUh0jwL}RR&JPM6B^o$)_TdH3{M;*^ z`N-Fa_|ED1(Dt9iV1`qf|9%yG|CZQ9u$B=<@kRTOX9UBKABlx-DEp>sJovjO4aV2s z@`qA>`33#{IKd1jy_3eWMn$AKVFi^#FH$nqP_9anTnKf*P+K_L=&ed3wvnkxBDV2W zn^eSU_*P6(Mp+@Y(JV8`pK#^E7gzKoJxPdd0ERp4fq8}1OM1ca^KFpy2dgf%$CBfr zcE_actb1WO0E7X8VOiHCZVnFudn75io+P<<(nHQML<~%N!8)=c^cLnO)n=_=LQlCo za}flNNV?&T>Aakj6v?^T^3#$?hqrWA(nHSGj$4|vko!JjWzrOm{`R#=<5>qcBIC;>+q#sA`$`yiIPf8AgaMxsfzmES?sS^C$lSku|XHH}+ zgOyc6()p--|55DdxUAT%I=#?TBInQ?a1--hy3a4apb@GC1-YLzw zRvTMBWeNA2%b_VB1ikx9M)hFm7M{{jP=`TKT31Uc!#Kwc1)7vGtd)SDwZW~}l*e4_ zI2xDohHEvu5>vi#pF7McLj{elzc0a;qT?5;8_?j5DMErdxV|aHO@Z0m zxt8*gv%Kp!QlwmsivCV<;yzu9Qe3!C&$}sl&IKkvOL67=vb8wnHa8lTd`g)WfHrAs zc%TzrsdwCGd(g4KOn(hr^-k@>Iu;-b+n-p&AFlhQCJUKbKp3SQY%Z6|o$7(^6;cgc zpS(OgbuPnQp``)TkNPzxL#8@4hShTs2{DQD z52JWPT*p*0>GQNp>Rv%DYG__+09t#(JqTsz*QkJM=hw)AOM_Dva9wuJ@YIO{sscD{ zu1=?nN=@bL@7#pcudIHFtX$*`GI>I?>8UMQ9WQsVoI4jD294*Z%7aDg(TL5dum0~R z+yS3(XIwn3fWl9tnjm>=YB-w|JOIJ~Zm9Test0Kby*S44pz*3RBOqb)yvE&kLzLoKW`p#6UFRawN%($02jm2S|>%qP!sk=SUiyQI5 zFzHR|DaQH+jCI(VSU>dtnEH_xbH6%@JI0#Zy72%1>|#E^7tu*i^CuKB%q&60UgizF z)o$`O`+ClqZ+y9aHR1vR|c(*IbFnqjq^3HqQ#Ul=1sKt-QWC) zt-GoKspZUtj9NhW*(NByt|1tXhL~-hyjsJnnd4Z=W*1*x z#4B~oEV*on`^BjEqHV52foqM-lWB2aGxHBx9NWsAMD6%;TXR{5Np~#yHlv%_nSR@% zmw5&){^)ByL2dI|fAeZuoIcPzf&M@_wB!eFx#pAf2X}^-Soho!CDz?|lz9k!?Cx0e z0JaGs;))W`{=2E3@L-DB=E^HCWtMp`Yn5fY0`rFd`=|xs zQHyxy=9aE#u2>!hV-}j{unj>%W}4=EL$8(QdLrN3E_f}sIbP6hIV-Z(%;B9>@MV=b z+fB59XS#f&c`qYVR3v{Lf=+ERe`9j%A>hBo9O;ZsS@G>7ncK|W+18Fi5Qb@pE^e|` zKs6UzTEU6^tnHpa)rL8Lny0%ES}6Xwc?Fwr9IM(0L-7}XOg~|^^P-~1r_Ce(CzxSp z%?~Nhau>~P;~!q+Ql70ZnR~M}iV#$|$WjOSJ}`&D*z4v`RNCo(n;CL;V-NKc9>RFM z8h_k2v)nsY0tYQ0ncuMm?v&5|7iK^B_{v<5EeNJ4o4%U^5k?6GKT+C5#zxL7-2a%l z0&2a*?1t)irR5^+w=|r)wLuvZQhBF6^`vQy@M7nk7I9r5&nN9#1>E#WMyQ_Bv^vy& z&PAoM+9av<5)$B{Omhq3+jLk;+M6SL16RJv;?-{2(>&;9$2tE%_JBFjaiw-mfGwmD(K{@v=c(L zf~;%O*bcJ%!~~|TO>=eUt!CAhwDQzO&+bX9OfBr|{()Q8f&O>SVq9W3X z?L3?&rN4b~EDhhDO}_nhBJDmczB!eK$42Da(`V9f@Jfo~3)8mIV$F+b>uJ&RO4@!} z{OhkY6*2fgD1R$0o4#UPQQCL<19UI#8^vAuAWcKReefu)Fa2$oXK6T4A#dyRDs40U zLCl-93AA|TZCWt>!9O2Ls5^fyq5knp+9~>qOW)F-@{jE}XE{Lu);e1r)8aBW%Vk;| z=V|FALVp#f;m+RM5+ItbaPddE&Jn>V+e<{7eiI){1^VidWh~uk@kgNL0|jv}XK~0e zv4SOx{$Nif%WFz#Ulog^V%COR;^`0Gh%F+D;3Bo0p})N=v;4(2j3lK)jU^_4I#XnfwgjO%d$C7vXSUSl-;4gVSQu{Ma`aZ+;hxn}op*&OrMiVJk|(sg z!{8d0Y7*W8Hsn~2P)|8>faM~shK?gFgXy=$V=Qy22c9?C(uwLbV7kRb-ENE7mJIss zj=7eLY*7{=_K~gagZ~nXj(72>!D`D+HWY+WCZqfXIiB!%jb$S*5n8pu!Zuxp$5I$? zX5kkPD6`38q;O4tw`>qVkHFpCYS~2LmhQBS77FL|hs8qS8tt)c5den@U$^yy`+F_> zDc-gM3)__RPs*!!s6=@kj#${HI(ayhy`ZKiygq9A&eNN7in$RHQz^XH$P?P1wm8BA zxAT@=0<=f!cHsq!m2J9@%BWq7W!!(+a-TY#ZGTzVGDG}S1?KA(Kh|L~*3>}oyK6b% z>=}{iNrCZR^HY^r`b-Z z&?~JfDlBXug`Pgv8&uL}{?^}EN3ys|+Tk?%7C&@5v5q%-StR!-$1KqM^41_UH`3~d zx-YR#LEFk()s9NT|EfeQOC4sUR1JS({V# zDWj~P>9<+qtZF*4A3xO^Nq=x?mUS4bcqFPjx6B%VOmz)G@MVG3&*46xO1_oldJe~^ zuMS|`!*t-fVx{#kt(d{9t@~K%ax-LrXULBEqTk9i%s>s7JS~G>@3k)Zzt8-^!F^US zYwVcX$!3Ng2dq}sR>1)v(-A9MhKmqH2(&zEeddhvmoyAOO;1``$Bu*whAM}qJvMj( zoU$Gfq87wKkpY4Dto48sPw$^XD_c@hUQ&Vy+6%ZvGmcWQkZHK*Jv z<>B;KtBR+-!_Rh0i+dFM~R^}4|L5`AqXvzH1eQD?(ajLs8FuR?a02{h8-5?k%!)Qi5Z~I4 zt8J`P`&da`AW&;75}=uK=0KB;=9_qP#Rmi+Zb+;<_7jKt%t3) zAR5zhN@#fXwXyBFqt#u%pN%n9Jq5Th(AJu&By9+@O2U7&$pxw8^Dx^mN@HA}FqeCI zgpF~Z8&yez(KdXeH*s?(#t3t{0po0pIqNBx$rEj(D3_{Jgz2T{R2yU3ddkIlrfm-8 zvTn9*sStngb&icOb3NsGjxe!^@?_)1ZUGI_o=!1P&bf9kH#VVkwRbv*KS*;4!NZz05dmn@+jt z&)L{AkJ5_&t>3TOfOrm+87hthd|zSTNP?5n{U~c3DK_8Z5v~5 zd#Vz}T`UK0wukQv>y!c>+8EQ@Q!Wc0+xAf|U7p$22+_--=K==~=2y1ul#AONVNRyW zKQ_iB_f#*J-`UPnF7VN|T8LiCe6}&>xu;x~e6`)6Tqgdotrx&$$0IxAT~(CI0B1X1 zTO}U1o11+j8x_cQx2FklaHzhQeILp%;}--&#J+;fmiY0_>vT3sHY`Gq&np#)4f22^IYuN=&cJ8QcXUuya0@`|ZM}HOA(9XI6o>+0? zMs~)m_f#b>n%E~%l}u=E7c|d#xrLoE@jd0Tv$efD<)UkA7c~F-Ydbq*?t9ARWe0m_ z%B53hJLB{j@9;Ktv9F*|?Yi502x(R$df4$6R^tDL=GYnM7I{{OdfQpUOepSae?w{f zGr-Qeg_#&|${;&q3j7dMG}hjQU*N?l@bNBtqL)J>?5tBH7_T>kjl<-aYwYd_{IfGkvcZBM3H-QL^FvzjfTjIsQo z{3pAKb=L(!$;9dMNs7+d0qJi9h=wrG0uVc;hq?2*s_&VO&ubK~Y!nD_-sv)&q27hh zP@k{y@PaWu=>e>#z;L6jfqIU`(&K#kiv`&EPkT!;JF8mzWGa+3h zsG*UJ`ZXt~zoiCSZ(4c*ZD`^d=`^AOwcSXge6N2dnMiE~Pg7`e*t^Mv(vmBvVIq z;B5NHVD|Q9=Ca%mL=v1N4;nm3f6KR8)bvR@>!bqaMnHq0%hPmc+RY7nojy>2ZJ7Zl z&OgJbEv}m|bD8%8;Qo*FV5&DSw~Q*TXiL}XacD_!h8NQMWw@ik-WhMWJ7Nyj{5=Tu zTwuc|o_8dahgm)uU)T~6hLD%faY_t8>Ln(;RsDKGS6Ed!BSnZT7_L10RxM+0MZODF zCucMgU;;^~Bt1S1ZjiB+x`V`~8G?Ex4mA*-HqS^D&`gpLPH;aHlG|sr7oahM;terf zGPcrQ>0S4XPl9?SoZ-Fzbi*lWiP7E>SY zJt@P779*!*bf6L}o}O`(|8{l%SsA$Z<~Hh%$Bxz*iz|-Ap9N+;I#K~j6?|l;_~JroHxHC zTI+%HI8Uye83rFbGxJ4g{1KxJE!l6BqhjyO(Ld#BSURg?1(@uUDWj%zq)etm%0&U0 z4k_ydWuBu_YJ)Q?u%=Goq~vntCqS9-Oy)7V1BGVXzg;!6Z)L_#kEs1tN@fp1YR3Tn zsB30YFv=}RL@+%q6K6~!Cb6n^i8gcVmS{7&er6%nW?;k28f6*D6JJr9Vqde{?v0dP zGm8bnEryitnTa@qJLg0u^~=0PsSX*Cd5A6Beh8XYoMq>d0j!$jQ454l8 z?bgh}lyWX)UZFqea5&R3!