From 8a7ffd31fcfa55370b177768e29c38c08ea79127 Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 14 Dec 2023 18:08:29 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@4ad0b6e00150a4eb9af4425f666538a97268d0f9 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 297397 -> 297397 bytes master/.doctrees/cleanlab/count.doctree | Bin 297132 -> 297132 bytes .../cleanlab/datalab/datalab.doctree | Bin 166263 -> 166263 bytes .../guide/custom_issue_manager.doctree | Bin 29123 -> 29123 bytes .../guide/generating_cluster_ids.doctree | Bin 6256 -> 6256 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 88056 -> 88056 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 75965 -> 75965 bytes .../datalab/internal/data_issues.doctree | Bin 76753 -> 76753 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 43724 -> 43724 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 51084 -> 51084 bytes .../_notices/not_registered.doctree | Bin 3377 -> 3377 bytes .../internal/issue_manager/duplicate.doctree | Bin 73417 -> 73417 bytes .../internal/issue_manager/imbalance.doctree | Bin 71121 -> 71121 bytes .../internal/issue_manager/index.doctree | Bin 5820 -> 5820 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 90234 -> 90234 bytes .../internal/issue_manager/null.doctree | Bin 70422 -> 70422 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../issue_manager/regression/index.doctree | Bin 3622 -> 3622 bytes .../issue_manager/regression/label.doctree | Bin 107652 -> 107652 bytes .../underperforming_group.doctree | Bin 121020 -> 121020 bytes .../cleanlab/datalab/internal/report.doctree | Bin 32315 -> 32315 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 102668 -> 102668 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 98823 -> 98823 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162776 -> 162776 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 171038 -> 171038 bytes .../multilabel_classification/dataset.doctree | Bin 67565 -> 67565 bytes .../multilabel_classification/filter.doctree | Bin 89621 -> 89621 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46224 -> 46224 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 118771 -> 118771 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117415 -> 117415 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53242 -> 53242 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 66747 -> 66747 bytes .../token_classification/summary.doctree | Bin 84588 -> 84588 bytes master/.doctrees/environment.pickle | Bin 1773367 -> 1774422 bytes master/.doctrees/index.doctree | Bin 41836 -> 41836 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1092 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 298 +- .../datalab/datalab_quickstart.ipynb | 445 ++- .../nbsphinx/tutorials/datalab/tabular.ipynb | 169 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1771 ++++----- .../nbsphinx/tutorials/dataset_health.ipynb | 42 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 608 ++-- .../.doctrees/nbsphinx/tutorials/image.ipynb | 3163 +++++++++-------- .../nbsphinx/tutorials/indepth_overview.ipynb | 241 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 314 +- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 1272 +++---- .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 164 +- .../tutorials/token_classification.ipynb | 197 +- ...orials_datalab_datalab_quickstart_15_0.png | Bin 42774 -> 42202 bytes master/.doctrees/tutorials/audio.doctree | Bin 326128 -> 326128 bytes .../datalab/datalab_advanced.doctree | Bin 198046 -> 198044 bytes .../datalab/datalab_quickstart.doctree | Bin 129058 -> 148938 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 112081 -> 116319 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 290328 -> 294568 bytes .../tutorials/dataset_health.doctree | Bin 324866 -> 324866 bytes master/.doctrees/tutorials/faq.doctree | Bin 156507 -> 156505 bytes master/.doctrees/tutorials/image.doctree | Bin 458674 -> 462954 bytes .../tutorials/indepth_overview.doctree | Bin 202107 -> 206345 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110970 -> 110970 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104012 -> 104012 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1975458 -> 1976752 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59757 -> 59757 bytes master/.doctrees/tutorials/text.doctree | Bin 90061 -> 90061 bytes .../tutorials/token_classification.doctree | Bin 170810 -> 170774 bytes ...orials_datalab_datalab_quickstart_15_0.png | Bin 42774 -> 42202 bytes .../datalab/internal/issue_finder.html | 17 +- .../internal/issue_manager_factory.html | 7 +- master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 26 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/objects.inv | Bin 23932 -> 23962 bytes master/searchindex.js | 2 +- master/tutorials/audio.html | 2 +- master/tutorials/audio.ipynb | 1092 +++--- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 298 +- .../tutorials/datalab/datalab_quickstart.html | 236 +- .../datalab/datalab_quickstart.ipynb | 445 ++- master/tutorials/datalab/tabular.html | 29 +- master/tutorials/datalab/tabular.ipynb | 169 +- master/tutorials/datalab/text.html | 47 +- master/tutorials/datalab/text.ipynb | 1771 ++++----- master/tutorials/dataset_health.ipynb | 42 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 608 ++-- master/tutorials/image.html | 83 +- master/tutorials/image.ipynb | 3163 +++++++++-------- master/tutorials/indepth_overview.html | 29 +- master/tutorials/indepth_overview.ipynb | 241 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 314 +- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 18 +- master/tutorials/segmentation.ipynb | 1272 +++---- master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 2 +- master/tutorials/text.ipynb | 164 +- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 197 +- versioning.js | 2 +- 167 files changed, 11087 insertions(+), 10381 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index a16fe285a..0724943e8 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 6abc155d38fca8607c4732d78189d6f3 +config: d29d6a3b09bc18dbd01925cd575c23c9 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index a3a056364f336cf5cd8a6df0e038c3f5adfe76e6..0f4d003a645b4968fbb909d01840bcb7a9c38b99 100644 GIT binary patch delta 175 zcmew?`B`#9IHO@{O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj ksYQy3NuqJ$R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*$8F8! delta 1655 zcmdno!@9YLbwfO(VV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9qR)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*B7V_O diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 2d4dec50893c90461a0ac6590ae701b8b4a92a79..447367c073baff6e2b1b530af0c14b087e87010e 100644 GIT binary patch delta 4244 zcmbuDOGs2v7{@v1+|e}W;S7vcE=mk3OXtqRG)o<-jYvLfRM52XMW~~qPBK`MW)Dze z;zB0~OR;DZHF2_U6FnBvwoTxeyTZs)B#Ow5opH+j{aVcO_y7IR$35TNnOV&`t63xU zL=CnMy8NN8jy$K^7R$k-&m7*y<{d^8)QmV9YvPhZQq%-p^!=% zh-QDUrJy@c{SavH>aRvL`+0o=aVs|G3?@Qm5LY4&mosu5+ZuWjhyiUjZzHW}vuQiI zf;Q(G$!)aRZy`~%`Ms4)q0JUMDMFi<(nuHDyt0!VMVsd`$PC)dc9TzN^JpgNMwmfv zpeG0^kZfW`Y#xxC_AT=ESMx|2F+kWsCU+oqygX?&$b?Hp`eE>2C4-msbFsa18qOrs zaW@XG&`Q=4dE^8&@CWJ4!oxo5gJ=n@M9y$C4`g1k8DGc*7kqRC@fsEzN34Mf#v5o9 z+kiKA(nR>$MVGJ@;t6#F^vy2Z6sq{y8#I*%)~O9%g=wAbzha6vXaYp;(;Vb0Qw5Kt z6NNiAXe#us(<2J5O*{r<%rPT2p~1wAw~TBN$v>2Ql73dcF_-agIm`yjY0QB*{#F2& z0d{zq!Rk}+H4eb*ee5Y>tHx@8JV$pjO0L3-d=^A(W$9J9WHVv*FneawFXuOpD}9hs z##UNza1ic2Wl(vky>W z@j@pE%dqGsYH_mXCi=LLZo3Jbc~=-&ibN54V`r|sf1fUP`TPI==ixoi-fc#+&S=(X zGf}%8szY@;f(6c!_Mo$*u(&ATauup>pTkw`EOHn7)quaWqr)Bal{(d6An4a7$Q*+5 zge&=KpJEX6RKZyP@)psi+^)m>E!t2+KMFr4LX9g7hiail8-Hgd2JyX_C808oi*P%) z>qmtr{2Vv$1~ELeWYBNaM#d)jg+awGsz-A%YROl2_VoErXXh6TgnHv2-A}0)8N262 zboYcCwBeytP0S-`zH2w>5O+TGC+j!I*)!tN#|TBRp1q_~%q`|19?yiAFV$ka8=Xg& z7trkQ)iiYHsUHIEUHR3DW6xwXDlQOh!0?8$2#O49HY2PAme?5;@5d%aVWO5r~$IFw}gG{(srXL316>{#9elEUuPQb}j zI_|>3HCn}LGLIgm2L2$ES$M=ty%4LQwa6K6FSDs|anf{Z~x+I!%J;eVT`SWvb!P zOrmhdI!%Y(HF{9NwMoQ)j5%z?CbXEC@urb2Ao+)qPtniHH|8q-Esxn?DT6r>$KMR# zGQbWmvsiN)zQ#Uyy@x$TY}I%Tkmu-5Maflo;bwz~tt`DNmuxo79AM8(`sMt_5v32( zs@Sq02M@yC$L!~Te)wN?8>HkYUl8Abn*m$~nBi=$(uN%Xmjf`vRkspD+#ir5T-lEp Nfc#+(@{fU8`yUvOvhM%@ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index dd725fb59e00ab356c3582d4d6cfaf60e76b8ddc..e951c4c25029482250b1752b4e85edb6acc539b3 100644 GIT binary patch delta 3738 zcmZ28QE1IXp$(plhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*@w826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT_`&qyFT2J>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I6I zn_=YXH<*0?iqz)$*S2s{qW|0j18*|)8)`FKY){u=+(eG$V9iZtjP90X*bJ=oytlg+ zFlGyou6a99^BgzQ^?|B7x9wk!Gj6daLo>*`(-WAOIJQf&Fl{9#wIEEe7i3~GA zlTj*wQ^aor6W63}384CBl(5~Nn#SU; F1OVIVKoWm0u&t#!8ZAUd_h$(k%_(=uBbxQ96g=)jI1 zRCX%?13HOQ78VTj&z;23zCy{PE59(ItKMa#rn-uDmqJkBicYr619w`>Q}f|04nd3 z%-e)O4D-H(*~rUYkn2U11#QIVGcMnZLv$t+9XwG-mD6l)5KbpLQnm^z35;cFN z_Zn*cxnmP3|1T#$p#0;fD=7YQx`w*HpMztl{(fcSD1PpI2DSg=;qQq4+@|Z|$42=5 zyUkSL(+Lby5!`#=6|!V`%B4 z^NFVm}-eEzij@Vbi+0k*2o!&VeNyAB~>SON{Kn&6uP&QILn<@d z8=X)?LyI&_=|NrztP3wP>?dMZ5=0kunUqO|*_qySyYK#h&+~b{?|FFMbIwxKuoN|n zl`&gmpxIs>3D*|d98R0l?XucycH0~dYba#5+8srO6V0&V;HLDw(|_~=^V)k@FLS#2jQi{6V4)2szC?i78)_R^cYTl z^Vd`i6@IgxrnkLB8`p5rTa`|EJC=*^4zv=-Kst8tExsnSe^1y#SNzAZsf#^!3pLaP zIo!O3!oki&?AK47PQ-q#)&<(h6Gn5>=Cc9Nx_aW-biY;}L4Tb8`T-&fQ8v(R%d^ ziblE*0aeLSE%paGc@PY;9C^+Kg`E&2!*zcw4v5LV?!urK6uOTG0+xX3~hisZ9i5oE=&R?Po9L z%(oaYROHN?X#1DZP7GI#7nxC>XkvEIFSP>uHh}W-K21K?&6crs;+0x~*We>l?+&mG z`QSbaf>XCv;Px>4o`S`f`f=t*kNwkgwlfp+ijUD0+4Y`Pfx%hOHqml7c_NS%vPb8VNh5aQkmJ_ z=!6;?u1Ld_9^{q4y6_^yej;`yL3B}KXt$|#-vnF77<`w4q9F9C&LABLUXwNSwthM=Si~RnAKy{Jb7VrgXb46u* zrs$8X6%jUOiy0U5Jtg#tCov3FGTV6yd326=4ZKJ-)QM3(Z*F=^j0NP*0v=p-ho=;Fi1xazQxmo_U{T==!*9UHg(a*ZlT5+ zKZl#QP{`k@#eV(x2`%<(bxzPut`M4=HlFr@)|C@auRp6Lb5>)o7JGTqE-m)W&6ne# zaq)>3PcoIBpT<^PkVe`*W4VKr(|!)i9Hio_0n}RD(TrLT-gtys@7x?ft+Th{P_#ig ziK5Nj`+=-9-?IZ7#2}6Ll>tWeiVsrXy=Q37#mHL}^*+qTZipal8g4_aJ4Xjm^b&Po z4OddvxE@4>iqeLOVeB=;EuQ*}R57_8v#;QyVp2yxU$mkfEKes9e^aLgUzizO1MO!w zWz4l0FjQpBnP}^mkxmR(j2D?v9&KWF&@a^jyVrs8@;+5Q+s&4+b>fz4f!E+8Q|=D1 z6#3vj^Mg~jTHy8&`<{Tsm-;d0MUVZ{bGAJd^NNq*1ljeTRe`~yyrS~)^2`S|k%=`S zAOB$Bw}V?zS+h*|&3>6d`Gr*e2b?)YWs@W~^S|k_%cU)cj{}=sQMsUO&E@+{u}hGD`Hp8<0JS7B-oFHMQP2lWPbi*G|Z89v0bvDeU5zR1J(Vsn2$ynCXP%OReR VZH!fZtbs42LHSFh`lq3a{{v*bH_HG3 diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 23baebc5bce4f47b07e49debc47fc733814deb58..3632b0c56d2c8a98f962526349f9c9541c243bca 100644 GIT binary patch delta 64 zcmX^7nDOvq#ti|ChNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV TmPV!)DJCX~#)+F78J!9MujLbJ delta 64 zcmX^7nDOvq#ti|ChIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 TW@(9*#)fGrX~~-#8J!9MjVKe1 diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index b4b7d50e341b47497fb09c3ef65973612c89dbcd..1066539158e1b2ad3d1a50a349b42d572825d3d2 100644 GIT binary patch delta 62 zcmexh@WEh1Hltx_O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj RsYQy3NuqJ$<~fX4!~kUjc38P0Q&s{=HnFR diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 11d059d1478e72ddaca761380ad0d1238d259562..438980ff802b9fbf27599eef5f4381f3c687f778 100644 GIT binary patch delta 175 zcmeyT^-pVqFQZ{;O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj jsYQy3NuqJ$4LpwQim-e4h~j!yq!i delta 175 zcmeyT^-pVqFQZ|efuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU jqNTB6T1r~-4LpwQim-e4h~ja&0py diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 32fc92d33c5b34c0c7a35046753a66ce9fbbaf6c..0e1cc4fc45fe47e01de5d7048c6227aa57e27029 100644 GIT binary patch delta 3706 zcmbtX?@JSL80Y4GSlih-8_Xy-8jId!yW5>@p;SW6p=mO(fh=~*4OS7fiV}i^C@7;B zK7=oV2+E>*6FiPXM208>Unq=$8nJp4l2Y%AG!eU9ruEY2{(#Sq=ks}Q;Rp#Cfl}TE>9rc{&pL@GyFuZ^){!tRwZATQV_>w_ ztZNV_u8ha21(fn%iRyTI<_A#~aycs&iWAiI%W%*9UYhZaLAQx90k>qrsgE5yNYQU{ zRKn1g1sxQ~EiqL(@ah;f@OrsL55=)n?HshPx92Mot(1*KR4z=fU8dc{7KeJCPV8Gx z(jMghd6Y*6CPZ7*e~1?I$CZ~BCPI6aw}_MnEHh!zQP*Jo9>xx{MNawdV6uA3QdFj? TofIqTuV0&SmvYz31S)<5umeBN delta 3706 zcmbtX-%C?*6z9(Uu(oU0*m=i@Y!375ssuJC$rrr~Q)H>UB#gDGAq^Zv>Rc z_P}S|3K7|@pC%$77=}qm5uX^J>q$@v-qv@eoZ#XFMG)CEzP4Vbs=l$^ ztf3grMqtj-1S7dRTx^WeDVlNN$W_wZ*$B=#XmeN1H{++H&s_OTm%Uaa8E`^BEtLo5{sD~cm7_f$FF_ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index e6a1a5570eda75a5f3cd93f4f64a4cddaa45dc13..b66bb8bb4b73058c7cc6898888583b380a41c900 100644 GIT binary patch delta 2904 zcmbuBO=}ZT6o$D;nrQq=(xlXn6rEi~sgs#t0xqO(tki%M7qv~pm^9Hgf+9s~kTD37 zjkR(qBa(EX78hAWJi;s#u_TaEa510+q>|#wO8 zTCSHDnLLxZrD(JHseytH_FaA~Knc%dw~&k3?e`Rn-)Y?lT8~ z8ISszMhBb^9Gxp|HbbY}^E)thnqS#>qjQuOrE%U2cGIkH*@@xQ42E0)YNc=Un(n8^ z`_Ch0E3MN)_zhsDqIA#$G+dPO6hAryTnv$Np1&X3OUIA>I)s@8J`RxEA^WIxuGt0Q zIwdZok&&%*fs!LlBxw6+KaN!~t4;$G?|=p5wzZ-;0hFxtAbN%Cxl8DrAFhT`>yv9M zs5Nl?4-nB-y304gSqnTl;x{%K3(>|*4Osat{cxd%hoHl-E^|c?gf6oT#%i1tH zyN!QZkM0KT6VnnkHdax)ji3GT%8S{JMJGFAJohj^HGU6*`(TP9qhSB$Ll1k3JcHsE m8-ndI+g|n=+n}Uzw}Wd+MQzg%Cz+_NqKFF(G6q4i zu~sf+M3OGl;v$QPN0@~omINXN7XwN_Dk)vLsS80D1<^Y#{(!vxfag5ty!W0vW40V- z%klCYldp#4kQ@%FgW=%|YIt}k9?eD~Lvkz=ip0awSX_~_N+OqwshLDrRpZor77O@chfD;vK_;z=?^#n)KqTsn&zd) z`_CX|Q_*N4_y#ajQ99@X8ZJt+lo%KVE`~^XmcJj}OUI7>I)s@8J_V55A$zEGy4eNc z8YRyv$jGKrpwxI13EDc^Pm@*5s?p%|J7591WvyiF07|AZf?nZz{yaM8$4f!f`sB(7 z)atwT2Z(4Z-Q^qLtOcGL_v)LB1!&`D4Osat{aB%f54~B`8tzcXJZvTP7A-Y^4bg9zpH-wx;lo= zZsDKTqPs!+^o&G}jTO{x;irDQa$|OV(aw(O&t1$*jo%~SJ{Y3N1lYgv(8Zo2&!D)) mx?p>ZwwryyHYlav?P0x!SVfL?pE5*&HDBk^8{!}JgzYb-TwCS< diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 4f2cf8c32bb94b8de55806c0cecae9f4b3d887ef..b506fcc7be9764eb7e3f69d8161e78acea306a4c 100644 GIT binary patch delta 1212 zcmX?emFdh?rVYM~hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+Hj7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Qp8Uaxb@O{!ZWc0(P}J<%yj{tVJgpNquTpm-Bd|9sYG#q+Uq#J{n|*Zy$*^%U zNNa-rWhSzMXyWFtMhDr+(ptGW!ManHEUkr;H>h%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mtqJSjYeX delta 1212 zcmX?emFdh?rVYM~hIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~=G7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Qp8Uaxb@O{!ZWc0(P}J<%yj{tVJgpNquTpm-Bd|9sYG#q+Uq#J{n|*Zy$*^%U zNNa-rWhSzMXyWFtMhDr+(ptGW!ManHEUkr;H>h%Ko*emyl>+US2^R8XXg6%>pDZ&; zV6$Vxelj9zvtf%4FIl#hO}=0tJXxnfbhFMRHFErI*a9|UGtZ2v0%W)VQVMWw4qREy F2mpcFTZ8}r diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 8947328e8e70ca7f57b35bd0a0c6da62f0486028..d6239c9d8ca9afc03f0cdbdf9ea07abe12d67ed6 100644 GIT binary patch delta 185 zcmcbld`WqOKciu3O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj nsYQy3NuqJ$<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&d4Wu&J delta 185 zcmcbld`WqOKciuufuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU nqNTB6T1r~-<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&dz_v3& diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 1e63ef4e7facc1710b80a99b794da904622980e9..afe0d048847854b8039dc1fa3e4b1eaa5ca1d312 100644 GIT binary patch delta 1180 zcmeC_XYT1|-Vn}cSejC9oLHHYrEg?nYGi6@VQ8FWZe(I&n3iU2Xl!C&l$vH~Xklt- zX=G}VVq%hLoVdAzQG%TeZ5KJ%$gpklMULdn*<9br)0(#VCyzWg>5c{3S}=L1L?Kx^ z<0dXtr@}^o_Egnr9297uruU7BeC?CHJcTCT*5lgjY?LEL zkumAy>E7(%)kJ>aYj3Xce?eZF14X~~X1Sm*Fu^YL_47P%d adLQz%PM#2~wt2}`A##Haq&<7Pq5uHTo>hqe delta 1180 zcmeC_XYT1|-Vn}cm}g*UU}$WRrf+PKlxA#UWNw;bVq#=ymS|vNZft61o@|(sY?+#B zmX>H~Y?zjkmb|%xQG%TeZ5KJ%$gpklMULdn*<9br)0(#VCyzWg>5c{3S}=L1L?Kx^ z<0dXtr@}^o_Egnr9297uruU7BeC?CHJcTCT*5lgjY?LEL zkumAy>E7(%)kJ>aYj3Xce?eZF14X~~X1Sm*Fu^YL_47P%d adLQz%PM#2~wt2}`A##Haq&<7Pq5uE`&R8M< diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index e28f0f490029cf43bf94dbfa5cdf6eb75904fae4..6bee50c6468a4f3b946f7fb26ed23a545cde65c4 100644 GIT binary patch delta 62 zcmdlewNYw=E0bYqO1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj RsYQy3NuqJ$<}#+;TmV7T5wQRO delta 62 zcmdlewNYw=E0bZKfuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU RqNTB6T1r~-<}#+;TmT;z5!3(x diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index dfda628ec262376099e0641ca0e0ad8f8cbc4771..195516fd86d69ebfea7c91516ca0d7df4e1b3b99 100644 GIT binary patch delta 2563 zcmbuB-7AA(7{+^eCu~b=2Ncl|`Fy=!c~?Y=6e&`aj~X+v)r=%Zz7Cu$mIsTHB;yR- zWhZD82RoSq+QFpAf%p>?c}L3WbMFuM-Pe8J*Y$ivF1W}AchX7fr|mP6ZPqo;i?Sjr zR#lLOYDHNV91cm4@mY(<2uIIUpxo$Tb!7g|8Q696K3u|oNpgYMt!2=AsO}RuIgme8@lh1>hRbD2-6_k z|D3@d6~8Bwti$N&SSC9QWb!kM9n;de3YUww={S_;HydbZje`NNA9K5F>WLB%T3gm5 zJMiroz`X0ioy=95z}xm~5%0^7TXg=|2;HX(2*gst;J%mn{S%!OhG z#14N;lt6Yg7l}hOu9UDVC-&#tm>{}fgpe6T0E1cqQyRN)BJ;r}6Zt}z7S#S;y(!;* CjO+XW delta 2563 zcmX@Pm*wPMmJNZ7ws{7I28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrY03I2`N_rl#rdU0$*GeS^^GSVWPEN&vMJLGWf&_b2Qlv4PX47NJh?}4J=waW$Fn9H+SczzCfIkSH$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDk2FuA}-Zu1S7F7o0Uq+NNln^z`z{+_V8z~>Kn{)X5b5D-eH z&0vRj2Hm5?cJDAfN^FmfxJHTX;xY5cjI>F*Je!*m4ah57CQP=^l%I6%n}IbDd0t+y*{nN`n{*q2b>4)@`)3JmPMbc1%(&XTf0jEhnKswk@^8Mj zqME#r&YA3RNow-@?Sh*nx5$%MI)IJX{C@j29{iqC?+BZ8~5>q3~<_Vj{ nf98-^YfqS5Z_B#flZi2vyavOB?fD#xkI9R&lI_4&(k(^+Rwf6J delta 2539 zcmcb(n&skZmJNZ7ws{7I28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrY03I2`N_rl#rdU0$*Ge+wi-`9$oSllWK)1TOD6j=A0$ub^zXuq{F4u{ z6q2RAe{wIk@Mbo)<1FN9-`vY>$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDk2FuA}-Zu1S7F7o0Uq+NNln^z`z{+_V8z~>Kn{)X5b5D-eH z&0vRj2Hm5?cJDAfN^FmfxJHTX;xY5cjI>F*Je!*m4ah57CQP=^l%I6%n}IbDd0t+y*{nN`n{*q2b>4)@`)3JmPMbc1%(&XTf0jEhnKswk@^8Mj zqME#r&YA3RNow-@?Sh*nx5$%MI)IJX{C@j29{iqC?+BZ8~5>q3~<_Vj{ nf98-^YfqS5Z_B#flZi2vyavOB?fD#xkI9R&lI_4&(k(^+=7J3> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 59b5f1ca682552452fd678c4d71fd6bac49bf48d..16aed597625b829ee382261fd3adf5b62aeae81a 100644 GIT binary patch delta 62 zcmdm^yGM6JB%@(zO1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj RsYQy3NuqJ$<}OAfQ2%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24geWXBgp^& delta 2596 zcmey`!uqv^bwebhVV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9q%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24gg{XDP#Zu diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 3975613e9965642aec7fe63383d1bb4f98b83516..bfaeaeaa31ab2595fd2270f45f1c9b01498b4ce0 100644 GIT binary patch delta 2852 zcmZoz!`iThb%Q6PVQEUaabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT zrID#ciit_0apLAGMkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1bL-1JD delta 2852 zcmZoz!`iThb%Q6PVV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9qTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1b@a$h7 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index b971324a306cec1692b2e2a50811107b5cebdc03..a6457a502f364c322c4b9a7c502d344bbf607f81 100644 GIT binary patch delta 2906 zcmex$fc4h_)(zf_hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+G27-h-OHo5VB-ee2rqoi91);Wizfjpg?ce8$AAy4b%-K@fs8%kL= zCvrD4lVwEyqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^AqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^AHUWj$9EOZ7g0fLoBD7hk(luEyiNF z(H|4(gaL_Ui*cPq1|ck4F=#UD$apFCSjuU61<_ifHxSJcn*n2$RSXTsh;52EG(>Dx z_~~eGdbTgl&i@}uSF*{!)}CugzPWy#xc}e1m*SfJD2Enb29NVQTI>zd1JRCQ`B96x zqWP9+&g^~I7R^;38wOl@TH_AEG0dXdJx$v=i*I%lch2JGUXK=gYu_a;@vQxRph1iM zZt#?7N5^oG_CUA5;$_h{{zdz~g&@V5Q12@=s&CrgpC|+;^TqhSP*z056WbO%+c=;V zHiU`oev^7L2KK%QFAD;DyI3Aho7EdLQKh&%j72+XNh`2=U56i+7SiA@1y`?MXoD*l xe-el&#Gh&~_V!s#iwwt--PB&2QwAJO_Ys?QP^e?_VIpaTxwQM{j%7v)egT)C=(zv@ delta 2548 zcmbuAy-Px26ogl>%i zZdAuaI;Tb=*{z9^$S@?FMht6pN-|!H!}@w!USTxWsMJJr(xk>rV-rKeF=?774h>0@ z5q|pnI-ktz%d7u~(v?#3FRkZtlJ9Dd68HbR_gdUEAC=MKE8T3s~}&+Y2*Z0mql z*a+r!N43(;7>a!nUKWI6`&geS=%gEqQRVq^%%lcrNsF*?-G=X%deY!-5jU=%X@iTH xeH4f&WFK2F^ZLij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*01~4s&;S4c delta 2831 zcmex+p5^a(mJPm)hIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~=G7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*0L@P^_W%F@ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index db70acc008e80cf908e8d5d8c75fc34b838d6e77..0acbddad4531d2313e5983f47aeb4a03a9080546 100644 GIT binary patch delta 62 zcmZ1`vrJ|~Fr#5}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E0KW6T}Vi;;D5F7qDJt%d97pZuDokWBrX`Pu%kkg0bv zKb!F8i`-Sr4)F1S3Alv%_ zK|d&p_V=MZL~=>`yQKMv?sim3kD}Us(N)T>Cfc*Iyz#?%p@? zZobzN!AV~Ev0(E2V9w0~{h3_k>7PIO{&bfbzflaBzI zdMC>j@N7PMxPa`u2huNiB7~Pb`xi_;AJ4bhX+1p0CHqzTL%uv6{?=$NcU6 zW{lI>NO$)1jg5>`rYE>D3T*#v%ea7?3;;4=JJ1A8a&iF7dhY3w;fx^^xSxA_Z3N>s zA@WR^vn_|wkxakOnU=%Ix?Q-0(TALr2lW5E>3WTfL8Lo;J5cX#ankjHI~m)7os?8A E09^OSBLDyZ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index c420c5722b3a9e02ad041b68d1f46808a78e6584..b60cd23fd1702eb495e8f38ecca054ac576b9a99 100644 GIT binary patch delta 3933 zcmbuC-D^@|9LIT@dD?v0Qd1d=Mc5D~+m1(@hPak6i$x9^w5SV><;>DWP*RXcP+2ZQ zo=6x7b`x75=pNbwwN;~w3L?7bCMbHlSg?y|1QJDdbpOHk`~jcm^ZWi@j<{46ma0PK z6cNu)rliQlGx2_>%k6Y~J)(4C(CKoC(WoR!t^w!Cs8{s3MX%HCnRK}#QiRTuHGs++ zXQ)qYpyMrNkba_C0ZE@a1CeE#kj$(i*fxWB(Pv?=bOiusd1IRavM#W6j}Dn@-nhV$ z_U~ITD^1$!d1ILteO5NKCxb;Uv!c)3f)(8~&+nZ9%}u;Fuv3XW z5S&wD|8ihNiGBN_bD*6i#MCxRvtQZ=W@n-F`X+2>tozCv&`KMb ze_V?x$$a$2fD(J|7JBE+;_J69O6=ARciWZNkI%kTVKbMrYni^3Zv}C`U&FEw z7TYkKbuIpG$58t3pp|J}OldKkjlJsyi>8&;tt|d2CV=M3>LU$?Qpb7+oA~t={V+9f z`=6)irll{K*!%jj0-R@6Bn}RozcmpHn7kmfR{pV**o|1{3nd3J@me2ofIo;E4{X~_ zYG8b-$?14)ggC&pYx4RK8STJ2K>dD!ex7LM!7zD_T~3Nl@9N~QPm=()LQTFP^9KHH zn$)q&-*}{SlW2M6GU-$B2$vrj>cP6nm#d_N{fQ~dlTh>F$K)P(4E)&&`D^|UIN^j8 delta 3933 zcmbuC-D^@|9LIT@dD?v0Qd1d=MXVuAHjl^Y7UEjMEEYLv(4sC}I%kG1x@Zt25>%Fp zkS7ubg5AUx2)c*%z}l+OMFkOEbQ2W4T`br|Gy;htJG%eid;WmW^Z9*$FGpOh2&)yL ze2$1ohv*O`N3>5GI2)A)oSy!O%jFc^lMa_h>UVp>VkA5`HRX;@4oYG)5)IRNvI$T* z;~e#>4RpMz1kz7b>mcb>ry;UL6Ox&gg|3|-UhrDjD_tJISf7A1D;T~SH)(R-~*>}Td*s<4^M*|khx%r%3!&!=IT zhs!M(&N`NVw_+&$cg)H(FQ&B^&c@#LfJM{t#%>n>6ca#md1FO`q13+B#wLD!ML$e+ z-1g@wx@oCPCicFzrU2&|6^Vlb=Wk8K0w&MPtd)OkCpIJ2`Fzn%OuX7l?BEaL_5*v| zqzcBTnyijjM~EFG-1Jvge=;w)M9te@=*yYU9nFHb%7 diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index f75803f42c8d196b3db3ded0d09fc7eebb9c0907..7f35d1db58ba3840a52a6359ca569beb67cce6a3 100644 GIT binary patch delta 1137 zcmdn}hjI5G#tq(#hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+G281J!>u5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-lu5I!L&hW|md3Yzk=a@jc?#&xGJ;`t@)Kc!rJ>08Fw-l zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~* zlY0UySz0qTPZCri&*2%H{Y47M(7O49*gJBf^@CW(=5on;GHjd-(%LVxi(FeD$+?ni z>jA~*(^b diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index d4049ee6e16ea36dfa794af601c5b459b5509ba3..1a1d6068927ed10659d71dcb3537aff5cd5083ff 100644 GIT binary patch delta 12247 zcmbuFYfzL`7{}+l@4H-gm&>w3I$jW)Fg4hPRd7^vLIo8E5HP$itBW{`H_*ZqXUrxL z#LKEjGeWZKymm8oz0-w%BJ|9{WzJm>5? zRJhF*Zu6lmHgwUnvxoCCO$~S;aIZEP6<}F(2nB}%B(e8t+*5b8`Q0A(Sr6lIPRJAKHiuW=>oZ&VH&WDtl zs$bBjGA4EV1)1DG6)9@E@u~z^SR7gIQ^Ef3aBS)=_j|ju4?#g%*|6w>w8N4m7w0OSf&-?kdI11gT!whQg zH^*UNxYXd>@mTUM^-*3CHfk>QN&WzodUo<$lv+P61ErpvF%qDv7Ka%-N-p&`XD&b# zQ|VG0ik_i)E^tjksk7&eLaAdHAi1jbCEuXLxW$9eJms=1l-jmrG)iq)mXA^|EKdih zJbExIR*$TBjABQ>KNP@f0~}qEfKuBk?I`t+>Jb1{wbvX3i0X)S1%ON|&+rX}s5F&_ zpwiYY%TcL*TMT);HSF1LK<1fQnjo=ORC`^=1_B+` zxT-&^Lb+FiSPjbcGq9B?_q9;A71d5Ru{W{LJuXU#ViQqrLN|62)mHUjd(b-9^sMcv?8&EAz zV#s@##4m01F+rP#vZcT^!tK*oE|1S+{MO9a&VbWI;Tyj)l^Za+Z%wktYxmHYLE9bWaRfeCZaZ zr`4NSF>)3>4kR4vf#LDsr_hz1%n5XWgg7GzEa1zWplZSlA z0<^ZfGlmVMuC=Tbjzd_TLgS!}I&2Gz+Glbh4x|Y`v&lxZ3%zc#U>bab%>pMclY~PP zlD&3~JiW(^w6=wnA=|_Lh~;;-u<;?A2(*xdOPUENpU`D-mtHbba*%WwAajoc35S(H z@)T{7kXI}hx=B>nMXE!3)|Mva(21T>8n7+6N6dvdnAXQg`Us%pnnTqPDYUceWl7R% zG#CET?t5%~VaJvJor+SLn~ix)BYQ~5^uJzr|!&xJ!6eY9Dg09|L#yQA3z zxO=t)(y9aU3ZEnDu-bb_&Ot`@WqJ6Hb8;kKvr(Q(?PuifK7~cXtHHNsJ-Z_>L{3p> zKEj~~z0x9|@8-+Y@a{$>m=*^r-OUy!om0t}+;mA&Z1f7v#C;iQ(vZ-9{LEP0{^@4nIu{)!{!h zvLkfs(H|N-s;|z-#nNgu}O{y~=j39n0B1y~DsT49hTLH7bZrwPI%mWYM@rKu|Ftiv`zlWRzxbgPLL$6H8N+ z#bwl^wM0u*jIDLKwVz9DZMAA^LrSC8g+@({Yqc1ymDFm_TvXEjn|FTj^L?LhJKs5T zL$$|J?Xm31VMFKG>^6IX&1FqUnc+%EiBC?PIdEXSJ;`Akn4FN9lgvT~6!Fxy~|c+1$4mIEy_FCC0Ox9kcuFB9!^+V=0CCE>#^$tm3;&5T|=ALGvJG zwi;mgRK}#90E5}{Q;DKxnl4Fzh25FsITEb*R9ejH(eOkhisu$;rR4}xIU!e%bnBys zg3nW3y>A7B(lc+^fC=%~oq6hVTVyy!^(?oU`41!5@WBn%^3r+UKi}uu?wsX08Xltd z9yJaN!>tDAkH?aCtB(pwuu*fXPYMU1)Dx5DpwyPBSt#}J^fZ8~+MO2cD7n?&T=@V| zOr={rTk;IebH2L>rOuw4j#9_YM{-qL%DzE~)`iJvo^nMFO1-~mG)g_Yq!6W^UYZF| zdCXu|s_t9%7{!i$e<*;}1~{fV0j1tw?m(%3)Q$wGs-u24KvYMro&m_T@{CwJ3zeqw zP*mEsaVaV_Hk1IB)pCv4T!B*iHd;{W#jP;4tqGpHTGg@< zr5-wS9iXZ$=gyfdJpz^HJ*fqxYWTBlfXq9ylq<0|RC`6ol7NnC zTvg9%Q0^rIt4Fy3A*>4Jz81zdq1tI?HVXUPovgs)Iu9s&yr@wWyY- zFyuW<;+Ho1n4tAT*<#=t;f|>+pW6zUo;HtUx&ApUO=CNNnsvs&g+o{RF@w$4`TjNa z|27xKvmyTEW2B}DOhz4=L`?&IPl7~0s)29ceExQp&EImdTfQ@2YD0KlGmD@HvshdJ zXhU1(uvDaGTKqyBO63dKC%`BCjx1`cn1L5GvoP9M$qJDv@&-b}rVRL!?u{XbFW$(E zRJWd$B4@$tK*FH~7#=TvGF@zBE}#P>#93ir+xe=4EQH1pI|l4|t#c$C4ud&o^U&{D zpw@Oz*03b%c8rz7aR{p;XdIN)jBR02`)n@6L6rM5n`A<}5PgjW)8MPD7@WLp5)Q3M z_S!Y_^bRx8s=KTL*&dEZtgy3%7ap>SKnqE@WSD{S30)3%8zmDBGDv#?GWR-=aHs;3 zrx>$@ykfb~7169NQZv%C`x#Om9qJ`z0Na9l#axJkX-%wTj08%qIn)f1!aBQNks{Th z!H}>@H2NL~i8ywE&>0k$C0&P;pXZWHTJn5JrWC^GWl9-ja7tH^)2lU87-sbGy#(3< z=F#<1P-iQuYosV74(}!-VRaChNKIVCrA0_TG;#hW=}UBdQteJ@2yl8k$|uB;G-a=} zB^GP|Ri2fak!t=J_m^E;vrtEN429x}2o%fq*vl%x2{b@CKyKQ8z1D=ZRTXZ>r|vzzh)

%0 zBOH3tD|h8n-Tj#w-ovB>)50L72Rgal6R9U*vmDt+FY_T=q+<84BErE$?NN#w926(D z_g78=F_6fjzXfQ6won_=lv1Sl+MO@Nk+gY?@~r{H^Pz=Gc;}mMP=Nw15iJv8H3b<0 zEtAiuD>tOI@MfVpv{4_C4hyT!+ z5UE>({?OoE`{_(vd|eLXJ7RTF^kJ;-A9M+j@Hzl|E+v+zYX?dv{*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgXw&^Q8a) delta 1771 zcmdn`gK6szrVYW2ws{7I28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrY03I2`N_rl#rdU0$*GekvMWvA#CX(@WK)1T!#DqDN@O8j>*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgXbh_jv#S diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 0e247316161991dc2df5f74df4de00af8acc3516..cc332d30b637a3959e6de8281f6f20cc1e01c6ef 100644 GIT binary patch delta 175 zcmZqEYSY>f&S+SgQf{1BnUke&WMXP$YH49;oMdifVq%z gYLQ}Ml4zW`xr5Pwopf!JUvk_bOPAMX2d-mW0NxBSZ~y=R delta 175 zcmZqEYSY>f&S;otU}#`yY>=jJY>|{^Y++<>nqp#NWN4OXU}A1;YG$5nn38OnnrfDo gXlZPimXemdxr5Pwopf!JUvk_bOPAMX2d-mW0FA;i*#H0l diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 5c7f9841d5b229c43f08ace88d2e21710a9c1044..8a2250af81a6ebbb271e6bb75ebc898d62c7a805 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!&Tn^&*rW^iU7(W(Cjt?jP_xzu#o$o!MB6QEM?; zH9@@8-6!k)#j|NiQ6)8_iE>xFq$r|c$fB(5mU@hgsHtK`QnhYH(Pf?8ht&wo5|akY z1^NQs6CKpb1w!mtWIW;n9~DZt^nNxK*Mq3!0XCNaTc1g5NBH?7V# ziN$xk#1yu1*4Z|UC~UdOo7fZaVA%V59h{Z5o@OL^Jzv44mh3|rVe^OQ6R2bd53!5J z@M#o2XjP}LA<6F_-rz`f7TXY@Ml1dncJ*UyrQH(qH$O z-V+-mP)e=j@hqeTAN;}r_>CPwCx55_(L6q%DkE?Lhtt9oWVue^9_Eg>?*K=zm(M9Fzdyh<4F!l{-6K)1aDzK3Tf5961paxys`~h>w zwKyiev;ZB*SDEIXL7X0)0D;?m81^Xqw_I3;5b{@XySxpOX1*&-e){UtuzZP;M=iJ= za=Hk#m?Ew8Rt;A1e3F!~r^QimTeW`$vP(fFTlx8Ray9BlP}xVe9W$U!51;?N^+r1W{PGlDDuY@*%hV^_n=VrpxU}^m@LAORX4((!&;xECf)=ChlSv z)R8kNd`Pd)TtkxIKfJ+_?C7T~X84un5X;PFaA;NE@%b*QZ&g3rn6XbXrMVGVm4(0V z)$Av>MxYW}&HY&jO9K4jLHLawK{J220Ny-4pT~1* z3>T5tmnGOR4jn=Q_Y3G35*(g@Z9;;49c~B-p1y+hLV`Q5;hm6R_Z0j=K4R83uDpjS z+ze~nI7n$^d*1mGo+Ag44$MJ_-)z7s+~u;zvcW2xRAe!)#a^|wDUb~@>8fw%ksrX9(CY$ z$m}A~z7Xl8w;Hg9=YynzJuRk+8>$1VkX;H1vYnqxk*i)2L2W@xBvhE diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index c0c5cc3dd2122faf059f670161c4eaa04cee5b8d..1de148f4857bbe137a8e705e01ca210abacea877 100644 GIT binary patch delta 15184 zcmbtbZBSKZ9-rsDT|&7K7sA5ux|)tl4sp34xUL8^2%;kx7_?ndL9S$1$to?Gg_ydwwv27&>S`p)KIfcuo$1^C`GFa}{9gVq z&;NPObI#q>8ndf4rlW|(*Ot~LEM8ev8Rv2*x)M{8;}c4zx!msfva*Eu1os23rDZAc z$%*kPuEgY0w|jBIV&8f;44~4Sg`2!KRgaMWjfh(CP`yocOR##VuQKRy4DD-hIP|(Z zmMJhiN^h{of}sobG5Vaab})3k!SP!eGQOJsDv#Oq15w2ozFF^$PQik1*7x0;4+N~I zIUiA>U@P^cNiM9wmAV{zJP11H^71muBySkq%y;%TlMe$35}O8sjhUQP$K_YczO>{^y+XJ0Txl{g~$= zq`{k7yn5eb^+1FB4Cs}Tsi^9a($%o)vU#ZLw-v}@He>x))lSrKT1_bm&0R5q#`;5T z1*&RanTe{7c;Q&>4F#yGy)hGwb)-2DP}Q4SdQrvUwa|%2EV$k43sF(|*&!fIv-ADW z&qY<+HYA{`t6r=@RXI;XRe$rl1*mG{@2{Y$T@VGaYqFjYxe7{ zsOqX+ktlRV2drAH!>Vz6;FU9J?b-FmRHYz^p@pT( zGEr*>iv{v1k^8 z)^=|Udj|FU-FTLPUCVgs%SkK?)%|1&`xwP$PG#GH92<{3#N*gQsP0A=D@1i)ay;^Vlk2 z?bF3v)&tZV|j%$cli=@LL2O#SD3MU=UPNZwVU!W|s-(0<6;9 zayDWM{9@K%SVE_2*hB>U_6sbZ53gh)d}BTPJD_e5kRYhmFmM4~Y-ID0&JoH5)ZN1N zjS5_u1o$sVvj|)<1#z|%xI*VfuK2Zf7D6LCSRK;r1_KF(lfa7)OTKt78%-6RtOiVZ zJ_&}Q(7;p9yH1OGojk<80LHip<^nvLvU=F-Nc5(B{V{eJm8V0;*++mf3FUqy+XCmI zDgR()b|Bkkr$k(4UbxL1SJ~GSK?^Y$ofT6IB%USj6^4hX1d2C zoky!ef=iA>jSQ_6MnpUQ&&awbZ^MY-dU#^sMyRPx>PDg$I1lx0liowyk&k^#jDhHO z2|1IR8y*RUE_8tMn1iAnFRW0)=&AjZ176dDX7z-?^KJ#;9F#r>rjWJW3-D-KcV4PT zc5HJ+I>*QwJ#$Su2p*U6xydlV(BG((T8`+$1T8gyFP}U{KqHah;wg6~7GZY#*E+hB9RvrX6ic(L=i_ogj)L|Lg zip=~8a7<@`(j5)<1o_7*6M#mvGFLcWc@df6hIR5zR(=L8d!v;F*iLz|N)cG~g?w{{ za;J3&s!vtM@TWVOoy31zKuZfr5WbJB19Kl4C{)UkGMIar07uYCkFqrw=mL}B(JCt$ znN(DvAn&xTbA_NOLHfb;aC(IjLb=P8QRr?+f+6jGGzBBu6qUDcRgQuLBnYNwgJ6F2 zf(ZWbd1VdKer5*=hFJ6@LTj!o$S2Cyflz=oDrc$m4Ko<~{G5S!xCH7_x1dx|nv(SHtfD znqGiQDYr~@0*jplcw;3dT5Wvv?B>CJDl)1+IjefjFP`bMKD7s#bb?_GE$COL0daE^ zoHC$RA?G9$TyRRwfR(e(sK{5GB$Q{ujt`tuABDk(2h}-nxChUx8(?MI1+@=WUVl+V zUeH_p@#$q1d8=uG_g+yO;g|=9)aA%5H9K?E4fQOVu+BCO`IycMd7`2rKdG|7A8H!% zalHi|7p%R8jQl2tR>jvkwJ>@-R67M^oCHG!a*Zh}<>AlUG?j0is0EYo@Dw0#L~qfM zpgD>diBHg$aM`6@4}2FOf$c&xP1lXHw0{P!X+5cy4UH(&dhb~jD;XgaV`|Ib2#B^h~Axmf@kJV}cm9rlyQ(jMZw0tMuG^Yn|!0{rQ0zzWg5l z$N8Ug&%L|5HFkGvY-cfZK9S%|a3&>G#wSfHtxTGhn37!XawR(5ixXTaNy+Y%GG}>N zYDI;+a&c;sv$DLh%(sF00aUu9XtUR*>XGul5K#*rrnjjs304pD)dW3>p?wW@yT0g28DGPn$Y-JY!RQhU->mn=q+&rg>-+C700P$2 z9gnI|ur<1SQX*F18eNV%5d^7ve1D0E_I0Kz{HZ)OT=%)^F$*S--kI8k*l21g)xXd9 z8KNwpzVoxc0b)0h6*>E1q@CC2v9#$O@lXA{&iD&_lr^=iFd95W|3hxo-H;Eje%$jg z(%?-kUcLYEdZ5952J~v_R8;k7`5IVt$vjl`+iGMno3Z|L=`Pf8dR;jR&09W##`?pG zYE(6JRTio`;)P=kZ74)lLmRWuSVx-k0ad-Jr4Lo~uY*oJV!`d%P=t!g&kqA(nw{VN z;#^dI&$n&w5|<*g?sq@<0nzol+WAISl6Gtj;h9gxf4}wK6@TjwSV;sR5kVM zxu|Nw(0){ve}nII-@b#Y4qQq@W9_-T7gc@W8mt;Nd=yn}_0L9Q_1-)Os#1`|(8AIc znJLIUi8x=<8#We!dR`RFwxZY_A#6N~T^7zpQ0&-9<_614H=@`UR5#;Z_5z?wEQW=k zwcQuXocEs2 zkYE@N3q0k#`;4g9sl)6GV2qn!F2JKHyO+IORsh-k^!)sd5teFsa-mL%}L(=EK6tcE^0Uk~3FG%&s zj%}_;#~4|o=dMeKz~fQ@HyH+*d=#0+w>;SS&|#KEtx>Wa=|qEugpp|>U>U3^&OIRC zgV(~yWXoiEPxPI5;EpUgjQY~#J1a=Lps@$;gYt{zL1ZEeTp4wHNp|V?!L*0;wYyr@EW+*grLPqX?tvm>DG^L%C7ok<5seT#S zip=~8aBNqh(h~#r1htPs6I^@!=LS9p(Os>3R+r7g7A09IxzQOJrAR-R9?mRRLMU&UG78-dNid{8h^Ams;oboDF2e8;lfH&1(qP50H&n_O^uOg%RlXI%q{NkBD>sNb`NhcWA(t-gs1&EuQ z;M75NDRNFS!G)*QOjtSltcrZaNkVxh?D*h$^)VQHWJsL@hkNLPx)D~kT~zyF=Pk++%_c;8jE5srCiSY3w9QnNEh-Biz^3F~UpkdNuCkS8h{@{=kH{3lIA zKCZXGDuH8%1J(>=z)c>)NV3~$IsoW}njS6bC=g}-WGHp5Z(sHfh z$AQ<;j6o30rS>*0EdwXW;le>Uy>(Wb3EbS>wy|kgo8`Py8(i3Uk1`*$tprYTh8Gek PdBhFbDBA0_O%47J+xco- diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index e78f33fd70f44cd1f3477d062e7d280b48d815ba..e750c1ae3a0ab5ad0544105163a7f07a35cbe53a 100644 GIT binary patch delta 1210 zcmZo~VQX(;+u+S;SejC9oLHHYrEg?nYGi6@VQ8FWZe(I&n3iU2Xl!C&l$vH~Xklt- zX=G}VVq%hLoH)6L@cH~Y?zjkmOQzJ@cxB diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index da0e0f0210b0ace9e968e92c2475b5276f59ec96..2b279a7bda5733bd9cb39f9c190db8afcdc012c6 100644 GIT binary patch delta 545 zcmbO?i*ep8#to^AhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+G!F*1>%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!*fH?v delta 1740 zcmZ3ujdkHR)(z2&hIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~m&7(bJ)Yr0`1WB6uv<~(-t^hRyswj#r^AZrsRpW!Ja-PXw)by_xm z;+@P!me$VA_M+}gWNLMgI7Y741Jc!G1QXD&otwYP?j+aN48 zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!38eJj diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 445f550be99f05709e1ea090b27ff2980115ffd7..f433359628949bbc46f57df098f91068699b74c9 100644 GIT binary patch delta 1973 zcmZ4YglXLqrVZ(ghNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+F}FtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-_~nXI24sWGc)WT}`GmroeVvf|C`yY4znw?Je-M z4T&Pt1|{~YV$f0mVA|2_6f*S$ioTyTTNk@oR#V(4dZ%DCnQ6NVY}NV+w}twPN# zMS6{(i?UatRlPa4z^a!n%>_xZ-cg346|N4n)f=9qIA|hTMZjyoCZd}4tk8?`OTXc` zL39>O#CncYxALNTO61?uX&O7Zd_NRGL}xQZHnQF+CNWUh0Nh1UQyhnm$;>r+au_Ys zQ+*k1N_-6tjDrTYT9oV=1W{%>mL`S{K0xs$KBLHM??zXJhO@kOz2Ik?j9~BGoek*u zcXuXfPO9Z|}l+u~*dQej{rOCyCWxZW}OMw1xA=$Bs%$q=)gb zb6n%9`Gi7HK#x&x#G2LB(G{zKF?c9pE7^mz=2W|3Mpvw-{ePc!Tk1;(Ue z-%mz)v4d=5X@*BsxTkZ(% zD)96zO_+{3kimH68TN45$Tc=izB4PQr((tVYP({RR)>;+wjUJ`s*;$BIbcn>Ib55@ hEO};`VgX%5MC6tg%CG}4q5TWferTEGV1tsN{05Y~qqYD5 delta 5019 zcmbuD+e=hY6vkOcM`ygvjAI3jg_Wk6HRm`wYLN+ImX#P?&?3Xe85ChA6BDUSgD!Nn zw#|+%FKIU-l=j0eDC|NQL>GGq1A8cnD7t|ULod~tkpk;!KL3ECoSL`Z>vq)p z-7St5f9rO)hYedZ*aLd3MXaKe)nZyyDPbtfjIpq>=xZ?D36V{rG`7J2p?8rB_55Uao5GGe&s4wfWGj!KH7M=_Ce zT<03(Rx7mtNsYrk8)aL-%3OyNd2u?ezy#dVoQwDxZL@^w)w_=D4US3CxinFQs_tDx(*$hp@us3JN4f?jdw>c*$Y1 z@GTxP$kA&0h%LKu6{)M70|t764I}T|LvieC(8iD1Xr(kX&?{gI{ja$e&&SI9kC9z} z`y@%;NjHGA`eP@olqRG1Q#3I6|EN4TNLMGXl6i!_Oybb2QqN`{aR2^khMlCQNvSyY zkx5<%kbN@E@Q@16FQXLMdYZ0e;WJ~G_wSL4ef-1M$u9X2?VJuexci1Q`Q$B?qiKW% zp1q?fvoHtJ7o$AK9xgRpXJ^Rw7Uk4TtT!St(xX+u1tVQEUaabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT zrID#ciit_0apL3&j6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+_&;^U delta 1312 zcmey>!St(xX+u1tVV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9q!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+B5io2 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index ca91c27d399a8825f3a47e65c498c61d7e4e4e88..fde66009ebed939fb8da64fc29b7180cc6d77168 100644 GIT binary patch delta 534 zcmX?7ccgBEFQZ{;O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj zsYQy3NuqJ$xMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@jD>Ln5Y delta 1864 zcmaFZ%<{0AWkWHeZJvRlfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9qxMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@i;11Sjr diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index b6f0ff5a1992c570f6c8c5c815b405aec29a2803..d4c326fe80fe989224612b5cee17426932f5f1b0 100644 GIT binary patch delta 8004 zcmbuE{Zmv`7{}+FWo5$!c3CzsAQ?s`CJVT`OR@&+jtQ&0$Wp%4U??O6j8MGDi$Y=+ zOHMJ0~b!E{8lY~#N?LsqN)2kPM{A8~u0W~rEyq!6?Q@*~Rgrci05a_{FtIZW zm5#JOjn!GHjPB|V0AFbfI#;07sXYZK^?KK<7`0l7W$kE(Gxy&@sUruTM5)6)CsAth z>y;?g+1rm&pMMjkcJv=bsb3y*qP6zF`x`1vQ)*CY?nm$px1B6PsjVM(8=#}UR_XCA z3dE#xk58}UU+SF#01mzvU_Gei*yr{68NVN>z^7!uefJ! zTd^2y^j>1-XRYJ}$mhb~NGuLF%BBab?1GnAd4iirU<$Pi&58fKg7oSAkHbG*MP3A! z1QWV7{F0Y^AL2h$+|6#eE#1VEHj*3I7;1VZ^akErO7z$;x>@WtvXC!rAX~r`To?>t za2G4uODw!`H)+J+E-nn-xEpG}OCI%@*o03^A3I7G1A`;Jp=QFD9Vd1m1iLm#GTHP1 z3FVVM(qi<#jQ=_O{RO!mjyjD0BrG4K#w4xu}T`=;$DN5QIw>FvHAjrH}FR zA#?%o^|%nHBZGe;k7lt|5;gG4i)j!NTXo>V;k97@zZTQ*SJJ6L{{0UNZ*b9vfv*4O z!jqR%?_K`q;37vqNY3ZqJW8X0&S^_)<<>CX^f+z46MbC~Eddse#!ucJ&6@X7D{rWy zM}Q9eYr=b*=+z+qJ3ps4zd$YXF+DSO(lEAdAGPpPd+1@X3eAOo+eIUFSPc1chn0(7 zegX#2^k)y!DeV34VsH0QBY)^H9R~x<8XW4QiQqKyjAL{N*!t=aFrkg&2S1=009<_l zKEh%@6PtU(X_^Pjk>RsSwdDAqK8E5E(|0j9Q rAmYQ_x*W8E?o;8sFi>YiJE-b^G3qWx_+NnNp!z2|l-uKV=L7!%LLB^z delta 8004 zcmbuE{Zmv`7{}+FWrc8oU6u_DNQRM#$%4Hs@?ya5n6S!=EagiLhVr%n6I;B*i$Y=+ zSxRcTR8gK@S()N4 zO}9zz3U|5OLcRu6b+K8>XQOqP$1ti#nO?jSpel8-UX(bpWF0`1>ta31=lA8I()aH_jY@+OUO}Z<(iT*@ zA$b6m?oX{mr3aVqK)>ry21BWn_I)T-S^qI-8z3&!E9ozo|N*(Pxfl{rn z*Pzt&{y~)b{F^YfYw!q4{qkr!TI=AuzoF6$r4E(me+18P$B7b@+Wv8G0Cd#XD}CN2 z{+Lwm^Xiqti(O_&ZkNwSnUvzI>DacIlUsf$Gs1Me?3i81A{@l1`2Xp}`lrUwD~{RQ z7Ayw4axXFQGZu0jAq3^hFy`T*WvN%Yt-I#|qBvY0P#BF};;xG)&O z;C5EBhnRWuF4By_?OYhVaW~X{yL`oIWRqSoee4KX3Ji|;hMEaqag5l25bW9%$!0S{ zB!o|SNt?msx|$iM$#=1q3`5YYAi zT)1^5b=~EA4lZ&Gg5*N}%_B4t=$y8+R&NRAEsxRGJJC0k&@y1*XngCoDAu}{T6j|f zJq&c=+Di0PT3n})Kjd#Rb9+)WRGRcJ2!+a4OB!(zynx-4Au z@)IzCrayClPGj$XJA1p28hFYfIspclGdMUv6ToTYSx4yzu=Uj;U_u+o4}3tg0J!=9 ze3-?2CN}q`Q?vk>Bh7&ehgblwj>2|aWstf<_D{28^%ypst8a1=a zE@I>_jnZvEj=5F{8$Td}cAm%H3F0$9QU+XP^ZL*US_iyk)w{sK3T9{oGtAOS-%s+q rLHLKeba`k6y(hzXvA@oMc2L#-V$fX(_q_noLG@2`2)D)Q&iVfX*k}%6 diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index dfa77b8404e00c35e1f6d4a739aa9975ff04d0fa..336e51cf55aa26a3967e3fb2ff8b92d0f20a7167 100644 GIT binary patch delta 1562 zcmbQ%!8EOdX+tohZD~rmabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT zrID#ciit_0aiV@oesZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S1kNV<3c delta 1562 zcmbQ%!8EOdX+tohZJvRlfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9qmf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S0V1-;_{ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 5577525ced95556331e00f5b210a264041ec51d8..39ced4182e53a206e8c2823192432c1610c9d262 100644 GIT binary patch delta 62 zcmaDX^jK(vAERMuO1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj RsYQy3NuqJ$=6c2_>;PCH5<36@ delta 62 zcmaDX^jK(vAERNOfuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU RqNTB6T1r~-=6c2_>;N@n5?%lR diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index f74aa85339c59a807f740bb8d3e636a9b2a2aa23..80d80fd7a48a5e3d73f646c7ad8732d921adc974 100644 GIT binary patch delta 175 zcmX@2enfqPH=|)`O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj gsYQy3NuqJ$<{HLDY@}MhEW-`vz^hF6%vt6L|2nhT_lq=#KbY3zlvaKL?oGT zpfe$sf^^|k@>VbFs#f$vNXrOs%GE{NMZbiY(2aDqLv`Kv`~lzZ=lj0T`#cYCc2b|6 z)ZcZJ&>iTt`}^D5_S!^;&Eawi_LhA%Q51qfyI>cswzEN(;B*Kso5L9pMZeuIou@fK zDzD347W;gw$B^V6)*6 z(oHJ9f_?0YAocwtU+SsVLQnO%wa}+8Y}Z1+aZ%Pne-XWmP|1f)>TGmGX2oRZ1^!KEW(laqJmLXD8wlsI+Hd zsT2zAXUmCBU>39SWK9u7^s&~N{n$wJv0ZON$n?)Wu8#L6d47O)NVOjxLc#ME?ApR% z!~e_WOPk2cJn4JDRp+&mCtb*{|2PJ;)<6B3p9x@#{ng83Yp4Y~dzdTB>;X{q9K46q z2C4)`nks%}p+R7vafLhzLm!vZNdT%QezcWbFnO$k?!e@4m4s|AHMVspb;IQPDnhmv z|FnlPFf?Q(0q7|H#!ihuf%tI;Wq=W%yWS=_zLCuG^J-eeT2M9MM-S3#I6}%zM(K1s zzzs*pi@I>d#ZZPGBGgF+Ioe7^(sH7UFE*179H~um&WbBmzswrKn54FuW*&^t0`QR3 p!YVmTe6Ejrfz_ruY#E^Za{G)PBxk_uF4H`+)0K}jSAN48-EVHvpiBS& delta 4036 zcmbuC-Afcv7{+-`U3aw)OKYQ~+Au1EW}N*pDLS^79i+lV-OP%>G$N8r z7-(FGO=0Q6tKw9L?W!#L5OT{1Z%XT;^`b8!R_I2Waj33)<_~zD-*e7;-uLBXMsqWx zxp#adwh5vjN`kyo@`hx|Tkdg%oz8O69Tc1%$>sJmi{a*qmKL`htdK-GEH^9XXcABb zPwr;Pth?EmR2>+kJT_z5>%jHPmDu(uB(GEa-c{^YSqw|B%k3;B^elntc9wR2$-?B! z@7Zlcx2H3lrmDqU$tgUWrJw&|^s7A)>l~j9)nkb|~_ViRgQe(}7rP?D% zHyL;b``8&p>ib7N-&JjfKGW?pLmxlC*$n;q1=S4wMbAw$^xQt#41L+>_ zy}uUeGUM6Ul0r+R6NQvKl}6nxQwU7g-% z`G2{3aUC@|ejEf^>!1Gk&m^$L{_54?6%@kG-p;jU_5i554)5Z$ zhDw2vW{6+esSg-vTqDO|=;IPP0zi$#k2X>TOdfX7ZJ7M6l#tD3#1^*FX_#DFM#$FU zpLWnJ42=jR0v*NQNK_9Lh#zv%EHL8r>upryYsscQucSGw1q}m!U=O{9Bh2_HPdOG3 zbIX2eKwY@zVkt%s5$Pa{+S5w;%0jY}&oxmtI8qx`-HK~gzicMLSd|kKO+T%svtr)wW+uKk8*vws6m52-Hz diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 809a8a8a6502a4977b3f1753025862e8d6d6f0cf..b7147d78b1bc5fafea2f1b1fb5afc53dee6342b6 100644 GIT binary patch delta 1773 zcmbQYgKORnt_{(QhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*@A7;liF>!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x07~KV8~^|S delta 1773 zcmbQYgKORnt_{(QhIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~m&7;liF>!OnD)ahKjOjTm`G#x<8nQ`-4E-0C{I?g*Vp_`x00-;#6951J diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c2a540b382805a8d11b611fec59465be4f4568df..717b0841a25da0224ba5905e09e8bae9f277a170 100644 GIT binary patch delta 1250 zcmaFc&+@jPWrHuHVQEUaabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT zrID#ciit_0apLAWMnN*PO-@uw+pNa?o{4lDL0TuTVcSo(PJzin90g?Qp0wGOGl-2W zt(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_(woc#tPvSMXwr-U9K(4Ks^2f=rb#tQ9ZdS4) zrhfAojYbYKwf;49b|hWv=EC9&yrgTJTv*(5~r}RN4G-i#ZQ@+BY9K mXv9aJ*2(AY%WYn9p^r@Mo6p_Z diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index bdc753c19867b779c930b7eb40e726c03c0d5160..ee42260cc28cfd824d24079ab986bc1d7f7f673a 100644 GIT binary patch delta 791 zcmbQbhjr>6)(zf_hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+G282QN1HhCg@=4KV<7fhtv2-I3Kc_Z6;vUENnL)XPCS(^noy;#Z9 zI$3~IezJfl%Vr7w+2jNi&~~^Hg@RAX2{5P;n*~H=*~s)n!Cl_XSEX-CQlLG|jK7&I f?OmG{b~Q+mu66UpE0*n~YXhdQ;_d5V7}FU6%M0ez delta 791 zcmbQbhjr>6)(zf_hIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~;w82QN1HhCg@=4KV<7fhtv2-I3Kc_Z6;vUENnL)XPCS(^noy;#Z9 zI$3~IezJfl%Vr7w+2jNi&~~^Hg@RAX2{5P;n*~H=*~s)n!Cl_XSEX-CQlLG|jK7&I f?OmG{b~Q+mu66UpE0*n~YXhdQ;_d5V7}FU6m`&)L diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 318a43375004031bc0b5044570022c923c437db0..4a5c15945c04983c22b2c2cc1da9b8089bcd5276 100644 GIT binary patch delta 195 zcmbQJK2d!`A){?+O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj zsYQy3NuqJ0eoB6Fv3_xWX;E_O?8MXt{)n@t4g^U1|%GmS( delta 778 zcmbR6l4-(ArVZ|lhIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~-_7&*w%wvow|nRMGGZ)8fHEWep+@-(&$6zG1&UPy*+LBXEQBAi*Q zWNDqa*@1rnIRPaoSWQkq2?|cw>?8MXt{)n@t4g^U1Lh1$CS diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index fd8f52e948582591afbd861d91f4d84b5247f02f..92dbc564869b890685155ce5201cc779537a2591 100644 GIT binary patch delta 540 zcmdlmlW7AGc{3W8rj#2eR_0{s8=06InOa&H8Yh_>nV1-+r5PIOCd znOdZnm?Rn}POf3xNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0{|(Rl_&rJ delta 540 zcmdlmlW7AGc{3X385kNE8XKhP8(So$8Cw{co2HnU7#W%+8km?Ho0^#?8>S>%rly*u zC0ZIArlq7MPp)CyNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0{|hAmSX?_ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 2a5a9b932b49571064cb5d0bf2a4172067223433..405724556be4b0bfd93f6b7fcbe794e03401cb29 100644 GIT binary patch delta 185 zcmcaEcU^8nJfmT0O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj nsYQy3NuqJ$<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eH83HqA delta 185 zcmcaEcU^8nJfmTrfuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU nqNTB6T1r~-<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eH%oH=v diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 55f5c4ad19a2f8cf2519973314ae69ea7be6266c..caf64b896f01307b755d24fc0ccb738023407859 100644 GIT binary patch delta 1759 zcmbO|mvi=9&JFI2hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*?F7~hhi>wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!_U@IFij*=`{sMh$H{Oo%xZzjR&49Zv>NF0 z2J*CqP7YWtKKZ|%@aB0O?i`evA-;L0U_Y550CR`<<~zbinJ9CI#O5&Z4-~pXV)Jjw zWt6&OahNQnMr`I**haA#Wy+5z4h~+mQxv_U@IFij*=`{sMh$H{Oo%xZzjR&49Zv>NF0 z2J*CqP7YWtKKZ|%@aB0O?i`evA-;L0U_Y550CR`<<~zbinJ9CI#O5&Z4-~pXV)Jjw zWt6&OahNQnMr`I**haA#Wy+5z4h~+mQxv%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~ybllhFVG delta 1385 zcmcaNm+jtMwhg|FhIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~o87!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~z8hmi7Pu diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index a6a7d2e0eaceebdaf0ec62cd0e0fd104d9c38aa0..61171f6cf893a0a15c2cbe5d329b5b87d6f45f9d 100644 GIT binary patch delta 2023 zcmZ2Jm3{eC_6_cghNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*?F7!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G01-S*uK)l5 delta 2023 zcmZ2Jm3{eC_6_cghIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~l-7!YR4WC01*%~P0yS;*GTvDt?`U4U%u&1C6}*eoOYo{cQ6 zv72WqWRVlbA1z}yPgGjXM5e8$RA-QD>j(8fa&0}YwT4`+oO&hXrHa_i+{P*7`t`5L zMsgi&W6?r}t(!kuN->ier!#GP$gpuTC?##S|3I!k4V@WT$#Sskx{cI!SN-|vmHY9E}BgeLO#soRiLt*>GrHqbbWS;3jeF@u>S2LQ* Ul5Qz5zk}*o{_QL$85c7G06UjbG5`Po diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index d85c9c7e37aabd2b3feb1d91b8d47610fd4b04b3..d10bbe9051acb470855014799b0a8e55c86fb355 100644 GIT binary patch delta 183 zcmca9dsB8pFr#5Mr|iw~t8FT?CIq8}pb_^FD&CJ;?3(`E>5sWu!U{Y*F5g0o3Y>tw)AUFZgG?7PWr6a|E@{Jh+MOY4+#` zwBX)He$?8PXalS~moK8m+fQPEF?9%&W1ms$v8VS?>#gUzP;2*#4%9mMayM!Xz8XfY z?9DW4&7AB+twrw+0#<(YeIYuho*5hR6vv}Jo}9gq2i=4|EjerEa|`!dA-taT9VJ;} zm5-DI53`(~rGUv3gk)nCh}ttGHv?mtWG&)H2N^Gc0vg!fYGM<6Mo4MSasqzcB{hEI z0c@g(HnPYxu`*dgK0Dk(cZd=~i-A}1f0p=UrZHeM^n~;5q)Kg~tbn!x=RwGX->cC+ zB<-|-U2#*hkTnd$Ezo0xjM;<@R6V=sr53i|OXrL)BsCB^FA|67I^fGu|I`hOP9I$h ztY1j@<4WUI>(VB%v4y?`F3c3nBwQ%2x6vw#alOb5(}%#F%Ouwz_VrNBYFw(9?bV9w zN?H0EQ@$7+pzZ21QpCtJ+FuO>$Td`nNQP+vc;@s5R51zX2(rS|42}F!7liD>;&R$3 Xu5C7jD~vZl{-34(y@lp8jhp`g`LVO9 delta 4150 zcmbuC-%FEG7{@th&L6AkG$qU^(aOT4y>4!^h>A*>t`f~zBQkRiXRyfBD9{@(CLy)< ziids)Bl|%@j1F;zMI=!KW`zbBL=L2j@S+PLf(knC5W0T9{sEuw=Q+?RXhxmk|RH*}zX#{561RQkgMAXfxmGdTr5YG? zHQC2|>nhUq8`-3fdU$bzt6V>;DsG>;(ANTxv1pKg>33#AXox=!k5dr+bNMWany$1W zn-hzMxG53v)O!2*F4TJAMHgxve7PI7`dE#2LUU;_P!9EQ}?U|d5U9EFHg>$&x3A4ubP}Q^7+O4K?rYT{YOcb zSmPz-z{4!(XE|W%1R>d21)}~8$<4r6CRvmC(M2XopnxW}x0YDMo)J=-vyy;ccS)U3 ze*l{-qRlKaL(EK;kk1ZxP=_cXv>135|7VF$Mmh>?hL&)SowQSnC@Y{r;5-PK@Ov%V zhh!x!U{|ZDQOFvG;TC8yLdI;t2C9)=@=z1o@1gVh7m^wXjTiAlbOZ3^sD0}8h;A=k z53FBE_~UB*Rcq1~vAKi31uo1K%p_bWZgkQblYYI(?V%5WJC{kWN$k5wRkMDnR<=hi zZYX8x>kRo~Fib=C6{LufXLO(z2#{;25s?hTBJj*<4X9xf&Jkplp&c6eg{76W YQC#0@=&8`(0QrBG`u7&9*DzuH2b=J`^#A|> diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 24087686ef4865b207b3f46212c45c6f994fa157..87ca16a2ce000d9f18e36cc4272941c578970784 100644 GIT binary patch delta 522 zcmZ2HlX3A(#tpHIhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*^r7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5Wvmw~|Ew delta 522 zcmZ2HlX3A(#tpHIhIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 zW@(9*#)fGrX~~oO7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5WvLA(Mar diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index a7a2898bbbaf6b41bba235ccdc9853f882250992..95a875b3b1812211520be6bfaba1d2b2f45505a9 100644 GIT binary patch delta 524 zcmbRCm~q-;#tq(#hNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*?_7*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBlhc^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBdA^u* diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index b195cd56b7f6dbee35c3a63192b55d4427fe4f50..30cc2941f4fd1e98567ce4aedc0082b95040d829 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S+SgQf{1BnUke&WMXP$YH49;oMdifVq%z mYLQ}Ml4zW`xr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2PzlQJRz delta 185 zcmeB|>zCUQ&S;otU}#`yY>=jJY>|{^Y++<>nqp#NWN4OXU}A1;YG$5nn38OnnrfDo mXlZPimXemdxr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2O*v@(kT diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 5488c26511f7ea7f5bc289577422a0a5c139deac..9fe311ec537a7425b43ca05d018957e0aa7ce42b 100644 GIT binary patch delta 769 zcmex0pZV8(<_+$QhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)*?F7$1_MYXPhG=BrF8Y-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUY-H?M3z?f$>;cmHv822 YlILiMcIEb0Ze-ZLfHidUAp#An$F@3VMM{loXWh`U_ E0CHC<7ytkO delta 1042 zcmaFY%kr+5WrHuHVV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9qAp#An$F@3VMM{loXWh`U_ E0I*jqYXATM diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index e5182c92e139ea66cd4c22d48f30d2760b120d56..d55e447592924c72ae925485f42a39adb6336d90 100644 GIT binary patch delta 542 zcmdn+lyL(Pc{3W8rj#2eR_0{s8=06InOa&H8Yh_>nV1-+r5PIOCd znOdZnm?Rn}POf46Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om>h7BM delta 542 zcmdn+lyL(Pc{3X385kNE8XKhP8(So$8Cw{co2HnU7#W%+8km?Ho0^#?8>S>%rly*u zC0ZIArlq7MPp)D7Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om*j}75 diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index b5548168ab565d048c90daa3cca826621978d20e..d1ae7b5963be94fcf035adda003ed633d913ce29 100644 GIT binary patch delta 185 zcmdlezfpceI-_A}O1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj qsYQy3NuqJ$<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr5>V>G$| delta 185 zcmdlezfpceI-_BpfuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU qqNTB6T1r~-<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr7}=`|w& diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 2f1c481e61bf7d7e3fcf4792a927f3dc86b08ab5..fd6d2bb46119334a047e54a21107f04f4c3ce4fb 100644 GIT binary patch delta 783 zcmdnp$+EkXWrI7TVQEUaabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT zrID#ciit_0apL3(#-C*9suK#^{DY~M91B5O|FD=clV|JXKP&>1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0s!cr-Mjz* delta 783 zcmdnp$+EkXWrI7TVV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9q1PjD2FrMqeKYtCt` zWNB^NY#|`ZM7q|^bwcXod9{6Wte83n={8QT6UyJLB7cIsxXIt#qu5tXmaXBFeMN*e dZ<%XPp3M;Lz4LXG$+A5RlrpvlGBai|0syo3--7@E diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 536a9f93464bd858f482a59d1b9774173b8c8030..90968de2f68eaa3a19b998ebb214298337c3bd6a 100644 GIT binary patch delta 1079 zcmaDeh4sx8)(yUlhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV zmPV!)DJCX~#)+Hj7@5e?wvp*O8QLaqWJ;WD#kz}hcS3b?PoBtDK$h;9$qq97o9D9U zvy!iU@?3V|&AWMzkmqx-3&2L`2`pry&=qyUU6i_FyJ!ccu6QRQNPch%Zk{XmpO5Tt z5Zr8~_bZk>?UQ=MHec^4CNl&?UQ=MHec^4CNl&gV&-eU)@cVIhXLfdWc6N5QoXI(* zE3!UWo8>q|TI{pXaZN~m#>BAn$yr)(Xm~_uL`-x@*wCoZ@bHk~!^1+t!drx94vz_m zjtGefjfl<&4^IzEUw9&e8I`uSGtKj5p+h3VMzk0nwe{1Q)4kR3z>uhx5fLrJtb@b- z3Jl8M%zjaknmaCk{IJZ7QR5dCwGYl4lTH7BH=p2)al>+ht#`wR{{Ajniz582yQAB{ z?psoGb5RhO98EzEi;DcMXZQPK8VK&4%z>sw5br0~hRxOGrqE+&%!MaHO8(h}`_(dQC?^*wRN1 zG#Ax?^vzNY>z3HYrs{B(RjKZ=sK_-hKX2UlQR!K^!JM}>C#t@6>$q0dXIllD>Vql5 zT;CcHUEO+Qvo{pic5<}Vj;sbpwmC@FxK@GiWwhi0ZYgF@Y$^m2LmWde(-dkSGdHyc zfck9Nc+OY7DLv1X%-b-#`oe|yG+B3Gf z^~RVMCAYAvIU^fc>qdH8GsXp3XTarC#I z$&#%-5*nMrw@yn~hmwu)uqnG5j?d2o)HV0`=pdqmRj->#n`O78U~6br1L%HBss}Tz zsM|Jq)l^A07cq`DbNJb?k4YbqN$Rt<8J!5jQe;0v!PaZ>emI2b{i=BXtO{8n8GyA# z6dG4`xd~STG)I?I>&)mzhIu@d<>UG@qqOddZb##3GA5~Q=oFI= z@vR2e{Hn-gJQWtcu(?xXVZNPPR)-V6^Y%n~2 zL27EV6=TL>|5o3U{5*eY<%^2ML_@A(@?pjoR*$ISTYXWHOT`S&%bb+As7SaHVH?)? zkzp0H7+XkqOR8rrL#@@$tAk^IwNVvs_g}af>$s=}F3uHvho|RQ1IM<6?#-3@Tc6L1 zbSUWJ_{bw26Hg94GW@f`y4s^Q=*z@2+F%13VQSD?8*77t0=j9vY*55=)wO9hDDuW* z+C&=^m9RsbS^@2TR~u!6TJHT$(+X^0tJ%+LIX0+Y+s#@(8}!uk&uCBDpl619Xhk;Y zS%-U?#Rjc}1=_d@=#vO7!v?LJR$m)rgEmIh*CHGX^xluy`07e+p{;P|gv(lt4LZ=U zhgN8Vj(_x$Hp>Qm(`<`2!3JF^7_4=#fIhyjO|e1uj>l{53}~d{vrU`i_(*|J{z#|1 z2ij0uq0^2I+T%7TaOu-piVf;;Xr$J`1|==@)Oy;WZXv6*={BhU+YVYQ8)Ru(ON+EY z*111vc?cEou^+i8F<(ot6_(WaLF;RSmVL5Q8*PK0dpu7YV1xGFsj9WMLHnaRXftil z`@3dnEp5=@{V7_i4f+a)BA=iFGQE-KZg$Rwk!ck+Gs@wk zaaxv9HcFlHwU%Uq+y;NCb+bY4YMwUF235Zksx9D90X9F%`|FF^Tw9@!wo~h2gMx02 z)P~rgkhcEXd>a&f&|Mp7gW5dVQ0r=g+D07ICflGs$eWs&z7;BQq?gw5JW| z<7Ury*Jc~gC!=mzw8sqST!T}iwYD~>;npH;i~(JIvHCQvj}9I6Y*w@FHEo0edi6Vf zOPgarH9vD-r1dtSz~Wa5toNtJnYvh8PYYGZQ!ZH45JJ{F*0l!BXl(7UGE5&Fc1{x7F!D9c%AHq1N8BKL#b-!54yVn(A7&z35}z_G6@V-|A6n zF?X`W;pl;2Xno9~kByBr=)@=}oAf(ak%u-|tg5-r(haKFkN7h$^%|Q;~*1>b?Sto3XwBEhh*ji(*=*hMh zy-{Xz{(nkCw66Rq4bhVIr!+*X;h)lw_AfS6(#woSywMYWs_#(upBV%#RRY6 z+{EA0LM5qQYsFnj_%kcDcK>gEtX17$qqamgNv|jxuIz{JfqfTZl6T_gOvIt$;vU`nHHy=|-U z@9S|pNQ*RiLTQ+T8_am#T-6F?{Alpod^xw-zpntgIr;xu0d!gPmsY^-w@n)Cv*7cH zK0XeOA@GE$-alN}|A8^kRoVYlT|kGmrlI^UVB62O?f*a_cw6{iQOLdsbJL$4PyV^j z|5YFH4=m&lX@xFL{~KoVzpWLzJpK(@fe8mqcmec_1M4pr&)>72{BNsh4F6~b{?93o9#}n8-rPEWX!)b(d;bCD-G0s-{Ciw}W%H8@9de;X4nAS8 ze5+~OHvG@oAUzoUU224V?>W}|ZBFm6u1kn);t&CSYdN}=yltvu{T(}2dcgcptGC@9 zg5dV2rexzJ#3%Y6*D5`yf2dWi)d}wA5cu#Nyi6&(Yl^eiZ@RizHm=@Q|IHNnhwPVP zARcP^pJ;mMAGc(RD*3s7Vfa{ckhQ_*KYud8k1Bkt`LDa)5sgi5kiElP2Znby4HD1A ze|CHO-&@fBbLytBoqwY4$m$Nk6;ItB>RjKI{nEtYc74aOl^(eMy_=g3jt+^&?Jk8$ zJ=A{1WpTwt(C@eS->-cNOM9sO|CaVC4Dc_c{q^R-aA%ik7^DrxM;w3BLFQLx0pO#O zXo@}gm0jcSp9&O(`EW4)-t((}>XQEbgF!*C4+rCaWH2ZM`Qc#vFARo5v6c-v!46Hp zt-Hz1TK=v7-`Vx^rxZ_=Is{`N;pB?_y!FnhNRY{g(>18|_N>MgadnV?#c?&XcoDCr z?u0rFg>&^BJ8|dA?>J~r2hBH`yF&_-c&q^gJ#PwyPW$n4l|p4PL>7AA$G<<}5oEo~ z5-E1i&6>6%2zu8uKLITq&CWbx*Yhu_6>WQE?l_ z1A;}Q-_P%^#Zy(j7+}OO(9V*_`SES1?aV~abM*W8J$l?>r9c3{tGQuNUfP`mO)>Te$coCF185@66R?n7k! zyQ_yYq3VBYEVBOcW3kWT5Lxk*;lJ;i{>90W^#9+0G*B0N8`qjgb8vN|aOVHSs_`!l zO}GDBLj(I>bc_Pm1E&A>V*XEuC9<_+*gsmc=D-d4pB^~a_q9VaX!ru& zAOFGIgMaEP|Jw6z{=?z>E4$5s4~OrsJbYcn@NK)`(2)L^`}f`}{TchrhaU7F9pNB# zJKoIx6~_{o-JZyw-KPKL*TYBmISl_tLyD*J zC;qzA^5L-l$}&4~^xavHXg$;Cp@P1?u>xDsc9uV-^g% z>6j1i+;Y4O*KatEcZ_H;Bn-bV;+O*`ZX#~e-yFxo|!8Rw?H1 zT}LiO)4(l6$^e%;j_$DHdq)-4-Eo`=jqW)94Fc{ss(6px`LAJ)sp?`!BR;lvU8%{> zZ#@6MJskaMd!VPui)DeEyR<>2*Yn$%SIt9J+@YnXWPv@^r0*f%U=;>!t4nvF>|hnu zTr^b}A*X8PAr+#1(i{DWLB1$DbqMWujh8eDs`yAMw5uVVheh7fM5yU4O@?uYksso+ zp{bX|&}Q5IHEb5&|M_?B<{w(>e|on*23UynxTz1!3qk7{86i!B`=Qbl=o^K`c{)-m zFtvd4NG!?;N9?39X(}8!Ob#?u%7w2Z5d857g7?D^Op8SDQaIKLhhEWA9aArGj*&u4 z(?l{=B$`NOL41rfSf()r}LQ4cY#-cA@l!PRQW2FJGJ{ED^ z;-qwVrW@wsT1%erZ5$GNB_NpgI(`^zKs|6 zRcE9Alnz+nGYY{o9i(9}I}vkEUt*0(9kF0M34f|1)(9Gbx!#?mM@JStM+Ck>tiHP^)q%d<5S*Wi;Erz65U5W*icOXV zLm&<6+sP;XIQ3_UDPlJ^v$=;Bhir|Gb1iclx2E0e$Cz%Ky zW^#3i>yBV<4+I~tDp!No2n_CvpjQuRAbijsb0s~np&e*yCC#uxot{Y1V=&?eRFfOP zD+Ep+h@fjP9F9$cbh2l9A$}7v`k@y}ynLvj@PPS`V!@@J2)62v1|;`JZ~++__Qw;Z z6L@2oL3|TIQ&%vxL2cludc)X0SU#QXe0C$*AFdKulX~8^iChcD^+hm$q%Oj@1T~_D zJNJ|NmykW7j2>{JAL2i6hagJuC@e*D01F%`6*;i%H`+%mojUW&k70x-(o(0FS{)vVI7Ht8!%gQ%M3(kSQ&FLhb{jhafnV zRB&hrj_ZmP%%!GDOF*HHIj5texkw|jAswAY5KWMzp;C9Kin@iep@=h)zK0BxtWb^W zdS;-d)}vXxAVXRKtx0{UnbI5xBfD#sqQpb=aBQ-O3~lLfX&y8qbLcz*8C<84d@w?q z02`?v&W|aHaB?IP_oFG=dXzLD-XEl%ucBXj>^qpM%lLC`aFG(GF6MKB%I7MmhT8iFS^1^hpx! z7Uk%BA)3htf9OjdnhWLV+ZtL;AN)QS|AvLukdXA12rYtg^z{X;4dv*o23iW`=<@*D zK+4g3_O(%zqZig|6DUV-e%GF$9K9)BE2bR1UR+yFIePcD_A=$@CDd9e<>+n91=?Q9 z(#wdoqm-k!@M>o$M{l0hE>e!(wyJ$kIeNLMCi&tIy+Kp+pd7s%QVXCQz3EVEN;!IM zpB6(odh?vtfpYY=G_5D)=nY?58s+-Z_tCU5l%;eVS|a6QDVI#Sj`V#vZ2)EI zOIO-R%F$P@w0z3Z7p}C&DMw$o(iTvT4rbai%F#!yw3jHySNd&~qmNl>dniXAveJ%F zj&{k~=ai%Eu6BWP^zka~4(8(dm#Z|#S_sout2B4Y(FdzEf6C3FTocOmrd%}U@{1hv z@T;ebrY&lybt(O5tQ24Z=WVh(%*e+Dt46l;7H&5_%9c+4{!gO9>Yeym($OzFmyDOb zfaQ78SlX=&hjID19)6lD?Sr5*h{G*Q23$RZIBP!Q-gB16(!Qk{d^SPq1kbw2^`OH< zEZF`)8b{lh>abvv)M@c-#Q!h}@hxs39yc`;;QkG%Ug-yqNnR$(x|iOVB4vv#q~T-L z(n-^#_IlBw=~9lKO`Rd->Dl8mr5k$o#1lmD#ds93bheZQTXRvsj&rcRUEfQQFr!e4 zfkUylOg}RhrCfLyTXrmzd`+gQ5MYtM#>DZ-KdLl;`mCe^%dV-cwADPRA2D5ABwaF1 zEq(kcsfih!=VF&}lU5sIi?Q|cx!C$k#Zog9W!+29EtCf9+1^%C0mpv2NJ`VQol2z9 zdUh{Jqx5Xtvy!G~-&`V%*R!pcNt5*KyUQg9vtV{|rIf5=qgP84^z5$Zq{sAZm*;KS z<1g5c<?9RwpI(FT*=L|nl~MmPAz4z^>BP9I|phaJ*pQxP=xll@AM z?2uNOe!uXgIE@@laN{+U2RG8b&}GMv_*6C^GJ_z2N#gSXZu%au3>r1yP~0Zp*mqt_d6VV(EiWxn8NyyHY(9 zW!)ippLE6)QQGW1X}tOOOHWRqq4mf}k5Z=(q;#F-)B{pEvK;iG6loTXJbwu1Oaxp% zCABX-bXdA=g06#&yy{L6gf=7b^5W7#(OS3-4 z(g&AN5qL-#2%la?MFf6=xSwuIWAUWm0mDB}o1$uoh9fJ?f+jXWItUH4( zE&UE#s`drSQ8L%i1|D1Lf>w^DyNV5Md{T}iL(1?Zn0g%dhE=|l2AC$n*||vh{jo>4fgI(bvdq)o6p+;;*sBgr!D%c=GXr@^6r2`Ev$I(zi%*#2bwY zPeW<2#0S;ocph=PuSk(4-$_g1>8mLDuJ2GsJxjAMpga0wN~&Q!@Pada2)YV1yM#*m z@ji|zp0Vn{g3Bn;k)N=YA1-6V%g$l}9=V3W@GlX!?JD9zkE565=dPcwA@PsLu|T_y z1zwE|tH;?o7%nzK@oV2iS@TMd-IN~uQCVT&CMOmAH{eg>+tSC-G{n#$9`8m$izq{V zckiGOJ)%$uZoGKf%YY`)D8%b`u^{y;8m!l)R66%*rqN;?C;os%FUzR%^*>4@V1k0= zk@pejaSnTq2SI-*{0Vzmehzzi>nALjdJPNc9JM%B?gSmKOZ67NBv(}yoA{L{oXwSD zOg+HlAV)*-RLKdVO?XzhRvTOR)+A@cjyl-FV`do#b+TcZc%tkN@iUBR*3=P82YiFg z;Mp<_8h(pSe=Q;I^b6Rxa#=2cBWsb%5(RN@CoALVlsOPS>|rP(MU^+3vP+!g@BV;! zxYv-q;Il{ND$u%$d;*?uMal8lIslU0uuYRQwt2iU;_&S12i;vz2QN0kf}Ji{(CstP zC4C0SZdmGf3dJAqhNUOJKrcbZ+wJa%f3+O(K^}+?$w4oH2VHa(6O0|wm1@|9Zlx=$ z%ZY!$Zc4Ee&L%h(hv(H*u5x#A#9ZNp%`RwXG~wipZ5IyL&4mlr!v`q}Mqqc|_QArZ zn;Hg<=WBm(uZg7tn_=m+nke1eQe1w5{(y9R0|!fM$yeaqal=~qAy^H-7K%?966Ob> z5dL1MYm?LyhzAh!+{e6bz%`9&Qp_^637K{(U;^{{kxQ>7j( ztS9folYYnzG%fCT&(z1F8{@EImmus>SHN}K4=&s_xk69_`JF#tJ+wE4;D+*fs9qK2 z#tVeu@Of1f*|jlBR&^4#jJF7x@aZIM^us2ITQOOe7Dr$p+sKZpML;h|euWd{HFghdhll5pOl>z*kXN@BoaSq(q~vxY^{`Rqf<;dbV!|`Bgnzvy;41&mQP3 z7wFjmU1i)HQ#JS?Nj_|fhb7(QU4OuWo=lb}nc_lH6Q4W|E^^xB)VcNN$ z+}{B0IQF?c<{TOZkIU0*kL3+ z&pybIEhc#3ZJbg32!a<(g^<4sm9%Dr9AcuZd+9eLiJoWkHF<%a^~{p@>e&lprnATQUm()8et8dst!z3`;GMz3(BSdmMgFCtCxq8jt%iF#4_8r%`@UmzEO^n%nqs7BkY z^xWLQ&SQqAXQhuFmKoSNH#a{schT%cGx6-JO{bfs{gJS6lGK5-s$S$(mse?KtJ179 zY*`?Cnct0sv#-f*@HOEfYox@|jH6c?1eccM#p(wu<<1bXMvA4z zj?R;MgS-;$*cB4j%N>P0Xzekks$hCWZev!XX-IUrr>~NIp~`axzt1jc{_sCEjXz8c5RUXn#S|COyejK`z%usEPNiVN2NrdNZ#w) z)qjH6z{Mu|MtbG z=!EqK!GV|L=#p3L%2DlU;Jd*ne|9};eA@;?p~!_R^vo-AYja|ZFmT>d?gqK7ISw&o z<*j0VuF^Z3431o-xtp=czA<(x&D~-UaFyQPVn;wKHLtU8jdW^$UT!qhkAwwRQ?DR;y=Y&$x!Zg6%Nnno8&bko2lxM`qB+%&$75i_$x zb2JTn65wtwX$eQ0%bLl`E1Qe40h?Jrx)Vi>--Rmn3P!W|dZ!!<<-1U@S9HmLdRtBe z*WCueGeo+3w;jRGGPwtQ^Nv9Cvo0{>%ZQqso;!IopF*rgxa5gh(Vjx_gcO@q}327fHantH>`&v2aG@+2oy zPs+EUapA*_qsWc=M_Yp)7H~?aD4ZSLDcPYxdS}*#m|Vc&)~4nDmRD%zQBW;+gbE4CEuVX zxL{A1hs099`ofuV^xFf${VZyvU#y)y?>#H~K=M}xm#8o00NDSP&c!?-R(L6L=H}-N zUK`~=(@Mc>8Rw;+uBUu0$C%&Isa(F1<4wCbmFX>5_zlj&HzDLZOqN0V4HU!RP3wU9 zx?ZcnIk}GMir{_Gp7)REjmvp9Ub*2^@Q||q)UPIS;Mz1*LI(q0+dc_l> zqG_A#H6BQi(gf`!b%^-&FqmNY}6G?ZF0SD zQihn@VhQbxxgutomEq*mKJSVb89x#nmQ|u9RVpN)vOwkN|f?XB<(2@pclx zlakWkJWl7BW#2l;N``rree1mxWwd#@PP;^J9rV_-Y^|eZ@-g*?mMXS>OmF=#ysj$! z%!ln;AK|2=nLpGyzOQpMMs;NsrL)-~QE2axM2M-XWSTLpu!}oYl`-b~di8tu!h5+W z(dOofcB*^PMTs{xf!#F}-R(D|d>i}%E=Tbpy=Uu#VOAc{$4!YfrwJ+W8#G_Lp^69D z3sK;%B$@hGFgEwWQhgiXOLHkq>_Lh=usid0M)RP4HAOSevuAX^n(~;b(2mh;&Pex} zo}S7q^PBcPy5XtJ!yRcwkG4|24Q{z?Ju)K;zIS;%(Kb^&;Ify}&3sXpEiOM6L%`l8lrw6W7|!eKERsjU zVJBQcehOC9KX4-y-9l+@p3_#C90iopQF=sMv0?8#+qkpAxSYY}&-AXvVf2w!w zW8Sq|K-)JkMc|lXF~1f`fF%*i9Md(Z9f`xeKU|4{^N~h*{|F@k-i$KJ--GkfMp0sv zG6|lIQ96Shi!nQN(Jz?ziv<>@fYk_t!%BNo1WvWa0iAQ^%WCqaJxeGq#~nN!{U@Uh)XaU zxEH6ihq45tSG~b6L8${r6OD36P#QsIn~L(~iAuQHx4m6o8n;nenY|E0)3SPd;S;X4 z6|JMP`2Zc&2WZqy+*x6yR0ng9_V~O&5!-8Xie5dby`3)Rv`0}N>xiOcn-vf6@1V2; z&rYa}k?n;t;yWs>Fh?iDa=-y znaVh+X(uJZ%uL%wo;;cvS@3=u4bJL=%D!RG#j`Ii%~wT(m+bq=`k@`(>Th&oZ9gRm zCJ(@VsvSi?5BFE73+^cF4#~O7k+~rXhf%2n3BlNnOC+p0^TB9GFp!3b`Xg3)3hbWY2;|QxHq6g_a(@YYZ0}89}DDTfg=l*5|FAqo^qlDqshl{k;P9&_sMMD03 zV8@CwKCn%nK(R2wGSYlqXZ2K(A=VWk)VTbZ`W~oJw6DbfKv0v zIw#i+`m+$z(F#uHL!Ipgg}a!6(@-=d_5e0j=>V6fp=cNM-Zz=1guwmj2En#zN)#+8 zK;3*(6E}FB?VL+Y7a>1q#9eJ9VrYJbb+K!)?F{s-RUS7OzB@x{4r?FB7E`RgiA=l>xu3pn2N^~E0K&Xz}mc`$28W^dYY?ix<9(NBw2krp7=ivZ70$Z%g3W%Ji zbTW;Ag{SZ~(?18LE1QSX`C)9e?TY?>5hqzS9y_=5DZA2&`}q&&a}uXzcvm)ffgQ<` z`N(o&F)!serVSV1v%qQ#1qm8mKZq|z|GPyQ-H1c} zGj;_1Kp714pEU^Fo>4NP@e)B`n>ps3B%x;B%DHEiw&t;jA;TJ-B=)=yL{Cs8qbH_v zk}?|jupJ(Yk7Fr>+WeBvDlJccB5PhNSee$qmeoo&@cGbkB}#-O`g}OB5+&M|B!-U9 zhf}Kz0zMzctk#zSqN-SJUAhUmIVV0Lsvw5sX5H*2MD6F$FFHMMaNP8qf*0q{jg^kY?TsN@H`LeLJpel@{h4y`8b$gqb5bH*;(k&Ag3C z@5^)Rl$Pc-_O&BlR1(aq^xDhy+Sn;xdkuczgZA62lE_H#GVUeCi^rpPHSu6{Oehi^ z6ADAegksP!p#b!*3XeWVh(gc1I`FvjuI@bOysIORIL9&yH^+ox%`qtw2?d!WL=om) zMR++v6kCo-1Vu<=eF`f_kYdU)p@4EsD4HA-3MI#c;>a;`2$B{S1 zjUz-sjtRwzV?u%Am{62BCV3Q(j41_(V?y62#)KlnF`=+5+qPsDn&~8j9t{W2y>c)g3x-p?>ZcHeY8xxA-#)N{nF`)=bH zi?qk_S#CNvxj`6xeIfvlq5gsRyqDV@p<2{M)CBsOgg=>D5tP581Ub?lEWow>QV_J* zpj34s+d*!A4TxJ$=(0iaGv&dE4N8kXG-$-AR}D6 z|DI6y=;ud{r?DaY?PiGj9)B{mG`O-s@$w<+heFCG#hp8VVy;^J%TTWBVy@!~h;&Sl zhT?MDDdrkCP{myJ6;O|Qf}Ey*vDT{+)VmVY7oh^GC`kKPDjZk|dbGY^N&{Q0^{E8) zs{{?G1P!VL4XFgB6I6iB3#RKT6<(?Yk>!w}WJtwYenSC~Ybn+yR)Qv1f~Hi0x-=5? z=r2=>wImJ|G~|D%QmiFcDom{e^{52(ss#0}1of>1kx`S_WaP!%x+@^EZiEWBxfgRg zr$X{jIBKF$hsfZmjQmtFxBLo-ra%QmQ-C0v62*KjR6y@F7iHwGinaH3s6c=RDizXv zp^7wriuuH;fM^C)Ku?4Sh+JB+HpdR)6R23T{1R1Uk1C))CMnhy*y9B1>0hE2{}T1g zFHuW>iCXbX)M|k$5PwD^ntcA3Wb1y3dij^A4ZlQf{w3;w9jaJ6$RV^pp}WJC3XfKT zKB@#AuLONs2|8H`I#mh!yb|<B9zp4a%Qwcg(3Hq)Qbg>ddew9px{A@7~ zB&vWYqKF_@QP|2LEzNvQ8De65BUGcv3l{EDyy5HD@#Z5F+)9<|KP&0GO-a;C@Cs!y>1Q%W2%626@uonj& z<-ZGYRZZ4#IYMK;Mhk*KH(xbMWf zh^_B1FBrX3354(7QrhEnQt(dY6--X=RNld4<=e`3FVdc1KotYVjLXQ+%4`)Vlv%h- zX^4bdb}5;RGY%g<3X02c6Wyas3B{7xWlBCKKa?pmF`2eo$-(66ZpDJhbi@vH%n3y*ydISD7M2#lOj2!u()GnGytP@8STUT<`K4HTNkNC)(Z$@nGXVeBQ7V zF6>hVimLcnwYjq&G~ciI!L0X`5G>sG9^Uuv1lRqFhRI|5mHvV>8RqY+8VXh4S4Id# zM`&7AZ48kgC;{-!`$`*u?F{AbRBZ-PA1FfwA_1;{px_^(zmH^RKj7`xI-qEx5dXsC zCl4Q3dq7EcqW!ln=eWPI8c^_+!r+Lr%AnqdN+Xmd`9o!Zs1^!oClw#K=BB#B8wZuD z@YRP(3sDpa15YZo?24XtQ|rJ=7qtpZKd30kX3jw+SI|a5U?>X|w9OBp(eH$@hm=u9 z8?{gWyp1~5M~NuGks-->XnA}Ex@E(~N&P<})S(M@GUCb-vNHSH+69py$d<0!WQw`0mv$Z^FnCDVz^ z5|uSBJp;~`qvdk0As;F6_31=|Mn6#`bfQ6Mlt^fogG$$4hZf1q7dCyQ)OX4eI6|KJ zNEv_)wES4q*`@~PYu7* z%99AKJFPr}Ny6vK9HH}eLg)3Uju$lf0y{b27>?(RavbA;zAg-s&L|A4JbFf1h{-vT zO#VVyiI7jZvRcSD2)dtDYSU0WD-eAN;R)UR=r8%sDvOXh--@1;eKAT~z$LGbMrA`AR9mB=2iwzTnpf+y}b&Lij%H;qy2(SDeQ|o;M2(`^YCKW%)T=VGakn zRD~;{j2T_ooZ#vMD~@6Z%Dz%uE7u<4PKRkU*^CP5j^0Fzno(O-A?Z7%E$XHCJ7tSt zHVkG4GhSF1+%7B55O*7&3n6U_*zCv10XSb&_6ypPkZ58psZggaxGQM!&*APU-hyZ} zg!Fc;4tp;ty9Ht>bumiR+I$6jcl9zZYC9qIigExGzpKhIOs-y4j$*R=n)0rwHV}3l zMw2??=~Nq1FXFtva9!yqiUtGvnmUkn32!gC%rD)*_dalS!Q?A`ZyWMz8=_`sdgia7!ABNn-K^gxyC0!H^gR%#t%kQxj zUWDqR&aAwxd}2`W?()hT8!{Ej?--Rc;HW=~rq=2MFWT_EG88Mj-Bmsol{J_tu^7RA zzRX;q_dR1_$bdwdh1nI=`#~9qm1q8-yp2i1kIFlOM;Z)vV4-#*YWI~vHRu?FMzPSQ z3Ys^uIB!}k-priA_a~*JsNM~VJy<+PZv9C~7RdfwBZv%A7dJ3sWVW=z^{l*^+Q6`s z9S@Xkf*wccsuF|rQ{eNvd>LtNVzdKzU}7%|l1IfLW;atCE_Oi)R{F9=B_>>7QXH6y zl>HpoW8J5^%4kX37$ZFQyVqY94^ zK|P1!7hPotS6EyXZaiI*(uZbd@&3bRl}WH$VO_DlGh?q}QpVV3OmbBA7ADP|*da{r zJFzX8Y^uUr8dsHV6`~E`8Xz|Hph|t#h;m*K7{U}-)seYll{3!lO+nj-hBlNayn&DU zZ5Ngzic-ZaXu()3SnkTY32YCcyH(DtKDeoRLiW^IHrR%c_ zHAJEsur%CBhFR_`Uep-^Tk5*ifs5`;_r*!D+ly6$&tB zPo#aj1|##H=EZgzRk*T{##bn7sWFp>)|qJGd=6Ubkqb z2%<;fOdZrYZ+Y5P^m}N3J)G!PQTG%-__B#&m(VFWKZ{#M0=!j|B^mX(-^>og72!w# zt4j6pPl#(VPk4o~YKA0S1rrtRNAUd;cx&N#rfK-t0+np8kyn8@J%&Tgr?L8Rwb%6joEgx z4qNL=m#G!DL5pe&2yExXU|(I9U^H^QDXR{F^;n@mpj@ZBDxE98G!%yp6ouSx;`_B~->{CITDU_TL%G$xI5H$BCPN)@< z6DpKELMS;QnstOHuU7O!vU5lyb%$h=hwmYfQETkXR*8Eg5qGNha!jM1$fiz?}YLgut)`q?F4=-F119&1dSDMGQflHPG_ zl4)n@;W#FnF#RN+RmT)ACa|lRoJwRjF*)3Z-N)o$Tb>+f$9@oMnjppinI%9(Czb{- z&aAp9dQ1$2t(}$~*+fw?Rg43b2#pU$RbBXUl-8AZ=3S2BI@8NMfN?`N9|8BQty4czmw^lhQzxT}WaP z*ulVVjE>UFy0ItR={X9TJv~Pe?C1(L8`^6EK8h}nzv0(hQwCrTl~8-x;glyJBx)TS8z?ZKLF>@zV6Ib zVCnD_*n>^SWMvPQE2_t&XJo)Y3#$!*y>Oi^&%l*2ElsUbah#mj)3AH|YoSS~10+mB z9%Fj398A9G#c~y{jL>0lq(AFhby#-(BHLkf=c8;iQZ?$$#$oboZ#Gq|4PluR(z9S; zAM_Zh_#*}(27IUCvR@&|xjx+I-Rr}~VC|8886D2b`!ani+8VkPum*yD^gxt6AwzY9 zL;d(Rp}ZfPhSY=ma{)f+&-4R#9AwSJDR^WUYYi&~FfY+G{!!f^TqX>?HO86^2XY2$ z2eJY|(;7BDVb@#}PjLm4YwIm-4dWqU7A|PK4^xiOabya*))|9vfIJ5?52K@-2I0np zYx^n0Vr#1gvjv#67-Dp;9jusxCmhb`{t(s%3lq}VV!@ybj4Q;!-7y&T*C3sB!ouuy zwhj~Tp=>55ONKJK(y24d5Izok=ZS9j6f9c7=6Sdc;rvG*MM1MOSTI&umBA*8GipfQ zIDLdNdC81S!z+Ztk*ClidEMaQEL7N1Sl(pxnmuuMfJ0i}8KF#@YT(dtV*sKdbpfuY zX(L!SY;NNSmghuI74^B%bR-*s=%SI_P^*k$^ATDy%2+lrbZ?yM39%ZVGaEHVw?{ss zS++{g4Uh-kCYV0Ny+yZF^kc7$W({2FA!Ws63Z=>951XractWi#)=DU&H>{rR9stv_ z7@dBd#_$BjFgiXr9n02Y^3hmEmmulmxQD2n&DJAyFq>_~WM&TEb%cy(`XQ_@tUl%L z2|dTN_VC$RJiDdk@=3EHm(6ja$EA92WAhl@)vU>5g_tzWXG<`7FQ4UO5<7v-#$?X~ z_B1BFC-MP3Gm*^`BF8~-PaK2n`8apo=A)&YnZ%rt@X{nUS5V-4`yOX)V8>*pADRj$!i0(bCeULD9e3LdK-oT*e`@*&3vG zn8VwAb`D#OP^-D@B~h)HZFc&KmJ$kC4^cD#E~n!VY%k=dm0~d_H2x{XP~6IJX``NG zV9iuEjPl;>ae8 z*(AL(-dfi#!ODgs#tuBqJiu)pI(C;5zPU%B?s%jLK+H;i8Z+_ejq$tI#w?9Nt8~J>Xd`CAQTOYAxZmeCQ_5 zy5JJDq(uvG-3hcZM`*DWe^xCq&M--Y@PT7XxK4X4Wec4sKtiARmzT0w(MT{XT<=s3 z+Ad>VutW2gG5yXu7`oR|s=@p-crx0x4DUmNmor+H`Y$(jGTmU+0yP-!FJ~iFdip86 z-`Eu_(J7&#C4N15cm>nlKE^W5@~#1KE7=rR3eBkSj13|EMdn+wnz_KWl`K?9*9`&| zs(Amo3KyD*tN21wwu+S)`pIcm&07?{u$t*t^Qn;j9BRkqIX>?5o}&RTS;HncjkYx> zuKiFb6%t-`@`TscFuF6nw1!_4EPtLY5e;+)x7VEfpx+DZ2`v8n1-4e;Q{ZS`wVLq! zS~f!<@K0BldDei0b$r|P);d<=M3E-CvIoA%z3e+LayA`aV$UPDi!T}H-hptq1i8KT zGFyiD?(6w{JGY)K6}&MP>a}XV@Z2k$xBmuiz}5|XFH&VA_t$w4U*=+ci!H}wY1%SMTEjRkHWoA_$DEp31$Is(P%yp?L5otHl%Az5R=E6*Jogroi#w-E<5;Cw(MY82;JVn&&mDXVi^d%{TAPAblb_sBUHB2I7=kJswVjG zs`uM09r16x%|>EUdl%<0e-|e3ex&hxW1w2(^EgrHRH`m27qP zg5mGs75cTEcn&@PE{jBhfPI|tllwT2A4HP%9vd!dwT83L*6@aF?=gB%lDr@HU->q* z!H4^eOTsv~z6Qsr_4`J}b`ZF=x-Y!;4sHF`t4?t7eZDPi{sDU&Ic*V1_yIP-je@uE z%wxm>y$;(Cuvn)V70uutjn=rXAF@#-1o`i{qv$S&9Ky?6{(S241~mXuZdJ!ua2@2+ zhP(4$5;cYmST4F23C)kfjV9OUyb)eA+wooAYg6Y0nZJ3sVt5m`X+$;H> zWIeIU*pqCnQ&I&d|IheovG_B#$f$Td*&`6ToMKO@6dr?~1Gnzz%Z544tEkrPv~l=M zh6>M!4f#UCeY_HO`<&@d_4>lXH&t)gjW2|!tw$)ZsDI!ORgKn_96Gaf}ZV{hT)_|sGP}^>2aj~EK1=Ak~x3`n-K{@V* z9m~0$v@fq%p>obUp@z@mp400r_q~J8a))#2EPGPu1poY_v6nBDe96W+4XJ3=^(*dq za=v24f-V_aTy*k>x4*`tR-do=L|Xkdds-BBfxt^nzR>dc%#JI8C;lVT*T4xzG&Ed9GI@7 zon5$yN42>ZSq#?ReUUwG^l-~{r{&Y(})#(ohDIDJum`RUBs5%A-8dR(cuoBk}1$t(32ADK=N%={k8qL z?Ot(*H5CHm`O&sJd2olNVq2--ZY&g>L06G-4+s9cyL^$XcMthQRq$DRkBuPqS8=8npTT8l(@*GOQh#8bR3rZL zb->2@IZ+g@-Z*XV(S1};*pDn+2##-1vI))^ap&;HkE|WGasNkF=tM!hIv3n9 z>sLkiC#rXG1BW#Npv_M#7Kvy4#ELO-f52uIEOyhM=WidLa*AxA5q73lCnm@JJ5}4{o*aI1dXCX0`CRbqfz$xA3TS3lBxL@E4<7c*wei zKV-KQ@Q8H_4;8iWN30eet#0AL>J}cWZsDQo7XI+S!k-;jc$~V0hpAh5l)8mqu3C7E zx`l_RTX=-Jg$Jlxczn8rho@V3T&RTyeOa^uIsjRCXu5?*rWf+SbPJD5FXUnA79N#u z;X&yZ9+Ph2yBZ6RNJkc&11*^r9*%C|(VZ3^jBerY9k=iZPYVx3x9~W03lBrLXahxM z@?I7mgl^$6=oTJ=Zs8H=79N0Z;qm7d9)51&@tYPNd~V^f=N4{w7H)SIZgzz{?7Wa0 zT_LwQ3pcq!ZgGX&;0iI|JnNB13VFbJA&)mN7ji=@&~w z^IgcJ%nNytc_BBk!hEfk2_w!Q$=9C3bQ(GuVPXx7JYnIdcyV{ttTvG;4qYpSKnJyz z`=v)QB99xIwgatEy9`+lYNx7p=v`3ep!T%KyhE7k5ay_Mu}8lv(90dwNA1!31=>SW zyW67=2=o(@>Z=Pu0e0G9A;d;W4biDN`WRf4)L3UB7RMYixD%HA4wOYbw`_wA-BHShslI$^ep}vz^S648F2x|9*g8MnCO?35e^dl*-&`FK6 zM>(XxZU@{TTy;_d?eVgX53Zs%vd61Beo_^+wmrV8j(@X?+SVTLs^i~Yh- z*3@-HVTxLv6h0#^IIB%-2&3TW`iL%)hS8e^Af`yNu1al$Q%P%k+9<*2uB&bK@K#$2 zw41joA{ISHjU7I&602B2f#TLFaaUEh%AH9_ftCBv4qJMt-dJ2sA4Sf)Egpx4VOcA8 zwT?Z$Ly9nassmS!D!#_(@>-o!U~CcADtA{y?K_YJ{vK*edrS&p!aXSBv693+;AIcB zzCK#~uQ>XP(JJ>)8|!EaanuG2bn+n83sUR3Iah=t5N!L5esZqIizG^?RT+he9eP7SrKJ*L2B8~6vsC-G|Yt&>U>!>jNX9w&-c z_H|}MU$4qtEfied@>0X?3FiqkT3EyCVx~}prnZ3V9+w!HK2WVq!Im{_{pJKu!$NPH z(m7@^bu+xApG!3e_EBB+MtIRPVmyZU*t*KmO9lE3AKP5u=oKZtYN~zp)k4N>Up3Ai z{XA^W0cRkr#(VfM6;#DOEc-HXL7Z3^;)wbJ|c(|4t1)FNAPC5r(yfX#da`062 zMJ+YN9$%(&ZsD&c+2i-<_+|cTS9|;#SL;9TZ2ZeP9S-$-`Ht76rk~ z05zzZK|&Fw+95H~CI;B_%h5++cYxYM5msS=+VycBj>*MFl3eio!Q)CXg0z9*9(bKk zQ($ujYVpUZ1$3ybj@Ac}W4;u2@TqFV!l&S_(PUb9_qGm9ji71L2+7!(R+yueShH9E_7lXjHx#|n35xq)WgzBvKpI51o z3e8in|Hv=Q9`BP1fsNH{8=En~$Yw^k!RA3@)kRk^XA=OMI;!~OpQIuc+n3b=*VcMj zB@Oe6^=+zb3`c%cnpEm=Ls2-dsm+h@I!y!`{Z&oKZl>0>O_znF;}$~4NzK$`T?&p4 zgSE|UhQ=|Gf=#35Hh0F+F#?TaPVuKUfp}SKQHBF=EI%9_FVJ&?Z5wxvZX?ir;yI^4 zSKGS7OWTXm8J&4)O|Z8iPSA-6;&>1%jhcODx+ zpr{&dJLqsU22|7hL30|Y_kp8F2=o=yh~O6+VY4z$ph2Gq+j7A%W6(?kG0-nHObvvx zFy?I74==?J$c3QgRfO6WN7^>_oFG@UIJl+J;{A25#?r_MCcwa0gTv)cs%kIpWJqjd zlpTpu75g%b;i4XXAEkD-M;8b*8j9Y-;#Aeip5Spoa4=d8(T9WrbhSBRNL*voLHZDL zv?W!XB#L5en+c9Dg3~eT|0CLhnUDdN0z8RH+HQh5(^l2!sv_ zT#EGGJc6PW6%`P$p{NKJtSE|Ilw!j|v%aF}_dI8I=id0`kIC-uIdf)qwwH5mrteqD zTDzb<DbyC>Mw(mL$-DQtKKsW?6Fr34%47Dzxb^Z zY=g@2!Gqtw))KcHt9DebwQ(~1HLB$0UiR__aW|#$G%>k{y(CqO* z{6IMJsSY8oMa>lqa<0`3-)gTJ)a10RZf`ddC1>cXmH7gAVsAT=s+~9O;Hd9^w%fg- zlj?U(4Zbl3xZoHVk1rUkI~PAKPMS2y-rCHNbzN}+JKNDokFRn`T6J==;>lH>$i~K# zUyWNF!>|j~2v-Z%u6E@Qu0fpl_$4#Xd;UhQ+O_{|yeF930iRFsGhTaxt_EJ36z%Fv^?fNS z;QPWgnElE)Dc+!&VNWX->r7a1=L{N$Ji!-@B3) zeyas~I}_r0YoFiK+nEy2+xfh9A3J{Pr-RR5>*GY@?K}H?OkaDYtoB{yY+q+VeBXM= zzx|vka;BeCI3A}FFNr68@TsJ;IG*&EiUXYa@nn!ZHo#dF-;tqyM;Z=rhQ}YEv^T@$ z?Sani@eW2x`k>rPINEoB?T&{zdX zblf%Kd)NH7d6hRwiwvi=-;R>4vVRnAl8jR65m6GY? zi|_U0l91&zNgX+TRA#Qle@dE;$h~~eNcZvR!gC{>;9#WfJ?Agq4QkJtTMeHA~7wOTfp=TAB0O{C0dd#$VXr_JhL zHzZsjIF2em13!F%xqWo*@i}kpLq&tn$>ZDq#@~wu^$(ZAC)4))u1+tQ5yKbc_BopJ zALYatr)T`izZ6@H0+KP-DHtzaP2;mre`Fy#^1^V08hkm^4aJ-NnkHY){jXWUT!Zq5 zG#uyjiLZ1mO@_9_avvDyw2tT3|I;DI|Cm14;NOtWmmjyq*UOV`#}Rje5ho>n-G=18 z#W)P=7E*V7?uB&HrN?-ueY~$E_!{rDi$}@na%sFh0O??+rpu5_r?HHmU>|!aFOtsZ z&W#ICo02&$_c5b*x?Dw#Liz!G{K_nqZg;`pg@(E+o6Z}|TzhK;(`qsGK5pWeT;ozH z-CXhDxb4bcDt5ro%d(9GU2p z@Rwh!)lN63^)he6>f{XHs>CFxXuMTD->T;%r)fNI=ySaNaPcGN;bKK<=NcVtqKR*$ z2lQ;g$e1DRj@M_TDZ@=EUBWlkCWra#pm z?|IbQnL*f>W1m7O?jXsN?Y)tb&N6zk6Ws7A=_nuc4F-mq(^KBjUY`OgHCWwo`m+&V+H(GBT&wL#kF9?Jp8eZdLp%Xn+UDPJqulv?UuIuUeR`2Wzx47Q{waD=;>bwDqJwu%=SJ!#6!%qjMsL@j5?`gu-UX)`l+U{yZb-xuzf=`{6+ zNckK&I@9SMPog|Jv}Kq?C^%@TDk zyiz95wol@ftce|}^6PRHia))o$$EbseYP-MxyYzV(??9O+rR3Y()kXns@9hIb8z+H zZ{Dhkzv!Re?lg*D(5+nbwz6h!?6jcv+jIbOpLtc-ZYm%E!=6W!?~*U(!cnbgI3?GJ zJ*4ZR6u#xn$jO|NiN_PMbG24{#H_3`bL~Zt;=TVJk<_u76GrFSAog<@+ZK#F4QtKE z*^~76t?Ma&_23{?S?0{MXJIvehV2LMUX(m17w6gc|4NR~rqh2cw)%O~jNkq9u>%xXU@zrVJ0TSo*mpciPRim1_Bo%D zQ*v>Ey;)Q8Q97T(<6Zu;aBazdk6S8!y?<(&Lu8m!*j!8G8rsuRWs!Y6uinmZP}<5r zE5gaS*6(@asPdim6sqRm#BGfwr;g2>l9iF2l|5<7>|D)UFvEk$l;8$gEB~nH->Qs9 zDV3|SOWdE@74c(Ja=E(74YqUqTK_eE3xcZ>1sP-(zf=678&K-3*mayXe+_+iFmP@7 zZtU!AoN#W>nldS4%#_$$UA4Q;-UP3ul-z)yNaEv#!AqU$@mqY_-v`9Ugg zEzP~iA=F&qv@C)b=Of43XWHu2@txkb%xMzuG|A^Xm)V;pwNLi>m1XwrgYs0L<5`m{ zJ(fFFXKCzMRXNYVT#Vwa(IPjZ?|L+ic8pYPa4fF3O}e_Wn;X-r}yY-y0}Nmn&=RyKNGm^HolLpv(F0#==DNS*E}z1Em!xu)urlsrObjV zG*V=K?w)s%s}F=5O7wwn(O|jNY?1MUYn`_K5-DC{aLrBj7E|$ZgEwrl4~iA9G8pe5 zT)FlDzOF6ylv_I9-CARS0V*Upo1L2R+J-o-{KK)gZR&Zm5pfyk%F&%z%ma^v3))NN z!CcTS!Gg-_?O44qsAw-;)!<&a?=Jg@Ps#oM{#;C)F8&^%e5cRxpcfgJAo~4O@j*E& z_9Ua^VQG7}eVD9dkKBK^eb1%jF|zbryRA~AgT`q17W-|H;wNR> z7N>W72M_rjEV$Jk)ztEEZ*xVwZ99hOt^@bjFVwW+aXr|Sl2SXux-wFw+7y z9d&~TWa{8k(*&>9@8Yfk4`uu{tNQ8xuj8kTkGa8fD>XW!M*0cI-us+X{{YCqvdCB3 zK?JHfxB7Ra3uN0)bO}2x9>5_^ELa`}l0|;7%d>qOj1VbS&F_uM7fo+;Ux8LiR=nZ{ zPlVLqiZNL6JVva|cBesnCu-+m6^lZ3pu)b9MlVb2rM9JUAd>4k* zUrt7!MQ-SW;-Z|`VK+X-dHV3HzcS(;!Oc|boldI1MX4C-V{W^H^{W>7WX(?dNL9@o z-z?bCgRN4+VhQO(pwgpFV)k;wJ5Kio}blc#6HtK8R4aMSOex z-0|;SPVmvDip71g(*yR(LwTwAh28x??u9KI>p}2fSSwZVIUWoYXB1sXh8~UG@u*29 z-voP2A^e~y9$>6{&_0?_i<|$Slb*-^)&-+8_3<@3_J9C2gslZ?AjWfmd)$iau;VqEw3xzD2N5CF9+8_C^2D z5Pa>d6}tu+ANk-ETQ0t04`0MW)Qsn8F<41FE7(@L^`S&>G{N0sNkC9BXySCipwD7yAc$9CBM_kC4nT?MD zllLM;=#f2kO{m!z-^}bCd+gq!V&p#}5yFJ}>yTCrDg1cn7HH#vj?x=Ai?M1K}tc*99Iz2l(Gj^+} z25b88(P}BFe$crocTd;L6Z`FLnA&dYW3JHO+3!@6Bfk|6ZZ1`nK76=~j~)-$FT#~? zMJ0av{_X*L0#Lq93LLc8ElReNw2@k;V&A7J-zCo+bZQni=TOFLM0V>C`>*lk%&BmT z;7&s2NBtG1mwAKs6saSK(~P}0Q=5IU4Wp4i_R0_VJoO3t$+_|;e2#B4>&M$a?emwO zuy>Ja|E$kTJn7W(w+=?AL|!mkNB<}7%K^nlee>f_I=y`N%3t>RV^3qq=Wi?;mTk2Q zmb0$_)#kWwv+F6l87Y6m=h*eJ|9loMZy!&0V^2<)o^*QJ)>3>j)?)CAU->DY<4_rV zam|>~$j5ebZ{V+@mBgRtT15rE2)7Sbk;-4jTB#&;x0EcysL^11Qj2rG1#Wa)x#wHN zdoof6CllMBWTE{96{tAU}Vk)KSjYdvef6K9BN}=9Kq2fT z`k{rnEo>@Rzh?TVhQ*87on7r5Q~l=W?TbRiNe1HzuBCqrc zsYb*-G0sLW*w3_8D`GT#et+$2#D60IwuFBvnjt5S;wlq2Ab3)D#HnO)`D4K8N1Q_b zg010#mCLZYqs8cjvyTxd_ zmG8sy$7{`v_U%!7-Nc#;tj?LE?a|VdWtt29DTzn@B1E2CtHk@18>-)hGP5w|lAI$95;Q=$;i;}=^DQ+ zcfu*6zn2p^gvh|L^~ToI(?#S8<$c3)MTf@J#C}#C#(pwvGp4qSsS~L(<}jvCj;R_8 zR_4Fo59|G4=WWSbo1>`oTLR17h;!Smma4&ClLr zYV`rOu6{(!FR){3W=y@4b@>@_Ox+Zy_`Q@Fl=+ElOnx_zt7_c0ez+M^-GR1Y{m6|U z7sk}SF?AL_^OLriIx42>H)BzLd=`^u#$^3IgI|ip)K-IR!yW0GpIXG!ficy7qYzVv z#8iC)&o309M*VGmZA@-X*L)EltNhqt+ps?A=PQMn`f5zI5By{5>oK(rJ@avYOpU%9 zll8%QB$xa{OdZe4d}5(mQG1=*QG@F%|dIQFB8blPkt#y$$4jbxa)^Q={w_ zZwX`Ste851D(|{t>dKg^w>G>J!uk)6dUwTSdxsONyd|dUeF|@MV(J4i)!w1R)IBlP z-h~8ebW`N9n5@_Iyc-GRO_4WZs$NU;(mtkMh^czv%Io8p`d3WVi$Gq)#?+EH!bhU! zplB}!V{#eFM%4=tUJJ(5Au(02I(RV>Q%A;Bd)*OJBQbTju0>v4#N_OlY_Bn5>a3Wm zCwX2x#MGrR)t>8P>YA7uoW%#lRbC&H?b$q5`QDhSXH}k`t!lF`tjaS5FC;bng4F-e zxjA954EoS1lh9CRedyG}Pd-2Nq0=CxX$HpjK5nATIMrOf{}9(zO)yb>5rVjLE?yFA3L`s--eE(u|8UD)j(PQ2_iREeC*T-_2nWx zCog{NbP97CRs*HLC(h&~RbFHQf){&8@+Zzf{J;<1-j{s=0na7}#Y+@fV7aE!=Wt|# zODvpZ)K{s#Dyu(rmU`;zb%NKW+-J@r1KuKdOZI){v=5mJ6Zzvar*Sf;(T}mFx9v8j zEiWNG&f;m+CQYvrd7t&(mzAG8JyW&bhXgFpk=p|E>Qd*l;~0ZaXutvny>b~O%EV)d ziG_^g&uPX2W}O4G8U;sAnu6~pw52a;@uk#0i|C@Gzq*AyrRPY`$@njvAqIR+@U@&c z<8+nzzq_8H-;sW2D$o7W@hks8`h(o_r8C@^T_nIukuzwc*BK|tEW#C17U)}g(6`!p zXOd+4_6se3VZDCF(eDJmv%R6l$Daf&;G>!(oWr$xr?Gg-I&#wViMSs$mw)okS*KE% z(^v<~<=R=NMXD+{;4&$~0<~MP_DwSWoKwn(c_^}gSWhOO$M*GZ>-_m}C9QQsl#z?# z>Q@L%Jnxh+l^jwQs8nAoAv?pgEZdhP>c~hj{=759)JP^_fg1QJS~m0f8;KPQnO0J% zvVe+A2j>y7^3zL6YtohpMkmz3y%V%FZb;6v%a6KRezi~QwDlzdyq_Wih&gobv$T^`xRSH$5)di+jAApX_k+{1pvgR;PFfPTWT(@OT^oWna?b^4paHiM+(na3FW%xDbfnyIb6H=O?cY14OvNr#y2zUAczVQ|l=8{-f=&^mccYHqY5u|KW+x^-AI=K=EBrra3I5&lKW7#GRsGXhgMWwq)VcQ8oO>~M?wYeEWbW8x`d?1%FsHFF z-DS^TPQ!$Voc+t`iGOwfcG~0L^uL`cA#)2S7yot|IGl$0FofMCxZUOSb;rZeSuHZT z9x}N)ho>qSMZf}^Tju8VZYP>2ZT`kh@l+o}eT+=}2S-l@5rPOdl{9(rAG}?!^RJU= zlx!;5()M2`Qe<-(KckpwHiuFUy`*iPwuuT0}%2Iptc1I^r6FJ@Dijm@`b zl5sePU=AJjC{bJU$7D>z=bQL;N;?^)9F?~c+`-24LV|@-??yMxfW-uhW%Z5j&?K$0 zj9^($uJ+NI)&*wHPg3hVBnJNnmIkub6^;fy-EkJ5cIIOI+;wmS%R5R8;t65S+2A0T}|dM3Iv4A@PuTTUjrGn3TO zqXduQpxoU>YLPr{inPw_)|C#9TU1KFT_6eTOYQd2Zl5G4^PBN_vvS7q0qO??ZyKi? z@C3mV?0j~rdU%?E1(tp2#sw|$_9;|)W*eYo0Z z1okaTPstiHZt66?gww|lFVHIsc>RA?{GwN_j?#(+ta1WhZDnYZThvp7muc{_%u8}- z8E~B7xFqCv8z-!iTk^ZNCi8g)y7ZXo(k*gqU_w_FBrKO#^SkL`KG%TN zlTxmLJI2$e9PiQBd$PWOJJo;>2tMFoE->I@f{)pJ#f@jr;md(S@cL=8+bm=rgh+`L zw`-WwaQ&i8NO4ytsd9!D&-9doRopro%O6I(Lm{`9tSac{H~M+%=aJkbmtH&7O-j}J z-%w|Pf!QdT1riz<5AUYBsh(O~pv49GDb>B-xcrge$J|X0HMW;1U6KVw+!Zn`-7R3~ zRnn{Sd13b+1AZkyq-_!RZUg=x_(O&iL%qj}x?w}FkzSKyMcs7@>}=A!eMr(FMN7E1CG(LI#`a6I zau>rZRWjExh)|6UPNv`7FWk3sp7F>;zq!z6STKAIdl)&@6u5Kt*wRY54U>xq0 zgi3BR=~cz;QUHf`)jLq{AoHubYmBqb1fAo%sjFO#yHe|_D?+>3M|T%fuLrdr@fugM z=|mbe7P&gn-t08$xeqP+$ch?nPN*q|bHH6S-CM()#AsHRt~K2|JQW7haL!$UOW}lk#(1E49V~YZWp;;*-cDUgG?H*Kzd^R2qcrk*X)dZ=}>F1B!`IixxM+6k(4 zk$aosY^MfOX)u-5mYELEAYg$G&yMS`9%Ho1Y+B5g`|G>&O_ezWEdEnP_ZF=Zr3DLE z+#csN+7G*oS}ddm3s{Vkf{omU$bRBB37Kch@i1B;M^~E4Da~=k_+lA1#ZwnQ`{X_k88p-`6#7F z%?2Cmu^zg#$$ivWz%PCqsg+wlaUy=rZ&Tz>dA)_(*}2oKgYlW>1W~@N+Xo{|8hMgc zpOkK`(HEXgJ*9_84@vb_?ji#Y6CCD{rP0SmZ5*1Qhx9WtO3wrs6^f#L-YSzX(k&MBH7 zMD-u3|Hux_H^(HUmq;&}V^XY1Ud5O`U8R0i&n);HiVHchi#yP?_$#$v|67-bZKMA| z{SR5&6)kd|8IMdE61nCdZv&5A%%-nhx=w@ZthUT7_6>N46JdeHo^M8uTYCYu&O?!f zl>gl+x-qBu&659Tw_rk=l>6B&FIBs{ZNh10eLc#P>XO7exTS~Fh9zC-_v-iotp6*6-##ONZMWhzl)6;!0Nl8Hx!mu_IEQA+Dn@O?j8D5h8W@ZGS%A-IoB@%DTFfI5!h4O zb5%5Dou)EusQZWxaH`T4q%6>dy|&UwbIqw1t!cpm7LUhS=)qns+R>t&yg1lB<|*hv z&_PxXabGu}GeKvz{j>pH3A#$TVeT`gA3X?Ipp_@%T3MOl7B&`Xv|y3TVx|%MP-Fq| ziMZ;eGV!!l`_!Kn{pIKgEWX}7C>=yPNdC%n4;!|T6Ji#7b0 zTpsNXNY!_?Q)$Hle)`G5YI!Qk9b??ao{BRl&XDKFxFZdiO)y)kk98Y|^rh}R89mmm zn#^f94vkPh?eX((xIG^>4&f2whC1auHC@2E3*^#Rx3d9v65J_m$GNwqs>MIHX2%Wq0U0iE=Sk{EDEIXSFAMod1Ncqt+H+k?qsV>aFac) zvyF6{w3*-zGL38}*q$aQb_R{$XCO0zm{F~>izd6|YL440H8Uq?0v;MDe~A1c`syV| zvR&6We1!CoxLy}F89Z=>ueJ74->bEXj2t^|!l)@(6MbnvrTud6M7OW;^*F)fX$a57 zZ(O8IcIy>1antJPDT+_Y&`It9vuw{0JR?UZxx-BL=LnFF#8yvbY5~8oBNUIsEx3G^ zgG*p_eT>>ME^&Y3=@o)k;*HNvaq|`ma+7GK*J$&a6r73SpehBX;EG43Hz~czb7lUAk8qXoFq6I*WZFBC|a#gQ9Q-L>6M}}(Mmre{m3-xO~cKt(oac0jb8^g zp@{0Ish^hN)7^f4ewASDoS}jYC0B!OP7X}RFI#t=?z*Pa=V@@BRWl6uhTt2-{ktPf z;}-}n#En&P8yOz7@*_=tOp^nv{f$mq&%(E+B{RYWlFU|ei58c*T$!ess{~hN?o2!m z(q;IS;8(dk(;aWx{e$3-G&#F6&Z#Re&ccyVYh0tjHThzeJI#RW1lQTfz(TpU_#5!C zMFbg3cVM&Qj;Gx#Y8S)bg7VNRk6f`83(tT9y+ARK5}f5+f#K*3EOv>Hd^z5|gM_iW>5g;KC;;~+R^gsh)}MczNpEg(ap zZv7-Rs=-<{(q-PvIIV)FC-KyvHVta)%DL-{1WyJ;-O9qeBu1`B8TS$E-Lf%xU4&m+ zYW0THk)8yL8Ed;jA%B$AqzO%soMhOfc#|Tryd-MXj8@HL-vT__>@8m}z=b?N^TCp> z86g!mU?ZHr46lPC3*82Z^B^DxiL|^eUkQ0(q1(tIf$7E((qgHbDMJ>y6;joz1KqN~ zc#oBYMebnfIvKC8RP0Q#vy|R~j=_6-8GWZ)$kgjfi3RFSGxe@d#&wj|>p`)H?7PR* zOUE^-@-%W5sI<^jnz$INW9<^$N&K@I&vn(T56${Wxg~hgs-QnXf7!DH_frZ65e&i) zU%HD-cZL$Mfak?=o|`Un%NmQ}v|s^?xp5Z1O~a~Grz2@GQqHXOm$qnJ?h-W^O@q8e?Dljn#o`+8EW@unhteE`+`Gf1 z>S~-{)I*ds%58L*Y+LOn8oH2lA>E8MU@^gBwmeMcufY|QR$fNB%(NCefvU8U(n^`Q z$sLx$-(EHgu!eLEcbGm>e!c7ZCsD1jp4xgDywleT1*u0=-9&Yhl-cGED=}(%b`ElU zOdC0tFNstZ%3>X-nEq`g-D(zj%lcrEw~=n+B4-)1?F8Ft7BOHK!7e$C&dbO-PC-K- zB7I1bHwJ_K2m!L3ZFEP-_Zx98)voL%-D|tz`e#nn_EX!>Q5k8BA18R6Elo1uDT1eT zp#5|i!6H6G2nzZY061=Hna@Q8uACePW zZ*}iTRX-mQu)w~C0Qq~}fiiz9eyx#tLrj%VY4K^$l4H+@TKzP|(>#1kG1g}Y&T!d> z$+CNK)>E_dr03N~Y2@_F$eM+tYQ|Ka&ipOr8(MtB4Qhg^a)IE2jzd{B^v`?h??;L( z(CdM6aJxI808V@=U7~c!>;%D&+4|B|N>_E~3eJ66*R>x-^%SBBx>ULWUnoY9G6a|J1I!^N4@sWhcWuJq zsQfOzo7#bxX*CW}LY5F*cV!sjkRUn8kezOpAxR`i3xZ4a!Dh84ld#YMI`=SMDX-jx zivV?*N)cH>cIsX%c3p@+D}GW-G8HLi+NW1-8cu1-9F>q&K0iXt+Bz*YYu zqcW#uYQ{#D%2GlK5Olo1?0XPTWfWH+MjDV~54uAPsYFuA_>lPz;pLJV-b{RRZ*z>+ zL4lT7I3s7uq!CC!s5aGUQ$23nhV2fiO+8rr5Z*T$ve+lXmR+huuP^(@klBG$L*93fAO}tDT}|AX`vlVLhYS zhQ8<46j{VZ`Nv1xf~ICWiYy>TL{~w^qsZ%{9qvF88Aot++ncK`BxfGQg{^9xsdbj? zkGc&*jd=#_CQbIZRl=Oc8L*3F?Qz?Bs`R8O-a77aI~b5okS+;(-PQ*5CFm<%_qrVo z7(g&U?%nGSO;sO*30Ra;_}-*w{DmOR>P#$V{T5W>Z9qK1$=jxwg=oQGWuz^#9jC);_#-3`5;;H z?sr=|oJQrWk&o6cCk*$6u8Db06;@dcl%IaG6`*#Vqx z6-*_VDy^PEezL$_EqUYCLZys8gZd1a|6-h82UiJNc{at_vgRQ6O$BoZSfKHNa_lL$ zrg$%-qs%)JGT%pn$uX28M6Ozcb=!pBGz3b+h0XXC!fH(A?FD<|6QB#v7E|F zD6@d;Np#(tKaO11h|4LmfS6;%VGo7NCh2dRMOIN=C1sBXo|$>XG`g13S}y)%12zzB zAQ&W#9u5~RWL#_}W`PEJOXf3fHS=uy=o8_>QvT6!2rFtZmMOAD?ta?skj!Z;-|~@K zV<>A3#i*&tz4Udj=}yiecSx$z`$<{o^1*(Xw0H&^yNWw0?vz2#xC;$I8aG{d85LWdusw~iCA9k^OVVihF4Gz-a zpd2~u4mS-vN$?~`r<}}x77zI6KIfJ({XayB1)L36XB55Cv1>zhd6;G_U^Z0NKOY;G z7pUOJexJov*_Y4b5TN!)Nsq=a0W>_jdI1+fYVa}*@B-uoT$L+0PH3}bZZ!2?^1l1TmPVt`FtN~7w}G$(^$QaOO2!W zdPkLyX!?^1)mZiP3kdsm;t8=P7|bS;t)g6ke-oq$K1{#lPE;$yyVtP<}{jk z(QHBea4b(imXDX*mY!OD%WB_pDND-HSFk#;pEdGql)$Qza&FX(B_-=+_ZIzSYPdRX zT#c7w&GXcj&tJidr*{v9^B2+|`ioqoLlzi^iE$=OERw2zuh4=8EGAfsHm1>EDE`8= zho7c>)$MEO@1(zTpPp*Kp9Ft$+n-^;-voan=at(o(T`$~3&-8+4rkEmk4H+)_uQs( z328<=HOPZ6^YH{?;yc)ynMlOY5Gh_epD@%U4@uPu4kZ@ocWbHe8eWyYv(qVH>LpQ3 zl7pwv?_O``~`w6IBi(Krmg8u#sf}@=}#$&rOeVXbBO6mSyChpL05Vhy9y)~B?!HCj*)iG&SurvxlKANLz^a4jyc(qt*niIS}2J|hNts11xu*2^1Yc~Z#Tr_$fJGNu zTrV$tf-g!HY$Di1&{J+ZfNLA2LdpU@x>_G~i`R}V#8#THfJxt&iQNAgzNl)2!ua1t zvu%?08FnLey`5k?LC-`#2Z>~!bqgglmj$PBrQiH>w|vM%aY^RqZsRbgv9|ij{hzzT zQdN1BK3Je_{FcvY91f43E>c=Ed*Gr*ZT8V-pWJ>L4J$Z6a6rB|?PeM;PY|$xmu|+( z>L+keRqLlIvVe$G>ZfsO@%a-@S>x(iiqA@cFWpGUgp|p=FWq*@oJLp2m~C*Xq*cgM zQ~vrAM;^60%4$cY=NWg20WTB0EN9Q)8w|BLPHj1ClX+jcqe3g$!sl|~E9`KbhO$U%evQ+lDqqs!m$L6`d~BrP903co zP*aXo$XhW#VxDdqJ#K;~qg^W#zj52>Prt*{>QQPpK<(trH|{N|YuVlfI$;4Pjbwe9 zP$lX9Ew&AWpMQ(*=olx5+MDJ1Z{75e35%1$-?nRNm*8Jo+@|?9QuX(P zBR3-4OAB;Z+P2P9T88J#7cRghw+VJKq{0ulM9VN;+$$4)aK|NaF5qWyp_#O)^PxUwQ9GcYLbaq>`{eo1-~`rLP7Y}+|2a4J?%gP?|Vz3kQv z4Pl#gWWi;(Vwlrt@@?63*=?7qN`0EL(3Z|#!Rv=B-y@Y<&3+{cdTP;#7LBCG6}PFW zati?qRB0fnQb7)1!AVrDn^SBqpI&jh8PJNLmDIh8OAobZOVC!9U&RqcL3@Js^3zqf zegeKO_}Oin+|_jStQniuvg7rHQg{7^lhB%<-HM^vT%>OD^v`ayWKLs|zA=^^1Irp1 zNj2+9=Pc0K+XA(wZ2tvcLa9MI4btVnFK+)-1$_xvphmY?jp4uIn@2SmKm!&q7!Whi z7&A2(OoPGl<*&HCQZS5Qn7r^C?hx+z4c9hGGf6W^#~Cn+V3gGR-5q3F8biP$cS{UN zGX@bFuz8pt;NoK^R(gJBpf5(=- z_J6KtTAD%1B6nA2okeV%wltdtv!&plcsk+-txB63p~5odPxmH=1gj~WCHMX5_V?6a zK5NXs>zZ3Hp)C(<#pSkZZY75?tuRf=k^=wWM3(bO-bDHG9J2q+`y0iYStX0(+(e_u zQaV^FpIyUCtKm}cFTAuGZYmeglFYx{E}@Y$TPp|ta_b~>8h*=U=`!?2T#Z{yPFBj7 zPlkMLyyHiFJF0iBwt?O^NRPkWex8EO1e<05-)^taXgb~^`L5%ViPLag#W?P191p+l zHcM5jds&SIMy`()tINgfZV^u{?x)55lK&rkJf>hL!A_a{k2@@6B5mcvfAF%A(`cz4 zmM)K1S%%lh;}6X}dAuUh>o4RMWTp*_kJfsGZt&gEzc^5AUe8}J$6sWMochNwm?*EX~NxZM~{8{A;|>);5?{3hveZNxFYhdL?*SNroIE zIV5i;c*8>`j92R3=(SAdG<z}ULklzKFH%W#mUT4j#n7JIOw$n|Jm_+;9pzU%P}${IkV8fIoG=*p_L5v;H#DK zwNWm4UMGiht8T7WyOvaVI#gLkCVBl~_*{}V7yp{(_dX4&MF+W<9m1Em1-#|p-79!~ z@blK*;DlS`?qqLM@-4>aJ~Q6wl3CcRE?FsFbr`Hm@pgo0u&TIZ7Waxv&w}1kM?v#W zS<_@elf)`Ap#&D9M5?zG6?UY0cbN*+r;;a{|f_hmv$ z8CKML+iPi>KZWL{LJ_Z=oGIZIls9hjJjp5MRfJi}E#3(Et(Z45MB7yjC1Yu*k!&pP z?S|OAg!dKxl`H8T!@qMSy@ST8q?A|_DkV>p@?+e%zYtwll8By9R zlh8@#m-f0RcQT9jry1RBxmw06FMpTzdL~SjZe_gJys5_EUoQX2QeH8+T-qxjRY!W| z^K8PA^~^%An>=3DYXkeq(>;9UUe23=>Bq`>f8pPw<-MKwhn0FK{(V}-t0ccy@aki_ zM@#IBX%)Sun8xBamSYvYUZE_GU>!*-gH=}JCU0^w0rs}aqjg_u#r_qRqg6bl^<0S2 z&oUjjrIObk({n3%uNoKWa_=6zw7I9Uw>wdN)@~^0&W6fJ-6~jnGpl%+Fh_TKwf^kiwmYAIaRTamolG~LNG-CizL!_b_l>Q#Zky0+L#J6H2=^Jul|=8jo-{VJ1} zhHjFh)v!gamhRQP`xDm5#p+(Q@H*pZpp>oQbp*_+fo)@*%!VCyw3PHu!T3y$TcM8n@~;pwS_kj9P42){yo~#%f>&mOSJORFuk&sHy!^H zTH~14PKLGi=HTDwt+8o!ka=yq!{H95&!0-0w%BqzaP{m65w61VzENT|8Qu;Dmk#nn zJB&jIIex2m7XNm)_r6HzaAX@c+fmURD0T z(8Vjq|KYBlmtg!?mpug%Ye@TUSm_-Oz1Pjl>$}S8FO#}^MGjr4|-#!=aIXeY{6}gU&Q4Et~t{z|=ve_4lrt ziuhErdSVATFu)t1&_zlQ^cp31F=NqWjP5Zxk~tWg?fijWdO~M8HPCy<>ud~K!a#-& z#vXZc5LRwya~vB!7)SZevVX95A))i3yN7tUBw+Tvq24F>_vkPj#X8G`4DXK+y{xJ$ z*IOmlldZ$C$~sFp6Xzb~RiswC#GB>uOm9QN2I(-udn9>-X?2Y0782lR;k0>V3C{f8 zM|$}~l;Q5!-PoGukMwpLP)p9HC)SpWW4#8l9QSZ=)@vE|yt-L9Rc(-|S>6NqSA4Yh zZNg&tceJ-5d9i6`foZ0XR2b(~73FpBsGCUgx`hD5nI9L{&=xxKlrzU!D8mI~9n+f%Yl zop;S>v_Krrgu?RTG_M*A^vK-^A1YuPNACTsGsC-zf5jJjW95#S-T+L0Fw=WKp}*{& zeAYZ%a*Q!u3`MaGjxi^fMNw}erg3sPAUo%KZH$vj zdTcLt*8*>W0ks=R*~MO6d1ir^ldwdpE%YWjON{f%V`ck7TtO|N^JVylb4I!xUW7vu zE%59O2eiu4<4*4lh!}}C6Z*+li@k@!{fvX=vVMt|8RA^r(sz}SOTBI|J+Ksq{eB#R zUB;%09NdXrq5N`hCHUUu-V278mVyr@mXTE}yqVy6S9;T<4Uu>x!eVT_CAcf#T)SY7 zX4MGLj;&AHpqABT2l%GQi4#&0x-vdAEJiLvxEszU^3qVra=K%XaQ57 z0NiN-Q=b4Vv4B}m0G1I<n7IUCiv_6$++zXKlSFB<%@QUi0l41+<|P5xVFA;U0PG^rWE~X^cqjn6 zY!3%>5oRWV{i7BzBMHD>1EO%l3?v|rSrcX*0XSd*(~ST;ZUNJb06b{{GmHQ{Z2?n@ z06b#>lZpTwwtz`RmLS2_^Oi8H2uzMxz&s)VM=fCb5P+8~V7?H5S1e$@5P;(rq#N)$ z!CY<(Z(s@*Z!3s`=!m^z^>>Z_z6GZY_{f5f4fxE0&kgv}f-?r3x8N%SzO~>x1EN1z z@}nV_EVyjI&jd5s^Ir`3JpkJA|8Z^(Gt)PNQiv{Vp{w6UbEF==l>2Ln1=(8Yjm1Q8C{AhU7x41f+; zS}+$$H}-uk=x4w{3!;Mz8A>vlE}1tI>tJ{Q)a8g^E|O{FQ5G=S3hYN)z!WP0V=Z8c z6@Z8Z%&Y=10U#Pnr~)$4nlP0LK#m2>r2;U;0_IQwm}UWUr~u5cfLT)jW?8_jDFC-y zu()Sb$s9|VHU%d0EMS@xfcXRiIX-I*SQG#qpT)skWP_2HTENUGaIoA0rbGc)set=` zggH?_R$CKhLIGH7!43n~TfihJu-Iq;lb`@>wtz`c0K@`jI|0~Y0n?js|GUQ$<~IS@ zW&u;10NhWYIYkZ|urmO<^bZ7cnzRJ=4_UzcBmfUvz@#JqkNN=nAG4Bx>?K*n;n;^M zfCB;0HXi4kW*&LM$WI4A#jTz?>ieKUh%IfS)X2A`n-2&$O zfY<+7P{V+01dX_+|H2e3{s}--SM?2SD^;j^N zLsAd*Sjd9L1{6`C`#+O-pwVL1q=f+`ENE>&DGS;eP{x7|29&dasXE}af(2a-xXA)0 z<>3Bb*%D^q0Jzx#X5Ij(M$nYw#~i}|H3OgvTRWJGF#iVRx)w1120(oam}&!{p%1YC zGrtB%V{5|v8UVLgz|3`bhd!`FJN&S!7>g9lPUvr4}cCw&tOgyT|iE=fJrU@dRq`>f(wwomN2&kKz|E1 z8!*rUCbfXYU<;VV0$`{G%v%AFVF43W0AyOg%oG44qn0oy1xS_!%tQe&#sX%Y02oJb zCzn2gDS+$%=+aLL<}}{~($gg#*C77BFuE zz4?e$O7hIfW^ZEOt=tv1XBQe1E9n480YSw z95(g`1EBH~!JH;uK<%e8dH&G~Ot}DZ$eI*1;8_a_8}OV3#SD1C0%lf#j~6W{W56*B z${X;q1yN>HK%G}DVMYaj*DPQf1%Nj!VCn>bw=7`J1b`D3Fi`@)y9Dhy949daa4G;g z93Ns1#~wonTLAK# zHDQ_pfIlo?Y65^i31)H3u3-w`dH{4x{|)9eKLO+fq!%#uOiTcf#{woM;Qp77L=y!t z+dM!x0P4~W<|52S06ED5W+MP7U;z^m0Hj#J)B^yi1R9;Y#(*L|h?;B7VpeC~0aPeq z0rL(3l(K+11^~)fz}x}=%HKt&(E&%v}0nBdT>^%08 zKRW@iIRM&A3Fb5q9r6|n7=aFOj|E)~*k(Zw1Matg@#Uzp!vOC8j3)=#Wlb1Q4)CA_ zgACYh0Yk}Q@rVVC90%BA0i(qM_F2H_aDe>;&AF`n4GlhjeLNt#uulea5e9~%!qXNo zCLG`y3m6LyaM%LIf&)Bn0b{`dj#$75aDbx$h(;Lw4f0YzA`JWnc*Oz+egho0fHB_y zuUoLvfHy5zW5C-MFtQs}-m!qe+yK#&mN0%Bq^3 zw6lP*!vO6qV9+o?M+*=stnc4ClQiZrv70gJ8UQ^cb`Rzvj2DK7o)$1(7$D68#tQ@V zwt(@%0DUcBs4zf(f@%8vZvZAi1{>l({~OA=Htf?#Q(<@jv`-^~ISmg+?NI~+^tf*9 z#{@v_#|3j50Sx=`25|q&F%`0{2}6HjGRXqQ`T|V0V738MEtq4#bb|5h1%C<&Rb~Z1 zdvSX(7hy~<0PV%+!CV9Zt9tzT!V(6nqQV&q7@Z1m&H{#| z0(@lwgHZv#v49b%0N+`_s8fLNEntW#z>fe?(@_SOf?TvFj4K7WYyrbc0j^rWFj9bD zEMWL3z;6~XW)$EL3m7vB@TUcJ`(XS*{<5TjF}ZF5qeNlxuLX<}1xOeb3^D^m0rFVD z08xN^7BDsxAkhK_g#tLExc}*z>THN-O&AFZll&I+Fd*3i#(=`2pal&71Sn(yBR>I( zSiqo9fMOO5WgsI+2@(y#%ru~M0CbZn8_Y!*+6nve7BI9EprQo~>IA4{0pmFVs#w5C zPJpTe(H?nGR>LGnO%eiav^M8*Fc+zVDaiE$pmIabX(Zun0dBQ`p_c$1EMTN1Kqm_rVhPa20)|)ubhQA1mAe0R zw}f$&FzIOl!zKaJEMV9qKyM3n8PJzNujY0eFdzUr9D{;64VQ$2AqMdH!w5-`Vb+8Z zk^sXkc*1}Y7BCFe3ok#;jm2!r({P-);fp9s%YMbkB=o?kKbW&ku-tSjahzW#rHJ zp~B(-sJt|oi!k;P@^T9p_6V?&K;sx!VG3Yv0Mxz0BD6R zoJ*&C#WZkl093v&n2Rvf5w*8lz)(kkofa^_5#WIUL?euF1bHYR5k@!yJZu4D8v!0A z$jFOg52gSf3xM|GKrpA#jF2C%~kfMJNd|9H(3#vuZ{VFBY10p21Qk{3lC1KtUM zwsA6;(>O%fzi&Y!WB-8#3_FCyM?S#up8c3 z22%j%1EAgdnsc)$^T!z>e-{9izvo<3b%qy0|1r=bj41@TXaU0s0WMp>@Iip97BFTI z;1>%RGYIgT1q>Gi_`?E(3+nOjPfHjo2$R1oU}zw~bqg2|2=K233IgRUs zT$Erq?TZ=vk^xZr(wK`zMp9pE8YoAdK=lg2T!fK)@OP61jN}8TOfZ@b_&b*XRRf?7 zst0o#y$89b1&r7Os2#P0A$uTo37XI)e+V0(K>*ZcqhKz=*gVKh2&T~f7EA#&4}jXY zY-~er=fSS?`{Dj?ErdO zz(_lQG=kRjn4V>hzkLIuF8c>_kpY-Og~1jKF(AW&;RcMfV3Yx4EEsFRcnc;NFiAm_ z-N-Rysx_Hrz)XTnTFf%wjsR#s=LU0;c}8Af!9oKTTd>4{#vf|m?S7pC1Qv zkxz{Lxdo>UIAg(C1<}Y?mV9kYzO&$h0Y6&slL414xMILB7W`_!9|WD)&;J?lR{*r1 z*Ez=^zew~SqbH2^iRyWRxkz42Vf`dp5H`TGAjyDa3sMXyWIhjdwJfM@Ks^iU8_>vt#sql&+SHO}#-ybMtqf>u zK|2FF5UggmIvUU=0NSmt!Ca)9k$YOu%Yfbih(`Jt(w}4D3|MZ# z3IkSKuqJBAdXjcr`V9tb4uCGb1apzQjeL&<_Zo1&1=|hSWx)dm?6%-x1NIO^wb8wX z?6)Qd40ytVCk;4c!7~OtXTkFZylBBu175b^6$4(g;B}5a_O7=qdE1!0Yr#naPFe7Q z0Ur}|;DCK%z~=$b0sA7Di+pM1a~7O8;2Q&Y|M#sS-&>O(47g~)B?GQn@UsEGS@637 ze_C+Ofa@0gV?e@~pyM}Uiu+$aOF|@gEMkFcKz<7f7*NoHR0E1wP}G1D7L+ugj0I&4 zsGva4zZDIsY)z^dP|bqs2Gp{kwgL4lsBb_c0!Cv-8XM3w0J>h9bFMSx7DkS?4v6Y) zgSkjMqj#{NqXAtkxXpm>7W6P6&4P3T`dZM>fPoeaiW)N1l3@m9S}?+ZEP@T}`Dg>i z1wcDKKA4M4F!Ce|atxSi!88MA5=7PIEJN}<^=-m|33yq8@(9JMJ`dt z9i|088}OS2zZ>wU1=kF?ZoxkWB#aFjy%AGznlAv+NXQU}WDNV|8jwE#+O6bZE|Oy8 zLKYM@pqK^44Jc(nX#>hxP~L!>#`65TgpF1*XrtAFxkz;**Rr6t0rf1XZ$Kjp z8XM4*pdXuPW5aoETK|7i@$ zHF8+Xp^C!~IJ9%X{~Upw5e~H+R&p4Jn*b#4;V_ZI-5l=Zu#Urg4tH>v&S5==H5|5c zn9E@%2YmSlTG-5CGKcXT=pig5PUF#K9GW;(bGV7aHV%_G%;ON_Fo#16hpikEJqz*J zYz{gHJmG|9;hb^{;$1wtfP;?%o~uFH3J!SG1Tj1^0>E<;06Y%?z+(;oJiGwFGYJ4Z zM*zU%0RVLK0nnERn92d&+bs}9j}rjhF#vS20MLU0Ku-k#{Qv;8y8+N_1wi`^08JqP z+<5_ThXugB1z-mURM-$h6$*e_4gfXLN-Mn6#-q6OfVzbJ+aJv324rS;`v}%@KH0_o zelFR@v=_~012VU}eI$}gEuc)+IKT6qU3&}RE;8#&W(T|DMYF|JHHemR!)V_Pr7hw5 zy^!7iwWJBY(btly2PLsDv8Lq%X?dm<1EZR4%(bF5gXnDQOJLs(;v}z#D!HQl6Zt4@X8EneS<`Pq&Kl;|o@R5TdQ{)3ai z;n~5o>{CE{We_c+Y`m{uZm$kXVn4v_=LXV7n*KB}ny1`wz3^*;QrO7TAhp*MwA)$v zY52qjfs47-6eCLJ&4H;}M%n1=mAx@2iJ7$&lI1&t$s?Sc{MKOdv@^hW&tO{kj9D?@ zJm1}(#Tv(?WFrHMR6bdkGHaJPi*;hTWrJxSkL69wA4twt#$2DL`k)l{k22o5IfKdj zIzb$Z2h!kEI-M{Fmkg$Tg|xW?X+@?51EU^W|KeFVke-!sL)mqvmJUi{tH<+R%o|L8 zJwcv5m|XZrkVDmA+SalZ6FeV?;o5Ev!47%^gSi-VU{H_2It;2Ycpihj7`%c3!(cWB zKf~Y&3~DjhjzJ3sdocJp1}|Z79)r6vSd76hFxc`OhQ~4RW6+4f0t|kQ!6^))7_7qJ z#~5tEU;_sGF}M$d9T+@@!A=Yw#$Xu+8!`Aj2EW9h5`#_*&O)$zO}p7p8-h=F;uol< zv(PK%I{x{t40gtBcEVS)dS5Y*f^S)QUNw(NMK#@?!@3IK+aA4cvjx69k1D&}jU+dG zIqF{4@v3{F5+6>}@}MQi-c_ z`2Nt*db6hxp6p>hwJp{bX$|^A(NU3DTPPT4jg|&mHiXx39pCPv@1IloL8@&fbFC(0pJb*fE@ zdMzc0-MyA!h+p+uCLm7iyuNW4n;3|;1)K3kxW-5@3?FiaOuykpJ{E_Hl=ruS-joD+3)r@m z=>=TIw+LbucBf7dry@Qgh}69vL7ar~tR!&^;=CkknBA5nl6dwfiNhqSbyJFdECp-z zvHAZtT- zz9HfbsZ=(f^}S>$NNR*4$-GFim?MPayOPCStFb*#Ky)Kc35YbH)dA6k@!J9-3XrjY zn1lGs1fGX{T!u3Ry@g~r9qz0N`PY)@Ut$g{Xk z^iWH6;&8+xb-cwBb>b+D_tlA|h`IHgqni_0RWFt#qZ`3a1VpE>2-Js|!3n-P(E)_6 zdeNg{j&}K4tFXp=L27vsOKT7dQz_ZQdab6sQS`f?!Ki;7+^95|7K-?5IV}dCDcp9_ zpvI3jh=$R~-%lUpbKs)~#c3EHxlbIMgMIhz@a}}3OUOg153BIi!cXe_)_tNno-!Tq z9)wJ0p2-(j>+@j-D1FHL6G%u;BsBP=4LpgR-p7aR<9&R{O#Ar|74H`dja2kk-s5ca ze$j0V1*0^n+2;LXF)_PeEXtxhfAfBc)z9{?34}_0zEB{XsJ?f05w+z5=S0$DBhHC8(%|U-$Y(YoQi3dLYw)Jg;!cLzTZ%oR|iuajqe@u#> ze_gz+&CP?Q7YOB*c=8haCH@Qt{H?y)SW75a1Impkk+3fqti_-7O-f(?H!1U0rg`A6 zHP9Ao4SSgNLzA5?xFV9;zWoZ9-osbK8&GP0z9J5_(DaFWPr&q1*|Y}Hl}VJ}de88& zZ#T9E>Y)pPR`}-`R(@6Vq@wqp$ee<|VVB7=m9bx56-OqmnZ^6VZapk2@l#)jms3<^ z=o@@a@>IuvB}gv_TNXx|10GU09=vBP>M0Bbn*yG%eQdMH(*R4^6OKUN*2aRZfm)Bh zwLV%(-OcwbY6wO>HIZ;_uq_w~`$L|Pzj;lqAL{kQqL8;O;t7UpLb2L_r>!B-3=t~s zsSWBiZM>4EK%m7JXl`lS;DefD&4F;6=jLnmG);o0+dQza3Vju`%NH)JoLN~>zNm8U z9AEi@TNe7JS5_>lZdzHyrkJGetipAkNUP^tDlBX&DvD1@mgWqR@-a(WLnMkE`P0VnJb{x>osrVmi8{%N>-Bt{REC&dFMStre!Vmn@veGFPsL+1`2HYO zcJnxsn2ZG0QzsP*weisn(o8dET_5FDJQ0;h1@uIvxxz{|rcD|N;A@jg0U&oN>;2qd zioeh%wUg5?=@gtH4ApKFvWx!luUb8(Z#&PkQMN?hmGEC(8FOY*JZS`!?|(>Cx6fT zFp#r|Ec)Q4kywkbDGV2NL*brWnZ%TyCr`o3^gNji>Wz8w%^3f6o=hWpIZq}l$&=4< ze!fh7`Ch)fAoFe%mTgWXTv<7tW}xm5`|D93-_3gS<)NvRA&2u-S|E$U-SL|X{bZS>cK>8~vT!FmJz36A#^Y2LnJnj~;I9}vHpMh5e(Ozg zWeM+Txwi^>n!~KOm~uI#n&xU5QWW-fgY4nt2Wc+M%DK6j1C9;#V&b-a0lzzC6@xoyX8>;({{`Gsd(lLbN|>qvId?P#$cmwk|)QX-z}Hk z#G9JyT?I{*uss#VTqbwQ)Kuvyc@o!8_j-TIo;oEDWp6DpDcIWMr(~MvAD`lLr{uIe z8|k;7mM0^|Ps?8J(@Yig`6wIE8Cdt2GcuWcv(NBJw)2d zl!sBH{P!fD71R>e)!QlCIbkFx;QUI#%3|!fOk*+Y-7P!fo4VwWNJBMV;EVsR3o`i` zk6w`Tk=IifxCB4B01{l!JRi!AWIUN?yDrGiRQv^tuVt+@ z7MMwiYyg!FT4YS6l^mJFv#jLkJTuEm4ZS(bI!f5i#7b)pKxw5l7hqncHAC1QudB2k zm)ulKwl@dlWT}`lXV7NBrd3&q|EenM&>Va^&^`q6!0T!F(~Q~cBCWUiTfuFZ8}F#H z&do#aF5O|xFQs~`y|qxU;;(ItMccso_P2)Nc2i#~UFS+U>b*^nBZIAtn4BYs681)c zl0sLZCY*%Zyyt*qyncH&G_q|YbO~;r*l5iLII+>1NjHQis>+{<9A2x0A_IzJ90c3f zWOP2zWK4_Sw8`521LQozXrpnNWVDg4Tx+zERybs|ksdl@w2_|rr_n~9@C1{M^iiXU z=Raz)jp1|e(Iou|^r!7?tzfhBwS2{7E8+g)$t3*)Ottvd;C0A8xDmOgi8Nz*nr(!8 zGcqrd$50uLwghV6u!uj1fhE}&F%}x=sSGGrh}hX~qs@{^WpX*;a+*yRHa}pt4ddiu zwzkbwB5Y<=W?PYia+NR<%bH=MB|Kq-6i)_1y3FyOIyEBWj6LsKCT1btx=hwh| z4~N*Y`_i)F(V4ahkD*+jylkVL@BC#O?LR|$ZM0^F_u9x8ncHhC<1^^rlk^vHj*MbQ zcA3U(A)&y$Nf`n(iw|xr4!3|k-s*?D;wUYBh@OFIDP-*>i0Tl%1c|Z_*^V~&p`-o& zIY@cb5d9WRm!O}qaKN`_gOB`+L~-vBy_qN5uBS(0{0xcB@8f;h)Mv{V#J95vbVTr^`AdUufT)OcVHxXt+JFxt33{)WkZ4>`dN6?QUY_Egx( zfQeVwNAiL@yvKpZw3k4|0&wXv28dycS-g{IqcIN{j} z`_K`XG`KKP%-5@1&u?G_m9XuoG50@b*u6C8^*il}?Qoa(C1Ai!ccfyI2k*3#mGJvJ zIm^9}6X_W{IO~&l@c8N-_OWzRD;(b)y*~p_Z1EXsq9&e_#g4Yvv*5%JQ&{Jn_H3bv z<$T}n2Dk~pfbg4~}>2U6&1g5=fCzUk)UHd4$vDSNAfoYBT zpD?c}Oz!-%m=!*S%MOXfLm?2hY|IDreA&W*P7CK2J+v(|dL@ zdGAZ$Q}5ZycI$nQ%S3zMUdU(iAwmBGF6B||@BtH<&D-C%lil~5_w5z@Ai|KO--xq4 zy*U92wR-+g-=6cYSdF?m$Gll*$ls)^dJ$o5tx!y;L zrd{tHydsTt4DN4@KNLboiIQZ!pO=L-kyf-UkjBWrF?Gp(8a3l4tC$?7RLzqXK?J|pz@qDuq0Bz z41~)g<6A$s|2T~s7OHppU3;Ssq$v3*_yj-7jvg|(SiCiZzi?q!oODa9aTG3E@h{`#*Xz&JL@uHP90B z*95+nt{VhBA2N_XX(2V%Uw#r>TckK9Ou}BK!+qa1foK#|V^aX!3?g1j`!2%?Oq< z_Q4}aBnyqFuLd_Xm=5z;))A$Umz#f3aSHR8|A>+au<3}B2XN$wlA%$_ZyB$7?DP@E z#Y^XOC=ULsyhF*(q$03^;)u`_nEpYY$EF@tw8fO+o8v;{LE}M`^u!2}l0?3#dkG?n zo|Bm8km5+CL^tdCtj(-BKI_eI*<>I^xMcRvxE4 z<*DcSfS!9^q4*aG%zl9n_~aLqd?ChsFDM>>tuH8UfDQmPhQg3|TWBODETmYx>jhAb$BLoh0pb$exi{1-~9<^=bs52`l)gYYKict zeD!xE@Z_h;Fy2JB_hV?HfOT~l9cX&jq?Ej3G!bK4 zK2v7U?XL-L4fM~$5ZMi^CpB(m=~omt&yd4yI7 zD;?y>ja%s`ql;SGi`d#HGT;$eM}`S(Fnsrn`IkGgd15{rvopiRM%|rZ0@Do>6TDxG zxmn-y8Ez9#!-uqeuNs~4nX4T9jAB^_XZG$6M`D7V^1crf%y-B^yXadT4zl_UhaAPp z_`(}o4HO~7RvdB+quW`*#@TbwVQ2s7a2O4kBL+u3{-;gF@mCKyUaLTPKmLw`e5v#A zIP!$q?8|o?!wvY>Tnzfw^Cx3beBoaljGFn_7Bj`fxU8)&Ow4HMIxB-3D;voLul zvQeJq9473H|96`6vs?K&(`fG3-t=CAEOy*pX(Q&3 zVEUiV%~;~3v1nT2q_c{hOPn-<&o6P(4Cr0rq&?KS)R~tGZ}@#D+Rpa82WKD0o^hte zmoIfb`7E|;a;j9k$f*`JQ@h8!ejJGIe+yR2_NrgSp`h=_y18oybm)A)?ZEOim4rH1Q^}9NS5xUk^*N18uSZMp?ow$KC%9Bv zv@I@`R9=UR=kIc<1-P2E z%B9gww{TLi_Jgz>{#$$CMW+S}XaNi{u9zMp`b8Aub-{AN7(OQ5^Oi9u-r-iq&}010 zjl5G|Zd41nzTW5kJEA_~X^MfHyX)xd2~nRttCr&ZL7f4`dDrF?QIk7Q{Dh zQD1Jx$zORpsRxmb zmo95Glou{*v@X+oH5%g4y&A1oU#~_A^WI*KwwUJ=_(iWqYazc+qglMDPooWNb05$5 zi#~0Fuz|nMvjLgJ*LjlZ7rn=`fxpLt1f06?9uM%ffwlitE9JRP_i7{fFMP2l1vAE& zb*bi#7ynH=MymLA$wjKzBD-iEPLy54h401vvMZCc-sV!5M<|aUE_FRg>w8X>i|FAh zSK_sZm%N{_NSZTGsG;?jf^Rp&>E0hqS@AEcT$f4ZUfkm%RV&`lH-M7+T{JFp0EIdh zx!>hd>#!RVzXE%}xlmpF=>4vI@>75Ju*+k>*QKLi>GXVV92&Ph;!;NQbNd|cUM4wJ z@{(qCyJ&7Uce{#&24YKSh(FcsIx(KxMOpN`#LjOVC6&BSABPjCPt3H_=Aus!^ctX$ u7bt?Z16Of_kDiXhf?G~33(MIhG1FmKjy;BFe!x;TJ2u2@V56l>!~X)eOX1W2 delta 116231 zcmeEv2Ygk<^04P7r`+@eNFan1Is`~ULP&3P0x9%P0wj<_AR&aNLI?=tN`Sx(84cZn z1w~LXHXtYhg7l_HeJVw1f>M<7&Fr3YbAx{GDS!1n--F+e?9R^Y?Ck99Y&mn!IkGyt zVtKahba8RiLfhwq#s&rj1_cLZ1_Xx<%M1={-L}n$kdW3vq3MAkZG+o{wjCZcVt9B) zMrdYwcyLhWh|J*&KOdp!mELME%=J`q#|;}XY24(nw~p4GR@)ft8x$JRCOjg@JS4=c zK&Sl8>`RM{<8vnD4bK>nl~-EaAs~NDF8%-Ad;&(~3?Cn0z8x~`_jl1;+{R1rf}9_X zwat~|B$)B7*uqfU0=BfXX|X8R(>x=ut~su4J)u5~Q*FJ?E-{ihA=D2H$HfS^e_d=~ zD0YX1ca84m{h{9A7A`e5*T`=u_?U%kPbF*Yh>Xdl#a^(=$<|9KE&EQaZ=MkrXVAu6}JNntk%T%sunGgywK2+@?9Ua;heZk})P(@PLJD z?L5p|#|4`AR|KLUjUcs!*vPzYR85%vqtVNJZ*&7^CkyN0ITOa_o4;>c)4V9!4ff5o zsby|8rm5K+8waUBhz-rpMR=MIhSoBtjFVw~P08O-+}OPS)yB0-i=8bzGPAPtGtip6 z%Cp;ZE>})j}_dZu#vsHxiGtdd45c*`VZ&` zJDfiuKPN9MJ$rmW)|m8>8KtoPTd}dZM_xTh=_S>HdjYbCZkou>YPf2Y{?e{cPyXhT zAC2ZQqwATkw{_EO3x`rTE=IEPbS`$RYBDo@oMjA=yJk|0Z4$ed@&j68p~Y^0)rz>qATdoy zoVz%?LcM-58TbS@UmF*|d;{|WgCdML)Pb6vR!yjxS#CmIb9`HO^OZ3&Oiz(&!mwni z-diu^huRb*+CKJJr}!_1On(3M4;d*&v?K-F_ z7RbIVRqb2_ef^@EWq}+rx2owD$aze(+PA<0x&+=+O%|w?5~jAbK%;V3sN*cq_~8}m zd<&E>?o(qd(BtJf>f|cu^9|~73p8VPfI7eencDSG!)*(+-hW`)cw8N3K|Zte9ktj3 ztzLXf4Yfe)Gp4JV7HD(tBWkP#+Oc_vnr(qTt#wWvVu23(#HigY(3!%1YNYLB1zh3#S~rHeYyg4|X+SIww`o_k-NVuALZyrzz| zKxb|xsM9Ubxr!&$c^2sMht6sz3v^}N0ClJZx}H^E?Z}`4YX0Wn;cB!6dGi}Tb)*h$ z6z5%02U{Q)+bL><1@f3+QfFHrKYu56Ru#10sODRsE>AU3EvCM)oA>kT9F8j(GI?Wi zgPm%Lg*5r?_tiEQsF!V+I?)0R8Fp8F+5)9jwpaUEp!BY9tB+ftjI%4$4i+f;m0Rju z3pDnNFf~Dg3MOyN9T1`}(2?6rUKwh49ojMf%L;Xj4((hxqq7=T1$`%}?R02&@2tUU zk`5j4$(g5i)uBUk4t}Dh>Cn-Bqe9gl8Z@QA=bb?xsf%>5zInYBeC^BQ!dUb{c%A6Xa_R*o(v!6Pv@jA4*<=kbtYI`00 z$ZkPvHBX1O?YuKzP1d1ZTRx35-+eMhNHj-HZ7q|hTu|E7T=-_NIdp4t^ZX(|V+r$^ zSPFg(1l2tCIZrt2Zs=>4=G8Z!oz=p8|R39VI;@mdKhkWgC;S(TanO~au054b_YugIC1{<22t2mOsCXTLULS1MwT4-s0Yfb|Q zZEM>cn+!EKE;wYKw7#Et&I`PfCi3F5hB}-b6LNKNDC-fFy;F?2(<<_( zFs23RPhm`J+n>U?@4sXWO|~1_L#4N&7M$`kxR}?ytbofs!QmkWlosKC-izPb7#z83 zNdFfmRNowVF#}fj6%x>vXvP1hO=rRE`$CYp$+ppdhz#2n8RB$Xt|ka=HgrMEt#(Gj z=Phm6j4|KX*#+FQ4UyJU=U1fa1Gnx94R!6qk;6iQ?goBEEAYftLxg$TmS{8FX%C%5 z+bG!9*tRX7YriUFJM-CZ!cb$h5BiOQLdAN63;6m9-Z0xyudx$wxfCaD?W70t>$y+#`lpa(H+=tP!?T?{|_qb>?&Nj*d0K%HSD)&j2;?1 ztj01^ZT#V(cQ$N^|7Y&1&q1ghJw0Xq%}TxT4}2bFxlrd9z7J^j#&VlB=JOZ+=^e1;ri7oY|C;sZ-=bZ5 zYX48Q+t8*loH~v71aZr2SgtG{soCoM|6BG>6b7#ctY#B#g7Q zZEd-A`7K(fsFO!pe+aF6!I4R}LBC7a6w~wX(RJUeF5t4nP~V)rX7u0NasM`@udA?W zQ)VwZnvbrbXSNhR^;atXn@~eMR6Q~ML$nW>m4>nStnZ)R#(__UO~609y#B)$(1#ia z3S4_M4)hS=-#ZQzGWcj5{{7=X!J2=+aez=6&)`>0woTbn0?WnH-_S#~18Ia|2%LS( zcBa*GK~b}hhNb#b&%e}R{ra#_`0}G+`HveG3L}3sEdN=pfKA{=xDxv zPc`?w+8Ul&i1CP)bHLfJDR%6E{Ur3YwMmC_4TQlI9SI{}!;5L=Bac3bPJiVV3~&v- z;0c+5w!>*12>X@$4tAL|ai&cxs1|qdK%6Y(oYfvPGf>b zQ@nQ2C(O{8-By`L9*Tq;)|W2qv57gUIK-U!UVPQ^1Z-)dc#f)lF^j5xXOniyrd_PL zNnu~u*3r=V*N)4$GN>5t7H)35r7!5$Vl0}I?eQr#7S6V{T?MCIZM-O?9Nsb5_Apl- z@M6JrJTii=q|Fq`UG-4uMu0F12WiURX^_Uk;zPE6P(3W>e`>hK{!b2<*}vEY;=Zt{ z@%Nl&kn+Bv)nDfaZ+?XSYu($njiKrW_#r&vA2!+k=A(yBa^7D&>;B#&*vh!LwjQ2Z zc-fQ3E&j(Wc%ArIo_*J*?cZif!nSOiV0P4{E4V*u5&Zkl%b}0PQh(_8_g*2<$9DWv z#}Yc`+k}8~15rCTtUZsR$S#F8_zY#MZLjL*i2tMa{d-T=$XmG6nr-9xCmuPX|K&)7 z!{aus=%=&hhdd!Z8gBM%@LwM+|AOHj`DnN)2>72~AN*BI@n109gC7m|1H%ooH`ri+ zL0zKKs$2|L+a@tVe_XA3o^jxpTB9DuGjM9sh(!2Kj%m2@F4K zlgUGot3T%X(>C$=+pG-OzS+?E|8i8@iSOI7JP`U%TjKv*8-SeMc%S`GZqR<;`R&p8 z|DT@^KDe*{bH^WVYvw%i0eGPMPxS#|#>ENx4SeMf{r*&I$TCOIaDm(zwjO8}CI5wH z;qE6kXMttE@811C)izil!Cz+)Z5~;K4`g1%hq3$)=#g14M=|klXBOMW+V*@foak3J zlE2$q{1vt_F~_#qLp_H5OZOGkR+6V58Hg5o_8Sc3YhWj~bGP_6w32?0tmMzP zlGXkgPn34VwidX&XX6NQexg-0-C>y2I4ZZA*kP;Pi#+%`WVJ-(EezeWAZ4)@OHGXl+HV-y_X0PDw@gmsdDrSSz zONJ<68)Lb~NexV7jt zkq0n zK~2#PK5@g`-97dSw09FHLzJ6XWM9I*K0_5J@QR81?d_nnHsV`&;2(!NB9gm{IWTq~ z8a~S{rCf-Ic+R19>!E?Ia>tG=Em3DY^2Lu9_J?2C`+yQ8&XDN?N92;nwGppCN|Slh6rN=9q%Ti0AvRnbBGFH=)j{xlxEL%X!qISX4>XJx z8$kE*qBoq45aZy*2n6jXh+dEpiQvu-2=0g!dqO}z%*8~Bya?Zcns02pk4uu6vA_4iiRU4y)CIvoT1l#3PutL3D$Gu?Ut7KyXtm-dHt` z#oVrUkuEt75gq#=xZ;}V4m${ZgZTN!ivu9O6Xw3`B-Vz?ctkwkAHfC*VqXvjVQv}a zuC~LRM>}yKyi3HGs|)MeA@PDZ1TP&FYe3`n2>K?94dLnb*tgm!Mp*~32TUO*o03q9 zr#m3U_#RZDgV+xmN9t9d=!l5#2ywEbI2@kqiaEP~h&5qyCq&ffjv$KH50+4e`gBHp z)kwkIp3W$lXAUz!ynp9zD<;rln%8tOx4i>2$3t^?M@4nxR-e zu!htGUL$Z%Zv>rt;W#ux1+X4J(+kVLAA;pS_d;RoWN`{NnBN-_k5l&|2jFl?eGsfc zhRH^68i6}4#McQtl7Uzp%-S%vFM^PW;H+knH(Vj`2NJQJzf=!$`XTsvFHL~61T`Cm z$S(cS{C=PoQA9WRygwp(bU@8S4M632plvaUw-3Pb(r!rBd>{_x3dg-=$i*ocbX;t*ZKlEy3)s1rWdSBIta`a+a zwFTwqm8xnu<>)=2YDdb^J1fzij-f2QiB5f-a`b96bq?j|kh z<>>WL>MF|73yRdWl%sdzs2@;{Uc;j9pd4Fn4pWXk9;yC=a#JXGg>v-KNc9fo=!21} zu`YgklYK2xb+3yseJN6HK)Iom3#42}%0*L-J`SmNr5t@2QteAQ`Y5D2f^zghNOc_L zW>an&<>*6@>RigvM`^^S zIr`9}dYy9gkw^70FZ@FvcvKxJM;~`oJt;>Yc2t{Cj=t%rhER^a=cvY0j=trnCQ&Yo zK7FbVq-;AX97Q?$fTKEra`f>=bq3|=!;R_!%F#JbT}nCnUZeU7<>*_D>N}L9?=-3( zQ*IRH_EC;D)9MMzEu`GHl%wx5sy8tg%Rb7e+SWsu_A9C@<=Ruun{xCWM%ABk^bJNe z4098TZS(QF+oe-Wo2rQw2giy&0yJ(cH3auu@k98jvE%~($Q5_~{!enls*R$%Iq{Zb zS)O+v8q7wQdvv_G4Nm1@8E#cZz+2<7%sc_hx*rom;p%-cj5aMb;Mhd5 zGkAT8*p8DBd$_qYmTyKDOh&}Z{wU|qlMxYTBZb2BA~BryH4{Oxl^Ry;d|dPpDC=5r z?FliLXCdt+QLLCeRqUXl_DmDUY1x$NV!oC=Tqs`CvY*c+g7vLsO|FVrc!u_ABfG-% z2`FKw+1UK+3-AZOiz1 zbK8oxbH%|L+ttP5mqJ#>jCrEJ0iGWu<`AmZBFNR0d8!SMbDB<}VemRwcLzN6pX|s zp52TBEIotAguNyVxVw5obb_|6QTPU1aPx7$HIl5}f+Y2#u?)B29`OA~SoeH1A_jkq zh=PMSGuael8}iq;BDV7(v0+7>PsD}-WnCd@n|M+PuV}el%rpG{E|AA)YK|M_R$;eO zOxIXGxl25aEC+ukh8lPyFYFP&7Q*5CFU1ZO_^taJ0;GI}-E!F=rtq^u_XA>QVHlj5 zgIkmL4xs36@9Rzl4-W(3)cZIf*@qDEpUm$itdu^7%oG*}Mrn5fCY_EFg7?LEpAcMFs zageh~?sE^Tn|;S?!@TQuM(A-uJOs<~(Ztws=%tg`NX`V5zQ!pOA;4z9>#YxCn|Rc!4+}1#Fn11PD?eYthIgLVhZ>Jx!(qtM4e6rYZ z@hg%8IM_%n!6jd`bLr6>cLBrF7Yq6w>cZJ#6od(Qfa%u~SG|%#IULRjxUw{EB{zh} z4bnC^2x#PNnZ{G*07zS*Pk|P;h#gu<^HG%62|2JulrBK@9TX0aokPIwF3MFdBT@QG z$Pv$;gCOoLy>_w@>tvMKNf#bM@2>8W2OR4y*~6YAb`qQll11obFYN}8W@x#1tQ`p7 zHN$Zi9I^HO6Hy{O+j>E&6RM^DBou3-6C!FlAThIl$psN79I!^73nIF2(7Md5=zUj2 z#=V2c#%_r8F=J=&Ae;j~nz8J14QU;GT8cZ5H)={j4`DABnlzvkkEN?LrMZlA`H@MbC#Jpl%vs3G$W}_=`g=zc{;xLj9 zx4po=8t7hc~+UhAn0Eg z%cr-*@`#P7dAwrqguSg$+}O`_%|`~HxFr=A10>If)_nIM>04;9RTq zRa?X^yp7o8Fci4oJK<96hnDxdR=9p#{o2kRo{f+Wz`h~X2Ku{5Y|1lBAJ4u~D9z;` zxLU)ZI2v8Tm0P;{9AXgb?Saeg^hJ2Fgm*20FfJAuob|vx{)t#AMxd-~MT>apb1hq| zo%FbtUD;lGNz3-@D7~p=>von_XxUv|qyjBFFi{%9v#_(9v{#r5<=v&t4`EtQCrOiq zxfM3alDCLy{a#X*4W`9?r4I#6yY!a^*g*DCG#I=v!aJbB*qzFgT8}F>4VIb-1iMw- z9wOnEnPs0!lQOjI&*>8Gj#%l~;UqoF-X9^E1lU&_^~gpQZ=i~xybdbq`H|>@DC=7B z%_yR0*$Jw&K+D$3mbPlyZ^uaMwd`v-(kuZkx}lhOef1RVtbx2b=b>3p*0o~pc&SLs zHk=?W(X#s{O3SqDw8>IS1E>A)aVbp8ic_U%E!(p|iqNvl3#Iu2^vcCKkC$UBU_qX~ z*B|nf)J7oK4R(GZ#a4VhOB%`HiotWF_q1$N6Uj|f72iEAJ*Qajk!Qi> zqSOp_ERc#TzE~)A6d-6Eb`kI3d<^(Ol!cSUj<9*6HWt5DdoO&l$R zRqQO4f&~}nws?kiqd&FiPi=54lSaEZQQnpQ)TBQiP*f&)KZFr&48nW7%Vm;}aG%TI zyFj!f8OFUW#tWx;S*0pZq)WpAhWNHz^hRSe#R)O+{R&<5$hMGv1AE!>6{(dWt%}qQ zrq7i_guzv$!T`!A82Yva;YGag?Y%^54&OeD7K)tR;EN?vAWSZoX5&GtWU2IyVYM~0 zmCMk78kb75E!DqTF13M<%k=7bE2Kz}mUDvrbHzR|ccs)CYOl}yakx`KO2EEh5(Xs$aWlaR!nlGe9VHoFmGmh_ceFwo zmu{jgH8hwt!Aioa)GchV5V*q1Jh_eGO^xaeF23*@6{bLrgd~ z6V^_PZzMlMB$kje!@{{T+k{&w)3{D&w&pylZss~{O($T=d~&@`;CvAc<<@#mK*}`K z4rjJXonSC(g>2U_FAP@Yi7|Mw9dr%13wW^|W!Ry~buCA1X!t}E>7#H`<0`{Bj>HOy zH>ECyuQl`;P2!W9#P7X}w$`;m>WqZxEAS~s*Z1%oe7pih;v~tCRtIf3`+cc{5D2cD zr69OEU8*Ov1mOcz)#Z0ls~;uc_;-bQAE0t)zQ?OF=}{PzJ^@djBs_F%h0_Ud;$4OD z#HkZ_1fT)rMsQ`0iQoosY?Bl!EV2-|Le^&VehW0J;s~a4!35*BOMPHwr4$b?n^B?2 z%N6Qv!QAT2IMpQTmaN|9GpE1RX!F!e9Ob3)HPT ze(^S`H@JSHhZFuwvc>(L5eYar?Ee;vHwP6zvBV+=I^8ihI%o2=i=YOt%fIp)H#nBNF6SZg^L%l z$I%v=j7w4{Lxe`tHij!8B!-KRb*hQ)as`!_ZK<1g1zBZjbu%^oy|3bGTWq2E?5fnk zVA5!2Yy4+w{IQPCpRK$3*U+7OV5xiNniOexSF5{0t4pdRM;og39ZibCXrRPP$lzwk zR;|zuxV6Hkggp)SV?gL4_hr}DhC3R|+cC`53f{2(M>O{V-Ox`Cx+#U>m*fg>qbbu( zfl!R3>n;+5xw|g7BefNtv0||pq`Oi#aq$BzUb`#x zKwoPS*RUX#5A*taQoQi7RmZyB#~E8$MJa6L9ebY_v5gj1W;$g3ct9Kns4d9;!jDxl zIbK6yCJa-j-~-CyNI28UJ_^!2We1VUt@{~okh^*=ZlqncsB`IoW`BAhGmUars$?=; z)TB?ck%tPtP^jQDR;DW1R?aZgi{qy38OP1kBaWLX*7_%6pBGW=9>j}}hGTMEmDso# zJtw<^cUSvHxW_@+32806i!ApybkiE{633P6rN|?MsaE10Q)JcfxJETe6E9yA4{KG4 z_pILh0yj%hrPY8_eXEQcBF<7sa6gH|qbjG#bj4LLy&Dbbv{f#;cpV8yDwSPOI9RgM;- zp|XygBt$@#o17p<#8+3PSVK+}+A{uzka(JUZLKW+XFu5qd}_*(xZ*G_qu|w=vMP>x zfXmog@)VrpB&A_kJRgs8cljwpnbwWT9`e(InGpyjTy(Z3&Et924XjArFbs_+PoF|_ zZYVln*6t_Z>?scxKY5_tZJzR2;UnJeX06?Gb>%UJ>sq^Oz2x!2Ro?C;t9HM&Y8NZ& z?V`g=hH2iY^7^pRTOKSlgELLgL|4X$GC2Fn?pUt+$n`Oq=OcH)7rp%g-Pl)dDArG? zuH_eeQ6`@RK2y9B_)M|tryHQAyWpKXV@F#-$1G%_&*R=u*w?|6<(;k!{3wAV+n~7B2ddeg=lwUJsY7z`j;QNL(jpRPUE5t#Y(E}UHgAA)Rs^>L1 zS0?cNL1`1Y8wibM&BI1Cm3u%%V|lg#37EG>wz?u2jP_Jzmt$dGbJ^cu*ABMSk-G~r zDE@K}QEpdV%(wmJeu6EAwxPKTlyGx5)QaUz;OfAdxDmtmNG~=(ug`87DB8r(y&XSP zjA@9Qq^^vOp%b=9hvh*PKev*%3!U?@Nj0DTOr$@P>CfZz=SliAjs8rhKQrjhQ}kyx z{VAe9Pt%`b`ZK>BIF(7GV6UCz8qq%>e@rg@|NVFLc(`sQ4Cg(iSs>tRtJ~|7yge^x z%jUfs`Yjm+(ikeVo*ur5&%EB|Jzd|fYCC8+Qbphjfo7vZ{0>goZP{%R%>HTdp_y(9<7R(>qFx> zoxfLt+zhtHS#`O7J2?bCj@Jp^XeUQPhXi@Hu$u-bL0E4!PHU~kX>_D+kr?6B(Gbvq z_c}NVcTp`mK&lZt+JTRgeJ44_kW@wB3eR;ykrT0m)Y7>F6B()fy2{@CA;+GcC`Ok~ zC>1hvg??S+1UT0TrD8-TxZhbvIrhOZE$@OuFe_1>XL#GXnbFt(& zt~+k4+`8$!Jd<#jR@x1lSp!>=(K?x>&Zj(ermCnJD>5|hz-MQgf_rBS?}|0l?a0;O zZ^VgN8x{^hCTu5H3s$Ad>kJW9cvmQ%DtE#)sfs9s=V`?-1a;(A!ZeZE14TrhnkK&Q zfdhyH%p_B$%dNrKODACZc%c{SV|A)rhaR1#!m`$|e0p2P{%Fp7tr?Z~mt%#`tQdVt9nFP#18{_|SX25Bl)DKRttc<> zJnQXQt+%}f$&KK^0KGE@2FWd8(m?Dj5-?x;sg*>u6R*W#!Ht;3!q)w|_n;U%L!VB3 zI2IqkOOBohkiDgJBD2heHEB3oCsa|mLYs6s+>nQ7&oDIJPJAL|cj9X9HcSqL<7p@v zGINE)!{oLwHXYU6d$|0v;azJseMVs4H)yTBsquNE6W=c`LdQocMZU}@-OG?u4d<+@ zznm%eGkmR8KT{=!zG%yEawIOzb|8$xF1mJx)Hty%U$yOE=_tJUPtKJ2y$YArKTA$2 z8;MG!zL3&T15AeQow)t3{z}&xh9dSf^up&7bSXRTYxKFPAdJM_PEuz+mtV=2Lk#0N zfiMFakCD3yxr_vVh=r8eI;M8kJnmSz6`aVHJ0tDZv2uIJ9fPw=g;kI1vnz@62^d?= zDzhcv=cRaZ!cfRi!=BEtWuB5zN z{YhNja9z^~xCb%p)~I%N;TF5S3ygaeZ>rv&Cbxv(sVERKV|Sbq#1){kI5-u>Mye|J zab}uM#oR|;0opaY4&G5HHx)wR`$8^~D|DG52MEEiWfqQEASK#>x5S`Xc6&V&)pWH` zXLn&Hs%i2JY)>apX2~stC#^Wnn|5Fx{KCpZ?I)RW`IuG(yP&o@V*%J26L0fde z9S=<*>H?WFs)xZZcj4yz#VOsKF?Kdd_=-37=4rI%(@b*13B0eg+|C;knYrV#T#_eu zz{`KuxjR;!yRCPQuI3xhMQd&kJC@+x*V}VZY{cS~@do&ym?0J{!%MXe^EiU(#HR$6 zK4U(^mY1Mv6BckR8diVUx)61kTEejNizRm$xJZtMuS&4Lw|Re2TI!#0jEltPNRPI- zuwfe)AN<46Vm?NId|YLsRR_PRqR=kH|DlncO5{uLaVRX8`@p(svMua<72^~R zEk^AlN9}5SSQ$#A5uJQS9s;?b;}<_GXMpgGj$Z^(&+4e`C2~9X=~?XS@kBmSC>9&3 zjfs4u27aTD6h$-(vtb;dp*1~=BQ+CJSD}qzboX+3o$#Usqb-}yar6pGw4>ru*#9!` zL=d>HKp~Kiwb`#sZ%o3Pg#ZIlet_T4XdBW=QQ?^{v4Oc6@p)o zBMnM-u3)h{pKONi-0l-!MCW$wd7an!7v)44`vP`dCvbU5ZjR2hik#Me>Q3!aV4U7LybY;QciMA~A8*vo&jS0nkV=|v76zq)#dc#tf!&x;R5vEEJfV1QgeaIB6AI+Ugrc}Hp%8B5P4U|ZQSde< z6uFHFg>7R(G256>z&0int&Pc4iVMb+0<|%r53*xI5!#qgcs3>!n~eztW@AE8*_cpB zHYOC0jR^%~V?vSGm{1rtCKQ8>2?bzdGLI(|d5sW-U1NeV*9DYP#5E=qZjA}WT4O?i z)|gO~H6|2djS0n9W5Tp1u*hnJD5@G03aQ3~;;AvAU}{V#k{S~VqsD|{s4<}c>O>=p zo-Rm~SnM<=6gZ8g6g8cwV8}EhrEqC1q*!Szq(EsLEsBy(bYdaWXaW=;o#?@Wqmeg7 zMkm^_uxR8-G0|9$0-_P3XlOK@J{+Pj=tNhA1wkW{BA^pRH5o3vF1PbbL}+lSIs-4@ z(wWH(#wh5|eej^^?fckc8ERkXzE<|IB@=_aABy!w_FDnCxaV=dcy5D#`zy|CWbo{3rWE~~yM603_b#gVRM?+3d z+AmRiRfGCegZd#rpeg%FNQs(M4Vh96 z>QN2qRSoJ>4eD17BI6~o$(T!+6<0wiXtW3wu-|*&FV{J!LA|O$Wa(6qEWd=Ad=*5t zUj>ov6GRTFgiV4fXnQM;BZpL?eyTwQ9Nbk6Nt1*sl7A{;v!x26X;THw4B`+s%h?*l zeu}}1OusBDwk|5*WDBgzc+sL?7A^i|(KEj+TJp=H<-aUi#fu8~??!l&FZ`11rC%1k z`pcr%e_6Edmqoj@BHq|;2BH0NaBnr_{%X*{YS7_o(9vqp7uBFIt3fBKL8mxWpf!J{ z8uF`Z&^OhfbJd^=)u8XHLF7cqRLH58u!x^3h(dn|a^}d|I%&nX8}J@o=nb1HWM5D# zTI?_}BX4|G&e-%3BQi#ms*E7b>sN7X8{u9Ie)H@a!jO06(BD9I=v_JP zH<0yuPmZYjtBtb7-yK$cZ1jRp-jiehHC5#Ma<`hCm)(er+`Nq8>G{;Prz)1bFXssj zn_<6IK;5a$F=sAqM%U?0*?oGF+6s%3)Bp(jP!918VnA#5cOfpyNop|WO=<}K#q~85 zW_>8r51-%rQ0{3r2|3~_)>K_o;l5Fp1fd-2ZIa8RawIP94W~t;FMP2{o`dD-o8^yq zIYt{R4o#snLUD(yn{Z_2RLXtrXhX_b!TCzLJ0}eUrz?sd4BCQMO69P0i#&#xhrvov zYQpAia${J2Rk4GJ!;bYJ_aoUE$)AZ8mL-LGtw-FRtdSa)6VrqX(F>AK5)G<~q1Tsqw}YTJEI1&`NE^Ff&d?hlcN!JIXc@PE z>}QR89FPn2o~NGD#bXqSz0pvPACQ}JdB1)Pwq1;|2V8#@Y|!Pal*M z>{zb?$EQ!k_yFrZg`tS1LvnWW6sBT!6vJ6ZM=?y&dD54wUtL7n#~<+@muo}Y!*YE) z6Gz~5gfpknjsg$MGE6^=5B17n^I?4UR1S_u z2stiKwQF0|%b1mVFH=t9AY3{ww?(Q(C*&tES#<)Ryp}_Ylkzj1Up%;8N9%C$GP;+Y z!iT@*(Cw5w50hi3ftTb%m;_#yk6~heMgCOhR~Vv%Q6>B-Msvjou~+4Eq*!%TKENrm zAm?Yis9_XiTA&lnxQ$Pukat6HYOB;l+K$)cPcU(~E`P|Y3<2M|N+6e{)era!cxJk= zf1g|z0pQL>u{x();I`O@UItjjk4`R!q z_=fzM-WAq=L}FJi%8sO;W^lEcF_0-i?@ihzIRdJPN^i-T$mZu;@-9v>0+>b^#ii!x zNWT18PJ-z_$u&8C6bx;ngj;cNh(KLqGyZV3w&IGs)Su;pn8e(XxAQ84$)HH7=p6(yhV8IV~$5bWdm3#7FS2~EHccH5p&F%)@mrcA0yv(Yn#Fp78j*G*T zBwjXvY$X&{Hnnqv5<#g0i9RT4ij7hirUw`uAR0}BQ}$=3gSDH$D}vGo=aE5q&(-oX zr%^#k`Dpj$u*INgn}eRLORUC88zlw18(^!f#pI-|vJR64qEewtLHb0>y0Ai0$hHJo z!Kn&cWaTY8x?s{eGfh#ZVDT+Qd6w7g%WZw7vr@Y(LUDkrM#VBg*ic(Aks=KN(t&fB zQG%pPvIA!^2-t922y?EJNf2RDQ>8Yi!Hvf|&UGN~nCu0)b~xpH9F$=k)rY2WTYMCU z6&5(+>^SA1^gg=y zk{w;=X-ePiraZyx426A7TBj5#=hLnVe}%?0E!x<`N{55F4p}2O zhgc&)y7f)Y{(gS&<`YLZ=BKRrqaH$4zdtijwEfg2fQ z`z!UWrd1m67Q>@!Y6iakxOt?(Mm8gxDmyR;-&4n)Y=q$Dx%OfL|kDTekop+M9mmT;Xq9j(S2dPoau2)4VM|tgu zYzmikP(opE9Cq?Xv_kuKHAcD237%kTs3Q0>R+-E(g^;?z#T|0ul<$P{ih=RC;A73) z1my}QY3-EjnDlC|+~w3yLh73?H9+m4e1qjF9hILk>DEd49+Q~P$}OFWrYdWVsqFnO zNkhlPf|#TP zVg0sA${2o5iL5%Oc*C9~Ht+nBm6`6NxdHXJu(E93Yr)=Rr4esF3N8;Z*27ISo)D*} z;?xaGQD{S(o1)}mawdiKr%$Rf$c`R;Xr}mKsxla{o;{Ro?mk+zOG=^*bxkP9#Zg(; zL!mAAz@ADp1oXjec4AM(nHO~7?M6fQ$ygrPUvYvHJ(Z5Uv@M*TjI$FbLMh@aC- zap5h58*@GzSDXu<2i>=xc4}x@t~GN5ILfcGM@8jJv?^; z1oc8sQanm&R12X}eLq0T2_8OSL^{XU8>BRHB+x>DugOw!kehcuww5jFr;O$;hQo?! zN<)&0&cFrznLwBNE0g#EJ7y%TEXG;R`g9N3!rlRj2d^3hd#B?*g`utvMpW`ZrIwCL zFRX^zjVOMG3m%o8ooNx1tRZ=jlEtgxufJyC%+wo;LS*D%WgI524`%++e~40m(3&9( zYBp4vNw}fPBupBmDGPKq^X6Ew!DEtYG~$z9JZ=Z1>x+APxLxBb~)OPS%k)rM9@m&;4?CQYDBAqaDrZwSG)#&1AJq}%A|1jKQ-Jh+~zcx(i%mqt@ zl+nie5c{-_>OPz~h-Jf-LhOOh2!$?wUK*ij=jj+&QCzJf8?ucqaB2WMNW7Av(4nnS zChPsOOl2f*q%G{8U(E`yjxib)T|$^LQW?YTDL8*hE{vOkvad`x^s zD@B}9`?5mUTCnwHoHog$Q8m{`E3w>ILh|#{v%vLz-1RZc*lZ;Lt1i!0a-HY_1oG#H z`g*V>6&-H)7^R6FJA>o&kl{sAO zcAE1^fY+xe@rb%Ih1uJ<$C1gB-2R<|v@?`Q=28qKT{zYJdYm zmU#~QN)!{a9=oG7R37tS*N=%Ql=xto<+)JOgfpBr!e`<%vRaxQnseNU#dLL zEh21uM#cz;FT-69x&$)eR~IXEv(%>B6hUJKAK82&(GUn(GR_1r(6agmNVn zX<~oClM}0pquvNk&o|ma%o4>5QLMRp&no_QAyo|CSi;m2zEoL;BuAGj3+*U6LYu6y zyK%A>EmN8xZrw8dpc)M0K5(l6X&2mVAz-w!mI?;-x_JoqBYt(}97uhCk+>6RO zZspyevaD8Zh+WO5>c-W|3%tAsROZ+426Yq4Gkt?yO?dYuC55As;rpT*p47=gUeL8{ zRV{b;DX)v1mU0gITRw$|+Mek@-Y45TQe*P|FmGz!dhSyNVxp4iCFqbE1&hqsOp|3Xba_;wTSCrdW5EY6ZDoyI-O4D_KVbuK_7lCW2-sIt(;dcc zW1EPb+mtlkSR@4Pw{wS%+m*pwqanDf7&>;s7)alQ3+t)vY>VT(gK?eClkayZnY?xs z#J6{?4HG_92J?b&aDB!BZ}LA?2G~*1l{Sc}JC(jD<10IrX`Bw9t?WX#61J5_?K9k6 zjNhfia#S1$pVq7eyLTz0^nxu^kn$N*-+P}a6I})})-0F;Tfm!lbbrxyQ>q%Ay_@;r zeY=$`Y!|(?7sMUF23__mB8=IKXR~R0n8Ris`~lQGj*8gJHv8y|X+wf5K^;imi?06C zKH3GZGs?y)=lt3}WeS%TUlZ}B(H-LVE82Za0`NzM2b6)Z_I6EsCw=ovjw(TaWO#rb zb=DrxuiZMp`n^gpJTac((cr>79-}6GShBsl^S*(Qo3`o zIzmwQTD}l-Sohn>yukUnT6S>surf~9bx>BVx{!5*8PjJ+*tRtNC|gob9#v-BQJ9=I zsJNZg4vMMZ`VMYW?|-h$;cNy%;VSp~bP}d5Qrt1+O-!yIQ&u}ud|lO441#@!(AP{q zhWB78pW%t<*q2HKXVHZ{++FO86RO|{4jR#voxl|<|&dwCVSJhyERfDJRB3t<+J6*?}RF6NH`yxdT>?w4;DQE(1N-qg{OT8Mg1= zc}AJe8Fqy;Z+X;%G5=8Vc|k`wQ`4hP*;j1hjr)r2SnhnK%y%AaVMbkT1}jhD`Ksis zBEv^tE5W>SCy2jj=K-EyD^1JJp|MAv$IZvegxVf3?HfhmG)Zv(8{7@Q`i*XKo#D)k z+O?^mHB30Gn;b?;&#dhUpPyxJIOUwO6ve-Ej(Ov0=aqarihtBPcjvqki`b|O?0~iO z0=rIf`BoW;g_FNkM%z)4q(*z`TSdF@3b9&s_I`)`81|hKz-5ds>tDwY-u;fAJ%IB? zg`Vt;x~L4{*cjN-r%nUNy@bn#!zG;^{wUR4qaoy6Qu=eUt`NVtMk^}t2G7e%2P1_< z@gW+8pdE#4XhN|en|2vBHvOt1!HLU?KelMRqGT!T*c6(X1y`@&P7=cr=sJWsg?m?+ zA0B#DKMLWm!YD4`@>L~YJMz#;?c`OQudjd4k38SAP29X|Eb+h2?-8ymX5@+cLQ0s= zy7GfUPxEo>hZmYR(Dz`3gB?7*4R7onx8sjG%K`lt-9Ze#q0DopXj9%1vJ77sa~V(5 zX*cUg;CWMN#+89TiMA~9b~o{{-JF}~Ipp|eiA zrNlW=v>4MOHC7LV+c*llZsCcS;#)O+-nqrDq*HDyPjOC>u=fmlPsYXNCnegMqF}3J zZbWRn;dq&+0yBP6T4B%D|D;URMK7G>S#z;BdRMIP0b_q=YvU_Fn9+He-(C5VnQ*#m{4F8CKTg~NfJ*e#up)q@x`PEPbkJ0A&R=ggkpR#p;sSclFJi{ z@kMAx2u~@<7eNa0#iTt?D8?5ddd2bJ(g_oa4Jv=VaTpvFj13FIaLA{Y7CVkgA3ro> z+=TRe493#le~dLuEJ)qNV$_RRh`NbIsGC@Tx`_ovm{?4NiG@U%SU9VR#ipBBXu63- zrkhwWs)@aX+{D7tP3#G|senbLn^**@i9Po;v50gN3rIJycytpBM>nxBQ4_oQH?dfB z6AMK*u}E|i3q)V+s=Z3U!~)VyEFRs&!qH7E8r{T#(M>EC-9#ax1=vM83z=9Tx{1Z1 zn^+in5sN}Mu^{v!7K3hLA?PL+fo@^}=q9#pF|qJ-6N^4KvEXwPi#<27uul_mJeydwxrqgvn^>&5iG^~S zSfsg$1)7^!+@FbApotk^5wpJ{W`0G?`b^CDikR&c^^!h5nYL1WL@Y)FE_(Z;$wFfL9pI$M*!3j-BnoHh9eNl>yL z$;aAbzfUX18rI~S;J#u^v@Y2Kg1s>UN{mK(Yc5->aWNWeSR=P5!S_#K6Lsy3!PdNX z60dLyhO>9F?&agv3$SXQCM`Mh2`8BP4(??k8eJ8wNEBH*VtLu*S;zuSLew@O|SjW2R ztt1du;|OQnb@O)CZHm?SS!3GH*;rRo6Gi!{_qm#KoQ*9seX?Q$yyR?*v@Q{$unumu zJ=~1-Ym-~Y(7%lA@p>DqlEO(+T#NzMHSI0M_2Cpo0qQ+rb)1r6UnW{Xj4PfGoLr5H z)*Xg)twQ=*bF9fZPIEN|Sr>ayabt@3b9Eh?nNv+RPhJJZZ)IHtA9}hOJ6X5sn+*5T zQJ_lfsC9V*yy7AA9(Yi0ts5y5vN3e2VN9}S+6*q#Fow8M^j|d@T2Og}HDv$<)HF8I z+yjOEscn<-&rXYb@P@*pvUd%g4Fv$Ik&FaZ*0k_q#W8TUrezkhl6Xk*FxG;{pG7+w zRLdBuwajqsVRw4EtD@^no`$jA7O#{o#g(v7L3vAj@cDs3!#)#$lkLJ_M}Ip`7B?+Quf< z6^Frz+SU7*!3i7G$AQFPL=l|oVA#*HS74wdf^iC#!1;p=gW{2_<$6(!sanb(F0;n$znB%$($m(uEp=Liccg%$z-f_ zzpk+&cTWcyFM=A!c;-9=NL&l2Bp{tKY#jIo*)lbvfU?nR#M?c@{gwONhVqc?|)(}Nv zsxR?|-t)DzPZ62w8eV+I*BGPmX2olvqo1*d)@N3-J{ivBW1lPij2)~g-v-zE#*Q`l zvOSzwzQn^LZCmGtN;AQ~B zF7cZNwH3Q+4EJ+}?Hd~h%39B1g&$hVFpjh?x}OY-qj5+uc(gH`>S`3NMKyq53!KfK zO;IK!XzpxLCTm{gXqQ$N2f>OJUW~3OOq(kdE~+}F;Gdnazm;VQvtk$U4=@hXT4g0Q zc>T2j#uV#fcV3Jm+uORh4liahVq9qpMcefa1FsfFPjCn_cC{w=;pCsjVwYA185>yR z>T}$fc8Fskss*B=RPifliTvuu=twJbXJR*nH(DDm*${&>T{AI+wSlj)z*TiIsFsvG_Cm;ffZ4>SQf+chVBR zg7@UinIx#TBro`@pt#I__lG>N@Dp8BYy2cCltR zh!>-Yu*g(DYur$+iitKn5ymE(FQ%|nbvPR#^2IBojiGR=hSEUah%$U;3P1NvE5pjT zoay^ChRlNWNMpLz6f41BG|((#-7cx6_?5X=>6sDaa02GjSmdkK5Hf;1PJlB;i+Q!O zO-3*Q8buq2TQ@oxN~4XL)+J9sVMnwB)_|4bS^a4+ImS5Hn!1pNVxV=&Q(TC_u@<{! zRq^Gj)H|GT`i77d+--=fuSwa@^j`=VBL2h0c-!mc=r5Uixs(qwZu z-4O5fSNh>is?`i&RKPoyl7N?aR+?kDa*K2t2P@4nf@M(f|JZu(z$&Wk{rd(XIWrST zq4%O73WOp}Y7hiLNU374wuLpA^y9P#1hr1w@Az`mo^GD3fM_oOW^yvyX^YVVrFN**_i zAyGp)acLytE@J%VHu|*d{430HT@vDaQc+;KiT!ivAkk*&SG>9Mve z`oa8QP!?V=75{8_%23pgZ+Dv{?&WH5#tho`^+qMu@N14d+}E3#i2j!&P5OCr5-a`F z3cuFR8=Yu*K8Itu$%*J6xg4S3Sx?)DyRX&yFOtXl;T&*HjyFj9T@pzNJ6FYI6EPGG zuWpJx!`c1ay@ujcWI@qqYW>}_Gv#S9-XzbX}%y+R_+B3_|>=e&0qoaLvWAMVcI}^`nM)buy zq4aKeEES&T)hZ`fKCgmMCVUi~Rx!&ylP+P9Cy$OrxO3S`xRs=lJo}S7SEz?UxzenH zSG&^m!Wm&feoh@7VmkvKcT|?FP8oGwy{ZmJwz7xu#0!sWO3PhQKfF6tu^?B@Y=qb- zH-52KVRUTAdp+MhG|X|uhu_#n5e zJ2k7xRC#fP*Ex2;DVdFz;YD6UnAQjnDdqF5`)jQB^t;|l`T3&?CQQiB4?9DR7E0$r zuMI!Q4oVbWEawZ{eXCk7l@lXjxoD*4$2PL!FAixK1y}@4m~G5Fbhq z@#S|(ac69W`5kzPp4iO}3ZDjPB~Mu8eQ)%_5whZ^+2!HWcqPwSg>vFXuV&(|u_sq{ z+{(+%jb4SyqsES#FnU_yq!N|xkC&`aapL6BGba?f+dFmr5)ZR*z^vp|>(h4Qywt?H z-oUXjKelyF^Mmv4BO>l;l@>h6)yd|E=;7_V;zN=Y_4+2ddM{V{-W+#@l!VceJ@BDC z7xe}t7CDL(m2L41<ip#NlEjVp2`diY*l3-fp=0L7Yw+auyZrFYgc_W%p3@KF z(+eYMC3cgqY`frV^o+zde3P($rjLoZM}X?^r1jbj6HE5mkGV2^qPsUx%Tsos;j{G; z2ijTNXFE>vQW7iuO?RgfyUp) z#O{H_&zR(MXlBGu13Gvr~s))(@vVn$;;`QO+!C?S#eY@m@JOJR#yq@0tb&=1co=4jr+W1gT~s#hrKw((*ad4oSGKxa*}7a=e!5;Q>?M9| zAFUl4@D-eln2x}y8>hJ!I%-m{KjPQCs_cmH6@&8n^20Q*U#t;I8cO%+?oo=8M%FC6 z^9eVz;w&jM!y6OZ!b+O=m${v=h5c!f?63z_XelRVcm;{3ZTidNt6(}|dgQ7SrtRd} znQoM%g*!^tEN^6D;q3mhYb;JH=!uH>xnD0xY=2j_wq5LE$B+A?J+ynI!)$j!P~6K_ zD`zvdM6dZcY%iM~sUEgPE&7H)#oDQOknO!& z=6YAgTBvxi+`RzS$L7XgASxep zBjrF598R7eiIix6ADh) zU_y9NQoNL#;A-i$$n6b^mlNkCR=P4_UFE_e_l!o(i`hTj6I;F3s*5g-xVvk$+`v8$ zAL=RDY&${v61;&Kw%83vRJ%=5m!Z+B)m#?wN^GXBu3(A1XIp<+dnXQ&YRe<7OW5CS z9dmGrms;5#QEMIl#BN@kJh5=b*vX@%-*lu9X|@tyQ8l^Ay-QcK2e?ALB<+^?iAniG za{o=<^@*##Q~agg(8Rvm-Cx#SfhMh4>R#S!*(dt*wzxVEqx!PuW?Xz%vesa*+4q(+Y$Rq`BC zK9ApIwANUY>M?`-Dbps8EGXf>hHSspYhQ&Qf=?-!Rxr^GLA4g2YWPlFN!dK|g6$Qq4{TjE{+4mWN6FmAmBb^vg^7I`@r?8a0-t>)g0cNmH4* z&TAQ49VIQK`38)j-dyKyY81CJd~hEwoVC`wx817Y=jm8v)_Si(>=Ml2nrH`Yl5Ab? zHIHF_P8Q8JjPIGs%jxy*a-mvRdTJ9J2QAR+c(`8DWGjX;X^;8gXBjHvr{P%j(7WL* z?H*i0cRc2Y4=~gKIcI60->&r8=(e0{Ii_vj=*|<0^9)~hU(9FP+;G29d63E9Js6YI z=guji4>n!LgiU&uuay})F^uNw46~L0bdx&^Djs2FFf0jgUlors{Mcr%d+fdBXlc9w z-B5Xp*CV#k)Nq^`;<11DHH6{`hP8JP>w|~T&-j%R%S|q6P*I*oG-P<)Q5Vz90uKio z#5N*BfTFW(J&uZ(UCH)B#dCp+%Z!>(FnzkDZ}Do&>DzHhir(f<ifu8c!wr0AScRYk(xTbsDL8b<4uvP0NcN`bu`-l|~Z z_z5c#9!Q=b66&%nP{=hKqN5k*X6dy5s zzHI2vd&5tU9pXJ@(snej;k{nf*okmDTmPAB{qZ{>pMDEJU49C&T;Xw}Mkmbgwg>Ty zv(1~X`&IkOv>n*yTmI=)kJUC^w(WpB9N*<7=Ou)SoOsjqh!#8P)*x<>DxKf*E63JT zt$sAC;rFBBt#A1i6SY&O;Xunu#Aglb2ZF(Y$mJzg#+t+>45*aj>o@BYgxo9L~Q z>DtWhug1@)TDYo-=PF>2JH8Erb=}w_9`tG@x~O4R=-=>EqJ?W4#&H#1d==L-jOJI7 z6NlYltXh53^lWhLeRy=T`1SasVzp>!7GcMflQr-8;oY4YG%^ESpT-ZD?A0u%HBM}Q zbHnJlDzfE$KP^#fY1-F!gnN4Mh*veypp6+|KdmA|AMwHqrM9J=Y2)8S_ucu3S26ar zBZL24<9?KX%};Yr%K_&0ma=6hlheE>)yuosP^0O zM}TUEpJL&jTEfh|E>sJ|SJ6UGfbbDW=SSV8R}B!2OoJ(pdYM)2y3JJ0(f%b?0ddV0 zs?>;`cjr?Q)ME)nMoVK6I!qwRd4~ zQ2Shk@M*4!`2%EV1md5u7{+AT@ouDaIFweCkpt{|>+|nMnv@U<2iRS~!o!hEO9*4* z0$$6^oH(&ynj6ol%kcx`i;-4q{I$O-lceoq?oo=8sj~JluXpT%tz^akz8}ywH!M-_ z>;d+vt^XkgI7N@UZ-TYdya6^y*!8%(7gN44&M&F>|7z@F>G*`#I5rYv2xRnT-83@q z2{-gpyuvp0=l=(zmQ%BJGz%Y>DA{NQ zdpzZ?eTugj-u9H&B-UVtRYvcy1|NIMJ%Utxmsw-D5`KH7c!%K^o^~HJD8AQl!)M$$ zSn>Uaamw(KFB9R#2)B&HuA+>|j6M|Z$g=)P3_*_{M>?9*<11BhBQ>?!=_YR|c^Q53(BP!-~^ zO3R1~h2TtJrbdolaj$tW>g3#2*@|{HjcS-fI>+S21KW`etH* zO~th&N7`1}Dt`W4thGMe&b@v4Y`Z$|zgIrC2JN^8f7u$GgLUjwqxkOu()xgFg`!fj{6Yxs0(^4a*!wDL~m;iDcUT?X3q zu=5)Tc4eeeY-dstk)5x(my}9+43x6Vuywybi%91VzLy!>^eXm>`>I_cQc2Z517i=N zVqvvu;nhmjoOszriA}(xG_Eotn=-=UhPB@E8pO_Ht%xTm#>4{9u8^ePBgp1)0m&}X zuB{e7ovZO=YlDtO_rXzY1y!47n(of!4tkYh2goc|GApqXIsIp(S=a|E&$Xg@)mn~Ga*{sLcdr~U1x$2wPywwechW^mUbcOFq~o2$NUVv)Ov%NNaz z?nMO)k@ey=R`fb1#X%qaRN(4KGcbbN2+0B_5&Jc^`Pk;VBShb!^{U||f+yqZf8y#u zt^~sv<7(|eu53{*Wk%n{<-T!wDOCoY#ntt3^*X8yfr_h};_6DOjDCu%AH-FSEt${{ zzXKJQ{p(P|)=2|J7-JGwYsS?zbj`q!xLPN!cB0Dokht13u4;?|Lp@Y2!aLHmKNH-G5x25Lfe9F<*Vh)zw2>#rm+G zFAC!7J#lp*%kr5$)S}qobYEP)nKGZ<#|u9aSM|wwj}q$ZaaErr^U-&_>^E^$pGfk7 za$GHHKGd~Zp9=D!WL)kRR|l|Jd@LAOuZ^qvu#M0C;_8^Vs(1E$t`=9nHWm9{Lk(uv zoBO!@SG;f`E9QN3T>U$)>fIdgn&WD_VQ!W5_J}ubadlu^#hpx%-6qB5v2oem$Hdj? zakU4V#e0#sIxDW~y#((>;_8yP+MQ*2OM&elo=|Uz%N;561|nW~bzIePIqx0f>iuz5 zhr1k^$JJNkYCC%7s5exLHbp;*%Q`;fXf>2KMgJF9m$5L1f^qfFxT>QSjtJxGmAE{_ z&Mt1`5?8aS7TM|64OQZDk9c7>K8dTn;;N1=I82GF1LLY*`8mFbtE1!UD&0=J_{Zh( zaoJt$Y-86}=6_XW(owHLQ3d?pFj`V8PPOZDot~3M7tYzFSB{bv(K;x$V$P0f-{x}cBX4B#Y_7s>((PlfhsXb+w9c3GPrSkM_uiCBsg`5mPF%~QcS_nP-qb)# zY$w<*t3UA;WGc9afD^33BFTNMR72_XiPuX0+@Dgfyg9j#CY-=zo-=7AyAGsOkj!IV zMf3D8nsEZN_VVH}eBCwZm{%v+MkKP}nAbYO|IyN`<@saYwSg+TSZtT1f9CZw@HoNa z68+4}%T$Y}2snY`9GUtVKKLm6Yih)-pQZRLerLqXHR~4$IDz#5T6dLkzg8`8*83># zlhdDjLk+x0@S?0f0jCeX=B1jCS4cTY@bSAJ^YJ>x*QL%0Z-n`Hi{LH#7-Zlbf_LP{ z6W$O5hY1c_Eq8tq*75-RR7Xzk!*uD$@|i~B*OpEgJY!VORqzw zDxcAm6Zq*MyT9@-meXH))lED>krRl`DK?f{Q}H#Hmi&q$GARuG3gd7k-;f}Y!b4x- z21dzA5~NT#{gpS=T>ePH30(Fumm>~xZ&CYGR5^j#&(t6O)cM{UY@iN79a&QfNu|>-Bt^FT;MJG6zW02SFQ$C4 z9RJ=cFwlUYfn56o_Fb*#GJ?yjdP|9*xG`~K;@+7Gni6n=4$qZ+r@ZEJ=Z{{!q#W7* zqgRxcV|(QTVOOicqMy7p7_9lpn}OLyKYPnCTlup$53|yzyqmdn%A12(sncFx%yLhA z1(-c?+UtW^(iv}6(lt_i#+w+q#{9o0NoTz)lg3H=vtIAWID<`rUA z@xR`b6t$`_36XU{dD;G7Z$whTmj8KEt#rjLwStOL{6Fu;*s^rKvrHvP``w#>@(X_V z)?-%g4{w#pNR;;nq9mUB!;6B~`O_=LZ0Dce8q7MJ)1^1hd3Ty|16lGro`+oj7k<%Y z!(TYxUx)Ta+sL1Pd07$uj~yFXuFiWcldhA(^Ikv9o;vS!!|c!V-n0ttZmhWUX#5n| zCTzBgrS1jq;$V|zYC`e$BP91CzmL5AH}c3BjdtQ@?!^70>c#`d%Srl0{-rcX&A=~I zVINkvU1-!r7X9r-GZl0r-~_egZ7%ThLU%nV^x*y%cenXpIFV|xUR05wF4=Fed9mM0 zKKk2BH-~+wa1wLaOU@_xUg$N4YEDV7@@G=$Hji>%=(Z7y`m&|6mu|HVqCAL)OurhN zhsBad*@_LO#7V5$9@6F_znm2tN^K~DnEfHC+WLHg{C?7*uU}Vo{EhG5OZzF-{E?J6 zfu8~BkFJo))XCD%NAf2XOyt=>eH7A=6BrH*4du*$_dobR14&AieDyBaX!WQaw5f_Y+w<=B7#w}H{z#S4NFKl zfe&OUjrfI1Ak2N zRQA2d^{M`q9{)$*FB~Cd%lf0z_zq6xJ7|xe&noMW4HVo(fY{fv{#*k)2zE%F48NXa zmGwKw>))nSEo-IkrFJhapX2-r8&B;jxADaE(z3IhpO&;n_LlRzrty&os$FfHyzRy> zcH!3`()_APoupTq-#@LB>FZ4&9_oSgO!r%$tEfjGWi6awg`*`*vNP4-F&c2fzARyI zh5VWBR}a+cNm@P06`7MfihiGyZ5jTx5&n-h-YI7?{MCUfduX~xs#o+^Nm>oRY^Kuv zq@19dTjj9~zqQn=>i3sJxj3TK;w4&e0*j4i@n{8{yE2%t@}gL59Nz0plj;*5o^&=QclpK z6|T*FWqV5;5L)gNT71HC8&VZ~Mu2n~MOFO`W^#h$1beR8#&y5>GN_v0DJAwuO14(> zdquc_K72ubs^%95Dt*gB-?EifXkT@IxGCRL`JSunlw4VODGog?_!DJL(Bw@U>z=qm zP&C*2Pz_Gg;B*Pkx$;*{zig_?zfeZbj1jfb6WeR~<;?AWi8t{cq~Xqp_z~qQ0%ApKL2y3eUbUdRtUAaYgU!=0{8} zL%EE6TG!uHPFoNm;6x7nhLH8_i~YLkIxK54v0xHz#qfddmGVkGe~5Rb_4mg(oKNC& z30QVWx>6Qi?61YF>?OWncHbrbE6Mg~P$t*+^F02Kjr9Epo|~F(JaD9(9J}1_j#IE& zrL*>Q*><_VOincL%LYozla`me>-ZR!*GKa0;sReo|)}|h!ov3nc%C%)}_e7bUn5uF;%Jp(&UF!tz z72LafwW&{=`dqUOwo(lV8rp_&RUT-BLrLu$QEv2q0r6gk|)pC71oTNZCCyPNs*p~4N5Y7C}=BFD$H+o-TrF#(c zu>P~sdz$+d%(xe|UUIriSm}2krj;|P52ZfbXsZq65acA-YJX`X@+jf6%$8WAzXzh5 zlnx>tB)htW&UKTkG?>z07P!f5hY}2xU7cgL@$IYj`IPhJtyccDWP6@1SGD%>i&M74 zH{>aU^<1HE1lH4fy}Xz0&z7vV*h!UcBHhG>EHxkm z!Y*8C;0}U2Sng&6cM;sh1}-zOgJ1{uqgxEzOK>kOW@~q3YE}1>a)RwROOoCxl_fWH z^RKe~OD!Ix#e;HJSAU@ud4zzI5=DAhExRc0;@-H}tRE-f1lHpvsV4^h9Z&h`TRy`N zgCcoG#mFYj{Th8*p1j)ck;XS6=&Qm4Eii`#=3vhvjy^|M&+&Y5YpQ}h1bbpfY@ObI zjvmc{YWu0}mwi2Ou2S$4!Amma8h?|4R|#HahcpuwPM&m_wGZX=wb)7ujuITT^OLTT9?dF! zLg^FQE*8D`DgBJ}GwvEzar|>Dl}}JUk;B`ToTLeIYhQnaH^KUNMS)(wB)vc0`L^rl zcd0m>z04O)v9m01BRk5H#%0=-)3YpfY@Ff(DX4@lK*4eN;7Ch-$9j-(V^NNOf2xun zNPftXX1V@-Mt&yw83~SZ{fCX5AvvR^Zr6^^)S|x;^mdwK*5j;v(5Q z$iK&mBolCgB6qkVgR8r%r55vO#R;r7s@0akeqTAfB%Sx)YLZHmRM~&Mf4j9YjR2WA zPJEBiNcu>eh;|P4D<}6x$0Nrso)O?%ufcwS{%#<)#G`hY+>Nn%XDPbT9|^~_jaH(c zN^<@N|LH(MRRVmiGQ@w%Kn;Q#vS_IPLZ({OCg23keKvGBN`4yVSFsZHXn?OJhx>0B zs83Lzl{{!0PyI9`g$-x0X%t3e|gG{VoRp;&qWu8~T!NV7=yT6>xkZ~{M1 zgnmZJj*+;X+5cN0yN3=AT`IAEOLI(abn zfg$q4IKQFC|53?T1yUpG_s&#lIBhwB|| z`4jwH15*j6$|Eyz0uLtop3xbkGoxPx+dR^Fx$;<%-!CCe zhiVI{EktgGResGaQ~ee)Z<3#C&K6TzEbAxv*O{NC1WV0N#dxH$`dLnGxi+xk$eClt z6i&nCUzL?qR$3`Zo#OlEy_mRI>Q3yc&NB zZ31%Cs^86&IY9>xWC!=GI(p{BDTwf!F={NIC#ltKw7QL6bL7HQKiOPwCEc2^*7?)I zwcbW)8`nCgyar>(9NkTRcS4bd)59YFr1VeuVjk*PJKfK)^?88w0oxYmrsMgQw&x+z zhm01^2C^20!DjXx!E>xA z-`05#0Wx;%o$uqua~5Js4$lfV#(rx1X*@{U&klF5mq=ei)&zf~xphDqK1lxC{oSEzA$)UNpfmZQDiXY}m=i98h4)W>9NM?E4=0_=Vf|BD|vcJYF zTfcll5zipz`32_cGXf;+SRb~7xjIZbK?$ik&}I2n`YV#Jtn+6t@H4Eb-;i?RcExJb z#}-U0%%4~|aWbEOX`4^d>SRLi^b|;Vv0nyPHZAcR@o%~}Wmp)q;@^pX*WD>YqnMSRBSr3xYm59FY^^Vl zT+j*!8%e@vCQ;<-SUdwqVx4=EkSTew-z2#MPi19f>SDjW$NzCE8$41nW`#zdE%sXn zY80V^h}2r*-)JBp2qbp{Y@5BG6bNi_*F43mWO_O3<>c=reqpM5$RNn*&l6>=30h*^ zgh+C#eP&aE78T^(oBZoDwMb%wH`1|JnW}Qt&3-G71lChveG8uPGW|xNR`pm(J$$O^Pc=}V zpuXIFhhHn^w5j~C%rBp*<_)QGf;P=Sn;Ns$rZRpxo*b${BN{Z4^~?Qf2C@jUq}&RB zwYg|czzJN;30<_5zN_#|zv3-^x)p0ltCrI27ToNp<2D3s0VZXL-Zy{4q! zif5UpR%3*sM!i@HZ?B8}DX9wj5cI*%m(Mce&e*F}$f1zKeW(_l^tAGMqaFnd`GO*AnJpp={^2%X}1RFJM}e~6w$l4gYH~|^SIKXq(iyWX${$#_$jst zIM!6mr{Ct}~JY6$aDIHHbo(IS9 zSl%kdlZcV5T@Brg<7IAqvvhKVm-2$;$kV-f=-;X2^S(QvXpeGZ4ei5UpRvg6jfhN zeYxrq-Hc0w(v_qub(J&5YUV1%#l*$dKjWBqLFro3wXArumEJ(GAz=f!OjByVnet{< zIr{%>n%k({CcEzPhgauYsL}cVX9I1e!B!TXXjN?^*v9>JfNle+a66v2Yc+RMx|^L9 z%~ZgQ9Z^njKuwgS_5O9T?k?ZclpR*&0a`p@U8vHUJ1_*)!Vgh;i06@+26htcl)78} zx#oU10Vi-jEy4Zym67tP)>BW=?hc79+q#z6;RDyBIN{a8KrI6vK==ws=Z3>Ro#iIOrKFOqcGp{IH>pr z#W(s(&TKo}v(tFtQ|Tb3gFJ5XJqO)eEH_8!IeY*(_YpO*QM_(SeW zqpVp+369DOcl+ZEd_wRE>letWY!L41N043HBK+F5FxU?U8aqzC=Hv_d?tQSCQszj1A?(KTn_RGB}L zW99tme+>9~f z@bFp1Bz%7vO~MVCYx|Uc`3&J#wKUbzd3Kf1wT7B*Yn?(ZC68k?-4a(;&2r}!jP$j< zPaB*WosCR>*e_EpO!%QTWog3+n%9`S>1CD2jcyimkWP`4M6r2HEKiXWh$D5yq|^y~ znWSzjQLH5S5BZa9OH?J`#JS2CH@aoaRSk+Y@?_85Xf1Z2NELKZ{xtmV6gElBrZ#PA zOYy`0bnAh71jrVG0k0NH*F+&!TYYMrpf)7)dIZm^wmsrkNw$xGWzQpig9!h}Rk(qC z|A^luQ6f!dlXep_r*Y6h;xTDS$}7IJu}-#t*! zilCL$ebgUj?%NV@0tfXsu3u4pxVtw?8O(0W9%R#me1&=Lr8tsjKAh zZfp%zdeM{yD6zmXNqqXBY+K8{hdmKa1ZC{NCRfVPH3T37=HQ{w~;7%Y!HSgN7?>k0pg zWcyeeKa}WStH1Y)cIS;!tC?ms=@}ot`1GWINuZ`9=x2oNebS$9U=+b98Ty=GTh@&% zg`I*04rNxXf$gM4#?WGn?0X9D*cFT;7$=`TTcXIFPy01YpFn*A*Zc;l`HWxL=w#B# zq*Dz{BbX*HJcH4mebp^BpY^Zy_&-)-%qZEu7kldN=lpauMJ?vC$XwPuD^Re2U;$e{ z$3PK5ksN;xmn*fniQpzl+lRB(f#)$sR=SLInNd`bA=kcuft^aXP`X7%ynx}Pg4G18 z^W@zR{i<7Dz+I-M{!nQRr8Rl-*P}6M(O%yV8@rz3daiJ7$$1voNbsP{Kj0S`c!b~) z?yc1}X5W_~&0h4ICNJVqvs(&Z^t(p*KQ`N1+5I9$i>f@qGEYeDm;9)KrwN{x^Dp6k z`r+;P08h=HBYlo^c&36q1e{=9I!nRprK-!7r;sCL$1526AdN=~UT4^+{PN_>e)9$h@t%9CxHNW#Ot|rYFUQ|uKf5mSbA%&BB zhk8JTMH7M*Z{c1)7yulo6t_8La1D!xPU9clC$Mpp_B6CCD-s%ABwc+GET(g&12 z;87QsTFAD0&;wfZ2=yb}uVXqI+gzCD!y582bxzQbE9J~PIP>8v;B@Pd5pVd(Dbu-5 zpXJHKH~h;zE?`xj93_vvj}ZiZ#2E=K)#3yloye05Z}`_{D*1|p6S(d~*H=ine|lw2 z{DvYYx*=55j2~L^B*l|YU!DHCrP%_7Y*+VOq7e$ZN*lQ!pi zx6_OpMq84$l-=+9c?Q}Lw2^Wj_&EmJ5wxQ>1nK|VPfOVQr@R#jQex3JviAeOjmOj# z*!%xCiWkxwGBuM$7dqesD|WrS_W?fm8~$&cjZZ&<9534rvY*th8|}Kup%49Gfr1_c zJqY^98*f%fH`)W2AA zKGJ7(YRohmcoLENk>5-2u*2c1ibE+5r8p>1kWY{=6F>6%Whxj+zzMnrInENRNS3dE zuaIWt3Taj-jXuUk(sE-7#uD_3zmijBJQYshv4``>_bn<Kgn zq@;j*J4`XweT^&Te3xE$v4OR)@l47+vy71P6MUx6{V|6?ay%n+3|!|D^SxFEW1K( z{S4196|5pyC4Ya0hm8tuCEx^YxZe3_tvNMP^+!>o>u9o04tbtOFuip|IxHuY5o<)tCnqpraNWVR~XHPB6XXWzD&k`hY^JKz^QVTtEK3#$s)#O;@5tMNWK*qA&-6S&&uRd^aZ-* z1g)NJ9?pH|mzBxi_+10F*hh?CIfwpj z2rKa$_1^}_3qRw2N=y7s^7{a(d&+N>(hluK)SwJI)>c}g<_;n+UhD1a6%1^)e*Cfy2 zDqJS*fA!l%_&=1FWZ|#4P^i+FPB=l8$fWtF-=nfVm{GAQMNT00RWW{sRf85Z-~d)(sL9jt&`8x*R9i{)-|^`N1Iw(&wxpb(%ysHi*8LABvrfk`_R@0gY0+K|{TKVV zf=&dT2>MIeU-&3OaTj7v;0b3F)GiObhSv@%cB9yhl^0mOJqS2~^^k;mC!O#z&7v1A zI0^mr(3X`Cuf6KG4~_cBkU#u7bABXgg*txGc_@;~juBh|3(dw}aJ=T!OdH>SnRxB|=TAlZsdi)<&e~y-k=lvm> zDov&{PSBD*R&MQi+%zA4%d21((`dm7EHI+@8zZ3M7yJgvv*>x2th(U0O5^|Vd{LoV z;Zpy%-$ipw1Zp*xF6JUNg+DA+!2*H>1G!Q)W%u8H`%J|}#GIh2f$~LGnc7lkJGy1( zm$-aP{wq==MSn6px^(jmLHo!mtF+wayMl267oy8qez{~M1y`4fUM~enL4F!TaM83% z*0fxDy~H*n99CpLjWQ|Gc`Us~8kP#$r15_gsBQ&DSpmKLY%dkG4AgWzD_Sp~mkJ6i zZmv~5=^y+vFPkWBl71HjBa&kwyiZ*ebd2zSxV=RFyeJqOsIrx&TV-PDU}CC*Z3No} zZr&EumpY|`7SgdykYToWQ@UFQmkC-Yt(J9Vf?=1gHjmA$p%t5sV^psWa;MH5H)=ed z)lb9o$kkFIIp~BkdC9?0%yuUSw_(;ZB{+Z?-X3gCrXxIgJk&F}u^f#AeZd=eL3_+b zdOITVhKe!6;ZaNrlOm%b3() ze(G9+7F}kJ9yhs(94-nfNK)A#nnsK+nPMx@Nt&hym1TX|;IgE(@8NRI2a&bR}31-kLf|Pq&`wJBiNMI$GojFZ~Z0dvY`CN9b?m_bHyM< zzRw6QPo@cuw>njW%cWapFbzeY$qfF9+0gRAnSss1TSDVw_@-* zW?d=;FPT*nxqC@+mb9rHJe)L9zN#F&oi@?x-);3@7uFw zYA_1_e_l2C0<#0vg0GTU7>~4nT9w>Hj#LlU8px8ni<6tm9W~Gi6QxQ`bjd_nds$Fd z_SFn3N^Y&7Iby<>)(ZNhwYA#cx7tzBW$5J-o0IXGNSz>MOKohOuF|h|@Oq@HS$-t7 z>IA(2Pt^~4%TslNZ2bSGapJyth3huO}0!9AFvyKlzqSi|5F`QzfC1^&x zmjqYhf3&ByymCp9lhju#)(=*t^|cBvgqsyjsU>gM59+}Hm94{Uaf9I1WZK~-r0&k- zJlS?>@IZ=!td^27D5bJAX^5R+Uc;aO=BPRkGp+S{REPgj>x!gaQu%UJ*vl%cGe%Dw z-Q-N8ppG2AJZO+YrTCJb^4{fW``)hD?AJC5dIgFv?OuqtCo*+K^2PFUqo5exavBHQ zlSatt#=&Kg5$3do)NK-U2OQfZcmT8Xtl$u4$FqX3F?+RXa0IhEn+5M+7HuB9oiyT^ zHZ5>`U_S4Ppkq=B{S>#lPL{L`s&4r$QdZ_2N=}nsS_V(SB?Y9T7PTD1Y5bQWNHWW%hy+8Z^ACly=i7UY{vd_pj~i(GL4JtuuJPm zar1H$;6*6Adj=Uv$?9#89E+q}C$+A{X4>$~ z57!2@lQ0kZ1VPLI@u%r2jig6k>BRmSFaBqL)&K$4$fdU?gs1& zL#6hRpjBk3^-#JD9TLn<%9bNTfA*Od1_R! zA$cs_wv}D;aGn`CI#?Saz{xsW{umvMP8uu23vo&uD|@5C7%3hT^vD0l#{^qav|xqa zviLgWQdoB*_M5R%eQfYe(iAB*F4z#6Vt#IrJI4jX0JqH#rbsjj2UF;57iRE-T-Eu zQ1_xuc&wx++P1TCVI9O1Z8v##b}*hr=U_J&B-K|0V`b6Y;ClRjbZ+o|QWtq>Ua%pp zi#dJCoFZMsBAiYe6>^BMGALIHF+1qOC(F>RSUMEpC!H582qvMlc4Oy-sIQC6Ul^>x z%wH7ThuQ8$!4k~Sw;g0s5subwaX2Q%9#b&b266((~M-{RpN@EnY^$xn36P28s8jDN}FchFW8E-mZr;s zO0xfETok_buhczs z%Pm218kezyRv4=r?|R8ujTR;JQ$O3)#;go_m(jA;S;to5Lf_9i>w#54zZBIP^pSU0 zq5Q?GvHSItU8{q=m`yAWZnt_H%iafZAYXZF(6uN7vG`F=#x`HRDO!t5wZkQ*PKo7D zf!2geoTz0pF1gHTkgo`V%B{FG8!HvP4QU}Dw+(^H?ZTy^D08Af?+}tGbD{ura)9Yj z0J0rm@)Llo9AKIgfNlf>St&EF0rUugR@yUMiZaOw&;dX$W-P zmW4~2Sp@P52bfd@V5NZ~cwkl$kk!tFSw#SDb$|&)0Mku1mIo=m?Z?@K7t%} z*!}nq;6Vkvq1PUJ*y)d$zRQ8#2A*)>NdwO~@T`Fs9N1%EzXJyhyzIa$28v#HhlW#+y z9!`c!(eF+E$$_5@oN?f+f!`eXuYo@t_|w4o7{K}Gf{`TT2C!C?!hdL183&RLcnE}63uYu_;h>augVq$yD#cX6PL*>`n-nNMJGwF69h0?@+& zW;y}r2~cE}_Azp;GhtE_nDlXgX-ok6Il#mv0J#n@Qwczx1I$qZFwg z2{PCbW*-3<;sA4w01PA0gc=hJj0l1D&&Y5o$^;{@AMF5hivWyqfcZoK#wySUddwjL z5_Kj_9s)4I0VWRtnB>3`15+Genh;n_bAb6l0A@JABp?8@9AM%P9)EKjVYUx|c@8km z2fzY?soXonKv4*E?U#g0QKtET{Za>*<^y1v15EP)up$O<{4u!)$V!qmtYa1a1GqH= zTE|*0b)vk^|0Qi>!%)bHfkOR!Wv3yfe^btpxfCDCvI`E!>-3~DK1}q+T zfEhOco^*g&HUOS>fLS&Go^^mpHUOR{xS=%mf6ey_ve!s#?e~XEQ6|`c{GtQQs{!z` z15Ba;@TvpMoB{B<1I(2H@TLPykO6Q|ccdG*S(z3C0m-0Pi`#ycYl; zIKWI70RMJ?NiG165?skzKEi(hpN61FH}z-XV)S#&h!&J{!2N+j1vH*9bk?LfMkMVt}OHW0(c?Nl?}qBD3eM+F6#jE zNdTldz$_8~88Lw4pSdGI$~zP0jsU3W0CPtGRCa&~BLJ#8z%&s6)g54(2!NUnFgXN3 zZ3mbag2!K7N0<%*CKo%vbPxdb9bf_ofJ+Hlvpbm37~t{{Xm>OYmoxzcA*AttsP*x2UxUqfJq(z+Bv`^4*(q;U{(i!P7W}a13-3>BTV4{ za+L#2-2l+d0j6#M=uR+(Yu^L^0rU!iu6^%tDazyxko!8oybS<34oHq&fBQSa#0@YR z-~bah01R?~i5mc}cYui-0B&%A=^6lrI=~bS0K*+%b_ReE1-$>%RbgHRkde;haRZ|X zI&)>8HgIDIbY;hdOPYKE4#qpcE?!m}miDrUT5e z05IDDCRPBL>j2X!0L*uQITQdEI=~zX0J`amblsRb0c43YVb%nIr4BGp0>CnY3G9yL z_zz%Z2(&v^b7?qbW=Vj&CIl+43zv`yLFEkvy#8nbrb9r1P0obb5CFC~z+?yjw>iKJ z2mp6Dz^n%VcRIj)2LRg~V2%TT9S#)zBUi~ijxd`6O#bOWvVr>@@C^LR0j4QHk%t^$ zngW1F2sAi;C;kK29Rlr+$FWot&qo0L$xx3n9|6GA4%9I4tOHC%0E_1xVEzGsJq|Gc z0Kh&6m~{Z)fCG(k?f84i5vCb{$tw;tH}IMROe+A3HymJE0f4t0U|Ioyw;fs|55x0@JR@?PmhI5nil}_=MFF<0Kf?c zm=S=--UGk z#rS@Z(#~YLfn*05%MXi)1B~Ja@Eu?jKR~JjjN%6<=Kw?Y0n!~PVvIgWrXyPoRB(Vn z`LL+u0Hg5%syM(He1K{WF#H~%h69Ye2dL!$gYE(96gk3xdysk#FxDR65(gM&5758? zhS>u&bYPEx%N<~BJuDhKz_5CNtPm6-q+Ut0kRXs=K??^MLXR>n9boi4Kx+pWDG$)r z0fxu}v~z$F@c|&cFZ%7`6_JK@Ko#9pHL`4m|G47#I=) zJ+z1E{;zt(^!!lAJ06U>pHs&ZANM2QV=N$iR=q z$y~gJI)Cv2U|I;Yl{3PnCz44zR$1ECY)S@c3suIZPHi z6UL7N+~fe`#{q73fbru1%N=0oIKV9qFkT#Bl>-bB2Ph`UcF zaIXUl>IS&a0fuq|Jm3JMxB(t?V3L7{9bm*ZEQ)qI!jNr{T@Em08{jbq7_ANPgaZuG z26)N=hGhdh;{YSF0iJV!A=m&f!~l*zhF^p1btVkF2H5WaW3B;Sbbv9}053bhC~JUM z9bj-Z!0Qe$m>S?s2N+Dv`>%tJFoqf??>NBlX@GYfV8}GUdk!#A8sGy57$^Y=HYeea{r{vRhs@*$2N=$bGCw)MKxTkb4ls}z;EV$dWCr-f0R}Py{N?~dm;wH$K%YM_ zav9_gXTo@8fO8HoTp8fJ0}N9J_}c--CIciPgwYOf#v%h;&gQXFA` zF@Wa)qlp0m2N*^SP}TuP4g;h)z;I!J3FliV9JtbZqE@{9n z^{I3=M1!-#}_WZ9Mmu_a8vaLYJ5NMk^ zhfC3}CU+rNpyzc1-9n)D-NPk~#YJt`7~t{809=q>&V&KD0KFYxz%4*u2N-Y*kmJB$ z1N{j`vlaXqB3KLzfwtnha49;%_ncvpa%9bl9zz;Xxf zjjhcsjxe4TCaWA^JS#x41CJP3L!d#YyA7-lfo|%J;Zl^btZ=Z|fu{`!L6LfR&dBY~ zgdwabvz1@~x7z^&+d`mq>l!wK+>9)G%}7`h4aoiky`CcyU&Fj^DfM+X?F3GlN6jL`%* z?Eu3w0nR$W@JxVT9cWi%&82N)0u z(9i+IKih{k)HpH(Dvu7AG{_M07zY?w2r!nQdudF@;Xi;0Ay5aC!X-o(TK!WGjg($ty0Y(x6XfLY+MiK%n2`!4E3?