{c;3Gnf8g`svJ>tb-*YNJ%z+z}ff}K8(ikZzwLYzZ*=x zoB4#=#@PFrYw76D{5*5L7jHb@-e>N`NzpkwI_a8qo=U&LGwYoQr4CIFKzqEi{`^ml z2J-72K3TN``3Hl;vT}vW&u8sNIBWknxD=UHneC!K-iiV16CdRuG{@?*?o;`OTC#@I zHt$n6>lzjHeS@qYw6}I^lC|EOf9z1ZtUiK7D#_FjI8(n^h?xV1s_l*w_%sd#(XUxY zsbGH%&BA#>h>Wv_XE_|e$PrmF^xGq&vbNCQj`=OiF^t|YF{?b)$EA5$7pW5dSd{gR zK6W%e>j7<`dsk&m5UPaIg!>-cy$rv>z%5zKCt!(%mt^q=d@DdhO4YtMi|#*$o%^$% zQMtDkl*s+p(JVEUyZq%We1e*2&iPuFFD+KRne~K%RlF-m?oP!BMy)nD+xy5?Iw zLQs|Aoc)s^qi7Pv93oDRGh_s3gk$uD;f35 zcXr%e0Fa=lK8=__;QwRoJL8&4+P9xjLT^%36v5sVd#`Il2n0xgP|`@~CG-#r*w?a_ zRT;Zr?_y)@eOFx@*44Gw)m2yQUEh1onZ)P$zn^x_e(-mO_o@3Z6j&qi4V1Pl6spHta{R?SDt?I5?Q`G$7hMb5OAN{|FpDH2A21hN2&u9t(Tf zSIUB;1vsJ~29(dVuq})azDpa#>6+jtG&vTg9QwC z^g#gXhgy~fJEP_?{d!^5sNg;{G&hz6e`75`9A9!q0D?0Dba?IL;HNw)S~V@0b#?^- z#Q@rhhU0^o!A`6$<9nl)lLEGt1vg^tI&rk%(1FXX_=;!1kzgxEKbPf&^u;I62eWqL z$nVj$P5ma~nv20VD4(0(f*;Yq{9P2{L%sXeI^-q2D-wsirb)4V$YyKQzmdoR^^do8 zgd>7OWLE$8P_QJ|kkb@pkVnWH8s5WwLeA1|cq{*qW{jgcoCODZhqxg)MW7VxyM$b1 z>@jd!0ur4BgDd)lG^3rqD?>t-G1eFawMrIpk+B*iKQEKPw){zo5c5EHdVGj^pu4v+ z1ojHz+G8he$VSHRXH|J2b!hF-(ip-x6$F?D;pW952WVuxGlhs4HN*WUg>+^usPNli z*yg7Y^YGWPnIXRl8vgp4Lkhw$sX%ddx+mw~pr z6;jHmhxw7Nc<}9zQLHtq8HHQt?S@C)4cX6+S>lkVAtPx)x%xb0I!zj1g%r}{x3?iv zXmY{FknuFx{%c4PO=6K`B~519N=8$ceYTUpr%gj^mu}d~S<=SJYHmy9e|brLB(3M; zfn~0esr0R=rmm!%`nIB>pZVzfP0P zU@unGN~h_P5Y{i0-&wiLvap&tTf(|u>36)Vb0ohD_h1riRZX?>ULaX4Kr0NvS}k0r zUzbSCv*k?{64puB-({*^CSjg8N>FgXO36;D(Bst-)_o>8DEGCJ#(WPB4caJSon`sm zwz->tngExP`lSW7-YPLqUVgA$vQjW!|0>Bb;jH%UlE7ZHqf;JyN*l#7E}m1)Yvn2&RB9%GKw~m*Up%$Rh)iK zqNL+Pe_WQ-X6@N=F%z&2HdL#7SK@+dE{yO*zg?GjqgK1?!4T|qqBXZW(8X&KzHf5i zmgJZq%gEC(JPmf>OV<4*X-JdTpG)>K4*Fv-YL)Blwh%yT2qGv*KM&67TVx;F!P+|Q&?+Rl_d^%#>KqyYZ-^rE zIW20}&;XwKT-VSytg!*Jwj1CYuh2fMrV{`J01|w=UTBR-bOxXE3(a&Cok0yph`rGL z=Ajl$i9 z<5ku@)Q?qCuD1WyC)9ye`3wqV8LCBgAW5`t3u6#{n2Ye zE9sn>I-4zdf3GBYxu2D84c$VM1Gk56qIpGoEO`&^wd76RZ^_&GVCYtw_wQdVc{d)n zmvs?pn#7Q1(hw%DyKwb&gnHf#aa=;V)F9u+CP3 zXy7)E^vB{QVL?8kZ~W;uXnWZ1f4&DMcTP{4pVSNO+7b4ZtwMmGOVF*%uCV+19j!Y~ z!eKXA2iyqK*_T$X=>5(x5A=R-7~>ERPzps~uLH)x#UoqdANGfxvH_vokA$6PwvhtP z3`%Q&S04@YVeFxPr^X?TJr-7J1=KqI7PjVJp;mq}Y_c@~wmKWO@?Qa*Qw`-s^sVe- z*w%jqujo?Pa=^p&u7It+NC0250GSB6~Qcn|%8G51O?ztS(YlJ9;8_iI+QaYu?Ov^+{JLfjL!6 z`jl}BL6x6$jR(-?4#e5lPCA{~5Ykb~9tApXt8cu#lk@|GC|=xEI)|}h=M;SvWT_i^vVXuz^%M!U%~0vcQV*$AnJ@JS0@=kY7jXeYP^+?RHAfotRo z>23IL-1(!lc`c;Qa%zeW_BA@eg#7USkRM%g3EyN#JJfiLYq%r9oaPZewHaLNbPvA^ zF^xa<33nvV77q@e?*-R#MR!7uJD9wqZ#4v$bH{=;oRczgIkVqnjm;hb7lyTfM@1LqtF-$kyWzl6IJ zLsh53P2}%C&V}D#3_aNRdbHFZxry@Nw4p!3M?0FWczZwG#)eIl@0fPz%yqRG&wm_l zumPTqe}{V#z71Z5zZS#Q^JDmWcpyGt6ET$pOR!x;6F8W$2sC@Z6jRmto~z*!ncPFMc+&l#mK2kge!X2IbtOn$A+`r z%WIW&jd=Udn|Q(yjUE~ighG2pi1FlZ5#1TO-T#Ba@Hx%=do`ZcE8@B}QXg&Qfr|S@ z9AGy{jj#8QP%`vJIG=$ct;DGHq1N7bpCsZFL$}v#QVP~dBgVOKCgJx95wPBXSciXA zMO?AvlbiJsus11pw@*q0%-ZLYHK`FQ7c|q4)ZD$xUVDv#L57JdLX5?5A4_%IBlQaU5?#FY`hS@BFX zYa$r7&9NZuTN`1;Sf)8kN;X6sq)eonBN)D}S(vP?jPPV+Qnf7tHXGp_lV26FOn_r9 z;|P|W!7WCl?TMJc%TcyJg5jtm3sCTZh)oP{dzRnt`XypA^-JXOh-m^OS$ZO(5yPq= z%0!9I21M4wqc27bu|cW%iQf3?m56TavCrYz^Bs$W*CU?sZpZs?M?AITA^`7s6!C~A zx7S3#p*JKh@Z^`IYUGlt*AX!C$|W1Tjaa~_GOGDIayU|3N7hBsKf*n6?&pX=-ohO? zl4b8OA{YmX0rWDpYp7l1aa-h$;VH@qc3p9@OJpb5u;B!8(y<%gcNt7c-g*g?$)45D>Z9j`Jc~-7wM<^;bsv;>s409~dim0*U~% z4(CtQEGW_g&9sgz#DBDo>_`>xYaa=%BIm6qfsrq5_~hSRB8O8`gZf1NV9(!OJUB9k zVMh`gs>4t{Rb)fFCo=K`ZzP@{7x|X4O5*eayj#=^r^LvKl<=~&$a{PBt@QZs6I-w^Xoh z7b1P=Ba~MotEqPV?nJs%mDCR-Ll|cH5tT5M-FvpEtt8PKeRysb$oma*=^z3{;-F8F zpDE=iE7@>I&OEfmS(c1uG?9sMa~Ii2%Wj*v!d3Q$=3ebBGr00%v}hvh%rJG7vkE#o z4Mb@6-o1XaOCGmI;*PStY_AOdsC=f(8x5<7(IFKMsD-NAMA)Oig)$$sr;|*_)R;gu znJpWFH+7b^VJlKR00ICp%I+p(*rX3c;y_CH?%b{JvIsj-4eHomc7xrdN%+Af_U~ zwZ}^)$x^{UY(GWjDIkbt$UXjrGg{e4*%7~;E=v+Xj6&gl%DTA0EZI~CYC7J(Kz5$3 zN$1MhP#jPp3%524iI%A&$nJ~ax^@%PlW;Aqlx-Ko zwF{P+Y~WhCM|N63I1EMA#wQJM>!Y&Awq{{k{wA9(Aj&CZ+G&}A7;x>ZY_<@Yk-t*r zi>}{*;0m}bn+i7bL&XRGkmU+uNpLaXjvy>!Zp$tTVi|BB+V@W3U48M>hcahJGfS5j zvP*(k5?uV_Ynh3#w07dhKN3s=^LSUN7w_U5TUXrrtAifB1M2(7wqFGd&K< z^vGTQoTl`@@6;OL8~*Zo@aw7_@50Hfr7s)fCCIaZ(5QFSfiwy}QX7b|ELhfFV?q z1?Zy1VZG$AaEl9{t9|5b<8+)PT3o-MoaGD=b5LvX#sTuy4gx{gKFT%2P^9b9((F4* z&M<-QdnquDmb(dxnE_+uhp1~j$II8TyGDx(CdgT~#QSc{pdaP0D3@VV_FEzvEKg&;3_l%w=uV9n}P|~>L#Q&TxPh)kF1*Gm``6MdMmZicu`BuoA3Fc(K zLJntjaMjKBRq~YrbVAjS3mkBxHS#`!Ni|HV+9+QkfD{hgET1lz&%~{AINFsH zsm>1JjvG@YKge2ZS%S%7m!-c|wnxse){rZ*7Pzl_k-+9UFdj+{n#`Wg9d zwpZw82(SjD{^w!kT$>wmd;Ix={2@hsbyNPgAXLL-c|DBo%ZEAfG;5yAv)MkzQJUp_ zK0Bft1<@UG*Vl4q0UjNU2o(PFjl6{|ZEjK1H}GmFt&scT@K16_F;6)|6veW=l-bpT zk+emWJ)Z9v^+*s~f`U4RcMZaYE>VMELw5*Mwa6&zAkfL6c6aOxQ3;d(5v(4JznhSUId_>n!Y}+PkC#!AHY2r`sCwKM7<=vw02_gh2DLA}mRDA(mInFG1q?pyUC-xf{wMh^m(3yjRWuJqh z#xge0q=!mb#m?