&3v8j>hO z2?3TlaNNKO0u9f*1^>ZfbqKT-w}wj^NCc)C_#YR9bk|kz*d5Gr7`)-z_t)*vv!0_2oY5KdmLbxAn!l^=?LQl0q%Ezae@H< zB3ND;6aG9Qz{4TXI(CLj(KM5HIgn}KF$WkR2nSEZ0M?%of*?;h69xwYJmUbP0s)?L zfKh<}FAyv%jmaMT2e3Z`+N>A3G=nmK7!mR-AyD}>E)}WH*g)uSgu2E90=(q_(7>2N>Z8@V*0#@B{eJ0fhDG`R|A$4CsT&M-DKS58x9A7`g{=%mK#g z0etQN!}I`7IKcQkfG-_jR35;80E)sGJSE@Kq^NZ40(3H5(qKCj_<>*r67#Xtkshd|qTL%0+jV)AeY@(ql1V3dI|4%}#< zDC)>~Ba;Z$veL;0riDN&oe?fYXPP|6fw=}2IIz&bVh5HOxY>ba-2Uj{TS)q_(v=2^ zL!gze374X4P2S+ZMgv|C#fkz1@vYopO zJRSmV=ab=5^eK~{b>KMzdmPxSpeTC4kr&P66$f55@P-3#8hG1*cMKdRXv=23XW+vS zXtR!RsVn89CVvtFd;f4OT#SBZ`UwZVFz_D-zBcfk11Amq=)g|~PCIbMz^@McX5e?s zimY9K82O7Pec90S2L3T726R12g-g+k@E>-YWCv0V_znaH$~ll`Ak%^J1bF^h$&t!t zQq6(t25J%XVzX)+s22il)+OOmw7$s=9k|RuV+WcTXhtvs9*d&QjkFAjx@;XTMcbI% z&Vlv@IyunUz*P=(HPGFG9tL_jaIJy9V>td|Got;B^mitC1_n8Boq-!17-C?!1NjC< zIxxz>7zb`N5GCl(YR4BDnG_OT`zhg4bgIcS9GGcfjstTIEO20td3%M9E? zP^8URX{6Yh+-hK*1M3ZJa$vK8+Z?#vz?}}5eIe} z*iEp3J@%M^Cqtke_H?)uea7VH9eBaOJ_q(2c*y|o|6VronlpLbz*`O+G;qj)cMZJn zzy}77IB?X!Ck}jS;ByC#6X5v!(vh#swz1rk!9O!AFw*!3)0kpxL!gxo50|3(CXaMr zlz}l0+-M-`z<2|b9GI-2C_2rN>1Hy^f!PM;5v*sk<{MZP0&Ujfa4EXPX5bbF zRvIXFpy*a3>l|5cU=zVjtaP)1+d`m~-VrWEx0<}of$awFao}D9_Y(}F#|I2Ngjtai zb@_A+J4o^{|k1A83UYv2Gu7gqYBfmcGHb-u>^&-B+#f6IY`1`av! zu7UR*_`tvs2aX!}#DPx@eD1(;178w!L$ivaUm5u(B-*a;!lmd*lYeyJCj+M)IAh>f z2Yxf~y90k1_={i~`{KNTe~jhvPokBULhz~S7vVpie;i0L;5!f)DCa<$flPvatfRbv zN+HlHs)S3?swR)9;Ydv*bsVT`;1UPw8))djWd<5M(8NG92b#<8uLrG)u0@N6;j>kn z4YXOV&6e6M$7a{qY@E#sY<8W^R@$tM&8FIHjmv%F+3W_JUCFaNsvl{yVw<(L z*%+I3w%G)m4Yyfuo3*#uc$*FW|Jr);_^67ceId!rWG3&unfEeRl9}8WNg&82S3tSK zRk;El-+~A1r@z@%F7@~O6hR@};K{PPu5!o` zluP`oswa@F=8vw|)z#hA)z#J2{U)zC2yrlkgU2{n!omFU1JgFzhN-4>AG zT@nDi69N#C8eVun4(~Al;OzteymSD77X<+D{0{)n@c{6!4ggQs0Py^}5Fj2Y0pNKH z0G^=$;F$#go=pIt=MMlqZ2;((0zd~106ISaaIXb`dnN$fJOJR90RT-j05qBa(9!`w z+f!zRAFc5$E;hhUWPkqz{zqMB*FP~2H6Sy~TMC%4$LwZHk4LK(SbUQmcii#Zs+`*U zSo>c1SM%rgm@TG{R~a46vA5CVSLr|{VU z@0DmHj-tA=kZu1IJ{;ryi4U%_E4si`)is;S)&Uhu{tP~hQO$Bc1Nq`KEr$=(^!m)4 zkytd~Ha`a=6>$Qw?~|XI6V-vY%a3)IGwVM1*vHS%rs;53T!HC$*K8UaVv8ZhPjpAG z+Xpp|bj78z_tY4gsYBh-ar? z=$du2tNVe2ue#$bF3#-9ZfLcOfWGKf!X9roEAW8_)^5%=jdybW9Kqf{U`|dby6d*s z?)z2IEw!55waCLt4ggmZy5k;0+(X@QZy@f0uDD#&y?S@U7@tXQY{s~vXo}&3R_|NQIgmpm*pi1i zH-2TVi+z1ba$HXAApo>g0MH%*K-K^tR{)S50JxC=XyRZZfly07IWQyGP+b$4@0(XM z6F!I=Tt%A)6!Xhe6gI!w!v6VjVnq19tPV%=XF$srr zBudNy*xEzP#B6pCu@AzjJ;Y>$kMH>r|T9o_>t+Fz$^$5 zMCIQK`gJI0skMBzVrs-f50zM=bY~RQv~)5WET0QsD}~-mYj|&UHDZ43<0y6rIG-pf z9(estlh9eCGY%5if~-@1mJ{QhTOzE((3vgl{HHT4bV@ zX)kn+ALh_s8Q@dM-h4@P45sR9wU>b+9>)t5)#btJTeJMC_8Jt?*a|EB<-wp2gJaPG zYhBG}F?ltg-C?U~!LaHGe15f5LkxVq3}=Q{F@S^Z#_-y zd}@it5yO8i;%vuI&pZ=?-D%NLgC|_JR!qAKTVHgPkL8V{;#kc8bX2?#p>|9hf$-U5 zoXfY4iK!ME>$}=67!PcH-x%y>ZjL_C&Vq{WKfxLI9_LMJ$Hi=HV$N}~C&ISl+>m^E zT=0NVl-!T|Q^ z2{9eOg%e^%EYU-dhh$SBpvHYJ7IGACJ{pUe?}X@x!KV-e0upoBsn5m!QR9-s?Ms!z zQQ`AniDz7_Xql|Agc%7kdwslUWZTN6xRfq`X@UBHucl^Z7c}!+6-OiQv#yGH zTvW5Q0E|v$4Oc~#ZMiBY#E}FWwYNcBy{~b5d+w^3kx2LtwL^S%TZ~PWRW(5hDA&je zu8Ao^Bb#td^a2Q66Dy*6jYfu#M1}wIv-nF)_`@F32LhWME3IMY<0Vf_O3kd4x#3X; zX##|+j+5>b=7!_V(n5hPh>;9Pw~x6+$rc_hN25(E!zPcEvUs*cfM|$IMoI-d`+%U&U^_-i`2&b}rl7AyH8FSTa8>nqZ6%>` zIdm_A&nu^nl03pNHhh$nFANLUjgt1$S}LxUiuic%(dIyleOP&i!OdE0B{xUU)mi~P zkfYBYluWGofb76oy;3XDHkm(Lx*PKiv!%Yg&X?NvP{+kee}L_F_iQOIwgMG5lQ%M~ zU5*zjSgKzt5GukG{nBVNR%i2gb9?4VcS62(zBEyo!tR|9R8!c3`BEVOATDGnKN(En zf6kX$im+PKCTR%5Et@3Ta1U;h$Q1puNy^~dY}Ecj+^m={(N;8mvy{n8-qH3z33#yi zrUYzb)n=(*EZ!BNJ#LrX{Mp5@X6JM1FjM52*E1kJxPi?2vmuwQ&xx~y7r!p)w9eZP zO5`}$4oMkY(QC8?py-W=kw$k;*3GXy#|i#6?@CO!IU&Q$}a6HA^M|mC$c!Xm@W6hd~pOeWXrv|k-8%27TjlTY{X!b!rsr8?~Lt_Oc6pA z`ZFm<&a@E9JE1;MQZkZ67=xG)D;;Di3a`kKXWOy)o5N)Ey;x2$?{0FjOt$fl#l$V! zS}YG1X0fxyaykI(a5=+(7k43yW!UaXKObgl zoqQiB+pPT!$og`!U;MI@-6)lf+#?Lv$&tqPY8^n;n^V1;C41s&(f+8%;lhLC5_VFM zEgM)#K(=B}4+rG_)PrslbQP%B`vKX`-VVqav3SYYl{2BZwO-B^iqUu#uy3-B#&B7^ zyfU40SgdK#M>cC4XiQ=$@kUDzure%rrQ8?$DO)K|K={T=ncUSwE9IWTwANK}p)ig0 zS|#@a;9Di9$KqWktis`gjV=Rx1c8KqQZo$>p90z;ysL@YH0TP9*%)Ig>vf3BOmCM5 zaT~Qv+r;*_%bDzjL$ZpUe$pI z^Cd9`$w99YOi66{J;wC#ONZq%WTKuvE7OvH^{h-@=|^W}@;=X;<)Ty0f#?Ra;&ZY+ z8t;19n`dQ*FgVJ!{%`nr%KcZ*il-{db$7uQt1MlKnL~`;<0>OsLiaGTV zWOE7IAleFrC9GYvWyBIqD)WR)>45S|wk!anC0kK6may`8Tb7e(Ou+^}Y~$rk*aVIe z*1phW%nP5AY*pl$jUQv99cbwo8!e4JV{Eh(jALz+@<`BwH9rX2c7IJ>gTHb@<(zJF z4<2!oHXr8dWQmP-p|-I$x)Inn)@d z;)o$HjC*OivxlCKNZE(%QLy%|$0xm44}A=lOTLDtP@vK`;}IVngh-a9mu=*bH(cf{ zuD)zb7Z$Nymu+4E-(0r!7Z!ybKiXcSg}f_XNpsVr-LE}KK5Xs$32;EcS3$wrdEp!J z%F}e*cxsG7yY!YZO2l8eUt0`3q_X!{n$md_Pii{=6IW4R*ARk>f(D3A4YEoet2j|+ z1I8-7qkj+WvggJqUJ8o|{>#Y?MkibiAU@Jo9zAz!g)rvZ?at>FLQD{q^l(avGLAIb zzeJ&xykdz$v+~{&g|3bMy@c~FJFUNNa)v_`#Q7a7}~3 zDm!x!+jWkT9Lvkt4@(q}Fp~{isw4rJ3LpmSgxLC3rrhu=OO=t+aL}j!qtI-`eaB($ zcM2Jiitm(Od}pg7H{HdytW{imbARtUWduK+uF{T!Kn=nAS##=Y0$e+^FSMTksf?(q zg0n_B*o<=@d0M&0OWJCP(g&bHi?0j$=hXP|(A+u8_nc8^1yr3;$l9!jJjLFGoqgR4;EUpW zM0mzwf($XozWPq_Od|a4AyPK(_TV__e+{>y-0#N|3lYouEoSb=8#^$7)cX1Fl?1kH ztI-fuTgz6TRZ@jow&SeQpK}79^KQ5&p%(soI8?pyj8Z_Pu=pFpaZa{tsS+Q4@|@CB z;yYKOmImv(_f3Tyj{QF?X?UuJ9U_Hlb4nCaVB4NjVCt!+Dc%@PzPb;;j%NLTdmqwK$`0+o2p>_Hr3DQytjN? zI|&71MZLei$rpsXy~;pEyKY!m%ZiTtRU(?`2FM;0%G4Fbn zEYDr*RocO;*Q>O>JiT5eGrW1dnoWwW{lwkn+n1aTA>S;Bt_;0gSkK32ZBuC-^=;#o zA8b>}$TUNqub*cG{drtJ<*%rAy2aA}Bs7RLocGjPk9 zQi$u+mpmx zRLP`eZ{&g~iNM(#xr!~>sFJ_`)<%^q!oiJdZgdbPk)2cHoY>sRlNP zAUpfA>gKhFwW)UgG`&srBvKVyLldk)ew*E;(zI7pR~`}kdeR8pZL)%_?G;t!JanHU z-UrPM@40+~ni665*Rui(_Ej}W;T?3Hfgqdks+!C>me3o(_X@PxqmCmzE83{qK^SXZ zRb6&!ARc^hkOF`GfK+VntEwlK%2a0kvqgm$FPIB~%_-V$w1?AQQ#X@x@Bf(3-A^BL zWq0r9aOiG6w^Me5S*d3WcB?4>*6mi40Bi%`tjB4UXiGqyLr1h6w7EWfez!WkkZ*Nk zwMn31Ni6>@6Pb+PUr}?oEv?XIfrjWgOH_2By9C=k8gA0GzRlc6L zMd0bHY8LO|sCEW=$YAAvHAOJz=z`aS7!TiG8?W)!*IrXcQB2GTN1e|Lfji+5mVaGM zipC$Yu=Xo3=ttO!>#BqG-eNMq>mSOc@EUe(+fK;+*VP=L1dzn`Z8cdq0r;?gH95=_ z(F_}m@CSqqH`GiHl0dEM>dKoyWRElOb|ay=90xmWn!P{5xzp@qZ`Mz<({bbA zG&?P`Yt!uHie~xjwA{u;V8Camy|XX{v*^wBA!4X$JTq)g3_y zkW=)oDJA^KRL2`TvD2JHr-w89oc0E5pX5rDC5>7C+S(QBq!4>TJ*hfeaOS|D!NJn#-OGXJ5z6s)Kxr|DZ-lJ>FnYr8 zr8xUc$BF)-nU5!Nk&`rN#3Igk%_3(mSIE=42gTu_*p}ov>8XN#H{wilYl5M2f6b%Z zt2?;JnVL$n-6`lFAb~`(pE09;KG^okauP91SnN#WQvk0+4`aZu64nST zaT?CQo#?yrjffDlZZ~CwUwYiRrw)ZueSy!;iVIHK;oiRBB!~F;1um?Zi%z<&92|j- z7y0b2z33#%aq6Oz&XD3IXL>aL7?CwxaC&3$30|dL_{f<6){XGnE;ti~LE#mboC7Pd z=RK2LRP)D4u7dHj;@;91k|bxrn-|z48@l~8KnEpWjm5V5CU`IN8$TY<*9rPpK*3f_ zagj!{$u3gZJ(FFez@{m#ylDKTB)d7umDvZMTBKifM(E${m4rIflfuB`!Z+y z?#nJ(0>R5J+R@fr=5&WHy9P$%PdoXqHRuU{t&xOJEx-Naj5++r8ANgG#~E|j<{w>! zys5JtuAagi`n5(3QiWLCho+=($xp5=bZd28anp9#Q+3m-o}{|7g@xf})tyM@cTFF6 zitto;M<4eaWGw2++=O3N=FZ_(^%JdwZvp*iH5>Y2FK}@sTrt|2e9aggc29Gkr@hwF z>LzPl(CVhnwN^JBMCt$vbJ?@4ZntwT4i;w34=)kB-0aK^?`n0Ylb`>uP41MKr9c*B zz4w~3!$q6jYH!YqS6jsj6Pd&37WPD}DR|P}?_WuF7{io6Z diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index bcdd25cdd5122af799f1e51aa36eb1b48d647d6b..6a196e4983b50650ea402c79ef9ec92daeb7534c 100644 GIT binary patch delta 64 zcmaEJjOooWrVTBOhNUUx#)*|VS^7pMrbecg7KX-2=0+wahG}WWhQ=laMyY9*h8CuV UmPV!)DJCX~#)+G^GHzc80K@YXk^lez delta 64 zcmaEJjOooWrVTBOhIs~t28PB4Y5K+%NomFwM&_m|CMHIPW{CzS=EkOG=E;UB$(E_9 UW@(9*#)fGrX~~" ] @@ -554,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.893796Z", - "iopub.status.busy": "2023-12-13T17:00:20.893486Z", - "iopub.status.idle": "2023-12-13T17:00:20.896482Z", - "shell.execute_reply": "2023-12-13T17:00:20.895870Z" + "iopub.execute_input": "2023-12-14T17:56:37.356569Z", + "iopub.status.busy": "2023-12-14T17:56:37.356006Z", + "iopub.status.idle": "2023-12-14T17:56:37.359204Z", + "shell.execute_reply": "2023-12-14T17:56:37.358576Z" } }, "outputs": [], @@ -596,13 +601,22 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.898967Z", - "iopub.status.busy": "2023-12-13T17:00:20.898598Z", - "iopub.status.idle": "2023-12-13T17:00:20.931594Z", - "shell.execute_reply": "2023-12-13T17:00:20.930997Z" + "iopub.execute_input": "2023-12-14T17:56:37.361817Z", + "iopub.status.busy": "2023-12-14T17:56:37.361616Z", + "iopub.status.idle": "2023-12-14T17:56:37.399075Z", + "shell.execute_reply": "2023-12-14T17:56:37.398459Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + " warnings.warn(\n" + ] + } + ], "source": [ "model = LogisticRegression()\n", "pred_probs = cross_val_predict(\n", @@ -632,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.934524Z", - "iopub.status.busy": "2023-12-13T17:00:20.934031Z", - "iopub.status.idle": "2023-12-13T17:00:22.226313Z", - "shell.execute_reply": "2023-12-13T17:00:22.225548Z" + "iopub.execute_input": "2023-12-14T17:56:37.401560Z", + "iopub.status.busy": "2023-12-14T17:56:37.401192Z", + "iopub.status.idle": "2023-12-14T17:56:38.674141Z", + "shell.execute_reply": "2023-12-14T17:56:38.673419Z" } }, "outputs": [ @@ -646,6 +660,14 @@ "Finding label issues ...\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/runner/work/cleanlab/cleanlab/cleanlab/filter.py:904: UserWarning: May not flag all label issues in class: 2, it has too few examples (see `min_examples_per_class` argument)\n", + " warnings.warn(\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -654,8 +676,9 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", - "Audit complete. 21 issues found in the dataset.\n" + "Audit complete. 30 issues found in the dataset.\n" ] } ], @@ -677,10 +700,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.229382Z", - "iopub.status.busy": "2023-12-13T17:00:22.228591Z", - "iopub.status.idle": "2023-12-13T17:00:22.245907Z", - "shell.execute_reply": "2023-12-13T17:00:22.245372Z" + "iopub.execute_input": "2023-12-14T17:56:38.676983Z", + "iopub.status.busy": "2023-12-14T17:56:38.676493Z", + "iopub.status.idle": "2023-12-14T17:56:38.695012Z", + "shell.execute_reply": "2023-12-14T17:56:38.694379Z" } }, "outputs": [ @@ -690,13 +713,14 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 11\n", - " outlier 6\n", - "near_duplicate 4\n", - " non_iid 0\n", + " issue_type num_issues\n", + " label 17\n", + " outlier 6\n", + " near_duplicate 4\n", + "class_imbalance 3\n", + " non_iid 0\n", "\n", - "Dataset Information: num_examples: 132, num_classes: 3\n", + "Dataset Information: num_examples: 132, num_classes: 4\n", "\n", "\n", "----------------------- label issues -----------------------\n", @@ -706,16 +730,16 @@ " (e.g. due to annotation error) are flagged as having label issues.\n", " \n", "\n", - "Number of examples with this issue: 11\n", - "Overall dataset quality in terms of this issue: 0.9318\n", + "Number of examples with this issue: 17\n", + "Overall dataset quality in terms of this issue: 0.8561\n", "\n", "Examples representing most severe instances of this issue:\n", " is_label_issue label_score given_label predicted_label\n", - "77 True 0.006939 high mid\n", - "7 True 0.007830 low mid\n", - "40 True 0.014826 mid low\n", - "107 True 0.021220 high mid\n", - "120 True 0.026403 high mid\n", + "77 False 0.001894 max mid\n", + "58 False 0.003565 max high\n", + "8 False 0.007326 max mid\n", + "7 True 0.008974 low mid\n", + "120 True 0.009699 high mid\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -759,6 +783,23 @@ "51 False 3.857172e-02 [] 3.859087e-02\n", "\n", "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 3\n", + "Overall dataset quality in terms of this issue: 0.0227\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "8 True 0.022727\n", + "77 True 0.022727\n", + "58 True 0.022727\n", + "86 False 1.000000\n", + "87 False 1.000000\n", + "\n", + "\n", "---------------------- non_iid issues ----------------------\n", "\n", "About this issue:\n", @@ -814,10 +855,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.248409Z", - "iopub.status.busy": "2023-12-13T17:00:22.248049Z", - "iopub.status.idle": "2023-12-13T17:00:22.254851Z", - "shell.execute_reply": "2023-12-13T17:00:22.254328Z" + "iopub.execute_input": "2023-12-14T17:56:38.697276Z", + "iopub.status.busy": "2023-12-14T17:56:38.697083Z", + "iopub.status.idle": "2023-12-14T17:56:38.703832Z", + "shell.execute_reply": "2023-12-14T17:56:38.703319Z" } }, "outputs": [ @@ -851,8 +892,8 @@ " \n", " 0\n", " label\n", - " 0.931818\n", - " 11\n", + " 0.856061\n", + " 17\n", " \n", " \n", " 1\n", @@ -872,16 +913,23 @@ " 0.821750\n", " 0\n", " \n", + " \n", + " 4\n", + " class_imbalance\n", + " 0.022727\n", + " 3\n", + " \n", " \n", "\n", "" ], "text/plain": [ - " issue_type score num_issues\n", - "0 label 0.931818 11\n", - "1 outlier 0.522080 6\n", - "2 near_duplicate 0.246459 4\n", - "3 non_iid 0.821750 0" + " issue_type score num_issues\n", + "0 label 0.856061 17\n", + "1 outlier 0.522080 6\n", + "2 near_duplicate 0.246459 4\n", + "3 non_iid 0.821750 0\n", + "4 class_imbalance 0.022727 3" ] }, "execution_count": 11, @@ -907,10 +955,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.257389Z", - "iopub.status.busy": "2023-12-13T17:00:22.256908Z", - "iopub.status.idle": "2023-12-13T17:00:22.263176Z", - "shell.execute_reply": "2023-12-13T17:00:22.262538Z" + "iopub.execute_input": "2023-12-14T17:56:38.706289Z", + "iopub.status.busy": "2023-12-14T17:56:38.705917Z", + "iopub.status.idle": "2023-12-14T17:56:38.712140Z", + "shell.execute_reply": "2023-12-14T17:56:38.711529Z" } }, "outputs": [ @@ -944,8 +992,8 @@ " \n", " 0\n", " label\n", - " 0.931818\n", - " 11\n", + " 0.856061\n", + " 17\n", " \n", " \n", "\n", @@ -953,7 +1001,7 @@ ], "text/plain": [ " issue_type score num_issues\n", - "0 label 0.931818 11" + "0 label 0.856061 17" ] }, "execution_count": 12, @@ -977,10 +1025,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.265659Z", - "iopub.status.busy": "2023-12-13T17:00:22.265318Z", - "iopub.status.idle": "2023-12-13T17:00:22.273828Z", - "shell.execute_reply": "2023-12-13T17:00:22.273271Z" + "iopub.execute_input": "2023-12-14T17:56:38.714391Z", + "iopub.status.busy": "2023-12-14T17:56:38.714196Z", + "iopub.status.idle": "2023-12-14T17:56:38.723674Z", + "shell.execute_reply": "2023-12-14T17:56:38.723140Z" } }, "outputs": [ @@ -1013,63 +1061,75 @@ " near_duplicate_score\n", " is_non_iid_issue\n", " non_iid_score\n", + " is_class_imbalance_issue\n", + " class_imbalance_score\n", " \n", " \n", " \n", " \n", " 0\n", " False\n", - " 0.864232\n", + " 0.859109\n", " False\n", " 0.586131\n", " False\n", " 0.235095\n", " False\n", " 0.970324\n", + " False\n", + " 1.0\n", " \n", " \n", " 1\n", " False\n", - " 0.825563\n", + " 0.816965\n", " False\n", " 0.548979\n", " False\n", " 0.221560\n", " False\n", " 0.890575\n", + " False\n", + " 1.0\n", " \n", " \n", " 2\n", " False\n", - " 0.533367\n", + " 0.530924\n", " False\n", " 0.622256\n", " False\n", " 0.199185\n", " False\n", " 0.826147\n", + " False\n", + " 1.0\n", " \n", " \n", " 3\n", " False\n", - " 0.755724\n", + " 0.752776\n", " False\n", " 0.499498\n", " False\n", " 0.179601\n", " False\n", " 0.948362\n", + " False\n", + " 1.0\n", " \n", " \n", " 4\n", " True\n", - " 0.133588\n", + " 0.090224\n", " False\n", " 0.632385\n", " False\n", " 0.292800\n", " False\n", " 0.878267\n", + " False\n", + " 1.0\n", " \n", " \n", "\n", @@ -1077,11 +1137,11 @@ ], "text/plain": [ " is_label_issue label_score is_outlier_issue outlier_score \\\n", - "0 False 0.864232 False 0.586131 \n", - "1 False 0.825563 False 0.548979 \n", - "2 False 0.533367 False 0.622256 \n", - "3 False 0.755724 False 0.499498 \n", - "4 True 0.133588 False 0.632385 \n", + "0 False 0.859109 False 0.586131 \n", + "1 False 0.816965 False 0.548979 \n", + "2 False 0.530924 False 0.622256 \n", + "3 False 0.752776 False 0.499498 \n", + "4 True 0.090224 False 0.632385 \n", "\n", " is_near_duplicate_issue near_duplicate_score is_non_iid_issue \\\n", "0 False 0.235095 False \n", @@ -1090,12 +1150,12 @@ "3 False 0.179601 False \n", "4 False 0.292800 False \n", "\n", - " non_iid_score \n", - "0 0.970324 \n", - "1 0.890575 \n", - "2 0.826147 \n", - "3 0.948362 \n", - "4 0.878267 " + " non_iid_score is_class_imbalance_issue class_imbalance_score \n", + "0 0.970324 False 1.0 \n", + "1 0.890575 False 1.0 \n", + "2 0.826147 False 1.0 \n", + "3 0.948362 False 1.0 \n", + "4 0.878267 False 1.0 " ] }, "execution_count": 13, @@ -1122,10 +1182,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.276308Z", - "iopub.status.busy": "2023-12-13T17:00:22.275849Z", - "iopub.status.idle": "2023-12-13T17:00:22.285634Z", - "shell.execute_reply": "2023-12-13T17:00:22.284997Z" + "iopub.execute_input": "2023-12-14T17:56:38.725945Z", + "iopub.status.busy": "2023-12-14T17:56:38.725746Z", + "iopub.status.idle": "2023-12-14T17:56:38.735380Z", + "shell.execute_reply": "2023-12-14T17:56:38.734861Z" } }, "outputs": [ @@ -1158,37 +1218,37 @@ " \n", " \n", " \n", - " 77\n", + " 7\n", " True\n", - " 0.006939\n", - " high\n", + " 0.008974\n", + " low\n", " mid\n", " \n", " \n", - " 7\n", + " 120\n", " True\n", - " 0.007830\n", - " low\n", + " 0.009699\n", + " high\n", " mid\n", " \n", " \n", " 40\n", " True\n", - " 0.014826\n", + " 0.013444\n", " mid\n", " low\n", " \n", " \n", " 107\n", " True\n", - " 0.021220\n", + " 0.025173\n", " high\n", " mid\n", " \n", " \n", - " 120\n", + " 53\n", " True\n", - " 0.026403\n", + " 0.026416\n", " high\n", " mid\n", " \n", @@ -1198,11 +1258,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "77 True 0.006939 high mid\n", - "7 True 0.007830 low mid\n", - "40 True 0.014826 mid low\n", - "107 True 0.021220 high mid\n", - "120 True 0.026403 high mid" + "7 True 0.008974 low mid\n", + "120 True 0.009699 high mid\n", + "40 True 0.013444 mid low\n", + "107 True 0.025173 high mid\n", + "53 True 0.026416 high mid" ] }, "execution_count": 14, @@ -1241,10 +1301,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.288036Z", - "iopub.status.busy": "2023-12-13T17:00:22.287693Z", - "iopub.status.idle": "2023-12-13T17:00:22.295297Z", - "shell.execute_reply": "2023-12-13T17:00:22.294765Z" + "iopub.execute_input": "2023-12-14T17:56:38.737888Z", + "iopub.status.busy": "2023-12-14T17:56:38.737507Z", + "iopub.status.idle": "2023-12-14T17:56:38.745120Z", + "shell.execute_reply": "2023-12-14T17:56:38.744507Z" }, "scrolled": true }, @@ -1282,33 +1342,43 @@ " \n", " \n", " 0\n", - " high\n", - " 0\n", - " 6\n", + " low\n", " 1\n", - " 0.206897\n", - " 0.041667\n", - " 0.793103\n", + " 12\n", + " 2\n", + " 0.428571\n", + " 0.111111\n", + " 0.571429\n", " \n", " \n", " 1\n", - " low\n", - " 1\n", + " high\n", + " 0\n", + " 11\n", " 2\n", - " 3\n", - " 0.071429\n", - " 0.103448\n", - " 0.928571\n", + " 0.407407\n", + " 0.111111\n", + " 0.592593\n", " \n", " \n", " 2\n", " mid\n", + " 3\n", + " 25\n", + " 5\n", + " 0.337838\n", + " 0.092593\n", + " 0.662162\n", + " \n", + " \n", + " 3\n", + " max\n", " 2\n", - " 4\n", - " 8\n", - " 0.053333\n", - " 0.101266\n", - " 0.946667\n", + " 1\n", + " 40\n", + " 0.333333\n", + " 0.952381\n", + " 0.666667\n", " \n", " \n", "\n", @@ -1316,14 +1386,16 @@ ], "text/plain": [ " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", - "0 high 0 6 1 0.206897 \n", - "1 low 1 2 3 0.071429 \n", - "2 mid 2 4 8 0.053333 \n", + "0 low 1 12 2 0.428571 \n", + "1 high 0 11 2 0.407407 \n", + "2 mid 3 25 5 0.337838 \n", + "3 max 2 1 40 0.333333 \n", "\n", " Inverse Label Noise Label Quality Score \n", - "0 0.041667 0.793103 \n", - "1 0.103448 0.928571 \n", - "2 0.101266 0.946667 " + "0 0.111111 0.571429 \n", + "1 0.111111 0.592593 \n", + "2 0.092593 0.662162 \n", + "3 0.952381 0.666667 " ] }, "execution_count": 15, @@ -1357,10 +1429,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.297686Z", - "iopub.status.busy": "2023-12-13T17:00:22.297299Z", - "iopub.status.idle": "2023-12-13T17:00:22.307508Z", - "shell.execute_reply": "2023-12-13T17:00:22.306966Z" + "iopub.execute_input": "2023-12-14T17:56:38.747453Z", + "iopub.status.busy": "2023-12-14T17:56:38.747111Z", + "iopub.status.idle": "2023-12-14T17:56:38.757181Z", + "shell.execute_reply": "2023-12-14T17:56:38.756582Z" } }, "outputs": [ @@ -1447,6 +1519,89 @@ "lab.get_issues(\"near_duplicate\").query(\"is_near_duplicate_issue\").sort_values(\"near_duplicate_score\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Class Imbalance Issues \n", + "\n", + "Let's inspect the examples that are flagged to have class imbalance issue. \n", + "Each example below has been assigned the *rarest class label* in the dataset. The `class_imbalance_score` is the proportion of examples belonging to the rarest class. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2023-12-14T17:56:38.759602Z", + "iopub.status.busy": "2023-12-14T17:56:38.759261Z", + "iopub.status.idle": "2023-12-14T17:56:38.766741Z", + "shell.execute_reply": "2023-12-14T17:56:38.766218Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "

" + ], + "text/plain": [ + " is_class_imbalance_issue class_imbalance_score\n", + "8 True 0.022727\n", + "58 True 0.022727\n", + "77 True 0.022727" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issues(\"class_imbalance\").query(\"is_class_imbalance_issue\").sort_values(\"class_imbalance_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 4cbd898a7..8cd7492e4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:27.190185Z", - "iopub.status.busy": "2023-12-13T17:00:27.189990Z", - "iopub.status.idle": "2023-12-13T17:00:28.204885Z", - "shell.execute_reply": "2023-12-13T17:00:28.204218Z" + "iopub.execute_input": "2023-12-14T17:56:43.657283Z", + "iopub.status.busy": "2023-12-14T17:56:43.657082Z", + "iopub.status.idle": "2023-12-14T17:56:44.671407Z", + "shell.execute_reply": "2023-12-14T17:56:44.670796Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.207546Z", - "iopub.status.busy": "2023-12-13T17:00:28.207248Z", - "iopub.status.idle": "2023-12-13T17:00:28.224008Z", - "shell.execute_reply": "2023-12-13T17:00:28.223523Z" + "iopub.execute_input": "2023-12-14T17:56:44.674341Z", + "iopub.status.busy": "2023-12-14T17:56:44.673904Z", + "iopub.status.idle": "2023-12-14T17:56:44.690571Z", + "shell.execute_reply": "2023-12-14T17:56:44.690058Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.226323Z", - "iopub.status.busy": "2023-12-13T17:00:28.226122Z", - "iopub.status.idle": "2023-12-13T17:00:28.395571Z", - "shell.execute_reply": "2023-12-13T17:00:28.395033Z" + "iopub.execute_input": "2023-12-14T17:56:44.693128Z", + "iopub.status.busy": "2023-12-14T17:56:44.692765Z", + "iopub.status.idle": "2023-12-14T17:56:44.888229Z", + "shell.execute_reply": "2023-12-14T17:56:44.887741Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.397873Z", - "iopub.status.busy": "2023-12-13T17:00:28.397673Z", - "iopub.status.idle": "2023-12-13T17:00:28.401373Z", - "shell.execute_reply": "2023-12-13T17:00:28.400875Z" + "iopub.execute_input": "2023-12-14T17:56:44.890666Z", + "iopub.status.busy": "2023-12-14T17:56:44.890303Z", + "iopub.status.idle": "2023-12-14T17:56:44.893968Z", + "shell.execute_reply": "2023-12-14T17:56:44.893428Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.403866Z", - "iopub.status.busy": "2023-12-13T17:00:28.403424Z", - "iopub.status.idle": "2023-12-13T17:00:28.411561Z", - "shell.execute_reply": "2023-12-13T17:00:28.410938Z" + "iopub.execute_input": "2023-12-14T17:56:44.896476Z", + "iopub.status.busy": "2023-12-14T17:56:44.896019Z", + "iopub.status.idle": "2023-12-14T17:56:44.904104Z", + "shell.execute_reply": "2023-12-14T17:56:44.903609Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.414534Z", - "iopub.status.busy": "2023-12-13T17:00:28.414071Z", - "iopub.status.idle": "2023-12-13T17:00:28.416964Z", - "shell.execute_reply": "2023-12-13T17:00:28.416332Z" + "iopub.execute_input": "2023-12-14T17:56:44.906876Z", + "iopub.status.busy": "2023-12-14T17:56:44.906350Z", + "iopub.status.idle": "2023-12-14T17:56:44.909338Z", + "shell.execute_reply": "2023-12-14T17:56:44.908825Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.419264Z", - "iopub.status.busy": "2023-12-13T17:00:28.418908Z", - "iopub.status.idle": "2023-12-13T17:00:32.048360Z", - "shell.execute_reply": "2023-12-13T17:00:32.047716Z" + "iopub.execute_input": "2023-12-14T17:56:44.911557Z", + "iopub.status.busy": "2023-12-14T17:56:44.911363Z", + "iopub.status.idle": "2023-12-14T17:56:48.485677Z", + "shell.execute_reply": "2023-12-14T17:56:48.485007Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:32.051592Z", - "iopub.status.busy": "2023-12-13T17:00:32.051129Z", - "iopub.status.idle": "2023-12-13T17:00:32.061537Z", - "shell.execute_reply": "2023-12-13T17:00:32.061025Z" + "iopub.execute_input": "2023-12-14T17:56:48.488476Z", + "iopub.status.busy": "2023-12-14T17:56:48.488268Z", + "iopub.status.idle": "2023-12-14T17:56:48.498046Z", + "shell.execute_reply": "2023-12-14T17:56:48.497556Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:32.064158Z", - "iopub.status.busy": "2023-12-13T17:00:32.063698Z", - "iopub.status.idle": "2023-12-13T17:00:33.407922Z", - "shell.execute_reply": "2023-12-13T17:00:33.407182Z" + "iopub.execute_input": "2023-12-14T17:56:48.500380Z", + "iopub.status.busy": "2023-12-14T17:56:48.500180Z", + "iopub.status.idle": "2023-12-14T17:56:49.808419Z", + "shell.execute_reply": "2023-12-14T17:56:49.807684Z" } }, "outputs": [ @@ -457,6 +457,7 @@ "Finding outlier issues ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 358 issues found in the dataset.\n" ] @@ -474,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.411389Z", - "iopub.status.busy": "2023-12-13T17:00:33.410778Z", - "iopub.status.idle": "2023-12-13T17:00:33.432516Z", - "shell.execute_reply": "2023-12-13T17:00:33.431938Z" + "iopub.execute_input": "2023-12-14T17:56:49.811953Z", + "iopub.status.busy": "2023-12-14T17:56:49.811289Z", + "iopub.status.idle": "2023-12-14T17:56:49.835809Z", + "shell.execute_reply": "2023-12-14T17:56:49.835225Z" }, "scrolled": true }, @@ -488,11 +489,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 294\n", - " outlier 46\n", - "near_duplicate 17\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 294\n", + " outlier 46\n", + " near_duplicate 17\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 941, num_classes: 5\n", "\n", @@ -580,7 +582,24 @@ "898 False 0.740335\n", "\n", "Additional Information: \n", - "p-value: 0.0014153602099278074\n" + "p-value: 0.0014153602099278074\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1562\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "619 False 1.0\n", + "620 False 1.0\n", + "621 False 1.0\n", + "622 False 1.0\n" ] } ], @@ -602,10 +621,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.435420Z", - "iopub.status.busy": "2023-12-13T17:00:33.435044Z", - "iopub.status.idle": "2023-12-13T17:00:33.444808Z", - "shell.execute_reply": "2023-12-13T17:00:33.444206Z" + "iopub.execute_input": "2023-12-14T17:56:49.838906Z", + "iopub.status.busy": "2023-12-14T17:56:49.838532Z", + "iopub.status.idle": "2023-12-14T17:56:49.848528Z", + "shell.execute_reply": "2023-12-14T17:56:49.847942Z" } }, "outputs": [ @@ -709,10 +728,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.447633Z", - "iopub.status.busy": "2023-12-13T17:00:33.447263Z", - "iopub.status.idle": "2023-12-13T17:00:33.458899Z", - "shell.execute_reply": "2023-12-13T17:00:33.458327Z" + "iopub.execute_input": "2023-12-14T17:56:49.851645Z", + "iopub.status.busy": "2023-12-14T17:56:49.851270Z", + "iopub.status.idle": "2023-12-14T17:56:49.862948Z", + "shell.execute_reply": "2023-12-14T17:56:49.862371Z" } }, "outputs": [ @@ -841,10 +860,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.462803Z", - "iopub.status.busy": "2023-12-13T17:00:33.461672Z", - "iopub.status.idle": "2023-12-13T17:00:33.484608Z", - "shell.execute_reply": "2023-12-13T17:00:33.483243Z" + "iopub.execute_input": "2023-12-14T17:56:49.866121Z", + "iopub.status.busy": "2023-12-14T17:56:49.865748Z", + "iopub.status.idle": "2023-12-14T17:56:49.875598Z", + "shell.execute_reply": "2023-12-14T17:56:49.875025Z" } }, "outputs": [ @@ -958,10 +977,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.489513Z", - "iopub.status.busy": "2023-12-13T17:00:33.488366Z", - "iopub.status.idle": "2023-12-13T17:00:33.502327Z", - "shell.execute_reply": "2023-12-13T17:00:33.501835Z" + "iopub.execute_input": "2023-12-14T17:56:49.878792Z", + "iopub.status.busy": "2023-12-14T17:56:49.878422Z", + "iopub.status.idle": "2023-12-14T17:56:49.889928Z", + "shell.execute_reply": "2023-12-14T17:56:49.889336Z" } }, "outputs": [ @@ -1072,10 +1091,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.504786Z", - "iopub.status.busy": "2023-12-13T17:00:33.504443Z", - "iopub.status.idle": "2023-12-13T17:00:33.511692Z", - "shell.execute_reply": "2023-12-13T17:00:33.511162Z" + "iopub.execute_input": "2023-12-14T17:56:49.893864Z", + "iopub.status.busy": "2023-12-14T17:56:49.892713Z", + "iopub.status.idle": "2023-12-14T17:56:49.902220Z", + "shell.execute_reply": "2023-12-14T17:56:49.901741Z" } }, "outputs": [ @@ -1159,10 +1178,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.514113Z", - "iopub.status.busy": "2023-12-13T17:00:33.513914Z", - "iopub.status.idle": "2023-12-13T17:00:33.520774Z", - "shell.execute_reply": "2023-12-13T17:00:33.520131Z" + "iopub.execute_input": "2023-12-14T17:56:49.905674Z", + "iopub.status.busy": "2023-12-14T17:56:49.904630Z", + "iopub.status.idle": "2023-12-14T17:56:49.911718Z", + "shell.execute_reply": "2023-12-14T17:56:49.911252Z" } }, "outputs": [ @@ -1246,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.523344Z", - "iopub.status.busy": "2023-12-13T17:00:33.522927Z", - "iopub.status.idle": "2023-12-13T17:00:33.529852Z", - "shell.execute_reply": "2023-12-13T17:00:33.529240Z" + "iopub.execute_input": "2023-12-14T17:56:49.914634Z", + "iopub.status.busy": "2023-12-14T17:56:49.913641Z", + "iopub.status.idle": "2023-12-14T17:56:49.921398Z", + "shell.execute_reply": "2023-12-14T17:56:49.920887Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index ea5c5ef6c..0718cbc4a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:38.238188Z", - "iopub.status.busy": "2023-12-13T17:00:38.237995Z", - "iopub.status.idle": "2023-12-13T17:00:40.527546Z", - "shell.execute_reply": "2023-12-13T17:00:40.526939Z" + "iopub.execute_input": "2023-12-14T17:56:54.750128Z", + "iopub.status.busy": "2023-12-14T17:56:54.749936Z", + "iopub.status.idle": "2023-12-14T17:56:56.957416Z", + "shell.execute_reply": "2023-12-14T17:56:56.956799Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4635d30f58e343b49bd1a0c28ea41086", + "model_id": "f869f04c558448168588593c53059c38", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.530394Z", - "iopub.status.busy": "2023-12-13T17:00:40.530061Z", - "iopub.status.idle": "2023-12-13T17:00:40.533707Z", - "shell.execute_reply": "2023-12-13T17:00:40.533070Z" + "iopub.execute_input": "2023-12-14T17:56:56.960473Z", + "iopub.status.busy": "2023-12-14T17:56:56.959945Z", + "iopub.status.idle": "2023-12-14T17:56:56.963427Z", + "shell.execute_reply": "2023-12-14T17:56:56.962906Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.536287Z", - "iopub.status.busy": "2023-12-13T17:00:40.535843Z", - "iopub.status.idle": "2023-12-13T17:00:40.539278Z", - "shell.execute_reply": "2023-12-13T17:00:40.538582Z" + "iopub.execute_input": "2023-12-14T17:56:56.965709Z", + "iopub.status.busy": "2023-12-14T17:56:56.965327Z", + "iopub.status.idle": "2023-12-14T17:56:56.968663Z", + "shell.execute_reply": "2023-12-14T17:56:56.968057Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.541640Z", - "iopub.status.busy": "2023-12-13T17:00:40.541439Z", - "iopub.status.idle": "2023-12-13T17:00:40.698350Z", - "shell.execute_reply": "2023-12-13T17:00:40.697721Z" + "iopub.execute_input": "2023-12-14T17:56:56.971146Z", + "iopub.status.busy": "2023-12-14T17:56:56.970719Z", + "iopub.status.idle": "2023-12-14T17:56:57.155053Z", + "shell.execute_reply": "2023-12-14T17:56:57.154444Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.700795Z", - "iopub.status.busy": "2023-12-13T17:00:40.700341Z", - "iopub.status.idle": "2023-12-13T17:00:40.704572Z", - "shell.execute_reply": "2023-12-13T17:00:40.703950Z" + "iopub.execute_input": "2023-12-14T17:56:57.157627Z", + "iopub.status.busy": "2023-12-14T17:56:57.157234Z", + "iopub.status.idle": "2023-12-14T17:56:57.161211Z", + "shell.execute_reply": "2023-12-14T17:56:57.160584Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone'}\n" + "Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.706985Z", - "iopub.status.busy": "2023-12-13T17:00:40.706631Z", - "iopub.status.idle": "2023-12-13T17:00:40.709754Z", - "shell.execute_reply": "2023-12-13T17:00:40.709124Z" + "iopub.execute_input": "2023-12-14T17:56:57.163603Z", + "iopub.status.busy": "2023-12-14T17:56:57.163217Z", + "iopub.status.idle": "2023-12-14T17:56:57.167015Z", + "shell.execute_reply": "2023-12-14T17:56:57.166480Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.712203Z", - "iopub.status.busy": "2023-12-13T17:00:40.711914Z", - "iopub.status.idle": "2023-12-13T17:00:50.013985Z", - "shell.execute_reply": "2023-12-13T17:00:50.013358Z" + "iopub.execute_input": "2023-12-14T17:56:57.169658Z", + "iopub.status.busy": "2023-12-14T17:56:57.169215Z", + "iopub.status.idle": "2023-12-14T17:57:08.247514Z", + "shell.execute_reply": "2023-12-14T17:57:08.246862Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ade63d337c42430aab512ff6d2e9fa86", + "model_id": "5a31c7b4dc4f492d9f86115ab8577bb5", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "deea84b1c6d044cebee3018df441ffa1", + "model_id": "60c8df6502984a62ae59c76dcc7fa9ac", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f4b39508ea314bdc8e50059de6ed1afc", + "model_id": "06bf58e6bb2e495fbfc5811e9e755646", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "489eca71f3cb4fccb53d1364bad1c0f1", + "model_id": "5cacc41592b74393a8c3f3d798b0278d", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7618f73e108545e19ec52ca356a62f52", + "model_id": "0ee2d9246b6f4f6d902232a81b6e5f08", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2a92542fd8749e4aec7645ddf0a07ee", + "model_id": "0841369124434d6f9690c32240fd879d", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abd842d675ac44b1b45f9191e7860fd6", + "model_id": "6b19cafd24984e16977031581bcbcd70", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:50.017381Z", - "iopub.status.busy": "2023-12-13T17:00:50.016946Z", - "iopub.status.idle": "2023-12-13T17:00:51.190437Z", - "shell.execute_reply": "2023-12-13T17:00:51.189768Z" + "iopub.execute_input": "2023-12-14T17:57:08.250812Z", + "iopub.status.busy": "2023-12-14T17:57:08.250572Z", + "iopub.status.idle": "2023-12-14T17:57:09.453037Z", + "shell.execute_reply": "2023-12-14T17:57:09.452357Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:51.195140Z", - "iopub.status.busy": "2023-12-13T17:00:51.193953Z", - "iopub.status.idle": "2023-12-13T17:00:51.198586Z", - "shell.execute_reply": "2023-12-13T17:00:51.198010Z" + "iopub.execute_input": "2023-12-14T17:57:09.456611Z", + "iopub.status.busy": "2023-12-14T17:57:09.456148Z", + "iopub.status.idle": "2023-12-14T17:57:09.459310Z", + "shell.execute_reply": "2023-12-14T17:57:09.458745Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:51.202967Z", - "iopub.status.busy": "2023-12-13T17:00:51.201837Z", - "iopub.status.idle": "2023-12-13T17:00:52.505476Z", - "shell.execute_reply": "2023-12-13T17:00:52.504677Z" + "iopub.execute_input": "2023-12-14T17:57:09.462205Z", + "iopub.status.busy": "2023-12-14T17:57:09.461792Z", + "iopub.status.idle": "2023-12-14T17:57:10.766591Z", + "shell.execute_reply": "2023-12-14T17:57:10.765833Z" }, "scrolled": true }, @@ -616,6 +616,7 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 84 issues found in the dataset.\n" ] @@ -638,10 +639,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.509110Z", - "iopub.status.busy": "2023-12-13T17:00:52.508426Z", - "iopub.status.idle": "2023-12-13T17:00:52.530896Z", - "shell.execute_reply": "2023-12-13T17:00:52.530311Z" + "iopub.execute_input": "2023-12-14T17:57:10.770483Z", + "iopub.status.busy": "2023-12-14T17:57:10.769766Z", + "iopub.status.idle": "2023-12-14T17:57:10.794627Z", + "shell.execute_reply": "2023-12-14T17:57:10.794043Z" }, "scrolled": true }, @@ -652,11 +653,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 41\n", - " outlier 38\n", - "near_duplicate 4\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 41\n", + " outlier 38\n", + " near_duplicate 4\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 1000, num_classes: 10\n", "\n", @@ -744,7 +746,24 @@ "40 False 0.575874\n", "\n", "Additional Information: \n", - "p-value: 0.0\n" + "p-value: 0.0\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.0800\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "658 False 1.0\n", + "659 False 1.0\n", + "660 False 1.0\n", + "661 False 1.0\n" ] } ], @@ -766,10 +785,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.533982Z", - "iopub.status.busy": "2023-12-13T17:00:52.533608Z", - "iopub.status.idle": "2023-12-13T17:00:52.543783Z", - "shell.execute_reply": "2023-12-13T17:00:52.543196Z" + "iopub.execute_input": "2023-12-14T17:57:10.797756Z", + "iopub.status.busy": "2023-12-14T17:57:10.797365Z", + "iopub.status.idle": "2023-12-14T17:57:10.807589Z", + "shell.execute_reply": "2023-12-14T17:57:10.807024Z" }, "scrolled": true }, @@ -879,10 +898,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.546940Z", - "iopub.status.busy": "2023-12-13T17:00:52.546568Z", - "iopub.status.idle": "2023-12-13T17:00:52.551612Z", - "shell.execute_reply": "2023-12-13T17:00:52.551037Z" + "iopub.execute_input": "2023-12-14T17:57:10.810599Z", + "iopub.status.busy": "2023-12-14T17:57:10.810181Z", + "iopub.status.idle": "2023-12-14T17:57:10.815359Z", + "shell.execute_reply": "2023-12-14T17:57:10.814785Z" } }, "outputs": [ @@ -920,10 +939,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.554461Z", - "iopub.status.busy": "2023-12-13T17:00:52.554084Z", - "iopub.status.idle": "2023-12-13T17:00:52.561996Z", - "shell.execute_reply": "2023-12-13T17:00:52.561415Z" + "iopub.execute_input": "2023-12-14T17:57:10.818224Z", + "iopub.status.busy": "2023-12-14T17:57:10.817776Z", + "iopub.status.idle": "2023-12-14T17:57:10.826154Z", + "shell.execute_reply": "2023-12-14T17:57:10.825511Z" } }, "outputs": [ @@ -1040,10 +1059,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.565146Z", - "iopub.status.busy": "2023-12-13T17:00:52.564768Z", - "iopub.status.idle": "2023-12-13T17:00:52.570805Z", - "shell.execute_reply": "2023-12-13T17:00:52.570356Z" + "iopub.execute_input": "2023-12-14T17:57:10.828287Z", + "iopub.status.busy": "2023-12-14T17:57:10.828094Z", + "iopub.status.idle": "2023-12-14T17:57:10.834780Z", + "shell.execute_reply": "2023-12-14T17:57:10.834172Z" } }, "outputs": [ @@ -1126,10 +1145,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.572912Z", - "iopub.status.busy": "2023-12-13T17:00:52.572614Z", - "iopub.status.idle": "2023-12-13T17:00:52.578432Z", - "shell.execute_reply": "2023-12-13T17:00:52.577823Z" + "iopub.execute_input": "2023-12-14T17:57:10.836797Z", + "iopub.status.busy": "2023-12-14T17:57:10.836605Z", + "iopub.status.idle": "2023-12-14T17:57:10.842912Z", + "shell.execute_reply": "2023-12-14T17:57:10.842285Z" } }, "outputs": [ @@ -1237,10 +1256,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.580814Z", - "iopub.status.busy": "2023-12-13T17:00:52.580379Z", - "iopub.status.idle": "2023-12-13T17:00:52.589661Z", - "shell.execute_reply": "2023-12-13T17:00:52.589052Z" + "iopub.execute_input": "2023-12-14T17:57:10.845043Z", + "iopub.status.busy": "2023-12-14T17:57:10.844845Z", + "iopub.status.idle": "2023-12-14T17:57:10.854169Z", + "shell.execute_reply": "2023-12-14T17:57:10.853522Z" } }, "outputs": [ @@ -1351,10 +1370,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.592246Z", - "iopub.status.busy": "2023-12-13T17:00:52.591816Z", - "iopub.status.idle": "2023-12-13T17:00:52.597586Z", - "shell.execute_reply": "2023-12-13T17:00:52.596977Z" + "iopub.execute_input": "2023-12-14T17:57:10.856358Z", + "iopub.status.busy": "2023-12-14T17:57:10.856160Z", + "iopub.status.idle": "2023-12-14T17:57:10.861961Z", + "shell.execute_reply": "2023-12-14T17:57:10.861297Z" } }, "outputs": [ @@ -1422,10 +1441,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.599758Z", - "iopub.status.busy": "2023-12-13T17:00:52.599429Z", - "iopub.status.idle": "2023-12-13T17:00:52.605130Z", - "shell.execute_reply": "2023-12-13T17:00:52.604477Z" + "iopub.execute_input": "2023-12-14T17:57:10.864223Z", + "iopub.status.busy": "2023-12-14T17:57:10.863878Z", + "iopub.status.idle": "2023-12-14T17:57:10.869642Z", + "shell.execute_reply": "2023-12-14T17:57:10.868997Z" } }, "outputs": [ @@ -1503,10 +1522,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.607886Z", - "iopub.status.busy": "2023-12-13T17:00:52.607431Z", - "iopub.status.idle": "2023-12-13T17:00:52.613040Z", - "shell.execute_reply": "2023-12-13T17:00:52.612441Z" + "iopub.execute_input": "2023-12-14T17:57:10.872043Z", + "iopub.status.busy": "2023-12-14T17:57:10.871706Z", + "iopub.status.idle": "2023-12-14T17:57:10.877308Z", + "shell.execute_reply": "2023-12-14T17:57:10.876670Z" }, "nbsphinx": "hidden" }, @@ -1556,7 +1575,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0520df0cb529430bb110adcb2aee6966": { + "01390c41edcb4a15a07f9a7a69e01640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1571,28 +1590,57 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff518ed57fdf46199744629476f70a04", + "layout": "IPY_MODEL_91676c2d6dcb4ddcb1233e13c621e43b", "placeholder": "​", - "style": "IPY_MODEL_d1fbad944853442bbd26ed11260ff72a", - "value": "tokenizer.json: 100%" + "style": "IPY_MODEL_f1393a2a3fa44caeab800dacc8b0e5a5", + "value": " 466k/466k [00:00<00:00, 27.6MB/s]" } }, - "0f93bb91aad740e3a71f3182fe15e4f6": { + "06bf58e6bb2e495fbfc5811e9e755646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa8d89c514024549b642be6c79c62bbb", + "IPY_MODEL_a6fb11bdd68f426da493fce6d687b23a", + "IPY_MODEL_a201a942b586447a9aa80c9d476ab314" + ], + "layout": "IPY_MODEL_27318de3d8014f9f8e62d7ecca08d313" + } + }, + "0841369124434d6f9690c32240fd879d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2735695f1c3e4301be295606df3e5000", + "IPY_MODEL_cb5965277a964592b931cd10b6041443", + "IPY_MODEL_5ff4f46e29ce49f68fd22f4093a2d439" + ], + "layout": "IPY_MODEL_efd787033326410eb01a9b16358eaf35" } }, - "11fe7fba62004878a81decfb4f4aaaa6": { + "0aaa74341404488a843ac4ec2ae99d87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1644,7 +1692,7 @@ "width": null } }, - "1262696646774b34bdaaac77290a6a81": { + "0dcd81afd6b04d6fa45e5a964a5439d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1696,7 +1744,80 @@ "width": null } }, - "15eb001670f64dbd9e1f2260b0f1d060": { + "0ee2d9246b6f4f6d902232a81b6e5f08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8476619711b641a9b5f38a6a1e7888a1", + "IPY_MODEL_e0678ca3f2fb4f9f85b34cc4b9105782", + "IPY_MODEL_01390c41edcb4a15a07f9a7a69e01640" + ], + "layout": "IPY_MODEL_1b1d56febd49416e961eb3834985460c" + } + }, + "0f265254a2334f379a7cd1c422de6bdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0f6eca82b6594a06a234c196f129c7d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_404b65b720484e29beafcedb70c5309d", + "placeholder": "​", + "style": "IPY_MODEL_a2b7a76cced7460bb83b55c5113efa6b", + "value": "README.md: 100%" + } + }, + "131415acc2cc467ca697cb016f051df3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "145497d3ea254ec59fcbffb8a4599597": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1748,31 +1869,7 @@ "width": null } }, - "161c9be58c784b5188c4541f7565a4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8f34372958be48e39a80b97ec8caa77f", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7b80376f9614f56a421461699c100d2", - "value": 466062.0 - } - }, - "1816e201b2ef47a88c620483c42cb738": { + "1b1d56febd49416e961eb3834985460c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1824,108 +1921,7 @@ "width": null } }, - "24b49954bb1948b2a276ee21aed9e3a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fbba1a4667e463eb7a5734592f88a50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fe7bfc1eccf4ece82278efefdb032f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "311d30e8d6154509b73fa92ab8f5dc0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "350822cf924943eb8e02ef480bfd1790": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6d6f0960e6204466aac56bfe811c2034", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a91300676e954582acf2db392aa56acb", - "value": 231508.0 - } - }, - "38f06f02562f42e992015651c5d32d25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3f501cd80b5f4a91ab455a50adf75f17": { + "1c01a283e9f24379a5e8cbcd99d5dd9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1977,7 +1973,38 @@ "width": null } }, - "42f67ff164864848a49ef7d8fa31f66b": { + "1eda8f57443143a3847994ccaab74230": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f5fe7ef6efc4b4a95c2548d36e9ce04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "27318de3d8014f9f8e62d7ecca08d313": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2029,7 +2056,7 @@ "width": null } }, - "433930143318460a8975f2e413073c03": { + "2735695f1c3e4301be295606df3e5000": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2044,72 +2071,58 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e274cc872fcf4fc4850e853a25b7e7e7", + "layout": "IPY_MODEL_77a4e8321bec472eb93f476e6cd9b039", "placeholder": "​", - "style": "IPY_MODEL_ab522d10b9ad4923a26d503a8d0ac706", - "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" + "style": "IPY_MODEL_6d665be3b8394f9bba08db6a57d3826f", + "value": "tokenizer_config.json: 100%" } }, - "4635d30f58e343b49bd1a0c28ea41086": { + "2833b8220ce846a3aeba7e7b79301e47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c361d7a82f824cbea4d39d723caa8a57", - "IPY_MODEL_59f74d1d56b446c282a59b86e53af7af", - "IPY_MODEL_b75aacd4740143429e65a8009c58d6a8" - ], - "layout": "IPY_MODEL_7889d87deadf4590bb7b2ddd17d48058" - } - }, - "477091a84aee4d42a10d4a4bfa9fc5a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44cc0881f93948aca031a7eecde18e59", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d08ad8fcec7244f5bec8a48cc92398c4", + "value": 2211.0 } }, - "489eca71f3cb4fccb53d1364bad1c0f1": { + "2a22549242d94824b156781e28215fa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c06c7f6f22dd4438a8023fadd6e94685", - "IPY_MODEL_cb6caced3c1644c9b5a0ac2ebefd3c43", - "IPY_MODEL_952a1086c39848dfb74ceacd08c8dd72" - ], - "layout": "IPY_MODEL_d763bc36e1954d1da06a694596e13602" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fbe01456c95d44ccbe6db82871a6cb9c", + "placeholder": "​", + "style": "IPY_MODEL_1eda8f57443143a3847994ccaab74230", + "value": "" } }, - "516f26fa363d452eb25037d6f35183bf": { + "3072bf43afae4439a43dd00c596b1286": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2158,10 +2171,50 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "32ce411af858442b995a2e5303bbb41d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0dcd81afd6b04d6fa45e5a964a5439d6", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_69d111b95fca4b0cb2155363d99d7bc4", + "value": 391.0 } }, - "54d56851944149e885d7828f9bd6ad46": { + "36fb1ab7a53d4f9d97a670aaa2265ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3b2f90361d7c42878905914559652b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2213,7 +2266,7 @@ "width": null } }, - "572679faabc24d2f83b4d28bd281c5fa": { + "404b65b720484e29beafcedb70c5309d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2265,98 +2318,7 @@ "width": null } }, - "599fe68688b84a1ba42abac9aa545549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59f74d1d56b446c282a59b86e53af7af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_516f26fa363d452eb25037d6f35183bf", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5f865c0ad28a48d38e967835ad21ee02", - "value": 0.0 - } - }, - "5a8acd15e11e4f2e8ec8efcac153890d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5ac109ca2f2f40aea3fa370e99dc7d3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15eb001670f64dbd9e1f2260b0f1d060", - "placeholder": "​", - "style": "IPY_MODEL_0f93bb91aad740e3a71f3182fe15e4f6", - "value": "README.md: 100%" - } - }, - "5f865c0ad28a48d38e967835ad21ee02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "63748e79a7084c728b31a6774b48a69c": { + "40558bdb649f4d90beb106c145365a8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2408,55 +2370,7 @@ "width": null } }, - "66b79cefd0e445a7a2edfef89972982c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_63748e79a7084c728b31a6774b48a69c", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_311d30e8d6154509b73fa92ab8f5dc0a", - "value": 29.0 - } - }, - "6951369b36924f0680dc1a7e19fe567e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f63eeb07947a430b991e520edeb17f99", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c32a2403ee034e17ba7ff59a20e277e3", - "value": 2211.0 - } - }, - "6d3ccc69c3e747f893a8306a6c3d6732": { + "431cc8999c0544df9e20dc91e334e9b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2508,7 +2422,7 @@ "width": null } }, - "6d6f0960e6204466aac56bfe811c2034": { + "44cc0881f93948aca031a7eecde18e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2560,7 +2474,222 @@ "width": null } }, - "6fe87329593c45d3becb6182ad8592dc": { + "46c951daaf694da984a41426476ab4c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40558bdb649f4d90beb106c145365a8d", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c1753f1b46246aaa381bacdcfb0eac4", + "value": 231508.0 + } + }, + "46eed859d54b461d82d84d4d326eed1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e04930e0b2a34c809f327d89d672a665", + "placeholder": "​", + "style": "IPY_MODEL_0f265254a2334f379a7cd1c422de6bdd", + "value": " 232k/232k [00:00<00:00, 12.9MB/s]" + } + }, + "48abc23013dd4288a7a78cb3d8387e10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ae9ba4bb5d648c29c0544c17a84932c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdad864ff4324dcf9377c0d014b35031", + "placeholder": "​", + "style": "IPY_MODEL_8f5e3b10d67e4a1faf8947a4aa8b3856", + "value": " 54.2M/54.2M [00:01<00:00, 31.9MB/s]" + } + }, + "55ff8c7ab23047f2884c690e2a768099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a31c7b4dc4f492d9f86115ab8577bb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_db0760ce1e76407f92680d4c68df6351", + "IPY_MODEL_32ce411af858442b995a2e5303bbb41d", + "IPY_MODEL_7008ba5905bb42cf8538acebf072a797" + ], + "layout": "IPY_MODEL_86a96ab8c2d847c691750b142c5c7298" + } + }, + "5a9535bd9e80483d9bae25a6a6a64238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5c1753f1b46246aaa381bacdcfb0eac4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5cacc41592b74393a8c3f3d798b0278d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84bc13e1ba894795b9fb392e58f53a15", + "IPY_MODEL_a3bc4404d2d14aa692805e7278e15897", + "IPY_MODEL_4ae9ba4bb5d648c29c0544c17a84932c" + ], + "layout": "IPY_MODEL_e4c799652b304befa3db6f72d911700f" + } + }, + "5ff4f46e29ce49f68fd22f4093a2d439": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c1863f7fdcd41adbb01224e989fb378", + "placeholder": "​", + "style": "IPY_MODEL_6cee7d0d611d4f8a91d846865270219c", + "value": " 29.0/29.0 [00:00<00:00, 3.91kB/s]" + } + }, + "60c8df6502984a62ae59c76dcc7fa9ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f6eca82b6594a06a234c196f129c7d9", + "IPY_MODEL_2833b8220ce846a3aeba7e7b79301e47", + "IPY_MODEL_c06dd9e01ed34002b3c5f0813c64fb06" + ], + "layout": "IPY_MODEL_3072bf43afae4439a43dd00c596b1286" + } + }, + "65880edcf2164a1fa1024b3a28c144bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2612,7 +2741,45 @@ "width": null } }, - "728819d15c464d4a8c67264dd3052d1b": { + "69d111b95fca4b0cb2155363d99d7bc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6b19cafd24984e16977031581bcbcd70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87c70e0e85ec4bb79ae7ad87d76f6795", + "IPY_MODEL_46c951daaf694da984a41426476ab4c4", + "IPY_MODEL_46eed859d54b461d82d84d4d326eed1c" + ], + "layout": "IPY_MODEL_1c01a283e9f24379a5e8cbcd99d5dd9e" + } + }, + "6cee7d0d611d4f8a91d846865270219c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2627,7 +2794,7 @@ "description_width": "" } }, - "75f19f4a474341da965fd4ad38d181fb": { + "6d665be3b8394f9bba08db6a57d3826f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2642,29 +2809,28 @@ "description_width": "" } }, - "7618f73e108545e19ec52ca356a62f52": { + "7008ba5905bb42cf8538acebf072a797": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0520df0cb529430bb110adcb2aee6966", - "IPY_MODEL_161c9be58c784b5188c4541f7565a4b9", - "IPY_MODEL_e68322704dc2412d953a7977a2ac6c2b" - ], - "layout": "IPY_MODEL_b93c2205a740472c8b94d79f634f2798" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_145497d3ea254ec59fcbffb8a4599597", + "placeholder": "​", + "style": "IPY_MODEL_48abc23013dd4288a7a78cb3d8387e10", + "value": " 391/391 [00:00<00:00, 50.6kB/s]" } }, - "7889d87deadf4590bb7b2ddd17d48058": { + "77a4e8321bec472eb93f476e6cd9b039": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2704,40 +2870,19 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7b1b2235feac4ff1999218df5d0da8c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_572679faabc24d2f83b4d28bd281c5fa", - "placeholder": "​", - "style": "IPY_MODEL_2fbba1a4667e463eb7a5734592f88a50", - "value": "config.json: 100%" + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "84cd5db2bfeb4dab81e9e5031654bc99": { + "7c1863f7fdcd41adbb01224e989fb378": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2789,28 +2934,7 @@ "width": null } }, - "8caf0a4bd43c4c97821bd485aeb04940": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_42f67ff164864848a49ef7d8fa31f66b", - "placeholder": "​", - "style": "IPY_MODEL_ef867703a6364811b639c466645a653d", - "value": " 29.0/29.0 [00:00<00:00, 3.74kB/s]" - } - }, - "8f34372958be48e39a80b97ec8caa77f": { + "81a2b42eaa814436b01abc8ebb82ca75": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2862,7 +2986,7 @@ "width": null } }, - "952a1086c39848dfb74ceacd08c8dd72": { + "8476619711b641a9b5f38a6a1e7888a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2877,13 +3001,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fe27cd2bb04a406db8a2092a809c4b6b", + "layout": "IPY_MODEL_aa3284b6cd544cb98404eb5af8f6599b", "placeholder": "​", - "style": "IPY_MODEL_e315f3025c4d4c59bb6c644af3ba2dbe", - "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]" + "style": "IPY_MODEL_b9b6cfe06b3b4fe69c708f2461956922", + "value": "tokenizer.json: 100%" } }, - "95981757849b41c5a913e9b61b999d18": { + "84bc13e1ba894795b9fb392e58f53a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2898,28 +3022,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6fe87329593c45d3becb6182ad8592dc", + "layout": "IPY_MODEL_3b2f90361d7c42878905914559652b7b", "placeholder": "​", - "style": "IPY_MODEL_728819d15c464d4a8c67264dd3052d1b", - "value": " 232k/232k [00:00<00:00, 25.6MB/s]" - } - }, - "9dd31a69420a43fdb7d3081d28d1e1bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_a581b3b0d2e04d75bd195679447774f0", + "value": "pytorch_model.bin: 100%" } }, - "9e415a3aba0e4a66b28675b99e11118b": { + "86a96ab8c2d847c691750b142c5c7298": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2971,7 +3080,7 @@ "width": null } }, - "9fd89d627e6d438fa7baa6afb55d3d42": { + "87c70e0e85ec4bb79ae7ad87d76f6795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2986,65 +3095,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6d3ccc69c3e747f893a8306a6c3d6732", + "layout": "IPY_MODEL_431cc8999c0544df9e20dc91e334e9b6", "placeholder": "​", - "style": "IPY_MODEL_75f19f4a474341da965fd4ad38d181fb", - "value": " 391/391 [00:00<00:00, 51.1kB/s]" + "style": "IPY_MODEL_131415acc2cc467ca697cb016f051df3", + "value": "vocab.txt: 100%" } }, - "a04ebf987d5346dba0fa2a0061771583": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8f5e3b10d67e4a1faf8947a4aa8b3856": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "a3bd6caf83fa414ca4b7e1fa94fa98f1": { + "91676c2d6dcb4ddcb1233e13c621e43b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3096,7 +3168,7 @@ "width": null } }, - "a7b80376f9614f56a421461699c100d2": { + "91935df4108e4d64ac364b2b8f95e036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3112,23 +3184,43 @@ "description_width": "" } }, - "a91300676e954582acf2db392aa56acb": { + "937f5410f4dd46e1b4f7b54678caa6ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "ab522d10b9ad4923a26d503a8d0ac706": { + "a201a942b586447a9aa80c9d476ab314": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ada719f1788f45b997bab2824afd5692", + "placeholder": "​", + "style": "IPY_MODEL_55ff8c7ab23047f2884c690e2a768099", + "value": " 665/665 [00:00<00:00, 89.1kB/s]" + } + }, + "a2b7a76cced7460bb83b55c5113efa6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3143,87 +3235,122 @@ "description_width": "" } }, - "abd842d675ac44b1b45f9191e7860fd6": { + "a3bc4404d2d14aa692805e7278e15897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb2e29dd11194d37a07d2d40027e0e4d", - "IPY_MODEL_350822cf924943eb8e02ef480bfd1790", - "IPY_MODEL_95981757849b41c5a913e9b61b999d18" - ], - "layout": "IPY_MODEL_b5acfa7ca39a498e8ac153de11ba6168" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba833d7ef2c34a1b8851b44c40fb815b", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8c5a1402dec4e94829eb2bf3490056a", + "value": 54245363.0 } }, - "ade63d337c42430aab512ff6d2e9fa86": { + "a581b3b0d2e04d75bd195679447774f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb0b539676d04954817343c75ac8a753", - "IPY_MODEL_d801b3205aa4436f9694cc7475d1756f", - "IPY_MODEL_9fd89d627e6d438fa7baa6afb55d3d42" - ], - "layout": "IPY_MODEL_84cd5db2bfeb4dab81e9e5031654bc99" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "b0affa492dd84aa69a28b95192abbe82": { + "a6fb11bdd68f426da493fce6d687b23a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1816e201b2ef47a88c620483c42cb738", - "placeholder": "​", - "style": "IPY_MODEL_599fe68688b84a1ba42abac9aa545549", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_d06bb97ba84648c18828d2b89f875968", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_91935df4108e4d64ac364b2b8f95e036", + "value": 665.0 } }, - "b11243b4ea144c1397505cf89465fe83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "a76b139cc8434834895269d23fa12b5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "b5acfa7ca39a498e8ac153de11ba6168": { + "aa3284b6cd544cb98404eb5af8f6599b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3275,28 +3402,7 @@ "width": null } }, - "b75aacd4740143429e65a8009c58d6a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_54d56851944149e885d7828f9bd6ad46", - "placeholder": "​", - "style": "IPY_MODEL_5a8acd15e11e4f2e8ec8efcac153890d", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "b93c2205a740472c8b94d79f634f2798": { + "ada719f1788f45b997bab2824afd5692": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3348,7 +3454,7 @@ "width": null } }, - "b9aceb80baca46d3b28432b365828d2b": { + "af5454fae6944a8889b68925964844e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3363,81 +3469,76 @@ "description_width": "" } }, - "bb376354d2394cf68fdb14cd9ce98110": { + "b5707c9e6db74f15950bc0cc76aea1f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bedc5d5b53874d7d937887bfea2d818e": { + "b80c36df261d4dfdb607873cacf6f264": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bf6572aaa8cb48748aae4ed4bd7233e8": { + "b936edc80e5d441e8c380195ca479f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d18580f01692480bb1129a85f38ffaca", - "placeholder": "​", - "style": "IPY_MODEL_38f06f02562f42e992015651c5d32d25", - "value": " 665/665 [00:00<00:00, 90.6kB/s]" + "layout": "IPY_MODEL_a76b139cc8434834895269d23fa12b5c", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f5fe7ef6efc4b4a95c2548d36e9ce04", + "value": 0.0 } }, - "c06c7f6f22dd4438a8023fadd6e94685": { + "b9b6cfe06b3b4fe69c708f2461956922": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a3bd6caf83fa414ca4b7e1fa94fa98f1", - "placeholder": "​", - "style": "IPY_MODEL_b9aceb80baca46d3b28432b365828d2b", - "value": "pytorch_model.bin: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c2b2ba0b734741cfa16ec65a5cb1288d": { + "ba833d7ef2c34a1b8851b44c40fb815b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3489,65 +3590,7 @@ "width": null } }, - "c32a2403ee034e17ba7ff59a20e277e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c361d7a82f824cbea4d39d723caa8a57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6728263ae76467089f777f6adad4939", - "placeholder": "​", - "style": "IPY_MODEL_9dd31a69420a43fdb7d3081d28d1e1bc", - "value": "" - } - }, - "cb0b539676d04954817343c75ac8a753": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e23db68e06304878a5b3344865f0d61d", - "placeholder": "​", - "style": "IPY_MODEL_24b49954bb1948b2a276ee21aed9e3a2", - "value": ".gitattributes: 100%" - } - }, - "cb2e29dd11194d37a07d2d40027e0e4d": { + "c06dd9e01ed34002b3c5f0813c64fb06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3562,61 +3605,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9e415a3aba0e4a66b28675b99e11118b", + "layout": "IPY_MODEL_cf197ecf2d384b978ad0333676acb1bd", "placeholder": "​", - "style": "IPY_MODEL_477091a84aee4d42a10d4a4bfa9fc5a3", - "value": "vocab.txt: 100%" - } - }, - "cb6caced3c1644c9b5a0ac2ebefd3c43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c2b2ba0b734741cfa16ec65a5cb1288d", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2fe7bfc1eccf4ece82278efefdb032f1", - "value": 54245363.0 - } - }, - "cca9f11d9db7431ea874e29edca83367": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_11fe7fba62004878a81decfb4f4aaaa6", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bedc5d5b53874d7d937887bfea2d818e", - "value": 665.0 + "style": "IPY_MODEL_af5454fae6944a8889b68925964844e4", + "value": " 2.21k/2.21k [00:00<00:00, 292kB/s]" } }, - "d18580f01692480bb1129a85f38ffaca": { + "c45f00ad57434722baeb6f078531252f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3668,22 +3663,23 @@ "width": null } }, - "d1fbad944853442bbd26ed11260ff72a": { + "c8c5a1402dec4e94829eb2bf3490056a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d763bc36e1954d1da06a694596e13602": { + "c9a0f9e9235a4b0e94803e5f0eff17a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3735,7 +3731,7 @@ "width": null } }, - "d801b3205aa4436f9694cc7475d1756f": { + "cb5965277a964592b931cd10b6041443": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3751,37 +3747,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a04ebf987d5346dba0fa2a0061771583", - "max": 391.0, + "layout": "IPY_MODEL_65880edcf2164a1fa1024b3a28c144bd", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bb376354d2394cf68fdb14cd9ce98110", - "value": 391.0 - } - }, - "deea84b1c6d044cebee3018df441ffa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ac109ca2f2f40aea3fa370e99dc7d3b", - "IPY_MODEL_6951369b36924f0680dc1a7e19fe567e", - "IPY_MODEL_433930143318460a8975f2e413073c03" - ], - "layout": "IPY_MODEL_1262696646774b34bdaaac77290a6a81" + "style": "IPY_MODEL_36fb1ab7a53d4f9d97a670aaa2265ae2", + "value": 29.0 } }, - "e23db68e06304878a5b3344865f0d61d": { + "cf197ecf2d384b978ad0333676acb1bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3833,7 +3807,7 @@ "width": null } }, - "e274cc872fcf4fc4850e853a25b7e7e7": { + "d06bb97ba84648c18828d2b89f875968": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3885,22 +3859,23 @@ "width": null } }, - "e315f3025c4d4c59bb6c644af3ba2dbe": { + "d08ad8fcec7244f5bec8a48cc92398c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e618e8aff4284b508a444acb950dfaa1": { + "d468003045574e20bd906b1d7a387184": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3952,7 +3927,7 @@ "width": null } }, - "e68322704dc2412d953a7977a2ac6c2b": { + "db0760ce1e76407f92680d4c68df6351": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3967,50 +3942,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3f501cd80b5f4a91ab455a50adf75f17", + "layout": "IPY_MODEL_c9a0f9e9235a4b0e94803e5f0eff17a8", "placeholder": "​", - "style": "IPY_MODEL_b11243b4ea144c1397505cf89465fe83", - "value": " 466k/466k [00:00<00:00, 34.1MB/s]" - } - }, - "ef867703a6364811b639c466645a653d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f2a92542fd8749e4aec7645ddf0a07ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0affa492dd84aa69a28b95192abbe82", - "IPY_MODEL_66b79cefd0e445a7a2edfef89972982c", - "IPY_MODEL_8caf0a4bd43c4c97821bd485aeb04940" - ], - "layout": "IPY_MODEL_e618e8aff4284b508a444acb950dfaa1" + "style": "IPY_MODEL_937f5410f4dd46e1b4f7b54678caa6ae", + "value": ".gitattributes: 100%" } }, - "f48fc38b21f14c4c8df58fd07a3cf189": { + "e04930e0b2a34c809f327d89d672a665": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4062,29 +4000,31 @@ "width": null } }, - "f4b39508ea314bdc8e50059de6ed1afc": { + "e0678ca3f2fb4f9f85b34cc4b9105782": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b1b2235feac4ff1999218df5d0da8c4", - "IPY_MODEL_cca9f11d9db7431ea874e29edca83367", - "IPY_MODEL_bf6572aaa8cb48748aae4ed4bd7233e8" - ], - "layout": "IPY_MODEL_f48fc38b21f14c4c8df58fd07a3cf189" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0aaa74341404488a843ac4ec2ae99d87", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a9535bd9e80483d9bae25a6a6a64238", + "value": 466062.0 } }, - "f63eeb07947a430b991e520edeb17f99": { + "e4c799652b304befa3db6f72d911700f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4136,7 +4076,7 @@ "width": null } }, - "f6728263ae76467089f777f6adad4939": { + "efd787033326410eb01a9b16358eaf35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4188,7 +4128,86 @@ "width": null } }, - "fe27cd2bb04a406db8a2092a809c4b6b": { + "f1393a2a3fa44caeab800dacc8b0e5a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f232c4045e1441f7a68656a08890af2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81a2b42eaa814436b01abc8ebb82ca75", + "placeholder": "​", + "style": "IPY_MODEL_b80c36df261d4dfdb607873cacf6f264", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "f869f04c558448168588593c53059c38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a22549242d94824b156781e28215fa2", + "IPY_MODEL_b936edc80e5d441e8c380195ca479f69", + "IPY_MODEL_f232c4045e1441f7a68656a08890af2d" + ], + "layout": "IPY_MODEL_c45f00ad57434722baeb6f078531252f" + } + }, + "fa8d89c514024549b642be6c79c62bbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d468003045574e20bd906b1d7a387184", + "placeholder": "​", + "style": "IPY_MODEL_b5707c9e6db74f15950bc0cc76aea1f7", + "value": "config.json: 100%" + } + }, + "fbe01456c95d44ccbe6db82871a6cb9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4240,7 +4259,7 @@ "width": null } }, - "ff518ed57fdf46199744629476f70a04": { + "fdad864ff4324dcf9377c0d014b35031": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 0eec6f2e6..f4e26ff05 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:57.399430Z", - "iopub.status.busy": "2023-12-13T17:00:57.398898Z", - "iopub.status.idle": "2023-12-13T17:00:58.419855Z", - "shell.execute_reply": "2023-12-13T17:00:58.419237Z" + "iopub.execute_input": "2023-12-14T17:57:15.907996Z", + "iopub.status.busy": "2023-12-14T17:57:15.907806Z", + "iopub.status.idle": "2023-12-14T17:57:16.917561Z", + "shell.execute_reply": "2023-12-14T17:57:16.916934Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.422828Z", - "iopub.status.busy": "2023-12-13T17:00:58.422386Z", - "iopub.status.idle": "2023-12-13T17:00:58.425292Z", - "shell.execute_reply": "2023-12-13T17:00:58.424740Z" + "iopub.execute_input": "2023-12-14T17:57:16.920272Z", + "iopub.status.busy": "2023-12-14T17:57:16.919962Z", + "iopub.status.idle": "2023-12-14T17:57:16.922967Z", + "shell.execute_reply": "2023-12-14T17:57:16.922421Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.427768Z", - "iopub.status.busy": "2023-12-13T17:00:58.427414Z", - "iopub.status.idle": "2023-12-13T17:00:58.440812Z", - "shell.execute_reply": "2023-12-13T17:00:58.440295Z" + "iopub.execute_input": "2023-12-14T17:57:16.925259Z", + "iopub.status.busy": "2023-12-14T17:57:16.925050Z", + "iopub.status.idle": "2023-12-14T17:57:16.938332Z", + "shell.execute_reply": "2023-12-14T17:57:16.937814Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.443255Z", - "iopub.status.busy": "2023-12-13T17:00:58.442912Z", - "iopub.status.idle": "2023-12-13T17:01:02.535155Z", - "shell.execute_reply": "2023-12-13T17:01:02.534469Z" + "iopub.execute_input": "2023-12-14T17:57:16.940720Z", + "iopub.status.busy": "2023-12-14T17:57:16.940333Z", + "iopub.status.idle": "2023-12-14T17:57:22.343910Z", + "shell.execute_reply": "2023-12-14T17:57:22.343231Z" }, "id": "dhTHOg8Pyv5G" }, @@ -2191,13 +2191,7 @@ "text": [ "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "-------------------------------------------------------------\n", "| Generating a Cleanlab Dataset Health Summary |\n", "| for your dataset with 10,000 examples and 100 classes. |\n", diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 2fe6d09b8..6193285e3 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:07.038497Z", - "iopub.status.busy": "2023-12-13T17:01:07.038301Z", - "iopub.status.idle": "2023-12-13T17:01:08.066470Z", - "shell.execute_reply": "2023-12-13T17:01:08.065769Z" + "iopub.execute_input": "2023-12-14T17:57:26.486619Z", + "iopub.status.busy": "2023-12-14T17:57:26.486152Z", + "iopub.status.idle": "2023-12-14T17:57:27.484482Z", + "shell.execute_reply": "2023-12-14T17:57:27.483878Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:08.069585Z", - "iopub.status.busy": "2023-12-13T17:01:08.069242Z", - "iopub.status.idle": "2023-12-13T17:01:08.072930Z", - "shell.execute_reply": "2023-12-13T17:01:08.072288Z" + "iopub.execute_input": "2023-12-14T17:57:27.487671Z", + "iopub.status.busy": "2023-12-14T17:57:27.487188Z", + "iopub.status.idle": "2023-12-14T17:57:27.490631Z", + "shell.execute_reply": "2023-12-14T17:57:27.490071Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:08.075410Z", - "iopub.status.busy": "2023-12-13T17:01:08.074919Z", - "iopub.status.idle": "2023-12-13T17:01:10.083273Z", - "shell.execute_reply": "2023-12-13T17:01:10.082584Z" + "iopub.execute_input": "2023-12-14T17:57:27.493112Z", + "iopub.status.busy": "2023-12-14T17:57:27.492768Z", + "iopub.status.idle": "2023-12-14T17:57:29.443205Z", + "shell.execute_reply": "2023-12-14T17:57:29.442540Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.086671Z", - "iopub.status.busy": "2023-12-13T17:01:10.085946Z", - "iopub.status.idle": "2023-12-13T17:01:10.126337Z", - "shell.execute_reply": "2023-12-13T17:01:10.125540Z" + "iopub.execute_input": "2023-12-14T17:57:29.446572Z", + "iopub.status.busy": "2023-12-14T17:57:29.445895Z", + "iopub.status.idle": "2023-12-14T17:57:29.482811Z", + "shell.execute_reply": "2023-12-14T17:57:29.482126Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.129600Z", - "iopub.status.busy": "2023-12-13T17:01:10.129090Z", - "iopub.status.idle": "2023-12-13T17:01:10.165138Z", - "shell.execute_reply": "2023-12-13T17:01:10.164418Z" + "iopub.execute_input": "2023-12-14T17:57:29.485859Z", + "iopub.status.busy": "2023-12-14T17:57:29.485500Z", + "iopub.status.idle": "2023-12-14T17:57:29.519097Z", + "shell.execute_reply": "2023-12-14T17:57:29.518330Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.168233Z", - "iopub.status.busy": "2023-12-13T17:01:10.167808Z", - "iopub.status.idle": "2023-12-13T17:01:10.171034Z", - "shell.execute_reply": "2023-12-13T17:01:10.170450Z" + "iopub.execute_input": "2023-12-14T17:57:29.522378Z", + "iopub.status.busy": "2023-12-14T17:57:29.521948Z", + "iopub.status.idle": "2023-12-14T17:57:29.525216Z", + "shell.execute_reply": "2023-12-14T17:57:29.524690Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.173683Z", - "iopub.status.busy": "2023-12-13T17:01:10.173232Z", - "iopub.status.idle": "2023-12-13T17:01:10.176025Z", - "shell.execute_reply": "2023-12-13T17:01:10.175490Z" + "iopub.execute_input": "2023-12-14T17:57:29.527802Z", + "iopub.status.busy": "2023-12-14T17:57:29.527308Z", + "iopub.status.idle": "2023-12-14T17:57:29.530469Z", + "shell.execute_reply": "2023-12-14T17:57:29.529866Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.178857Z", - "iopub.status.busy": "2023-12-13T17:01:10.178324Z", - "iopub.status.idle": "2023-12-13T17:01:10.206219Z", - "shell.execute_reply": "2023-12-13T17:01:10.205510Z" + "iopub.execute_input": "2023-12-14T17:57:29.533019Z", + "iopub.status.busy": "2023-12-14T17:57:29.532534Z", + "iopub.status.idle": "2023-12-14T17:57:29.560060Z", + "shell.execute_reply": "2023-12-14T17:57:29.559395Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d017bfc24d25409785014f2513f7d09f", + "model_id": "68dba485d38a4925977c533d62a8ffda", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bee9625281d476fb394f78af1d65290", + "model_id": "933432f5bf264144b9cd31b71f7d05e3", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.213752Z", - "iopub.status.busy": "2023-12-13T17:01:10.213552Z", - "iopub.status.idle": "2023-12-13T17:01:10.220832Z", - "shell.execute_reply": "2023-12-13T17:01:10.220306Z" + "iopub.execute_input": "2023-12-14T17:57:29.568258Z", + "iopub.status.busy": "2023-12-14T17:57:29.567850Z", + "iopub.status.idle": "2023-12-14T17:57:29.574257Z", + "shell.execute_reply": "2023-12-14T17:57:29.573753Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.223269Z", - "iopub.status.busy": "2023-12-13T17:01:10.222815Z", - "iopub.status.idle": "2023-12-13T17:01:10.226626Z", - "shell.execute_reply": "2023-12-13T17:01:10.226089Z" + "iopub.execute_input": "2023-12-14T17:57:29.576729Z", + "iopub.status.busy": "2023-12-14T17:57:29.576299Z", + "iopub.status.idle": "2023-12-14T17:57:29.581054Z", + "shell.execute_reply": "2023-12-14T17:57:29.580410Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.229132Z", - "iopub.status.busy": "2023-12-13T17:01:10.228697Z", - "iopub.status.idle": "2023-12-13T17:01:10.235721Z", - "shell.execute_reply": "2023-12-13T17:01:10.235167Z" + "iopub.execute_input": "2023-12-14T17:57:29.583788Z", + "iopub.status.busy": "2023-12-14T17:57:29.583296Z", + "iopub.status.idle": "2023-12-14T17:57:29.590314Z", + "shell.execute_reply": "2023-12-14T17:57:29.589680Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.237836Z", - "iopub.status.busy": "2023-12-13T17:01:10.237638Z", - "iopub.status.idle": "2023-12-13T17:01:10.275509Z", - "shell.execute_reply": "2023-12-13T17:01:10.274836Z" + "iopub.execute_input": "2023-12-14T17:57:29.592630Z", + "iopub.status.busy": "2023-12-14T17:57:29.592206Z", + "iopub.status.idle": "2023-12-14T17:57:29.631261Z", + "shell.execute_reply": "2023-12-14T17:57:29.630469Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.278709Z", - "iopub.status.busy": "2023-12-13T17:01:10.278304Z", - "iopub.status.idle": "2023-12-13T17:01:10.314190Z", - "shell.execute_reply": "2023-12-13T17:01:10.313510Z" + "iopub.execute_input": "2023-12-14T17:57:29.634474Z", + "iopub.status.busy": "2023-12-14T17:57:29.634050Z", + "iopub.status.idle": "2023-12-14T17:57:29.670504Z", + "shell.execute_reply": "2023-12-14T17:57:29.669844Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.317466Z", - "iopub.status.busy": "2023-12-13T17:01:10.317047Z", - "iopub.status.idle": "2023-12-13T17:01:10.434258Z", - "shell.execute_reply": "2023-12-13T17:01:10.433553Z" + "iopub.execute_input": "2023-12-14T17:57:29.673797Z", + "iopub.status.busy": "2023-12-14T17:57:29.673342Z", + "iopub.status.idle": "2023-12-14T17:57:29.787978Z", + "shell.execute_reply": "2023-12-14T17:57:29.787345Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.437258Z", - "iopub.status.busy": "2023-12-13T17:01:10.436727Z", - "iopub.status.idle": "2023-12-13T17:01:12.959043Z", - "shell.execute_reply": "2023-12-13T17:01:12.958284Z" + "iopub.execute_input": "2023-12-14T17:57:29.790819Z", + "iopub.status.busy": "2023-12-14T17:57:29.790411Z", + "iopub.status.idle": "2023-12-14T17:57:32.275060Z", + "shell.execute_reply": "2023-12-14T17:57:32.274379Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:12.961677Z", - "iopub.status.busy": "2023-12-13T17:01:12.961460Z", - "iopub.status.idle": "2023-12-13T17:01:13.022761Z", - "shell.execute_reply": "2023-12-13T17:01:13.022122Z" + "iopub.execute_input": "2023-12-14T17:57:32.277828Z", + "iopub.status.busy": "2023-12-14T17:57:32.277408Z", + "iopub.status.idle": "2023-12-14T17:57:32.334803Z", + "shell.execute_reply": "2023-12-14T17:57:32.334181Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "e657ad70", + "id": "97267ff0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "af9f82f6", + "id": "a0706c36", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "1413ce5b", + "id": "1e410e74", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:13.025411Z", - "iopub.status.busy": "2023-12-13T17:01:13.025040Z", - "iopub.status.idle": "2023-12-13T17:01:13.120926Z", - "shell.execute_reply": "2023-12-13T17:01:13.120242Z" + "iopub.execute_input": "2023-12-14T17:57:32.337207Z", + "iopub.status.busy": "2023-12-14T17:57:32.336833Z", + "iopub.status.idle": "2023-12-14T17:57:32.433207Z", + "shell.execute_reply": "2023-12-14T17:57:32.432553Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "49d3587e", + "id": "355117c2", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "22f0a625", + "id": "b565301a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:13.124596Z", - "iopub.status.busy": "2023-12-13T17:01:13.123883Z", - "iopub.status.idle": "2023-12-13T17:01:13.212152Z", - "shell.execute_reply": "2023-12-13T17:01:13.211541Z" + "iopub.execute_input": "2023-12-14T17:57:32.436594Z", + "iopub.status.busy": "2023-12-14T17:57:32.435916Z", + "iopub.status.idle": "2023-12-14T17:57:32.524031Z", + "shell.execute_reply": "2023-12-14T17:57:32.523379Z" } }, "outputs": [ @@ -993,7 +993,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "09444f8dfce5412e9a4368fbf12f3e85": { + "204e1cad632b481393261fcfe41b63c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1045,120 +1045,7 @@ "width": null } }, - "0b44166a3ca041d683159da520b3b649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7f8cd69ec1a468fbd5a498aeddfbccf", - "placeholder": "​", - "style": "IPY_MODEL_754a2145c306468991edfc08c7d8c4a9", - "value": " 10000/? [00:00<00:00, 1119884.66it/s]" - } - }, - "15103b934abf494a87ec1f25f6f918fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "193178e2a04d4c25adf9f25960f5f07d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_364bc58a691b47f289e9bdc448f2c0b6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7452e7de545c4b08802706a9bdfed4bb", - "value": 50.0 - } - }, - "1bee9625281d476fb394f78af1d65290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7b7df3e32f94b0fb6dce7b16f271119", - "IPY_MODEL_c6901c4aa09e4a30bb8e2897576e94db", - "IPY_MODEL_0b44166a3ca041d683159da520b3b649" - ], - "layout": "IPY_MODEL_bf67452742b34f8f82a139257fb05ff9" - } - }, - "1c84f1e5f2e949629ea7909f6d96a485": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2d9d42b23a34455ca769afde2acb9756": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "364bc58a691b47f289e9bdc448f2c0b6": { + "2ea6d90cd7e74448bccc50bc9b2421ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1210,7 +1097,22 @@ "width": null } }, - "3686ed4f03d14c2eb86e2c736b722993": { + "305e2d1e8a1d4075a3a3accb7a043b62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "50e61574868c45f6bc7f4efa72f38f2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1262,53 +1164,7 @@ "width": null } }, - "3f1b345fa41c40f0af254d458357e649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7452e7de545c4b08802706a9bdfed4bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "754a2145c306468991edfc08c7d8c4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "88a1035e24e745739ea394547bc99af6": { + "5edddf36602e40c494b0ce4edbac036c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1323,13 +1179,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_09444f8dfce5412e9a4368fbf12f3e85", + "layout": "IPY_MODEL_64abf9f881ac40efa2038cedea075116", "placeholder": "​", - "style": "IPY_MODEL_1c84f1e5f2e949629ea7909f6d96a485", - "value": " 10000/? [00:00<00:00, 1017318.88it/s]" + "style": "IPY_MODEL_c84916b5e53d4be09f97459528dc5a62", + "value": "number of examples processed for estimating thresholds: " } }, - "a7b7df3e32f94b0fb6dce7b16f271119": { + "63a586b552d340b88865972aa8c6d342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1344,13 +1200,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e7963f1ed2ed42e897e45a652ae15c72", + "layout": "IPY_MODEL_204e1cad632b481393261fcfe41b63c5", "placeholder": "​", - "style": "IPY_MODEL_15103b934abf494a87ec1f25f6f918fd", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_ec264338476d472592b8224a95ddaeda", + "value": " 10000/? [00:00<00:00, 998073.48it/s]" } }, - "b9268b38fb514d25ab58ae3a91b914b9": { + "64abf9f881ac40efa2038cedea075116": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1402,7 +1258,88 @@ "width": null } }, - "bf67452742b34f8f82a139257fb05ff9": { + "68dba485d38a4925977c533d62a8ffda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5edddf36602e40c494b0ce4edbac036c", + "IPY_MODEL_e24253714523414da459d912cb9f501d", + "IPY_MODEL_63a586b552d340b88865972aa8c6d342" + ], + "layout": "IPY_MODEL_d84bcaa436b34b71a404ea48fb706ec9" + } + }, + "933432f5bf264144b9cd31b71f7d05e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5ec9bf23d34491099f35b2b65440060", + "IPY_MODEL_e3ea5d75c30a4bbfbd15363b8f500e93", + "IPY_MODEL_b6b3600121274b0196b1f4948ce38c63" + ], + "layout": "IPY_MODEL_b94e4171c239422eb34c4f841b85695d" + } + }, + "9b3e5d81befc48b9846e88e85060cf9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a5ec9bf23d34491099f35b2b65440060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b62e6ba539b243ccbc525a1da99f8ac1", + "placeholder": "​", + "style": "IPY_MODEL_305e2d1e8a1d4075a3a3accb7a043b62", + "value": "number of examples processed for checking labels: " + } + }, + "b62e6ba539b243ccbc525a1da99f8ac1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1454,53 +1391,7 @@ "width": null } }, - "c6901c4aa09e4a30bb8e2897576e94db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b9268b38fb514d25ab58ae3a91b914b9", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d9d42b23a34455ca769afde2acb9756", - "value": 50.0 - } - }, - "d017bfc24d25409785014f2513f7d09f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e53e80241d1f4456ace04cc18f6b0ce3", - "IPY_MODEL_193178e2a04d4c25adf9f25960f5f07d", - "IPY_MODEL_88a1035e24e745739ea394547bc99af6" - ], - "layout": "IPY_MODEL_e8bc1bab68b542bc9b68dcfdbf7d2249" - } - }, - "e53e80241d1f4456ace04cc18f6b0ce3": { + "b6b3600121274b0196b1f4948ce38c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1515,13 +1406,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3686ed4f03d14c2eb86e2c736b722993", + "layout": "IPY_MODEL_e686f951da0149d4bd24904b864d8ee4", "placeholder": "​", - "style": "IPY_MODEL_3f1b345fa41c40f0af254d458357e649", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_e498c53c0d354548b230e62ebc0367aa", + "value": " 10000/? [00:00<00:00, 1152091.41it/s]" } }, - "e7963f1ed2ed42e897e45a652ae15c72": { + "b94e4171c239422eb34c4f841b85695d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1573,7 +1464,22 @@ "width": null } }, - "e8bc1bab68b542bc9b68dcfdbf7d2249": { + "c84916b5e53d4be09f97459528dc5a62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d84bcaa436b34b71a404ea48fb706ec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1531,70 @@ "width": null } }, - "f7f8cd69ec1a468fbd5a498aeddfbccf": { + "e24253714523414da459d912cb9f501d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_50e61574868c45f6bc7f4efa72f38f2c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdae2cf8c72140dfa8daa1092805479a", + "value": 50.0 + } + }, + "e3ea5d75c30a4bbfbd15363b8f500e93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ea6d90cd7e74448bccc50bc9b2421ba", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b3e5d81befc48b9846e88e85060cf9d", + "value": 50.0 + } + }, + "e498c53c0d354548b230e62ebc0367aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e686f951da0149d4bd24904b864d8ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1676,6 +1645,37 @@ "visibility": null, "width": null } + }, + "ec264338476d472592b8224a95ddaeda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdae2cf8c72140dfa8daa1092805479a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index cf87a74df..90071e0d4 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:18.333247Z", - "iopub.status.busy": "2023-12-13T17:01:18.332786Z", - "iopub.status.idle": "2023-12-13T17:01:20.523355Z", - "shell.execute_reply": "2023-12-13T17:01:20.522739Z" + "iopub.execute_input": "2023-12-14T17:57:37.803140Z", + "iopub.status.busy": "2023-12-14T17:57:37.802615Z", + "iopub.status.idle": "2023-12-14T17:57:39.901856Z", + "shell.execute_reply": "2023-12-14T17:57:39.901210Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:20.526370Z", - "iopub.status.busy": "2023-12-13T17:01:20.525878Z", - "iopub.status.idle": "2023-12-13T17:01:20.529647Z", - "shell.execute_reply": "2023-12-13T17:01:20.529125Z" + "iopub.execute_input": "2023-12-14T17:57:39.904616Z", + "iopub.status.busy": "2023-12-14T17:57:39.904299Z", + "iopub.status.idle": "2023-12-14T17:57:39.908010Z", + "shell.execute_reply": "2023-12-14T17:57:39.907463Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:20.531910Z", - "iopub.status.busy": "2023-12-13T17:01:20.531540Z", - "iopub.status.idle": "2023-12-13T17:01:33.862081Z", - "shell.execute_reply": "2023-12-13T17:01:33.861534Z" + "iopub.execute_input": "2023-12-14T17:57:39.910230Z", + "iopub.status.busy": "2023-12-14T17:57:39.909996Z", + "iopub.status.idle": "2023-12-14T17:57:52.915255Z", + "shell.execute_reply": "2023-12-14T17:57:52.914633Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0398fec90b1490eb4a29de274973548", + "model_id": "3f33d0d86e744d9bb8cd8ad21d9eac74", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cc9bdf180bc9420ba18e91a5bb91066f", + "model_id": "7c7118a121da44228d604eb7be2a6ad9", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1fc3f53344146138b4c2dc309bc4ea4", + "model_id": "439d0591585d47d0980cd15033196a97", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b67b07f948eb44ffa8bb4f272c2d9ed3", + "model_id": "6e870f18742d48758d578459b835e23a", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b576277940543328ae8bfe6618396cc", + "model_id": "92832737fe64454baad97b42ab036e38", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca7b9eb29ac14e45932b61f4da703eea", + "model_id": "502915f99ec446b58154636b30ff90b1", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0bc6dd269923497bbbef508d22a01372", + "model_id": "a3b55af5cc4c4132afae8a5e74eb4bd7", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a91ab936fc44e0fbaded2b37f6b9396", + "model_id": "b47ef491be5d42f5bfb792f9cd47e1e8", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ee66d1f8617459cb29fe3099f465d1a", + "model_id": "5e300f21826f4e03bf9162687a04b4bc", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "542b4370cf6d473b979b54911fc46509", + "model_id": "947de91902a5402bbb1aa40f89771217", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e38456412f5146d6a416b3548f5ce133", + "model_id": "a47fda1116b841a0991f3d7399cf6788", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:33.864706Z", - "iopub.status.busy": "2023-12-13T17:01:33.864337Z", - "iopub.status.idle": "2023-12-13T17:01:33.868395Z", - "shell.execute_reply": "2023-12-13T17:01:33.867806Z" + "iopub.execute_input": "2023-12-14T17:57:52.917880Z", + "iopub.status.busy": "2023-12-14T17:57:52.917466Z", + "iopub.status.idle": "2023-12-14T17:57:52.921641Z", + "shell.execute_reply": "2023-12-14T17:57:52.921047Z" } }, "outputs": [ @@ -372,17 +372,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:33.870705Z", - "iopub.status.busy": "2023-12-13T17:01:33.870505Z", - "iopub.status.idle": "2023-12-13T17:01:44.642781Z", - "shell.execute_reply": "2023-12-13T17:01:44.642172Z" + "iopub.execute_input": "2023-12-14T17:57:52.923880Z", + "iopub.status.busy": "2023-12-14T17:57:52.923540Z", + "iopub.status.idle": "2023-12-14T17:58:03.577595Z", + "shell.execute_reply": "2023-12-14T17:58:03.576989Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "556bebde4968465d9f5a1eda7e6a26bc", + "model_id": "9e409cb7855240519f18afa36ede24c8", "version_major": 2, "version_minor": 0 }, @@ -420,10 +420,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:44.645634Z", - "iopub.status.busy": "2023-12-13T17:01:44.645317Z", - "iopub.status.idle": "2023-12-13T17:02:06.460536Z", - "shell.execute_reply": "2023-12-13T17:02:06.459910Z" + "iopub.execute_input": "2023-12-14T17:58:03.580363Z", + "iopub.status.busy": "2023-12-14T17:58:03.580044Z", + "iopub.status.idle": "2023-12-14T17:58:25.011851Z", + "shell.execute_reply": "2023-12-14T17:58:25.011214Z" } }, "outputs": [], @@ -456,10 +456,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.463709Z", - "iopub.status.busy": "2023-12-13T17:02:06.463282Z", - "iopub.status.idle": "2023-12-13T17:02:06.469308Z", - "shell.execute_reply": "2023-12-13T17:02:06.468766Z" + "iopub.execute_input": "2023-12-14T17:58:25.014992Z", + "iopub.status.busy": "2023-12-14T17:58:25.014573Z", + "iopub.status.idle": "2023-12-14T17:58:25.020405Z", + "shell.execute_reply": "2023-12-14T17:58:25.019857Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.471665Z", - "iopub.status.busy": "2023-12-13T17:02:06.471312Z", - "iopub.status.idle": "2023-12-13T17:02:06.475425Z", - "shell.execute_reply": "2023-12-13T17:02:06.474834Z" + "iopub.execute_input": "2023-12-14T17:58:25.022739Z", + "iopub.status.busy": "2023-12-14T17:58:25.022354Z", + "iopub.status.idle": "2023-12-14T17:58:25.026299Z", + "shell.execute_reply": "2023-12-14T17:58:25.025827Z" }, "nbsphinx": "hidden" }, @@ -637,10 +637,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.478120Z", - "iopub.status.busy": "2023-12-13T17:02:06.477666Z", - "iopub.status.idle": "2023-12-13T17:02:06.487649Z", - "shell.execute_reply": "2023-12-13T17:02:06.487046Z" + "iopub.execute_input": "2023-12-14T17:58:25.028786Z", + "iopub.status.busy": "2023-12-14T17:58:25.028436Z", + "iopub.status.idle": "2023-12-14T17:58:25.037941Z", + "shell.execute_reply": "2023-12-14T17:58:25.037421Z" }, "nbsphinx": "hidden" }, @@ -765,10 +765,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.490044Z", - "iopub.status.busy": "2023-12-13T17:02:06.489703Z", - "iopub.status.idle": "2023-12-13T17:02:06.518098Z", - "shell.execute_reply": "2023-12-13T17:02:06.517477Z" + "iopub.execute_input": "2023-12-14T17:58:25.040226Z", + "iopub.status.busy": "2023-12-14T17:58:25.039877Z", + "iopub.status.idle": "2023-12-14T17:58:25.068383Z", + "shell.execute_reply": "2023-12-14T17:58:25.067769Z" } }, "outputs": [], @@ -805,10 +805,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.520733Z", - "iopub.status.busy": "2023-12-13T17:02:06.520357Z", - "iopub.status.idle": "2023-12-13T17:02:38.003516Z", - "shell.execute_reply": "2023-12-13T17:02:38.002670Z" + "iopub.execute_input": "2023-12-14T17:58:25.070881Z", + "iopub.status.busy": "2023-12-14T17:58:25.070542Z", + "iopub.status.idle": "2023-12-14T17:58:55.181211Z", + "shell.execute_reply": "2023-12-14T17:58:55.180353Z" } }, "outputs": [ @@ -824,14 +824,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.669\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.604\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.283\n", "Computing feature embeddings ...\n" ] }, @@ -848,7 +848,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.48it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.87it/s]" ] }, { @@ -856,7 +856,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 48.81it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.83it/s]" ] }, { @@ -864,7 +864,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.55it/s]" ] }, { @@ -872,7 +872,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.48it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.28it/s]" ] }, { @@ -880,7 +880,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.03it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.94it/s]" ] }, { @@ -888,7 +888,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.01it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.63it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.99it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 28.94it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.68it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.12it/s]" ] }, { @@ -934,7 +934,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.87it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.35it/s]" ] }, { @@ -942,7 +942,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 67.18it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.50it/s]" ] }, { @@ -950,7 +950,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 72.96it/s]" ] }, { @@ -958,7 +958,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.94it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.88it/s]" ] }, { @@ -980,14 +980,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.687\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.540\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.541\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.215\n", "Computing feature embeddings ...\n" ] }, @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.50it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.70it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 54.32it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.60it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 63.27it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1028,7 +1028,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 67.24it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1036,7 +1036,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 72.36it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 70.07it/s]" ] }, { @@ -1044,7 +1044,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 66.26it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.67it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.09it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.42it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.62it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.28it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.57it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.58it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.25it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 70.19it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 74.34it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.50it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.85it/s]" ] }, { @@ -1136,14 +1136,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.450\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.408\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.416\n", "Computing feature embeddings ...\n" ] }, @@ -1160,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.45it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.95it/s]" ] }, { @@ -1168,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.97it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.45it/s]" ] }, { @@ -1176,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 62.55it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.31it/s]" ] }, { @@ -1184,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 67.62it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.24it/s]" ] }, { @@ -1192,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 72.73it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 67.84it/s]" ] }, { @@ -1200,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.90it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.61it/s]" ] }, { @@ -1230,7 +1230,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.01it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 28.29it/s]" ] }, { @@ -1238,7 +1238,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.97it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 57.16it/s]" ] }, { @@ -1246,7 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.79it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 66.70it/s]" ] }, { @@ -1254,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.31it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.32it/s]" ] }, { @@ -1262,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 70.61it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 71.68it/s]" ] }, { @@ -1270,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.68it/s]" ] }, { @@ -1347,10 +1347,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.006419Z", - "iopub.status.busy": "2023-12-13T17:02:38.006144Z", - "iopub.status.idle": "2023-12-13T17:02:38.021121Z", - "shell.execute_reply": "2023-12-13T17:02:38.020339Z" + "iopub.execute_input": "2023-12-14T17:58:55.184238Z", + "iopub.status.busy": "2023-12-14T17:58:55.183812Z", + "iopub.status.idle": "2023-12-14T17:58:55.198495Z", + "shell.execute_reply": "2023-12-14T17:58:55.197987Z" } }, "outputs": [], @@ -1375,10 +1375,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.023704Z", - "iopub.status.busy": "2023-12-13T17:02:38.023496Z", - "iopub.status.idle": "2023-12-13T17:02:38.478953Z", - "shell.execute_reply": "2023-12-13T17:02:38.478326Z" + "iopub.execute_input": "2023-12-14T17:58:55.200872Z", + "iopub.status.busy": "2023-12-14T17:58:55.200545Z", + "iopub.status.idle": "2023-12-14T17:58:55.636523Z", + "shell.execute_reply": "2023-12-14T17:58:55.635900Z" } }, "outputs": [], @@ -1398,10 +1398,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.482144Z", - "iopub.status.busy": "2023-12-13T17:02:38.481677Z", - "iopub.status.idle": "2023-12-13T17:06:00.233378Z", - "shell.execute_reply": "2023-12-13T17:06:00.232677Z" + "iopub.execute_input": "2023-12-14T17:58:55.639341Z", + "iopub.status.busy": "2023-12-14T17:58:55.639092Z", + "iopub.status.idle": "2023-12-14T18:02:16.533981Z", + "shell.execute_reply": "2023-12-14T18:02:16.533323Z" } }, "outputs": [ @@ -1432,13 +1432,14 @@ "name": "stdout", "output_type": "stream", "text": [ + "Finding class_imbalance issues ...\n", "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34a4a9d813a3425ca2625703fb2ff859", + "model_id": "9956e411c4f04e71aad3cc03ab4b77fa", "version_major": 2, "version_minor": 0 }, @@ -1477,10 +1478,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.236640Z", - "iopub.status.busy": "2023-12-13T17:06:00.235882Z", - "iopub.status.idle": "2023-12-13T17:06:00.715210Z", - "shell.execute_reply": "2023-12-13T17:06:00.714546Z" + "iopub.execute_input": "2023-12-14T18:02:16.536988Z", + "iopub.status.busy": "2023-12-14T18:02:16.536264Z", + "iopub.status.idle": "2023-12-14T18:02:17.013848Z", + "shell.execute_reply": "2023-12-14T18:02:17.013113Z" } }, "outputs": [ @@ -1497,6 +1498,7 @@ " low_information 166\n", " dark 16\n", " non_iid 0\n", + " class_imbalance 0\n", " blurry 0\n", " light 0\n", "odd_aspect_ratio 0\n", @@ -1591,6 +1593,23 @@ "p-value: 0.7834321613629787\n", "\n", "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1000\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "39992 False 1.0\n", + "39993 False 1.0\n", + "39994 False 1.0\n", + "39995 False 1.0\n", + "\n", + "\n", "\n", "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.5 \n", "------------------ low_information images ------------------\n", @@ -1652,10 +1671,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.718638Z", - "iopub.status.busy": "2023-12-13T17:06:00.718108Z", - "iopub.status.idle": "2023-12-13T17:06:00.782186Z", - "shell.execute_reply": "2023-12-13T17:06:00.781567Z" + "iopub.execute_input": "2023-12-14T18:02:17.020861Z", + "iopub.status.busy": "2023-12-14T18:02:17.020322Z", + "iopub.status.idle": "2023-12-14T18:02:17.081854Z", + "shell.execute_reply": "2023-12-14T18:02:17.081252Z" } }, "outputs": [ @@ -1759,10 +1778,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.784851Z", - "iopub.status.busy": "2023-12-13T17:06:00.784455Z", - "iopub.status.idle": "2023-12-13T17:06:00.793679Z", - "shell.execute_reply": "2023-12-13T17:06:00.793195Z" + "iopub.execute_input": "2023-12-14T18:02:17.084489Z", + "iopub.status.busy": "2023-12-14T18:02:17.084142Z", + "iopub.status.idle": "2023-12-14T18:02:17.093369Z", + "shell.execute_reply": "2023-12-14T18:02:17.092776Z" } }, "outputs": [ @@ -1892,10 +1911,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.796061Z", - "iopub.status.busy": "2023-12-13T17:06:00.795691Z", - "iopub.status.idle": "2023-12-13T17:06:00.800720Z", - "shell.execute_reply": "2023-12-13T17:06:00.800164Z" + "iopub.execute_input": "2023-12-14T18:02:17.095779Z", + "iopub.status.busy": "2023-12-14T18:02:17.095422Z", + "iopub.status.idle": "2023-12-14T18:02:17.100241Z", + "shell.execute_reply": "2023-12-14T18:02:17.099712Z" }, "nbsphinx": "hidden" }, @@ -1941,10 +1960,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.803170Z", - "iopub.status.busy": "2023-12-13T17:06:00.802766Z", - "iopub.status.idle": "2023-12-13T17:06:01.496763Z", - "shell.execute_reply": "2023-12-13T17:06:01.496073Z" + "iopub.execute_input": "2023-12-14T18:02:17.102631Z", + "iopub.status.busy": "2023-12-14T18:02:17.102267Z", + "iopub.status.idle": "2023-12-14T18:02:17.769054Z", + "shell.execute_reply": "2023-12-14T18:02:17.768398Z" } }, "outputs": [ @@ -1979,10 +1998,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.499417Z", - "iopub.status.busy": "2023-12-13T17:06:01.499053Z", - "iopub.status.idle": "2023-12-13T17:06:01.508494Z", - "shell.execute_reply": "2023-12-13T17:06:01.508017Z" + "iopub.execute_input": "2023-12-14T18:02:17.771740Z", + "iopub.status.busy": "2023-12-14T18:02:17.771285Z", + "iopub.status.idle": "2023-12-14T18:02:17.779777Z", + "shell.execute_reply": "2023-12-14T18:02:17.779284Z" } }, "outputs": [ @@ -2149,10 +2168,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.510740Z", - "iopub.status.busy": "2023-12-13T17:06:01.510541Z", - "iopub.status.idle": "2023-12-13T17:06:01.519296Z", - "shell.execute_reply": "2023-12-13T17:06:01.518679Z" + "iopub.execute_input": "2023-12-14T18:02:17.782287Z", + "iopub.status.busy": "2023-12-14T18:02:17.782088Z", + "iopub.status.idle": "2023-12-14T18:02:17.789876Z", + "shell.execute_reply": "2023-12-14T18:02:17.789309Z" }, "nbsphinx": "hidden" }, @@ -2228,10 +2247,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.521755Z", - "iopub.status.busy": "2023-12-13T17:06:01.521398Z", - "iopub.status.idle": "2023-12-13T17:06:01.988182Z", - "shell.execute_reply": "2023-12-13T17:06:01.987524Z" + "iopub.execute_input": "2023-12-14T18:02:17.791938Z", + "iopub.status.busy": "2023-12-14T18:02:17.791746Z", + "iopub.status.idle": "2023-12-14T18:02:18.253562Z", + "shell.execute_reply": "2023-12-14T18:02:18.252840Z" } }, "outputs": [ @@ -2268,10 +2287,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.990838Z", - "iopub.status.busy": "2023-12-13T17:06:01.990441Z", - "iopub.status.idle": "2023-12-13T17:06:02.006327Z", - "shell.execute_reply": "2023-12-13T17:06:02.005753Z" + "iopub.execute_input": "2023-12-14T18:02:18.256175Z", + "iopub.status.busy": "2023-12-14T18:02:18.255774Z", + "iopub.status.idle": "2023-12-14T18:02:18.271586Z", + "shell.execute_reply": "2023-12-14T18:02:18.270960Z" } }, "outputs": [ @@ -2428,10 +2447,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.008988Z", - "iopub.status.busy": "2023-12-13T17:06:02.008596Z", - "iopub.status.idle": "2023-12-13T17:06:02.014589Z", - "shell.execute_reply": "2023-12-13T17:06:02.014059Z" + "iopub.execute_input": "2023-12-14T18:02:18.274482Z", + "iopub.status.busy": "2023-12-14T18:02:18.273970Z", + "iopub.status.idle": "2023-12-14T18:02:18.280364Z", + "shell.execute_reply": "2023-12-14T18:02:18.279855Z" }, "nbsphinx": "hidden" }, @@ -2476,10 +2495,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.016959Z", - "iopub.status.busy": "2023-12-13T17:06:02.016584Z", - "iopub.status.idle": "2023-12-13T17:06:02.402059Z", - "shell.execute_reply": "2023-12-13T17:06:02.401435Z" + "iopub.execute_input": "2023-12-14T18:02:18.282622Z", + "iopub.status.busy": "2023-12-14T18:02:18.282261Z", + "iopub.status.idle": "2023-12-14T18:02:18.724419Z", + "shell.execute_reply": "2023-12-14T18:02:18.723732Z" } }, "outputs": [ @@ -2554,10 +2573,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.404783Z", - "iopub.status.busy": "2023-12-13T17:06:02.404483Z", - "iopub.status.idle": "2023-12-13T17:06:02.413874Z", - "shell.execute_reply": "2023-12-13T17:06:02.413142Z" + "iopub.execute_input": "2023-12-14T18:02:18.727554Z", + "iopub.status.busy": "2023-12-14T18:02:18.727310Z", + "iopub.status.idle": "2023-12-14T18:02:18.739287Z", + "shell.execute_reply": "2023-12-14T18:02:18.738665Z" } }, "outputs": [ @@ -2582,47 +2601,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2685,10 +2704,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.416642Z", - "iopub.status.busy": "2023-12-13T17:06:02.416423Z", - "iopub.status.idle": "2023-12-13T17:06:02.421804Z", - "shell.execute_reply": "2023-12-13T17:06:02.421073Z" + "iopub.execute_input": "2023-12-14T18:02:18.742126Z", + "iopub.status.busy": "2023-12-14T18:02:18.741893Z", + "iopub.status.idle": "2023-12-14T18:02:18.749322Z", + "shell.execute_reply": "2023-12-14T18:02:18.748713Z" }, "nbsphinx": "hidden" }, @@ -2725,10 +2744,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.424359Z", - "iopub.status.busy": "2023-12-13T17:06:02.424157Z", - "iopub.status.idle": "2023-12-13T17:06:02.589750Z", - "shell.execute_reply": "2023-12-13T17:06:02.589183Z" + "iopub.execute_input": "2023-12-14T18:02:18.752233Z", + "iopub.status.busy": "2023-12-14T18:02:18.752004Z", + "iopub.status.idle": "2023-12-14T18:02:18.947173Z", + "shell.execute_reply": "2023-12-14T18:02:18.946670Z" } }, "outputs": [ @@ -2770,10 +2789,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.592653Z", - "iopub.status.busy": "2023-12-13T17:06:02.592246Z", - "iopub.status.idle": "2023-12-13T17:06:02.600888Z", - "shell.execute_reply": "2023-12-13T17:06:02.600383Z" + "iopub.execute_input": "2023-12-14T18:02:18.949410Z", + "iopub.status.busy": "2023-12-14T18:02:18.949223Z", + "iopub.status.idle": "2023-12-14T18:02:18.956820Z", + "shell.execute_reply": "2023-12-14T18:02:18.956315Z" } }, "outputs": [ @@ -2859,10 +2878,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.603208Z", - "iopub.status.busy": "2023-12-13T17:06:02.602836Z", - "iopub.status.idle": "2023-12-13T17:06:02.766352Z", - "shell.execute_reply": "2023-12-13T17:06:02.765659Z" + "iopub.execute_input": "2023-12-14T18:02:18.959207Z", + "iopub.status.busy": "2023-12-14T18:02:18.958766Z", + "iopub.status.idle": "2023-12-14T18:02:19.148148Z", + "shell.execute_reply": "2023-12-14T18:02:19.147621Z" } }, "outputs": [ @@ -2893,10 +2912,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.769168Z", - "iopub.status.busy": "2023-12-13T17:06:02.768793Z", - "iopub.status.idle": "2023-12-13T17:06:02.773403Z", - "shell.execute_reply": "2023-12-13T17:06:02.772863Z" + "iopub.execute_input": "2023-12-14T18:02:19.150993Z", + "iopub.status.busy": "2023-12-14T18:02:19.150665Z", + "iopub.status.idle": "2023-12-14T18:02:19.155505Z", + "shell.execute_reply": "2023-12-14T18:02:19.154884Z" }, "nbsphinx": "hidden" }, @@ -2933,44 +2952,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01e1cfac352b427488a32d6e9c6d7844": { + "014dbdb5851b44419d8b227f14d765f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "03cd651cc3f74487a9a07f7eeb949efe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_36a7f194f94a4e9ba1fb7b11b3fd02b6", - "IPY_MODEL_a6d961f1bdf0474587f313b6c3cd3169", - "IPY_MODEL_6279b5554b78461888d215c17d919115" - ], - "layout": "IPY_MODEL_886ba220e0ee41a89d651787f95206df" - } - }, - "07aea01850d34474998ac8a6f466ff88": { + "019bbbe7096740a4a87d7b6554fdf160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2985,29 +2983,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_71448bb136f54d07b222fd9243605271", + "layout": "IPY_MODEL_ac5b625ba17b4b9da9e9c0c588f6d3fe", "placeholder": "​", - "style": "IPY_MODEL_46c480b2e18a496e96e7523713bfb14f", - "value": "Downloading metadata: 100%" - } - }, - "082e36e6188d40deaa77dfb8eb428c52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_3118e675fe8b43108af52141e848e7e2", + "value": " 5.15k/5.15k [00:00<00:00, 631kB/s]" } }, - "08d627199ab64656b690cee99e57e562": { + "020489d2f6b74c85931035b639bb7017": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3059,44 +3041,7 @@ "width": null } }, - "09cf764d6385476499aee7342e77c38c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0bc6dd269923497bbbef508d22a01372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3efb3b480d942868c4969f4611bcc95", - "IPY_MODEL_5df488d0b02c4d879bb071a3401c330d", - "IPY_MODEL_dbbd2a3399d042469b7b80af25ad6d27" - ], - "layout": "IPY_MODEL_1b8385f7861b4bd48a0625bf7201d8ea" - } - }, - "0bd84402a26f4e789c2228250336d335": { + "0297dfa02651469bb4ebdd994566c67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3148,7 +3093,7 @@ "width": null } }, - "0c3c3870080145939fdb0f88e7bc1068": { + "0599686ebcbd4643abf31809153f1d7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3200,7 +3145,7 @@ "width": null } }, - "0c5f31909c824faebddc26a08134ddd7": { + "0e950716bbca4abb9978d5aee7cd0d50": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3252,31 +3197,7 @@ "width": null } }, - "0cb0ae0ab19a4347ae7ccc4d2a440b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_08d627199ab64656b690cee99e57e562", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_66c809733f1a44028292fd329d52bd73", - "value": 10000.0 - } - }, - "0d6be435605f4127bffafe6b37e8b31e": { + "0fdbdcea3b124bab802b082e883d6117": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3328,7 +3249,7 @@ "width": null } }, - "0daba700b9d6475897f5f8b1a3469a50": { + "115e3623dbe241d99f0fadb4af055a07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3343,34 +3264,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0d6be435605f4127bffafe6b37e8b31e", + "layout": "IPY_MODEL_9da1efd0aad6469ea3121e38024d8186", "placeholder": "​", - "style": "IPY_MODEL_5778bfc248e94d2498b365d871888002", - "value": " 26.4M/26.4M [00:00<00:00, 101MB/s]" + "style": "IPY_MODEL_4d3db069e98b4b6a9152d897dbf744d7", + "value": "Map (num_proc=4): 100%" } }, - "1389d31fea384ae899c3f3c5f0894e7f": { + "11756a9d73604e3986f30a75b52b19f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aab878e6808a484cb2c8f63580276829", - "placeholder": "​", - "style": "IPY_MODEL_42627a368f284ddba8481b066ef89129", - "value": "Extracting data files: 100%" + "layout": "IPY_MODEL_302e445ed8db4e3fbc1b68d01cc2c167", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe40eaeee2e946d2bd495e0b5384a702", + "value": 4422102.0 } }, - "138eda2334ae402fb1b7e2a78894e0f6": { + "11a01f57a1384403b77056faaaa5bde3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3385,13 +3309,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_149f040ebbcc40d183b716e39424d5ed", + "layout": "IPY_MODEL_fd412c639a3e47a5aa05009fbf59a8d9", "placeholder": "​", - "style": "IPY_MODEL_ad5acf8a51df4352bbdff6e8ff0ccb12", - "value": "Generating test split: 100%" + "style": "IPY_MODEL_9d4edc796c83458f90341c6b912c5145", + "value": "Computing checksums: 100%" } }, - "1497b9b90d3844f9b3b30a7796014629": { + "12afa96dc03149fa9356048facc03f38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3406,7 +3330,7 @@ "description_width": "" } }, - "149f040ebbcc40d183b716e39424d5ed": { + "134e9e08d5bc4525aec9a080df8d3624": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3458,23 +3382,7 @@ "width": null } }, - "16c1366031a44b2fb55a420530173cf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1782fa00fcd540209e67907881bcdeee": { + "14034c5b42be45c488865dbbf5e04dcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3526,7 +3434,7 @@ "width": null } }, - "19016750ea0644cebdd042c4e8afb123": { + "18a355f302674f1baa78e0857a648c16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3541,59 +3449,28 @@ "description_width": "" } }, - "1a195c3b9d884c56b711fe82c523ee8b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1929871b9fbc4f4a9dcafd0dd2b5a133": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b8fed11cba44802b9a8197670112186", + "placeholder": "​", + "style": "IPY_MODEL_938ab0e33af0459a8ccbed6d26a50ab5", + "value": "Downloading builder script: 100%" } }, - "1a34aef4849b46aca3604c440d95e84a": { + "1fa37054022e4a899933618284437604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3608,13 +3485,49 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da2096c48d64459b8e1351072d7413c3", + "layout": "IPY_MODEL_5cb14f0279594cebb9ece9f68b541d88", "placeholder": "​", - "style": "IPY_MODEL_4084c71d5f9c4e49a96fefbfc506012a", - "value": "Generating train split: 100%" + "style": "IPY_MODEL_db23f2aca6654d51b7c042964e54e9d0", + "value": "Extracting data files: 100%" + } + }, + "20fb64de89324c668b89d174d0ca28aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0a98bf39ab443dc845432721cfb507c", + "placeholder": "​", + "style": "IPY_MODEL_18a355f302674f1baa78e0857a648c16", + "value": "100%" + } + }, + "226a88b4f7e6490e8a6f2452b98eee2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1b8385f7861b4bd48a0625bf7201d8ea": { + "26c2a89a460142f9b1904e475cfbd640": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3666,7 +3579,28 @@ "width": null } }, - "1ffd3508847a4344a79108f4d1b57169": { + "28589624fc5e436084d71b0417363cfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d09b9b69a55471081d816e2257aa958", + "placeholder": "​", + "style": "IPY_MODEL_ac82b28418e9487ca148c63f6b6b8e3e", + "value": "Downloading metadata: 100%" + } + }, + "28e285f905ac4328b66bd503970dd870": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3682,15 +3616,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_faf2e3f794b34b8d8ef7d28f8da9b28d", + "layout": "IPY_MODEL_b1fc5bf278f74ae9b8c0a7eefc6f9784", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0e09f731e3140989ad77e431d8d24e0", + "style": "IPY_MODEL_96d1ebe50f57451b92a4b4464d84a357", "value": 60000.0 } }, - "21b2fec784114a04a249e568304f2aed": { + "2942a00a6bbb426c82f3061adffa9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3705,13 +3639,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf9b02a959f6482ba95301fcd4f34e30", + "layout": "IPY_MODEL_0297dfa02651469bb4ebdd994566c67c", "placeholder": "​", - "style": "IPY_MODEL_dd7fac76d6104f82971e7dfea693b76d", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_a2e95b1b5e914e658e7960b7f0c06e6e", + "value": "Downloading data: 100%" } }, - "260a869201514a69a170430381d0d6a3": { + "2e45616143474b8ea1ddb7218a6728e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "302e445ed8db4e3fbc1b68d01cc2c167": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3763,7 +3712,22 @@ "width": null } }, - "2817f6cae2a9469db6ca761753f83129": { + "3118e675fe8b43108af52141e848e7e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31af3f0e051b4350b6c14e425ba331a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3815,7 +3779,43 @@ "width": null } }, - "29ee4a1f566a4a3dbe5549f2b1287b81": { + "3929c1e23b5b4cf4a83c3c657bc369e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "399e53e117554755b3c9ba902c3c41d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0599686ebcbd4643abf31809153f1d7d", + "placeholder": "​", + "style": "IPY_MODEL_4c9f2258d1304bb2bad515a287c3ebc1", + "value": " 60000/60000 [00:28<00:00, 2061.85it/s]" + } + }, + "3d09b9b69a55471081d816e2257aa958": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3867,22 +3867,29 @@ "width": null } }, - "2bcd2e3a51a84009a1f6911da8bcd897": { + "3d60dedadaf045079b3f512339e92cb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11a01f57a1384403b77056faaaa5bde3", + "IPY_MODEL_449d9e36ba624c9b88ce85efd73da101", + "IPY_MODEL_c4f813e9649e48039c5bd0b35e207bb4" + ], + "layout": "IPY_MODEL_92d9ddb9ba4045eb83e540d44572b194" } }, - "2d4b3dc6c0cd44a89b34413b00d0ee98": { + "3e81f6f99ca34d5f8b36dc7bd8bc09db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3898,73 +3905,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c01e829787f64d0e84343e12c0d57782", - "max": 4.0, + "layout": "IPY_MODEL_463a5aa54a62493885b2cc3551e87ecc", + "max": 26421880.