{A1CJgawNW@LfO0~W3%d@$&qAX5G1q7EC>eU+uu(f~Ba0fs$O@Os zqYgWoJI_VxsLt>Q-jEhm4%=(MyE{(Ei`q_0L8IcRy(0eZb5qm|nqkJcsKzwIksqTj z@h=5XmBH9k0LUR&@oN;zVf0+xN&wKc8&S3K zt>aOJ)M-g)qIOZQ23AMG);*ltMdzdXvQ~5E$NbE0XJ54YUX%}aP7y47?QDw!Z$%BH z@0;W9MlBbBi~)HsYYPpg^+g$XqC9ZD$5Ai?gzIcsJ&R)4Xu#|d9uEPY57&oR{~cAt zS|xDw>i_xN6OVoq^*0}Jc+~qSOuahzqs75KpQ8@byN|y_ZJ^0j-=b!*7F+J&Ztl?@ z=oxeh@N@g<`_|?L_K|aRI5MmrS{Ic+fw8<|muMtHtG!3pLUrAuwL-iJ4_r*k^FGh$ z4YUxO>O|Yq&zk1uyrO^vZoD;USh{5dr6}QQS4PAYmHU7PkHmcF() zDeG-?8om4YQ}i(2svQGkJlUp9HAAx&tj@cGJL|(kcd< zJ=rnl9rbT)*O=w>XRiHXmJ4_T>5Q@m#kk_2!7)-+r*a)&f`VTCsPVGS1sL>XIgy)dSm3vbXiq<-H=d@C8EAGds+|!- z-`3qTV^+KKbdQgUxlcz-_DznFQ71K;5p#%PdqwW)AX%sHA4@TOEX@&#&hwvw&+4^e z)T2CR6XU1g*@49#Wbz)vaRI>1AI;ny(;XjJ7Bhq`%y|F=0Ah4yfTAv1zcPkx?FEOV z;#==Wt76*OqM8AtJW%ruF>KS*IJ{&$b7PE?0Mn9jcxB8UE1rwrwivcW50p#B_86A) zI?aAc#vO4?4&}0aSIkdLmAgL%m-lCDy{R1&55&MrDCZvM!>lw&BGKXFLi9ls?u_B)Lgu$4*17P`N$E7mu!vS^_^t`t~`7WiwlgEF3rja4|k@rKqyz+0PLx zwo&#m_KM{+>FlV8fed?`98jT)Vgr{Ib#hgF`M%*64s=tTr6BH}ik^b(o^de75nr#P zXlV`->|0+EC7=-XKm-y2q&;?QsAx|^Yj{(I*;gLT74R<2dGJgN1#AY#CEK)9z_fcV z`MJGf2~Do=pnz@9xx0UNRlpJoF1fe6!W;v$dMb9a4FzzH?{2B!e-XXl+pPx!70l~s z4XF+&IP--Qe)fankx29cUmmO|vVm*paK%(>xc(tgTqjo?uGqp>HoRuTLuUIfcfto{ zig*#)^lKegH1&OnBl>H6Y<(<^Qhc=)J>gAxuC5n|evMbKY%4+51*6I==u~=7wbG!C zMJ03sz1pPk#DPkMnyp@f6CFwvLs31og6(@f|9jkDqqt&?5>}OXpq6??B~ybzsQ?r| ztTZ-B5y%!x98xmh#OGux-ivu=rhEn4L?sR{8y_lAFwVE80K1He>sCCMRU;H^LxL3Q z^GJo7F=8=zd;oRU%drZET{NL8r8EYOSF~WIQ8`gji_*9-S;4S-@pl^arz(ar(jf7l zjeVv=g}{4e>nz1__V~@lZD%Wr1#wZ7Dd4OIt}I2(SFB>=g8MH}3}fr?aIOuG`^t8l|En-p^d)JznmcctQqBUGc@e5u}h6qET9jV~Wk!0B^DD!l24VwNqR zl%7!Rq<8C{RGg)EKU6DVMHrX&z*`$Yp3@JwNYKmMgKv1(y~!T@!QG%1`GpI<6`?RcWiKPskD`bVr{&9W@C ziJk6<46#}E&UAt2fBuuEOho7Q#!AZUMUE)TKGqR0af|Im?fuI$7PceiRA^8qHl1D^&Pm)r8nqthEdHgn~E! zF&0tn&Q6a#L5Z)O9h*bVX+1wSjNYBPICc@+@E)u@?jDzl+Hd^a2z|k^_W0|@*rz0P zMQ7`IS8b1N$2LjizhE)IKBhtc?qIAlwaM#P>_D1KJ{=2vQ!bo)pN)OjZ}#n*b`Epf znm5a>5XB9{Q{CdWHRAJxb&O+NpTn`rMs@GUx5Gbli%VsUb_|kDu{X!~i~(`5R}06! z*|4}n)Fbah;ttT{@$k4x>axkvaqxMJ%NwtV+enkXadAy4f>aX+O#se@k;;c;eV` zag1|pypUmL+yJz&YrH=iwID9H$6_I?2RO87zK`iXDQ=*R=mUzJ8uu$(b4{qJ@ZM>0 z@2mi4`;0gv8x97XGu8mnZ%*7YHVB@|__=ZUY;UquX8($~Hr&^6yl-J#C!)@arEzQ7 zDGk7Yn8aH3ah?Z&&baT2xD`a>d#mDB3t{87CT<(++liTt4>D|o&0qd3aPq=Mo8x*o zh(6#gJL3uj34i+MI1jvce_S_5Kzn^WE?*E!>B=~JlwA&x;_A4zB(k`E$FK`=QbE43 z;G*Lb;#|a?{4qoa>#Y<=eX&DEG~ckybikQ5HCh9)p4HqnRUFI*=#ga9Pf#0>c{)y zzIO4}f&?Is!SI+H0FL*%#E06#)yXrSGxnTUJZJ0@pZG(>D0RJf2jb4OrtzHdM_R_u zBlqLm#qVbAoN_@3mElPwAJ~2v+SDz+ob}TH8E2{K8E=O-b&r3;*zl2Y6avDqnJ;+{ zBtI`37C!`~4T$Gw;oy?q@$+F%?U?p3Cec5hZ4tZ$7Xxk(V_Xq#Rm0*3iP7Vt_TE?# z8o!1ybf}e~cu{!#Hr_U@mdE?R*4AJqo)jAoeOoRmiI0cAEtm9F#*+h8Nro1h_(gDl z6G>i5i{HvNuJ~OOUqk#NVU`TRL3!~lV4r3vabvQDQB(s;re{RfHJ(~k58oM2f zheONe_>T!fjwjsB}aC)d`gzY3_g{e~%9rU=vyk#b@4IK!!)+hN zYi-fHYh%3eiYM{jV$lr*vs!zte)9s_A|e15zmI=q%O@Sb#z)%m$t>H188m~dbAmt3 z(AOhD!nng0Ar^sr<3@U+HXY!#txx@g#|}KPUd<9%{fYrKjt?~4yKMrzpm8?M=#YXhJnL?{`VUDAtw_h;W6^A3c&M%oAP0W1}A{=zdYc3Ly>&El#KrM8sxf!Zbo;*64&aLWq1T zNnqXBjl}6#ynk%M5<(M9xf1=*8Lw01+KJFg-zx7LQT3!w;ql3_r;#b!u z1PLG>g8^zQ;R?qpSc~CWfO*cnb|rKp_w)8ATp>1u985Stu0Dqo4v_2RBME<#|NrGg z!dde7+>;5L$aT=^1lXPW5_UeDP)V-)suO%kzAKj!s)_AuuO`%Ho0Z2E$QU&GL4qrq z@hHI-XFp6R6kxAWdd-p-#t zC+sEmg?&v3BD&4DQF;&`ueVpGvNqcN`zRG?zqisE@AFhLPI?8E00jd|TcCqPOWS!P zTW@78-m12~%2mXgi~dS3G8Z&dT9dz*G~@r)wNPq^HNUpw|DG18Y)q`G?5t$oR1f%^ zVRlm=Wh#crcz(ndu53N~LD|9%82JP%PZRy`hw#^}p-L_;bEV2d7{O_k_^S|$vtDH*|I9I5w&+J!HW^YYM zaKrP)C=JY7SWvc&Q+Bop@_CZ7HZjm^x^fO7y7p%!bUZKN1M`#}$=@#*DQC0IM&t?{ z*TcDmj!w23hK6obF8b$vEW}NGm|60|9`)L!yu?`J&-_K%8kcNVGR}?UYOMTP5ol1t;;6cgp61;w9~)66VZuy3~AD zP7t8WYTvI)Ayjr8P#GzcVb&@^wM)K@%25av+}KVvpK>|vpb`|hpB+_lh0Q8f_cqZZ9ou;)L=Wq(W6M7B`jb$Q%M#kdU} z492uo9ilX91**mfq0zmA>Xjh(RCiLPTa|sasf8q6Re~Djf^I6t6+SfV-}g|(Q(5%A zRbz$7GOdqFBq&lk_E*iIT+R;^6tz`@RJ{aIxjjS$n*wq{yD&&KTZk+dhO3xobaI9H zfJBu=x%8C^YkktfReuVI+}N^NzFsI$sgmMInQAbcr2`EBUMp9@(r-?yq*&E7My;R+ zuf_A?R1byngDK>yxs=*vm8zIhQ|p8k`iXiKeZM^6&w=6CF^Wek)zE>ZF_Q?3JwY3l4EzMKGL84v|CjNPB|kPst%~?v3?GKkZFT5 zPpaym5#Jm=amFtyM{CYdJoUJWaWiht`E4+uCQydgsx3CIKX0)y{i4Oj2A3^1Uiw`H z-+>L=tZQNM4OK%yhV^+4&f0t4-V^V;t9tLi8}{2%74!5bA{PeK$^5Gj{{5xOg*xQT zTU7u}Hv6P%K$G%sss}U~Y@`02CObK(2MaQ+WaJB1{MJ?d-ky)jLABL1Dg*1N7Ye9~ z+8_=(sGiz|`Yt&@eMiLmBes$HGQB&Xg&OuT;=<3Vl{&(KPiA#eZ*fA^zT#TALqD}% zkcrQ4DI1~SxNg39;9&IzJKoOXK^8kD>IlZtM_w)3APygPw0FS`!__6!FRU`T~I@e#Z$SuJKg{10qzivx4ifqXGX zRe5Gbm*uNP0&H)K0JR=&Z&b@^jLaRShMC%2jHH*Shf;};j8i|QrRU%z^+}px(PTj- zqAjW!^`btinX49~*d@-Mc+w1Y8)~7$&t?nX{H)FrP&W97V0g$PYQW<8YS@*6voK|$ z+FW%X zYFJUsS+jGe`UEZXvv;da)S3nd$XzbO`-AEYu6%OGS+$2CYx+Ar_27@()m&1)r_E2+ zRke`8=QhZUYKP&_U6}F4(eCv?y_FjC^|5*Y95>}?TMLKRsOwWNjeesp7i3Jp+vnb> z#6=_KPr=*!NuB1#m)c%VngfDr1pM&iyp|1W~PVRf$pm!J1mQ_y=K9 zA_9d03btV&EUSVwJp_gD>1d5F`uL;96JM5ULTJC&C^MU`lWUl#!EpU2z+b_4>haiE zO^fPJB(xm@L%g?GuS$;OL#PT!g81l2~&A_3}I86wv zK!!EiwkSJL<%nSyA~zbsF+Z98IB2@&7uF*39eVssO$Duwy3Wz;p(a|DX?