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_082e36e6188d40deaa77dfb8eb428c52", - "value": 4.0 - } - }, - "2ef3b42427c24dc59fd1ebcc8357f1f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c4e3f61330494f299c313e1fba9879d5", - "placeholder": "​", - "style": "IPY_MODEL_914f8d29e73e419085c5d034f2efe252", - "value": " 60000/60000 [00:10<00:00, 7643.43 examples/s]" - } - }, - "2f618c1e586c4a89ab03335f510a69ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_014dbdb5851b44419d8b227f14d765f7", + "value": 26421880.0 } }, - "2f628fea3c5440d1994e8c3fab26ed2f": { + "3f33d0d86e744d9bb8cd8ad21d9eac74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0c3c3870080145939fdb0f88e7bc1068", - "placeholder": "​", - "style": "IPY_MODEL_8d6e96fc317e467990950ae3a0a6e03f", - "value": " 29.5k/29.5k [00:00<00:00, 3.19MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1929871b9fbc4f4a9dcafd0dd2b5a133", + "IPY_MODEL_c43c85feb148411ea0d8b7d5196aff75", + "IPY_MODEL_531c6cec6f5d4ab79270322a25a9bc22" + ], + "layout": "IPY_MODEL_ecdeb88b2f794811868d510bfea37fe6" } }, - "30f4cff7af6e40ef80069a0bc03522f4": { + "3f74a53a2336458daca7ae9298682eaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4016,7 +3987,7 @@ "width": null } }, - "31516b6ea860436baeaadca8a3c71bd1": { + "41ddfe888afe4facb40c6358834e798e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4068,22 +4039,59 @@ "width": null } }, - "334a90a0d7ec44f484c2177cc5a5def2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "43510d13349a47efbb1f2e90212f71a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "34a4a9d813a3425ca2625703fb2ff859": { + "439d0591585d47d0980cd15033196a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4098,51 +4106,66 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7704e6dee4d426ea9ca0ab16798bda0", - "IPY_MODEL_451b5a345e594bc1aec3ec38e879f27f", - "IPY_MODEL_c0b16403518a450bb5854720e61602ca" + "IPY_MODEL_8d7a0c03e7174b5f891197f14f7786e3", + "IPY_MODEL_6a54534447fd4a11a5754d070bfa1972", + "IPY_MODEL_f4a8f347eb444ff29288ae43949fa5ef" ], - "layout": "IPY_MODEL_0c5f31909c824faebddc26a08134ddd7" + "layout": "IPY_MODEL_976b078102cd4af7a51ef4ccaae3f6ef" } }, - "36557b9afad54c6e9901a3cbd079fdb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "440830f3c9cd4d1287aee68635f8431d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "36a7f194f94a4e9ba1fb7b11b3fd02b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3e74139674d24bd4a9b0524dc34c13ad", - "placeholder": "​", - "style": "IPY_MODEL_a5fb3ae3f8674f3cb7fd09849d86c088", - "value": "Computing checksums: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "388f98d4c696461fbf1747dbd1052b46": { + "449d9e36ba624c9b88ce85efd73da101": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4158,15 +4181,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1782fa00fcd540209e67907881bcdeee", + "layout": "IPY_MODEL_6ccc63703ec445708623454c44a8a771", "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7f075ca310594f48a930b7f7e5fe6013", + "style": "IPY_MODEL_57f47b2f30f640e9ac06fc9d28635eec", "value": 4.0 } }, - "3a34f644af374f55a9d893d4067dbaa2": { + "45d8c5dfe1ff43de893ef5530820300d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4218,7 +4241,7 @@ "width": null } }, - "3e74139674d24bd4a9b0524dc34c13ad": { + "463a5aa54a62493885b2cc3551e87ecc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4270,40 +4293,10 @@ "width": null } }, - "4084c71d5f9c4e49a96fefbfc506012a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42627a368f284ddba8481b066ef89129": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "433909c73ea949c0a70391a762403d2e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "47ee65f161c648ddaaf1384646734c76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4352,31 +4345,22 @@ "width": null } }, - "451b5a345e594bc1aec3ec38e879f27f": { + "4942ecbef3d14e98be8326f7c313cf57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_70b284acce6a4c5aa4272ac8a3c9a512", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64ff003cb51a47aebeeb0566824a09cf", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "46c480b2e18a496e96e7523713bfb14f": { + "4b5f59b0ae4b447b9ab01f3c2cdc6a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4391,127 +4375,52 @@ "description_width": "" } }, - "4b816a40dcec462386205d5bd805c895": { + "4c9f2258d1304bb2bad515a287c3ebc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4c625c8f729943f58d075ff0c6d752df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4d3db069e98b4b6a9152d897dbf744d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "4cf1e355f56a49f59ee2bb2b26592d0a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4fe8c5f972e74ccd90f020751e5ac103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "4e74f42c3d14480ba53851aa84952484": { + "4fede3e8acf24fc3bc0a967a887c9210": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4563,22 +4472,7 @@ "width": null } }, - "51ab64ad12264b618b91334be90b9f98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "542b4370cf6d473b979b54911fc46509": { + "502915f99ec446b58154636b30ff90b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4593,14 +4487,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1a34aef4849b46aca3604c440d95e84a", - "IPY_MODEL_1ffd3508847a4344a79108f4d1b57169", - "IPY_MODEL_87e370afee1e41828f77297f56fb2b8f" + "IPY_MODEL_9d0abb3dda5d4728b8d903114969fcea", + "IPY_MODEL_9e853285ce0c4e059840c8ec124626a9", + "IPY_MODEL_c9489669f29b4b75abf976461fd966e4" ], - "layout": "IPY_MODEL_9ff7193cfa954becbe2dd3a89fab3283" + "layout": "IPY_MODEL_65e69603bc66496f8f3342c0c6f7ee12" } }, - "54702c3cf57e4602a5f10fd7212050e3": { + "50929fbb21b342f58ad999117cedd8b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4615,72 +4509,106 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b174639c66be410ba019b13356d9d15e", + "layout": "IPY_MODEL_c45bf70ed4ae4890aaabaca49d0f615e", "placeholder": "​", - "style": "IPY_MODEL_334a90a0d7ec44f484c2177cc5a5def2", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_a0519cab67a843169fbd9ebcc36788c6", + "value": " 60000/60000 [00:10<00:00, 7660.64 examples/s]" } }, - "556bebde4968465d9f5a1eda7e6a26bc": { + "531c6cec6f5d4ab79270322a25a9bc22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e07a35da9a194f8a9236c8d61852934f", - "IPY_MODEL_f161f6945aa345b0b12d889c6fff264a", - "IPY_MODEL_2ef3b42427c24dc59fd1ebcc8357f1f9" - ], - "layout": "IPY_MODEL_4c625c8f729943f58d075ff0c6d752df" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e31887c4d54c4b42b8d35af9a4b58419", + "placeholder": "​", + "style": "IPY_MODEL_e035a9648b1a46259ffd09cfdf0007c3", + "value": " 4.83k/4.83k [00:00<00:00, 580kB/s]" } }, - "5778bfc248e94d2498b365d871888002": { + "538433a444e648c7af52eeed55d68864": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5b576277940543328ae8bfe6618396cc": { + "53e6e8b2681c4ec8adde8390793a9e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57f47b2f30f640e9ac06fc9d28635eec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "583f98afb9ee46e7bcad10d05e431370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54702c3cf57e4602a5f10fd7212050e3", - "IPY_MODEL_f12619ccba3540df91fb1b4639e82c21", - "IPY_MODEL_0daba700b9d6475897f5f8b1a3469a50" - ], - "layout": "IPY_MODEL_d6d6925b7962471eb3bc6607439fcaff" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d32c70b4e6b8458e8eeecf1ebbdd94e6", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_538433a444e648c7af52eeed55d68864", + "value": 60000.0 } }, - "5cb2876ad7104d0c9be1f79a0c11e18c": { + "59e28ecdc12f4a4ca4be7e16dade4503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4732,73 +4660,52 @@ "width": null } }, - "5df488d0b02c4d879bb071a3401c330d": { + "5c20c964c45547d48e2b4ed9d5124719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2817f6cae2a9469db6ca761753f83129", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6736a6d7ffa24c5da58ede9f1b018ba4", - "value": 4422102.0 + "layout": "IPY_MODEL_c95d87d1b0df4546b686f4cf88ccb24f", + "placeholder": "​", + "style": "IPY_MODEL_8de3b9db63d1438f8dbec53c71acad4d", + "value": " 60000/60000 [00:08<00:00, 7593.07 examples/s]" } }, - "5e5725178eb7412c9238b68ec779d6ce": { + "5ca54b9f82a342caa0c1ae1055975c82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e603e243915f4bac8b6ccda96002d978", - "placeholder": "​", - "style": "IPY_MODEL_738f8a6c961a4c8fa438e48d67494c88", - "value": "Downloading data: 100%" - } - }, - "6279b5554b78461888d215c17d919115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b5d2180549b64f068a1068eee2f55685", - "placeholder": "​", - "style": "IPY_MODEL_2bcd2e3a51a84009a1f6911da8bcd897", - "value": " 4/4 [00:00<00:00, 677.51it/s]" + "layout": "IPY_MODEL_c976fabd45d9464ea008207c80d22966", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b02337ee5f49443a93f9f5921cec17bb", + "value": 4.0 } }, - "62eb93570b5d4b73a10c3294f5282169": { + "5cb14f0279594cebb9ece9f68b541d88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4850,39 +4757,29 @@ "width": null } }, - "64ff003cb51a47aebeeb0566824a09cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "66c809733f1a44028292fd329d52bd73": { + "5e300f21826f4e03bf9162687a04b4bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1fa37054022e4a899933618284437604", + "IPY_MODEL_5ca54b9f82a342caa0c1ae1055975c82", + "IPY_MODEL_7d73c83e85844aa38da66f96ff6649ca" + ], + "layout": "IPY_MODEL_6a79f0ed11f5457cba39343a685e7a53" } }, - "6736a6d7ffa24c5da58ede9f1b018ba4": { + "61521b97c7ed4c10921e46f2dd86c2c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4898,22 +4795,7 @@ "description_width": "" } }, - "6bad75a8af114df9a143e70cbe160745": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "70b284acce6a4c5aa4272ac8a3c9a512": { + "65e69603bc66496f8f3342c0c6f7ee12": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4965,7 +4847,7 @@ "width": null } }, - "71448bb136f54d07b222fd9243605271": { + "699a3aaf8c1b481a9684344267561cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5017,38 +4899,31 @@ "width": null } }, - "738f8a6c961a4c8fa438e48d67494c88": { + "6a54534447fd4a11a5754d070bfa1972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7f075ca310594f48a930b7f7e5fe6013": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc108e3dd9cb4537815fbbf5ce3bc882", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_61521b97c7ed4c10921e46f2dd86c2c6", + "value": 8845.0 } }, - "8194c24624824b878efc8405ff33b040": { + "6a79f0ed11f5457cba39343a685e7a53": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5100,7 +4975,7 @@ "width": null } }, - "833f8f8baa62471aa8529a301a62c939": { + "6bb319ab906c4db08607ae6b11f97f9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5152,7 +5027,7 @@ "width": null } }, - "866ebaf5eadb404199a5e32479345360": { + "6ccc63703ec445708623454c44a8a771": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5204,43 +5079,7 @@ "width": null } }, - "8692bbe72fda4e368edc927a5accf900": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "87e370afee1e41828f77297f56fb2b8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9dab8f73e9dc486d9b84baac94f113cd", - "placeholder": "​", - "style": "IPY_MODEL_fbb81b905fe843e3ba7427e41abf7b96", - "value": " 60000/60000 [00:08<00:00, 7455.46 examples/s]" - } - }, - "886ba220e0ee41a89d651787f95206df": { + "6e551d872a204c029bdca64427fba910": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5292,80 +5131,7 @@ "width": null } }, - "8a5c39d40b3b498fa4e1375a59789104": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bc734054f38d427bbe7bb80c076b71e6", - "placeholder": "​", - "style": "IPY_MODEL_eda7583c655149409947960a39bca2c6", - "value": " 4/4 [00:02<00:00, 1.46it/s]" - } - }, - "8a91ab936fc44e0fbaded2b37f6b9396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e5725178eb7412c9238b68ec779d6ce", - "IPY_MODEL_fe986ccb368849c1a92738100b65d2d0", - "IPY_MODEL_e3fd248008384046ab9a745eb0620241" - ], - "layout": "IPY_MODEL_9878b527ea7342d8b5dff636f9948308" - } - }, - "8b2c38576a614ea0a18e7910d8b929df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8d6e96fc317e467990950ae3a0a6e03f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8ee66d1f8617459cb29fe3099f465d1a": { + "6e870f18742d48758d578459b835e23a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5380,50 +5146,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1389d31fea384ae899c3f3c5f0894e7f", - "IPY_MODEL_388f98d4c696461fbf1747dbd1052b46", - "IPY_MODEL_94bc44f5a83041c280a7584feb946c43" + "IPY_MODEL_f0e548abc0f24df2baa826ad1e7ed39f", + "IPY_MODEL_c0cdc3fb53594cddbb99861ce1ece6da", + "IPY_MODEL_c3a2001bb9da4c5481b5e705cbe15224" ], - "layout": "IPY_MODEL_833f8f8baa62471aa8529a301a62c939" + "layout": "IPY_MODEL_6e551d872a204c029bdca64427fba910" } }, - "914f8d29e73e419085c5d034f2efe252": { + "70907cbecb1a4610b29420fca3ea0b88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "92b326679f98430daebffe621d903f8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0bd84402a26f4e789c2228250336d335", - "placeholder": "​", - "style": "IPY_MODEL_01e1cfac352b427488a32d6e9c6d7844", - "value": "Downloading data: 100%" - } - }, - "94bc44f5a83041c280a7584feb946c43": { + "74286ffdc56141bca5599bc6f7de50bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5438,13 +5184,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30f4cff7af6e40ef80069a0bc03522f4", + "layout": "IPY_MODEL_cb2373992b0b4605a51ffa888a78f450", "placeholder": "​", - "style": "IPY_MODEL_ae84e35a73d846bca2ad471b5f02817b", - "value": " 4/4 [00:00<00:00, 3.87it/s]" + "style": "IPY_MODEL_8550c4f4ed1946fd9ebc7051a35f29fc", + "value": " 3.13k/3.13k [00:00<00:00, 410kB/s]" } }, - "96271d112a674e299d595ea42991aa28": { + "74b653d96b0047c68f83224d5de6ba09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5496,22 +5242,7 @@ "width": null } }, - "97595412b8ca4aae811d82b2f4cd0ef6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9878b527ea7342d8b5dff636f9948308": { + "7a5fe91a72f3452984a04bd024fd0ea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5563,7 +5294,7 @@ "width": null } }, - "9dab8f73e9dc486d9b84baac94f113cd": { + "7b8fed11cba44802b9a8197670112186": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5615,59 +5346,50 @@ "width": null } }, - "9fdc5354318d43cabcfd8a919c3f1341": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "7c7118a121da44228d604eb7be2a6ad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28589624fc5e436084d71b0417363cfa", + "IPY_MODEL_d5dab5992d6d4f8cba376bdd291fc9c0", + "IPY_MODEL_74286ffdc56141bca5599bc6f7de50bb" + ], + "layout": "IPY_MODEL_134e9e08d5bc4525aec9a080df8d3624" } }, - "9ff7193cfa954becbe2dd3a89fab3283": { + "7d73c83e85844aa38da66f96ff6649ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14034c5b42be45c488865dbbf5e04dcf", + "placeholder": "​", + "style": "IPY_MODEL_12afa96dc03149fa9356048facc03f38", + "value": " 4/4 [00:00<00:00, 3.82it/s]" + } + }, + "7eb91bbacbe141ec90ef46ca10b57dcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5719,7 +5441,52 @@ "width": null } }, - "a03b51430c6c40509b96cd0f91eb1fa6": { + "7fc1d081c32941cfa14695378017a266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8550c4f4ed1946fd9ebc7051a35f29fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "855be5b163824b1abde670fbcbb70189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8654619cdcc14e048da435b245904888": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5771,7 +5538,7 @@ "width": null } }, - "a3efb3b480d942868c4969f4611bcc95": { + "8d7a0c03e7174b5f891197f14f7786e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5786,28 +5553,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1a195c3b9d884c56b711fe82c523ee8b", + "layout": "IPY_MODEL_7a5fe91a72f3452984a04bd024fd0ea7", "placeholder": "​", - "style": "IPY_MODEL_09cf764d6385476499aee7342e77c38c", - "value": "Downloading data: 100%" - } - }, - "a4409717f73b4882889505847c293712": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_d26ecd4428c84aaa80ea156bb653f0d1", + "value": "Downloading readme: 100%" } }, - "a5fb3ae3f8674f3cb7fd09849d86c088": { + "8de3b9db63d1438f8dbec53c71acad4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5822,28 +5574,29 @@ "description_width": "" } }, - "a630ea700b574b72b048cb0f7e1ac3b7": { + "92832737fe64454baad97b42ab036e38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a65d1cd59a3a45d79eef7499e030dbb1", - "placeholder": "​", - "style": "IPY_MODEL_51ab64ad12264b618b91334be90b9f98", - "value": " 3.13k/3.13k [00:00<00:00, 380kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2942a00a6bbb426c82f3061adffa9dca", + "IPY_MODEL_3e81f6f99ca34d5f8b36dc7bd8bc09db", + "IPY_MODEL_e5823cb037b14ee89645f749f665da3b" + ], + "layout": "IPY_MODEL_699a3aaf8c1b481a9684344267561cc7" } }, - "a65d1cd59a3a45d79eef7499e030dbb1": { + "92d9ddb9ba4045eb83e540d44572b194": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5895,97 +5648,76 @@ "width": null } }, - "a6d961f1bdf0474587f313b6c3cd3169": { + "938ab0e33af0459a8ccbed6d26a50ab5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e702d1e3650047d0ba739dd044c70d27", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af6e3e1e236a4762b3e60c0bcf144672", - "value": 4.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a7704e6dee4d426ea9ca0ab16798bda0": { + "947de91902a5402bbb1aa40f89771217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_433909c73ea949c0a70391a762403d2e", - "placeholder": "​", - "style": "IPY_MODEL_c8de68eeaf27424297c9f722cd2d6c00", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a3d6272f7f28471c9c458216c827c67a", + "IPY_MODEL_b1ca91d3bf4b4cd8b5e0da30998260a7", + "IPY_MODEL_5c20c964c45547d48e2b4ed9d5124719" + ], + "layout": "IPY_MODEL_c8c2db33e53547c59f1f8273d0afb14d" } }, - "a9e8f9de1a534ee68cd7f7069d753c2a": { + "96d1ebe50f57451b92a4b4464d84a357": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f8a9cbe4e8ea476b810ead003234750b", - "placeholder": "​", - "style": "IPY_MODEL_97595412b8ca4aae811d82b2f4cd0ef6", - "value": "Downloading readme: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa9e9d9a479249d8934a1ab0eb762852": { + "97589402b73543c68e2a47ed1f9a9163": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f20c8a1947134e95b50b3d8dda9d5597", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16c1366031a44b2fb55a420530173cf0", - "value": 8845.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aab878e6808a484cb2c8f63580276829": { + "976b078102cd4af7a51ef4ccaae3f6ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6037,22 +5769,29 @@ "width": null } }, - "ad5acf8a51df4352bbdff6e8ff0ccb12": { + "9956e411c4f04e71aad3cc03ab4b77fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20fb64de89324c668b89d174d0ca28aa", + "IPY_MODEL_583f98afb9ee46e7bcad10d05e431370", + "IPY_MODEL_399e53e117554755b3c9ba902c3c41d9" + ], + "layout": "IPY_MODEL_8654619cdcc14e048da435b245904888" } }, - "ae84e35a73d846bca2ad471b5f02817b": { + "9a606f4ed9504752a80c04cbbcdd50ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6067,23 +5806,43 @@ "description_width": "" } }, - "af6e3e1e236a4762b3e60c0bcf144672": { + "9d0abb3dda5d4728b8d903114969fcea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6bb319ab906c4db08607ae6b11f97f9b", + "placeholder": "​", + "style": "IPY_MODEL_9a606f4ed9504752a80c04cbbcdd50ac", + "value": "Downloading data: 100%" + } + }, + "9d4edc796c83458f90341c6b912c5145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "b0878073014248e79baf346f850f545f": { + "9da1efd0aad6469ea3121e38024d8186": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6135,7 +5894,29 @@ "width": null } }, - "b0cc566f15984e70a64c4cc705b15a06": { + "9e409cb7855240519f18afa36ede24c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_115e3623dbe241d99f0fadb4af055a07", + "IPY_MODEL_28e285f905ac4328b66bd503970dd870", + "IPY_MODEL_50929fbb21b342f58ad999117cedd8b1" + ], + "layout": "IPY_MODEL_ed5f1ca0fe3040d0adcdf69318837b1d" + } + }, + "9e853285ce0c4e059840c8ec124626a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6151,22 +5932,117 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_866ebaf5eadb404199a5e32479345360", - "max": 4833.0, + "layout": "IPY_MODEL_020489d2f6b74c85931035b639bb7017", + "max": 29515.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ef367e5823c74c2499dfe159f4cfb315", - "value": 4833.0 + "style": "IPY_MODEL_70907cbecb1a4610b29420fca3ea0b88", + "value": 29515.0 } }, - "b174639c66be410ba019b13356d9d15e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a0519cab67a843169fbd9ebcc36788c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a2e95b1b5e914e658e7960b7f0c06e6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a3b55af5cc4c4132afae8a5e74eb4bd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af287932886b45dd85c2ee170e36a856", + "IPY_MODEL_11756a9d73604e3986f30a75b52b19f5", + "IPY_MODEL_ac75479f667e462f8d7412fa800a7b3a" + ], + "layout": "IPY_MODEL_45d8c5dfe1ff43de893ef5530820300d" + } + }, + "a3d6272f7f28471c9c458216c827c67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41ddfe888afe4facb40c6358834e798e", + "placeholder": "​", + "style": "IPY_MODEL_3929c1e23b5b4cf4a83c3c657bc369e6", + "value": "Generating train split: 100%" + } + }, + "a47fda1116b841a0991f3d7399cf6788": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef3014e139214de482090413eec5339e", + "IPY_MODEL_d44404875f0d4b3681cfbf9f2c20b253", + "IPY_MODEL_c2a9ddc9a7ea457dbeb34154b0d6c96e" + ], + "layout": "IPY_MODEL_a5e049e1fb9e4b3b9828b391a82bd57d" + } + }, + "a5e049e1fb9e4b3b9828b391a82bd57d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -6211,7 +6087,7 @@ "width": null } }, - "b36908d89dac4259a3c16e665aa9b3c2": { + "ab1667c9b31a42f4b4962eeffec4c8d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6226,13 +6102,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e74f42c3d14480ba53851aa84952484", + "layout": "IPY_MODEL_31af3f0e051b4350b6c14e425ba331a0", "placeholder": "​", - "style": "IPY_MODEL_8692bbe72fda4e368edc927a5accf900", - "value": " 10000/10000 [00:01<00:00, 7437.72 examples/s]" + "style": "IPY_MODEL_dfe735786f3f441b8665cb854610e20e", + "value": "Downloading data: 100%" } }, - "b4e20adf03eb41fe9c2d1da311c63b42": { + "ac5b625ba17b4b9da9e9c0c588f6d3fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6284,7 +6160,104 @@ "width": null } }, - "b5d2180549b64f068a1068eee2f55685": { + "ac75479f667e462f8d7412fa800a7b3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f74a53a2336458daca7ae9298682eaa", + "placeholder": "​", + "style": "IPY_MODEL_4942ecbef3d14e98be8326f7c313cf57", + "value": " 4.42M/4.42M [00:00<00:00, 66.3MB/s]" + } + }, + "ac82b28418e9487ca148c63f6b6b8e3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "af287932886b45dd85c2ee170e36a856": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7f47b408a12408ead4d34e5b30ef233", + "placeholder": "​", + "style": "IPY_MODEL_4fe8c5f972e74ccd90f020751e5ac103", + "value": "Downloading data: 100%" + } + }, + "b02337ee5f49443a93f9f5921cec17bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b1ca91d3bf4b4cd8b5e0da30998260a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4fede3e8acf24fc3bc0a967a887c9210", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf39c4bba9634e8b8d569d3740b19f28", + "value": 60000.0 + } + }, + "b1fc5bf278f74ae9b8c0a7eefc6f9784": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6336,7 +6309,22 @@ "width": null } }, - "b61aaf7eb80c4254928c8401930158c8": { + "b2d1ac722ae54f7e808c0fe39ae86189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b41cec22ddfd4c8c8556567e9d2b3ba3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6388,7 +6376,7 @@ "width": null } }, - "b67b07f948eb44ffa8bb4f272c2d9ed3": { + "b47ef491be5d42f5bfb792f9cd47e1e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -6403,14 +6391,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_21b2fec784114a04a249e568304f2aed", - "IPY_MODEL_2d4b3dc6c0cd44a89b34413b00d0ee98", - "IPY_MODEL_8a5c39d40b3b498fa4e1375a59789104" + "IPY_MODEL_ab1667c9b31a42f4b4962eeffec4c8d7", + "IPY_MODEL_b63d32162852450eb443157f0b15c3dc", + "IPY_MODEL_019bbbe7096740a4a87d7b6554fdf160" ], - "layout": "IPY_MODEL_f747f97b10104b7fb39371d710739e8e" + "layout": "IPY_MODEL_0fdbdcea3b124bab802b082e883d6117" } }, - "b72d91067edf47128a0ecbb5d0d07034": { + "b534c4a719eb460b84946ab3c472692e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6462,59 +6450,31 @@ "width": null } }, - "bc734054f38d427bbe7bb80c076b71e6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "b63d32162852450eb443157f0b15c3dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47ee65f161c648ddaaf1384646734c76", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97589402b73543c68e2a47ed1f9a9163", + "value": 5148.0 } }, - "bf9b02a959f6482ba95301fcd4f34e30": { + "bc108e3dd9cb4537815fbbf5ce3bc882": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6566,59 +6526,31 @@ "width": null } }, - "c01e829787f64d0e84343e12c0d57782": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "c0cdc3fb53594cddbb99861ce1ece6da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da99cf7b8b5f4a8eaf59ed27de9fac56", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc315a763f8b4987b4a50427b6ff63ac", + "value": 4.0 } }, - "c0b16403518a450bb5854720e61602ca": { + "c2a9ddc9a7ea457dbeb34154b0d6c96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6633,29 +6565,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b72d91067edf47128a0ecbb5d0d07034", + "layout": "IPY_MODEL_26c2a89a460142f9b1904e475cfbd640", "placeholder": "​", - "style": "IPY_MODEL_a4409717f73b4882889505847c293712", - "value": " 60000/60000 [00:29<00:00, 2062.58it/s]" + "style": "IPY_MODEL_7fc1d081c32941cfa14695378017a266", + "value": " 10000/10000 [00:01<00:00, 7419.38 examples/s]" } }, - "c0e09f731e3140989ad77e431d8d24e0": { + "c3a2001bb9da4c5481b5e705cbe15224": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fad4a7747af64c20b62a79b3ecfe38ca", + "placeholder": "​", + "style": "IPY_MODEL_4b5f59b0ae4b447b9ab01f3c2cdc6a99", + "value": " 4/4 [00:02<00:00, 1.64it/s]" } }, - "c4a894aa00d44aeb90606fb08f2dd07a": { + "c43c85feb148411ea0d8b7d5196aff75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6671,15 +6608,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_96271d112a674e299d595ea42991aa28", - "max": 29515.0, + "layout": "IPY_MODEL_59e28ecdc12f4a4ca4be7e16dade4503", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4b816a40dcec462386205d5bd805c895", - "value": 29515.0 + "style": "IPY_MODEL_fdde77827c1f4322a24c797e54d496f2", + "value": 4833.0 } }, - "c4e3f61330494f299c313e1fba9879d5": { + "c45bf70ed4ae4890aaabaca49d0f615e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6731,105 +6668,7 @@ "width": null } }, - "c6d23ec20ed74038b0254bcbeb639579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c8de68eeaf27424297c9f722cd2d6c00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c98ca640ec97447c978096c9dffae108": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62eb93570b5d4b73a10c3294f5282169", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36557b9afad54c6e9901a3cbd079fdb6", - "value": 3126.0 - } - }, - "ca7b9eb29ac14e45932b61f4da703eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92b326679f98430daebffe621d903f8b", - "IPY_MODEL_c4a894aa00d44aeb90606fb08f2dd07a", - "IPY_MODEL_2f628fea3c5440d1994e8c3fab26ed2f" - ], - "layout": "IPY_MODEL_f2bc0b63990743bba32c316992e1ba45" - } - }, - "cc9bdf180bc9420ba18e91a5bb91066f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07aea01850d34474998ac8a6f466ff88", - "IPY_MODEL_c98ca640ec97447c978096c9dffae108", - "IPY_MODEL_a630ea700b574b72b048cb0f7e1ac3b7" - ], - "layout": "IPY_MODEL_31516b6ea860436baeaadca8a3c71bd1" - } - }, - "cd14961194584d899e0d01297dd338c0": { + "c4f813e9649e48039c5bd0b35e207bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6844,51 +6683,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b61aaf7eb80c4254928c8401930158c8", + "layout": "IPY_MODEL_7eb91bbacbe141ec90ef46ca10b57dcd", "placeholder": "​", - "style": "IPY_MODEL_19016750ea0644cebdd042c4e8afb123", - "value": " 8.85k/8.85k [00:00<00:00, 1.06MB/s]" + "style": "IPY_MODEL_d60d37b946794d3782378e0bd0f102b7", + "value": " 4/4 [00:00<00:00, 743.51it/s]" } }, - "cf6a762cd89347ef8a7bbde4bd08ddfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "c8c2db33e53547c59f1f8273d0afb14d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1fc3f53344146138b4c2dc309bc4ea4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9e8f9de1a534ee68cd7f7069d753c2a", - "IPY_MODEL_aa9e9d9a479249d8934a1ab0eb762852", - "IPY_MODEL_cd14961194584d899e0d01297dd338c0" - ], - "layout": "IPY_MODEL_260a869201514a69a170430381d0d6a3" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d217a6c4967444a19f6b17010f147e60": { + "c9489669f29b4b75abf976461fd966e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6903,34 +6756,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b4e20adf03eb41fe9c2d1da311c63b42", + "layout": "IPY_MODEL_b534c4a719eb460b84946ab3c472692e", "placeholder": "​", - "style": "IPY_MODEL_6bad75a8af114df9a143e70cbe160745", - "value": " 4.83k/4.83k [00:00<00:00, 569kB/s]" + "style": "IPY_MODEL_2e45616143474b8ea1ddb7218a6728e3", + "value": " 29.5k/29.5k [00:00<00:00, 3.31MB/s]" } }, - "d3f3d0e1a8a64e3cb5cd0cbfcd164ab0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "c95d87d1b0df4546b686f4cf88ccb24f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8194c24624824b878efc8405ff33b040", - "placeholder": "​", - "style": "IPY_MODEL_8b2c38576a614ea0a18e7910d8b929df", - "value": "Downloading builder script: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d6d6925b7962471eb3bc6607439fcaff": { + "c976fabd45d9464ea008207c80d22966": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6982,7 +6866,7 @@ "width": null } }, - "da2096c48d64459b8e1351072d7413c3": { + "cb2373992b0b4605a51ffa888a78f450": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7034,129 +6918,185 @@ "width": null } }, - "dbbd2a3399d042469b7b80af25ad6d27": { + "cc315a763f8b4987b4a50427b6ff63ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a03b51430c6c40509b96cd0f91eb1fa6", - "placeholder": "​", - "style": "IPY_MODEL_1497b9b90d3844f9b3b30a7796014629", - "value": " 4.42M/4.42M [00:00<00:00, 93.0MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dd7fac76d6104f82971e7dfea693b76d": { + "cf39c4bba9634e8b8d569d3740b19f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e0398fec90b1490eb4a29de274973548": { + "d0c536c8a95c4cecbcbb06b5b8deb5ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3f3d0e1a8a64e3cb5cd0cbfcd164ab0", - "IPY_MODEL_b0cc566f15984e70a64c4cc705b15a06", - "IPY_MODEL_d217a6c4967444a19f6b17010f147e60" - ], - "layout": "IPY_MODEL_29ee4a1f566a4a3dbe5549f2b1287b81" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d26ecd4428c84aaa80ea156bb653f0d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d32c70b4e6b8458e8eeecf1ebbdd94e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e07a35da9a194f8a9236c8d61852934f": { + "d44404875f0d4b3681cfbf9f2c20b253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9fdc5354318d43cabcfd8a919c3f1341", - "placeholder": "​", - "style": "IPY_MODEL_f977dbb14a0640abb2f6366985ec829f", - "value": "Map (num_proc=4): 100%" + "layout": "IPY_MODEL_440830f3c9cd4d1287aee68635f8431d", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d0c536c8a95c4cecbcbb06b5b8deb5ea", + "value": 10000.0 } }, - "e38456412f5146d6a416b3548f5ce133": { + "d5dab5992d6d4f8cba376bdd291fc9c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_138eda2334ae402fb1b7e2a78894e0f6", - "IPY_MODEL_0cb0ae0ab19a4347ae7ccc4d2a440b66", - "IPY_MODEL_b36908d89dac4259a3c16e665aa9b3c2" - ], - "layout": "IPY_MODEL_3a34f644af374f55a9d893d4067dbaa2" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74b653d96b0047c68f83224d5de6ba09", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53e6e8b2681c4ec8adde8390793a9e60", + "value": 3126.0 } }, - "e3fd248008384046ab9a745eb0620241": { + "d60d37b946794d3782378e0bd0f102b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0878073014248e79baf346f850f545f", - "placeholder": "​", - "style": "IPY_MODEL_c6d23ec20ed74038b0254bcbeb639579", - "value": " 5.15k/5.15k [00:00<00:00, 589kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e603e243915f4bac8b6ccda96002d978": { + "d7f47b408a12408ead4d34e5b30ef233": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7208,7 +7148,7 @@ "width": null } }, - "e702d1e3650047d0ba739dd044c70d27": { + "da99cf7b8b5f4a8eaf59ed27de9fac56": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7260,7 +7200,7 @@ "width": null } }, - "eda7583c655149409947960a39bca2c6": { + "db23f2aca6654d51b7c042964e54e9d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7275,71 +7215,37 @@ "description_width": "" } }, - "ef367e5823c74c2499dfe159f4cfb315": { + "dfe735786f3f441b8665cb854610e20e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f12619ccba3540df91fb1b4639e82c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc2e15f3b41b45fe896c1a9ccdb611c5", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf6a762cd89347ef8a7bbde4bd08ddfe", - "value": 26421880.0 - } - }, - "f161f6945aa345b0b12d889c6fff264a": { + "e035a9648b1a46259ffd09cfdf0007c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4cf1e355f56a49f59ee2bb2b26592d0a", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2f618c1e586c4a89ab03335f510a69ac", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f20c8a1947134e95b50b3d8dda9d5597": { + "e0a98bf39ab443dc845432721cfb507c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7391,7 +7297,7 @@ "width": null } }, - "f2bc0b63990743bba32c316992e1ba45": { + "e31887c4d54c4b42b8d35af9a4b58419": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7443,7 +7349,28 @@ "width": null } }, - "f747f97b10104b7fb39371d710739e8e": { + "e5823cb037b14ee89645f749f665da3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e950716bbca4abb9978d5aee7cd0d50", + "placeholder": "​", + "style": "IPY_MODEL_855be5b163824b1abde670fbcbb70189", + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + } + }, + "ecdeb88b2f794811868d510bfea37fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7495,7 +7422,7 @@ "width": null } }, - "f8a9cbe4e8ea476b810ead003234750b": { + "ed5f1ca0fe3040d0adcdf69318837b1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7547,22 +7474,49 @@ "width": null } }, - "f977dbb14a0640abb2f6366985ec829f": { + "ef3014e139214de482090413eec5339e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b41cec22ddfd4c8c8556567e9d2b3ba3", + "placeholder": "​", + "style": "IPY_MODEL_fafbda45463b42eba56f0a9874bffbc5", + "value": "Generating test split: 100%" + } + }, + "f0e548abc0f24df2baa826ad1e7ed39f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43510d13349a47efbb1f2e90212f71a5", + "placeholder": "​", + "style": "IPY_MODEL_226a88b4f7e6490e8a6f2452b98eee2d", + "value": "Downloading data files: 100%" } }, - "faf2e3f794b34b8d8ef7d28f8da9b28d": { + "f28415fe204a4331a5e70d72c417a0ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7614,23 +7568,80 @@ "width": null } }, - "fb2f66e22d3c470bbe23d339ece3c6c2": { + "f4a8f347eb444ff29288ae43949fa5ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f28415fe204a4331a5e70d72c417a0ab", + "placeholder": "​", + "style": "IPY_MODEL_b2d1ac722ae54f7e808c0fe39ae86189", + "value": " 8.85k/8.85k [00:00<00:00, 1.13MB/s]" + } + }, + "fad4a7747af64c20b62a79b3ecfe38ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbb81b905fe843e3ba7427e41abf7b96": { + "fafbda45463b42eba56f0a9874bffbc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7645,7 +7656,7 @@ "description_width": "" } }, - "fc2e15f3b41b45fe896c1a9ccdb611c5": { + "fd412c639a3e47a5aa05009fbf59a8d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7697,28 +7708,36 @@ "width": null } }, - "fe986ccb368849c1a92738100b65d2d0": { + "fdde77827c1f4322a24c797e54d496f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5cb2876ad7104d0c9be1f79a0c11e18c", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fb2f66e22d3c470bbe23d339ece3c6c2", - "value": 5148.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fe40eaeee2e946d2bd495e0b5384a702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 26c6048a7..6a1ef9928 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:07.603347Z", - "iopub.status.busy": "2023-12-13T17:06:07.602974Z", - "iopub.status.idle": "2023-12-13T17:06:08.676895Z", - "shell.execute_reply": "2023-12-13T17:06:08.676256Z" + "iopub.execute_input": "2023-12-14T18:02:24.072118Z", + "iopub.status.busy": "2023-12-14T18:02:24.071933Z", + "iopub.status.idle": "2023-12-14T18:02:25.128447Z", + "shell.execute_reply": "2023-12-14T18:02:25.127848Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.679906Z", - "iopub.status.busy": "2023-12-13T17:06:08.679448Z", - "iopub.status.idle": "2023-12-13T17:06:08.943624Z", - "shell.execute_reply": "2023-12-13T17:06:08.942970Z" + "iopub.execute_input": "2023-12-14T18:02:25.131275Z", + "iopub.status.busy": "2023-12-14T18:02:25.130898Z", + "iopub.status.idle": "2023-12-14T18:02:25.395723Z", + "shell.execute_reply": "2023-12-14T18:02:25.395121Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.946612Z", - "iopub.status.busy": "2023-12-13T17:06:08.946215Z", - "iopub.status.idle": "2023-12-13T17:06:08.958130Z", - "shell.execute_reply": "2023-12-13T17:06:08.957633Z" + "iopub.execute_input": "2023-12-14T18:02:25.398729Z", + "iopub.status.busy": "2023-12-14T18:02:25.398314Z", + "iopub.status.idle": "2023-12-14T18:02:25.410489Z", + "shell.execute_reply": "2023-12-14T18:02:25.409999Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.960386Z", - "iopub.status.busy": "2023-12-13T17:06:08.960018Z", - "iopub.status.idle": "2023-12-13T17:06:09.190939Z", - "shell.execute_reply": "2023-12-13T17:06:09.190300Z" + "iopub.execute_input": "2023-12-14T18:02:25.412814Z", + "iopub.status.busy": "2023-12-14T18:02:25.412441Z", + "iopub.status.idle": "2023-12-14T18:02:25.642334Z", + "shell.execute_reply": "2023-12-14T18:02:25.641675Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:09.193850Z", - "iopub.status.busy": "2023-12-13T17:06:09.193401Z", - "iopub.status.idle": "2023-12-13T17:06:09.220124Z", - "shell.execute_reply": "2023-12-13T17:06:09.219499Z" + "iopub.execute_input": "2023-12-14T18:02:25.645130Z", + "iopub.status.busy": "2023-12-14T18:02:25.644746Z", + "iopub.status.idle": "2023-12-14T18:02:25.670825Z", + "shell.execute_reply": "2023-12-14T18:02:25.670320Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:09.222766Z", - "iopub.status.busy": "2023-12-13T17:06:09.222312Z", - "iopub.status.idle": "2023-12-13T17:06:10.526128Z", - "shell.execute_reply": "2023-12-13T17:06:10.525412Z" + "iopub.execute_input": "2023-12-14T18:02:25.673173Z", + "iopub.status.busy": "2023-12-14T18:02:25.672789Z", + "iopub.status.idle": "2023-12-14T18:02:26.928470Z", + "shell.execute_reply": "2023-12-14T18:02:26.927823Z" } }, "outputs": [ @@ -449,6 +449,7 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 78 issues found in the dataset.\n" ] @@ -471,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:10.528839Z", - "iopub.status.busy": "2023-12-13T17:06:10.528425Z", - "iopub.status.idle": "2023-12-13T17:06:10.545120Z", - "shell.execute_reply": "2023-12-13T17:06:10.544459Z" + "iopub.execute_input": "2023-12-14T18:02:26.931231Z", + "iopub.status.busy": "2023-12-14T18:02:26.930790Z", + "iopub.status.idle": "2023-12-14T18:02:26.948871Z", + "shell.execute_reply": "2023-12-14T18:02:26.948351Z" }, "scrolled": true }, @@ -485,11 +486,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 64\n", - " outlier 7\n", - "near_duplicate 6\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 64\n", + " outlier 7\n", + " near_duplicate 6\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 250, num_classes: 4\n", "\n", @@ -577,7 +579,24 @@ "118 False 0.627675\n", "\n", "Additional Information: \n", - "p-value: 0.0\n" + "p-value: 0.0\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1960\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "158 False 1.0\n", + "159 False 1.0\n", + "160 False 1.0\n", + "161 False 1.0\n" ] } ], @@ -599,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:10.547744Z", - "iopub.status.busy": "2023-12-13T17:06:10.547371Z", - "iopub.status.idle": "2023-12-13T17:06:11.410447Z", - "shell.execute_reply": "2023-12-13T17:06:11.409732Z" + "iopub.execute_input": "2023-12-14T18:02:26.951284Z", + "iopub.status.busy": "2023-12-14T18:02:26.950912Z", + "iopub.status.idle": "2023-12-14T18:02:27.819564Z", + "shell.execute_reply": "2023-12-14T18:02:27.818934Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.413450Z", - "iopub.status.busy": "2023-12-13T17:06:11.413010Z", - "iopub.status.idle": "2023-12-13T17:06:11.427644Z", - "shell.execute_reply": "2023-12-13T17:06:11.427018Z" + "iopub.execute_input": "2023-12-14T18:02:27.822151Z", + "iopub.status.busy": "2023-12-14T18:02:27.821898Z", + "iopub.status.idle": "2023-12-14T18:02:27.836253Z", + "shell.execute_reply": "2023-12-14T18:02:27.835653Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.430141Z", - "iopub.status.busy": "2023-12-13T17:06:11.429686Z", - "iopub.status.idle": "2023-12-13T17:06:11.515714Z", - "shell.execute_reply": "2023-12-13T17:06:11.514993Z" + "iopub.execute_input": "2023-12-14T18:02:27.838761Z", + "iopub.status.busy": "2023-12-14T18:02:27.838474Z", + "iopub.status.idle": "2023-12-14T18:02:27.920547Z", + "shell.execute_reply": "2023-12-14T18:02:27.919839Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.518396Z", - "iopub.status.busy": "2023-12-13T17:06:11.518137Z", - "iopub.status.idle": "2023-12-13T17:06:11.722244Z", - "shell.execute_reply": "2023-12-13T17:06:11.721551Z" + "iopub.execute_input": "2023-12-14T18:02:27.923153Z", + "iopub.status.busy": "2023-12-14T18:02:27.922893Z", + "iopub.status.idle": "2023-12-14T18:02:28.124987Z", + "shell.execute_reply": "2023-12-14T18:02:28.124368Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.725001Z", - "iopub.status.busy": "2023-12-13T17:06:11.724512Z", - "iopub.status.idle": "2023-12-13T17:06:11.742115Z", - "shell.execute_reply": "2023-12-13T17:06:11.741609Z" + "iopub.execute_input": "2023-12-14T18:02:28.127644Z", + "iopub.status.busy": "2023-12-14T18:02:28.127227Z", + "iopub.status.idle": "2023-12-14T18:02:28.144223Z", + "shell.execute_reply": "2023-12-14T18:02:28.143727Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.744315Z", - "iopub.status.busy": "2023-12-13T17:06:11.744112Z", - "iopub.status.idle": "2023-12-13T17:06:11.754727Z", - "shell.execute_reply": "2023-12-13T17:06:11.754124Z" + "iopub.execute_input": "2023-12-14T18:02:28.146694Z", + "iopub.status.busy": "2023-12-14T18:02:28.146357Z", + "iopub.status.idle": "2023-12-14T18:02:28.156317Z", + "shell.execute_reply": "2023-12-14T18:02:28.155739Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.757214Z", - "iopub.status.busy": "2023-12-13T17:06:11.756730Z", - "iopub.status.idle": "2023-12-13T17:06:11.853800Z", - "shell.execute_reply": "2023-12-13T17:06:11.853047Z" + "iopub.execute_input": "2023-12-14T18:02:28.158710Z", + "iopub.status.busy": "2023-12-14T18:02:28.158335Z", + "iopub.status.idle": "2023-12-14T18:02:28.256938Z", + "shell.execute_reply": "2023-12-14T18:02:28.256266Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.856914Z", - "iopub.status.busy": "2023-12-13T17:06:11.856252Z", - "iopub.status.idle": "2023-12-13T17:06:12.009039Z", - "shell.execute_reply": "2023-12-13T17:06:12.008232Z" + "iopub.execute_input": "2023-12-14T18:02:28.259874Z", + "iopub.status.busy": "2023-12-14T18:02:28.259490Z", + "iopub.status.idle": "2023-12-14T18:02:28.395380Z", + "shell.execute_reply": "2023-12-14T18:02:28.394679Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.011969Z", - "iopub.status.busy": "2023-12-13T17:06:12.011491Z", - "iopub.status.idle": "2023-12-13T17:06:12.015682Z", - "shell.execute_reply": "2023-12-13T17:06:12.015062Z" + "iopub.execute_input": "2023-12-14T18:02:28.398368Z", + "iopub.status.busy": "2023-12-14T18:02:28.398085Z", + "iopub.status.idle": "2023-12-14T18:02:28.402424Z", + "shell.execute_reply": "2023-12-14T18:02:28.401807Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.018284Z", - "iopub.status.busy": "2023-12-13T17:06:12.017796Z", - "iopub.status.idle": "2023-12-13T17:06:12.022464Z", - "shell.execute_reply": "2023-12-13T17:06:12.021857Z" + "iopub.execute_input": "2023-12-14T18:02:28.404922Z", + "iopub.status.busy": "2023-12-14T18:02:28.404430Z", + "iopub.status.idle": "2023-12-14T18:02:28.409394Z", + "shell.execute_reply": "2023-12-14T18:02:28.408793Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.024940Z", - "iopub.status.busy": "2023-12-13T17:06:12.024437Z", - "iopub.status.idle": "2023-12-13T17:06:12.063869Z", - "shell.execute_reply": "2023-12-13T17:06:12.063310Z" + "iopub.execute_input": "2023-12-14T18:02:28.411716Z", + "iopub.status.busy": "2023-12-14T18:02:28.411384Z", + "iopub.status.idle": "2023-12-14T18:02:28.450038Z", + "shell.execute_reply": "2023-12-14T18:02:28.449401Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.066513Z", - "iopub.status.busy": "2023-12-13T17:06:12.066100Z", - "iopub.status.idle": "2023-12-13T17:06:12.111582Z", - "shell.execute_reply": "2023-12-13T17:06:12.111049Z" + "iopub.execute_input": "2023-12-14T18:02:28.452442Z", + "iopub.status.busy": "2023-12-14T18:02:28.452000Z", + "iopub.status.idle": "2023-12-14T18:02:28.496821Z", + "shell.execute_reply": "2023-12-14T18:02:28.496287Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.114123Z", - "iopub.status.busy": "2023-12-13T17:06:12.113743Z", - "iopub.status.idle": "2023-12-13T17:06:12.219872Z", - "shell.execute_reply": "2023-12-13T17:06:12.219073Z" + "iopub.execute_input": "2023-12-14T18:02:28.499292Z", + "iopub.status.busy": "2023-12-14T18:02:28.498864Z", + "iopub.status.idle": "2023-12-14T18:02:28.600233Z", + "shell.execute_reply": "2023-12-14T18:02:28.599582Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.223160Z", - "iopub.status.busy": "2023-12-13T17:06:12.222675Z", - "iopub.status.idle": "2023-12-13T17:06:12.326671Z", - "shell.execute_reply": "2023-12-13T17:06:12.325965Z" + "iopub.execute_input": "2023-12-14T18:02:28.603153Z", + "iopub.status.busy": "2023-12-14T18:02:28.602888Z", + "iopub.status.idle": "2023-12-14T18:02:28.698958Z", + "shell.execute_reply": "2023-12-14T18:02:28.698359Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.329549Z", - "iopub.status.busy": "2023-12-13T17:06:12.329271Z", - "iopub.status.idle": "2023-12-13T17:06:12.535420Z", - "shell.execute_reply": "2023-12-13T17:06:12.534727Z" + "iopub.execute_input": "2023-12-14T18:02:28.701927Z", + "iopub.status.busy": "2023-12-14T18:02:28.701423Z", + "iopub.status.idle": "2023-12-14T18:02:28.907110Z", + "shell.execute_reply": "2023-12-14T18:02:28.906417Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.538137Z", - "iopub.status.busy": "2023-12-13T17:06:12.537741Z", - "iopub.status.idle": "2023-12-13T17:06:12.753304Z", - "shell.execute_reply": "2023-12-13T17:06:12.752552Z" + "iopub.execute_input": "2023-12-14T18:02:28.909812Z", + "iopub.status.busy": "2023-12-14T18:02:28.909317Z", + "iopub.status.idle": "2023-12-14T18:02:29.114541Z", + "shell.execute_reply": "2023-12-14T18:02:29.113890Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.756072Z", - "iopub.status.busy": "2023-12-13T17:06:12.755577Z", - "iopub.status.idle": "2023-12-13T17:06:12.761820Z", - "shell.execute_reply": "2023-12-13T17:06:12.761304Z" + "iopub.execute_input": "2023-12-14T18:02:29.117309Z", + "iopub.status.busy": "2023-12-14T18:02:29.116894Z", + "iopub.status.idle": "2023-12-14T18:02:29.123291Z", + "shell.execute_reply": "2023-12-14T18:02:29.122790Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.763982Z", - "iopub.status.busy": "2023-12-13T17:06:12.763781Z", - "iopub.status.idle": "2023-12-13T17:06:12.975718Z", - "shell.execute_reply": "2023-12-13T17:06:12.975010Z" + "iopub.execute_input": "2023-12-14T18:02:29.125851Z", + "iopub.status.busy": "2023-12-14T18:02:29.125470Z", + "iopub.status.idle": "2023-12-14T18:02:29.335341Z", + "shell.execute_reply": "2023-12-14T18:02:29.334643Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.978351Z", - "iopub.status.busy": "2023-12-13T17:06:12.978142Z", - "iopub.status.idle": "2023-12-13T17:06:14.037875Z", - "shell.execute_reply": "2023-12-13T17:06:14.037168Z" + "iopub.execute_input": "2023-12-14T18:02:29.338199Z", + "iopub.status.busy": "2023-12-14T18:02:29.337788Z", + "iopub.status.idle": "2023-12-14T18:02:30.387287Z", + "shell.execute_reply": "2023-12-14T18:02:30.386662Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 0e39bc20b..9d8c2cf19 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:19.079922Z", - "iopub.status.busy": "2023-12-13T17:06:19.079729Z", - "iopub.status.idle": "2023-12-13T17:06:20.122182Z", - "shell.execute_reply": "2023-12-13T17:06:20.121564Z" + "iopub.execute_input": "2023-12-14T18:02:35.498490Z", + "iopub.status.busy": "2023-12-14T18:02:35.498294Z", + "iopub.status.idle": "2023-12-14T18:02:36.503509Z", + "shell.execute_reply": "2023-12-14T18:02:36.502902Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.125300Z", - "iopub.status.busy": "2023-12-13T17:06:20.124844Z", - "iopub.status.idle": "2023-12-13T17:06:20.128115Z", - "shell.execute_reply": "2023-12-13T17:06:20.127530Z" + "iopub.execute_input": "2023-12-14T18:02:36.506716Z", + "iopub.status.busy": "2023-12-14T18:02:36.506138Z", + "iopub.status.idle": "2023-12-14T18:02:36.509385Z", + "shell.execute_reply": "2023-12-14T18:02:36.508856Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.130699Z", - "iopub.status.busy": "2023-12-13T17:06:20.130284Z", - "iopub.status.idle": "2023-12-13T17:06:20.139312Z", - "shell.execute_reply": "2023-12-13T17:06:20.138709Z" + "iopub.execute_input": "2023-12-14T18:02:36.511787Z", + "iopub.status.busy": "2023-12-14T18:02:36.511488Z", + "iopub.status.idle": "2023-12-14T18:02:36.520494Z", + "shell.execute_reply": "2023-12-14T18:02:36.519906Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.141908Z", - "iopub.status.busy": "2023-12-13T17:06:20.141438Z", - "iopub.status.idle": "2023-12-13T17:06:20.190324Z", - "shell.execute_reply": "2023-12-13T17:06:20.189625Z" + "iopub.execute_input": "2023-12-14T18:02:36.522849Z", + "iopub.status.busy": "2023-12-14T18:02:36.522472Z", + "iopub.status.idle": "2023-12-14T18:02:36.572485Z", + "shell.execute_reply": "2023-12-14T18:02:36.571994Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.193409Z", - "iopub.status.busy": "2023-12-13T17:06:20.193040Z", - "iopub.status.idle": "2023-12-13T17:06:20.212195Z", - "shell.execute_reply": "2023-12-13T17:06:20.211687Z" + "iopub.execute_input": "2023-12-14T18:02:36.574752Z", + "iopub.status.busy": "2023-12-14T18:02:36.574383Z", + "iopub.status.idle": "2023-12-14T18:02:36.592990Z", + "shell.execute_reply": "2023-12-14T18:02:36.592467Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.214506Z", - "iopub.status.busy": "2023-12-13T17:06:20.214306Z", - "iopub.status.idle": "2023-12-13T17:06:20.218422Z", - "shell.execute_reply": "2023-12-13T17:06:20.217880Z" + "iopub.execute_input": "2023-12-14T18:02:36.595331Z", + "iopub.status.busy": "2023-12-14T18:02:36.594967Z", + "iopub.status.idle": "2023-12-14T18:02:36.599239Z", + "shell.execute_reply": "2023-12-14T18:02:36.598724Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.220823Z", - "iopub.status.busy": "2023-12-13T17:06:20.220601Z", - "iopub.status.idle": "2023-12-13T17:06:20.248686Z", - "shell.execute_reply": "2023-12-13T17:06:20.248088Z" + "iopub.execute_input": "2023-12-14T18:02:36.601648Z", + "iopub.status.busy": "2023-12-14T18:02:36.601295Z", + "iopub.status.idle": "2023-12-14T18:02:36.630895Z", + "shell.execute_reply": "2023-12-14T18:02:36.630411Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.251936Z", - "iopub.status.busy": "2023-12-13T17:06:20.251446Z", - "iopub.status.idle": "2023-12-13T17:06:20.279964Z", - "shell.execute_reply": "2023-12-13T17:06:20.279376Z" + "iopub.execute_input": "2023-12-14T18:02:36.633391Z", + "iopub.status.busy": "2023-12-14T18:02:36.632950Z", + "iopub.status.idle": "2023-12-14T18:02:36.660359Z", + "shell.execute_reply": "2023-12-14T18:02:36.659871Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.283242Z", - "iopub.status.busy": "2023-12-13T17:06:20.282633Z", - "iopub.status.idle": "2023-12-13T17:06:21.643315Z", - "shell.execute_reply": "2023-12-13T17:06:21.642680Z" + "iopub.execute_input": "2023-12-14T18:02:36.662869Z", + "iopub.status.busy": "2023-12-14T18:02:36.662505Z", + "iopub.status.idle": "2023-12-14T18:02:37.955699Z", + "shell.execute_reply": "2023-12-14T18:02:37.955073Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.646385Z", - "iopub.status.busy": "2023-12-13T17:06:21.645901Z", - "iopub.status.idle": "2023-12-13T17:06:21.653462Z", - "shell.execute_reply": "2023-12-13T17:06:21.652862Z" + "iopub.execute_input": "2023-12-14T18:02:37.958717Z", + "iopub.status.busy": "2023-12-14T18:02:37.958174Z", + "iopub.status.idle": "2023-12-14T18:02:37.965605Z", + "shell.execute_reply": "2023-12-14T18:02:37.965053Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.655801Z", - "iopub.status.busy": "2023-12-13T17:06:21.655458Z", - "iopub.status.idle": "2023-12-13T17:06:21.669403Z", - "shell.execute_reply": "2023-12-13T17:06:21.668865Z" + "iopub.execute_input": "2023-12-14T18:02:37.968095Z", + "iopub.status.busy": "2023-12-14T18:02:37.967735Z", + "iopub.status.idle": "2023-12-14T18:02:37.981593Z", + "shell.execute_reply": "2023-12-14T18:02:37.981033Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.671893Z", - "iopub.status.busy": "2023-12-13T17:06:21.671444Z", - "iopub.status.idle": "2023-12-13T17:06:21.678194Z", - "shell.execute_reply": "2023-12-13T17:06:21.677625Z" + "iopub.execute_input": "2023-12-14T18:02:37.983916Z", + "iopub.status.busy": "2023-12-14T18:02:37.983562Z", + "iopub.status.idle": "2023-12-14T18:02:37.990191Z", + "shell.execute_reply": "2023-12-14T18:02:37.989690Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.680785Z", - "iopub.status.busy": "2023-12-13T17:06:21.680267Z", - "iopub.status.idle": "2023-12-13T17:06:21.683589Z", - "shell.execute_reply": "2023-12-13T17:06:21.682970Z" + "iopub.execute_input": "2023-12-14T18:02:37.992652Z", + "iopub.status.busy": "2023-12-14T18:02:37.992223Z", + "iopub.status.idle": "2023-12-14T18:02:37.995212Z", + "shell.execute_reply": "2023-12-14T18:02:37.994601Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.685825Z", - "iopub.status.busy": "2023-12-13T17:06:21.685630Z", - "iopub.status.idle": "2023-12-13T17:06:21.689981Z", - "shell.execute_reply": "2023-12-13T17:06:21.689429Z" + "iopub.execute_input": "2023-12-14T18:02:37.997724Z", + "iopub.status.busy": "2023-12-14T18:02:37.997203Z", + "iopub.status.idle": "2023-12-14T18:02:38.001471Z", + "shell.execute_reply": "2023-12-14T18:02:38.000852Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.692558Z", - "iopub.status.busy": "2023-12-13T17:06:21.692088Z", - "iopub.status.idle": "2023-12-13T17:06:21.695383Z", - "shell.execute_reply": "2023-12-13T17:06:21.694852Z" + "iopub.execute_input": "2023-12-14T18:02:38.003895Z", + "iopub.status.busy": "2023-12-14T18:02:38.003648Z", + "iopub.status.idle": "2023-12-14T18:02:38.006717Z", + "shell.execute_reply": "2023-12-14T18:02:38.006180Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.697730Z", - "iopub.status.busy": "2023-12-13T17:06:21.697349Z", - "iopub.status.idle": "2023-12-13T17:06:21.702211Z", - "shell.execute_reply": "2023-12-13T17:06:21.701688Z" + "iopub.execute_input": "2023-12-14T18:02:38.008990Z", + "iopub.status.busy": "2023-12-14T18:02:38.008791Z", + "iopub.status.idle": "2023-12-14T18:02:38.013309Z", + "shell.execute_reply": "2023-12-14T18:02:38.012653Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.704690Z", - "iopub.status.busy": "2023-12-13T17:06:21.704310Z", - "iopub.status.idle": "2023-12-13T17:06:21.737641Z", - "shell.execute_reply": "2023-12-13T17:06:21.737117Z" + "iopub.execute_input": "2023-12-14T18:02:38.015725Z", + "iopub.status.busy": "2023-12-14T18:02:38.015519Z", + "iopub.status.idle": "2023-12-14T18:02:38.048784Z", + "shell.execute_reply": "2023-12-14T18:02:38.048278Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.740300Z", - "iopub.status.busy": "2023-12-13T17:06:21.739831Z", - "iopub.status.idle": "2023-12-13T17:06:21.745031Z", - "shell.execute_reply": "2023-12-13T17:06:21.744383Z" + "iopub.execute_input": "2023-12-14T18:02:38.051054Z", + "iopub.status.busy": "2023-12-14T18:02:38.050851Z", + "iopub.status.idle": "2023-12-14T18:02:38.055912Z", + "shell.execute_reply": "2023-12-14T18:02:38.055371Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 018f21b5f..c61feaa6e 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:27.396687Z", - "iopub.status.busy": "2023-12-13T17:06:27.396478Z", - "iopub.status.idle": "2023-12-13T17:06:28.496471Z", - "shell.execute_reply": "2023-12-13T17:06:28.495775Z" + "iopub.execute_input": "2023-12-14T18:02:42.763434Z", + "iopub.status.busy": "2023-12-14T18:02:42.762892Z", + "iopub.status.idle": "2023-12-14T18:02:43.820680Z", + "shell.execute_reply": "2023-12-14T18:02:43.820071Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.499523Z", - "iopub.status.busy": "2023-12-13T17:06:28.499036Z", - "iopub.status.idle": "2023-12-13T17:06:28.796186Z", - "shell.execute_reply": "2023-12-13T17:06:28.795469Z" + "iopub.execute_input": "2023-12-14T18:02:43.823503Z", + "iopub.status.busy": "2023-12-14T18:02:43.823072Z", + "iopub.status.idle": "2023-12-14T18:02:44.102978Z", + "shell.execute_reply": "2023-12-14T18:02:44.102286Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.799154Z", - "iopub.status.busy": "2023-12-13T17:06:28.798934Z", - "iopub.status.idle": "2023-12-13T17:06:28.813494Z", - "shell.execute_reply": "2023-12-13T17:06:28.812856Z" + "iopub.execute_input": "2023-12-14T18:02:44.105821Z", + "iopub.status.busy": "2023-12-14T18:02:44.105615Z", + "iopub.status.idle": "2023-12-14T18:02:44.119669Z", + "shell.execute_reply": "2023-12-14T18:02:44.119156Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.815886Z", - "iopub.status.busy": "2023-12-13T17:06:28.815526Z", - "iopub.status.idle": "2023-12-13T17:06:31.419463Z", - "shell.execute_reply": "2023-12-13T17:06:31.418818Z" + "iopub.execute_input": "2023-12-14T18:02:44.122137Z", + "iopub.status.busy": "2023-12-14T18:02:44.121715Z", + "iopub.status.idle": "2023-12-14T18:02:46.746936Z", + "shell.execute_reply": "2023-12-14T18:02:46.746276Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:31.422186Z", - "iopub.status.busy": "2023-12-13T17:06:31.421804Z", - "iopub.status.idle": "2023-12-13T17:06:32.984966Z", - "shell.execute_reply": "2023-12-13T17:06:32.984232Z" + "iopub.execute_input": "2023-12-14T18:02:46.749721Z", + "iopub.status.busy": "2023-12-14T18:02:46.749312Z", + "iopub.status.idle": "2023-12-14T18:02:48.307171Z", + "shell.execute_reply": "2023-12-14T18:02:48.306560Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:32.987907Z", - "iopub.status.busy": "2023-12-13T17:06:32.987700Z", - "iopub.status.idle": "2023-12-13T17:06:33.007439Z", - "shell.execute_reply": "2023-12-13T17:06:33.006919Z" + "iopub.execute_input": "2023-12-14T18:02:48.309940Z", + "iopub.status.busy": "2023-12-14T18:02:48.309716Z", + "iopub.status.idle": "2023-12-14T18:02:48.336566Z", + "shell.execute_reply": "2023-12-14T18:02:48.336023Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:33.009809Z", - "iopub.status.busy": "2023-12-13T17:06:33.009509Z", - "iopub.status.idle": "2023-12-13T17:06:34.349489Z", - "shell.execute_reply": "2023-12-13T17:06:34.348718Z" + "iopub.execute_input": "2023-12-14T18:02:48.339001Z", + "iopub.status.busy": "2023-12-14T18:02:48.338797Z", + "iopub.status.idle": "2023-12-14T18:02:49.625773Z", + "shell.execute_reply": "2023-12-14T18:02:49.624920Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:34.352788Z", - "iopub.status.busy": "2023-12-13T17:06:34.351922Z", - "iopub.status.idle": "2023-12-13T17:06:37.093528Z", - "shell.execute_reply": "2023-12-13T17:06:37.092837Z" + "iopub.execute_input": "2023-12-14T18:02:49.628998Z", + "iopub.status.busy": "2023-12-14T18:02:49.628163Z", + "iopub.status.idle": "2023-12-14T18:02:52.406998Z", + "shell.execute_reply": "2023-12-14T18:02:52.406308Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.096333Z", - "iopub.status.busy": "2023-12-13T17:06:37.095893Z", - "iopub.status.idle": "2023-12-13T17:06:37.100859Z", - "shell.execute_reply": "2023-12-13T17:06:37.100308Z" + "iopub.execute_input": "2023-12-14T18:02:52.409621Z", + "iopub.status.busy": "2023-12-14T18:02:52.409397Z", + "iopub.status.idle": "2023-12-14T18:02:52.414622Z", + "shell.execute_reply": "2023-12-14T18:02:52.414082Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.103295Z", - "iopub.status.busy": "2023-12-13T17:06:37.102846Z", - "iopub.status.idle": "2023-12-13T17:06:37.107098Z", - "shell.execute_reply": "2023-12-13T17:06:37.106467Z" + "iopub.execute_input": "2023-12-14T18:02:52.417042Z", + "iopub.status.busy": "2023-12-14T18:02:52.416575Z", + "iopub.status.idle": "2023-12-14T18:02:52.420727Z", + "shell.execute_reply": "2023-12-14T18:02:52.420115Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.109523Z", - "iopub.status.busy": "2023-12-13T17:06:37.109175Z", - "iopub.status.idle": "2023-12-13T17:06:37.112700Z", - "shell.execute_reply": "2023-12-13T17:06:37.112051Z" + "iopub.execute_input": "2023-12-14T18:02:52.423253Z", + "iopub.status.busy": "2023-12-14T18:02:52.422926Z", + "iopub.status.idle": "2023-12-14T18:02:52.426410Z", + "shell.execute_reply": "2023-12-14T18:02:52.425763Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 0956e9bd5..2fcb325d0 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:42.258095Z", - "iopub.status.busy": "2023-12-13T17:06:42.257899Z", - "iopub.status.idle": "2023-12-13T17:06:43.359119Z", - "shell.execute_reply": "2023-12-13T17:06:43.358503Z" + "iopub.execute_input": "2023-12-14T18:02:57.429594Z", + "iopub.status.busy": "2023-12-14T18:02:57.429128Z", + "iopub.status.idle": "2023-12-14T18:02:58.499464Z", + "shell.execute_reply": "2023-12-14T18:02:58.498784Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:43.362153Z", - "iopub.status.busy": "2023-12-13T17:06:43.361586Z", - "iopub.status.idle": "2023-12-13T17:06:44.856607Z", - "shell.execute_reply": "2023-12-13T17:06:44.855829Z" + "iopub.execute_input": "2023-12-14T18:02:58.502402Z", + "iopub.status.busy": "2023-12-14T18:02:58.502104Z", + "iopub.status.idle": "2023-12-14T18:03:00.118583Z", + "shell.execute_reply": "2023-12-14T18:03:00.117820Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.859733Z", - "iopub.status.busy": "2023-12-13T17:06:44.859220Z", - "iopub.status.idle": "2023-12-13T17:06:44.862725Z", - "shell.execute_reply": "2023-12-13T17:06:44.862095Z" + "iopub.execute_input": "2023-12-14T18:03:00.121672Z", + "iopub.status.busy": "2023-12-14T18:03:00.121202Z", + "iopub.status.idle": "2023-12-14T18:03:00.124506Z", + "shell.execute_reply": "2023-12-14T18:03:00.123948Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.865297Z", - "iopub.status.busy": "2023-12-13T17:06:44.864952Z", - "iopub.status.idle": "2023-12-13T17:06:44.870714Z", - "shell.execute_reply": "2023-12-13T17:06:44.870104Z" + "iopub.execute_input": "2023-12-14T18:03:00.126936Z", + "iopub.status.busy": "2023-12-14T18:03:00.126572Z", + "iopub.status.idle": "2023-12-14T18:03:00.132181Z", + "shell.execute_reply": "2023-12-14T18:03:00.131708Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.873309Z", - "iopub.status.busy": "2023-12-13T17:06:44.872918Z", - "iopub.status.idle": "2023-12-13T17:06:45.494774Z", - "shell.execute_reply": "2023-12-13T17:06:45.494107Z" + "iopub.execute_input": "2023-12-14T18:03:00.134510Z", + "iopub.status.busy": "2023-12-14T18:03:00.134140Z", + "iopub.status.idle": "2023-12-14T18:03:00.743601Z", + "shell.execute_reply": "2023-12-14T18:03:00.742930Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.497832Z", - "iopub.status.busy": "2023-12-13T17:06:45.497579Z", - "iopub.status.idle": "2023-12-13T17:06:45.503564Z", - "shell.execute_reply": "2023-12-13T17:06:45.503070Z" + "iopub.execute_input": "2023-12-14T18:03:00.746269Z", + "iopub.status.busy": "2023-12-14T18:03:00.745888Z", + "iopub.status.idle": "2023-12-14T18:03:00.752029Z", + "shell.execute_reply": "2023-12-14T18:03:00.751516Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.505902Z", - "iopub.status.busy": "2023-12-13T17:06:45.505703Z", - "iopub.status.idle": "2023-12-13T17:06:45.510134Z", - "shell.execute_reply": "2023-12-13T17:06:45.509630Z" + "iopub.execute_input": "2023-12-14T18:03:00.754357Z", + "iopub.status.busy": "2023-12-14T18:03:00.754157Z", + "iopub.status.idle": "2023-12-14T18:03:00.758191Z", + "shell.execute_reply": "2023-12-14T18:03:00.757693Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.512327Z", - "iopub.status.busy": "2023-12-13T17:06:45.512134Z", - "iopub.status.idle": "2023-12-13T17:06:46.178970Z", - "shell.execute_reply": "2023-12-13T17:06:46.178326Z" + "iopub.execute_input": "2023-12-14T18:03:00.760695Z", + "iopub.status.busy": "2023-12-14T18:03:00.760286Z", + "iopub.status.idle": "2023-12-14T18:03:01.298819Z", + "shell.execute_reply": "2023-12-14T18:03:01.298089Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.181828Z", - "iopub.status.busy": "2023-12-13T17:06:46.181431Z", - "iopub.status.idle": "2023-12-13T17:06:46.293697Z", - "shell.execute_reply": "2023-12-13T17:06:46.293024Z" + "iopub.execute_input": "2023-12-14T18:03:01.301346Z", + "iopub.status.busy": "2023-12-14T18:03:01.301133Z", + "iopub.status.idle": "2023-12-14T18:03:01.401779Z", + "shell.execute_reply": "2023-12-14T18:03:01.401111Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.296344Z", - "iopub.status.busy": "2023-12-13T17:06:46.295841Z", - "iopub.status.idle": "2023-12-13T17:06:46.300612Z", - "shell.execute_reply": "2023-12-13T17:06:46.299988Z" + "iopub.execute_input": "2023-12-14T18:03:01.404183Z", + "iopub.status.busy": "2023-12-14T18:03:01.403981Z", + "iopub.status.idle": "2023-12-14T18:03:01.408512Z", + "shell.execute_reply": "2023-12-14T18:03:01.407936Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.303088Z", - "iopub.status.busy": "2023-12-13T17:06:46.302638Z", - "iopub.status.idle": "2023-12-13T17:06:46.681155Z", - "shell.execute_reply": "2023-12-13T17:06:46.680455Z" + "iopub.execute_input": "2023-12-14T18:03:01.410816Z", + "iopub.status.busy": "2023-12-14T18:03:01.410617Z", + "iopub.status.idle": "2023-12-14T18:03:01.786933Z", + "shell.execute_reply": "2023-12-14T18:03:01.786303Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.684464Z", - "iopub.status.busy": "2023-12-13T17:06:46.684251Z", - "iopub.status.idle": "2023-12-13T17:06:47.022206Z", - "shell.execute_reply": "2023-12-13T17:06:47.021556Z" + "iopub.execute_input": "2023-12-14T18:03:01.790104Z", + "iopub.status.busy": "2023-12-14T18:03:01.789600Z", + "iopub.status.idle": "2023-12-14T18:03:02.127665Z", + "shell.execute_reply": "2023-12-14T18:03:02.127011Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.025390Z", - "iopub.status.busy": "2023-12-13T17:06:47.025169Z", - "iopub.status.idle": "2023-12-13T17:06:47.381361Z", - "shell.execute_reply": "2023-12-13T17:06:47.380742Z" + "iopub.execute_input": "2023-12-14T18:03:02.131087Z", + "iopub.status.busy": "2023-12-14T18:03:02.130509Z", + "iopub.status.idle": "2023-12-14T18:03:02.517372Z", + "shell.execute_reply": "2023-12-14T18:03:02.516686Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.384596Z", - "iopub.status.busy": "2023-12-13T17:06:47.384385Z", - "iopub.status.idle": "2023-12-13T17:06:47.847132Z", - "shell.execute_reply": "2023-12-13T17:06:47.846409Z" + "iopub.execute_input": "2023-12-14T18:03:02.520922Z", + "iopub.status.busy": "2023-12-14T18:03:02.520544Z", + "iopub.status.idle": "2023-12-14T18:03:02.985910Z", + "shell.execute_reply": "2023-12-14T18:03:02.985211Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.852072Z", - "iopub.status.busy": "2023-12-13T17:06:47.851854Z", - "iopub.status.idle": "2023-12-13T17:06:48.302755Z", - "shell.execute_reply": "2023-12-13T17:06:48.302057Z" + "iopub.execute_input": "2023-12-14T18:03:02.990456Z", + "iopub.status.busy": "2023-12-14T18:03:02.990021Z", + "iopub.status.idle": "2023-12-14T18:03:03.442649Z", + "shell.execute_reply": "2023-12-14T18:03:03.441978Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.306212Z", - "iopub.status.busy": "2023-12-13T17:06:48.305792Z", - "iopub.status.idle": "2023-12-13T17:06:48.633691Z", - "shell.execute_reply": "2023-12-13T17:06:48.633015Z" + "iopub.execute_input": "2023-12-14T18:03:03.446284Z", + "iopub.status.busy": "2023-12-14T18:03:03.445836Z", + "iopub.status.idle": "2023-12-14T18:03:03.775130Z", + "shell.execute_reply": "2023-12-14T18:03:03.774481Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.636295Z", - "iopub.status.busy": "2023-12-13T17:06:48.635848Z", - "iopub.status.idle": "2023-12-13T17:06:48.816179Z", - "shell.execute_reply": "2023-12-13T17:06:48.815568Z" + "iopub.execute_input": "2023-12-14T18:03:03.777792Z", + "iopub.status.busy": "2023-12-14T18:03:03.777378Z", + "iopub.status.idle": "2023-12-14T18:03:03.975887Z", + "shell.execute_reply": "2023-12-14T18:03:03.975274Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.819273Z", - "iopub.status.busy": "2023-12-13T17:06:48.818800Z", - "iopub.status.idle": "2023-12-13T17:06:48.822646Z", - "shell.execute_reply": "2023-12-13T17:06:48.822115Z" + "iopub.execute_input": "2023-12-14T18:03:03.978540Z", + "iopub.status.busy": "2023-12-14T18:03:03.978149Z", + "iopub.status.idle": "2023-12-14T18:03:03.981920Z", + "shell.execute_reply": "2023-12-14T18:03:03.981385Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 32f88203c..72ea54a17 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:51.551871Z", - "iopub.status.busy": "2023-12-13T17:06:51.551419Z", - "iopub.status.idle": "2023-12-13T17:06:53.512736Z", - "shell.execute_reply": "2023-12-13T17:06:53.512092Z" + "iopub.execute_input": "2023-12-14T18:03:06.473589Z", + "iopub.status.busy": "2023-12-14T18:03:06.473022Z", + "iopub.status.idle": "2023-12-14T18:03:08.382197Z", + "shell.execute_reply": "2023-12-14T18:03:08.381577Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.515696Z", - "iopub.status.busy": "2023-12-13T17:06:53.515209Z", - "iopub.status.idle": "2023-12-13T17:06:53.826902Z", - "shell.execute_reply": "2023-12-13T17:06:53.826197Z" + "iopub.execute_input": "2023-12-14T18:03:08.385248Z", + "iopub.status.busy": "2023-12-14T18:03:08.384717Z", + "iopub.status.idle": "2023-12-14T18:03:08.695675Z", + "shell.execute_reply": "2023-12-14T18:03:08.694994Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.829891Z", - "iopub.status.busy": "2023-12-13T17:06:53.829488Z", - "iopub.status.idle": "2023-12-13T17:06:53.833589Z", - "shell.execute_reply": "2023-12-13T17:06:53.833098Z" + "iopub.execute_input": "2023-12-14T18:03:08.698618Z", + "iopub.status.busy": "2023-12-14T18:03:08.698245Z", + "iopub.status.idle": "2023-12-14T18:03:08.702260Z", + "shell.execute_reply": "2023-12-14T18:03:08.701754Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.836210Z", - "iopub.status.busy": "2023-12-13T17:06:53.835700Z", - "iopub.status.idle": "2023-12-13T17:06:58.191990Z", - "shell.execute_reply": "2023-12-13T17:06:58.191327Z" + "iopub.execute_input": "2023-12-14T18:03:08.704512Z", + "iopub.status.busy": "2023-12-14T18:03:08.704220Z", + "iopub.status.idle": "2023-12-14T18:03:12.869425Z", + "shell.execute_reply": "2023-12-14T18:03:12.868740Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9a5b816f7b634efdbea992faf652da21", + "model_id": "ee153bf7d4314328af5f224b811de6d5", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.194527Z", - "iopub.status.busy": "2023-12-13T17:06:58.194328Z", - "iopub.status.idle": "2023-12-13T17:06:58.199369Z", - "shell.execute_reply": "2023-12-13T17:06:58.198822Z" + "iopub.execute_input": "2023-12-14T18:03:12.872131Z", + "iopub.status.busy": "2023-12-14T18:03:12.871783Z", + "iopub.status.idle": "2023-12-14T18:03:12.876916Z", + "shell.execute_reply": "2023-12-14T18:03:12.876391Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.201778Z", - "iopub.status.busy": "2023-12-13T17:06:58.201344Z", - "iopub.status.idle": "2023-12-13T17:06:58.738680Z", - "shell.execute_reply": "2023-12-13T17:06:58.737957Z" + "iopub.execute_input": "2023-12-14T18:03:12.879361Z", + "iopub.status.busy": "2023-12-14T18:03:12.878993Z", + "iopub.status.idle": "2023-12-14T18:03:13.423588Z", + "shell.execute_reply": "2023-12-14T18:03:13.422906Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.741576Z", - "iopub.status.busy": "2023-12-13T17:06:58.741194Z", - "iopub.status.idle": "2023-12-13T17:06:59.360398Z", - "shell.execute_reply": "2023-12-13T17:06:59.359719Z" + "iopub.execute_input": "2023-12-14T18:03:13.426040Z", + "iopub.status.busy": "2023-12-14T18:03:13.425824Z", + "iopub.status.idle": "2023-12-14T18:03:14.052109Z", + "shell.execute_reply": "2023-12-14T18:03:14.051449Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:59.363195Z", - "iopub.status.busy": "2023-12-13T17:06:59.362686Z", - "iopub.status.idle": "2023-12-13T17:06:59.366603Z", - "shell.execute_reply": "2023-12-13T17:06:59.365978Z" + "iopub.execute_input": "2023-12-14T18:03:14.054844Z", + "iopub.status.busy": "2023-12-14T18:03:14.054413Z", + "iopub.status.idle": "2023-12-14T18:03:14.058140Z", + "shell.execute_reply": "2023-12-14T18:03:14.057617Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:59.368988Z", - "iopub.status.busy": "2023-12-13T17:06:59.368537Z", - "iopub.status.idle": "2023-12-13T17:07:11.497995Z", - "shell.execute_reply": "2023-12-13T17:07:11.497330Z" + "iopub.execute_input": "2023-12-14T18:03:14.060514Z", + "iopub.status.busy": "2023-12-14T18:03:14.060102Z", + "iopub.status.idle": "2023-12-14T18:03:26.100850Z", + "shell.execute_reply": "2023-12-14T18:03:26.100133Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:11.500711Z", - "iopub.status.busy": "2023-12-13T17:07:11.500491Z", - "iopub.status.idle": "2023-12-13T17:07:13.086720Z", - "shell.execute_reply": "2023-12-13T17:07:13.085965Z" + "iopub.execute_input": "2023-12-14T18:03:26.103663Z", + "iopub.status.busy": "2023-12-14T18:03:26.103270Z", + "iopub.status.idle": "2023-12-14T18:03:27.714837Z", + "shell.execute_reply": "2023-12-14T18:03:27.714093Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:13.090429Z", - "iopub.status.busy": "2023-12-13T17:07:13.090029Z", - "iopub.status.idle": "2023-12-13T17:07:13.359651Z", - "shell.execute_reply": "2023-12-13T17:07:13.358963Z" + "iopub.execute_input": "2023-12-14T18:03:27.718317Z", + "iopub.status.busy": "2023-12-14T18:03:27.717759Z", + "iopub.status.idle": "2023-12-14T18:03:27.979694Z", + "shell.execute_reply": "2023-12-14T18:03:27.978995Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:13.363269Z", - "iopub.status.busy": "2023-12-13T17:07:13.362486Z", - "iopub.status.idle": "2023-12-13T17:07:14.019512Z", - "shell.execute_reply": "2023-12-13T17:07:14.018803Z" + "iopub.execute_input": "2023-12-14T18:03:27.983091Z", + "iopub.status.busy": "2023-12-14T18:03:27.982846Z", + "iopub.status.idle": "2023-12-14T18:03:28.652536Z", + "shell.execute_reply": "2023-12-14T18:03:28.651849Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.022898Z", - "iopub.status.busy": "2023-12-13T17:07:14.022259Z", - "iopub.status.idle": "2023-12-13T17:07:14.535949Z", - "shell.execute_reply": "2023-12-13T17:07:14.535283Z" + "iopub.execute_input": "2023-12-14T18:03:28.655804Z", + "iopub.status.busy": "2023-12-14T18:03:28.655553Z", + "iopub.status.idle": "2023-12-14T18:03:29.144698Z", + "shell.execute_reply": "2023-12-14T18:03:29.144104Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.538817Z", - "iopub.status.busy": "2023-12-13T17:07:14.538310Z", - "iopub.status.idle": "2023-12-13T17:07:14.788025Z", - "shell.execute_reply": "2023-12-13T17:07:14.787322Z" + "iopub.execute_input": "2023-12-14T18:03:29.147261Z", + "iopub.status.busy": "2023-12-14T18:03:29.147048Z", + "iopub.status.idle": "2023-12-14T18:03:29.377648Z", + "shell.execute_reply": "2023-12-14T18:03:29.376973Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.791574Z", - "iopub.status.busy": "2023-12-13T17:07:14.790998Z", - "iopub.status.idle": "2023-12-13T17:07:14.873697Z", - "shell.execute_reply": "2023-12-13T17:07:14.873115Z" + "iopub.execute_input": "2023-12-14T18:03:29.380489Z", + "iopub.status.busy": "2023-12-14T18:03:29.380281Z", + "iopub.status.idle": "2023-12-14T18:03:29.452807Z", + "shell.execute_reply": "2023-12-14T18:03:29.452089Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.876693Z", - "iopub.status.busy": "2023-12-13T17:07:14.876210Z", - "iopub.status.idle": "2023-12-13T17:07:52.522504Z", - "shell.execute_reply": "2023-12-13T17:07:52.521855Z" + "iopub.execute_input": "2023-12-14T18:03:29.455954Z", + "iopub.status.busy": "2023-12-14T18:03:29.455417Z", + "iopub.status.idle": "2023-12-14T18:04:07.333379Z", + "shell.execute_reply": "2023-12-14T18:04:07.332653Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:52.525431Z", - "iopub.status.busy": "2023-12-13T17:07:52.524943Z", - "iopub.status.idle": "2023-12-13T17:07:53.713014Z", - "shell.execute_reply": "2023-12-13T17:07:53.712362Z" + "iopub.execute_input": "2023-12-14T18:04:07.336366Z", + "iopub.status.busy": "2023-12-14T18:04:07.335933Z", + "iopub.status.idle": "2023-12-14T18:04:08.506524Z", + "shell.execute_reply": "2023-12-14T18:04:08.505880Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.716256Z", - "iopub.status.busy": "2023-12-13T17:07:53.715617Z", - "iopub.status.idle": "2023-12-13T17:07:53.901684Z", - "shell.execute_reply": "2023-12-13T17:07:53.901092Z" + "iopub.execute_input": "2023-12-14T18:04:08.509954Z", + "iopub.status.busy": "2023-12-14T18:04:08.509200Z", + "iopub.status.idle": "2023-12-14T18:04:08.690971Z", + "shell.execute_reply": "2023-12-14T18:04:08.690211Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.904637Z", - "iopub.status.busy": "2023-12-13T17:07:53.904239Z", - "iopub.status.idle": "2023-12-13T17:07:53.907611Z", - "shell.execute_reply": "2023-12-13T17:07:53.907016Z" + "iopub.execute_input": "2023-12-14T18:04:08.694372Z", + "iopub.status.busy": "2023-12-14T18:04:08.693784Z", + "iopub.status.idle": "2023-12-14T18:04:08.697214Z", + "shell.execute_reply": "2023-12-14T18:04:08.696722Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.910340Z", - "iopub.status.busy": "2023-12-13T17:07:53.909896Z", - "iopub.status.idle": "2023-12-13T17:07:53.918473Z", - "shell.execute_reply": "2023-12-13T17:07:53.917861Z" + "iopub.execute_input": "2023-12-14T18:04:08.699663Z", + "iopub.status.busy": "2023-12-14T18:04:08.699216Z", + "iopub.status.idle": "2023-12-14T18:04:08.708226Z", + "shell.execute_reply": "2023-12-14T18:04:08.707739Z" }, "nbsphinx": "hidden" }, @@ -1017,28 +1017,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24f7cb4f7cb9402ea3cd950c60dd10ea": { + "04b70dbe97f74b799807f989574759b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4c5f2eecf1034a8783220614d135af16", - "placeholder": "​", - "style": "IPY_MODEL_ea41899b20f04e849205803619082605", - "value": "100%" + "layout": "IPY_MODEL_b72098d19efa4bb09a6232d17391c50d", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dfe478d861e4614992f604d5f9ae39c", + "value": 170498071.0 } }, - "3432bb5f169743b4b1a4c692f914bbd0": { + "0dfe478d861e4614992f604d5f9ae39c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "14c1a6a981094ab685e020bf5f4af86b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1090,31 +1109,22 @@ "width": null } }, - "4b7163d7a10241b6b0a45f6a47f29b33": { + "39d9fd37946c4d6da462f23d91cdba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_910d3109834a4318b94258cc84f99e71", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_826cceda4c96417a861144911300042f", - "value": 170498071.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4c5f2eecf1034a8783220614d135af16": { + "4bfe3220305647e683c64052ba79652f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1166,7 +1176,7 @@ "width": null } }, - "6404a5dfeab14b3f9373840e48395d05": { + "66809dcbb17b442d9713a0a3d9d79b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1181,13 +1191,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3432bb5f169743b4b1a4c692f914bbd0", + "layout": "IPY_MODEL_b32be7bbd9984ff399359904f4bb1c95", "placeholder": "​", - "style": "IPY_MODEL_7d99e8c15280460283d8cfff670e1ae9", - "value": " 170498071/170498071 [00:01<00:00, 115224040.64it/s]" + "style": "IPY_MODEL_39d9fd37946c4d6da462f23d91cdba8d", + "value": " 170498071/170498071 [00:01<00:00, 115500246.87it/s]" + } + }, + "6dd13658ea27451099e708b7b09f3c94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6c77c8a4e13d4003ab449a707940923e": { + "b32be7bbd9984ff399359904f4bb1c95": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1239,38 +1264,7 @@ "width": null } }, - "7d99e8c15280460283d8cfff670e1ae9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "826cceda4c96417a861144911300042f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "910d3109834a4318b94258cc84f99e71": { + "b72098d19efa4bb09a6232d17391c50d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1322,7 +1316,7 @@ "width": null } }, - "9a5b816f7b634efdbea992faf652da21": { + "ee153bf7d4314328af5f224b811de6d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1337,26 +1331,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_24f7cb4f7cb9402ea3cd950c60dd10ea", - "IPY_MODEL_4b7163d7a10241b6b0a45f6a47f29b33", - "IPY_MODEL_6404a5dfeab14b3f9373840e48395d05" + "IPY_MODEL_fbe5e1b7fc014133bf0190803982f413", + "IPY_MODEL_04b70dbe97f74b799807f989574759b2", + "IPY_MODEL_66809dcbb17b442d9713a0a3d9d79b75" ], - "layout": "IPY_MODEL_6c77c8a4e13d4003ab449a707940923e" + "layout": "IPY_MODEL_14c1a6a981094ab685e020bf5f4af86b" } }, - "ea41899b20f04e849205803619082605": { + "fbe5e1b7fc014133bf0190803982f413": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4bfe3220305647e683c64052ba79652f", + "placeholder": "​", + "style": "IPY_MODEL_6dd13658ea27451099e708b7b09f3c94", + "value": "100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index cc7ea110c..c68f11afb 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:58.589005Z", - "iopub.status.busy": "2023-12-13T17:07:58.588327Z", - "iopub.status.idle": "2023-12-13T17:07:59.662761Z", - "shell.execute_reply": "2023-12-13T17:07:59.662154Z" + "iopub.execute_input": "2023-12-14T18:04:13.360971Z", + "iopub.status.busy": "2023-12-14T18:04:13.360613Z", + "iopub.status.idle": "2023-12-14T18:04:14.429929Z", + "shell.execute_reply": "2023-12-14T18:04:14.429297Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.665787Z", - "iopub.status.busy": "2023-12-13T17:07:59.665341Z", - "iopub.status.idle": "2023-12-13T17:07:59.681423Z", - "shell.execute_reply": "2023-12-13T17:07:59.680938Z" + "iopub.execute_input": "2023-12-14T18:04:14.432941Z", + "iopub.status.busy": "2023-12-14T18:04:14.432431Z", + "iopub.status.idle": "2023-12-14T18:04:14.448458Z", + "shell.execute_reply": "2023-12-14T18:04:14.447979Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.683750Z", - "iopub.status.busy": "2023-12-13T17:07:59.683397Z", - "iopub.status.idle": "2023-12-13T17:07:59.686526Z", - "shell.execute_reply": "2023-12-13T17:07:59.685930Z" + "iopub.execute_input": "2023-12-14T18:04:14.450826Z", + "iopub.status.busy": "2023-12-14T18:04:14.450458Z", + "iopub.status.idle": "2023-12-14T18:04:14.453581Z", + "shell.execute_reply": "2023-12-14T18:04:14.453062Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.689029Z", - "iopub.status.busy": "2023-12-13T17:07:59.688672Z", - "iopub.status.idle": "2023-12-13T17:07:59.808774Z", - "shell.execute_reply": "2023-12-13T17:07:59.808110Z" + "iopub.execute_input": "2023-12-14T18:04:14.455962Z", + "iopub.status.busy": "2023-12-14T18:04:14.455667Z", + "iopub.status.idle": "2023-12-14T18:04:14.592545Z", + "shell.execute_reply": "2023-12-14T18:04:14.592027Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.811637Z", - "iopub.status.busy": "2023-12-13T17:07:59.811246Z", - "iopub.status.idle": "2023-12-13T17:08:00.086653Z", - "shell.execute_reply": "2023-12-13T17:08:00.086028Z" + "iopub.execute_input": "2023-12-14T18:04:14.594959Z", + "iopub.status.busy": "2023-12-14T18:04:14.594656Z", + "iopub.status.idle": "2023-12-14T18:04:14.860945Z", + "shell.execute_reply": "2023-12-14T18:04:14.860378Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.089638Z", - "iopub.status.busy": "2023-12-13T17:08:00.089221Z", - "iopub.status.idle": "2023-12-13T17:08:00.345461Z", - "shell.execute_reply": "2023-12-13T17:08:00.344776Z" + "iopub.execute_input": "2023-12-14T18:04:14.863901Z", + "iopub.status.busy": "2023-12-14T18:04:14.863513Z", + "iopub.status.idle": "2023-12-14T18:04:15.118478Z", + "shell.execute_reply": "2023-12-14T18:04:15.117825Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.348152Z", - "iopub.status.busy": "2023-12-13T17:08:00.347649Z", - "iopub.status.idle": "2023-12-13T17:08:00.352243Z", - "shell.execute_reply": "2023-12-13T17:08:00.351752Z" + "iopub.execute_input": "2023-12-14T18:04:15.121263Z", + "iopub.status.busy": "2023-12-14T18:04:15.120869Z", + "iopub.status.idle": "2023-12-14T18:04:15.125407Z", + "shell.execute_reply": "2023-12-14T18:04:15.124854Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.354511Z", - "iopub.status.busy": "2023-12-13T17:08:00.354313Z", - "iopub.status.idle": "2023-12-13T17:08:00.360504Z", - "shell.execute_reply": "2023-12-13T17:08:00.360017Z" + "iopub.execute_input": "2023-12-14T18:04:15.127846Z", + "iopub.status.busy": "2023-12-14T18:04:15.127476Z", + "iopub.status.idle": "2023-12-14T18:04:15.134103Z", + "shell.execute_reply": "2023-12-14T18:04:15.133614Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.362835Z", - "iopub.status.busy": "2023-12-13T17:08:00.362643Z", - "iopub.status.idle": "2023-12-13T17:08:00.365514Z", - "shell.execute_reply": "2023-12-13T17:08:00.364933Z" + "iopub.execute_input": "2023-12-14T18:04:15.136626Z", + "iopub.status.busy": "2023-12-14T18:04:15.136256Z", + "iopub.status.idle": "2023-12-14T18:04:15.139015Z", + "shell.execute_reply": "2023-12-14T18:04:15.138455Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.367648Z", - "iopub.status.busy": "2023-12-13T17:08:00.367458Z", - "iopub.status.idle": "2023-12-13T17:08:10.392041Z", - "shell.execute_reply": "2023-12-13T17:08:10.391302Z" + "iopub.execute_input": "2023-12-14T18:04:15.141367Z", + "iopub.status.busy": "2023-12-14T18:04:15.141022Z", + "iopub.status.idle": "2023-12-14T18:04:25.391523Z", + "shell.execute_reply": "2023-12-14T18:04:25.390868Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.395552Z", - "iopub.status.busy": "2023-12-13T17:08:10.395145Z", - "iopub.status.idle": "2023-12-13T17:08:10.402954Z", - "shell.execute_reply": "2023-12-13T17:08:10.402417Z" + "iopub.execute_input": "2023-12-14T18:04:25.394980Z", + "iopub.status.busy": "2023-12-14T18:04:25.394288Z", + "iopub.status.idle": "2023-12-14T18:04:25.402215Z", + "shell.execute_reply": "2023-12-14T18:04:25.401614Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.405245Z", - "iopub.status.busy": "2023-12-13T17:08:10.405044Z", - "iopub.status.idle": "2023-12-13T17:08:10.409024Z", - "shell.execute_reply": "2023-12-13T17:08:10.408501Z" + "iopub.execute_input": "2023-12-14T18:04:25.404652Z", + "iopub.status.busy": "2023-12-14T18:04:25.404275Z", + "iopub.status.idle": "2023-12-14T18:04:25.408008Z", + "shell.execute_reply": "2023-12-14T18:04:25.407503Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.411219Z", - "iopub.status.busy": "2023-12-13T17:08:10.411023Z", - "iopub.status.idle": "2023-12-13T17:08:10.414578Z", - "shell.execute_reply": "2023-12-13T17:08:10.413910Z" + "iopub.execute_input": "2023-12-14T18:04:25.410330Z", + "iopub.status.busy": "2023-12-14T18:04:25.409962Z", + "iopub.status.idle": "2023-12-14T18:04:25.413402Z", + "shell.execute_reply": "2023-12-14T18:04:25.412781Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.417018Z", - "iopub.status.busy": "2023-12-13T17:08:10.416675Z", - "iopub.status.idle": "2023-12-13T17:08:10.419867Z", - "shell.execute_reply": "2023-12-13T17:08:10.419309Z" + "iopub.execute_input": "2023-12-14T18:04:25.415871Z", + "iopub.status.busy": "2023-12-14T18:04:25.415511Z", + "iopub.status.idle": "2023-12-14T18:04:25.418687Z", + "shell.execute_reply": "2023-12-14T18:04:25.418141Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.422089Z", - "iopub.status.busy": "2023-12-13T17:08:10.421892Z", - "iopub.status.idle": "2023-12-13T17:08:10.430838Z", - "shell.execute_reply": "2023-12-13T17:08:10.430197Z" + "iopub.execute_input": "2023-12-14T18:04:25.421030Z", + "iopub.status.busy": "2023-12-14T18:04:25.420675Z", + "iopub.status.idle": "2023-12-14T18:04:25.429235Z", + "shell.execute_reply": "2023-12-14T18:04:25.428667Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.433343Z", - "iopub.status.busy": "2023-12-13T17:08:10.432906Z", - "iopub.status.idle": "2023-12-13T17:08:10.579446Z", - "shell.execute_reply": "2023-12-13T17:08:10.578754Z" + "iopub.execute_input": "2023-12-14T18:04:25.431804Z", + "iopub.status.busy": "2023-12-14T18:04:25.431443Z", + "iopub.status.idle": "2023-12-14T18:04:25.580141Z", + "shell.execute_reply": "2023-12-14T18:04:25.579553Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.582456Z", - "iopub.status.busy": "2023-12-13T17:08:10.581976Z", - "iopub.status.idle": "2023-12-13T17:08:10.713143Z", - "shell.execute_reply": "2023-12-13T17:08:10.712471Z" + "iopub.execute_input": "2023-12-14T18:04:25.582673Z", + "iopub.status.busy": "2023-12-14T18:04:25.582315Z", + "iopub.status.idle": "2023-12-14T18:04:25.714149Z", + "shell.execute_reply": "2023-12-14T18:04:25.713572Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.715948Z", - "iopub.status.busy": "2023-12-13T17:08:10.715524Z", - "iopub.status.idle": "2023-12-13T17:08:11.310366Z", - "shell.execute_reply": "2023-12-13T17:08:11.309644Z" + "iopub.execute_input": "2023-12-14T18:04:25.716807Z", + "iopub.status.busy": "2023-12-14T18:04:25.716448Z", + "iopub.status.idle": "2023-12-14T18:04:26.318339Z", + "shell.execute_reply": "2023-12-14T18:04:26.317663Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:11.313610Z", - "iopub.status.busy": "2023-12-13T17:08:11.313212Z", - "iopub.status.idle": "2023-12-13T17:08:11.395585Z", - "shell.execute_reply": "2023-12-13T17:08:11.394960Z" + "iopub.execute_input": "2023-12-14T18:04:26.321608Z", + "iopub.status.busy": "2023-12-14T18:04:26.321051Z", + "iopub.status.idle": "2023-12-14T18:04:26.402849Z", + "shell.execute_reply": "2023-12-14T18:04:26.402283Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:11.398637Z", - "iopub.status.busy": "2023-12-13T17:08:11.398162Z", - "iopub.status.idle": "2023-12-13T17:08:11.408112Z", - "shell.execute_reply": "2023-12-13T17:08:11.407476Z" + "iopub.execute_input": "2023-12-14T18:04:26.405486Z", + "iopub.status.busy": "2023-12-14T18:04:26.405071Z", + "iopub.status.idle": "2023-12-14T18:04:26.414961Z", + "shell.execute_reply": "2023-12-14T18:04:26.414461Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index b89a92368..9311e4cf4 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:16.528270Z", - "iopub.status.busy": "2023-12-13T17:08:16.528080Z", - "iopub.status.idle": "2023-12-13T17:08:18.303213Z", - "shell.execute_reply": "2023-12-13T17:08:18.302463Z" + "iopub.execute_input": "2023-12-14T18:04:31.572090Z", + "iopub.status.busy": "2023-12-14T18:04:31.571645Z", + "iopub.status.idle": "2023-12-14T18:04:33.354278Z", + "shell.execute_reply": "2023-12-14T18:04:33.353457Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:18.306012Z", - "iopub.status.busy": "2023-12-13T17:08:18.305809Z", - "iopub.status.idle": "2023-12-13T17:15:03.142076Z", - "shell.execute_reply": "2023-12-13T17:15:03.141363Z" + "iopub.execute_input": "2023-12-14T18:04:33.357376Z", + "iopub.status.busy": "2023-12-14T18:04:33.357125Z", + "iopub.status.idle": "2023-12-14T18:05:33.661945Z", + "shell.execute_reply": "2023-12-14T18:05:33.661218Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:03.144811Z", - "iopub.status.busy": "2023-12-13T17:15:03.144590Z", - "iopub.status.idle": "2023-12-13T17:15:04.156573Z", - "shell.execute_reply": "2023-12-13T17:15:04.155972Z" + "iopub.execute_input": "2023-12-14T18:05:33.664733Z", + "iopub.status.busy": "2023-12-14T18:05:33.664369Z", + "iopub.status.idle": "2023-12-14T18:05:34.676024Z", + "shell.execute_reply": "2023-12-14T18:05:34.675362Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.159277Z", - "iopub.status.busy": "2023-12-13T17:15:04.158979Z", - "iopub.status.idle": "2023-12-13T17:15:04.162496Z", - "shell.execute_reply": "2023-12-13T17:15:04.161994Z" + "iopub.execute_input": "2023-12-14T18:05:34.679063Z", + "iopub.status.busy": "2023-12-14T18:05:34.678520Z", + "iopub.status.idle": "2023-12-14T18:05:34.682027Z", + "shell.execute_reply": "2023-12-14T18:05:34.681387Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.165223Z", - "iopub.status.busy": "2023-12-13T17:15:04.164785Z", - "iopub.status.idle": "2023-12-13T17:15:04.169008Z", - "shell.execute_reply": "2023-12-13T17:15:04.168474Z" + "iopub.execute_input": "2023-12-14T18:05:34.684570Z", + "iopub.status.busy": "2023-12-14T18:05:34.684181Z", + "iopub.status.idle": "2023-12-14T18:05:34.688367Z", + "shell.execute_reply": "2023-12-14T18:05:34.687837Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.171334Z", - "iopub.status.busy": "2023-12-13T17:15:04.171006Z", - "iopub.status.idle": "2023-12-13T17:15:04.174994Z", - "shell.execute_reply": "2023-12-13T17:15:04.174437Z" + "iopub.execute_input": "2023-12-14T18:05:34.690635Z", + "iopub.status.busy": "2023-12-14T18:05:34.690319Z", + "iopub.status.idle": "2023-12-14T18:05:34.694812Z", + "shell.execute_reply": "2023-12-14T18:05:34.694288Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.177478Z", - "iopub.status.busy": "2023-12-13T17:15:04.177043Z", - "iopub.status.idle": "2023-12-13T17:15:04.180198Z", - "shell.execute_reply": "2023-12-13T17:15:04.179574Z" + "iopub.execute_input": "2023-12-14T18:05:34.697132Z", + "iopub.status.busy": "2023-12-14T18:05:34.696759Z", + "iopub.status.idle": "2023-12-14T18:05:34.699918Z", + "shell.execute_reply": "2023-12-14T18:05:34.699277Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.182679Z", - "iopub.status.busy": "2023-12-13T17:15:04.182255Z", - "iopub.status.idle": "2023-12-13T17:15:56.059544Z", - "shell.execute_reply": "2023-12-13T17:15:56.058770Z" + "iopub.execute_input": "2023-12-14T18:05:34.702223Z", + "iopub.status.busy": "2023-12-14T18:05:34.701920Z", + "iopub.status.idle": "2023-12-14T18:06:25.919761Z", + "shell.execute_reply": "2023-12-14T18:06:25.919069Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d927e4cf50cb4928b9613321f496759d", + "model_id": "aa91287f979447e585de2d2fb4a1de70", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a87c1d3c026e402c874e6d5b19f1859d", + "model_id": "ed52d338862645e58b397d2b273b82ca", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:56.062712Z", - "iopub.status.busy": "2023-12-13T17:15:56.062468Z", - "iopub.status.idle": "2023-12-13T17:15:56.810121Z", - "shell.execute_reply": "2023-12-13T17:15:56.809460Z" + "iopub.execute_input": "2023-12-14T18:06:25.922723Z", + "iopub.status.busy": "2023-12-14T18:06:25.922278Z", + "iopub.status.idle": "2023-12-14T18:06:26.662887Z", + "shell.execute_reply": "2023-12-14T18:06:26.662267Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:56.812756Z", - "iopub.status.busy": "2023-12-13T17:15:56.812279Z", - "iopub.status.idle": "2023-12-13T17:15:58.941647Z", - "shell.execute_reply": "2023-12-13T17:15:58.940964Z" + "iopub.execute_input": "2023-12-14T18:06:26.665761Z", + "iopub.status.busy": "2023-12-14T18:06:26.665211Z", + "iopub.status.idle": "2023-12-14T18:06:28.773210Z", + "shell.execute_reply": "2023-12-14T18:06:28.772540Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:58.944114Z", - "iopub.status.busy": "2023-12-13T17:15:58.943907Z", - "iopub.status.idle": "2023-12-13T17:16:27.484085Z", - "shell.execute_reply": "2023-12-13T17:16:27.483468Z" + "iopub.execute_input": "2023-12-14T18:06:28.775970Z", + "iopub.status.busy": "2023-12-14T18:06:28.775582Z", + "iopub.status.idle": "2023-12-14T18:06:57.711421Z", + "shell.execute_reply": "2023-12-14T18:06:57.710776Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17105/4997436 [00:00<00:29, 171043.64it/s]" + " 0%| | 17330/4997436 [00:00<00:28, 173286.94it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34368/4997436 [00:00<00:28, 171969.88it/s]" + " 1%| | 34775/4997436 [00:00<00:28, 173966.54it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51830/4997436 [00:00<00:28, 173176.63it/s]" + " 1%| | 52225/4997436 [00:00<00:28, 174202.80it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69376/4997436 [00:00<00:28, 174075.00it/s]" + " 1%|▏ | 69698/4997436 [00:00<00:28, 174405.08it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 86924/4997436 [00:00<00:28, 174579.30it/s]" + " 2%|▏ | 87163/4997436 [00:00<00:28, 174490.00it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 104530/4997436 [00:00<00:27, 175081.64it/s]" + " 2%|▏ | 104720/4997436 [00:00<00:27, 174854.41it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122049/4997436 [00:00<00:27, 175115.07it/s]" + " 2%|▏ | 122206/4997436 [00:00<00:27, 174847.43it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 139609/4997436 [00:00<00:27, 175265.91it/s]" + " 3%|▎ | 139691/4997436 [00:00<00:27, 174786.22it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157185/4997436 [00:00<00:27, 175416.76it/s]" + " 3%|▎ | 157239/4997436 [00:00<00:27, 174998.79it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 174727/4997436 [00:01<00:27, 175313.55it/s]" + " 3%|▎ | 174739/4997436 [00:01<00:27, 174945.02it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 192284/4997436 [00:01<00:27, 175389.37it/s]" + " 4%|▍ | 192234/4997436 [00:01<00:27, 174691.24it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 209958/4997436 [00:01<00:27, 175798.51it/s]" + " 4%|▍ | 209782/4997436 [00:01<00:27, 174929.03it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 227597/4997436 [00:01<00:27, 175976.69it/s]" + " 5%|▍ | 227293/4997436 [00:01<00:27, 174982.21it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245198/4997436 [00:01<00:27, 175985.66it/s]" + " 5%|▍ | 244792/4997436 [00:01<00:27, 174961.19it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 262811/4997436 [00:01<00:26, 176025.29it/s]" + " 5%|▌ | 262381/4997436 [00:01<00:27, 175239.43it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 280515/4997436 [00:01<00:26, 176327.32it/s]" + " 6%|▌ | 279905/4997436 [00:01<00:26, 175108.51it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298148/4997436 [00:01<00:26, 176153.16it/s]" + " 6%|▌ | 297416/4997436 [00:01<00:26, 175050.57it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315851/4997436 [00:01<00:26, 176414.09it/s]" + " 6%|▋ | 314922/4997436 [00:01<00:26, 175020.63it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333880/4997436 [00:01<00:26, 177574.70it/s]" + " 7%|▋ | 332425/4997436 [00:01<00:26, 175017.48it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 351868/4997436 [00:02<00:26, 178263.56it/s]" + " 7%|▋ | 349927/4997436 [00:02<00:26, 174967.59it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369921/4997436 [00:02<00:25, 178941.68it/s]" + " 7%|▋ | 367424/4997436 [00:02<00:26, 174892.80it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 387927/4997436 [00:02<00:25, 179274.60it/s]" + " 8%|▊ | 384927/4997436 [00:02<00:26, 174931.12it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405855/4997436 [00:02<00:25, 179266.40it/s]" + " 8%|▊ | 402421/4997436 [00:02<00:26, 174727.42it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 423786/4997436 [00:02<00:25, 179276.97it/s]" + " 8%|▊ | 419894/4997436 [00:02<00:26, 174606.10it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 441729/4997436 [00:02<00:25, 179320.11it/s]" + " 9%|▉ | 437393/4997436 [00:02<00:26, 174719.31it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 459662/4997436 [00:02<00:25, 179183.30it/s]" + " 9%|▉ | 454865/4997436 [00:02<00:26, 174502.70it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477581/4997436 [00:02<00:25, 179133.37it/s]" + " 9%|▉ | 472343/4997436 [00:02<00:25, 174583.07it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 495574/4997436 [00:02<00:25, 179369.83it/s]" + " 10%|▉ | 489846/4997436 [00:02<00:25, 174714.69it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 513512/4997436 [00:02<00:25, 179259.13it/s]" + " 10%|█ | 507318/4997436 [00:02<00:25, 174714.09it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531438/4997436 [00:03<00:24, 179129.36it/s]" + " 11%|█ | 524790/4997436 [00:03<00:25, 174416.28it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 549388/4997436 [00:03<00:24, 179239.21it/s]" + " 11%|█ | 542232/4997436 [00:03<00:25, 174370.75it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567312/4997436 [00:03<00:25, 176736.45it/s]" + " 11%|█ | 559670/4997436 [00:03<00:25, 174243.38it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585052/4997436 [00:03<00:24, 176930.13it/s]" + " 12%|█▏ | 577105/4997436 [00:03<00:25, 174272.63it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 602919/4997436 [00:03<00:24, 177445.20it/s]" + " 12%|█▏ | 594533/4997436 [00:03<00:25, 174242.39it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 620747/4997436 [00:03<00:24, 177691.63it/s]" + " 12%|█▏ | 611958/4997436 [00:03<00:25, 174147.52it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 638558/4997436 [00:03<00:24, 177812.82it/s]" + " 13%|█▎ | 629373/4997436 [00:03<00:25, 173818.31it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 656342/4997436 [00:03<00:24, 177790.81it/s]" + " 13%|█▎ | 646778/4997436 [00:03<00:25, 173884.50it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674191/4997436 [00:03<00:24, 177996.41it/s]" + " 13%|█▎ | 664204/4997436 [00:03<00:24, 173996.17it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692024/4997436 [00:03<00:24, 178092.46it/s]" + " 14%|█▎ | 681654/4997436 [00:03<00:24, 174145.35it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 709870/4997436 [00:04<00:24, 178201.52it/s]" + " 14%|█▍ | 699069/4997436 [00:04<00:24, 173917.82it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 727691/4997436 [00:04<00:24, 177873.68it/s]" + " 14%|█▍ | 716461/4997436 [00:04<00:24, 173770.95it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 745508/4997436 [00:04<00:23, 177959.29it/s]" + " 15%|█▍ | 733931/4997436 [00:04<00:24, 174048.15it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763305/4997436 [00:04<00:23, 177688.37it/s]" + " 15%|█▌ | 751336/4997436 [00:04<00:24, 173957.66it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781075/4997436 [00:04<00:23, 176406.92it/s]" + " 15%|█▌ | 768799/4997436 [00:04<00:24, 174156.44it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 798928/4997436 [00:04<00:23, 177038.54it/s]" + " 16%|█▌ | 786299/4997436 [00:04<00:24, 174407.73it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816845/4997436 [00:04<00:23, 177673.11it/s]" + " 16%|█▌ | 803829/4997436 [00:04<00:24, 174672.44it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834756/4997436 [00:04<00:23, 178099.81it/s]" + " 16%|█▋ | 821357/4997436 [00:04<00:23, 174852.43it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 852701/4997436 [00:04<00:23, 178502.61it/s]" + " 17%|█▋ | 838854/4997436 [00:04<00:23, 174884.11it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 870691/4997436 [00:04<00:23, 178918.15it/s]" + " 17%|█▋ | 856380/4997436 [00:04<00:23, 174993.78it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 888629/4997436 [00:05<00:22, 179054.30it/s]" + " 17%|█▋ | 873880/4997436 [00:05<00:24, 167743.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 906547/4997436 [00:05<00:22, 179090.11it/s]" + " 18%|█▊ | 891223/4997436 [00:05<00:24, 169396.32it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 924457/4997436 [00:05<00:22, 179074.82it/s]" + " 18%|█▊ | 908726/4997436 [00:05<00:23, 171048.74it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 942365/4997436 [00:05<00:22, 178937.88it/s]" + " 19%|█▊ | 926150/4997436 [00:05<00:23, 171990.89it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 960259/4997436 [00:05<00:22, 178073.34it/s]" + " 19%|█▉ | 943594/4997436 [00:05<00:23, 172716.00it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 978118/4997436 [00:05<00:22, 178226.12it/s]" + " 19%|█▉ | 961035/4997436 [00:05<00:23, 173216.87it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 995942/4997436 [00:05<00:22, 177680.19it/s]" + " 20%|█▉ | 978510/4997436 [00:05<00:23, 173673.52it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1013716/4997436 [00:05<00:22, 177696.84it/s]" + " 20%|█▉ | 995998/4997436 [00:05<00:22, 174031.24it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1031629/4997436 [00:05<00:22, 178123.18it/s]" + " 20%|██ | 1013510/4997436 [00:05<00:22, 174354.60it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049488/4997436 [00:05<00:22, 178260.70it/s]" + " 21%|██ | 1031016/4997436 [00:05<00:22, 174562.53it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1067353/4997436 [00:06<00:22, 178374.95it/s]" + " 21%|██ | 1048477/4997436 [00:06<00:22, 174548.62it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085191/4997436 [00:06<00:22, 177373.76it/s]" + " 21%|██▏ | 1065935/4997436 [00:06<00:22, 174512.56it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1102938/4997436 [00:06<00:21, 177400.27it/s]" + " 22%|██▏ | 1083445/4997436 [00:06<00:22, 174686.32it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1120680/4997436 [00:06<00:21, 177010.48it/s]" + " 22%|██▏ | 1100928/4997436 [00:06<00:22, 174727.95it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1138541/4997436 [00:06<00:21, 177486.14it/s]" + " 22%|██▏ | 1118402/4997436 [00:06<00:22, 174605.16it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1156399/4997436 [00:06<00:21, 177810.67it/s]" + " 23%|██▎ | 1136039/4997436 [00:06<00:22, 175132.22it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174202/4997436 [00:06<00:21, 177872.96it/s]" + " 23%|██▎ | 1153733/4997436 [00:06<00:21, 175671.53it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1192052/4997436 [00:06<00:21, 178059.47it/s]" + " 23%|██▎ | 1171493/4997436 [00:06<00:21, 176248.62it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209868/4997436 [00:06<00:21, 178086.22it/s]" + " 24%|██▍ | 1189119/4997436 [00:06<00:21, 176171.46it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227677/4997436 [00:06<00:21, 177968.72it/s]" + " 24%|██▍ | 1206738/4997436 [00:06<00:21, 176171.66it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1245576/4997436 [00:07<00:21, 178271.17it/s]" + " 24%|██▍ | 1224356/4997436 [00:07<00:21, 176072.11it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1263404/4997436 [00:07<00:20, 178090.44it/s]" + " 25%|██▍ | 1241964/4997436 [00:07<00:22, 170153.55it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1281214/4997436 [00:07<00:20, 177854.10it/s]" + " 25%|██▌ | 1259415/4997436 [00:07<00:21, 171426.09it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1299000/4997436 [00:07<00:20, 176917.01it/s]" + " 26%|██▌ | 1276876/4997436 [00:07<00:21, 172362.67it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1316980/4997436 [00:07<00:20, 177776.16it/s]" + " 26%|██▌ | 1294417/4997436 [00:07<00:21, 173263.58it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334845/4997436 [00:07<00:20, 178034.41it/s]" + " 26%|██▋ | 1311851/4997436 [00:07<00:21, 173582.46it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1352650/4997436 [00:07<00:20, 176879.68it/s]" + " 27%|██▋ | 1329350/4997436 [00:07<00:21, 173999.91it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1370407/4997436 [00:07<00:20, 177082.63it/s]" + " 27%|██▋ | 1346760/4997436 [00:07<00:20, 173936.45it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1388117/4997436 [00:07<00:20, 176791.01it/s]" + " 27%|██▋ | 1364254/4997436 [00:07<00:20, 174234.83it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1405804/4997436 [00:07<00:20, 176811.39it/s]" + " 28%|██▊ | 1381745/4997436 [00:07<00:20, 174434.22it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423486/4997436 [00:08<00:20, 176674.67it/s]" + " 28%|██▊ | 1399192/4997436 [00:08<00:20, 174315.91it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441154/4997436 [00:08<00:20, 176412.67it/s]" + " 28%|██▊ | 1416626/4997436 [00:08<00:21, 167024.55it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458796/4997436 [00:08<00:20, 176342.85it/s]" + " 29%|██▊ | 1434042/4997436 [00:08<00:21, 169096.31it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476431/4997436 [00:08<00:19, 176285.66it/s]" + " 29%|██▉ | 1451506/4997436 [00:08<00:20, 170721.43it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1494125/4997436 [00:08<00:19, 176480.52it/s]" + " 29%|██▉ | 1468953/4997436 [00:08<00:20, 171827.81it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1511822/4997436 [00:08<00:19, 176625.83it/s]" + " 30%|██▉ | 1486380/4997436 [00:08<00:20, 172551.50it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529485/4997436 [00:08<00:19, 176351.15it/s]" + " 30%|███ | 1503786/4997436 [00:08<00:20, 172999.31it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547134/4997436 [00:08<00:19, 176371.88it/s]" + " 30%|███ | 1521102/4997436 [00:08<00:20, 172842.69it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1564772/4997436 [00:08<00:19, 176061.96it/s]" + " 31%|███ | 1538617/4997436 [00:08<00:19, 173529.92it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1582379/4997436 [00:08<00:19, 175076.40it/s]" + " 31%|███ | 1556055/4997436 [00:08<00:19, 173781.45it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1599888/4997436 [00:09<00:19, 174384.08it/s]" + " 31%|███▏ | 1573460/4997436 [00:09<00:19, 173860.15it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617328/4997436 [00:09<00:19, 174205.06it/s]" + " 32%|███▏ | 1590850/4997436 [00:09<00:19, 173669.23it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1634761/4997436 [00:09<00:19, 174239.54it/s]" + " 32%|███▏ | 1608220/4997436 [00:09<00:19, 173259.57it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1652186/4997436 [00:09<00:19, 173983.24it/s]" + " 33%|███▎ | 1625549/4997436 [00:09<00:19, 173055.36it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1669586/4997436 [00:09<00:19, 173985.45it/s]" + " 33%|███▎ | 1642891/4997436 [00:09<00:19, 173162.00it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687083/4997436 [00:09<00:18, 174275.00it/s]" + " 33%|███▎ | 1660271/4997436 [00:09<00:19, 173349.83it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1704511/4997436 [00:09<00:18, 174159.92it/s]" + " 34%|███▎ | 1677674/4997436 [00:09<00:19, 173549.91it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1721928/4997436 [00:09<00:18, 174048.90it/s]" + " 34%|███▍ | 1695235/4997436 [00:09<00:18, 174164.60it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1739486/4997436 [00:09<00:18, 174505.64it/s]" + " 34%|███▍ | 1712675/4997436 [00:09<00:18, 174233.47it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1757031/4997436 [00:09<00:18, 174785.79it/s]" + " 35%|███▍ | 1730188/4997436 [00:09<00:18, 174500.96it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1774529/4997436 [00:10<00:18, 174842.43it/s]" + " 35%|███▍ | 1747639/4997436 [00:10<00:18, 174335.95it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1792070/4997436 [00:10<00:18, 175008.52it/s]" + " 35%|███▌ | 1765073/4997436 [00:10<00:18, 172127.76it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1809648/4997436 [00:10<00:18, 175235.78it/s]" + " 36%|███▌ | 1782733/4997436 [00:10<00:18, 173455.19it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1827211/4997436 [00:10<00:18, 175353.31it/s]" + " 36%|███▌ | 1800459/4997436 [00:10<00:18, 174587.90it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844749/4997436 [00:10<00:17, 175359.36it/s]" + " 36%|███▋ | 1818178/4997436 [00:10<00:18, 175361.28it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1862285/4997436 [00:10<00:17, 174970.45it/s]" + " 37%|███▋ | 1835923/4997436 [00:10<00:17, 175984.11it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1879783/4997436 [00:10<00:17, 174875.46it/s]" + " 37%|███▋ | 1853732/4997436 [00:10<00:17, 176611.93it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1897272/4997436 [00:10<00:17, 174874.50it/s]" + " 37%|███▋ | 1871465/4997436 [00:10<00:17, 176825.28it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1914760/4997436 [00:10<00:17, 174782.29it/s]" + " 38%|███▊ | 1889151/4997436 [00:10<00:17, 176834.47it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1932381/4997436 [00:10<00:17, 175207.90it/s]" + " 38%|███▊ | 1906881/4997436 [00:10<00:17, 176970.65it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949902/4997436 [00:11<00:17, 175191.81it/s]" + " 39%|███▊ | 1924579/4997436 [00:11<00:17, 176942.26it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1967422/4997436 [00:11<00:17, 175147.61it/s]" + " 39%|███▉ | 1942274/4997436 [00:11<00:17, 171681.45it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1984937/4997436 [00:11<00:17, 175121.72it/s]" + " 39%|███▉ | 1959734/4997436 [00:11<00:17, 172534.84it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2002450/4997436 [00:11<00:17, 174788.88it/s]" + " 40%|███▉ | 1977435/4997436 [00:11<00:17, 173854.26it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2019930/4997436 [00:11<00:17, 174619.83it/s]" + " 40%|███▉ | 1995087/4997436 [00:11<00:17, 174641.71it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037393/4997436 [00:11<00:16, 174567.09it/s]" + " 40%|████ | 2012751/4997436 [00:11<00:17, 175233.29it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2054908/4997436 [00:11<00:16, 174740.00it/s]" + " 41%|████ | 2030386/4997436 [00:11<00:16, 175563.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2072421/4997436 [00:11<00:16, 174853.17it/s]" + " 41%|████ | 2047951/4997436 [00:11<00:16, 175500.66it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2089907/4997436 [00:11<00:16, 174776.32it/s]" + " 41%|████▏ | 2065531/4997436 [00:11<00:16, 175588.37it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2107414/4997436 [00:11<00:16, 174860.78it/s]" + " 42%|████▏ | 2083094/4997436 [00:11<00:16, 175574.07it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2124901/4997436 [00:12<00:16, 174712.60it/s]" + " 42%|████▏ | 2100756/4997436 [00:12<00:16, 175886.03it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2142373/4997436 [00:12<00:16, 174259.16it/s]" + " 42%|████▏ | 2118431/4997436 [00:12<00:16, 176141.84it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159800/4997436 [00:12<00:16, 174183.92it/s]" + " 43%|████▎ | 2136047/4997436 [00:12<00:16, 174634.37it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2177219/4997436 [00:12<00:16, 174003.10it/s]" + " 43%|████▎ | 2153515/4997436 [00:12<00:16, 174140.58it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2194644/4997436 [00:12<00:16, 174073.33it/s]" + " 43%|████▎ | 2170932/4997436 [00:12<00:16, 173994.86it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2212084/4997436 [00:12<00:15, 174166.62it/s]" + " 44%|████▍ | 2188591/4997436 [00:12<00:16, 174765.24it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229501/4997436 [00:12<00:15, 173791.71it/s]" + " 44%|████▍ | 2206186/4997436 [00:12<00:15, 175117.28it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246912/4997436 [00:12<00:15, 173861.34it/s]" + " 44%|████▍ | 2223832/4997436 [00:12<00:15, 175515.84it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264299/4997436 [00:12<00:15, 173688.62it/s]" + " 45%|████▍ | 2241443/4997436 [00:12<00:15, 175692.43it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281668/4997436 [00:12<00:15, 173333.33it/s]" + " 45%|████▌ | 2259013/4997436 [00:12<00:15, 175167.34it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299002/4997436 [00:13<00:15, 173138.15it/s]" + " 46%|████▌ | 2276531/4997436 [00:13<00:15, 174711.70it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316440/4997436 [00:13<00:15, 173506.64it/s]" + " 46%|████▌ | 2294003/4997436 [00:13<00:15, 174431.14it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2333791/4997436 [00:13<00:15, 171618.28it/s]" + " 46%|████▋ | 2311447/4997436 [00:13<00:15, 168661.77it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351230/4997436 [00:13<00:15, 172440.90it/s]" + " 47%|████▋ | 2328796/4997436 [00:13<00:15, 170068.59it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2368588/4997436 [00:13<00:15, 172778.43it/s]" + " 47%|████▋ | 2346344/4997436 [00:13<00:15, 171660.34it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386129/4997436 [00:13<00:15, 173562.84it/s]" + " 47%|████▋ | 2363947/4997436 [00:13<00:15, 172953.06it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2404022/4997436 [00:13<00:14, 175164.40it/s]" + " 48%|████▊ | 2381511/4997436 [00:13<00:15, 173750.12it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421917/4997436 [00:13<00:14, 176292.98it/s]" + " 48%|████▊ | 2399002/4997436 [00:13<00:14, 174093.67it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2439671/4997436 [00:13<00:14, 176662.89it/s]" + " 48%|████▊ | 2416486/4997436 [00:13<00:14, 174314.01it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457499/4997436 [00:13<00:14, 177145.39it/s]" + " 49%|████▊ | 2434027/4997436 [00:13<00:14, 174640.57it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475388/4997436 [00:14<00:14, 177666.51it/s]" + " 49%|████▉ | 2451529/4997436 [00:14<00:14, 174750.70it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2493291/4997436 [00:14<00:14, 178072.20it/s]" + " 49%|████▉ | 2469098/4997436 [00:14<00:14, 175028.10it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2511224/4997436 [00:14<00:13, 178444.72it/s]" + " 50%|████▉ | 2486604/4997436 [00:14<00:14, 174410.55it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2529069/4997436 [00:14<00:13, 178294.90it/s]" + " 50%|█████ | 2504067/4997436 [00:14<00:14, 174472.61it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546899/4997436 [00:14<00:13, 178060.16it/s]" + " 50%|█████ | 2521577/4997436 [00:14<00:14, 174657.45it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2564768/4997436 [00:14<00:13, 178247.74it/s]" + " 51%|█████ | 2539044/4997436 [00:14<00:14, 174579.35it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2582593/4997436 [00:14<00:13, 177289.92it/s]" + " 51%|█████ | 2556538/4997436 [00:14<00:13, 174684.32it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2600365/4997436 [00:14<00:13, 177415.63it/s]" + " 52%|█████▏ | 2574008/4997436 [00:14<00:13, 174460.33it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2618212/4997436 [00:14<00:13, 177727.57it/s]" + " 52%|█████▏ | 2591494/4997436 [00:14<00:13, 174577.22it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2636080/4997436 [00:14<00:13, 178007.63it/s]" + " 52%|█████▏ | 2608953/4997436 [00:14<00:13, 174433.30it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2653882/4997436 [00:15<00:13, 177891.85it/s]" + " 53%|█████▎ | 2626397/4997436 [00:15<00:13, 174201.44it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2671672/4997436 [00:15<00:13, 177836.05it/s]" + " 53%|█████▎ | 2643859/4997436 [00:15<00:13, 174324.33it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689456/4997436 [00:15<00:13, 177536.86it/s]" + " 53%|█████▎ | 2661292/4997436 [00:15<00:13, 173899.40it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2707210/4997436 [00:15<00:12, 177325.98it/s]" + " 54%|█████▎ | 2678706/4997436 [00:15<00:13, 173968.58it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725056/4997436 [00:15<00:12, 177663.80it/s]" + " 54%|█████▍ | 2696104/4997436 [00:15<00:13, 173755.72it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2742823/4997436 [00:15<00:12, 177551.98it/s]" + " 54%|█████▍ | 2713491/4997436 [00:15<00:13, 173786.87it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2760579/4997436 [00:15<00:12, 177449.76it/s]" + " 55%|█████▍ | 2730937/4997436 [00:15<00:13, 173986.94it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2778415/4997436 [00:15<00:12, 177721.07it/s]" + " 55%|█████▍ | 2748336/4997436 [00:15<00:12, 173914.34it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2796279/4997436 [00:15<00:12, 177995.11it/s]" + " 55%|█████▌ | 2765728/4997436 [00:15<00:12, 173681.05it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2814158/4997436 [00:15<00:12, 178227.33it/s]" + " 56%|█████▌ | 2783097/4997436 [00:15<00:12, 173585.37it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832025/4997436 [00:16<00:12, 178356.16it/s]" + " 56%|█████▌ | 2800456/4997436 [00:16<00:12, 173470.36it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2849861/4997436 [00:16<00:12, 178257.19it/s]" + " 56%|█████▋ | 2817869/4997436 [00:16<00:12, 173666.62it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2867687/4997436 [00:16<00:11, 177811.98it/s]" + " 57%|█████▋ | 2835254/4997436 [00:16<00:12, 173719.02it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2885469/4997436 [00:16<00:11, 177543.91it/s]" + " 57%|█████▋ | 2852626/4997436 [00:16<00:12, 173521.06it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2903321/4997436 [00:16<00:11, 177831.71it/s]" + " 57%|█████▋ | 2870040/4997436 [00:16<00:12, 173704.81it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921105/4997436 [00:16<00:11, 177751.12it/s]" + " 58%|█████▊ | 2887411/4997436 [00:16<00:12, 173685.56it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2938881/4997436 [00:16<00:11, 177244.64it/s]" + " 58%|█████▊ | 2904780/4997436 [00:16<00:12, 173514.93it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2956606/4997436 [00:16<00:11, 176333.64it/s]" + " 58%|█████▊ | 2922132/4997436 [00:16<00:11, 173122.10it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2974241/4997436 [00:16<00:11, 176165.20it/s]" + " 59%|█████▉ | 2939445/4997436 [00:16<00:11, 172977.40it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2991964/4997436 [00:16<00:11, 176481.03it/s]" + " 59%|█████▉ | 2956743/4997436 [00:16<00:11, 172909.87it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009810/4997436 [00:17<00:11, 177070.01it/s]" + " 60%|█████▉ | 2974086/4997436 [00:17<00:11, 173062.57it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3027644/4997436 [00:17<00:11, 177443.70it/s]" + " 60%|█████▉ | 2991509/4997436 [00:17<00:11, 173411.14it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045510/4997436 [00:17<00:10, 177801.68it/s]" + " 60%|██████ | 3008851/4997436 [00:17<00:11, 173246.97it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3063299/4997436 [00:17<00:10, 177824.39it/s]" + " 61%|██████ | 3026460/4997436 [00:17<00:11, 174095.93it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3081118/4997436 [00:17<00:10, 177930.47it/s]" + " 61%|██████ | 3043910/4997436 [00:17<00:11, 174213.97it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3098912/4997436 [00:17<00:10, 177859.51it/s]" + " 61%|██████▏ | 3061540/4997436 [00:17<00:11, 174835.16it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116790/4997436 [00:17<00:10, 178132.33it/s]" + " 62%|██████▏ | 3079221/4997436 [00:17<00:10, 175424.74it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3134634/4997436 [00:17<00:10, 178223.23it/s]" + " 62%|██████▏ | 3096913/4997436 [00:17<00:10, 175870.32it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152520/4997436 [00:17<00:10, 178411.95it/s]" + " 62%|██████▏ | 3114535/4997436 [00:17<00:10, 175973.86it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3170362/4997436 [00:17<00:10, 178237.51it/s]" + " 63%|██████▎ | 3132207/4997436 [00:17<00:10, 176195.44it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3188186/4997436 [00:18<00:10, 177997.77it/s]" + " 63%|██████▎ | 3149827/4997436 [00:18<00:10, 175681.86it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3205986/4997436 [00:18<00:10, 177554.56it/s]" + " 63%|██████▎ | 3167396/4997436 [00:18<00:10, 175545.65it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3223742/4997436 [00:18<00:10, 176718.08it/s]" + " 64%|██████▎ | 3184978/4997436 [00:18<00:10, 175625.08it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3241415/4997436 [00:18<00:10, 164416.38it/s]" + " 64%|██████▍ | 3202628/4997436 [00:18<00:10, 175882.20it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3259129/4997436 [00:18<00:10, 168026.90it/s]" + " 64%|██████▍ | 3220217/4997436 [00:18<00:10, 175528.28it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3276757/4997436 [00:18<00:10, 170405.77it/s]" + " 65%|██████▍ | 3237840/4997436 [00:18<00:10, 175736.01it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3294585/4997436 [00:18<00:09, 172701.88it/s]" + " 65%|██████▌ | 3255450/4997436 [00:18<00:09, 175842.83it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3312328/4997436 [00:18<00:09, 174090.11it/s]" + " 65%|██████▌ | 3273035/4997436 [00:18<00:09, 175733.78it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3330098/4997436 [00:18<00:09, 175155.66it/s]" + " 66%|██████▌ | 3290683/4997436 [00:18<00:09, 175955.80it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3347939/4997436 [00:18<00:09, 176119.32it/s]" + " 66%|██████▌ | 3308301/4997436 [00:18<00:09, 176020.29it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3365801/4997436 [00:19<00:09, 176860.45it/s]" + " 67%|██████▋ | 3325954/4997436 [00:19<00:09, 176169.63it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3383510/4997436 [00:19<00:09, 176823.43it/s]" + " 67%|██████▋ | 3343621/4997436 [00:19<00:09, 176316.20it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401208/4997436 [00:19<00:09, 176863.35it/s]" + " 67%|██████▋ | 3361273/4997436 [00:19<00:09, 176375.98it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3418987/4997436 [00:19<00:08, 177137.51it/s]" + " 68%|██████▊ | 3378911/4997436 [00:19<00:09, 176339.41it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3436865/4997436 [00:19<00:08, 177627.62it/s]" + " 68%|██████▊ | 3396545/4997436 [00:19<00:09, 175971.85it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454634/4997436 [00:19<00:08, 177340.69it/s]" + " 68%|██████▊ | 3414181/4997436 [00:19<00:08, 176076.83it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472372/4997436 [00:19<00:08, 177239.28it/s]" + " 69%|██████▊ | 3431792/4997436 [00:19<00:08, 176084.18it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3490099/4997436 [00:19<00:08, 177214.63it/s]" + " 69%|██████▉ | 3449401/4997436 [00:19<00:08, 175901.19it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507828/4997436 [00:19<00:08, 177233.97it/s]" + " 69%|██████▉ | 3467017/4997436 [00:19<00:08, 175954.02it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3525553/4997436 [00:19<00:08, 177079.78it/s]" + " 70%|██████▉ | 3484622/4997436 [00:19<00:08, 175980.32it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3543537/4997436 [00:20<00:08, 177903.85it/s]" + " 70%|███████ | 3502228/4997436 [00:20<00:08, 176001.24it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3561367/4997436 [00:20<00:08, 178020.21it/s]" + " 70%|███████ | 3519829/4997436 [00:20<00:08, 175919.65it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3579170/4997436 [00:20<00:08, 175890.23it/s]" + " 71%|███████ | 3537558/4997436 [00:20<00:08, 176328.00it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3596987/4997436 [00:20<00:07, 176566.75it/s]" + " 71%|███████ | 3555191/4997436 [00:20<00:08, 176185.44it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614871/4997436 [00:20<00:07, 177243.25it/s]" + " 71%|███████▏ | 3572810/4997436 [00:20<00:08, 176185.22it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632840/4997436 [00:20<00:07, 177970.18it/s]" + " 72%|███████▏ | 3590466/4997436 [00:20<00:07, 176296.50it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3650754/4997436 [00:20<00:07, 178317.68it/s]" + " 72%|███████▏ | 3608147/4997436 [00:20<00:07, 176447.25it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3668720/4997436 [00:20<00:07, 178715.98it/s]" + " 73%|███████▎ | 3625792/4997436 [00:20<00:07, 176419.87it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3686594/4997436 [00:20<00:07, 178638.64it/s]" + " 73%|███████▎ | 3643464/4997436 [00:20<00:07, 176508.54it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3704459/4997436 [00:20<00:07, 178518.29it/s]" + " 73%|███████▎ | 3661115/4997436 [00:20<00:07, 176174.05it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3722354/4997436 [00:21<00:07, 178643.07it/s]" + " 74%|███████▎ | 3678733/4997436 [00:21<00:07, 165115.58it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740219/4997436 [00:21<00:07, 178585.73it/s]" + " 74%|███████▍ | 3696389/4997436 [00:21<00:07, 168388.33it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3758098/4997436 [00:21<00:06, 178644.07it/s]" + " 74%|███████▍ | 3714054/4997436 [00:21<00:07, 170783.06it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3775963/4997436 [00:21<00:06, 178630.19it/s]" + " 75%|███████▍ | 3731729/4997436 [00:21<00:07, 172529.35it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3793827/4997436 [00:21<00:06, 178433.43it/s]" + " 75%|███████▌ | 3749421/4997436 [00:21<00:07, 173824.00it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3811671/4997436 [00:21<00:06, 178059.55it/s]" + " 75%|███████▌ | 3767169/4997436 [00:21<00:07, 174906.34it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3829478/4997436 [00:21<00:06, 177297.89it/s]" + " 76%|███████▌ | 3784899/4997436 [00:21<00:06, 175614.99it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3847209/4997436 [00:21<00:06, 175850.39it/s]" + " 76%|███████▌ | 3802549/4997436 [00:21<00:06, 175877.41it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865135/4997436 [00:21<00:06, 176861.90it/s]" + " 76%|███████▋ | 3820256/4997436 [00:21<00:06, 176232.82it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3883039/4997436 [00:21<00:06, 177509.12it/s]" + " 77%|███████▋ | 3837984/4997436 [00:22<00:06, 176543.75it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3900822/4997436 [00:22<00:06, 177602.22it/s]" + " 77%|███████▋ | 3855766/4997436 [00:22<00:06, 176924.67it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3918584/4997436 [00:22<00:06, 176898.22it/s]" + " 78%|███████▊ | 3873484/4997436 [00:22<00:06, 177000.07it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3936276/4997436 [00:22<00:06, 176710.09it/s]" + " 78%|███████▊ | 3891220/4997436 [00:22<00:06, 177105.59it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3953972/4997436 [00:22<00:05, 176781.77it/s]" + " 78%|███████▊ | 3908934/4997436 [00:22<00:06, 176881.43it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3971795/4997436 [00:22<00:05, 177211.32it/s]" + " 79%|███████▊ | 3926625/4997436 [00:22<00:06, 176406.96it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989538/4997436 [00:22<00:05, 177273.30it/s]" + " 79%|███████▉ | 3944358/4997436 [00:22<00:05, 176681.99it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007266/4997436 [00:22<00:05, 177089.69it/s]" + " 79%|███████▉ | 3962028/4997436 [00:22<00:05, 176581.68it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4024976/4997436 [00:22<00:05, 176307.96it/s]" + " 80%|███████▉ | 3979688/4997436 [00:22<00:05, 176544.36it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4042725/4997436 [00:22<00:05, 176659.57it/s]" + " 80%|███████▉ | 3997344/4997436 [00:22<00:05, 176416.29it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4060505/4997436 [00:22<00:05, 176998.81it/s]" + " 80%|████████ | 4015056/4997436 [00:23<00:05, 176625.11it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4078423/4997436 [00:23<00:05, 177648.14it/s]" + " 81%|████████ | 4032764/4997436 [00:23<00:05, 176759.08it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4096244/4997436 [00:23<00:05, 177812.30it/s]" + " 81%|████████ | 4050441/4997436 [00:23<00:05, 176581.43it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4114026/4997436 [00:23<00:05, 174767.74it/s]" + " 81%|████████▏ | 4068100/4997436 [00:23<00:05, 176346.46it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131700/4997436 [00:23<00:04, 175346.94it/s]" + " 82%|████████▏ | 4085735/4997436 [00:23<00:05, 175489.58it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149420/4997436 [00:23<00:04, 175893.03it/s]" + " 82%|████████▏ | 4103285/4997436 [00:23<00:05, 175142.87it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4167102/4997436 [00:23<00:04, 176166.90it/s]" + " 82%|████████▏ | 4120800/4997436 [00:23<00:05, 174982.36it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4184848/4997436 [00:23<00:04, 176550.89it/s]" + " 83%|████████▎ | 4138299/4997436 [00:23<00:04, 174377.06it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4202507/4997436 [00:23<00:04, 175542.80it/s]" + " 83%|████████▎ | 4155738/4997436 [00:23<00:04, 174167.94it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4220065/4997436 [00:23<00:04, 175286.94it/s]" + " 84%|████████▎ | 4173156/4997436 [00:23<00:04, 173812.06it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4237599/4997436 [00:23<00:04, 175301.07it/s]" + " 84%|████████▍ | 4190538/4997436 [00:24<00:04, 173469.78it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4255339/4997436 [00:24<00:04, 175925.26it/s]" + " 84%|████████▍ | 4207910/4997436 [00:24<00:04, 173533.43it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273246/4997436 [00:24<00:04, 176862.41it/s]" + " 85%|████████▍ | 4225282/4997436 [00:24<00:04, 173586.54it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291230/4997436 [00:24<00:03, 177749.73it/s]" + " 85%|████████▍ | 4242646/4997436 [00:24<00:04, 173600.61it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309125/4997436 [00:24<00:03, 178105.18it/s]" + " 85%|████████▌ | 4260007/4997436 [00:24<00:04, 172977.09it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326937/4997436 [00:24<00:03, 177957.71it/s]" + " 86%|████████▌ | 4277306/4997436 [00:24<00:04, 167547.21it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344734/4997436 [00:24<00:03, 177881.01it/s]" + " 86%|████████▌ | 4294778/4997436 [00:24<00:04, 169644.58it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4362629/4997436 [00:24<00:03, 178197.42it/s]" + " 86%|████████▋ | 4312309/4997436 [00:24<00:03, 171313.52it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4380522/4997436 [00:24<00:03, 178415.53it/s]" + " 87%|████████▋ | 4329768/4997436 [00:24<00:03, 172282.25it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4398364/4997436 [00:24<00:03, 177029.86it/s]" + " 87%|████████▋ | 4347200/4997436 [00:24<00:03, 172883.19it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4416132/4997436 [00:25<00:03, 177221.29it/s]" + " 87%|████████▋ | 4364688/4997436 [00:25<00:03, 173476.92it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4433917/4997436 [00:25<00:03, 177405.63it/s]" + " 88%|████████▊ | 4382233/4997436 [00:25<00:03, 174063.26it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4451709/4997436 [00:25<00:03, 177555.87it/s]" + " 88%|████████▊ | 4399690/4997436 [00:25<00:03, 174213.63it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469466/4997436 [00:25<00:03, 175238.49it/s]" + " 88%|████████▊ | 4417208/4997436 [00:25<00:03, 174501.24it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4487360/4997436 [00:25<00:02, 176333.70it/s]" + " 89%|████████▊ | 4434740/4997436 [00:25<00:03, 174744.68it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4505057/4997436 [00:25<00:02, 176520.71it/s]" + " 89%|████████▉ | 4452235/4997436 [00:25<00:03, 174800.52it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4522786/4997436 [00:25<00:02, 176747.95it/s]" + " 89%|████████▉ | 4469717/4997436 [00:25<00:03, 174569.60it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4540465/4997436 [00:25<00:02, 176534.63it/s]" + " 90%|████████▉ | 4487211/4997436 [00:25<00:02, 174679.36it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558121/4997436 [00:25<00:02, 176185.24it/s]" + " 90%|█████████ | 4504680/4997436 [00:25<00:02, 174572.08it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4575836/4997436 [00:25<00:02, 176470.46it/s]" + " 90%|█████████ | 4522138/4997436 [00:25<00:02, 174553.93it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593643/4997436 [00:26<00:02, 176946.29it/s]" + " 91%|█████████ | 4539594/4997436 [00:26<00:02, 173126.73it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4611358/4997436 [00:26<00:02, 177005.95it/s]" + " 91%|█████████ | 4556910/4997436 [00:26<00:02, 172907.02it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4629060/4997436 [00:26<00:02, 176940.19it/s]" + " 92%|█████████▏| 4574382/4997436 [00:26<00:02, 173445.69it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4646755/4997436 [00:26<00:02, 175183.84it/s]" + " 92%|█████████▏| 4591737/4997436 [00:26<00:02, 173473.45it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4664278/4997436 [00:26<00:01, 174678.73it/s]" + " 92%|█████████▏| 4609103/4997436 [00:26<00:02, 173527.95it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4681864/4997436 [00:26<00:01, 175028.74it/s]" + " 93%|█████████▎| 4626457/4997436 [00:26<00:02, 166324.60it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4699530/4997436 [00:26<00:01, 175514.44it/s]" + " 93%|█████████▎| 4643667/4997436 [00:26<00:02, 168001.58it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717117/4997436 [00:26<00:01, 175618.64it/s]" + " 93%|█████████▎| 4660963/4997436 [00:26<00:01, 169454.71it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4734681/4997436 [00:26<00:01, 175554.69it/s]" + " 94%|█████████▎| 4677977/4997436 [00:26<00:01, 169654.80it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4752238/4997436 [00:26<00:01, 175320.45it/s]" + " 94%|█████████▍| 4695073/4997436 [00:26<00:01, 170038.82it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4769771/4997436 [00:27<00:01, 175260.58it/s]" + " 94%|█████████▍| 4712461/4997436 [00:27<00:01, 171179.69it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4787298/4997436 [00:27<00:01, 175010.59it/s]" + " 95%|█████████▍| 4729826/4997436 [00:27<00:01, 171915.17it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4804832/4997436 [00:27<00:01, 175106.35it/s]" + " 95%|█████████▍| 4747154/4997436 [00:27<00:01, 172321.66it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4822343/4997436 [00:27<00:01, 175036.88it/s]" + " 95%|█████████▌| 4764403/4997436 [00:27<00:01, 172368.14it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4839893/4997436 [00:27<00:00, 175172.41it/s]" + " 96%|█████████▌| 4781646/4997436 [00:27<00:01, 172248.13it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857418/4997436 [00:27<00:00, 175191.71it/s]" + " 96%|█████████▌| 4798875/4997436 [00:27<00:01, 172159.93it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4874956/4997436 [00:27<00:00, 175246.95it/s]" + " 96%|█████████▋| 4816180/4997436 [00:27<00:01, 172425.19it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4892481/4997436 [00:27<00:00, 175145.74it/s]" + " 97%|█████████▋| 4833517/4997436 [00:27<00:00, 172704.64it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4909996/4997436 [00:27<00:00, 174990.11it/s]" + " 97%|█████████▋| 4850883/4997436 [00:27<00:00, 172987.71it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4927614/4997436 [00:27<00:00, 175344.71it/s]" + " 97%|█████████▋| 4868193/4997436 [00:27<00:00, 173016.97it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4945149/4997436 [00:28<00:00, 175145.07it/s]" + " 98%|█████████▊| 4885505/4997436 [00:28<00:00, 173044.82it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4962751/4997436 [00:28<00:00, 175403.35it/s]" + " 98%|█████████▊| 4902810/4997436 [00:28<00:00, 171167.64it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980292/4997436 [00:28<00:00, 175128.71it/s]" + " 98%|█████████▊| 4920207/4997436 [00:28<00:00, 172000.45it/s]" ] }, { @@ -2794,14 +2794,39 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997436/4997436 [00:28<00:00, 176507.64it/s]" + " 99%|█████████▉| 4937466/4997436 [00:28<00:00, 172173.57it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + " 99%|█████████▉| 4954786/4997436 [00:28<00:00, 172477.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4972036/4997436 [00:28<00:00, 167862.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989214/4997436 [00:28<00:00, 169011.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997436/4997436 [00:28<00:00, 174023.51it/s]" ] }, { @@ -2830,6 +2855,13 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, { "data": { "text/html": [ @@ -3033,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:27.486996Z", - "iopub.status.busy": "2023-12-13T17:16:27.486498Z", - "iopub.status.idle": "2023-12-13T17:16:34.857210Z", - "shell.execute_reply": "2023-12-13T17:16:34.856546Z" + "iopub.execute_input": "2023-12-14T18:06:57.714183Z", + "iopub.status.busy": "2023-12-14T18:06:57.713810Z", + "iopub.status.idle": "2023-12-14T18:07:05.093577Z", + "shell.execute_reply": "2023-12-14T18:07:05.092823Z" } }, "outputs": [], @@ -3050,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:34.860127Z", - "iopub.status.busy": "2023-12-13T17:16:34.859893Z", - "iopub.status.idle": "2023-12-13T17:16:38.054952Z", - "shell.execute_reply": "2023-12-13T17:16:38.054273Z" + "iopub.execute_input": "2023-12-14T18:07:05.096960Z", + "iopub.status.busy": "2023-12-14T18:07:05.096351Z", + "iopub.status.idle": "2023-12-14T18:07:08.259252Z", + "shell.execute_reply": "2023-12-14T18:07:08.258606Z" } }, "outputs": [ @@ -3122,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:38.057828Z", - "iopub.status.busy": "2023-12-13T17:16:38.057424Z", - "iopub.status.idle": "2023-12-13T17:16:39.364828Z", - "shell.execute_reply": "2023-12-13T17:16:39.364164Z" + "iopub.execute_input": "2023-12-14T18:07:08.261887Z", + "iopub.status.busy": "2023-12-14T18:07:08.261475Z", + "iopub.status.idle": "2023-12-14T18:07:09.607314Z", + "shell.execute_reply": "2023-12-14T18:07:09.606684Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65685581c6c34bacbf5abfd907437966", + "model_id": "ecfec940d10c47d48f693fa90b0a15b0", "version_major": 2, "version_minor": 0 }, @@ -3162,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:39.367939Z", - "iopub.status.busy": "2023-12-13T17:16:39.367355Z", - "iopub.status.idle": "2023-12-13T17:16:39.565016Z", - "shell.execute_reply": "2023-12-13T17:16:39.564423Z" + "iopub.execute_input": "2023-12-14T18:07:09.610359Z", + "iopub.status.busy": "2023-12-14T18:07:09.609952Z", + "iopub.status.idle": "2023-12-14T18:07:09.809292Z", + "shell.execute_reply": "2023-12-14T18:07:09.808600Z" } }, "outputs": [], @@ -3179,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:39.567832Z", - "iopub.status.busy": "2023-12-13T17:16:39.567497Z", - "iopub.status.idle": "2023-12-13T17:16:44.336841Z", - "shell.execute_reply": "2023-12-13T17:16:44.336176Z" + "iopub.execute_input": "2023-12-14T18:07:09.812264Z", + "iopub.status.busy": "2023-12-14T18:07:09.811875Z", + "iopub.status.idle": "2023-12-14T18:07:14.587268Z", + "shell.execute_reply": "2023-12-14T18:07:14.586581Z" } }, "outputs": [ @@ -3255,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:44.339392Z", - "iopub.status.busy": "2023-12-13T17:16:44.339006Z", - "iopub.status.idle": "2023-12-13T17:16:44.395375Z", - "shell.execute_reply": "2023-12-13T17:16:44.394811Z" + "iopub.execute_input": "2023-12-14T18:07:14.589768Z", + "iopub.status.busy": "2023-12-14T18:07:14.589550Z", + "iopub.status.idle": "2023-12-14T18:07:14.645948Z", + "shell.execute_reply": "2023-12-14T18:07:14.645212Z" }, "nbsphinx": "hidden" }, @@ -3302,7 +3334,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e577d60339476f830cbc28aaf8442e": { + "0ed7d99c38084647894cffd675deefe1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3354,43 +3386,7 @@ "width": null } }, - "02436604ecee41e2b088cd6379477d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_40ac22ea09954510bed8318f3a2ccc4f", - "placeholder": "​", - "style": "IPY_MODEL_4ff4c9dd27ab4e08b47f83d0e7fe9c26", - "value": " 30/30 [00:01<00:00, 23.53it/s]" - } - }, - "0a84f85477174415a8b3de95e192cd6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c3ffbbd10994ece981f309218cb4451": { + "23f64fec199d42d4bc235fc8762aa6e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3442,83 +3438,28 @@ "width": null } }, - "0e8c270e2f7240f092f4c50d1ae0936c": { + "2da8c2dbab0d44aa85c13f1acfada8a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1d7044e8ffb44716ae5256e9ac593bd7", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d71b28ea048746e2afe525a14354f8c9", - "value": 30.0 - } - }, - "1d7044e8ffb44716ae5256e9ac593bd7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_4e83196d49674f3c92ebe98136252690", + "placeholder": "​", + "style": "IPY_MODEL_539923e59c324137ba7c7f77b35682fe", + "value": " 300000/? [00:02<00:00, 102280.39it/s]" } }, - "235ea091f1b24f04859b5e38d4e97cef": { + "30fdefa852a0464097647eb380b38b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3533,13 +3474,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf7fa3af94f7445b9a178ef9800a5ba7", + "layout": "IPY_MODEL_3bd83502019249d1bcc0ace03d78d154", "placeholder": "​", - "style": "IPY_MODEL_aab6556e148a426fa2d9eb9d4e1ee4f8", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_79ffef5cd1e14c4aafd18d243bb73a7c", + "value": "number of examples processed for checking labels: " } }, - "2b4d7e91064046fa896d20fe02fdad54": { + "3bd83502019249d1bcc0ace03d78d154": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3591,23 +3532,22 @@ "width": null } }, - "33091ef73bc44f599dfe1f94768ba3e2": { + "3d279577af5a445ca22a13cb50ef11d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "3602f2c765fe4c83adab29ef0fd39132": { + "48825d8adf614e35936ae88181ace27d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3622,28 +3562,31 @@ "description_width": "" } }, - "3a0e98ae70304e9ab5c56d64b63fb95e": { + "488f884d6b884266ab7c79f6a6b5385f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_50d1ce88da4242cd9e979cee29b1557a", - "placeholder": "​", - "style": "IPY_MODEL_3602f2c765fe4c83adab29ef0fd39132", - "value": " 300000/? [00:00<00:00, 5630593.27it/s]" + "layout": "IPY_MODEL_23f64fec199d42d4bc235fc8762aa6e5", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ae696bd738f4527b33631f5a19c6bc6", + "value": 244800.0 } }, - "3afccd430c2b4fa0ae6e71073466bd7c": { + "4923f516f25f4440b3bfd657af80a273": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3658,7 +3601,7 @@ "description_width": "" } }, - "40ac22ea09954510bed8318f3a2ccc4f": { + "4e83196d49674f3c92ebe98136252690": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3710,23 +3653,67 @@ "width": null } }, - "411d08331f4e47cbae9bfc589edfde4f": { + "532cdf38e8364c62a6cb4ea8dc782a30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca82d0e13c344f7b96b6bd77a4972b78", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b59ae4907af044bf9bd7215287fa744b", + "value": 30.0 + } + }, + "539923e59c324137ba7c7f77b35682fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4801d4458666431aae231c4a715b9aaa": { + "53d60ab6b9964518bb5ee01401d1b416": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ed7d99c38084647894cffd675deefe1", + "placeholder": "​", + "style": "IPY_MODEL_48825d8adf614e35936ae88181ace27d", + "value": "number of examples processed for estimating thresholds: " + } + }, + "6351b23f48204ada8f5eeaf712eeb7f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3778,22 +3765,7 @@ "width": null } }, - "4ff4c9dd27ab4e08b47f83d0e7fe9c26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "50d1ce88da4242cd9e979cee29b1557a": { + "65455a44c75f4a07ad0e7f5c61451756": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,110 +3817,59 @@ "width": null } }, - "61303044aa3542edb8a27e225ee64606": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "65685581c6c34bacbf5abfd907437966": { + "6acd7910d5bb49c6815ec056b5cd1a7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87f840f028564ffab1851a925631069f", - "IPY_MODEL_0e8c270e2f7240f092f4c50d1ae0936c", - "IPY_MODEL_02436604ecee41e2b088cd6379477d42" - ], - "layout": "IPY_MODEL_00e577d60339476f830cbc28aaf8442e" - } - }, - "6f3a5731a5d7404f8e55e0a5637d6d81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a067181a586a4408aa939b446d9d25ef", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_411d08331f4e47cbae9bfc589edfde4f", - "value": 244800.0 + "layout": "IPY_MODEL_e1e597c486194abeb1a36d541f32f17e", + "placeholder": "​", + "style": "IPY_MODEL_4923f516f25f4440b3bfd657af80a273", + "value": " 300000/? [00:00<00:00, 5435970.19it/s]" } }, - "79760e2b72a74626a3e43e2e55f3b7d2": { + "79ffef5cd1e14c4aafd18d243bb73a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0c3ffbbd10994ece981f309218cb4451", - "placeholder": "​", - "style": "IPY_MODEL_61303044aa3542edb8a27e225ee64606", - "value": " 300000/? [00:02<00:00, 103449.78it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "87f840f028564ffab1851a925631069f": { + "7ae696bd738f4527b33631f5a19c6bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4801d4458666431aae231c4a715b9aaa", - "placeholder": "​", - "style": "IPY_MODEL_3afccd430c2b4fa0ae6e71073466bd7c", - "value": "images processed using softmin: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8ded24f0ca2846a59532c8f92d867269": { + "7e538566e4074c2c97df7e7b7a8f2f0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4000,7 +3921,31 @@ "width": null } }, - "9c57b6a4800e4a58b183b8f581682311": { + "917761b3bc0b439e8d1270723fea1f18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6351b23f48204ada8f5eeaf712eeb7f7", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc3a9e89fd3a4770a5f12907dfbe6560", + "value": 244800.0 + } + }, + "95a4cbec66134664a83dded5c5be8ed5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4052,7 +3997,7 @@ "width": null } }, - "a067181a586a4408aa939b446d9d25ef": { + "a2b5532d2cd64524a0b101c012abc1d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4104,7 +4049,7 @@ "width": null } }, - "a87c1d3c026e402c874e6d5b19f1859d": { + "aa91287f979447e585de2d2fb4a1de70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4119,29 +4064,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b61b04712bbc413094927920a9b46949", - "IPY_MODEL_fa1c45e7f5fc4d74b848bcb599c48ede", - "IPY_MODEL_79760e2b72a74626a3e43e2e55f3b7d2" + "IPY_MODEL_53d60ab6b9964518bb5ee01401d1b416", + "IPY_MODEL_488f884d6b884266ab7c79f6a6b5385f", + "IPY_MODEL_6acd7910d5bb49c6815ec056b5cd1a7a" ], - "layout": "IPY_MODEL_2b4d7e91064046fa896d20fe02fdad54" + "layout": "IPY_MODEL_e964897bcbdf44558b209f13a30570b4" } }, - "aab6556e148a426fa2d9eb9d4e1ee4f8": { + "b59ae4907af044bf9bd7215287fa744b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "b61b04712bbc413094927920a9b46949": { + "b7737efb439b4ce8bba796875333b736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4156,13 +4102,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8ded24f0ca2846a59532c8f92d867269", + "layout": "IPY_MODEL_95a4cbec66134664a83dded5c5be8ed5", "placeholder": "​", - "style": "IPY_MODEL_0a84f85477174415a8b3de95e192cd6d", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_3d279577af5a445ca22a13cb50ef11d2", + "value": " 30/30 [00:01<00:00, 23.24it/s]" + } + }, + "bd1bb3178fe34254af42b1feb8530a24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2b5532d2cd64524a0b101c012abc1d6", + "placeholder": "​", + "style": "IPY_MODEL_fbf863b99af54f10b729df8f91267244", + "value": "images processed using softmin: 100%" } }, - "bf7fa3af94f7445b9a178ef9800a5ba7": { + "ca82d0e13c344f7b96b6bd77a4972b78": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4214,7 +4181,7 @@ "width": null } }, - "d71b28ea048746e2afe525a14354f8c9": { + "cc3a9e89fd3a4770a5f12907dfbe6560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4230,29 +4197,59 @@ "description_width": "" } }, - "d927e4cf50cb4928b9613321f496759d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "e1e597c486194abeb1a36d541f32f17e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_235ea091f1b24f04859b5e38d4e97cef", - "IPY_MODEL_6f3a5731a5d7404f8e55e0a5637d6d81", - "IPY_MODEL_3a0e98ae70304e9ab5c56d64b63fb95e" - ], - "layout": "IPY_MODEL_f366559c679d4806bdceb947f6e23fc8" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f366559c679d4806bdceb947f6e23fc8": { + "e964897bcbdf44558b209f13a30570b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4304,28 +4301,63 @@ "width": null } }, - "fa1c45e7f5fc4d74b848bcb599c48ede": { + "ecfec940d10c47d48f693fa90b0a15b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9c57b6a4800e4a58b183b8f581682311", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33091ef73bc44f599dfe1f94768ba3e2", - "value": 244800.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd1bb3178fe34254af42b1feb8530a24", + "IPY_MODEL_532cdf38e8364c62a6cb4ea8dc782a30", + "IPY_MODEL_b7737efb439b4ce8bba796875333b736" + ], + "layout": "IPY_MODEL_7e538566e4074c2c97df7e7b7a8f2f0b" + } + }, + "ed52d338862645e58b397d2b273b82ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_30fdefa852a0464097647eb380b38b83", + "IPY_MODEL_917761b3bc0b439e8d1270723fea1f18", + "IPY_MODEL_2da8c2dbab0d44aa85c13f1acfada8a7" + ], + "layout": "IPY_MODEL_65455a44c75f4a07ad0e7f5c61451756" + } + }, + "fbf863b99af54f10b729df8f91267244": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 74df6fe5f..5cada1faf 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:47.144428Z", - "iopub.status.busy": "2023-12-13T17:16:47.144237Z", - "iopub.status.idle": "2023-12-13T17:16:48.158768Z", - "shell.execute_reply": "2023-12-13T17:16:48.158174Z" + "iopub.execute_input": "2023-12-14T18:07:17.142639Z", + "iopub.status.busy": "2023-12-14T18:07:17.142453Z", + "iopub.status.idle": "2023-12-14T18:07:18.143615Z", + "shell.execute_reply": "2023-12-14T18:07:18.142944Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.161729Z", - "iopub.status.busy": "2023-12-13T17:16:48.161195Z", - "iopub.status.idle": "2023-12-13T17:16:48.178175Z", - "shell.execute_reply": "2023-12-13T17:16:48.177693Z" + "iopub.execute_input": "2023-12-14T18:07:18.146385Z", + "iopub.status.busy": "2023-12-14T18:07:18.146071Z", + "iopub.status.idle": "2023-12-14T18:07:18.163375Z", + "shell.execute_reply": "2023-12-14T18:07:18.162770Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.180564Z", - "iopub.status.busy": "2023-12-13T17:16:48.180197Z", - "iopub.status.idle": "2023-12-13T17:16:48.240528Z", - "shell.execute_reply": "2023-12-13T17:16:48.239982Z" + "iopub.execute_input": "2023-12-14T18:07:18.165798Z", + "iopub.status.busy": "2023-12-14T18:07:18.165606Z", + "iopub.status.idle": "2023-12-14T18:07:18.221913Z", + "shell.execute_reply": "2023-12-14T18:07:18.221297Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.243006Z", - "iopub.status.busy": "2023-12-13T17:16:48.242646Z", - "iopub.status.idle": "2023-12-13T17:16:48.246222Z", - "shell.execute_reply": "2023-12-13T17:16:48.245701Z" + "iopub.execute_input": "2023-12-14T18:07:18.224420Z", + "iopub.status.busy": "2023-12-14T18:07:18.224062Z", + "iopub.status.idle": "2023-12-14T18:07:18.227709Z", + "shell.execute_reply": "2023-12-14T18:07:18.227233Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.248686Z", - "iopub.status.busy": "2023-12-13T17:16:48.248308Z", - "iopub.status.idle": "2023-12-13T17:16:48.256929Z", - "shell.execute_reply": "2023-12-13T17:16:48.256431Z" + "iopub.execute_input": "2023-12-14T18:07:18.230111Z", + "iopub.status.busy": "2023-12-14T18:07:18.229769Z", + "iopub.status.idle": "2023-12-14T18:07:18.238547Z", + "shell.execute_reply": "2023-12-14T18:07:18.238053Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.259298Z", - "iopub.status.busy": "2023-12-13T17:16:48.258930Z", - "iopub.status.idle": "2023-12-13T17:16:48.261637Z", - "shell.execute_reply": "2023-12-13T17:16:48.261077Z" + "iopub.execute_input": "2023-12-14T18:07:18.240989Z", + "iopub.status.busy": "2023-12-14T18:07:18.240623Z", + "iopub.status.idle": "2023-12-14T18:07:18.243987Z", + "shell.execute_reply": "2023-12-14T18:07:18.243505Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.264045Z", - "iopub.status.busy": "2023-12-13T17:16:48.263582Z", - "iopub.status.idle": "2023-12-13T17:16:48.842281Z", - "shell.execute_reply": "2023-12-13T17:16:48.841588Z" + "iopub.execute_input": "2023-12-14T18:07:18.246343Z", + "iopub.status.busy": "2023-12-14T18:07:18.245982Z", + "iopub.status.idle": "2023-12-14T18:07:18.827690Z", + "shell.execute_reply": "2023-12-14T18:07:18.827074Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.845228Z", - "iopub.status.busy": "2023-12-13T17:16:48.845019Z", - "iopub.status.idle": "2023-12-13T17:16:50.043604Z", - "shell.execute_reply": "2023-12-13T17:16:50.042871Z" + "iopub.execute_input": "2023-12-14T18:07:18.830625Z", + "iopub.status.busy": "2023-12-14T18:07:18.830209Z", + "iopub.status.idle": "2023-12-14T18:07:20.033023Z", + "shell.execute_reply": "2023-12-14T18:07:20.032256Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.046473Z", - "iopub.status.busy": "2023-12-13T17:16:50.045905Z", - "iopub.status.idle": "2023-12-13T17:16:50.056284Z", - "shell.execute_reply": "2023-12-13T17:16:50.055740Z" + "iopub.execute_input": "2023-12-14T18:07:20.035954Z", + "iopub.status.busy": "2023-12-14T18:07:20.035367Z", + "iopub.status.idle": "2023-12-14T18:07:20.045950Z", + "shell.execute_reply": "2023-12-14T18:07:20.045399Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.058759Z", - "iopub.status.busy": "2023-12-13T17:16:50.058560Z", - "iopub.status.idle": "2023-12-13T17:16:50.063008Z", - "shell.execute_reply": "2023-12-13T17:16:50.062486Z" + "iopub.execute_input": "2023-12-14T18:07:20.048639Z", + "iopub.status.busy": "2023-12-14T18:07:20.048086Z", + "iopub.status.idle": "2023-12-14T18:07:20.052357Z", + "shell.execute_reply": "2023-12-14T18:07:20.051836Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.065421Z", - "iopub.status.busy": "2023-12-13T17:16:50.065043Z", - "iopub.status.idle": "2023-12-13T17:16:50.072579Z", - "shell.execute_reply": "2023-12-13T17:16:50.072074Z" + "iopub.execute_input": "2023-12-14T18:07:20.054960Z", + "iopub.status.busy": "2023-12-14T18:07:20.054496Z", + "iopub.status.idle": "2023-12-14T18:07:20.062080Z", + "shell.execute_reply": "2023-12-14T18:07:20.061570Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.075003Z", - "iopub.status.busy": "2023-12-13T17:16:50.074642Z", - "iopub.status.idle": "2023-12-13T17:16:50.197242Z", - "shell.execute_reply": "2023-12-13T17:16:50.196567Z" + "iopub.execute_input": "2023-12-14T18:07:20.064531Z", + "iopub.status.busy": "2023-12-14T18:07:20.064158Z", + "iopub.status.idle": "2023-12-14T18:07:20.187225Z", + "shell.execute_reply": "2023-12-14T18:07:20.186701Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.199855Z", - "iopub.status.busy": "2023-12-13T17:16:50.199478Z", - "iopub.status.idle": "2023-12-13T17:16:50.202398Z", - "shell.execute_reply": "2023-12-13T17:16:50.201857Z" + "iopub.execute_input": "2023-12-14T18:07:20.189601Z", + "iopub.status.busy": "2023-12-14T18:07:20.189384Z", + "iopub.status.idle": "2023-12-14T18:07:20.192253Z", + "shell.execute_reply": "2023-12-14T18:07:20.191679Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.204773Z", - "iopub.status.busy": "2023-12-13T17:16:50.204411Z", - "iopub.status.idle": "2023-12-13T17:16:51.623444Z", - "shell.execute_reply": "2023-12-13T17:16:51.622756Z" + "iopub.execute_input": "2023-12-14T18:07:20.194529Z", + "iopub.status.busy": "2023-12-14T18:07:20.194330Z", + "iopub.status.idle": "2023-12-14T18:07:21.626826Z", + "shell.execute_reply": "2023-12-14T18:07:21.625980Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:51.626323Z", - "iopub.status.busy": "2023-12-13T17:16:51.626101Z", - "iopub.status.idle": "2023-12-13T17:16:51.639803Z", - "shell.execute_reply": "2023-12-13T17:16:51.639183Z" + "iopub.execute_input": "2023-12-14T18:07:21.629833Z", + "iopub.status.busy": "2023-12-14T18:07:21.629608Z", + "iopub.status.idle": "2023-12-14T18:07:21.644083Z", + "shell.execute_reply": "2023-12-14T18:07:21.643403Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:51.642140Z", - "iopub.status.busy": "2023-12-13T17:16:51.641913Z", - "iopub.status.idle": "2023-12-13T17:16:51.692032Z", - "shell.execute_reply": "2023-12-13T17:16:51.691483Z" + "iopub.execute_input": "2023-12-14T18:07:21.646811Z", + "iopub.status.busy": "2023-12-14T18:07:21.646210Z", + "iopub.status.idle": "2023-12-14T18:07:21.725531Z", + "shell.execute_reply": "2023-12-14T18:07:21.724915Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 99489385d..949492cf8 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:57.077413Z", - "iopub.status.busy": "2023-12-13T17:16:57.077220Z", - "iopub.status.idle": "2023-12-13T17:16:59.135460Z", - "shell.execute_reply": "2023-12-13T17:16:59.134767Z" + "iopub.execute_input": "2023-12-14T18:07:26.114725Z", + "iopub.status.busy": "2023-12-14T18:07:26.114527Z", + "iopub.status.idle": "2023-12-14T18:07:28.136609Z", + "shell.execute_reply": "2023-12-14T18:07:28.135911Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.138349Z", - "iopub.status.busy": "2023-12-13T17:16:59.138022Z", - "iopub.status.idle": "2023-12-13T17:16:59.141529Z", - "shell.execute_reply": "2023-12-13T17:16:59.140959Z" + "iopub.execute_input": "2023-12-14T18:07:28.139673Z", + "iopub.status.busy": "2023-12-14T18:07:28.139300Z", + "iopub.status.idle": "2023-12-14T18:07:28.143122Z", + "shell.execute_reply": "2023-12-14T18:07:28.142492Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.143792Z", - "iopub.status.busy": "2023-12-13T17:16:59.143455Z", - "iopub.status.idle": "2023-12-13T17:16:59.146719Z", - "shell.execute_reply": "2023-12-13T17:16:59.146122Z" + "iopub.execute_input": "2023-12-14T18:07:28.145399Z", + "iopub.status.busy": "2023-12-14T18:07:28.145031Z", + "iopub.status.idle": "2023-12-14T18:07:28.148405Z", + "shell.execute_reply": "2023-12-14T18:07:28.147792Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.149350Z", - "iopub.status.busy": "2023-12-13T17:16:59.148859Z", - "iopub.status.idle": "2023-12-13T17:16:59.227220Z", - "shell.execute_reply": "2023-12-13T17:16:59.226709Z" + "iopub.execute_input": "2023-12-14T18:07:28.150864Z", + "iopub.status.busy": "2023-12-14T18:07:28.150433Z", + "iopub.status.idle": "2023-12-14T18:07:28.202162Z", + "shell.execute_reply": "2023-12-14T18:07:28.201563Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.229601Z", - "iopub.status.busy": "2023-12-13T17:16:59.229157Z", - "iopub.status.idle": "2023-12-13T17:16:59.232985Z", - "shell.execute_reply": "2023-12-13T17:16:59.232364Z" + "iopub.execute_input": "2023-12-14T18:07:28.204477Z", + "iopub.status.busy": "2023-12-14T18:07:28.204134Z", + "iopub.status.idle": "2023-12-14T18:07:28.207848Z", + "shell.execute_reply": "2023-12-14T18:07:28.207317Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.235158Z", - "iopub.status.busy": "2023-12-13T17:16:59.234814Z", - "iopub.status.idle": "2023-12-13T17:16:59.238771Z", - "shell.execute_reply": "2023-12-13T17:16:59.238160Z" + "iopub.execute_input": "2023-12-14T18:07:28.210071Z", + "iopub.status.busy": "2023-12-14T18:07:28.209870Z", + "iopub.status.idle": "2023-12-14T18:07:28.214081Z", + "shell.execute_reply": "2023-12-14T18:07:28.213555Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'cancel_transfer'}\n" + "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.241050Z", - "iopub.status.busy": "2023-12-13T17:16:59.240714Z", - "iopub.status.idle": "2023-12-13T17:16:59.244254Z", - "shell.execute_reply": "2023-12-13T17:16:59.243649Z" + "iopub.execute_input": "2023-12-14T18:07:28.216400Z", + "iopub.status.busy": "2023-12-14T18:07:28.216038Z", + "iopub.status.idle": "2023-12-14T18:07:28.219495Z", + "shell.execute_reply": "2023-12-14T18:07:28.218855Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.246562Z", - "iopub.status.busy": "2023-12-13T17:16:59.246226Z", - "iopub.status.idle": "2023-12-13T17:16:59.249666Z", - "shell.execute_reply": "2023-12-13T17:16:59.249052Z" + "iopub.execute_input": "2023-12-14T18:07:28.222008Z", + "iopub.status.busy": "2023-12-14T18:07:28.221668Z", + "iopub.status.idle": "2023-12-14T18:07:28.225138Z", + "shell.execute_reply": "2023-12-14T18:07:28.224535Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.252221Z", - "iopub.status.busy": "2023-12-13T17:16:59.251841Z", - "iopub.status.idle": "2023-12-13T17:17:07.937370Z", - "shell.execute_reply": "2023-12-13T17:17:07.936658Z" + "iopub.execute_input": "2023-12-14T18:07:28.227606Z", + "iopub.status.busy": "2023-12-14T18:07:28.227230Z", + "iopub.status.idle": "2023-12-14T18:07:36.892978Z", + "shell.execute_reply": "2023-12-14T18:07:36.892331Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.941048Z", - "iopub.status.busy": "2023-12-13T17:17:07.940505Z", - "iopub.status.idle": "2023-12-13T17:17:07.943692Z", - "shell.execute_reply": "2023-12-13T17:17:07.943065Z" + "iopub.execute_input": "2023-12-14T18:07:36.896474Z", + "iopub.status.busy": "2023-12-14T18:07:36.896026Z", + "iopub.status.idle": "2023-12-14T18:07:36.899140Z", + "shell.execute_reply": "2023-12-14T18:07:36.898591Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.946085Z", - "iopub.status.busy": "2023-12-13T17:17:07.945885Z", - "iopub.status.idle": "2023-12-13T17:17:07.948666Z", - "shell.execute_reply": "2023-12-13T17:17:07.948117Z" + "iopub.execute_input": "2023-12-14T18:07:36.901581Z", + "iopub.status.busy": "2023-12-14T18:07:36.901193Z", + "iopub.status.idle": "2023-12-14T18:07:36.904055Z", + "shell.execute_reply": "2023-12-14T18:07:36.903501Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.951026Z", - "iopub.status.busy": "2023-12-13T17:17:07.950671Z", - "iopub.status.idle": "2023-12-13T17:17:10.143612Z", - "shell.execute_reply": "2023-12-13T17:17:10.142757Z" + "iopub.execute_input": "2023-12-14T18:07:36.906516Z", + "iopub.status.busy": "2023-12-14T18:07:36.906044Z", + "iopub.status.idle": "2023-12-14T18:07:39.110585Z", + "shell.execute_reply": "2023-12-14T18:07:39.109817Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.147614Z", - "iopub.status.busy": "2023-12-13T17:17:10.146541Z", - "iopub.status.idle": "2023-12-13T17:17:10.154881Z", - "shell.execute_reply": "2023-12-13T17:17:10.154383Z" + "iopub.execute_input": "2023-12-14T18:07:39.114627Z", + "iopub.status.busy": "2023-12-14T18:07:39.113523Z", + "iopub.status.idle": "2023-12-14T18:07:39.122201Z", + "shell.execute_reply": "2023-12-14T18:07:39.121435Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.157462Z", - "iopub.status.busy": "2023-12-13T17:17:10.156992Z", - "iopub.status.idle": "2023-12-13T17:17:10.161122Z", - "shell.execute_reply": "2023-12-13T17:17:10.160569Z" + "iopub.execute_input": "2023-12-14T18:07:39.124712Z", + "iopub.status.busy": "2023-12-14T18:07:39.124220Z", + "iopub.status.idle": "2023-12-14T18:07:39.128537Z", + "shell.execute_reply": "2023-12-14T18:07:39.127920Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.163496Z", - "iopub.status.busy": "2023-12-13T17:17:10.163003Z", - "iopub.status.idle": "2023-12-13T17:17:10.166704Z", - "shell.execute_reply": "2023-12-13T17:17:10.166061Z" + "iopub.execute_input": "2023-12-14T18:07:39.130976Z", + "iopub.status.busy": "2023-12-14T18:07:39.130489Z", + "iopub.status.idle": "2023-12-14T18:07:39.134097Z", + "shell.execute_reply": "2023-12-14T18:07:39.133464Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.169141Z", - "iopub.status.busy": "2023-12-13T17:17:10.168698Z", - "iopub.status.idle": "2023-12-13T17:17:10.172035Z", - "shell.execute_reply": "2023-12-13T17:17:10.171393Z" + "iopub.execute_input": "2023-12-14T18:07:39.136521Z", + "iopub.status.busy": "2023-12-14T18:07:39.136041Z", + "iopub.status.idle": "2023-12-14T18:07:39.139364Z", + "shell.execute_reply": "2023-12-14T18:07:39.138755Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.174400Z", - "iopub.status.busy": "2023-12-13T17:17:10.173919Z", - "iopub.status.idle": "2023-12-13T17:17:10.181054Z", - "shell.execute_reply": "2023-12-13T17:17:10.180534Z" + "iopub.execute_input": "2023-12-14T18:07:39.141842Z", + "iopub.status.busy": "2023-12-14T18:07:39.141339Z", + "iopub.status.idle": "2023-12-14T18:07:39.148744Z", + "shell.execute_reply": "2023-12-14T18:07:39.148104Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.183463Z", - "iopub.status.busy": "2023-12-13T17:17:10.183261Z", - "iopub.status.idle": "2023-12-13T17:17:10.435547Z", - "shell.execute_reply": "2023-12-13T17:17:10.434922Z" + "iopub.execute_input": "2023-12-14T18:07:39.151329Z", + "iopub.status.busy": "2023-12-14T18:07:39.150834Z", + "iopub.status.idle": "2023-12-14T18:07:39.413683Z", + "shell.execute_reply": "2023-12-14T18:07:39.413016Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.439607Z", - "iopub.status.busy": "2023-12-13T17:17:10.438470Z", - "iopub.status.idle": "2023-12-13T17:17:10.719600Z", - "shell.execute_reply": "2023-12-13T17:17:10.718952Z" + "iopub.execute_input": "2023-12-14T18:07:39.416831Z", + "iopub.status.busy": "2023-12-14T18:07:39.416392Z", + "iopub.status.idle": "2023-12-14T18:07:39.692892Z", + "shell.execute_reply": "2023-12-14T18:07:39.692295Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.724220Z", - "iopub.status.busy": "2023-12-13T17:17:10.723073Z", - "iopub.status.idle": "2023-12-13T17:17:10.728706Z", - "shell.execute_reply": "2023-12-13T17:17:10.728089Z" + "iopub.execute_input": "2023-12-14T18:07:39.695928Z", + "iopub.status.busy": "2023-12-14T18:07:39.695505Z", + "iopub.status.idle": "2023-12-14T18:07:39.699606Z", + "shell.execute_reply": "2023-12-14T18:07:39.699018Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 2776cf2ad..661cbd05f 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:15.925156Z", - "iopub.status.busy": "2023-12-13T17:17:15.924965Z", - "iopub.status.idle": "2023-12-13T17:17:18.163686Z", - "shell.execute_reply": "2023-12-13T17:17:18.163019Z" + "iopub.execute_input": "2023-12-14T18:07:44.268168Z", + "iopub.status.busy": "2023-12-14T18:07:44.267974Z", + "iopub.status.idle": "2023-12-14T18:07:45.604982Z", + "shell.execute_reply": "2023-12-14T18:07:45.604320Z" } }, "outputs": [ @@ -86,9 +86,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-13 17:17:15-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 185.93.1.244, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", + "--2023-12-14 18:07:44-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "185.93.1.243, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -102,9 +115,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2023-12-13 17:17:16 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-12-14 18:07:44 (7.58 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -124,9 +137,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-13 17:17:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.203, 52.216.221.209, 52.216.133.227, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.203|:443... " + "--2023-12-14 18:07:44-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.220, 3.5.8.173, 54.231.136.9, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.220|:443... " ] }, { @@ -154,47 +167,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 3%[ ] 587.51K 2.87MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 9%[> ] 1.56M 3.86MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 19%[==> ] 3.17M 5.23MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 35%[======> ] 5.77M 7.14MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 61%[===========> ] 10.04M 9.86MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 87%[================> ] 14.15M 11.6MB/s " + "pred_probs.npz 66%[============> ] 10.85M 54.2MB/s " ] }, { @@ -202,9 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 12.2MB/s in 1.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 69.9MB/s in 0.2s \r\n", "\r\n", - "2023-12-13 17:17:18 (12.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-12-14 18:07:45 (69.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -221,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:18.166389Z", - "iopub.status.busy": "2023-12-13T17:17:18.166183Z", - "iopub.status.idle": "2023-12-13T17:17:19.172866Z", - "shell.execute_reply": "2023-12-13T17:17:19.172149Z" + "iopub.execute_input": "2023-12-14T18:07:45.607674Z", + "iopub.status.busy": "2023-12-14T18:07:45.607288Z", + "iopub.status.idle": "2023-12-14T18:07:46.616365Z", + "shell.execute_reply": "2023-12-14T18:07:46.615763Z" }, "nbsphinx": "hidden" }, @@ -235,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -261,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.175871Z", - "iopub.status.busy": "2023-12-13T17:17:19.175401Z", - "iopub.status.idle": "2023-12-13T17:17:19.179007Z", - "shell.execute_reply": "2023-12-13T17:17:19.178465Z" + "iopub.execute_input": "2023-12-14T18:07:46.619197Z", + "iopub.status.busy": "2023-12-14T18:07:46.618722Z", + "iopub.status.idle": "2023-12-14T18:07:46.622320Z", + "shell.execute_reply": "2023-12-14T18:07:46.621804Z" } }, "outputs": [], @@ -314,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.181367Z", - "iopub.status.busy": "2023-12-13T17:17:19.181069Z", - "iopub.status.idle": "2023-12-13T17:17:19.184296Z", - "shell.execute_reply": "2023-12-13T17:17:19.183703Z" + "iopub.execute_input": "2023-12-14T18:07:46.624674Z", + "iopub.status.busy": "2023-12-14T18:07:46.624309Z", + "iopub.status.idle": "2023-12-14T18:07:46.627465Z", + "shell.execute_reply": "2023-12-14T18:07:46.626965Z" }, "nbsphinx": "hidden" }, @@ -335,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.186604Z", - "iopub.status.busy": "2023-12-13T17:17:19.186234Z", - "iopub.status.idle": "2023-12-13T17:17:27.209870Z", - "shell.execute_reply": "2023-12-13T17:17:27.209310Z" + "iopub.execute_input": "2023-12-14T18:07:46.629685Z", + "iopub.status.busy": "2023-12-14T18:07:46.629307Z", + "iopub.status.idle": "2023-12-14T18:07:54.293690Z", + "shell.execute_reply": "2023-12-14T18:07:54.293032Z" } }, "outputs": [], @@ -412,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.212679Z", - "iopub.status.busy": "2023-12-13T17:17:27.212266Z", - "iopub.status.idle": "2023-12-13T17:17:27.218163Z", - "shell.execute_reply": "2023-12-13T17:17:27.217627Z" + "iopub.execute_input": "2023-12-14T18:07:54.296775Z", + "iopub.status.busy": "2023-12-14T18:07:54.296332Z", + "iopub.status.idle": "2023-12-14T18:07:54.302349Z", + "shell.execute_reply": "2023-12-14T18:07:54.301762Z" }, "nbsphinx": "hidden" }, @@ -455,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.220385Z", - "iopub.status.busy": "2023-12-13T17:17:27.220021Z", - "iopub.status.idle": "2023-12-13T17:17:27.622818Z", - "shell.execute_reply": "2023-12-13T17:17:27.622194Z" + "iopub.execute_input": "2023-12-14T18:07:54.304685Z", + "iopub.status.busy": "2023-12-14T18:07:54.304323Z", + "iopub.status.idle": "2023-12-14T18:07:54.707506Z", + "shell.execute_reply": "2023-12-14T18:07:54.706875Z" } }, "outputs": [], @@ -495,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.625870Z", - "iopub.status.busy": "2023-12-13T17:17:27.625469Z", - "iopub.status.idle": "2023-12-13T17:17:27.630693Z", - "shell.execute_reply": "2023-12-13T17:17:27.630112Z" + "iopub.execute_input": "2023-12-14T18:07:54.710576Z", + "iopub.status.busy": "2023-12-14T18:07:54.710166Z", + "iopub.status.idle": "2023-12-14T18:07:54.715829Z", + "shell.execute_reply": "2023-12-14T18:07:54.715313Z" } }, "outputs": [ @@ -570,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.633054Z", - "iopub.status.busy": "2023-12-13T17:17:27.632684Z", - "iopub.status.idle": "2023-12-13T17:17:29.544495Z", - "shell.execute_reply": "2023-12-13T17:17:29.543734Z" + "iopub.execute_input": "2023-12-14T18:07:54.718467Z", + "iopub.status.busy": "2023-12-14T18:07:54.717927Z", + "iopub.status.idle": "2023-12-14T18:07:56.608674Z", + "shell.execute_reply": "2023-12-14T18:07:56.607863Z" } }, "outputs": [], @@ -595,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.547999Z", - "iopub.status.busy": "2023-12-13T17:17:29.547242Z", - "iopub.status.idle": "2023-12-13T17:17:29.554400Z", - "shell.execute_reply": "2023-12-13T17:17:29.553758Z" + "iopub.execute_input": "2023-12-14T18:07:56.612257Z", + "iopub.status.busy": "2023-12-14T18:07:56.611413Z", + "iopub.status.idle": "2023-12-14T18:07:56.618518Z", + "shell.execute_reply": "2023-12-14T18:07:56.617959Z" } }, "outputs": [ @@ -634,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.556939Z", - "iopub.status.busy": "2023-12-13T17:17:29.556468Z", - "iopub.status.idle": "2023-12-13T17:17:29.581111Z", - "shell.execute_reply": "2023-12-13T17:17:29.580485Z" + "iopub.execute_input": "2023-12-14T18:07:56.621086Z", + "iopub.status.busy": "2023-12-14T18:07:56.620533Z", + "iopub.status.idle": "2023-12-14T18:07:56.646064Z", + "shell.execute_reply": "2023-12-14T18:07:56.645428Z" } }, "outputs": [ @@ -815,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.583787Z", - "iopub.status.busy": "2023-12-13T17:17:29.583455Z", - "iopub.status.idle": "2023-12-13T17:17:29.615860Z", - "shell.execute_reply": "2023-12-13T17:17:29.615349Z" + "iopub.execute_input": "2023-12-14T18:07:56.648608Z", + "iopub.status.busy": "2023-12-14T18:07:56.648233Z", + "iopub.status.idle": "2023-12-14T18:07:56.683699Z", + "shell.execute_reply": "2023-12-14T18:07:56.683080Z" } }, "outputs": [ @@ -920,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.618351Z", - "iopub.status.busy": "2023-12-13T17:17:29.617875Z", - "iopub.status.idle": "2023-12-13T17:17:29.626309Z", - "shell.execute_reply": "2023-12-13T17:17:29.625806Z" + "iopub.execute_input": "2023-12-14T18:07:56.686134Z", + "iopub.status.busy": "2023-12-14T18:07:56.685792Z", + "iopub.status.idle": "2023-12-14T18:07:56.695800Z", + "shell.execute_reply": "2023-12-14T18:07:56.695181Z" } }, "outputs": [ @@ -997,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.628818Z", - "iopub.status.busy": "2023-12-13T17:17:29.628336Z", - "iopub.status.idle": "2023-12-13T17:17:31.425398Z", - "shell.execute_reply": "2023-12-13T17:17:31.424739Z" + "iopub.execute_input": "2023-12-14T18:07:56.698185Z", + "iopub.status.busy": "2023-12-14T18:07:56.697838Z", + "iopub.status.idle": "2023-12-14T18:07:58.485152Z", + "shell.execute_reply": "2023-12-14T18:07:58.484496Z" } }, "outputs": [ @@ -1172,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:31.428105Z", - "iopub.status.busy": "2023-12-13T17:17:31.427747Z", - "iopub.status.idle": "2023-12-13T17:17:31.432094Z", - "shell.execute_reply": "2023-12-13T17:17:31.431460Z" + "iopub.execute_input": "2023-12-14T18:07:58.487990Z", + "iopub.status.busy": "2023-12-14T18:07:58.487537Z", + "iopub.status.idle": "2023-12-14T18:07:58.491933Z", + "shell.execute_reply": "2023-12-14T18:07:58.491327Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_datalab_quickstart_15_0.png b/master/.doctrees/nbsphinx/tutorials_datalab_datalab_quickstart_15_0.png index 60b1f40198a34f6791db3ce003ebbfe11ff1bf49..b499fe57339d0f25ba07990a2df3a57731bb7072 100644 GIT binary patch literal 42202 zcmd43Wn5L?wm*ywf*_!@fP{b`Al;!f0!pVycXuPAfRuDdDFV{c9nvL@bW4|X!+$K# zx%YG5KJT6vo*xGmd#^p$oMU`z5b#n~{LXEn+bAd~cO)f5K zvjG0XZ7-^7uV7_p@1$dEfFh$~Z*6X6Z*HPX?r30ZXJTc^%E-aU%0O;xZ*OhK!^C9q zzZWoC*%~qR?APwYi=bIcsM(>QVCf+Lu6!5FFhN22CN3!=tmvGup6H^fxPQ_*ZS=vz zN#~V_DE9rA_im`%>(^u%FD_=Wcv@wlUYc2UT4Z^cK2(!FY8t3!I$X#y&Mfn40)^dr z+UCY}?9t)4-P3vIMhpz*Yws95r}JZ&V(n^|61L(9<9hg}myY?u89G_6z7-)3$1vj4rrkis|O-?dlY#-Ywq!7srN-aPvMc&U$}jH2Sb zSFc`iuDcc#6i9@Nn49M`w+fv7Z7eS@S9K8JJh`}WRe0myI}mlnXnO`wNpf*|6u}LHMBgO zPnPU?LYJADsmz;^nE1fa(NUQ<8LnWv{+}yUf4sRu6x@>YUBShL+p2o|=46#q>(o?I zo>o=io1a&uq@;pc;ySj~YTdbi{`|?s&E1zSLwpmHq;0Ik?8-=~1#vjl_I#+Ia@8Vy zBaAA5-|axvUfagTX2NZ&#(r~x(9O;5?Ci|>;&_Sf@naV5i}lf>pa;BoMn*~(p7WD^N&x}V zm%h=-$z*1~b21&*}$cAE>Jab8J_A>c44=!||cA0|$!^DCYmK45fV zVWI1Eoe;UPzCLU-V{&?xyvQruPoKULuv-i=*VCiyN#fV2^ZL^kW@~NzJ{+Ts z)u@||rzeo9miF4t?_7=GkO$nh-!8Tjou*9e85O#c1+`1d%3|`h>++_f!@?epkBqdT z<1^;$k64VCwtH7wjB}iq!h)F2<2_NQk`AXz7W8^uXVDTw$U-i7x?Xf*p`NRp#H{0E zZe&DbWN6q?$j}LoiiJF1t*B)=;px+-L#4w@|JM5<1?>I$Ec>WWT~)l9>4o3L_(<`FLq=OGT{R<<++-+jsvRfkYK;kEorU9U{BL z?qtDGsWb|5@_OT{&`>N=QqlxLui6&7x}6SsIAC|Nv4ulP`JGQzGDb_xV)|lV*SKPn zl3EsPmKpvcx`{=qxe>o;J=<`D)bmJZtkfbfFc3W{DJh7A8^=2#fh4uyanwi4$x1>C zbPSB^Gq46I2|NxT;V0GA)qnT)*iK@SljX$3#NKUc!}%iRkm0}bR;c%6`FAccEP!6~ z$NOEMIrCd=!l~5UH>Yac?B<%#JdYRfb#--*E>5?O|2AU%+tIJR&K=InVHsgJkT7ah zibzVLxgBmUoF7h?9k~((f6%b1i833`+wP#x@6A?WN=Qtsa6e|j5u=|ribJNms6@Ar^DdnFcQre|&~@K*%5^Q*^t94`#YZ`NVK7r+Z*x+k z?z|(4UbD_K5#Dsr)e??q`ir=RNIC`DCr=iV+%{*YFE2QEmwH-%{=DLysgS|qw5eHp zyh!}<OPU!MDMx$ID7E9bIE-JGs=DQe$V&y6lJ>RC;FfkGpfbUg)b z9mRfYD)EU%DYN+qbE<)m-P8YUI`ZgM*7KDW>$yFYVvt?a8Ex2(G3ohBVa zWT9QCkA{N#=*9Q#YBe=AvCxh6b=2FppG6y_nid~yjI(;4IVz#KP{`CJjr}(JXgWvf>JMa;k-}1WT)%H4Pr;$w{=i*YW<7Z=wBxE)Gq1${rPrI(WEsRo9 zLgLL(mePd7u$G9p_^@;LQ@xg%`T52lI*mx_7%9-JzPvbn5zBlUM<8Ecd1Ez&`_cjS7#`gB|D! zj5IVfo!-^93sR|W4vvn|Jqg^Dp@ghrj<&YpH8nL0P(wS2g44%Jlyg)cVi7P4IojJt zYH4XL2zZ>dG1Z+FCd9{^Mj_APw|Mx%W5-hHy1i1gOiUS2pI;65FkRBm3aajREQ&d3*6I(ox3@|7oIi0+IlqHlVmDL&Ha#gEmW0~h zANsnngZo~eIN$M~2xk|U?I9Iy_I-QUhxE@xkS2=s{VtLJ^Cc?HzwceY%8Gq6mi7sb zyn=#_gF~*$7Q=tO{{&wxy1lbA74Gr7Vo7VHuk}^9WP5klY}Mo+a3D8+#`wBgB11OO z^Z}(W?(+CO&1z?CPR_DNNx}b6h7Yl%r6r@Mr>9}b6PyOLy-qtzOUwU)4eJP9*~$YTP)Trd(*CE}$UQ#eMe|ClwVH+jiG~FXDiUh6LS4{S4EdlXH#8%(CE zUH&XC_Cwi)vI4c(>+*D(?`Y;7J86+|9|e@|ePS+YWFHiZNJ&deN=gc64{_`(URQpW zCO^Bi6`Gi+RTC2P2QNwVyzcTmH0HHy0NlFY%*>nc@NnnNiX~O3aIA)1%q~Hh{t$n{k@S-p1O7EN-VLz{A*5B{I)AHqUI`R}ju@=8cZu(q-J z0-%8Jd~e|7X*d;o+{{?52k(4KaH`B_4!{`w@G4Uthgv8|AE%O>>tw2{erU(-v`G?9 zH9J4Aw_N}b{C~hVG~gJC@TNvALG$ebhdx-cyu3UHt;$GvKjgW=>R974JFF`H&esmD zs}szxIUoXHK}AEe3;lTa=PfdnzrQ%A+1e+d^3;EmjQCMdFgt3LOifGc4+WsWY?v|0 z>*DxPoPt?uv-p4NN%^bwiHeB*wc+{MSz&i~KB#moMTWoT-eC#MKr246Ih^(qME;>r ziie1VQ-zT7->wg%6#qmOFx%*N&3d`_VM{2P+<2*l$#gA0fM2p0CheOuCBv_uhf}4? zCU*E^Q(8MXQ1kG_cXhpp*mawIkKb!r;{NyNt+OS;%h^70vIT&Yv*T8E?A#YfXREEP z9T^>+U0G?LbefhiHGPa?)RRR0`0;H{PEHaM5-97p;9T86`rF=e-!;JWe0+Qae9qRv zc3A<{)qFSa5c&G~-GU8ubb7kG_}NOC7#|n+`QhfI$w2y@9)VMag@pwaKx0X#n^jm= zR#wQb3wrXwb}KT*-2d`_R%Wsa-@C0%f{&m7O1bNPmS^3&ch5_ta@C3q3-nqsYfo0` zf$($z=(|yma0FRdOjzc$>goieWDfw{EYS>V4e;znYTU{$Nb1fHh%Zlu>!7_iwY2QO z)A~DRmQScf!^#=~kmRa$5C0*-Ms~Z@7mYH@v-2%4@icjxKW*4kUY8!Q(^QKL?`+i^ zl8%>I8NtDax?u~L&EwgA0=J#Dt?gWDsKD1BKRz`ziPWS##g_~x;B{mO6};fOapOjg zMp+0P@GV#tyS3c1)z)+9=z#x1u>_91;n^l9@w@H(iI8KlnG@+w;BExy`z|5^7kRg` zNk?LU89$6kqyL9??tcS*$dn><{E3XyGNCUP&I>E>o8LKVjdd6MOz_|5pE)eb52xHl zfs&b+n4p~PCSMMc!Dl2bEGpU$C39VVXxNh!oSI5m<+Qa3r9e6Ea-lN@NLOZG2_^{_ ziqO_n&6T6w9zi+=27PFdFOvAw>Z~p=&d(0Ut$clbne7%|@YpZE=_^4;M<1&dbZoVKwz)y4J&tuLamAfM2_ne(KjA`$~-3wOw$#HrCd? zp=elGMo`U8yx_w&^!2@})28XR?_*Htdmtw#SLw8cNn0WNA+~Ut8vrQqA~-rgKw6!q zJ#GoTdWD@L(&V@~k*Qt#S-_*RmcBLF>!LkNDH|0P^$oDYAcChp!Ni=uFa9X$tn{au zPgTdkhTA#as$+#up1St=`BHacHouitm17C=WPl$D(^GSE$MyF1iV-v2oe07p<_H4P z8v}4MwXp*f)3d&T~y9>wR~J8suKTJaE)zAaW!PfvmT+LNpc8&%cVzFH{F z1ttTJB3f%NPS!N59D`v;l6l+Aw_pleu zf9$og@}s)lZeCjn34errR#jBA1KZyz>JgyVu60+7Hc-3yCyT70(GM%;ip$a8S+Q{} zQa)O_SY~0%;k?B4KYyrh-MG(j92g+Q?=9XmGw}g*?2M=SIn}zLS&FXlJK1QUU3&*~TzxA+O9- zd-QB`v?ybJd6|}%o4Xww8{1Y>Gl8MAkk4gDf3&q#ytJew3MvAV+-DA%?#|9^ju=>@ zb32_QD|m;UD0-DY-@nt2PEEZg<+4sW>tgL8m|O#XU?7C_ngt-8?a)AW;J{PHL`Ag& z1&56l0buYk+;Ar*CZ?^BkT;*%Z-&$*6L>+xn!M;`Z@lU3ZX(tGR55bnP3S!X`Pzc# z^P+)xPpzh^iCURnSH~XjF0GN#P*VrAMF@F^*F}bh`_$Fd^%cga80f7!l!)B&C!u+p z5`|4f)bUj`a4!_#e$QNUV4pENRXWYi_~^963ptV0Aw^snc#Jq-5%_2-{D%vT=!ROf z=x3itBKSJ}0bk)=c1OSTSd%EknXB)KV;lWeUc5SZKkgsI1gb>z78EH!^FJ@nPuC_z zUiDhTJ~g`M!c%mB5m!fh(;==-|8^ghG5etYrg84})wd4;*5-7>)soWE^GnHIi_leR z=;+$@>2gxGT~-!imM?