_pGVF@|4NIoPq&!O!d2Te%zb=L-UDOcxGdL$8ZjQdOY??yW=`xio3&$~hWYb_ z1s?-`2`!6D4r^`;s?rV~*VI9Ff^&!TKe4|%WSn5=wrIuX@?7VQ)q+A8$sV}#px7Z z?B}7qWyLpxdUq{tvHN;yTTnBKYHNL13orLV29L5qo0>eWMP&5FZT+;5`RC!*0oqvl zl(NR!_d+@^sAL?Js&;{}6OemL?Vq%>>D*SkN|5&nDh5<@S=!%G+m%&}fFHEOk<(@e zPdvA~whJuuTf{y^-4#SpB>6H4@1Z`s>)Nx6owt_Z-g(+sj+EfSvAyo>X`XX*;sjHbR9G>waPbF{EZzH~E;7uu9*&2922 zq`gmH=?*Q{CeQ|?{W9$rMj9B}%n7V*8vHg08E^S{W3*0NLu<7~8?{A@WcU#*_c+3=#|ayk~qwsBZ>a(oal)HoD+R<=SV!4pg1)#xrO_)X9MiGguZ{lWkyP$-APu=i`=)~Xc_z-xY zN<721OS9Mi0Uey0XrOZbnx5z@Ku*#^wL{;2eBp?)2Rs$yjGRPRJO3abamh=exk=?q)gQ92rhMR8d6Pfn3=$=*^zgwT!-Tt5Vov?a)qE_Vk%m%hu zi?jRBe-h?|PV+{GX6k(K!ySobwy2A&lHU&L=$^zS{~RAx068>m+6yXwiF^IwI{nYY#vTHY7qI;{6#ZeN zqen7pJ|aM# ztLHM-9li7j+!Kb}!gP+vJ=q+6$AWd+Nc4@6>Q=GQ{0`Xwp9t4oWY}fkf0;GFgJn8c z622Q9iuyN5xy9(t{0pQe#Ok66sT=XSrNWhJqSUSX7f2PVbqfipT8X-~!bv6Sbd9Zq zz+ech>4eYHRNZnRKqNvN;J?yzPyPjwMrGQ&n{xnE4R|1PC^$GEDD{ zZl197K&MaGMd6KObz0&HZl!XQ3A$#sj3n`IQ*_;+-sO>eX0ca0IBmA>E=Y(aNOysB z5gN|d9VXZN3v{hW&F)sAyGs6kyiB(gxZ}wyb;#kL)5cKyp0qQ&DyqutDkat(XLOYg z@7bfvCEVK`;JI5J;<^8FSQo+A>O|oszv=FoV+xm@(bZwB5~2_w*(3i{TlgY+PM1N5 zR$k8^)E!H7uDGY` z!Xlvv>mzZ(6WuIJ&t>o{v#$eR^F5dJw@f`30*wIL9_PK&Eh8@S`NY(H`3}_Qv+kNJ z_@%CsUPgjF%R^sAg51_ie~xr#ey^)%>b_W>fHpSN|IFYO0Dz5rd+7uCU3=a)(jOjj{-z;#>dH?Y)eW zD7K6KpfFXAbtfM3K9T*A8 zQAswhOroFrS%_ak!jd_N*r&-WvW^?X0Vr04q)qx7p7`Vok8alk~q3);9@Hyg`-)ZejK zF?@#p8%t;6e=zOwz1e!MTM>nLQ(DdEO?kFJuVHKxWvFtM-X33DrvKB@xA=XPz7cbA zBXFors;vv2y;e{97F8R0vKKe;WKpHQ2Se8agBDX5BSC|f+QYHi`|9|*qtZrgJy6IK zQxu-RORqCWEb6{TPlqx3?bUx~5z{=V<&TdY)sMCj9Y9-VHynnhpU`h+Xc=LwtsbhJ z`N9R2{igq&0U+EesXyvhBom`!ceGyk{Ym{wYqYtn0~}XzRv+rcCtdFA-#7~Zw?|7R zktaOUd!VK|dnKxQq4#6ME8;s8Ctm7@+HvGi!;kuTY*-~Y^^-n{C4@n>5?u0C|J;h_ zP$EjI_~#rjz&v7p{A1fBSa(WXg_hYTv2@ZnEABfaZDHmx*d^(v6@+jT_av5n9WSFt zQZh4vGB1k=VYQQH{Bs{5j>GgiNr}uHD(WR|qK;5ENSedSVTFGZ97@a;y?Tw4x--;$ z#1;)H%=M~TCBb~9);BuB3EP8`#xR=3Vew@b&l{T5*nwwvN}3eMmp$A)CJCmFaGYIZ zlcF8@WT7tUgAJc7O-;H>jmpbRGSZ)Y&QF3V*WAyJ6(;%l^2s+dliXbRr1z2}*js|j zu)aKLsF+V$uTC0A@1nIyLv8uH&o^1_j@y#7ncn>Y6NG*vI@ZE}>`F4)^LY~wTk^g; znly~!N>3&!D9PPtl6F$+<1Qq@R@EGbpi4!e%bxQX2=6%&FD0vR6uP`76QGM4%CY#+-Do+lkW?qj=hSh$YK_Au0uc^h~bjfC^ z=O!n^Y7H(!bY`+y>L=OB8|mG(1(v&gjLGn+h|7C_lm)?5nmmTyb)IO+TmED6F?!cH zJ$WD{d2(*DS>IVG*{rW@esXUbXBEqmKQ!YXvHnEzUY73bxogRZWj(SyvFq97tq#1% zm#!qAWDpqx)&XyxPQ?q0zD2K+8#?oM*M3XhL1QP|CIwEf;nb<^lyaNiwRcY$Lhq`4 zQeZk8m!Wf=6tlA&eN!rF89Lb{rHbnCbGsBHOHUIB$Dx~DQXKHo?kTsZ^|J@2OkuDd zS-=p0+2h@VQ(Dk6^-5ylerOQ%QQC;lTrNGHpTsSP>nzEAKRqReNm*{PW zQnXHNbc_>I^@fi)%!wD`3%lY^euYX_tEPpR0iZ<~&O*!|xX3 z0nVx4toX-=yQOaY=Z{AKGZP2~3?#;MVUk5(vpie#I&!FESlsXGfn~*xfjkmo1+|+yq%Q4_g zaN?;%FHe08AG`?d@XFM|O&C~#j>*W~JJlacE~PGXbCY3KzOIYIQj&s_NsMNicCtmwL^_B-ucd=s{%kU`%u$xrL>N;t= z_#nay{L`lSuqjEZTYq%DYuW}haEk{&7pb~i8pA{>47Gn3mP-Fc*^AaFuzy+)oZd67 zCre##K|nqGrLolb1ONktM=(R}rU#r5G&t=rgPvv{8tz7osUG@`|@#D%p^3%SsbZ{(isP7|NSNz17 zRs^&EKzy7xI?daOPtKp5rgP?#u4QS5?D*vE#cBR9tMH~rE$mT|=F9sG_g13J%{aMACG#4?S;lRZ-IN+Ph8+I%0xjjujO7o-1Q8j6!D1y_gw9^#f@!K>B zeZ@`$l5=A^Nk;ndxTd1mvchowF@J-Rzv| zqI4rgP>f9fN<~a5Nspm-&y7nrJ4ZP&{VvTAJ~_RRX1MZG`VRWEB`E#5Ia!fT&Zy_2 zZF%}ZnjEw;eGN^1S(OfFW^x(!tVusalRvFXUqO=tH>ATBQe1`)8!dV9=JZ=sht<2& zotp`8WDio8`J?1J>GMSM_zA4gemEo5ycce${uC=0lzlgyamr{Q&bpUw&k_>QTsA@O z?@Ah>a#3nsboQl{E1L8$-2*rME8R~dnumXQlAbLVE#?V-e38yFH+k?kN_jB8qCD8XtR)+S>l_yC^@%714aQ#7_0S81Z#vaN1^;Sv- z91yV>FHHjj;Ht^UfCC~HWB2R~X9#}mSCFA%c`dgXR%V;whyzP9b_kM(pddgIh)`Onu35_Amc9~stO{Qt}tmYJDB0?|zCtXk;c;*qVe_)5k> zYm~Se`oq6p%cx|tifBebX9lG;z&&qdEMQnN_MM-*ZI&kri%N^dNAG7OIzr@d(;Ip} z&+ubd67#>f`1$LMv$Z&r@mae}SfoO%$4ebDVUY@#40Xzc(Q_{8;gUI~5uaS%J`=hV z++Aab%#mU~Y1=)sy&s<(EYF0GFkA-r=*)6kK6xlU69)ddyK+_LTzdDDE;HAjzdJfJ z^B_%z6=r5TqVR%y99|l}yD;;W0ISmQ)TNor zV6{Kt(sx-V!>0cv28cjuc*63`p9FC^zABTPX+pScSev;>h%R5(WquYAGikVTW99+M zrL;1W;e3_vx}4dPxk->N9d~4sgBge}?{Ox>V%_gt2JOnMVdR3r$?agD0z%`!0b!E3 z9Lfw}*wMgjM+oUVrs8%dGM6}`-DUN?@tsSVEE{b851>6NjTuj>l z^YY=J?6aW0KX}})7H;H}1*45zhDDxPhw0ClC+n3HpZ8u9g24T( zsCm{L%AtPSEV4s8dD^NDSqIsgSFSX7M(r2FNl+iVXB`%E3ZtOz(A<`;%JRiu`(-6F z#t^9}cxYsb8|92`f5^H@xj!G46-AYb3d@>D?|zeIkd22@t!i3J* zW}ScNnr+rOq))b4=g5KCW}O2DWoJ^ImkhVuO%KV2F)vPMQIrMuVsy4y=h=#Ev(6sV zvdua_{3)C4_)6T9^K*6;tIiOAz0u52gB#wzFgv0aAJ9!VWv4Oej;@>UeyWO;i?{m*0^S%4o z<{(dfV!7M(S@s)RczVCeHdlnzZ?gMSmo)rle%g-L2D3-DSs4mx08;*F<=r>KTTe41xmI6#T<1Lt6$TF#I^t znt!}EGBA7-MBL*I^9(E#0QeuTS!mc}#dFACVqlbW3O=#a@DqasJO_{Eh7**-la&Uh zA#LJ@fvXMK%p5Y-8UCOgqBj~?mQ{1U*s{ss$jqT|i(xnAFkri3K5ID6-66miH+C8( zQw~LY3{zP-?AvQ#n*Pa&=zP%dnsV?sVqjTA#lhqsHAq-KopL`OdE9V@a)>)=V4AH( zVshIl!#;)&LAc_A;jJUuuqe_SZ@6g~!W2>$4EY${F|=;O6>ogOC8t#YpLA`Pb04;Q zhk6fNcgca5F)n$bYtDX}T-H73y)A!tecv4TKF4Jk)jubgVV4$C$mKXRC}*Ag%Ni)=)obxMvTFvwvnCHs`dLecAI{}0rFUPQ&uK%S7I-!17`t>TvG?Hc#tEr;U#nVD`x_;WZw}xKg-cmBi6mLNcQl3&J=og%r{F6 zM2m9IP}90v=b9tK**3Q`LutV|F1h2Jcv~Fm<~Cum1t3i5>y1D$zF9B#M@qP;QLeeP zY-^s2y&0-@z*WP5<_lMp6_isKH|m=UtLnK*YT=OFaz>^Uv2T2iGkzG9JDSohkXq<& zk>@UPWuQw+6RP&!?}%^da&2n!Oy7^l{mR1B0)_z04*yh=JJ*IU1)av{!t8&pKzx{x z3meLF$zLYr!tp9xa>C@?@%DVu_vc)5b@6O=F1%!O85YgWg_mqDsY1DHeE4LYO}Xa6 zQ?og@cOCw2pX0gaD$DV=+!(4>UUlv(S~(S6CXXn0mes<+S8|tA+;3NN;XDBD5y!9P z*0tl4FYj9J?zx}qOz&QKVj;QynT2HR^V|&-q4tYhm>kc6?f;m&g6V@b@eLHWX4qAf zCv)I^Q{}^7+1RHU2x?&&hg7Lw{bfEJhSMY4fD*RUv8Awjtc4B zG7lzua;CYp%Y)ZhE_uIwUUMo={cd?*`A$1--762iDsdUk_0Kc=b;ZCubMvAYlxG&b z(U81Eiclu8&`Aoj(D4q>Gs}BEA`f;2=5QCtEE$5L^5)aKucGtL&3!}L5+$KBEz+6fQEC$%gRMV?Qi@|G67JFhwTJ*0s+M<8# zc#HnB$rk-vPPOQ-`Prhsp)BuL8iqs5EsvO)x6-0%@M=qjk83QNu2`3M zf%5%vOJ0?;XbJzO?RYZ2HQKsAkKr2|f^TfKk>Nnz1%}G&#b0?H@v4J)_gG37`7wI> zYaYw{9Q<}L{(LNNvo%Pt;bb1mdnv&{fZ@%})Vy^nZx2f&4=97M+r_-Tw!nm&gL3s^ zo+ol&n(vEeT+QoZ1-E~>mdCR78i7UtZO?a*j$Y5($TAn?e_>Fa8+i?}_pQ8>Hlii? z&b_=_3|3>nJkH2v2o8Lfx5x<|e)@ghK$h8S|Gz;V$mv*~5=Cvz_v|$d3E1+jB45Xk zx*VIAzXJq9qZa40#8!Akeg@vXB%fuqGln1EC1KNfMLtW};GUhnGXEuugSa1mT%Dgu z2&AmbXBp_=Fe=vPw_)g6BKUDA4%wdnH$(_Ott0GUei2JGPmmBG(HZ@bNAefCLDW4z zpWogAuKw5aAK1gy_CbDMavk(6AA!;M`t$s&P?mAkoBWyNI`mWiNJoac5gtDb_ZAmC zvKZ2%R>3PqpA18QWREv`75wT7obnqNv?ex`w<)M1B`LalL2VDXW(O5;HrRy}JY^`> zMEt=h;Mb>OoE=%`ZMZqyRg@I%U-%!wq<{e*I5Kc2Z z+*;6?r4*3IqoN%JEHw%IwgZx8z#2_;=*X71vZ~-0F~<>2+*dG>!8P9jYpgRG;PU+i zFIWo1|AA?Gs9-Oz5_);0fMrvH{{!g#OMyS5)>JRfyyM3T@+mLLZv~@-=!N^AEPxpp zBtB5dnSw+iScoH6c(y=J!|-}_!2^nY{$fF?aO{Vd3Ya#c{O*RzEt&o}=}N&ts$aKj z1v7>7io0Im^e_1JJF)PQH*fZh;=(}YxC5M~yu}Mf7J9kz)DKK4?88^Z*kx8>GQB%t zY2mfne1;rc2nUyO>R9hCTtzM3eZX=z0 zSu{KGN8wt&uE67N7WQRXT>QYoHa65RYC}11Y*+-7AUOJ+S`_V~cfYhP+DGf|lkJPl&K=vOXguvg z)b3OCk|uoz7fI;PjKhoan2YoDYX$x|BfJRKt8rdCBQNq}j%gk&rYM^h%BPwl*xiIP zb9Qo3b87L)%p!A9^~)<7$KWswqAsU|Cyy#>%}7{*`<51ky72@T&#-VEG}pp)F& z7-NKRolO6-vqcw0U(lG%{f8mH>Y~*QZ8qs^W2bXPzcDlvvvaluppa8_YNMI6jE;Ed zg`&11ptJecI<@h%i$zf3E!%yVpFO|fk0O@Y^W2-jlT9!|a`&~Ox-6c#Q)@(PRK3_( z7pc3A^hf2dirjJ0&7!H+qMO+IZc&#u44VBP%u}w$5du(}qtjkSAAH-*cpgZhZJtJ! z6B5jvnqxpqVHy6lAfR?4>w0LTZ-OJfQQtVV7Lei=e2i*uTx11*_;xh1^bY?A-yV1A zWIVzUbLf9z&?%#_Ht*GSU5w{gN)rHfLegGgy>Y!h#yk=iGx{6<7QuD&Kx3&VT))YU z@pf>HPcZfp!*yPwu_d`4PBl7_`)3TsGbI1wTqDzmkN@8!mR_zIWdJ{<=4LX=?ZI36 zu|}4uD`vDHymp+?#4-r+9pU&SV=)Pwfm4jj1r(GZJY}l!k&u`P!nLOxa|x9xGmRC3 zs8r7~9u}rbw=!cDq4M`UBgL;4x0s1nObSQBP?P)wi$B>m2o?as|2ZXrpo9n z%t0l)j7tcW273iYtYM#VjW8n<{-ageC>u#2z1ch-;76v zQ3*b6EVJ^w2`dDrIppe-blI7j)T}vawtY~;Wg|NvRYxPdB3BzD1u53?oUuZf^Nbgb zaDvWF^!l#c%}C zO&k+g9O(qt4ZVu5k^la&Pw`69TWU9`nCm5d8C=|o^s-t66~_}=6D0h7Sy*uz=}jGo z;{To=Q{31Y{@$u9-bU^xWfb>xgKNcz;!^UQMx%@2v)N5Nv$R;wvMAnM+qXdOskUw? zV_vW)o;tla%hs&C>zv}otnDg!<=}w5@o%U&o!HxTAuq4{;^NuF?iCfqugP`(s^X?B zFR=f`e`m1^4%<+?kx)O^sHr!uwYAtJ2ot;SEbdO&1?}a7rqO;rXq*ogABV@_OTX|z zQ*o@gns_<)1Rpg0Px3+If4Vr8czyB(J__`giX(^@cU~`kOK>;eDSjn{VXLJF;oF-V z+JDNn9*%fa?C(L{hE~5XhD|9PjlOu>hhpZA5pkgT8QgYBQ@#`r05|S9Ws-BzXKlJn zy!t_G@+5Y;xR|)Y_0ZMC6|QP`lP@V;Pkc>W;llMzoK8PBFmZ(|D!{}Qt}cyCONlO* zTJpc&)Y`{~y%V6hL&-_cWa$*UtS+_sDbW3^6&9!r3^~bb;`B z7jA-YmGF0*DUaksD$@{_d41obOByV$gKE0@dZNm{^~2GP0@Dd|3E5Lg8x|46Jom4coQj%*fiO+MM$W$DBEUZQ}*Pk4=O!kvcuIgOuH;) ze92r>9YJOMzp-7gX1?h?F(G!b2{!DwiM7j3gUNNxS`$|nj$d!8Bqnv)VrojRaaE=n zf=xqyo1k4UIbyPhB`YRRylk&&Fp%JzkIx584~4YWoOs+5Fg!s_LTchMQxjs;`qL&j zmgi>GMUxM)rS?^mKg$61_bAA|WpYO$vEsQ%b<;FWKqsXI2B;noL%at2Zkz6~40!{y zPGu$HHn`niCO^i;odZAsP#4{<7b?adYfOI;V(0uqz3_*ZCIwUysNo2)7kdBMk*=__pok5;y+mV+y<-~n9yMT^run?jy|csYhRpqE{r!K>^ZfslSH>A;&fe3{`PR>8ml>yYVYx;;_>eCA zowW6wD=vDiSI=%|=fr)V-`E`KBWC(&&!hE?^~Yy?%kjKe&mD6@0o{_-yeD;`TdH=X8b_@ z{Si;bzdscvKR@`b}*K>{4X1m-*)J#yw(;^`eTGnwAKW+u}+c4jiY<7Qqg z$M?AjGsk!F6iO`E5fGV>c<=#;dm-!tQhexhde_THl3p)-H{pFae< z{}B22J)(mSn+bqt&8fWyM*AK$^WtvF$K}V&e5kuvJ*D67(c}|mUfzZ4r&xoah6&>E zlV^4T7q0k_D0|9Go#flCeRdbY=`*`vyx#Gs!_Js_S{HUn@d1Li98rSEcItUE?JlUW z|N6X3qZ#MVJiC{8_-DO`h)XBU1ViF0Gy913`(*}3gZ!Cq^-bpHFIUc-)-(BdF=J9rNhSt-H|74ewk$Bs%oznG37FaAV_#ANFhLxu&k4xsr!R zLtmRYVmIEE_h(+zkN0`MnfX$N_esB-d1Wu&U-~5Z_q;#OJgO)Ee*3R8uilmSXRtws%>|T^PvbMDgS6H!wUr9irW*t|1 z!EWNs_r?#2{&;R}m-q?Wryzb}?+8>VrGL`K4Hws*n#@Kt`ik1x!pFy_)m9ZgzHn{r zq(a$)8f)8nB!BjcTWiU#ihKE3Yb}Tz@yG1k;CFuLu+QN-J>y6sKB^8P}KdkLakZq^>ZaTkqm*~m2Ywzxpbne{EwXh+@{oLc1 zwJ#O=`G*f{A1M@A{pVUz4dVi>pVq$BJNbA;rtX0D9$^)j!c=acRf>vN1Y_54d1q_*lk?n{*ke7-CWSNCyW~?et2MA zSHgZeJaA~7lC{r-y3@MY%^ht^9#x~(JqR$kY~N4xx_Mn2{mu^^V%81*Z))FLcHNRf z`|7?_*OfDNC*$|z!FA_!#RSp*sDa|bQKy{|eRO2qqJiStAMG~(do z6h7`fqgdeYGwaAwh|9j&RCg^b0`j@%+*L>JYy5Hld3B`M#vgxtcb!@&u;;Qm4(j;Z zpWj#4TzKxyZN)!3c~$Yx{{BGS6NUD!UsKm5EbMrUFM6_WNc2Wj*Jrn6ct8GbU65HHX8NII_|c(@3p_J8(Zl66Th$9 zQuwy*k98M~B3N?%!S-)Rl)~1Z9|6bu+cU=9Kx^lJ20g1LvsK2#mGO%};^<5(VOrGP^ zzXWfAZ1DFEsXxEa4fDwQ_BDIT3H9x3_MwyN|50fBwk$~@C#;-QkH8Rr zeEPzAQTXWl^-BuR9dK#=H~RhO=Tk&ecgcv;H(Dhs?X>IbyK+gzF^;eOv3`g+{Fuvn zi75-W_YkMtQ2+b?yj5cRpX;;oDK+A`v5iB-8=utok6yd6{>NRB_Wt!*W0TA5@%s9% zu-kTe-tt2(9iD(*-_ub4V)x9a;=EhxU;5&Gj-MOrq3<=Y(#VJ%w!&o>OQTX*i*dlqj{sm>)S7%D8Bsp7u#FyS9e_d zLtp(Ojj9>ba8i;(cy^zLkE$|%7Do+e=t?qWv77M|d=c;p}i=JqBr#EvPhccb~Ov5zUrRO#@d|!6`wwD{eDW~hu*Bg4v zE*$&AhT49-zqmOWin&`G2Ficm|4{=m5`T`4{8PhsW!L-urQsF%{-aMD4&nPJ2RE*z zj_CE?jV)aXbtq02oB4F{_v*$)nFr(vc$}E_v)};HyQcArUF(~_oq%h4;+WBmU5V`8 zaAf1;1RJw{Oyg@^*?sX7fae?_em%CaE1q>8aCwC8`O_-K=HmkzzuSckE1x0t*P%d_ zx_zQ);~OvNVqcQS#9C{M()g`zwCQlY@xd?BruboBGa7gQ;!T=rH{L6ow9A(oyK=4- zhbeB-6$dxI-<2bbr%V@hchpaa_Bf*P`Yvqgh$lQTkZ#0V_qH<|t9oZ1h~`Xg{7Em~ zFAW+A;d~(aMcDW*OCs8Ec_U)V1JS%I8xd0;hz_6H_zzj`&>I>#)gFlY+|+nOf8HCL zlYgJo(r6Ci-?Nq^e|P#Yec+xAbRe;#y92P&s){_ru=vCVDkH*hZ{Hb<=?+} zvN7M2_YV`PS+_-#~oR3u(%yojzP z|o&si(`@$a7wO#c1Apjp3=<2$EjRyCBF}GX2s+EraS9s`TXHW%sNMo>$GEM4VVAE?UY&P4E)dcRW$ITSwHH^fbw@& zM|b3A9ZX}B5q$UJS%geI5Z!s@EaCzli0o^U9`w2{>A_RiCq204##y#(`NMUyn&rw= z8)vo1mHF-Fr2K6yNqOhCS>KU8`+RQl{p)up-`CAgo^$ZRS`Oy7W_~zMnC!8toyrXUR+iC`&m7@y;vnyJlAuO_}ianjgQv-an`tQ?O#QFHL3Wo zxPVwbq-huN@>QP<7X8LIjfggVHmiqx@{c~B^-uZax2u})AH5iT+P5j}+x{G}a%j`2 zXzq|ELU3M;YKAwRE8lP0qbZQ@?~iPHhQ>roYnt@l?SB$|uy50g-HZQv_Q0lF`xO6m zuGKU#%U?WnR@3RSoBuewY4;wy?>4zXMH|^Pz_oLryA{dPC-*2+^$h?*5-UDy`fBFA=+M75 zRre6#r%j_o!%3N5QN!m=hjfV;?X#wR#N*v=*`=kX&n;0+pXSSk)Yz`3sH*J*rsW%2 zF6TIU;01Or)U3euTt8CYd*thx=#-k~x=dU)*ucvKsNdwav$hKG!bGiWzI0M`dcoyq9ksA|8FZ+4_(EPz*fwsUbpp zw)w-|eD5khf5qe}*Iw;ibxoMRT5P{=*&uQJ`sU%{{&oE4tmm4?3U7V$o}%jdWuwHN z>zixD${UvLA>O`j*~rXfF@5ray~J_rnkRkXCvCDGX-~7a`Nt<>wX~Of(`-&%T zUN%&$+0Z;jYEZERILR`7A`QR@6U9|A|=3DKosi-;6)}36= zbPe10Jugu5njfg4!wOWzMcd}zUY$~A%en<4qQC#G`QE-Yx~eNi800L~bB#dFvxFU2 z@dC>9(l-x`yK1-56qR+u-;(DzI=m(v41$8!}Y2!*$8{%zIe z3yBpQ=8uSezWc57`_|-)oTh7f7zVCxxS{F=T3`gG;whTr1iqOxF0~Ym8y=loee1J* zYb;GsY%5e<)w7M9>AR}o+aBX)2RS1&3r|cf6+iJ$`^i4%t(>bndE3wHrjfVuxt!~p zs$zzDJs0E^HECmNsrZREnzz2*w?@@8TQPEWpsJeTI<99bxgd1(P%(U6(cR>Usiop4 zjyvMkTYi|?96d6$Wl`U(Z_sa*v&vIUBM4Qx9Xe{5vvZ!p@`(<5?~%4l)O)X%T&5E7b0Raw`!6fdN`x^5Vnp*miUKQeSBm&+-E6>YH=-Iu9R9L)($)we?5 zF+3&kEHh{4eZ|dLZeTh}H1QXUewV39sZtl0k8VA!x@?7x7=3r^LHp^hIzg$eJ+Nj> z5Lk-t=Uv4ybt7l^pvqXB(pN>N!KBH^wh{FjJFKYbZ9&YgN)} z71J+YHC8M?zoozU+y1TDYS&e4&1ZjDdCzc6KgX~uhN7^C^QI>@J+pX7RP$u(`Bl|k zUb7rWH617PjnK7RlP#4CSX^#Cr;Elnw+@Le`s>z5GS$BA<_wcV%kvG>2y2 zOvTM>X0&2J>vNfG`HBs(qQ@MyrhJ`>$HXkML?5GduL-6#LA(6OgRZ$?Ogu%3Yp`m3 z!_OI(;Rc*crXO0Y9>X{7fadBKLldEy7y09hRu87&-@v<>sAe z;Crp>GBu8!3p67as+zAEy2shh4eQ!@Maz3uXe-h5Z?ry}sY$6fi1%GhN|mZSLlkl4 z$*p@-JBG!OduEsmTm~}m42x6C;CwOEP>(h|HhWrC)(iQEtGR)d4-75uqWp{D? z*{$Qo>#9+*aMaO==)O0Pub(Z%~`eM>i3Mh1H#Zzz`Ox~848JSPa` zyA@45S9aY%TyR6jXS3zF)im~*t=aN#b(X3n;)5pHYmSpsjljy8Hmlv&O@|L&;5jUj z(04hP$IouxYbkZ-#ED_+DK#l|8)Dw~mni#MX5ogjsLjzVU03qHf%L`AYjWF$x`|Ao zs)93|`oA}Ca@8mgd6MFqXXOo-R@#cG=5+;$OLI-JebAgC(X^-MJ)Fr(q0q9N97>ae z!058aSgo#+LlX4^Q|{m4(cGt7S7x$l)sL=SrDmP7H7jEDGn|9*P5189){)uJHK;bo zJGz}S(A{!M$ZX`0MGzajAn6iU-Q=ojByHbAu+zA=%|LOHOG8ul6uG_?D^ic=^vLEz zN+F3`^xH69KZlfQbHmXpE=nufa7zowOu{WW`c=ilrjbxg5-Sn;U?G%MEnf7Zb;| z3@O}gDV5qHYHd9uYnQLJxH$WX^KNV1HS6l0;j2ODbL}EJxvpjzx*e)$LxJu&(F%E0 zS0f+#C?8(lcGz8tt8>und7azC=a+~Jn00BH94-04^eqHWS2c5nkq0WK|Eu3ajB^YV*!l{&{|yG403r(S>W9^BHH%p>{Xep zt{GfwdDW9gjHU*jYH`rS_6u%yH}bNJxC&A#6&sFd;ZiGGr!Phyu}T%MeX}*24LP6! zTlXE4Ys$t{;J65tw(009n_Vg0XfC(8DMeh(F%8AXP7|m)yH1gcfa51e!upjFnJ zk_~4lwwgyH_N7t8!=x032Ip~J2^9oMSDuE5Qz?d<(%qIaL7nzb+RE&>Hw{kce>-N# z`Es`%b$rXvY)Y@hioK8|Rb&(Hal_9eL8(4EL1)(z}~E*iP+YM$yN_v&^sjnycp*!Mic^L><5L*ecV z1HR!92~=0Cc%2g?5g^fQ)WFAN$?az7=&Lq{cq{KBFgS{*m)>kCRVO!F`I_?rMOqPG z{!#0=YK|_?&3URK?I24@FvOQ!T1{C9qF4(*6TP>yjK#begI&qX% zu5OV%VwEPoyRCJXY<%)_zj~aMhNat1P76#A(~PZz948TqB@?MjJF60)mAi(4)!(x) zc7$49;iAIg8f`jsHIh__j$=DCT=nU6Xt)X%OkJ0jKNTZ#VQHq+Xe8!@lp4i!)Hw0% zXP87d&0MZB-?K08Xv6WSG1V$|Y#l{5ry`25EU}N;YM`lxu3`c% zRW-3rYElEDmoB~p-IZp0`s8w^3{)?83EV+HLy-EP}w z!UW4Gxy^i*neWGXv@}%H0nFZ5dpYSjw{*-*O3PJM*%TYUJk#6vS;`!By3SITrPpzv zr3{@@yv|a(m8fZ}k6UGTUvO+jjQ+ztgDP%-iW{Kf2I%ak>bU(XZh(#sh>9Da;s!`@ z({$WG6*s_6T@V#FKz~tj1C)u_ski|uZh)OTA1ZEuB&4LgwY=g6C<(x*xB)6|09+6i zH$cI4QgH)R+yE6fK*3K_aRXG`0HuzHiW}hn7j6KdTsNnGLe)+s~%aHKmp)bm=7tS{Yb4@dBc zP7cC+&LpNp^KlFtc-SmFQK3($p%^`sz}6(XQzxatFr0ioz+XqaKfx~~MG!_!NSf;9 zi;>hnCd#mE)u#A-uh|4rr&LW~lOpcjdv?F9O{@!%!j6{Hd|aA%{PTD}T?PM{O?YDx z_(ITP4)3**%i}sDW+3nCL7u>pJn?fmVtS)Z&&fcue5m9+LSFMa;ah}=IF?1Uqd~MX z9!R|6IELeRPQpdX*P2AWq*N*cZ3}T`3w|TjtDo>H8+$&Y=mWd#G0u_ zl(AM3h*rMBq!TIiiRqhWE8?`f7xfk^KbXDm0i_uWnujY^#lNZIjaO7Rmp5z~py+y< zZ|ALO`~5PQk(5JHcpPH-RU#Ji4l`uqoFveSg+dg!%vDIDr&Feb8vwqy+w#h>_UlN6NDGXqO!+2$Pr zMf`Y%lssu2L>=SRT{Gx|LU38uB~rvZ&SWXtvy3*IhtrLQ1dX z?%F>~x*wroOqCPlNyRV;gUDHV-6k%ABQuUHo?2BC>Y5sI&uI?xDWjtU8F-N+9*a;d zVq>B;zn@K%v`3l{SAa#FE_pL~&Q(w6|A8-)HA!GtUd#YWsn!(#95UzBY)Z8AhFRpxk>bZy^)itbux>PC@qsP z=rAlq?$bk^U^8M04U(J)wkEEOxZ_;jXOo&a;;3h{DpP7CGgD^Fq|{gl-M@OaP67@g zczQsJEX^}KvUp5xC4zKF^&^I_v4r6Y0St|AkOVvW=NI5^!Bk=Um7@8$|X0MaIy@VPq-u<9FO# z1Ui*llwrrxHlj#loU82vU{t!UPo)d&O~X=aamrYVs8F zY#4>?PR>;pGU<4viV*(CA)^cRbD3a}gpmRBbF@Gv?Q=M z$+JtT+7~mNIcLx*q5VeeAMv?DJ7L>*DqY(j$T`4IPy+%khTeSMQrd8b_vTSa+{?l zlUhfSt!8omtK1H@K@6sA1(r+d6(FRG|E3dM#Cvuf(s#X$BmN(QKhXYZ5CUUPO1#*=o zgg`5gUv6<)9ZUNp z=ad<^IGF64m$wY7F5fB9uwe-?n<1K&;uG~wLXSe$4;gY~q%juUV?le*eR@q~CwBt@ zb_$3I8Uf@eWjRhM4apDPrCkkEIl0inWNsZ7hDyp8fyxSc1j!2|)s$|ul)63f*GY3u zuTH7DU4!W-mYhFl0Jsfg3NnKstzdr;Xes4?GCa{UokBEoyh^jS+%{%FnpciXfY45| z2OSoI75JomImy)#$4G;>;Bp9&!cCXBU~E!qh*Bm8gA{YNrg{a(OuXYp$@u?&TffLu zEzv<6DO+!x7q5u9!JIKfNRu?2cPvFkakNPJ1hFFIU{HaoutKrr%-QjlL+mBVl`KN; zaX=V+OGP9k!;XWFNg#KtkeVAvQABZ6WG})yQS-ErU91vS4PJtsQ=$!jeVmkvvXyeD z$}75t0MT+a76PR2T|ay5c+Hql8o8N6XCTMf1U5o$E+6d>+0bzig~H?~O z{zXm&QNFR_LJqF%kws3w?Sx6xZ^J%INgppeH;UGA@1(5GPCG4az_{0v^zoYVokHQ- z^xfH$yN&G|hiq0%AQclx#RL*twpMk2c#FTee|}} zLKpSAbwt!_&fE+BUhSKN4uH6*N<*o1yMpwJ5g5=-{C|FwIqCx<2|T>ac#cd9M;K8L zAm|a?5@UpT#B~&WdH1x;&Wt3`KpOZh{8XNfSJ=k>3?e6i9yv#-Ic)g5eRCeMD&?zn z#ZT^@cS;t>qO$dp6RzxwZ=nE0W||;|;wmN{1;e5)amXZ^1UcX!Kv<&jh@}Nnem2D7 zh9%gP_@96%r~nj(ib|?J&ORI&5%6M!dVqI}8BfLjh%qm(NF1;nh^w-a0PkOt-d>$j z>-JfTwY2&Y^oUEpI`3$J6LBg?jnwTbl!=T%~siLX*;~K z**YFk|LJCnBS)`&W8P`KGMh^xK|lG?Jnf5J$QOQ8URQEAtEtV3n>5UY4gF&PAicskUZe#H9G_Y$Mk%klZ~j`K=rsV6K>On!2Y^Q<(vg@(pydcJ^8+9p zlP9K@il4abq4|&XCBDW90iz}shCnA7y9pGxN~Dm)>Q=z%i-oAPLa`8a;8XH>T&YB< z5ECUK3c;Eo00Su0ID!y_G*7(o%KY1EQVInkZs6Jt^Zx?WI}#nPOyVSf*|mx2aCIU- zko!RN&2zsOpx)C;#ZR2~>ipGXvbZE==rEvK0pbvFm4q`%zdymcb{+)&xQQu+3QZin zef|TNbOTdr?xY1~cN0hXhFcbl7LT?qfP41q3&x2#=PfvRr@s%5{xNC6;7sAS1H_?| z7xarCF!6!~hlpvbZrw$kw`#%R;*Ikc9PuxOA_|Ra|J!1{W5k>X7u4*u$_dfzDGMIz z4y-$4(dAuT1OT~jZELd>ZZmdXRtXy3|942xU(gC8M z5lDy<40Dzb6uW#PP=94hiI{D{x^BTIeX78;)5P}r1$H-82JLhh&24oHoShdK98GCh zFfdd6@j$V>aY29ih)&~a&suQk&PyF9{x)mDo5kPS>o1Jzzf_IDxZs`cHLeUt1BDGI zJd!a`V2H$QL{NH>RS}?*5lt%%3O z-M=exoVehD1#foxwPR!AQ9ie9kqObnhvXWT;ecSZ!ru{xviK4wkE1~+EKHJoAZf}| zHMLZ{hTnZmu3;avF+wUdB1J-isR?}|G#B7vH8R^;DPp5^ys0JCSi&>AB$n)?nm!~ zmN5Pj%tA$s-^Q1N-urstDOde)O)pXHt?MtgeN5N?w=`goICq=)zBu#2l_SLSpNKvG z$2$MauhzgNeZW1th&w+K_Wzy+j1~v}Q7rwR9r#nPzN?3LciWl)RmW%k>%YV)Zw{&c zA6s>C-4}hfW|wICU&KFqiH};@+zUS!Z|~au;jI~Q#GbQ{C2If(O+AE%glK(Y(h19Q z$b)f!a#Ts5X@}Jd$)zC3n>;EBldF-Hp#zU=yQ)ukR+uZrZ&V3Hmgu=eiy=R%APIrm z2<$K9Lj>rV37~8ec$-$a7(aXw;q57P1LjNk+}{@Ws|H>%$ou4%g|rsfS4pjs2d_5- zL*E36R2tcm92lD*NHUyk;*%{hFO-}FXCy9;Kvd%Tle~*+LXT}Fud1LBz?(yYSx7j! z?Sb}8FfIY6@50qGcl+aj@|Ud_o|GiWy==JBw1uNP`&Ib=?s#EHZG51qzmO;2Nq~p?EmW&&(PEboD0|DF5fz}ET zBiE`;q5%{FkSyg$VA3>I3_Md}qRI$k@-ND&PDyy6a=8o-EIVm|+0mYrvRFHnP8mGu zg(|Sil<%1x!>3leC>U%DjG8X8GNVrfG62*_7&13a%=>^?{)?_y0y_kh4~R1!DI*p+ zf+k|ROV}yvTu}`YMvh<79`&9_#6;x=ITyfqM8??ujk*R#F)-pp(GOkpVWy^h#hxps zjaqU>)-PMDQ%oi7Cr&R-+8C(THj# zlAO?YNnHiHd5Dn!9CJl1A4GOnvRpythqDckOcWB5B7q%+A1Z|TLnnSbZ${)hkYtil zbs;^Ye65^ealm+C{|yw&7}aVU1_0J4vE~?>0osR63RHFz{ABoY>;lP*jl;o5T~f)6 zBFI%5pJkpFX(xp4YDOVF5?vo+3oP(B01PrB3CDHq0H(6M{2GX632UE(@t3c)on|Jb z+G3VuFOgN2jGN$?6G|iC0~!cevFR|3kcW_#rfNjmk_L+4Ymv+qvu~xC4w6PEVY%gJ zs#5|<$~x^7_LMSoX1wp(emi?;b@@)oe zg%$Je<|s=pJs^p35mmlw>EICy4_`7MYfCB%Sh)blC080?Z`64oFkg8k zV8cMQD^f*}C`3{g1zz>wQR@{EiLSICazY6zJc zjx(Uc)pn6YGLdn`!ANotb0%5^wvm>ZJr zIG8xFJOL9;J7rEv-J)^GDy=%DVxY0din*sRaVOyFDb1gRYD4Zac}dHT1>DyhW}3$d z!(7GGJ?%kGX%@B;cMp)y<>so>#w)*0-A<)ZgUgMaF7v$F4w^Hxx_s9}=B3B?kt7&B zN0Ej{>LH|e_?;XHW{+!;L|kMQ(iC>26jkSCT6Pd1rID3uk#ia#Xj-tbko6Uk&iv`) zL!#AxZMjn}RZ{CcE)&^Q(vmr**{9q(B-^6>$H!{2^RQ)>sodAZjkzT!Wy{wb$}>a} zr!*|;oi(AC;TE!R=HgZ5S`Inkb8JVz)5%gx4v}gMp0LYsbGb~sm1hxiKLCUPcmVF@ zXx{494Vh6aNUm+Nsx@v7FVA5@_K6l?`$0a7)=c_DkB$JSS1|YZrvmyjsBqR&Fa*lXRL}{P2ULi1i?fq>nKEuM2gcr~&lv`ML79$W;=E+>0o5U1041>D zEMiyKOfLGHJnY$SVGbvFoaxJH3ey$LxRwl=;3nXtC-v0xEhA8LMn6tPj`Jyfau|aU zU}dQ&LVbZ6;bRr!8YBxHyKW2ypX@V)&vJDG;_>|@r)AUXj`!L6?=R_}g?=^AX*+a_ zTwgJsg!KQzK*`e5as^5}sUDHX2YD$xCjn$0SYIs(@DL(d=e#6qxkje*Vd_Ti2PA@B zDV+&inW!5WtjP&1q(qgkv48|nzQRH-y_6>#<}6XG<*tzn3?3*%bHEk?N&G`{WgcJ( zC&ArMlpPbnn7l+TC@#P}`I4{>0v^I4Nro)Ei!tSC79S5{8(YvIZCF)xN0FzhTDW+Y%YM(@nTP~LD*Ne1&4XV&2h`}Tz22KyW2Fwmx zDDso3qrkCeC1!p>kW6v$NYq1gy*P0>ZHhW-a4GAu(}qkLG$~1ny)T+Qth#)s5Ij?!_mgAu`eE)Jq_0=6b8erhh3zMgt{DFjgED~>mvHnMEBTShHWMg5#5yNd(Y zEXm@0bm>4Y$Dv1b7TS#r;DUcF{?Af-N%`sN6#tX5Iy1&G6cbOer6+c~1S9|%6Zi_UQFSy750Drh5+c4y66XM%88iccfMi%+ zb=is)QS<#J6Vobg+`4rivF%rjhK(Zhjud5__dd8V7!N$o403$oSB9T2YWz{_^s20a z3W)m@Dk{)c@-UNeQ7e+y9S8t&=L_%^AYPID44Iluyq?9-m@slWTq)oqm>6BooIN68 z1Fb1rCpZZSx=r~?69|i#4RqVKMf+rl0E7b#S~Hz3gPRzeqpD#t#X<@>sGsPb3Bf4= z1qc}g4d&td!E%fwh`@}*%cTqV-7k^nlicf2@u9i1@=UQ5G>}LLF!TxF)DYmXI=$6e z=uv9zF0nq+m8qq!&<@@SH-fEcu=S{HQQz`a0JTk05BYA*l*%13MO}JIbxO4{dfWR4F7A_sU6`!>yacHMyat_IHjAqjx@v$O^6j^R z$NlVuSRatqNMI+%Hw48EyAS?$gfMi1^(dd{vXT~*uuTYl$!O{`2WR`1tF(kA^bK=y-z*eVa(D?`i7`%m>7bC%6aa&GoQ$&ic7p=YDxfiNUP>}R zNnnTD23ZX+HwKoxng9l5<@p0KvJ8p!>35#!UnFVU10zhHi;0k**eFx#4#d3qvsD5; z%GFu`4fyz>rF$Q!>Lsch3qoojfaUqpV#7`Yc1~X3lDIWjpjs>}xAGw@@(6DiEW`4% z)rprkZEFWWUoG;Ub3ABR83Iese%8v}1SfG}JJk`529K469lq;gz* znr+F05&}H%VLWaJ99@uu$4-=J`hlzO%VZHx&^TNP%^`6G6|OvpV%fDg9|-;_YHmoB z**XhW^y`-n;Z7$G17$4FIbeI-Z2|W&VSsth&nXGaTr!1$LUTh`l>)P& z$s-o7TaE%w1_WkZ+Rxc)Hm7hNt0oNE^a85GJnHIOdO>UO=o#VCaCKGjT&;+oJI%@qIY9AOJ*^ zpnZjsi98JZCY+3@ok$tv6)-Tsy^&>*lhGig0>u1wr!825Td{og6a|kC*vfJ>7x+Qv zj9xkh@0($jY_c3t@3?Q#E@Bunjz3P45LwB$?SLj1z((-CrG;yi;3XnVm7Atc_QjN? z*-3dz897fXZ!t$``JS1QqPXA&FjdLj3e`38wB=$sMlXSp9I3z6OIRG_< z69|J2gy-0j0bN1*K_lDYe)F(5px6-08Q|Ikw#Ol<0AL_2DkuttbF1J6C||WN9{+I3 z$(TOMRbBAG9sbdh!C9=3=#>~1xjQ*ILT=L>IFL-K1r?)OK=PEBoJ5;)2yo+qi6}YT zf%d^r3M+HoFTf>wz&v@lC1FnmGYtiY<6k_YpEH{a;spGgS|EVVPgw9kyPV`r3b@uqZb zhx`cOUZSiqX$D-L4)%IZ9+$vpCQ?s~M59!2qjX522|vZmhslH64**lw<)%ejH^1N1L~XMra!k+`_~F#BVD&0+Ha`jef*aYq;|t{xNA&IB~q#R`bA zNMjR9n*{K+IN8|2lAITpM`G@Yw_3J*)to~TNin6?9hX}Tc16Mmqy-d!0fJxfm|*20 zZiiS!G@N!f8;6QKB2nx>N&}isLJ!9L-IAPJZwG@6u~%^;!wSljaKgBG$r1`(GBCT; z&_NI`U$1nrsnBwlt+jxLAUE7yqnD1JpieODk}U_=pNjJpM~gHB07Hk&5lZ%E_{T|1 zDw(C~@*%cKD8jbARuNZHexf>AK5$BwTcZD>u$3J>Ni|<1-c}b4$)@!TvgN|fM!>6_ z0SKV+M@!Icqy+9ENlGrs)DzPe_Zjj1isk{w#Z|#_Mmh{Jhf9^s@=A2IEGBrgC1M4@ zxkheb63OnsX%ceDu|*52{)4UWWMEt_Teq2Py0p4?C~P?&Twep<1K^_IV`8IWeX&4* zvE#n&aDqw@V~ivcXB^OHn;Qi{YItpl3$qBlXvf^PaLi!0aB#6v3Vh-!V-6z)Y!OeEK@puO;ffH-OA+#W6Ux1<7rPKo)UYBG{CZR0MF%A zLn}rq<|xE(%!z?e_dAf_VsJ=I_oPE&orqOc5Yt)qc<)HYL>0wZo?3R~dk94egv zw`c0h&roOcNcpwd3FHmjymBKZ!AlEKT;=-|U;6+ma)q%Toe(P`USMVv&lJG$(uLz{ zR^kOlO2>piL_-KlB%c^+^e`w$>u=8RD?RJJ$jN$#sPMa93f2V z@_xfBOrA8(D91su3I++B|MFvH<`jMI47I9y zr8*B-WFiz-Wf;qt`HH~PX$O5sA&Vr*J@kz$SaLO}loXJWd=pdVt!jLGL3BrB(Y07olYBCkP z%;M~{)yj`qPF`%{hw7rCH7UKql7>~Jnp}R|NYXxlX;>w{9*|&`7U}Fr*l269^*;y2 zyi8X^#w39s*RO_X<0t?@GPjCoyqaa4SpUI$Mb zRhO@|;G&YA?br;N!#oHT4RPVvrtr3KCZKzwl+j1B5(}~h5VHmt!AOvlB7TlI*FdsJ zSQ7${`^qV5Cdk9&t5%Rxl+4i+TL^1EHk@Vv2fw$$>mRMH1_mbg$!AE=}c#F-J5^nptHKqYwJYfkHZMN)UV{ePBmsOQ*2rl##2X z4^+|z#=+}bNgp88yQ7h$l0LBWw1rCgKqY;k9Qbx6ePB_0P;(`HpmWwjC4HbYq_TXd zeICfu4!8%v1$5R4WG!l}%QbSn*j?feLi>%4d3t89!S( zEi*s*@MlZE)l>LCxuL+{_2w^^j{GA0U42>(+qRU~SEIwW-TSldH38@(0O65ON>VYP zuQKI`l;@B{N3u{Ir9f%6^-uRgX_i(vp)?!!>AkDci|(K_+x4@1zg@L=+Oy|hcK&S% zrCHB^-urR4%wJ2$-ukS4VL%XBP)PYUsP{%NL8PXPZZeYu7fPB|co+yqEZ% z{LdZNEUOV$UbC!P{N|bFJ;lD)^6B`im+hLV74u%cb%=QM>1OLc`a?1B*r$ewyRTjL zp%{JrvOUGy*DcG6AFpd3E6%*0PgU118zsE;RQ2L>&BMht*Do8`jbxS;>zeoIe~EY1 z#rerord@i~xXEJrMW|Y-nFUZiZ}yxME}TAzk>pmOtIRjMsh9pKe}$^spLOS;@u( ziVDa$gH*5__`@C`a-mI%7YmY&ubI3v0 z28Z^oiT`&9AHfRv)z>U>(ts6vi!nDny?gZKK`W+Z#N6j@*(LgX*A?r!{XhJh3wjJN zo#e6nSGP2=>zEazyID|p?XhBoxMIYL7yeCwhyvMeoqwD&a>ba!Uyl|wjo<7U{dnYx z8#3v|9;{yR`o9z_Y0F~q*g^N)DP9}BLht;r4y6wKezZ%=J7ZQv?~J+s5>;IPmzCq9 zi_g6O@Y}@$gT6kl<+b8NGfTg#pL&D3lZxZ-Iux9G zgSL}$@pqld={qSGf7hv;A9IKPn6?Q$;?9dZk7+x()7Utr?JhLi-pO~J%Ee9W zR4)FmQ@OZ_9m+8_@t2(n#_jG|AnZ^P+Z`m@5i9L;csO zVfuGAHR{ghCi${+^_^!&9C3Wx(S^k~Z_+J;#eK)O9a{KzU47eeg^vfF&~{?sWBmzj zCl@|$I-%{%!pHqjY&*a3@%9tj&MAES<%w;_6h5jawVhu0*m_di4TX=(XB7*adUD&B z3*XM$@o{QX@!K_g?7QQP5J%kEHdH95wDk}-oYFR`Pw^MgxV&wcIPI3UF{P#F<=RXC z?Uc4XN`HBy_{*10ZL2Oc;eu1!&MJJ2PA#@^S#z;9o15DXFBG`#w6?PRnOhl-l~PS7aMih?QMsZjO>c(jBNae zz0PVg3k^TwthQqdA7`J{{tWT@S;ckq*d1+$?dSu9Sh5eB@1(icpWQaL@TbeqZacEH z(3pI2;i=B~CQ+p9XSxGVm7UUB%oJgGPbjgyLPd3RFV zu{&xtlR2%KN3F-6U)oiEkrT@=dlzbX^!(!Uwx3@*r)Dyz@k7p^T%6PDyNj)wc6YH= zkKbK7AEsDyPErdS>4M^{uDPJN>i>R0+gAz=*nCgvpIXU)9X7w%z*jCTZIzX@YRZLl z&6-kd)df?Et$KV)u~i>WDfaEP1;w$t^P6FBG~nS8UbGxniq!^^2{#)GrRsX^V@4^LM{^BpeYG z|7`S<;sN`5P+GYo;>wo?a&+=-<993xN5pG9{-rfvdRjRmUg+^J-_4gUQJyBJG5)1r zSe(W!ON%X?8@7FAM;&gmxOTgQ+CL53Y6@K+b#eQWUU+Y@-H#Q&6!Y$FJGt~BaYN&W zTzpAsL%}SU$7=k`%1cTc>Lv}1fBEet#fGk5R=jMcUs}3|RG~J>^ZfF*p5mvM78|Na22c52}d-dNstNa5qa6>UfC=#MJAQ;T(7 zUToX2E85$(@ctcxaz*<{iFx;Te8{HL+J=k6zsAU3aAn)rlBN|dgoZ2V%Y#=IoA$<) z#ip(QTCr)FueTjhXywCK6|dA@Q`_4DsdTY1%cd5WUVU3}U=EztVPFaezp}Dz-@Q|>1+wtl2w&P0&Zr)i8++7dQu}iKlZp^t? zw;fsXP+guE!^GSNis!|sYf6toRUCe2`%~_?rZ_yOJlJ+>ho>At)8tcnU}k9Bqr*>e zs~;*pfA+P-2LI;Tw&P2R8p%=8@Gvbt@48}(8?P(Q>Py!Z$A7@}9R|`!R#^PEGp{eU z^RP!cw3AY@ovR-yUHzVv%cSEs>Ke?ep6AL%P=11H1E6mq`$J!1r9rQKl z^DKVvDSmuoagzRVV~55Tu7QrYUq#6bgF6zp4op4X#~CxPR40cjqzxPa(eQ@(o36|YZNbxM{}Wvk9Sx_GSQFYhOI-DOqZ ztPQ(E9{K~|Zvz8hU%+@Jt23mRkR=43STUeT$OXWD7*kGyv<;gPJfHB&>2RDw^lAgy z8`GC>`*b!8B{sbBI>6Z~BxF#di{=p~t0z5XC`) zQ2^eLp|^qER}FYu@)U(XCxCWHg;`F4N~eSwI;C1K!30mKHi6%Vm}PfyXs~MUgB){$ zUdqh^2>^sShDKOd9;|R!9|6)1Jpj13flk*1`z^F1-mLy=4Oc?}|;&EFK~`S=f5Io|Ev-hHo*B;Qs^l4mTh) zLOIxO2->-rrJs(Ix+fNe>1emI(85>`ADfd1LfWolAt zWOilaQ)(=dLd08aFNkrq2~H_sy$4SgWJivZBU~~EzPTJo7tUl$Bajjd(Bhd`oi`!l zhBi`jYzEqa9yqX-5Porn8Q%EOH$niEa73rfPA3?8yZqYpI%Yej44yAR>tmX+w4RMV z0@|R}$E})Ex$7!-UFEJTBbZh0x^lN{<*uvTb^l%x`9JHfvxRcqoc@tDXVvDRnfppI z4~9-zJD~f*cjr|_s~=f)NJgAi`_wMceGjf$SJlNt1VJJ~6|VJFyS1!+Y!$Bucs