^y&gbdZ@~!tWQ#IARMC+c+yhVBKdYqOXnRB>TUJEmI$(pw=H~b7>*h$4zD4F<|MT6g_uiF1N!qx) z=Ly8CY24PzOwj4IuWhwYaRu4T2(`TZ_v+-e=LZ^aM$Axv?kHwB6G8Q@{c{eg1zs49 za1AIBZye0c&7l)QdF;~ZihT+SSs0v7AmjC|WM1Y4PwG-G^zj}`+a;B`eYIt|*vhk& zpLMCq=;L~uLTxkcaro46UG-cq(fRQcriHas?cK#G&f}Bi;mGJ1qJT%Ro=?lUM0cB%uKm3ukZaSw(BDWO-)S`%bDsoB*WXfyIUF? zQ!_Jc2cW?Dh#^WKG-HqJQsTUSlQYXYavmRLu%fO|PO_9&sla7R9+&Vt~`P(t85}n~=wtwWQkAoTdYi18l&FSBL}Uk~yX-E0 zQO-m=L|ZDgEW_T!4N*_aGYseUx^Rb|f7TtlD*W!R-R`yCB@QLgGA+)$0*MOs6nq&T zw!*H8?DxU0T0+ygKVee>>evCOI=j3q0h0PHEK+@t*n)`Iv-+0$#y}hIHMh32(`)cW z>q_GP42ONKELp%KzQk-eJUaTfZ;=_d?}rbCpxxB-iCaJ4E{3oAvSoWI;&8a$+gS1^+eL%VoQH$ZEt-PH&?k6irW=Hnw%>uDhKtp8PGlk1_JN>IXz8w>(;Hn#mH!d zCU|zpx;a1CuY)$Dpxc4XwIm)dv-?BMR7|zh=yl<%yC%zJv8Q+_7Iy!cvn;;L7n`|moMp^^(90S0q>r#MJ1~T zw-@ewR%5&3?B>P_95Km#M-n`Ty>VO|oTKBVZg^V^Iv2@N z6jJ`_m2krN;N#9Cs`bdo$X!y>?!U8*Hja*#W9@K%cz$xBljy z+K#pNT65HMyvfD(>f`~TwAunYvoGJief#0Crp)+Sk;KQs!Xl2#h62Psi#c$me4>4k zR|%UR?B}lg>@rKuK%}&yp-&YrHcH>=wB*G3^N;!?FmU)zmQ!DR=D4G+t=-Yl@pos( zbkzj$v{LSq`zk0zC@IY*fI_%=sK2XcF^_k>%E`|-g~BkUrhCuiD)mmWvrzy=(&H91 z2B69A9v=Il0A)vtjIcnTu5mkL0WBIp^pBza6b+!BL$RTkI3)`D+j=SW!L)f zc*yQ%z|4oRjAO6pA6$K;l^7O2?Ii*r*p?&g2iQ1LA)zuFbVe5d_kzzC@9GL4t>lv( zp}ZrlV6H!vBqEL&_NEBiZ;VCVA?El2x)B&^5@1dE2M6Ckj0I^hb$!_FpxW-w}b|{>(!~hJ-)@(yr=#koC+HUr$IrEzZs$N z@Vx10Y2QF$1mQaf_z>IvJ+RWGm+Do1uw7S{QS>A|>d4A)vaxw6Adm!7Y66h;zAw*j z0cmOdY*pJX%~Ydk;Vve2Gn8)!b=vEaAL=X>kd>SqhV1SY!)K@&kD9)PDu~JsRL>qT zROS|9eV(FHcynLz@qIWbh(0r6)A|5D%u983Dd@(ZT}@#rs3YtMJ(I2#D!VY4%`PqF z5V`bMq+yY8ee&_S3gX3WApmTEhO;<4f%ic3R(fZkrH~st_`>``S}7 zGpV!gD&thwY2BB<2fQaXmB|e~?XKU4Ou_#`y>o|}pZ@_gN)&xHL+ItmQrCK%epN=N zM+M{d=5V*-$43teZ{{W5aMB)VRrSyFeSPTE{@2FE#U-&-I$S@>Wg^GlUjg@1LV~6i z+po_VM{LL9&yw3aehK>Q!a4I;sd zBT6Xw4}rUhIk()t?n7jA_&%WXUcvQ_o&f1wJc}$WaI@UEoAD>07(xHDT^*zY^fj!% zYqC=8y!02~@yX$qoV`7poWL;^T#MLSAkYqg9aGfZr`SCU^$ah7T)GvVNEU25G&HpJ zv68^AUnx+)Z*rb_dn@R%GSud^RN?Mf?wF{Biqgq=MK-joftO2v@sj8Fers6418)VB zX@C6e{QR@E*rHx0D$duH7Cj@QR;Wh^zlVno7V)iMF}rz@XRIyyVm$}Asb$R*=R zJO9)15JeP(tp(6+bT=m|7*v0FgLZ@HB4CaG6J1|ON(Q{D3Wfts%&sMj4iYssJc{%A zx{H%Q(3x!3N1pOHZN9L#w+{?(Mv6qeEl8e{*+V#Zcr9>dBtbBVV>iP?R3I|1Gn?R6 z2K8c8=&9#|f`WC#TzbN06rc_l!|bbz7|nL zWF>s!nQ1xlLnndDrong|6eExyq=Q>W#>e%nthDDn-`2}(YH3w$l#V0rHPks0E^Cx1 zsrR|L7XQ`amA`>52kNEE!RBNqQV>9vQLA!%g2?FLuv^0YT0R3*Q*nMU?s70{LcZ1XFSH4`Soxs+0e`hd7mhtV=eVEGc01==k^&V6DOsZrS5? zfeT_rG^17rsG%d!=q8$qO$J()w?VDvw*7+&a>he0u2^8$pb(mIslz8_SV9`%D&54r z;v;|DdVu!bU_#O|G9sQE-^J0q3_tbTdVhe7I3y$(h>&`OSgo^uWFmgHK#9X&f0BKs zes$%>in8D#s2&oqqR^(qNI!tqLrq7AhNv^F`fYas_8=k`0jnVfJhC*;bzo-*)_eQ* zErR90-Uz%=d>hgsY))`*6(GhTX@Zr>D$YU%yT3ES0!K5~5YsI^DM^U@2Zdn5$=ibI z(1ij)QoZ#|a*KsgV9+Hh?CHoSFGk~G}c zA*EoQo3pUbpRd8b^G#ZGWhfh;gM;H+25~YkCua=cePGp?v{8#d062;4Kw+N$^T$^` z_YvqpU`nf6c;-IX#@8S>z6y$9{WUDUdQe=0cD{gb+yu2PASkG5Xs86ui1se(YUBF} zbl1Lb&*{x7Vx6$bjL5Pz8-G|OspoPK+GKsClDs3}CnOB+n$M$e3K_Dnuh+<|#!G{J zeXmD9(GYv_0^|7jScZ!isy1EXBu{F1kf6F!_-(;qVx!{q#YHh=W7=$${F^gP0k|Nl z?|#s#E1`s}PHzx_fIC+ruTwfG!*GZS%|}@fg;7UG=ilazeH&VYh3>~N7)TTKO?URw zd*wimxK2=&o5jgIL_h({uim*mJ39-_YoeFCSeZ)A{t@;6qGOR^H{l3yVxX27to_c_ ztaT?u0SVKxVgV0g1QSg~xTuz-{|kesjZHd9`qBH5&o8J_N6Z+Hva`Dj*h?&&3Roop zi#}>VK)}~#f^=;J8MoQspvDu1Q}sdFt#nvx0Y?|f*?_3q@E#bP@DbN3Tfm$C0=GlU z*Wk#afT0G8W8PgEL9@??9fXB}Mq%|DYS6#kSa| zda#pUD9EKMAu@As7o>MUlwKt>Vh%F6y##@wqK8X8oR z6s)Yca&kSUkHUST{TMp+4Gk$IZHsY$4c8nw9pFB8lqQu)>)NG@6>4d*i+j5SK?+Pfw33{`T$L|5WfNPpBCgL!i#U zsekWnN=}sf;TqwsHioXIf%XXIeCEN&B||Of@%WHRLDm}LKIusx>!n7<#=a^KUtXs8 za{;!`#mv3gz4hUYerE2D)`td}BVi?FWwB?^u2wm2^z(+gxwv58zb^_aN9-{ACGF$; z%Eg+6Gdw&RhDE8_`{x{1G**kEU3&I0eM8+wE6!kkv#EZ)=4%beOS!o(`0r`wrx@jm zUnSRqyoh}^jVoQ)9|FH=YHclY89gUr7gT_Vj}mm$GuVq5YY!wJ9~pB_$^ru!z!-&6Mm^(~FP7x$>!frUa+w zszt5n*L~7OQEAYz8#3>w4At{aexa>ed>Udgn>N5XT{sD!WW)aZ-5a6?Ecmv?d*<55 zeCE=08G(McFS~0c_Jg`h6bs&TSM#s)w=rfe)F}PL*Q+C+ph;-j6Cs`4`#w5<Xkt&9Hmo8toEn zX$vN!p0y<1&tvTH%NOR@D!bGz3Y>X9*`$bVUm>TAcpcmQHt59^^93?WxyzdnKuTk=sNuqdD3KaUd^L#yI^2aYE{eO6z)tKt?Q zTx)ueX3CwMs$&oyZFzY@+!uHO}KWQQ;Kvki zHZO`6UYB_eCJ9)i3k&ayitH5RmeN~0I|ISpLl#z%3+*|+@LIiKf91S7I^&cfmP1iY zIe%}o(XCPJ-@?IJIo`#Com}Z#en5;3WOLJ7<{fl}V_s_AM?)i{A*(4jW{l_#vIS0=?)va#GhjA&JJEhMQr0+jvMRj4Z zNwn9s?i`(*P)LTidqMfMTwS^H(QjPKY4SbjS`c;I8<0~WW(6Yvd}XjuO?(JT&70&C zQyfy{8=DMD#<3-E+zmecUH^^UQZrP@aGQbsP%$&g?aYzqqce+FZeebvcd2YtXsEvN zs2xj0&1I};o0d2s_lD?LnU$4&*D_mH?n?MAU0|GtIS?gsZ~Lb#+b$!?0TXj zcZcL_%Hn-4!N$FJ@18YckwI7t%+$TPREUVl@bSI}MR*rbF&N#Ayj#`JRaJLC?v&b# zG)eZlqEZuzWyd??Q$jFtwr7R{v#MaOvG)Op#9G%{(nu&)4Ekgul`yKOgC?<5%B5#?uZu z_lcE!`s?D_$b?I_l4*lSLq+bmh3~2FFoCcc9k(_QR(960D&c#=uHeMZ=v@s{z5~M` z`AM(K^R5K$h^oy>bQGX$K=UPm|CKL9Ye0Vr@?3{T1r6udXU^RQbS8319H$AJTi0%3 zHi4p#O(}*f0t)2+oB?ZX@9#H5s3awY{Nk|ga)>KbDO(x)-aTJ%Js-%mk;`kzII3NNL004Fr9v?3S-3{E#uMjJMvOc%4&5o05l+YFtHH{RbH2@wmS`v`A8so*Xo#GOs^I!lNEvj2 z|FJxffdyXn0>op>tE!4TP90tMmVf4!O-TWiLIJTDAw7_b!^OpIglhnJ%w}dJ>F%!% zy@+QEsIM2Qy}WQE1-JO>)vE;HU-gv$Z0Z8SBn5K9F{B6DLGwI@pjumJ=RBwk24G$z z@&W`SpMr|}0gLSQ(ixDMP+0S=>RrtD@87SFmxY2c?|C$P3;Bm=*PGS5vPiN~Sop14 zPXP7dVEA3o*w&t>DTmjezEJkeFCo$XFwyxj#W*kauWr^iU5&2lO1n~wWc*7B)C%;L zC#B9j4>Xk~rdy+1X)qs=lcVG+OM_6s!SSfp&xBn{K#l$vefE>NejM9chV3bqZx3H( z{q6!~r4Mp`5J5oHa_AVOZtG7|pTZ;71$Q65ciX$XoD0SCbb}KGSq2EvHUV#E4g*{Z;;0axWs2Q*SGARUf(C%8*s_bZmD5dAfgLMvAh2ENOii7AS^aW> zcY0I!1@VLS=0N;cnTjVLW9H^`9oI*G_HvAtH`N&O9Y)8hC|_F?(TsQNRv9{bEJ;r( zO?&Lk9%LpFnN_k2LgTjA<)Ih2&L4n60gi8iFBy0c77lVx;SX|h@|149oL3fj`1q}y z)9%j!tPyis>bHkeBfoQt)Y<#bAAQ6(13U(q98M&l1i7H^Lmg`xuU}&dDMzm?J9unn zas%#8anQ5m_SBjWu~hsjAoK8Q4&6o8*X+tpnZ~mw8%gf;&X*_<1`h&0Srs!Wm`k-i z66$-JMYx#JGMYDsRaGG!_$wjab$o?_@q?0MG*#rZakZl59>11EPhfNTed8bW0~Fa* zA1$c!ic1zGRKyvb#|am7N)-K$h~KK`E&?Ytga-*^GZAe2X$fX;9FLXJA{xM+x5!!K zj|=U_Ey@ZY{3>w1rvOrul%e4xAolb~LIf2PlY^%f@;j;px;G#hz`Ze6qSuK>-N5O2 zcI4XQ0cwoz`}c^vwmsj0ExISLyim)@Zf+A=V_(>`0B1F{82 zK+=M{P1^ZOsK5d!wp_h;vxTCb>dr4FQ`+A+UgaFF`mxcB_j_D6xqt05nmpWrk%g40{!dCt?rxBH^xJXI`M7j$<- z`v!9lSqv0`v%k+l4HyN@5e#q&2zJ7!jmsG%2D<=JslX^$B)dGi1wY{1X`@8W(0&pq zhfk5f%5c7RD->fW;DH%Qt{*|VfFyVupnW}`8^f^`n%iMFF*h7GmY#hA&TjE>^p4dMsOW+v;EV@e08Nrc4Bb3JY+gc?TF-ei%~|hsXv@#684GaGCb)z zN^8F(xfU@qF-Lrq{;j^!;iV=<{pgy}sJ$hwcNoFof==)TPqZcJWQv_p`K2e09cJ13 zX&I9EhCI2PkPwQjtgJ(bpu_4tu(G=1*#n`yfI^xveFz8m2N*ny-HDx$F_>;iaLi7F zI1t#+18LIuAdKX?TK4@>A!im*39+)x%*Dj+jXf4!OzF(NU5S3+DY5_k$F5wns* zMqqPSg^}|vNA#%_h|}?&87RS(}biQ3pC?GUnQrB((AU{et!6bXU=vJBS#B8 zzJuxj?wa7fEk1q8_P6jrDf$5px#!8*r9sQgFR*1$@EPknqI~)JQb$$LIqrkP@)Sgu zG=K>?ss&#mHEWFQ$qAA{DvYkXR}A|IDC!mONrcxkOPGfovEpkDX(=(>_q{3o0f`hP7nRJ75NH_m08tTT)$(M@X1pQ9Nw_-VW3>G(?vC-P~BeOEIZ+!lE3GJF)EW&i0 z##jw8iCw-+5)6vz{lSk@NK{dH9hJl2_VkEu*=0O9d%fs7u8RQ(-G4GaXA~BfZ`eN+ z57{t+q#1Z4ED(FC!BW&4_;lS!`aCW^cp9cvKzu$fmm@1*WBmR-NdEbLT1lJ4@+5KX z1(B_7q{UMA(@L*PL#-#YciH~U^OWd>aDOus7wsic*LI@nOjxZ}_xOxL#dU%kbgZ(A zEAvvk!DXRe_l+99{J=naclRSG0-zIN6B0^7w8lh^mcIYf0!O0Yz{E&}gP7)O6^XG! zVPT{Jj}W~X_pog9cCDkcA?f!Z&mpSi@iIS?ftdk0`u8fj6sbnt=A}bESB3QuI{p$@ z{f>FO_F;J;#jfj2oJQjCpoX$-77lSWC zAY6bn1eX5uX+~WrM&O7d99;c!>anpg?>)P-xcI2)SEAuN$o_Y6q0z=HqO?0aJmKzH zWB%BOrai>4%+LRj0pnm(=|HRUx{1kmUVGzhw3(}K(~zO0L6O9(={|Gj^R4OTw^!{i zIcWPhIki{U9oHC#?&ATiU7yBsaY=90th`?3C@h46LGfAq84YNpBqntvPn$;SvP6m9eN8_(p|?G4$fjE#I6ZBeV^P5pb@PA*?Z z(uG5;AU|ts{_QpT_qeoM5#v@?)h=cFjIVt=V}!HcJ8nc?(wJfgm^~@xnJsqS)?I{b z3qxEI#S45{rw{%{ABB z&2sb_;^MOuH5QgWb6)J3ENH6|yoi0d>*vGmVj#|`i@SS!wjy)SDV+OLdfN09fA56_ zYUMjf{{a4k*(~9-LfIHv>FDuQ9yyt>83ox}U9wy~?ZO(0ZQY%`VPV|AoBNENnyaG9 z#!4Pm{y=pY;;%fkIX#$J%J9GHy|?H3t4hi4i1}>Wk0Ksp`>!`PWn{ur`Wn9*GUC}d zvH;Z(%Q%>54!@YWJMmqU2$$oF;{&6QiM(IjoKUg+lKANfH*PQ+d|biut;CtlX3!q{PDSB9 z^fDH6T2{Q)>Hg=rehE1_n*XXGK0Z19x?c;%zp&YJ|KMPd;$mWaluI6b#v*!eiCf7l zQD2f`vgN}y%mZKi7=q2Go@8Yv3UmpN-BYgLH=o8N=8T_mI;1gx>VVy{~ zcW|!2g4utU_fO)wQg^QGF`Awy;>;S&R8rSN$#q5vLQ`8;*Pp7b+D1q`fV$-h35GXU zhGI8f<`j?^e>|Z|z>mJa>J?+=(!pZ(kt81HqJg&}9GAuvPv!#^_1jRa30JdJxlHbq z%pbKciL3L$`s>O|D$!pL{x;Nv0amvOh+g%}eP1z3xnF+U^)R{J(Ru&r8!0vyXYaZ? zicfqp?gN5uc#uA8KkP#z5YoP5NXPS2G4_VM#pNVbbCiY=Po{L9BWng)zOZ7wJT%V! z)LSXySV!a2_h$8J{t z8_n9Pl1BhfO7UPUi)dy_woq!6q(p_7*z2dS^Dsq@%0zR+BlU+*Hx+ii+K2fyi7bx| zorxUv<;QXMoY6ys>hAsf%^>F@*%Lq|AVqQH3UOXDW4iU5es*Fq5!0e-PIv8@u-X-V zrh9fd*#*mC`h-@&A7I#uhk13ud4q`Hwh|Ll;Np~NdpF008!kzXdqMA0Pri{+I&FC& zwJ`yA)%M(C3M7>dvGQw?=~bcp2LyoUPRoGenB7LGs`)gwLNsxDmwGD@Tx{WnE~8C zOG~&UBwfI>P=(-e#|e1wAXpUqOhXW%MMOmI5)hzz2M6DQ@070Y>dC-VN2T*N1(Ljj zKmeEG`3KEw5MG>v#1`cLCab~u@&V!rDFH6$zvLh+)3C7MU}1%})E&(>cCdtFy19vB z*smG7R_EvMSS`O)ElS@Z-fs?++ElQ&|23r3>iJ>Ia8MvwW|!Vasl@-0!4p@cle@?39s7P>k>4n`9Bw&y1fFtP$!)6|p{6eFWFpB+dXLEas4{4J|CH~^uG z0LMqT4Hz*)$r&jr-Vjau{W!t%WQ7I}1Nc%`gfytV*kG;ztmhRn7(Ycq&Ud`mhV$+A zmS2Gzd5t!j3bdI&kR}*J&wv5G{@Xng^L=yg2OtgA-quFmH6vIcmZ}4hF=QGJCT|FG z^RL2SYjTC%(kj`~;^N%Wl2ha2#8`m8fBo=q3?zPRPWDU=wx;DEe+Kpqz&s91%7vq& zj_D!Oh0oeCj3+Ye$`mdxblB-Vf-2D~LdPloL5fYjnXAk+xKYkZ?W~R6LchK3o-Adt z4tJ10e#4lV*+I6`@Qhk_upl+Oh^muZvI!nv`_Qc{ttb2$u{0`VGpQyzK?>9jvnmgd z%Zt?@}v?ZN$*ap(qv-AiNaX?KOh{V+T5F@+so zEO@fp3aA39f*ApF7{)~+>0rtuJ_}6Qz2=I8IY&^2xjfIxMTa8{;$X>k5D{Tw3p9bf zk)J=mj4l0msAPAac%QZ5cCqs;o9Q4eCZQOCw>YVbFX#`*#AvL0!TQDq1kvhVDOA&e zVrBr51I=>lx3JP-;o;A8btzyQ>VQ2SJdcqWpLK+>LcrB4!8W88FqoH!qjR#aVqhfv zRz7$*BXng=tw>PIVu@uSVB9#aN0I%r@`qG$`fLm=(i{>iy=%!HH_$5_n#X5Isax_lxSP=RS77|pxVoy6Y>GhS$@sN_66 zMAOQ9SG2c$?U4O^G9k2p zg$$b4x^qJpTY%mJf|p!f&@c}8`0YbON@R?KvyhSm%O}eMf5I8^16@IctXwdU1VSA$ zvnBR5v%Gv{o%%OVW@Y5v*T;9J*QLJIdO%U@cnk`jDW2?|Li!(nH4V9J)}AW;QXau9 zrmRoP-YGY=%~BBEu{L~^X;x?SZ0G)g{br~312^SU@5o-3s&&>+k<0f&9@Az?JZ5BF z`dlJRC7H%?S!?#8zdL=86$uFhUxYxk-VXvakg6AkJaR0XiF}D3xaDY=n2(s4LSf2a z6+IIficWG_Bt$gXV)Z8$W5vj*QttkV*Xj6lTSo^4i@ZynF&h!g2pdLQUp<2A<_v%P z0OmL4Kq!W(mVs1pEIX^Z_Avd5{h>%PQPDog%NN~YwzIPX8wE7xj8Q*S4VFR%__G81 zuj-NPgyV)f3^6tJetB+VZXDIUvmoWdPb)dY8hJ(udh5tm>+e{_?9*scRywicddTrh zVLy_DS?csVq$NbEMDnNd5oWijo#lsZ2krd2ig14P;-h&7E?B2O8@WDxCy75Q4ZqP} zL6tzU`Y<$O3CB)#+e~WnZdo8eT1PZCK5++#s5g@XZN`J1*+4>3sj$}h0LKYMqEK}L3- zkEcT6!2AQ{lflC0vP`VocG0~pD!yI0KS z8R(Lkg$t-h>d1_$I+mWYZBQ9JCU!hgQATmGnLMie@amD>#aEGE`J|F8tvVA|p$2w> z3)2iCAt1Og3L96d}RRXyy&Gb zE9=+mzw>m>Nqx&YR{5}$`>{gWSXnhBDPTTlgrgA?xz^SeMXQF{x1EgXX)BMB=PFug4tnr_YCw zfn;K|Z!jRW4gG|olLg|G2JlxQigUAdY*^Fa!@Yg`_h|m(OCHx^LvfD>jEqvXGreCv zj^M>UVv%o;n5b5>LFN2rp^>)G@k8h9f)u?FDvfZ&LrEOK*Zhaikv<!*LG-~0y zsiF*X-S?*#2jfFx$11Ke?IyP|6iGsbCGmQCZsFq(KKJWAUC})_KU6sXG8+?Wo8@5y zHvOydKnig(lE6G6)BCSh^jgkUSvhk^krBGHBO5>y-1f_NAteZ*t(}$;12+8X>U&=j zlJgZisj2BaMJf*igM<5HEN6tMrKpJpv4+|WsTPX_Uoz(vbS!{Ta7xDU_bp< zTA-{M-LFS0A!X3U=1*0u^c=sWkL#B=bN``L+K-&OG#WJSj^^SXOg{*I?)q4A zjWbMJK1Ah$-F>I<(-}{JweH=JET@?@Kk{EQM0t;`bDzv9VvS#?A1JlZK;&hZqa43D zi%>W%-BIb%!L+=LyLg3LVX&85vQ${ip{W@u(dG{v;xXMTk?`PPrR>EnONj~f<&js% zG{#Yg0m|`R@i7R`&*2Y*^c^4(G%#*hb(>Hjrl(!xy*iN5A3`puE$Mp)vor^Xj(?J? zYpTp@;g)}9lNs}*@o;#-?}pwjy4(q_u|dh)V)x9uj2himIyU_jVrgWJ{MrFT6$zIS zuMOx#CXO*su4M$#Fq~7x6a~`KJ~4793-G3~e3j6MF7|fgTFM1x$8MyVy(0aTvgq&+ zDFGGA{_PV1(k}Oiz%1#e^ccHG8lAJa#DqgD*HEhtKm1BnL%S`RMXFVD6_1??4^QhoX za58*-i*i{9e8`^NA5p+g+TQNy@wsYD-x#L-g(`o?b(8e(p~2l(qoqH`4zAu2<4mq* z^N-8_6Bj38k+O^^bX9w1N&mOUw)a*I6L%*K0VNTwb>oLMVI)Kq5r7kb{BCRj{3gJHy{+kFKvuZ;_~PK95p$T&oE`5@xGW_`z4N=H;5xK&W`s%dGQ6fW z=xwQmj0(lV68(KKG_2hkzx!?AroK(x0{?0e^(rNkse875tntUTF z{@O~wkU$&eb)JXP%tsOeEG)+c$KMt*=G^4vqZu7G2yW;3oYT$M5rsTnR=N(%Ml<0t zrId0hzVY33+h3+4E2&1wF8(l*3FdGIxM`9vUg-aw`H4Zu^6lq`Tu2BtqXo(=j<>f- zNK{At#q0Cz`=$Ic_IV8v4tm!d{Dq-ZK#dTon_paP3BaWxfB|S2i{^tt2X;~z1#E`H z5bPWAaM6{FNM2d_L$1!Z%ST8t5Bv$ENRX?;#lsT=cn&~P7iIxY&J7FBar z2zr#k@77TI_PHxpq^@Vl5Q`ElEC|~c%7<$?tXQ2nH;X9vRYbjsRt#b{bcn0DR-9?f zIgl44Fs9cZFC2bE-y3JHLQD~|Fu<6R&`|iXAyF)^{ zQCd<$VUPJd|NZV`AN%Y3#kJO z#F2k;;)ocWfqAkq%l*sn?)@W__{>d5NLvC!h6|7O76DTeL{lcTTnd_h3b~%JA?`6G zkMc?k1h;O;q_jiXjfIV^4+oI53mXLcFd(qI0=EY72(+}k07b|5zZw8H{~s`VVd3Dc zBAqEPKJ_ID#6SZVxC`sR+yMej%lGdQ@cGi@b9h~jnIOUf=>^V{1~ojyMMDaYH4@o{ zY*?BFKa}F|6MVrJ;4Jgy(_!oFDDu}O`DG$Q<)Yca#d?n(w>Tzb1lt$PMo!2lCNh}e z+jj4$;e6pU;Uc##^nUu&b?bMvatC2$L#XmiKKx#{cD@wmYerlrQ*;#=6@E%8lIea2 zwF$E6IpZ3o{FZxQ{e$b3c=zrhoP;U4xue14gG=!&--7E6g*k!nn_a&)=2*B(!9Y*Y zygUKIfPS;rHSiL58NYrBMOX^dK8`LV9(&-;dHnQg5~B)=U^Ut8mE)?YeaFV3S7nVsOU&g&-_KEfEPJ zl>nQp`1<-<(l>aNIH9ZUmW*8eXkEqJ;jb$yjQfr(+FrW^O_Sw5_y)_{6Jglp#FHY` z)l@l6MNcjww0vd+9na0$2WdC&pCo>8uPBen;Thl8bIV5EKoN|I7QoI82EA<#fD0Tt z+13251$iK$Uc;*NMxZkfm3ea{aap!%nepA-#><9htfdf9z)g~>;=|XA{$z%2JN6-t_T7Zb?|<@iJz_Y0y*-%E!=-6yHVcSw z$>as|H8h*+$!wJ;wzt2xtwoEyWdd(m`F|o8FCek&J`G1lBv%ON9U_oQA}7{3v^{0y zetp^9C=LB>wQsWL^}+}PU9on8p9HT`ZqD^U8u}DP9`EVm;h)-i=3&&Z%0i`niVDks zg3Z;{_4m<{sObWxwxXh9(I#L%5Vir*eunG-gu!*-42NJ<@wtDGFkGCK%=pXp7PnY;u_R(pH9oz_p_75oHe%9u7KoGAbK;rH^e>*f^3 zML<3S$=)B%>w|?wW%&dg6`P%aiVA`i;Kj?ABp#{#H-LEsnd??K2Eu8I64L!37`M+9 z*%-lFvYGVb)>~!vam6tMHJlZ5&N=&hQqB({fpGOA4+yN9n!mg*CmtNWe9UyHv)X#r zM|5(mzD(}+Y}K+MQ>dc9cSc?|$;sq{f(v2g4Gn?OUXDi~asvl!bDP83#scL{5d`}j1x1SI*qot#} z0p3_p_Yf%*3^{0mN23bh+Wih;D8z2_&q_;63$dsJ<%`6~=qIXs(GS60AxneUHC{OX zayh$}K6XtszIZ0%r+Xu^{2)fl-Pb45RDT73d3EEtkB9o4(|G}E8Ff#U=N3d(eh`&O zgDV}Ugy|j`S#VKNksZs(jBAi>gMv}dqHfeGrBT$<{&oR+Lg4Kq0hJHZcc^HTE#x+o zZ}26{wf5lgRzNZ({$sU)(xH;wJC2FIz}`&Q3Y}{|{r&5TYy{wF*WP6B@8Q#s!;x}J z%%$FcB7;)((n$@0>YyqO0q3jp4E0D80WuMBfF+oe~ufk+SV zV{z7-qgr(#v4lg)2Rv?t9!w$%)PAY!U`>D~2qpwLA<=+1M23flPfkuoFVUk9i)!Ee z+IOkR`KsZ^>79{=&YU>XLWK4H4X4NjfhC{vKf#NO(Bf>v;j8bKQ-0jxd}Uj0NTZ$H zuI%Q91i?9tL+4o1U^6*$tFErrsB=WjXlXYhCA8UvgW7*v1j|qn1=6?v^NNo2Btp_`@MgQYzjo_8sl4 zsIOPQIbi(69UEkShjwW1JI19>h!z?%RrmfzE}rej$6MxdB15o1e0>>gQ;!__U%zgH zrWmp}9&H#{V-;1)b8!$%J&Rn)>wYY+d@X70!`G0AovdSzPz=H=mQZeq+L5y3=TsxQoF?Z9WXjn}8je;x{=QFg zPDtPAmdmM&KiV^vr!onAA0*ZkZ2-1QfVgnx#^>S}U`G3m%I|BvnYx(yS|gNRP(PZL zoFMEjTa2AUOns)9d2Ycf{Cjp`Qo+gCDC_X=t=rdGS$WII8$9xNHl@!<&t4Z^x~lUD zIP6eCixaQ~Xb@(24(X?-&WCJxa{X^oVo@V`;fltqJv{~EQ)QLa6&ls5CVNtLh#>|6 zQ5@b41!Tq^SgfojG#%KXJ_Ze4|KfUR6BC|%;nxiZ9`g3pvl|g#jrR%pFq9f=p~cey z(bRZUJhLC%lPAFVfY2fozSQtEgX+KW2fX*AnM~NWqwDwdGwJp9n2zH1ldMDUXYCfE zs&akhAN&%!_xEvR+v)N4BVNL-ZN|axgrC=W9zj)U1T`VlP9Gud03qiNNOmFO?r8QK zU^o`2-i(ZQ-XI#lVn{fy7?1MNHOrHL90+;Lj={kY@L|SsJC}-G^4r9m zZQKjXrEl!4W}exn`s7%A##cs6U990i)+j8!>oq57X=}R@t!}OZg))>TQfr$@OX@y=UVSMAtr)LJT^ zOXCwf=@gMK@NRrOUvN2Ez8bA#amR!YYCiC3LqY(udaogvMZ~V_V|AnQ>u{`^x|iai zPf%Re;mo<7`@hHX(JOyO@1Nd`!>*0dQ+jZ?rtIs8VFiRAh^!fa-nBJXpV0gg)8@~v z10|(`eLc1+rQXDVE#6-6eLB0N(I;G$<3oC~53_@uN#5ZSvVDM9XY9<+rKK0(39Fp3 zz6HuM%8m6=_6t}@%Or$|slD>Hl8zd+=NoRCjf6nI&n$4goBL-XHqco>-WG5_C^QOB|&8{|FsC>hIwV3bENFczo5KIN>pitohy3>#Q-E(2m$A#~E z3Zvo#2jo&XX^ys|CPrNT=k6auxF-~v0?NwK-T$Coc7+dvSfJqSGvNaFA2tQ%v^L9- zuqVG=%*n_pjeb>X&K&aX*8NjfcwIDxr2RlzbOK5ZgwJllMZx)C&Sm#0Fo_rs{6B0g zb$>E`?R{3GB;pQk+2I5~IinRRzj})2Uz;!OvX0q~`_BS0cOjmG(I8k%jR}wyVG!PUST$E7-jQHOl%(%#_{tL$nQq8YMVz@ zbE+`)SOtFmYzXbs@<3|OBlbbQzua?90!>|1_fQstkJ%`|kOq$<#Npube@S%#`{~rt z=H|bbF;ChakoFWNB$w*RNZqk9mRref=pA>;b z)s>wzR^?m0c>kA3^B%e+OO#xq+NY!tGH!Ej@eh?^G+SBK!Oj#lUz~09em;IQ7Ed)d z<-9c(Gck~~Y=_}_Xjo|u*BLE}Y5uo}NO4Ea8#Zn@$P7YXpdVBRa70a<{c<{ z-I{MqhW{>gJ+%hwt#@hZ6Qt=0CT_&f3J(Ku(k=uB_27UB4oK1u;NXN($U+WI+*A?> z2oe?;8#q{4uk{fjM@a~QBj8V{T4ztsTFDaiA`2Kwsh18 z7bjR_?A-AdrPkWbvO0cjp62~uN_tFp)dJ$yF!_rE1vG z&8Wf3>5tAm;x;;(u0l=ZVOzGASsyKzTi_~9pjq`nT_Z8fm}AC58ggxYaFpI8b$|{X z0;sZt+k;%NUdY(ausx8z5cmN?iUMT=t_g{)qak;b6nY0>+2DZP@n6g#px_XG$!7|o z!d>4#u)6%-Djl?ja3mEh&Hq%DWyG6k+e?s z2wijM;j5B9CJn+e7GFH~4*m`#IekyT3E^U&=mh)W1&Cf0A0WGYhk`;DBIv=(P|m8P zrlunN?i5AxP36Rflcig5970HZkasLB*0BUaDCF}Nq5jW;6%3YH1ny`90cEJ41E9qY zINtxX*a3L5lQi-An{kdgP&TS+YY)Kmk_5(IB;*Isfx~k!PxgX0J|HBd@=V0SkQ{Q$ zAk_5{2*X3D_xEJ)1?MapDEg3Fh8{8!M1@XCcTbNl{5E1PfNxOO)KvXk0#%9~s@Opj z9i^h|KH7ORg(0(#gZXQPe^kzDaSdHxZmni8HM!cj*5mh7Vh%*oW!kp=5EM7@`NtWP zDj&!60H05l_(F0b)KyfY-Z z%3^<-e%*FZ>d3OONvAHN4X*Uucu3H0Nxc*ZE<?U`R+xra}r9f?SA^Bdr)3XppYFB1t_9-jk!u#>`lNcz{QKf&$hj*y;&D zD1#jC^7gj0l~u93($y4LJCWsIGy#y@-k3N`ptpT=?}NL8$ZC)USXo`Qf{^e5Z0(Di zo70a+q&5sbAnn*CP&z3?1YhXu!~c;Qe#Q{AMgU*jgwW4wp5Kc1iETBhyEu3=V$INK zVrS{_Zn5oQhi|O0zNrC{1wA`TlTCgm=Hw3YBBD-Fg8vIN4ON2A4R54T(wbQhZ;cCS zus3=6s}%I=t;xN*pFPm#jPVK@z2D+prehfnHdiv2zRC#%0LNh>g@ao zU}C`9r3)3pOIvrc6qG37fD5NE*k=?r?I0<7da@i6$8AOo(ky@>5PmHnUCCitlm?f` z@87>4GB8LcpKn2w=;@!Cm+(+Q40sKiny%;Dm4XP+bnX+x7ZIN)^tTQB<3+)*0CxWfg#$_Bum#$?MYt+btVUDveT###oXNwWbrh`5=HwP*2i2s7zo@;23 zf?5Kk-*l&2*=Hhk`Q=+m>i4rVwOq}~f<-k8_%xLJ@J-)uRNcPh#=H2#JTdhrBZ;m1ZzuiU~I5sVigjSjx!dZY`3PLIad;c4Y`8m8hEjgw#mj~P%2$HqaqVfnoSC~PW20aKkbJ_3C^@Dd037^ZUdZs@4@xC~=RB-JF zW?%^;`9#U6;kMIk(^^aS>8Vdm)mx9cxId42IXXiqjNlZeudk1`0CFOz{Qmy_cdE1P z0NitsT782yD0&09y*OHqi`OVIo|6FrfpuVD0I8-0cB;H#S+a&@LY>>jGv$k8wX%mS zw|?TI;4n*b2x-F-0eO2dC1zMH4WM9yDs1x}y*kwzQ;4)i=HGnNoc^hU8sTV+;J)x`1#fXc^GOo=!f=$rZ|Q!$ z5q6Ww_-cIbrd-j=@2MXkDuAXqsxno6RirIvHEp;D+ryM`ov)p%o#(fe!@Hl1m2dCU z*9>F*M1*y~L!zgEF%CZ0cW|6WGp6*ZD%Ui>Ng)xoc7OKoc>B8$H=Zobj>BHNR3Fc; z^*Bz;6wxpSn_*NrVwVJ6D=jh*%trU_+>tXiIqMe(f(mH=t^NHttgJ=R=a=8`ANF#9 zxe~!kLrXg^=t4|A_el(VSBN_gt^~EMzys4s%5iNUUw_@f!$iOb_!mMGj`RlId~SHU zV5q?Z5T2a{yy19;$a27cR4TM;HSulfBDK9sMHck;UtCNrg?k(Zb#>ITvtXa=d~I-N z+}*Dw1aNgrfZ~Kt6AWkhp+=8Og2g%4G_XX2(5B>{`F~>0vU$n1-M;slz^4oUGm}pW z>ST`+)ovfDD(BIAF<>yAc)<8i>}_#rn>V>Qzy=Wn|JH?_pK4fAuKS^ z7C|dBn~nx*$Oz(+GK+b1=dEXgBrmXHKf}kyBPW*u84vne3$ToX*Wx}%$fX01e7^Tf zXr4+92IH>GGTS+j7SS*1_owf}CX5gVbWPx^M@|i3H0QT9CRP|sz^h*e*f6m|)Q8m! zri%@UHHW->kz=~vpEYI%xDn6rxRxLEhEFixx3YVqtlR-hHzF1TXc*w&?0^CeJEt-} zno(@YVF1YkF!sfe{1p2{s58#~f_K(6HldNKmqW!`ib;moqAwld3f7>}rT+2U06GcK zupM1^4x%5G5995p91`5(I-1LCc0mnZ|7Idwek0k{$Vra`hdI`hHBUkVGms)WtYQAsO;f%~z4 zX4Sq$HNCnvB0`!cRjI8GXn_k5@7bAiv0-R1k_5*cyj-- zNVMn{-dC>aaS?EO!m3LS5$p=b&p@3U&Lt=;S7QchG$|B?d0gynaNdNHdh-&Vli4QK zoADS#PFz7WFKa3s*1$u0QblqubXp}aO31~b5=ot|QEEKk2Yjc`E<4p9k*pkW-_ekx z515|2;5!{MHaJe~Udl@Eg}TyLZ2GF_Y8pw@jsD!}#q-X{WT}^t+kSctNm`nrE1C4u zIGx;FYZYPaq%q02vEoAC_UK+ph^1mJ)TA*6eVo5;z>%J-^HMNh`?j5G_1niw`6967 z04FIuD+`+O^S^;oj#z6;>+BFC1H_f!?>e+2}5(G%wm-Gz&fRt zXx1{lAek&mj6k;V+4DY~42w9`;gmD^pB#9B4#DY>DEH~V!y(1IuJ2cK3N_w{s951FP08OiqE1XqB!nO) z^4P(&qUMec=&`Zlk&u`Q%H_S$nt!>;7y8$rTs-0t2gkbaIzVmTjaA>g8Y~KQ{qB-J zSl4?&z!Hc4L@yWC{TaDYh5+!VBjusmK@2yAbY&HX3~kSbHG9bKBEH*2G^o7MTCT2- zmu*@j+6wB4vg=W$A6~;RKhCfI_Sh_+VK8~)!Q-u#CXCa~%;7?mbKLdq%bA#TKG~Zm zS;2i(?GJMnrY#=Per!(?c+#lO^DkS}sL@dCIAq}=`|kej6y^22?KOu@%;V!e0Xs<| z*VUWvf1oL3DJKWXw2h758Y)QRD7gF?Ouc6=H%mI;BM^v8+s}nz0S}LYz3V~W3nXt4H8ALEvfMUhH zN!s#xVXb3So^)uzo^kxpilg&c^K5tYrmq3bpBPQqtdqaO{3{d&CC=9?7y_=J{aBjM z^xKt*KEomk$IH4ARTJBAm-}zQPPW9@{zZ*(8;9G|a?#T90?N~tYiGV6H$Rf_dnGV* zdt{-CYT86z+`1Wg{q9|`)p5<6YSyD!+{d@aY1|c()y*X^Ykwv6&V`Et=ZHG1;Au%f z;{+bwe{nE(`DDCkmNQEzjTdWVhp^@H(ovYvE(7{;nnWrJwNX}&$e1JKi&hBST}{$p3}64H#utK;S;3KD;C3L&*|a=}ZeTiPGh2a=%1~~i6PIv{ zR_0FbSP9_y4Ue`=sNzwK-P$Yj-v2EOsSdYPhp@6%^a;6cZf)mjv;M+e)r$ANuH25d zeL`M=y+Kv_PlNAzkujf>lK17V$@|;yy=`QTMt3UCUZw|5oJRSp_!#4r5vu)_PkKH? z_%;uDUv{>B_ChmfV;1|z%&8;q)OcbIlSI|Yk*;AZb1CKz9gDP2kp^*N*L#1s7bb>V zi&~O)+vPV#dAbwjWG=5r3hNJy#87hz$2HvT{OqX=Q4&Gs;B;KFPa+Ct)TbDHq9aY7 zf^)@`gd%x#^qx^ zTmQ-k9;wvm8x-IhN=4=>c=_p~atezXmzmmUHU&BI^CVhj$Xt3c=>9BO$drVCHE4603wCEBkUkb@DA9R}SOi^azKWDQ)P_Riz7aqgTf79=>yz zaPLbeG|+3ea#r(_C<@Tv1dv69x1xx>a_PT1KZhh6zUe=99J2!Nv{ACzMs(ZLV@bR$ zcQ|R0$nofC+Sx z5zp|CupH{h<*0(HNb%()6beSfYY8##1pO%p!1`zKH%m*IDWPPGo;HzvB||a)?O|ck zI~YFfNYcL+t++8uyyER0ynZ>w@lArH*)<_1lrg#!bh9?8{&Y)<&sPOs2fDGYl;{S^ z+JJt z1^%f3xKpMD&TMbunj==a4o9I`o*DtK9Iap0HHjvJJ?sJ>`M(gbG=j3pfgVnsS*S)D@MzBnupb6@HFAe_CWDL2WNVr_Ya$@re0 znTn|m4p%wxYOBldJj)vF4iuc=qt+VgM(Tz5qZ+=MdGUF$d~D_i=SbFXdEw2S92qAa6iA8*6CEl< zcgoOeib>(2g-Zt4%c9w9T^LIR9gf+TWPWOwnm1acyazTi(SpK954xrb$D>8Ql_cr( z5?MB4aPYjW79I$zXT16eljJ&G&JXuYQWg}5aaFmw$%FDzn3si?&QF}LMCbaV;p?m(mZ19)WFc zOg_d$-|SbLFH^5ZH*?OL#4?)-z2`75=!@RV?7@Fyqx;a$sj5w8P2S~KIVeVvkn$g` zh0=U*GodXOa0x$@P2d&k6jC(Pv$BP;&SM#p&?q0p? z9yKi%?6ue$Wl)%VHQ4W2(pQDtaNaLUcQZ!1Eb~b*e|Xkf{5z|wcJz+9IUp%Xb?c!5 zM(2kwfsTPJOiN8kQeC#YDGsnuulOU2u?yzK=eZ9`DjXs$37^N{Lh!TQR`z!$AT6S{J~BiKayiV$t-x&MiJwv zS}0jfFi!0H=_o^@tvE`Zl>eHy>_d-C^3DO4n1zMosMMT}XxistMBS@OIeFFQYJ9dN z8JrW>`~$tZdJG;bFw2bA99)}j`5KsR^}$tD;&HP4;4=$NKd+ChSGE0C;1(LG|6X8W0qxIRp1+W(sK0q+sk8K3M+z8|_IKODV;R~c zFz+WkF0LCH@&Y|SLZCsyQK3Uu^I_GMvJ)-4@#lxRrb&o;|1Wu`zy_8PfkOPq4GI-5 zSI#I6bAK7*xNRGK>c09$kJrDXT~yBb)f;}DEsm{eD&b@Owhs4?d-{o+d?#fr^q--H zyLeSsS0T5p1*OtDt?J-~&AYRg6B(5H*jKU!dY0|C7ht|+Smu;k;wKh5#Q}#^j%dxe}GCD{f+QeU|k=X1GhV!k5uYXO$lFAj&C zPcDjUI>C)IYCqoVU9#i`E=OE)!7ga;#&Md2YsF?|WWZP|u*kd>zx#GTdJJ$X*;q*? z={XtPt*g8OBuYv4=;wn*2?pAhlm%FQ^+HlUi35ze6*m&-4}1MiRjS(OF$Ky+baVZJ zs@0UKV@AeairT7>)Hr4zE^mmAp$g_bivG@aV4fXe^jTQpZ9fQ}62jZr^D8%vg1NX$ zX``jMo(d#>)Ta|H%^9v$is*4Frq41JXsPcC^1iKp@U1Vfne-9Lyv1dl$Y0ZEY(FL6 zkpk3ZXi^LpEtO*;6k2dXwSd116r^!;P>(q8AnSa5yw7v9>SvkXl)r16>J^;lIm;xe zj23=Zaq^g6=MNcHA*gX&eoxEJ-Q@Sx9ks*~St_K|TfM2KOcRB-lCw7VkOc3Eng2IO zLmE1U+`qG}FS~D{7evywKZ;o9D(*4^kW`fjcigwm@@QioWW&;1=0Q`d41xOzMZQF;xtqu#lcV4FP;Wi zl8iRRjfY^)YLopeH|G16iY{|u&(9$#OY3kwU>d`WXoGh79mZhHQy&8S0~NDHH4hT8 z;F@a|yJv3ibbqZYyv-J|qsl3$h(Sp(Ba3q`{Se;L%_zvUsgMk0F-k&>1r1IXie%@#Ml~ zR8>`Qw9rSJB|#?6o{n{qsPpwGMcr+;^Om-Nj?5r}l;IxbU~;beK`|KKI}0maw=IL+ zqCU%K{Ci&f(q%2?X&X&JiMYdF*RuAEn98M8vVK)z6y11Ywn~?U zdZ4aa6^{({%kAw4;O8OjQb_y5R-zy$_l_zadhNgW_HyL6>F>mbWaqwA9K%8_9GbkX z#O+~-XpuEqx$E*c;&1qV;C(%!2QDP3&dzuXt7=Z~vt%Uss(t%arBx{u%U>BYFx|Bk zqSjnHy(D}1!j6=+Fv9aX)|8ep&RL-8O&iB1*4v$4oX@R3??Cqz+CrQ{{Fd9qb$_&0 zmxtu4&dtRG^m-lsa7^SqeaG}AJy6I=ildO@Y;HHDm+fth;$1B?v+0)7!FcY$_YAMk zC{7u4(=w^H&y-8nL-Hv3^_istYIa%!HR_$CkRCDUl6T0+q`~%mM-Kh@kGpR_0r?XJ z*c)wklf=zb<(HOh@mDY;=qhN_zF}Lq1pH2A%>J{hkgDK!a@u^jZusg8Y9r5R<=$B7 zQ+)$^v4E0%Ci-%-JSrj{%D$u6GgygjZRlws7NCd!ZxR}zVPRp=cSvw39?QcIyVYZQ z*!SelCHL09P-dCWV`_;fkue97%G_zUf+9;?%x<6Tb@m(t6JhihH|J-3k&JfcCQ1!a z^z8m6_j0D4r1X^*88S};X$FqS8}N;Qe-Fe@0J6hGr0%=_A;97hzR|$$jbV(EU`@^uf0WgF) z@)SL!Z*KZ%Ppdr}b#r~U_4fClBA3G8*V2aZc6dlIsnpkI_*`ejH~M zDv$4R+n#DB!<_HnA_iIpKdWiaW%uQj!Hz(cDr-F2P03BV2wB;WMUC8>@xj3?IWwKJ zRWJHGXTOdgbCL|J5Nf1Q*|6{y{KgW5@sskK>N zoX%TnH8joFm04q=CC>VX0(ypbu&6?j*1Mhkh2WK6V$?s4$F?P}nv8AtET@r}3dyK+ zi%H)Vmk4+`rrez=&v>p`hreg*Ub%N(e{K1{Iu;l@aiQV@T*HQF1k}mZ^0E=i!g;UY z?Z4`mo=*3Mk_-cr@F!i|_jFFSZ%Z%#*6cgZKchCvjP_Sjx}miRhsxp64l`Sf<7*iwyo)7%=U{azweB15+RR>aC#YR#`5h z1M18GY@bMW4WjOewo)h-7B)T1x`Wg`iJ&q|HT7*Z+nYS*Zg}_8siJszijw1Vm-?)J zSBOz3l*ixV(F4{3G@ZSME1>O%1jLcV4)}wgDdEUp=G|DoNA*-)M0Xb@iIVptk->myCx3d$e`-*Y%AVebeb* zP<-Ilj9fW;^zvPszhM}Op-=f)?HG?rcYMFEI?STndI!zgU(d+By}S_M4~(h{FrqPL z5-H;MOlcrw!Eka>38X0yJN?aGi6i=Fr=uljV_zO0JD8@Gl>*!(oppaFXY|-8=7hc( z3T46V_YcU+dpz}Am1d?vvsl!)V^mQ(_KQMaMBeRRF-J83y#$W~FL3g9i{_ectKWW^ zOTk^}^xSu-rvAY)rk!V>qB!G6MVv_GfU+O8FN$sua^5&Q%&DA@R-$9^YyG&`6V=1b z`uTH@%iwB_-B~TsasLyzmXSX$jCyVUcM)4V2}v(hQM@qK5J^ozdIIUnLE9wrOKJ)h zvRSf0z-!;3mFkUDLgdtRT9g5c(StW~YBJsHj6PQnv&XuuHN>w!tLE`9J!pLOz(K;n zq;v5K<>~K%XHk5@T+~~Vc%R5|REij)4AHV==!dhp%{Go~Ik|}o`Zk3q3bvQyCOn?? z6bL^9gI+k5RmEsjFtzZ|_gf?rl8srB-dKXxjub+(myhpOvp!c*|CQ>8PShiZ*J4Ih zWkHYalwv~pdVO6||6oCwGMSCCFv%y+VCW4FOF7e{_~ix7az1O#x3$%lx6+|qjkL_6 z5qk%&7-oMV`7CJbAy&hdh6Nfi;Ji28d0DJ~;%TT8F;dX|fUow6?_WIXIG40FI??V7 zJ7U$(^n=d@+GJU)0(TSJ8ar_d?rYesCW_->Q)tmA>JuIBs$5liLWQ*A2(VN9v!E3R zmUZ@Y7lHbr7vbNm@@$DFqVLPQuHWcV+xgezJ9c}($Z|^Z{jHIvjHPN*+>AqFoWB>f z;eV7LgxBM-OO1UfB1V7zI_Rm?*=U?P(L|TDlR6#}I&qkHgML$~*)%tVF0vj-gC7FI zvkN-E-mw}VL0xu-P}i6wH0!!;JSE+&&kO( zE>yH`K25~0=1EH4b#8L9goen5It{B-A-mkOXV*XW7%bKa8ek2!%Bm_eb${$7ro;3y zW0=2vw5?zyV_jLEuwQ|$jzK{|vD0|zo@NGR+F$5VBNR{~B6@3m3p_X)-@wMgR(#Bv z;yMJeb$lyBZu+qkoW-L`J)$J7)5W*%HpTsfW)`^E-_Y+)MA>7E zxmhtt)!rNUnbKhS#om|itp1}L`jE0~6%otRxbz>-2?@m-nY#IMoZpWDat&UOFHcne zM%u=K0R~!_kN-{s1L-Sw)+7EZMtmE&%As&7eEYdsr6i>iIN_)D(R}6}GvrChqsebJ@rNeb;V@s)P;OpSZz!7VC<80R$Y73T>*RCs z3n0IqoSqKD@U{A3!+JJ{Q;BGu!7n|XC@#U1hlFK+hK#wOQ3ptQnlErZbMl3;cu_Zg zC3>_>TnV+qmAutd`J_)3dqYi2!Ia7&Vb8rNDj}Vt2rvKogS>e7-H^GkQpJ^&cHm^c{H2(!=I*1@y+$&oXz;Hk%kqVAo z7$|K6U23qL27Jn|%Yq?MkaNSuU1OHM70&}X-m6Mh_I}+FQ60rKzXr8E=%Y~o&Kd90 z&r&$6`aLmo2_x)v|pCHPcjcHVE2o77#&}Z{b<=ftHc~bpvDHt+!@?}0T4 zuY4rVnTBSZC6PFMMl*q~Ok`okC&~#}tH7>-AjqdVDHt10i|(-)^6ts{`UY076lw-ad<_l`7tnvFo)S(4N2roB#VbPBUMc7*m{`1H zcq|``urnhDB;SqF^-dX)3Zi9XMAfziwyDie<#AcUMlu zM*VpJFHwb^f5^u&&Q%A^fdKWWWt@93zTgpeg>`aiseF>rl{K*d&Z(MOt~gVkZ>PpJ zr}y%o|6gW%0_I0k)6+<+2bq#6_L(#QX7GSpwQ7Uuid@_B@5&16%Pg0;gGQ>IOIy~# zh9ge{i8D2`3`$-)<-7Puv%O4E<=^Z7>AcHrzrA_O)Pi0i8LpKEu9aBYPyGsXG$1X> z4tXyyCBFi!d;*V!A!0>`yjDp(w%oOT0ziP@K&81j05>t?F~g&;C2frisB(ESd~#fO z_fKI|VmQAHo!mpI=nI~^U#L21sNKv{VKh^4bu%3-u5rd6&%e@&g0Yyvj1_%N^6>t$ zO_(oar7K=M`x-5-LAkiFfJEC6^DgYe*^FQEv?Eyex>|03JHl$}m{q3`{zl)0X5)30 zi+Y`;%%Pj9kJI$?nH4Yy^i}yB%(iuzq<7}_C^pxqRMWaG8HE8G2h?jYyz&8A54^*) z0s;x(5=N{^;3|xF4n)5N!*L&G!(?x2ojMPXDpw+T`ACbutE-YD<+ZhVV>wH+sX_j4 zA(j;w5@N2JnSuu7%k?}0^1>T*t+xw5VN?I4=9_d37?@D8x?6ciN}Ar3vZayPEXk}| zS?;`YBi~ED)aR|N^78Q57&KjxpRCayr;766y;t=(H5(id}-)y@+HLJAh z>Y~`2sV^}r?!aP8gPZ@^J@IRXkD8fQMtZf|#%FV%A3Xi>A)Lvj$OfjPq>3bIl|@u5@( z)oqsD>Fjbj3v(`un?;LDq6P_KX^vN*M8J9XR50>%W$i_70G;spG034usCTA0^af^7 zQab!OSUu4Exj|}L_|Eh_)MHk&6=cU`&hp{zf%`Mq`?t+HI$A%@CcP9tdLMLqf{lzc zFI<31B9PM2ym0?yMZ!N2{l7y!EMT#Dy~ZaY4zn&`DsScuR!tHzxd9XN77tCgjYBD0 zLtPUYdAE4%N^4k50jdZ218s_aXjdaW4?wd3kAwuYN@Gs7_Pi4FS$+iW0Yhf_0M>{w zd&mT$v0L%p!7M)=qwC+ZUKVMM{n4yWb@e9~GFRiYTSpIhs?3aT$PyhdKi>Z9Aw_9N z9ODn-gim$4ipMg%_7wipO#;OS>sP`9_czy9$Y)y08qX9m-;7iS=jfc$^H%Nu8C9f4 zVPz|!VEj!U@5qTpO=povUFr#+W{v)PSslj#Klv=P4_A)*C7=p;77>-qQ*6x9#ugw5 ziEr2)JKZKV{`;c|+XiO$Fa@Z2#YDsm-+^f>l8j!t znDOC?{}OSU!!s%qsAzNOVb-c1gtmbRhY8UbWJ>{4#|d;ld0|$7wOKow7fB#hHcM=?u+A}+uQvR(vT)Eg{hb@+vJFZ{i$b@bD8P&v{&=rddDUhb24qlCd&536cPlg zgVS_Xz5#^^MM7e)>G!glh4f;Z^#w~LJJ_^gpo;dt^sq3?@= z>BBiol}hsH0`_z*5+A9?7#ACrHx6CVH3VAx9~8J~3J1fCynDd&c68(g31JnsI{@P; zGz!7|FBKJ)18ntc%30v7fT27{!WQ;MZ1xk(Kl{C`$hZyIAoIw;4UR7S{ar8t3(rlP z$L8SbeGfCuAiH!$azGMBmVv=F#cY~E3Ph?GuRrZ^3kcl6QF`oGvoWXL_32qN(^LwOaB0uL%og}BcO-&1&rddk*Nx(UVWD;b|x znU#WA!~B`mytws=u#2Nb#V1;J{&{cC)$ik1OkoXJ-=`Gc&BmYLtaeIZ^5@*3%!}9m8|KG0}KY?y=lg1{?a%pPOLp z<>L9l`#`x}A{-FSE0(-vFnv}cd}31xh02wblw7gpFFJP)1d{)Pb+w{`LfZJaG9M`} zvv$MZ4dMR&5p|1e=8F80SohKmdc}?tY?FWPx4TVpKg@YSx^KlM`An zdc=f;b@yc?B)ZEdCUwMh%6T=2|5gaAsKmIReNWCUEmg3u)wF2*SMhb^DjMZ>&-|IG zsi_@Q!emdK6(=Vrd;0s8W@f6rYnwgxyBEl%V;nF;0*Gc-B5w<6yn6A%3puo|uC3*M z{VMF{=5{4x9kPnvqGXf|RECM>_n*k1i7BY7CtMt639Z9)mvAc4SFadpX+CFK?r99i5nD^~*?hU^~sIksUU+QTkY zrsxk+#*Xz`(A$zl*h7#zw1r#(BO_z4cJ2q(4d6+Rx84@Y|NI$uY;=?ksK+UsN5{tu zEGz?UKFhbB$mn)peK@VtDnbC2$VY{(F+3fj&CFVLZy|)2^<1Y7e!QrNh&b_#Txm^> z8i+SFFf!wxy0H%l!N=S8+OeL0BP1jof~8JLTf1my$6O-3-|#z7jxY*UFhBVSUF?PM zTP}Q{qKCW?eAzYdXtkJQ1}<^FzE6wRoY~l@4gT6M8=ISB-@m6({9U*n|IDpsviOcJ zd?T=zq{YV*mseIwg`3x`(_GpUX`hY6yq4kRrjuzEu|mI-j|4cgGcrVh7qaJpu?yRM ziCRHVSJ&@k>nr9ygFnB+5Ze^^8Pysr5+kr`A406@V>^$KDk(17qovFQ^AX4k{`(^Y zqeGCJNFMU)=;#O#Dc{K)X6_PDm=iuF2oi-!k)yDw*}^jmx3O!{@?>5G0|R4YcQG2P}lIiV>PT4PlIUd># zOmeY$9a!*}pkaaBY}}8)vLTaKQzI^wCbS|5qF!*r2XQ8$-%vMoLD&lYgB2b8TrfBo zc0P~o>gr+>crmm9PaxU{VYrWIXx?-(@GIttG&DB0!QkC;Fey?*n=<~;U z*e4Q4wjfqkR@Sw7go2($JfBTwd_sZ}YHIFnkB}U zi#`5&#p#V?Rpigjd_3;jTt5ntsJ6&Jey8*?`VEC;=iu*Auq>6sPJui?|Esqv4QevW zq5*Ap+fhUX1*IEVL|H@x1&o8z7*G}^0g+832m!T;2#7$iM{#437?uVX5HLW1peDGn zD9Wl4l^q%~f~d$M5+V{s`h4_ERaZ^bRL#`X{7h9U`M$T@d+vMpoU&tZkl=L6^#XGxyWu?rYw|U9z+Ad@iuN%%$#X^B#YH?)` z(-+bOtF*N29UNXbJ)6G@m%v9qhO4|o$ z*4DH9E=8^g82Xz;_Ce)zflGa0YmbrL#4dsTgc1EF1h`MK1Ij89kwD_4L{;8%)kT)n zF*MvorBa*M>|pN~x_Aj)4zJUQbm-b<#~Jg+)i-Dz$=Fj;=RTu_>4}NS%4=0Ae3LVNIY~Hn zKri`^aZ=LEAY5>eZiPif42T%Y)qVF$X&Y&p>s`ga)`shhe=)&?YHiY}^~lwYqua=n z=qt6FO=65b1<3#MNEkGgC9CRd2zhgr7(wgUxcDE<9a34J%BkI2cBInmS0kiz7qx6R z>-#Vm?2bdD;xc!odpGy1kRvWVDIk5eh^n7bDOJ`arPHypbMx}h5Hzi(H&Dhu=(Kw` z#aCWmV=_@}*7s#FlxZ`S2SZ4ACKE^gtHc#pTsQtN`~1I&BwDroq=ygQN+|5#4&APy zAOJbv|2oFHJ8#aZF7+HP*NV+yv-dFKRFB$@_Qj?8Cx} zS1)>U=9~ZR_I!AgAP?xMsqNj$TEA&|Rd|2EQ_;hK<;RyDITHOQV00|(eQ)mzAY8@y z1|zF9yf3LEYx!U{Gh_$Q)i*>=o@p{jkE0*@KK4sXcXBFS5c@^youW$*F!^&#%y`NW zGH~yYEaGi7Q)k)ejVc4<>3{s&{MA*LD_#*{)}Z@egDTg6`ELT3+S{bEuUUkIRmJ1S zT7V}pF)`j&vwQ(3Yo9%%;Z30=D@BTwt>}@3_CD?!hp0V{Pbt_QU@Y-sHdQOhYPu!RU2 z@oX$s8OUqWn8RUPSmS*jii;N?2r9l1jE=2?;!?NZ&STtG2a8TPfOAq)d0+>YNSpQm z&%P8xGigW4Iz(-?zEg|c?JX@&g-Y>~D+~)yatq<+D^3%}fFU zgShtGMz16jzSgz?oOmSzQ(851<7F8jLS9tVv|AY`V-811Qd8D?opX;E^O~T~GatEt z<5+2`_-iF+`=wk%hv4Abgo8%x{IxLk%gnHfdk-eKl)PyE{B%?*PSfY9t~1yj(mObq zsNUI5PrGx+c~s0|JvgqK@fKPHB`A3v?d{WGGY1a72ktHPO=;Wq2z=tf!Q(^x%?5It zDI*|ZGf+ZY_v&)IO!-H6x2=y!1LJ=yUdy0jxlZow4L zD~NNUsk5^HB36Fr{5^N}tbwU*%TQ>EOQGip!djhpV<=Vbgup*;t-XT;7o?~&82D~z zPl6MiWeqT4yy9Y4;LPh@`zm{v?<| zP67(RN_9cwDDdLI(*(suE;rp&GBA0R83Sl`-WTlNbgq6bRx+%u+37cQlWahZgJ7E@m6`zc*P*2pRIT{jfXf47=UOX&og08# z`c>N62F9*4Bx7NrU1v2%WPN;IQ4tMj2K)V($CtL|KzM{iR?+gD(_s$a*KzMC=eh$s zHT8HSZ7GPEG#8f?%2^B83W=##v0LJYLrXMPUNebNN_vt7)+IFSaxjX3nBU$e&sExh zQzGi#z3EtbL`~`SWDx*91G~%HYW8mIU}EqEIFW{fG!La1d;hK0h2UE;?>%1#`OHS; zo6s5Efje5ESH?RlvMe4(HJM<8yNk!31vj*`Kr-L@nQHVkxF>FgnW7_V)wOHaj$l{x zLXqNb#OFuLQx?~rHgKR)doBiwmj2Y#l)on&dAJno@9LvhL$E8Y?%$?1An9yIX2(P6 z*d(t0nD1WF*1tsULyU3fkmy&#ssloo@LLD!KEYHvMMXOk%T)}so5|lnue=y7H{o?= zlIXhbk65(flOT6r{M|G_V|BQIJVmNT_iZdHN1KGV12;chP9pT*CfEMOJ2=CnLmRn+ln#ID!&FymO z_`qQu)Q5+QKSn{_oj8j~NKCY5BSZNyEie;!@M?y?f5Q}5LJ*v^|syARsBI2+|$W(s1VT z{eR!hxjI+p!k@TVuD$m2%xBIq#~5=5KURK-b(8ES3JMCA+#~6yC@5EyQBY6=(b3?Q zu$$Nw@RyLIjHcr=n^%r52KL4%N(PR$mNt%-W`;D*#`X?oHr6~G{2V;&G^UP@whqFa zoL2w$0uCE{6VAbdmIJs6hV3IQ2NV<>1LO~CzIdJ)3QF#4IcZ5%*W`^97gtr|UqM?u zQBy1|xK{#{@wI6((C}C3h$SRs%4tf8KBE;kuAG#-(7LvMGbGbDG?R`MO%gpI@iD%; zifKW>dp(nZ!|oo%SCMkuQHqado6ADk5*(%+20UH`ezi$Gbn}j2=&O7uL4%8a?TTNz ztSXi$s^7nV`RDrMDqs2U=T~$AQUALn0ezO?-?b7im>vjXz<+{Y#0UR>yfpm@0Tq?9 ztLxF-Mm<$k!bk=@A|m6RiU^TibPf&<^_0Pq79T%}$D+tP_zUkH{LrVD!^g(Pe%|O@ zGIFuKZR_vvPxj&!y!i{=09$ORaMomW8^b){QE@3U7y}y4x946l1Y(QP;gr>sa=_@=lT2h zuj9tg4{tC@o~o+8+Bjk2Q%II>)*mC&Kp1d805~*_6B20 z>){0kIm77|FXG=Cj*h&C(>~&x6Sdt_Q&i&O;(DGtGB1$b zUXQ<)7srD>_!JahZ%})-y~U%~Y;xuLmZwtow=RZFV;3HZ02jBd(zwrcuU}wwqL%Xp zHU$b{#^UmF_pcfYHp)ilO>JS9KVN6sU*BygqxL@XJ3I4Cbzfrh}GtFk)e0DL6RCyyovNONOUtokp#q*D^~YX?DZkvK0JDR{sxcIPKffwxHg+50Gj?6XIXOwzp6FB=); zL{2xV2uVn)tS0y+f?w1(HuAXdo0jUgmR|m7_3?TB{5h=a!x#sy<%{cAB+qG)<5@0T z)_NhFlar&iB&^%uh!G<%6UU+Z?&Imv(F{CPjzV0a$e~49b6{vFW=2Ma3AvW z#16vz<)6v==gsahnVEEdx26ZXseLSW4tUA1vK~e(b%l{P{rzRJzcPH)#Kfdjx3P;p zLd0LasOBhHyM&mNlQYUq6D2h@RgKEx4-$nZl1N5)%-M8tvRqAP$#G>U^aYZpH%}rlk2w)Pkx3#yU z`mTP<L?h2!BL65)eMH*%N@@UfyPDMRC+9k1}B%Etm ziYO+7sn^rt^rJZbnM|;n_{inB@;J*_;{R+YP3+pWE0WDa^$sSlzQ(sNr}-$$%ZCiN z+}~;<@P+*#wbE~JWI-WdQq13NA|)l2jewMfj*c!7Yn)|X{k=qo$NS9nd$CproNrPA zYl;$`+K)$Kqvm|RA5whT``GncntF|H(d$&Q@9lI`8(CQNefdC-8ZYd`N){GaJLO(9 zQUQT9+2mH$>yYGe30cw`7Y|uAo3ryRpXCXg)-&>)8D3KnJ7$2TW#Zrnhj)7c9|!{SXf}viv&FOCd&;RENu4;nFXhrCXiTYY|H4z1 z*2vVa2x!U9miC6MXzb(TGyeU%`rp01C=zx}8WLh+valk}@XO=nw7!lYoH(5tbH<5@ ziN2KkF0uM(H<_d}g61YB&E$)=Lr+l6t50 z@4EylBDCGz-F?1ikoZV{7eVFmoc(m&?Q1+&WmHtu#^&Z-$Xt)UoASn#*1$5>`&?dB zW@TkpAB<@%W@j@LO}4@*7mH-qD6b-dMEdH1nHdYjj`3V)u;=k&9F{1h zpTy8DTp=ji>Eo4l^Rgq~z9|WNVnQfc{oB5w4ME!(l!p;iizT&Fnec2BVxDywc~H<3 zG3e%yzbMnZ{*tPQ9uVs3>3PDs{CCfH|Ni$sjKG73#KHf5{3Q1uZfH{sKxL8-4SyqDOVvX(X?M){>-epxg;9{gr_JvE%&d$i($^L^DWbfHDN{8Ukns=km zUOVBxu2K5Dy}!T2&xHOT%9v4)Oi2k#OH0$T3JtKma=x3Kl$7*8urZk%A5}^p*>U~9 zTYZ&A&h`KM$q;yeTyc+pHu*oeg8u*irP)20%we(};ukwOXXod3j*i(5%L7dZ-*vuJ zP7XaI`1iy^U(3x_Fh*k_K?MzpoxX#zLU8-`m-g2;-1dhb+PSzaLvY%xto{eWOl5i9 zW~*Jc^#0T@Q!y#VqeygzQy%|m+=An1Hk0tbi>%=y-j`o+krX^$WwQFcgnVabXJe{4 z3F?Eoo8prvcrr3FC*9-Y2)@36fVkRm@@HOkNsHQ*n0Y z7j@s4C{fQEHa$9Qz3i955mjB}f|Iz^FEHKoriu_giR82Fy1Mv)fNRy-R#GZ5FBnx> zi7qZKevXfit+~os&uNWbo=#u7F2-oMZZ#jG-@3&Br~)ejzt+u}QWRCj!c;PLVC zhnSc*Nl6nWi4DjulW|qDI~?yC%gf6{d|9Pr68d-fsTVP_uwdxu==`d+iC~cP&AdAK z`*;5cs*>2;elJ_uJ)aBDT$MCzi88(BI>%Lfc+S$Ng5whtMm9D+Yh2yH9W4#N`1tW7G4=GqqJy`$ca9CJd5v~}8WMkxnV}jc-eGLv%hm)6U38+aO(7cXcYhEo`A^#;w zUHw5OYP*w_tcZASG{b)M^6t1 zq!{=8m3E#%kt}L@xu>r&N+CaSTTcpVSDX4}Wzi#dd5t56G6Qv7GLoSMN}djPTxX{= zgWM-bNpnUW9UUJSg7fq5ghrg7te3&h52@Tb=Zq{e;ql=tYr%W<#oo18DL_JUhX2LM z{;K8Aa#To{Q?Bz^A|fJhBO;ce9s^1hL!D{dYO#1p(l#j$jGR}VNmp;gak^S za*81Ux~8MKP%Q4eCE2Km|5^vzqMywk0_6ObZ5&A^64bGdr4NmJQn$7Nfx{c1C0n_8);GkiV zsV*iL(lIj!`CYv+H#_Us+$;(q-gN$VBBo15R(1pmIc!NgvK$aaC;-e1*G3Bf-p>Ox zJKC8Sa$1X)amdGlK>gQVwU-!PUYw%@ym>Rbx{A?uu>RxVl#+siRn5FVfhP#wc?Zr{ z`O6;smg6OIlvK}Mxys7Q+xMN>p=^r)Mvjh-E_YmgTB_IFJJsxQu>7;hjpy>v=Q2n( ziajDIa#yO z`7ZPYwD(>9yu3I&c3l4+24#DNpm2F0B{V9E0I3>qW;(mN)~<)uKZ@)Gc1RV z&j>;lxgj$HL%?v>!}acSsOVqQ#M6*xh!DSs|MRx+~ z;zN*Og(+3+|7k#LvdhaKbEZoizo!uc@L*{8qm-9XFv(Lf|OCAuH8c z=c8={`dMfS>6nxfrHj-{;ziuJKYaM`jzTCBkRIwbw`nuY%o zeVZa04%MwY3eEuJASqTjt*g5q{?T3Jg6{KcvQQKt$Xz&_2q1bjkR1H_^=og%M~~2T zYOTjECn}9G!^6W*&V}uALtiC?{DH_tf=!~wiMumeW)O0`R<$W!BtwPwxx4q#>%)UZ$r6QTemn;3~i!lW)07W8!W^NUDMNG2ZxD0g#Ov zKKaDT$=Xh!WB+$U3*sc5M3#t!gM*2l{x#g0%<6Lgn~I#0(&y>vw4tHL z{FXo47W?8*WmFHgrqkNmB$QJ{dV&d<_fHi+BqjB&m$jDqP*6}JrtuIhg_$|)nK8G4h=v5fXhz=^!macCt*z}}yhuly(w-lsx>3ejv8eTP4>!sUI$lap@mt0Z|AjWE7qI?& z1ccrf66!%kMcqZ9gI27u+i<1~Hw}UxV~w>gAbq}+NaeTEj@b(j35o1}M@rvVU*7|P zWDmDqygXYLuVnArg|_FV#J`KRVizF~NIAQ>#5FfHEg%}2{ zhligy+uKJe)wSC{{xJoyez|+0rmdIxjt5sISD4gDNSXhM?yPuDTPIe!l%l_ts#-;1d z+-FEBt-U)6vFrxz{@4F;2z0v)xakX=j0_AjTU$2O#Z0EZ;@x%c4x`d_%h8y=+K0vk za{D?pr)Ie?P)F&*=5LjPjrTtHcjk6x4x6(E=fbZshmm|dMq{6R?Et#;OeM*ynW6Vq zrHB2mV;;@@BoPc}QQ^OPROO4g-s^yB9-{aUXi3A>5`d-H)Qe}J?WwWOypw-_Z+TE4 zL_}B9#czL_@O8uf^vD}id|vWGZkOusu6}K}08iDI;c5nE<~@keT{v(ABqS!4gzAqk zn|9aO9KFk{F6`Cgi2~QLS2^Vu?l)pyJ8Ap6^eLp% z{_>u79}akY{B6kPp%D={{QPrPE=AjptOT;HIpi{l62T%lm$Bi?x~V6207QXc71m3RJDAZMJe^y-YUEg?K$U=ExWAm)O)oO zxhYb&iy{?gY2sx$COT=Z@E@UK2w99m)IAzO{BFB1?HwFQ`OFCc)?a?PF6GKNIxog%bzm^zsQ z?%)3{_f`enJfz=B|yE^oRJNU=m z`ay$li_UAnm{-wm%>bZj8y@}uqwwDhi8_Sx&kl=TrZB7 zNqJ4*d!GW}(WcvPE7} zB*frH?vjaW_mm(X3lmkM2BiYV;P8@^V)qmPZ&_pJ;|)%1C?1D@AdAaP&v=aHKRMe= zyL`Fu&d}-_ehSyXYLdtWZzb7U0i?)*Si!1914eM7n;~A04GnMJu4E@M%nHp zP{D<)=S&_0PYU_38|afKgFKMnf*Q9PCi2|}7{9zpFMIvYKGi;A(f&}^<;S|nue$q{ zu1`5fjfbgg7CaCNOyTeiDT*OU1!cw@s7+QuHBGyD5DV|4|@#HKQB4r9Y@I9|SdS?;i`4CHcd zSpz0?sv;s3Dk`($47ihjRC#M1R~HQz=A)0&ere$o5)((hfA0%4J@EL%{VYO7zMbpG zj+UD*orW3m$#eBI6dZlu3i9Cs0g`Pq-SUcgo7X!FKq$7v7!B)ft*WTCPR(R6D`f8d7?Tet&Sb&A$}Aq!_rjdQUH{+Ro*r z?Xvm0xZ#$u4}sKDw~Dd~Et zb-c-*hyrIMLCi}SVUGZyoNRJ&ah(BfeQ9jWH?wi=3bZuP@`#*mclf&X*#u(G3E-ySnrQg@j%XAjFJ^k@E3Rjso+4c&-oLRQ$UeI{eOBX!M3s#aR z4|vDELUw_^(;L z33w(IRTM8YK>aG>;Tuj~D(qh84!bLR?-_zQbQ|u0*puoyhml3hf#7mzzX*wl)Ev+d zqNag?kr9uWSbgyVdg1kNWY=O5;=OLuZU^l}&mX$1M+A31(z_Ju8K-vus54T=1<5hs&&se=DU69K2 z=$gPgk-JAlZy7884jDYUs#tnF3yCIMF3R+G1K;)Q*DWVLh5-PtvY8fx&qwC&4&hq= z-U$oenMJ(hEhuHsYrmRl^F!3NFmi!P*BwK&Tel^k5C(^YT%qCO!h^Q@+z$GzOrXm5 z|NKtU(DxcEbZGdE`>DWBYxj>wSL{{#%^uJG{yWQN?MsfaO{aQNie=-pa`@1qA^pOn z%d{6l3_##~v>g8g#i1T_DJhjFK)X0$`&{kwe{mqaxIAl9?CuUc3O0pcTb#ak4?q{w zZ@E}EaHtkGYp0iDH1rC1#qQn>0}U)1(Ixn@@M(ZUGlL>8rJ@86U|d<+UgjYAoi)Pv?%9dI8oi2e z?LLT!@8jaS;s2pRzp*%3?-0|q1)Bm8VIAu=yt&=*9EAC@Q-%=1^ZS zGuMCSgYD-s{Vn3#Iia`mcc~I}0tyOXKfE5v$+ZJZgrXHYUS~&7dEYtPWos&b?9FM1r_^|leGW-vCl=E$(HfsT$kJPxwf|U{7xi;mN8W=8{OO}N@sVs2C>rK zGMkvvg~5tM~CD3BupZ&Cd^;*Ni1g zLKykRrbrfU53?3z80Q5h;M{ZFet{G#NIa;THReR0KYzyJPs>%V!c|6~P}e)sYV)z1 z(4o5@tbGQ)liXcf4M{t|TB61;qg®`eyu4htKJsx5vXjQ`BW##e}=BPb@v&9XM@Q$nR*(nRF2F7z8V%I@B&YB|du(WXY9C$G64ra{0y_%1!~lpbXz);G z78gGQ*Ji3(K?g)SwUa&eU_&nZV9my8dZygtga+Xtfn$n1;52T43fywC#&*u{<8z6Y z{NY%W)jz>svk&vOqjQ2@HQw$=nh(yuA^<4(6)sbl1i%bsa#_d)>{^0{cz`~+-+ z|Aa3PjSV0@Bb3eFQoj*EL7;6Ak=V$@q#OD+MXG0@b&p!p-@kvVuB0*43G8$yw1AgK zpb;TWI50%REnXh5Mv01@&k({r_S*uzGKgCs}5H4sH<-XbvTVR`p_grXA9-EpWI%KJ)|M(hmum%-tMeo%3%bHrbkg%MF_vRd@&s zT;$}dSN;N3OH1p-2PA@mEwh`6ECT}r?~Qa%0%L0^?O zof;L@0p(4?+}!-?fHIPBfV%`ek?HWa+j2_G6^vZhg%1ybT}g0ab|xQ&)dTevaSyOV zFY0r?u77lTS_Om@mHSEt6uKGyT$xZ}*$6nj{lH=f+Ra@9p*$ccXnu87>+>)y*b5<0 zqpeq1CW(2E-x9Rxy8QkO{mdP9_63mJM0Pp}utXXC+TKFo;NHHC-Uc^0f@6X(8`44c ze(4F3k#P?c?QgNTv8an50?3euP65i4EL9+64dCOkeZfz_1IPBt)vF1-X83SMXQ4;^ z9wF+qMo9lKJR7PJU=_LQ7Ztv*ppo_O3eU@9MmQh@4gd`;9czr7cyI}P+G@R=8iJ1X zn)*VXgE-gU?h28M<@tB#cI@IQr#*$swY9a(OiY2|7e}vwsGE9eG>vd}Ko;2oA$b8* zVwJ@Yj;wQV2_WzSiAcaP-e)@xiv}u$0Q5@OVuH^23RGAT=x~9n#41q_4O5EJ=K?j~ zIC~*yd#OcWxL5v}ZAtNBzn6_R-)^>o3?hN^^YdqC-%bO)H>s{p5Xd%+J26Y3-t&+- z02@5Jun+)2#>*RxNy4FN<=s!YL!v`tiUM!c0SEsJ=rduv83^SHJSPSwX2;lA4XVi< zTy*n}#f?7q;cO{3i~2~1>(nOHMbA6RZBn&M_(|;wp&B}g1xZK(XW);P4b-mS{rl_G zTR$saLt7imsjvL`utY+N^MexPGuw0CsO#|~uF12*Pi0b!`Fu`wzphOuD^lZ-+uwjOc` z_%oJ4X-0tzX4g&Wa?f-q9W6CQ!uIsBrsksu53V4Qq@c6(J~Hl8OfuV1{mF0p;cM@c zl0vJhcp@1-yno*Y))TNy5Z&#%ciy0#c~v?bIK?jjc_8h61K$Pw1#IK}N6N~?91B+@ z2|jg?=Sg0R3J2J=3%U+UI>=8muWP-q6J4hc6;cg?)h1aSs&sz*N~PL_SRa06wGNjV?dLL5)Q)3{b{@Hz&Gb9bqBx z@K_)<)m?wPVC$D23`heH4-Y{YKm%W#?Ww?C4P2a`%E(oKvNOtq2&%kXpmo7RGTpiJ z7D}V@pUIy7B!S>}?_O?AHG=})e&+!rF8W$veulZ;=)nOY2&$%;|Mg4{;R>YXgn|eN z+Q7zU8c9fr*Fk}L6e;cQE)1527)6HbO27ijsi-`R%+}5mK)-(_fYLAB?J=Z%pnfsX z(T8mAgX9YYAYdr+82RF_nAc(>fdYkKl^HD{g%7d$tES`gXPH)|pO7(YY2ggWX0mW{ zMzmg>gwD+wW@cr9{K0(h-edH9VW7nXlbz%D&m2WkL@@r|lr4FxW7U*yH#;}?03H;a zK4zd46$b!kVD7Yei4*dc006|skonAr-WR3oBsMGeu32~B6h=nk8yXt^tTKt1a+~by z3x(#@9g=fdAGVSj`zY_0Rour4hF2H`$3SvTDNlXHNg2$?&SFg&9NB?tXizSF1AP_& z+96R%GZ7lJ%=Mm07UZ`tIj&9qw%s$A2nh*6gl><+jof>S6okvO^Ao8aR9=4kEt|#O z&AF_^=81{ ziY-;JKKPTqzQJ@)(MD@whAQS@gn7hi^OpZJwj!D3#6rz{v#G5J*EAQSX+C^4qHeeQ zZUjO?_%-rjvPA|P5k~z~$gPS0cWYnut6NTi{$C5b1wRI83`~3XIWr5iAM#`<5)wv# zc|I^Q((H7+S5BW1jZMXRHgQTf#x49q^|Qaw-rw>=nyUQ7Lv_-ku2MQ65Pn8$Qcdi} zkI!EZOM>kJdLP8~T2T-M4!*NUG6Z2-i{ob&ktm^D7l^h?>9FaECcCbUCEbFC_JQ!B zPR}D=#%0rSw*o>A$)L`@NjqaS%BA88O%Y1v`_FTZP~Lx#>rt7t{WUAgNc=USRwxsL zMpXRwN?tv@UEKb@V`OAx0Ffj;_)dO(v66f&x7Vye=+>Xq&?!D3Ag$Ouh$o1uR7 z+pZsix+0q zuQKNHMH@=F(2K4GJM);ta3(&BczT9}*W8H+-iWf=T#`01sIFCgp|1=-! zfgKG}HMBapBZweJBZm+AhTc`MFVKUJssCyW852j@RJcUs4EgH-liH8>{-op@KY3A5 zpC?~3Ie*CWq%-O`Gb2YhB35}ZLM7X5+=V~o{4!o@sF|6RYu;G9*4oPPE1Z8#IHcLs zBNiEDeECF@N^&!~`GQ+dC}r_xNep7^O`i20n-@;$V6_AIRngOsbvipbq&UUE z-#FP;_3US(3s?$wF~!8hnhvKtuH6uL9$hO$N2lz+B-QpiL?cQ^XMVHck!m~E{N{L1 zNV;JC>i4f@rOA`mkakgbdw#xm&{&dhP<+NZ{sgP8rr_J6*K-E0H^@v8kOS4+Ha2hPxX<|Ah!^$Xhv(%)0pBU2KRR#z`d4XR zeZ77D6N(tDIUumboH)G)kqm!YPOYJv_64IKXnD(PV?`(n3k%yIvO>on3bp{CXU+ha z7ui#Rw#Y<7g95D(eo5$7wV#@J6Dpyp-nB_AQKsmJ z#>v_poGN~Dn8c*-Y3y6<73p`03#G4fGKmWB2plA>(VGyZk&xJY>GSR1qY>{YW^olR ziYLyd6MCqiYDi_m%}GGQY`4Gi1o88NZhr8)%V{o?%b-+(boAAGwWZR&WBEQ69=41o z+I;Kdr?RpS=2GHa-foBHGvLZZ_r?P!J6xo}`O#*208G6=MVbJGf>;PBl}R`bAlh84xEk_)SRb~GP>&{zN~-T?hY9nQ&W5| z%LK7d>r(RFj^)qdxBUOSu~T4ARVLRU!r8A}3=V$1GLnM{{aJN2ucf7;C(bwXXwOR7 z_ZsTdJ?mpK&&fOnNHmw4jUVY|s`e+i?JZ^e2d5B|1GMHMV7HSsf_?r9rcEt)4P|(E z_@8v(ix46pk~u)_2G{h#1Qya!0F{Jwv-|`^Ijumq?X0re!Xty!<_&Kdx*UCXQj7+k?%hd%cbi zUg?dBFfe4@QLqYlCxjQ*mArR7CXSP_O`BHu`sQXwefQ`O?*4EVj+DL zJyrqtw87;IN&(liTE~mO3S>SL(F62J-$+|8nKqw=NW_N43R#fnG*CV+8WY+3$^-t+ zD4?_K2SpEWW1v0GVQGZSyxOIA&rs$ zjId>pY6n4gM7=HU?OC!c=CGs)JU+(Fo0(pxe^H({I0k?D@@UHE(hKoB*J~vtBrGg1 zuU{VmOpOGRzV~s?u+ZK5yxaf~*%AeW4c@1`Tg~B+8`o#LqWJX3S!RRb-5rygp+$ds zuYIp$RFj<$KB~#mbtlxQ;r1wtw!bIW0kA^qY*g@9Y)TgFF{^r4jlJa?_P)tGO_G-K zmN9Df!sY~aW{yJo2?@BAO54M(U8%7>Y%F8b5!o?z?2)VS&jWnyx$H4<{2K`$tUoQU zFnc=YkJSz~l)gwtg*vxACh*=_=A1*5`x08gWHGPA^74DIE*NdlCx<{T1d?(NtXe>D zqyPaD72^)#f+0{$>_F%HoXt~1Vcr90*KYd_>QVQpH*el}f-x1=9>fh2q$7TBK-V`gSNej62|ZX$?!t$covD+ z3-(*R(h^Re9u_^JQ&8iGiNPo%2_H*C9~#U++tG*_P+mmQm zHRZA5TiFZuE6X;f;~(;ASsr5gHftNcO-r1m9PJ(XR6I>K`M#PTV?e3J&*s6EVtt%9 zZ&02$xqY}Btb?M+p&z~}7^_T`lJ4coEb@PU5RXZlB zzVK^U1#a5hn2Wof?|!l0)yDg6uk-oK2kZKh!kk7XO1pYn)bAx%mE7<>m?M-?}ruX)T?~DL=+DFK+rpnK4^utXqRUoOjaNGR#spv1Y~{Fl~wdL zV1KXG-cZB1$|LQoH5!C|kLY?N!@XPhN%R+AWi*^L@D#3Rv`1zz$nBe!(w-q&b1T3Kj+iLsiV4r*~f(vrOO< zkdBq@`bbmVSCK7IP->sJQwb^}R-OH3?lYg=xna)<3{+#IIWaRuf4RH~1Rj5XVypN20rztT_2xY0Yd1PB&U;&mG-!oLos#&K#896D%ZMyYVg8f0=qK@JXFsErB*XqpqcNT= zEh*?un*GjcIP-iP>?ajO!`!_eU!-9$NVPI@9SvL6Tiv+DL{=|ByCfGjXMdHb^Fx2p zc#Q{+Rsw6K&37Ba3cg<%qodok9DRQ3GFg7~5BJ9$3hr7yvY9QOPKizHZQ8TY(oPJ1 zvQad5>e}XOKYOkBbfL6y&1Om|flXuP7vGS1h8o-AWw5sNTq0(_vfy3FTGug&@45VW z4qEc}p>KG+#P;?y9N3YO(dZ%U;6AIoHC&dq+g(CeqkP0ae04DLPGtS@)8Q@2GwpRj zJ7z|fG4=ZTr7&?Hy<-xJTLet1=NT`Q^~QUYeoD87!kbpQ^lBWkxaRT!W#yh`S&`@mYEs@e zJ;e!*FUBl`m6;eB-+*E2Q%467G3D~1!6(*1Pk$`7t(D)IZ7P4i(Dc$?f$&N4yy~%2 zBx5imDCCV7oAG~Q5fF$AqH=$W41f86>k~};lAtBD*|fHQpkE4W zwUs>nQ9z)WQYf8e?no(cHRVNRw(uaGfDOU$U4<`Se79P7h?VZ@u=d${o!l9Geetw% zS4o(kIGmD=B-3P|ZK*#d&I&%WfYI^O({9fzQeyOMY@t8~ApSzcDDn1fI+y{Rh#&La ztsT2=!G0q#lOJRGnDO{zdeJ31?hd)lE$*v}H zuVdDq*lI6pu-1)DEZn>n@YT>VNeoGc}<-K~)%Us-Mid zk#3=JG%-y$`|=K$ggR?1ZXEu;fg_eLo$W{=k}rMexI!mK6vvF^F_uu_SumhPSKOS4 z2n|$J;o!R{C@4T0D5J&R7yvmvyB?*!*7chM$}aeG1co)zR=@3OqB$>D^Gl|mC}Aw4 zY;`uhmbI7}TbS{UvZ`ONvG6APpwaeiXub#c_o=3d9EyB}uY|#=^L+RDX$K}}n?+fB z{*x}e+!fP1EEOk&h|?O5#|kjiplzPPG^Fe)G`C7GUeLf?;WAQ0y-&fYi12hkG=g)n z0`%0X(%S!Q4@zLbHZU+q7WE*0OfdpHs)DBGZBQbO0NvI#H0(mhfy@U2+ChW`slZzq z(BvSKIN)|%8Dx{g=WIEmLqt{Z6|1|xDpsj_D+nz7<^1++2S`VWd@TT3GBbB=9l<&6 zrL_5x0m1=k7s0e3`|kFWf*#{$y1wl`PWg*4Y`LegGY_PQhF{*!8IpM%POWi`-Kg4Cc4WOpV=*m}|(V~^^Nzfw4FOYe}B^yDbk?Nv7q|UXqdi- zdx{LJUAE8h#c1D77uG$(LOnh7$0rx07tI*AR9iGxZi`cGY(#Uiq_bO5iJRVzEH+_ z0D|jz9~*~Liw_{IH5OJ5>?Y!Ousu7nD-sj`4x=Y|;5k7OJdE#!NPV{XqE-&^G6nNK z?y2LOeQ?t|EG)E82@$Ou)KDu|1xe}U}H?WIE0AC{&GLDDMVWtfg z(K2DCE%-lW5qt#6DKR&DnNwY_z-%R;{<^(^`{Q811_SW|pjS}bb$wFdG7!47OKeY| zCjd7WoJe#Ot2bxEZ{MQBmgV`tq-w|X#a{swWLyr$BogksaHMNS-nxCy7btfH&SYfr zmQ95I;9(Srau7Bp9heVZyuR#&$vi+NJKzdM^x5i`o8>SA3z}k{4}5qSk($1n>*wf0JZsz?4Vo7*k1=ZLod?@G2VsSL*d9Lm=$nb8-+sgR`$TBp<(U5LcY_dV_#IqkYEGL?g}XQNq%{|M@H%QE9E~;^aTC* zHQAm|K8>cZZ~K@JLB}AT9NL{hAG9 zk|4{kyoq9Ysnylr9|i)Zj-#knY=VFd6=(B)B)AhfIAkM`sR}P_@~2!H6?)?I#S*aS zaKIMg4FXVIVay7V1yf=4_hDSM zWQ)a>cCo9`oH$Z?e7dMGKmF9nOjCvg|7nfSkIle{2s@mft2ffw@v}?@sph-Y^_JN0 z+)2;Q4p27!Z~*RwypecdP$Qw-M8(E-A?%I7w5Jq^RS;;iz@02W;<^$2r3B<(y|J%5 zAc_Bb6-F_;fFFbbUZ8ni?i=T_!t4;Z0A{ix#0+7G8isoOk@hfdC-I7so?tx$MaLUq z2pco#q;od?byT2QCGc4ggX6+-x+Mh|1oGhAPoExC#c5h(&pmzc=vctBitU5@VPJ_) zU(r`=s$y-yv7XYlPYwyQoh99>d^+B2L)bUs!h7dKdJ2?{dpcHE8A?t+VC)oZSWG9; zTQzE&_(l)ydiIdeuneR;`W$K;h38pp0AafO$;@jW2r8}GX~ z!nX+^Lo+bjfUp8E2E|4R;=dd~0H_>5s_E!IIsl9A4w&f?<2aZy&4x3tPXqN*^W$=2 z`T_>p(F_cFPi3-(@4*OmRRBR7IA9QSB{E$c&LHOr!45>|*yMzbErXV|H($=|>@2wJ ze^_4q`hN|P=KHjta^JD{!APJN;XSZhzziuekc*748|fA~ik&=SDZ9al;Taq0lRa#H z`*i*%Ym~Xu^awrkLsn`*@MUm(V!+Vz`CZ+fr4A0PLVa_4tE_7(=Gx)zv+-`~SBOvO zP;GMvIifL=+D_Z58Y}k=Z`<9(4y-)9SdF%%i(vCs+OcY=$ohstzr*{;De`ihRMVS+ z&F@|1USnZ;t1gxRt=iud?!29f>xkG32@{W+8t0A>!I;-;YxDS!)Dywu(PUfi6W(Hd zeYe$oV+BU}xw%YDx9mK&V}GLNX6=sw-PA$mu|A0eU^YP*EZ{R{vQO;|z^rQU`Q~2i zLRW+a>*h7$D3}gHHh(DNDvbZCi`F8;2@jJMGx|12csUs4xV42v!G;6`s`SH$1Ox;f zpmBo*_wgqE<72dAQZca;{kx^o=0-12Y5IBvY@SgQF0p5XabhOu7zoMx^cN=ADXCR4 zn$0{gJ3bh&xjIe5NM>T9q4!kGz~4~8b_I99d2!GvZJ{bU-}2|Cz8>nrXQladGTDT$ z$D#Nw>Gljg6hU^FrsI{2h;9JP6+JC&`y*c9Sl_}4PD3~pp5dau!Fr+x-j0y*mWu-zA@m{o5g&xf|bzdtTzsU z4sq=~)J!;Nt&$-oF@GY?#)|G4-@HYwJaLsvFzt-f?M?5Ebzci+IVZCoAr(e_cC3iq zXT)FLTRna)(Zf0puf8sk;_L@cuRmEe>N?lt5hx}`M(&`35dg6a#-5dL zc{ud4@9OxRNyDyla?0FUUSb`yx3deO{_yAA&?sv^hy0#I@Y7(lnk78k^s{e7g)50? z&VSg!L-qji_Jhj-3`F}I<54h+hD${B8OGf9Px;8OD%pQL4_=;qlG^FMbZgR$Ie+Y0 z?M8pPBlB~PoSDbj?Xp)H`SIPtSvjg}mJ8!Vrv}6pV;5OuG17GJKbaOn^))z@nRy>6JsEg+ zfjDL^#^Y*Q@-2o|XTX8JS!<$4e+?e-*98{cd|nhPIQEIZy%$kfz%&>Y9o-q;dNDWI zzDW@*GBBLdI>PBm=kktB*Na2Jq2semaKJ6<(zm&pbTSO%Kfz%*uo2kV{{~{)$NyC@ z`1567%jaZ53kBa`KxQRwzkrSmHXd!y?!&iqn4^L>qMlOHnxnH*LXT>#BS`E0Xv$p; zeAIWWAFkkI_Siq+u^+J?6S3sgZnJ_$BTyHQbwbaHyP8<>DS6p7$Q<;p?V0 zN!ei!l4E?t@jtn7r~gUmuzHEB4$)*A>+$o0M-xdm-0qxPmFAb?$2{$Qqj_Na~PIrxYoqhcyoxn~`AmSmjuCrY;Pab^tHKi!))aNJ$VX4kJV&8RjQ-r4`w zTN&8mU&<<_@On+~o=hvWY?g(3(CB^~j--g3C%eLhyFp_{}n&k@1k*DR{d z$%&6y3KM~nedIFLPWumXELuE{D@XGA?>v%Q+W3h_+|hzq0h&ruX1HX@=0wch@hpac4h|zRF&}XT%nd7D`||(vYYYU z<>AE9?zNqBxzo$in%a2d%u6UBw$`frW3xoca6dCMDILijw^vM0q&JTny^5BbslX85q!lZF3$*u{yfC(8$TjQ{l^VQoa6;n@2Qy zp9_Q3v3m=AObH7RKuG|a zikpWAaR~!{oCDCtLOoeXbes1hgOFA*gXli)E%LzL0c@`y!n%eVsiGk!VH_ila{(j1 z4xMjz_u|*_t%H;5_)@yDFzU!3q`g_kkjJSvkecyZmdIJMmAA~nsqFZj{GRc)BOM88 z!er$0NQbCxQ8r2Wkh$}#?_DT221zf+Y*i&AuKYX`u(e~2xT7_$m#!S&%U6V-6Orn5 z!Ugscg{M#P8(p@T`1xZcU!!rkZqEple>4ZDekVKE>e*d-dfFZ3ulJ>oWO%hD4X|s> zAFuaoRaJ%!5+(j#@l*WaO!y>+BoWh`ujh5d6uFuN)Y^?qv#gX^ejZ z{y(De%r5+yUW1M4{|vNImB3ud*0g?WD+3#*TQ_!2p-f!dXiM{)BL!uN>yKpNoVR|X zs*5J>4UxDyFNcWqvYxQMxRvxdQ3qpb&T9PU$)_n)ZAX+X6w@&&>P;@Qei}K7)&Ga6 z^A6;?ecOMeA*9T#L{>K0tL*H(XZGH*B|-=xM93Z=o9tOe_TDputgH}<-}(MN-{156 zao>0SahLbHuJbz2<9HoweUw2$T~1o+D*iG$<{7ztQ>qC|osu0a8%>TkWfq*^Ex}Jel5X7h+p70OiYzC0SQ1lbez4Ydt zA!vTXNG1=4v2=pA@=2V*z=Xk4K6@epQ$s|I4?Cn2{BN;oX(g1rVBG_?LAqm~k02EY zDd<8|Qz^tlZ_{#djs5&MaLm?1^L$a{D~Qj12GgFMo~|xSCk&?viyy==_z~)mt@Et* zx}l-Tj%{?}!ZuWSurB{PLKou16eib}H_tY3N`i zUT5u5$d3v$uYj-2LqtK9q`vk9vuJv4C?;Cfww$I&`Vq69J7fC#jes-&lhSCh9xu>` zBw;_dwzejJ;;+AGlgTs38kji&H;Wy)S&q%8xflCTL-zv-Ob4J*!yoGJ;N!!UQ0yJ^ zTr3j;u}oI>RzZPA!~t}~5cJoF@v)Og-i6lg?yxL#itC2Jg)sya)PFqrAb;m~`rf)@ zzM_IS!ssG0tQc7yElmxi{#aW(Xj%DYy|pUY{&;X`b?j00`}fKCZ5oXC_>>EJMvu56 zB3XzP6L@B-R1ar#N2{3h*?L#%UJ&|g-z1*AtN$*n#z=2u%*G6VbuBg z>-TvN!Y7~Jx_)=Pem0|Nlxt|z8(o!=NtLgoPE-YiwL5pxYkHlWoQBrNHx70|qiuQY z(y>F$U^D-&7E{e`DANL5w21xrtg$croJ(KP|FvED}5wg1FSELTroXtP2KL#&1hB=mzml5r5}EgeR9=D&ezFR3b4~;`6Vu1v~_0!8KWiA%&vh#WkD^7EIdb;K$_!*GNCDdWAXTPlxS^t~YQky8KQ+W!}45sHMHv zf_vKEmQdPRv$np(G9@$>)b;BAU-Gpto6f~alXOH1^e-g|?%i|D9RC{6)Hw-DtRY{C zdb`4f>gnlMj#06$*z$>74JN0qK>R17)@a#Q4-~qekj5Lej(pzow0?US)0o=WTUb}3 zj~4VK_RmR3)J{IBOgXvLQ`cTuZN_CADjNfRedzE#fVlz4QxD;+?y~n?lq(tK+T=hl z$^k;Agb=ol-tO8j6~jKoN&6s!*TN$#DJjvst8fMGJc2lYuHk0zH2fP;4I?lYM1U(J zBSS;`Xm|ot`LZwVKqkb%$e3AHR@S*S=RRrRyZ7bBnJq|@5c_}OoVc1a^EkH)d^qr@ z+zz<-i0DlU$y+>5vBjYwg(*G#G_}y0#DPq$P*lpqcHN38ND-m^OI$PVvay0fK@j72sh;zi3DurTZ ze54saU75GQ3Lc4%i~i@4AQ^rP#&#&JBFv~|^Y96BeNzmv{EBrj!*zM#O=H%t9by>4 z2>+>F>y$CxJ_;s8&;1T!7z?#dOb}J+_Jc+U=>uLt&@W&G`0OyB42qZ@RIpD+CBP=%ld$e zAdmQ=t$Da=M46*$v@7oVfy7++>6JClW9^ZaUz!=cyBpadswA;E2~h{1ofNT%Y04yr z@6^q0X2Sf&q{HW!~?B#xZdZsrB`qmHvlW)(PI4 zC%>ShgTT@n*4Xls!k0IC64>?`m^=K2{+aDuzWOMrwe@Y`1zg?n1A&9Xr4ibnQ{}4W z(K9*E(_BFdW_davzbxz%P}H6&)e_o*h=ksD_?Zh+kFR5%u6-mXf&EU9#c`l%-1UcDcPOo;>s}r4TR48hhc+?U%3ZQ=s&OH|TGg7)dOb?C%1J6QO5! zJSjb2Xx*Qge)R93nArRKe&2Xn!6ED0)NLeI`l#xY<6}!GkDzg*rf%_hCRc$B+)h7d zstRKQY~G@Gs4EG_XNxfOc~VS?w7zUf1GKRD;?W?Y8V!95Nvjm7gfGPPg64-}KyB;y1%2)gYW zF5Ley_6SC?n#Cyj_M@ZY)vB=4;n{Lt*pz4}_{F5JvfWo$Y|bylQ!oxudY6>@?x=js zvd5!GG*FReNCjuIN_iXopGA;Seg(~ReHAqyPNFbb5SI62V*tD$b0&~ym4m7*HZBe^ zgTpu(S;C<};+B1-s-Yy@#*dc0n#aLrV^~@I9{(nGL6wv2vuF7PQMbXj1+7Q~kOHHs z1DI}&c?AZ#jJUi<(Vd8%#5KJPim`&nw<7Y>Kg+p>f{JSOt4v{VmF?27^q29f&YrY_ zwh$G!HEbU97!{Vi#fQ>+z5V8J@&>0@(QwPaTu$?hL^i5t*VzHnL+DzYQHk&EVksHs zNrP{W#%&Ghy!fCbt6PZ@yvJpA2T%r7U=#v)k2647SW#>|0My^&tzBm0F4K6{zAu-7d#sXF48?YJ)N9Qi&ll-_7YbLzN{{_i3>_6O1BpOIeY0m z#i5L#*hLK4^Y?7c0S&t$imCGS%Qjr$!z*k3Q)JBaM!ydq{_7ze!KI`V5lQp^cg6uH z>y~bI^*`$qHhTWaf_cVt( z`DwS`*|AAu&*)VxS@K@}ui6 zRQIhgOC$&qlsli)XoqKnQ^~knL327s&Q`EVZRGPL@XMgsUxBVchDEK}p3j}y!BbZN zGXl<Ru5#@&!Z8>>Z)htXk&UG5-In_-E$==bzuhQvkcE~S4HVKCL zr&3ZO-Tz>ajHqnkycP}O4S%dxHvJ(N^6%5V2)eup_T!zIu-sisO`^8~ zRGuzz8!IUBnnq8%po7Yi!EY>5^jv1eZ)YSUvtt<)nbtZ7$mZre;$lD2j^EcZ8mrba zRNF0|oZ3G+LI_33fuz~bM=FxE1EhYNZUfQKICp$cLP6308ndc~xDF2TaCR#i^(7S~ z!pvhf$a6CWnBYph0{g#Ck&;1c7fQD${-(W5pNN>X zjbHdAScEkQ3SIF1{$=1UsV@mbY7uu_q4d8F2pZ4}42U22UFqPi{5d;ISQolB7in>z zRkbCfwf@>B=*MBbvEt*oTXj4?EL(A-wdve!2&}YOF_ausQ8%;}bJQ=3o8`Rp#~VpA zx<)W@WN4Qr1|v1IbeE>S+?AnKd9T_YNx|DC@J`aYx;&=9Qq!erL0Uohh;c;UdwV>d z7Y|>@b3b#qI+&R4K*}U@yrdkU$sn_BgStHleyWps4@$uo+hsj zDE)rNXsnHBms=IEQd0*4`AL&00b}Bu(E6UB*X}&46kU?CA6$22&{g?lj4WxUUgyx; zqQN{j15{lo@iN~qx7k$Of*vdI==M%d^78Yawfs$iKK{!Zx}nlRY3$=`p|Ky=*0(>5 z;>hQ&Z&)t=J*X_QfRs@4QWBb6j z+hn|CG_86M@&EQVdN<+1Lgb}#`0gD_0ngDv_}HeGEG(?i`oX(}Ut?i#*%ec*k(ZHC z6vf^^bhC6p#?63K_CMd@MdreZMvP4OAoyGZ9uT7RffwWrXp5J(x8+Sts9AJB8-r~N zN~!suzM$5(Kn7^6OrLdH{Dl#{F=)ww!3Hd0DFEMrY6F*;RUbrr9}vzoG>4V}{QQ3> z{QpV=0D|!q7=GQ*{CvdBYz9<4pu~~`qtY~5SPHb*P!1r_1TwPOpT(5S;mBMAS@Tp? zRc*-iR80gLnake7L_W@5eT*^eORAo;l9ADM4~Jk~S`MHtK5V#zlI>2Zt+-3W^5(6j zrM=~dy&rLVdu=_cb45CPeUHJO5blJM;v%7z!MlCkVHwy?W|o$fkG*+&dG4EOtuY@Zi5ooBsuEfF`X;dsoh9#jn?jk8w+5x$Yt2klZVL}9Pc5!f-YNx)^XB&J zpie;+S_w(+JnSFM(IFZU)oM?~@9DTJICcLPcW za5#36D8>g7DFx)#{Nbf!4Hu)v+RoLc6g&HaL~ z9JiBHI4XtQYc_&TnOYtT+r`@zo6(*4v*Y0Gb$idEusV?mfCOeiEAk5BT?Y;%_!o6o z|G@Mz6;v{Cssd$lQ85tQC5$Q1GLvYGe$qs1$X`?)azX?%FK`n;xV8Bs}up{6BhZftf z_Aop|RbszW@1#pu)zb7I>%5gto!iIBl2QLAzF@UHxoa@L&SVG=m&KOt?gV~rW9QqH zw#rz{3-kNeIygyK87nxs$YqA_d_v`XiVk0*uye}u|JC+BKD3OSy?-`UV1K{LRw}bw zqqu~37z61}L6xdfI4)%%a0_ee+vx7#lgl56gHJ5sVqjITfJOD0tyfJ)ldbh01^ z$NvA6&Q>Fu#JQ6?*MBEx{v8X;*rZmS*bdSfchBCukQlqOkFxP9lInYtroEhDj*~T_ z_gXQ1ZhAuz98zVKN^|LnEl!d`EWw?SKV;Oq@ch7+`(hovcLnVH{$1_BJK$Yd7w_#d!# z5E`Uk!w~~9&BEU!nr@xd#m|5*Dzh@VvJxoIRZ+#s7#|LVmJ#qRWeK%_DGQEMmjHT^ zfnv_`o%yDk7dX?+hpvG}`PNR4tf?@uJtwh>=-#yXo?QI57eL!W6KndVr ziV!;xc_&PL1EKZY2WJMmyqMFXUZlAmoDc zSm0)uP+Fgw?QN~Id*kN6e0d)JNq9rAhCF5>y$FD@f1|DXeZ3ioFKw*7bJ zNpSux14<5T%~E1wfg)k@4{GD#APlm&iuyI$#?vhssT+UNHRrwQ&oS}ozVGbxL-h#y zCNnq+!1jT(ouC~>S`&a$Xz$hSH5`|Gh1%@U8Xj((A!lV;3m@m@o(p}6g?U*(xv~2Y z2(^G;xDW0f*y!#Fd9s5~7>DC<_IfG<$pX8Mk}?uY4_T{58$ke zYpSY>LH7We+dO$f$-p~hr#Z&IY$i(3HP`G>6_&y+)z=se{01I}xo0jFCcEFie@9>d zh)^Pq;nV?Jo75R^j4hIO*(}CMwLl%gy&x+$;=hwRN8U)#VZDMm&6CT&l?%;Hj{u)E zx}I2T+xO2%KXN5OX}4F{&yPiu@&o?9j92h}bq&K4Hbf0)| zS$g%AUn4L}5H7JO=$|>P5AF|Madq8TSvL8%Z?O={+>3aB0Eh7|A>n!eXo3D`#-aWr zb0Xl5Vq`=obqcdC$_J7|JU4O@-(p{JpL==v4`2?D&3gzCOC~}M@jIEfobJ08sJpzX zdn&Ax=o~U8{k0Ah#jw@G>wQn7Dn-aE7TSsUckgB>W!uGms1)LHt~;pA&Ec^f+#=Gs zT_i7SGB91qe0*Z*A9|ZR%E)B{4+{@Zd$^cP>9f7wKjX){;<3m#Wo?#-q)TLGX8xRS zsJWwPp&FrXEGj&tZ5XOc8>;mUTGv3X%4{AfdGvrsK zqlUK3XT!yce3#1+Y_;A;j8~xMdR!c{nW!_0#;M;*C=Ag58+OZFF3)z|NX=^U(!ZN0sP8y8RP zu6I?)>*|sMVFKEnqnnv63kjQjv~a+O)Ppz}%xsyUvxP){Q3q7Lr*M_<)0qBO1|U<*yT}LteXyY8Wft6h(8~#YzmCz-(am)S zrzH$TO$*=M=E|6+^v%3Aar=aERF9EO*XzT%IsF&FX#s8i5zAc=#B{;bt=OAFl!ZeL zTN6)-xaIl9DrN6U&8NOV#mBuTizdSuPEZ5-|2xvEs3hcA2Ou=GIziakETwqGak+R4UHJGRRpb%>F1 ze1dYS$e)+R!V?~S1a)vd^?c)+KrUg8g8I(Rh zR#y@37;F@5E}t;^(`IG)G-!l{DWK*>nvHND`vs)nN5OSHOf=J><8J6$etmc*&&bBY zVh$vBFgpQJ7}50Ccsz6@QKe9z!j*L_SJv2VVr&5wG5) z<}GRSaJdfw+5?>h0O?15Y*o4}>w}+4)vEHO3OQ^{$hQgK)|WR81kT2KyWe))26_jY z?1wr=M$Nw)6UWzTa5*q}Q3MLG8`L<-pXG|8K@9Y}8(k&QzG z++}-;1HQHn_)riozK~F(As)SLB!6I6k4l{P%E$sKDUsH&5!>Ut2cP>cw_Y}mu8BAZ zBzVLgGITw^z};%qM5pAo>ic~QRZVO>-N5Y9y!^)y>p1{W5Twc5YFN$QLii2|B_$=& z;G8J_D2Z+}n`6%$rXyzKUsu>z6UTcfzWx{{KoRQ# zn9cBQLqo#_L^Le2q~xS?yh~84vf|7(wY3B_@Z0Ey^2@mB2Jv{6hpv)3FqVi|vwMcH zv4J6k%sN1Ygz(%0;nxVKG;_FTyW!mzHs{GH52~w?)oAFw^t_MmCXai3iH>G^l6dXW zEY3IICzTZsx)n96$)fD7`s^Q?^0D#~n~YFZf1tgHgW|7ML0T&T`{ONIPMU(}D`-Hg zx2bR`muS}s13m_%ZNN}!37BjvaA^1r6DA9T+Msm)zi4d)oC2n32BaV#wy-X_$L(>GG;o~zNtRRJ2+PR z7F)aW`e%P;5}wFwS@%bA_Zhl|Bl6*wH((IT@!-q;%Dc4Nk1YZUZ96KN#-!TEft_;) zkWABnHGqx!JJcdz7`+aFu_l9%f}8JwJtEVGXNF%|`S$JWc0rEaJ4?h=2|E}Hffo4A z-cXjELOTHIjKa!Z_@W5*A)rx9U1HP_XI!vYul#zdfrW!7OYM>WQZ9mNWplKHoSj7B z0N_dx1Aq~g)@j>9yZO-Y+B)vLmls!LtVx8b*4Sgd#W$NuR7PgX%g zLhCu<@{H73J!IUk)q z0%oz@c-<|GBT0xE=&tBPj^1!Cl2=z(ALYg*m{WxYg(Ut}Pn-TFo5RHFH2LycPDT12 z8y61Tqf!CfQbtta7#YR)wsRG&qscL%HPsaFyYC(;Hoa+5BEF~-?X{ALI1ANLC&NL> zImAr&J{y+~IU3`!G1+;O%x`bj$$};Wx?5Zw9cJsrv}>sX8`3Pze^?G5zr21U>~zu} zy-L=|z9wCbzO2UbqRzGF`3VwR`oaj$4xS4M6kt#~<-)Q3 z%u4Oc5@pv^ZNLkZ+m(^j)Yd}x$aVQarP4&W)`?t@o~C)NkszTz5K!Rc?hZ|$U^py1 z*QCpjaTc{l^&6ohmn?fK`$#9abNJ(}pAsbMQ3~pb>W29BvQ4P9!~Nq!sdM$)thK*M zgCiSwyL7{22VES_y)U%Su)R8T@wM3BT({;X>hHhl8XQ$;tyLA4Jfr56c&8pS@*oPCt12-E9NgQ-h zZZ0puKom*jfny!z3VpqT&i7Nl97qa%kF-HTWl0L z3cqA>^F5vy#v%vE3l`L$UuFfL-cex=hbtF^C4DqrS+t2tR%hNV4fAFmom4a6vi;}1 z%x0A9`0R~;ZN|geg4n+&jK`>m$Q&iZw1Wp+1iu<9H+_l=h`$$S_LVF}izmKO7|CQg zx7wJ{?Y9*7?Y6Owwp-qXGYc%CF>wziqd;3)TfBWUx%L-67y1}uLF}v5W-Jm5txk<` zaPcdXMa1?Lwxz&>kiZWp4#nm9wSZwsxZ-2a%X`agraoaXD;D3&AU3?;Kx&h(uQ7*B zPDFmIPTnY5)?QcJ!m=&t@$X?99p^P{*Ln|LJcaT2A8g0FJ%O(=G~KqOK1C3V(x)u1 zJpb{mtfthrDWDypi9c`?d=Kl^Ok>5#b($maDqW;Z(>z7-{ru=;BJ}yj>q*M$4)>it7Yn%S#5(P7ec3kF zTl-zpwjf3FsF%|=DxvIg`TI;&NvD)9SYhH{`I8i&R(`mMnhlI3(sDgbYQCGN_)1gf zx*s)vQZ0`?cqZIwPp|Sx&jp|f4Og?=lPF|h48$TvHRmd}A3^KDjseZ&LA9QM?A+vN zLY}xC=7H*HLH6srmXFJY6K&nz!2OnMOT0x%FB*r0m|z6fo7fbTG&8L*cg$@G34G3y zX;Y*)mupb@ITk{sit=yokWa!&(q%QXnfB0-8$4$5d~SNTLg04(zk|$aZ9MLRM@zFK zoPM_S@7903zjUya{^T%!ER0?Qmn2*y)DF9)7%vHk=Cj| zujRbVGo?%X#fkN~QJX7ua62K9C9ccOhKhr>HGv|Gv}E1-bh55wPW}&0=nJ%|Q@3&Y zPao&$q+0Yf3F#7gQMzZG?I8V@>-oLaRz5c*(mFtd=OOOE7%ErU$J&j%kBKHI_>N{M zhg#iSZsS6Kkmytx_%SCYZLvH2tjdm|(z!}6_n_q7 zZDMg>O#K%@qu-wYYn$+3u3_n2lzDPhaA8#ID96!fzNqbp_LNki&I(=f8TSk3{NJNi zTo8JKWVnIp37P7EeyPFgC9M@61SZz9FCt#a}#+$kG#+`;&P`a+6_|B-Sh~r`WiYPq{y|O0(q3L; z(|nC^e`1&3HpNkLU9&Xf94zFHWhM*Dlchc7=a+R)i~2R6A#(6?vr;RApWpU6f-Xj&z%ZqOOA>!0 zs_`67uh13Y6A;j~bU+uSxC^**yJ4$U#>ADP?qXC?;WPW)LG|85<;w(asike-dS#kk z^5%qa4-2%($Ntm;0?E+rhH9?YFa51<+=qIBgww}K_(`(EPuC=^hBJKi1fSG8;$d7* zSig@(?s((!lrWY{SshOL=6r_eU#hUOIJ>Lw5=L8PMz zU|PX#dGkhS$mu2Bou3H9-L9aUt3tqSSuDX^wK4)lKwq4)^K&snvUpva*v9pxMwPEh zAc*yh0I8`yla#H1bimCF28~?SV8?&pdsIvQ&hj5|}DFCzR9qyq}8Z?#qzt zwYIM&`0-5=d|^aq9(^b z#Wz(n1~w-)HMH@G=A?n@7E7a|t}X%MP$;5}L9PL<-8&7r@7UR_5@7YPsvdiR*{`gB zg^mnutE-F2qTNSub8e9T77rUkahNmKJfz~@~=IKVe(acDq91@R#@M9Vmr}X%xS}Xby?0E z-S45_Z@%M+vm6osjEDhqGfCIVG^oCTjmn(%^ooAV?Hjma`YGi*0YO*iUbawQ6cJL@ z!{ul^U-E;mX}_lBUnG#K@CXSdffD)h-w`o5=S)HOf%KOm++Tes8v5Zgu5)#`u*9q4 ze;alQ125*fm?oZ-SpBhLted-&I>b4<-X;6N=jG*xp}2{XWA19-;iI;~fd&*c-uG3S zyQhDZbvp7F_y<$Unf2ChM3^*f$>DKkvbdR2jzpT?z= zQMS&UjBG~yMw{Gx%Gh1TyVqAJLx~f#d1}HB|N7JEvsH=>X&EF4%iivuo)Bdg zP*c@cnoOmu75l@lab??1oqGn8y#Bp)g5Q_o&vfi37tD8E1WNNasqJ!y z*vQs$T|!%MUf6_9(coxRR24G2yx$fk474~oHf>T{goO;2<<6v$=7lHT3w8d$wHA_13}umLhQ~#6Jz8ya6Vg!P70@#ueYlZ$Fu^3>uxQv5y1vd(HkbYUXudknOsRXfs2mD3$bT%a#?HQ%0DWhtZ&7A{_1<>(tFP8uT#JW$E~b! zWiwOhs3!bGp&4aVwe=lablW*2NjF0kI8vYP?~RitUOk$)ex0(f7PjuycThpStBqcbXb=Y>m+L@YNFG+MhC z2PLF7Hh%ni;H<@~7xJf@Z>lwd7B@?>BXE4Sc6cx(=HYJZY{Lu65BI#!eylU8P{=Sk z8mL}9b3Q%Q_*6qx9+H$_knQ~~q30BPhk9;?@j^FwSvD{K{$tdBk$t!gIz%=?h@OO# z6Fby82zm!TX{5)A*ggt1Yb-DghW^5K`XE0lo955H^cV?=&>ZT`Vo8!>(hCNbWu0$s zW1oDnn|#{Z!#Z;#h|-69G$Zei6GkLnz4~iy`;C%Qq<3nyYTdu58RE7??}hq^iYuOZ zthS3@FjlN@Pa{dTNEa|K&nr+mI#l{}cY4}shxD_pw9}S|r>)tD`UeMR>RwM$o!hF-%jVI~QMm35#i+kyc{TB$N9G!}yU1bL+qWB9h}YZoL8n z;-`j&X)#u^ii$`Qj969PQ)7|;fQpV7a8?|T;)tdEt+6(ado(L;B%>&ZRqCHdHh{GR1+av9Fi;NY5k79Jw~ zP3W=B`EJ6W|6O7qP*3@wB@5#^69B`nN#6(zG(JB*_*Py%R6?=IbmPOzfAt$g^yb0s zr3NigXFX^?+12+|MusbLV)N&HyT7zBmC?DIdF6Fm)<~lm6Hq)vyoDLEn zwm6Ppeg64FRTg&Xyq>el0(C~Zxf`OX&{p8PS%ca(avP-pUetu0G=VdkB z9$S*6w>@miJ-@09mLSP@kkXhBZGs{Kx}|;*5H8p{<|+Q&_xXxm|y<~jWb{WMffD3^0AF^*)Ur3(35+3`0)uO zUS2(GOj^dhM74!$xTTwC1Kk0Z4s^2%dL17e(isbkBb4cW-o#X)rj7i56_I7z&r$Tr zGHMmlAi2^IR0yN^@9^e>^n2!SMDXkP5D-$?n839&sbH@WB z51QjlM$Za^H45J|WE2Je`xN*dYu+v+*i84CO~72j(1FU(J+3hvEVZ*aZXO%_oC3M_ z?lJertm;OQT8qNJisYd#gWlH~OaraBNI~}L1&Vn|+{Re~2+qkLB)EwkV@|6i6yAVbjN zbuHW_T{$GHEFR-JBbK`>TMS?SI28zd3A_k~;MR=?)b5HLW`@_qqEO3y`-&A(w0au59%|#B3Ix2oybwcd{CNkw4Mlo2aC&Nhq2?%7v8tIwRHy6+zcE@&wyTe2d5r&JTbc39Eq{D(%Jln|?Lrgp18xoco{By|k|IY; z@GM6Dy!y4m0q8xl6qPMo{0fe8>6bjiKJ_`L7yv0ZN}c} z%2Zutxf80kQ5{V@tNWcTeWb+bBes{-FDTmcaIy1e1`FUBm@IFi-tZ_VV0!#gx4TQq zp`n4FYesl5mfUt`-UQRw{|~zVX3KLhdc5-PM`)z&ZDqR8zc#NCf<1XY{LKVi$WO#>55W?tgVn1SJyqss385^O?IX<>BPqIzA_Jc4{ z)lDQmoz3KLA_xARlXmKn!>mxc!?0{hO%W$eT;ar%OJaTDx<;Lmi zt3=Fxe@uZHu^Ze!x|IWC?>IdCGG@;H=SxT=drme(On;X2k;wD-T4$n?#HV`Pwd$3x ztrU+^a^meK99ZWtAXbN4Em!_IOl~D4C7lm`$RMO8IQ)RaBD;*OHWH~E*xQwvN&M4w zv}Yii_ZG1S{X4yE8dt}WlY z%t(2vcwN(PF1}hon2;v#@|%HCMwR)7zP@qa19k$1HJV#Bws}){+1U)|D=TEhPMjJF z+Vi!j*9m6p0cw+?1co9~nu@oLzL`0-?s9xRs~v5DG>rT9WFld8z|_oq;!$!SawGJ> zd?|(89CNTuNk@~pC)k#h0R!E>XA!q*M@_5z!xw@Hho0Gh+{B5m-@b){$EVdw52PQ+ z2^5f55M>-jK0S*8)hD`my}KGUSGw;|N5>;VXA7Q3<9~40`aQDl#j9Q{eX!hmmMn)A zC#MwO#bs4LQ<)e09VcNu1^OOXc`4+phIXWjFHge9Uvozm%38_9-V$VcX(ueG9Gh_E zIO)gQ>Y=o+h!5TYr1rA!kR1f+COlv1?8)q2G~(EU3EtnT39IkFt<4|po>}qjKYkz@ za(&>6u-#Kez4}6hPXext2SwBGYpR!vG2gv^{~FSgVFLvo&``_Emr!oN>>2_NFgIhQ zG<}%vaIqUSkn(y)Mr!n&yXVY5H8)B*82R-O$4aUSu~xZ?PDR?H|_A31a}O&lL;L8%gu1X5RC^74H|5i&dZU@>m=aa>OEKHrwfd)y;oHQ~Dksh)-15vUkMlY-1nAP(m#NaB#T$LYZ; zVh;YXA#n3%GDYMrQ~uMTclqk<##jCxB_8lSRx4+y-D0gwe!no~8dARAL(y6l8*VCM zz-W-$L(5pDd)Fpi;=Y@9va71@7lz7LSqkIRI6qOCg-)a?}S%VrpGc~=2 zA<7AyC(b-~Vu5(Y1PXNU6ze&D)?w;1@Q*d0sww?ju8V^!jB$NO7zp&CqqpPIK1Jol z(F3GEU&DqLUEsuM&z`vJ+3RJYJ$qc&#DMzb$uZLId3XCBpO5Nm?nq}2RQ|wSLqOl4 z?Lg+EAo~MwF|hpU^KT%Z5hETsc7sQv))a+6_M0S3d=%S`q7was1L*<6_?M$Xv-QGt z$MJgE>LmQmE`dcAR`D6GL^`aG#+zV9Ru_9M}6gFf9#~3XrHf|eqYIM z8>;?7o?&ik8Uzz@e8R7@JDF-;a>nRFGYvUAH~4_4u&EUShjy5;cT+25_`{!roj+0SW=l0Evo0NIY;h z0Qqr06Gsh~M^{;JG|eN2-{$|Fy}x5hVPbiLOyPm@uYOnQ>U9PcrqlvUJG-N=1+3lk z<6&R*#?5NOKphT$6x>!;sofkTq6Au9NV+KqZQl5?v~=Ahy@4F7a(~Vc{%X>a`8ghz z_t&>W-(~QANA^&sR5t}@8H=(E-qO6Vjw@@l5&A=hibplP?1Xm<+5^zQt7J*b?vic3 z^Em2$$nx^RJXPm%KY1T_PElC$_Vv~&2V*D8Lzft4>s6CC|KoBuZw)|0Y-~+FC*X!3 zfW#vR2*U+o3@;-~DS`9W_o$hX)jTZXp3t8&`{~SsEMYpTGF*==V`JWV(yvia|D{&0 zvBLyYF?}Lg+9*Ml!mkoJF)zs?gQUsVuy6zP4NB|(>bK8Nb}a!u1@HBnkgo~^G32aw z)FpQpWLd-2R&#j3^=QM5zZPt8{n(;ww)Fe9IWxMAjRO|LUHZ1_+c$1Mb*VULU|nx7 z{<etMl~-J|BuMT1=ac)Y$fmqGJN{xOWN6A@|C$T;IXmM7aYIDH zot>Q>5)ofMWCRb5kk*BTG?20CyC+;>Sat^4n3wUY|Jnsx)D6vF>vbL?<;*fhg)ANz zH#!(I-$Jx-WWqY*CmA~0C&BO=CJH%!|05Q2o47fH$=3(r+F9LBkDnH6LZUo5k|qH1 zkgmZ&OMvQw10e-AK^4__G*tR9q%@$5y1V_t26vyjL`VDk#6MaR#hR!rF|pRcXpY$S zu8UOWLEKoH9Kx>B7RKm^i0A#JIribDjz|2OlcjAlRmR%=kBtMII}%8=ZDe&Q)@E@2 z;w82((yQZ#71Bc>FPtWgA(RkdbGuKw9{K#$xNqpKP`hok+;S^g={ZSU!54j33T+>?uI@MvA&1Zy4S7?!pIhe9ygk{vFyM`{)LBDrT}51p4;8K5gU_A z`}@Nzy+2mJpfqHSs@~m^d`jZ)l#}y_pKX7?Q_iiqIXt2^_&-;Ks5Un2dLtV*TQn?x z5Pqa>-^79(=9C`l2-4!d!1xvw-+y==lWfmd)`G=DMW$+fVnRZ_=*L)|OwTZyXcNQN z5xnPiz~yXg{(A+Rg?7y5kdd~3N6o_pU!uu=!k4*624!n*_*gtgb-2dS2vpvZzP>`R zdpu}2ek3d?NCqb5rU1xpNse?ngLG+62m%4BMg}CqBYd&fAt5}!KV$S`0tHkKJ5he~ zYW%HVEtJjwh#*U|+L|kzSXn=1wc#_f!9-5>#c%L0`a6#m8y*eRTRTFfJ&OqL4 zo{Q67(RRJ2=ZBC#KUNo)IgX}gzIT0Zkr(4*$Ha4AWZRxnBGyvQxAxV>ckSRgDj8Ms zFO`+?-z*2kJo)|`^%9rx$%1oGMhx(RA0fk8(sN_xXMl^MEB=M;rdpm+=3{(0*I1iT zv)ZIA%|guEw{yXsaAuXu+>6+8z>M9%b+lTX+8ctON*)w2G$n~058LZiar(AHH^p*h;B<@HRwU8aKJ^8g+s$7kY14p1aMy92y?$mKc1TT`q^6c zN4}gne!uKzN8C7iCWo=8sH*0o0VYh8JX1+CXBqkgk;zeHMu6J1;L;c^LCpnz`Qb10 z*zl~GD4|ln7?ZqPF^Qa)*tbJ_U z*d1g{2*6T+*#yPKK~M(?l9Pex%Aseod^y{2nU3208@*DB)gF9D8JnH(=F9A0x*oPT z39Ek&Hry+UTN55L1}+puyHBTQY9x{kEc3ASk|^kB_r7s4s~uOl)Hu&R>gVt$B)#aO ztj)MvPx3mmP@kXy))5aP#uI#!1zd zj^+uT%lMt!ugB{uT3SB6g}bXy%-uKD7p2lP{B2`o^6V3@VCn4!-BH=B9h@`q(6#~} z!;3$t`EEhh&t1!IR_(p~H@sB6aTPa~>Zf;JXlQ5@R8*)E``0oe z2#5&^;YKl{&S^WI;E)i~9<;0ek#IuI8yg9?Jt6>TkCmBTRB11qNt1St_pw7 zeEL6dh}X=y^v1IZ_|>axoqUp9)~k8JdImJr3f)vpEL`1K-_ZI$R8} zE*jkX)0AQZL*=aD*|!is>9MJ@0ZAIHts@AL1IVj3@Q#}stQ0*OBng?2WJm( zGsV#$&{f_O{`<7o_H7Es0D!*%XbM4QL z@jt5dn<>Uhq(+&O{Hcms&uknWCz(ncGeNOuZf0f$A=w!DhC^{Ad1#a=CF|<*tKKfH zS3GgEM0bHfqhW1baQo6}^&?ahFkR+`N~(m?hLG^G?v*SDj;W*MaG4XJUl8& zQ&BMrw7sQuPrhJ2b<8g<)sm43v$3^}Pe~~P)`mWRe!cG5URz0|Y{O%#cU(R%b`51t zOj#G^606Z1kd_Xzynlw&r?-W* z!y9Np>hQL7%;XhP@uB@x0Jp~^boLBtoUE;^h5)7D1}P+v8z`FEuh#M>v(kBE(#Yta zq=|_DS=xfLbaX>Yo8XikkA}Ls6|hD(fBtMFgeate@yY27J;N$K{msUi^nwDJ7Fe&w zr>643iD(a&du1#1fQ1*QH5VXJrhvK^Zlj8-YAj@w5OO)2Sn~c+%M7SFEi^|LtD=scJ5F3T>Ss+NjJ6^hvZ=M0(lixY@^#XnfDrfDZ zBaIBi8^R492Co@`=T+gF06ByDH**%18;~754Cnaxn3xQxENr)T<{N*h&qq?j_1h}u zsZ~`~F+O^v(uPa1SgcuyB!T2)XMfPA5b6iF&u6bg3#|_jfu;t1jJ$pS*ORHJt5-ZM z%eA>)Y->l7JeC4KmnJ+jBo#d8$4`9lOOlHC*7o%DfH0RzLrZH58ou>gB@JAFCS{s6 zZ)LYgX@83!aIx+t0N-sESQ&c;OAiI@6ci#sNnQ+P=IQzQM|~LOxOe}rxGRflD$AlT;4F#*ils$M z3J4NVQ%ngEnM7u*EI>>cWR$^T5*Y+hAO)g8?`QpVukN+_qie1H$yZ+9%e&{EyU)3I z@BMMSe~pyX@gL5MFI8jwP_a1Tqs;P)*bljvoxPK->2Ji6l95S=IJS9$b}Vt;q1T80 zy0>?8TF!lEU*D`%t5(r)Xx(P%GViB7?`84ke55yS+}M`yo%mcJXzJ)tHd(T4Srg1= z3p@A{1ItK$FlP4_6V#MsGT1ZO(Ho#jnX z$+pYD82PjPC|>6p1{+~gorHc(Q%j2(3;9t5GyCB3s6^%E3kgZz26GKp6!V#tVB^+- z?{hrAoqQ4q=aV{I4j;NNlpe$If;4{>0@B9UWDa0>Q71D;dDpHj&&$sjxaGy!r+u8_ ziV@~ene}v-)wNf7Z6r4OQgC|Q9`TSlg1WOlNZNbp>%Kd_ViAY2j+KsyL{=^?sh8IjNS;|uNa(>L%+$g{qevq7GK6k( z%zQS)BmRgTm%8Q=#CI!xSxgX5zQH$%h`o3-1aWo|1D^|4#^X~0<3tea41C1?>I*ua z!(j8%32mZd5$>Iz6+RPMjtz9MU@uhgZL{{_Pm_N2U)wAo*m$6hU-9)k=%1O?L(_@> z6=@rNAGM5a|J&VjB(s0)((^V-^= zJ*Ddsv}70~Q$xACMtLpQ_zd3D?%`E&a@%xu9kD#@0|EjrOlGxuAl$9|{c~UvJ^fINFtXR-(1MMU_odVv8m|co zc$EG!k6kzKp2mdSLWzN|Qh2UjUe>m@cUql@$CO%~d;{FD&^fv$dX3g1iO#XhbFm9*pPle5 zqS2Nm+}xHpm6$d(P*%NFGD6y4&~^LnU8TtK`Vk9rbMu(6p|@|r_)~_Wlm*_vt5VF# z(tY~+OkFgh!#-A0>hu+kmfn&(&tNNj?QR*?$My)8)ZYR|>H$~*ijs#1|e z(;hvt#xk&8)9-jpf5&?XIYON3ZMY(!Q_SY;l)AKWDVeVRC05dvFIa@$X|+vMM^H+TjQc^vV1byXQ1w#cpqE$X+us9GcWxx zVZ%7M%=p{XlwL}gpO8*j_b_z*nMLNr^y>dp3i$6yMmJ}v&qA!Ptm8SY`!kWQCh{W_ z=cLE=f)+7YAePISAOPiUker0|_4Ngv2IZR3r4qAvQ=WylzV1(EVvGk)o#YG+98 z--hZ|=8YRS9Kt+5)32SJ>%DXLZ13-L^fzw?1ikN0Xf@$CQ1l5ZQ$AVk7t&3}P_4r$ z{nJDc8a3~wh4W-4XDd}T7FL$b`3kFF*i_EgshLY>(PjQAgQn;>=h@}K@cT%Hb&lBw z#ecb^n_9^(?{SdvIH*bc{h+3HK3lUhnDyz0tIW3KXFR@m`k5H<)Mnx-q9+T3TA%L0yT{@J`6i&fd?J83+S!5o6MfTOtxU z8zI>VA%S`vN|jo%;=4diho{{>E)c~D1=*GsGIo5s{bNfkGh|@3CWWNKslXU+dUZ#= zOOnu=Fug;>+_ol($_z`bLUPPDC7{8$-K@Rr=li} z#A62lvQgVD;_3Ile|jPIaMa|ps;U>dvmYd*Vq)CkMB*IN`vS~U4k|`BJWi%3@TsDT zN(&S|6pLO_(XU#qG_fE0sXQ1e)==BYBN#K#WKd7rR67Z^enkxpo9o(R7$MvUh;%jy zbF;zu<06K}*8jLtv93$54lk(!l*7u^RvK1>^8!j~;~RRA+@o&YI_BjoD+HRYQb=q( zIa)$W&H>rPF9GAD$@r zal1U@NCnlI9_cbmq$-j!-FjAM0@_e+*q%GIrH;iBLd*CRw zW{u_+rf6Y_JJcy^AZDCWR#v8_sR`S}enyVjn2YWorBp@5okcW0DNE1~A5S6mX>ZBg z?57&A>ggzS{GoVL13QCQCd)Xd)uYBRa;+wZ!(k(D)*Rp%X@VvhlJd$+BSU`r3%dPn z(}w>I_68SAJDxhQHqsEYuViSPoGZ4$%5MXwm8ox^R zmSF7lOk@uzg-v0aR|g$osI+O*ufLg69`8nJ8eEJ#z1^|Yo;86=hgVXb+gcLyQlfUju$=6W8>b|UyPzTRB0C%}8U=wMaN~lNXlQRJb zg(#-Y#voN1SfP}ALg@R5b$!s8>Jr~GJ;1^9 z*CUGZoU7ME!UGx697QXwNShE}^vmK1VjP-L}OGTSpM)goz=;Aamb$XZ`_Cg$<(s diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index b64cc4e449fdf34da8901334e1cef5038696d991..b10a057b1028ab822864e87e7f0a279488a4fab2 100644 GIT binary patch delta 8746 zcmeHLO^c*g6{hTW)0%|9i~}K&ix1)LeyZuFdr(S65_dE3nySiM-d!d zCT22)dX>c4lW1f;&N<>Z(e*W~8q_payzoy13ovo_n6> zJkL3AymjV{x6b_LSNr-}`MQ;FJpIKBhS+cn+9q#^bZb^yQl_@31M6rw6e6+mom>0g zyR|>V*Si+C_V-?UVQzx>%1&uYhEi;iN)htSu~8+e#TTv)SB3{jsnU!g7d*A3a5RSC znPbb5!gTqe;p}wb?%~|xKR+6-%|_0-SW%Hlm^d2zT@AZXbS97QrZ4|_@62MnXLw~c zb}mq-8&`&lpLVC;z#SZp2Vaw?uhoNxMx#idSJ$uOBbQlal~VQ=mrp)vPul8grKDyS zZ~kTP$}q1{oG4>h+dwgz#JVYw7*x*U>~!xT;h{ zK+ncny+C4rn$1rSE7Qxb4SMW^wbKtjKYZ|gE?5$2wP+hDX4F_k35hGGVy2t_-aEH= z>DPN79>!9oSX8@OEu<)kceyD1RIw#eu8ZG3Km2$$XOq0EsI6GkL<@eU5wfW%YuLyt zf$`L+Db(quJg9ESX)MFhp}G3#g|9q$a9j`IkP{W{aVyf!rsTM^D5WSC0^H>4aA_FD zH6y~}ybDCZrIv~WYl5+k5{D&z&Q6y;KHRmq=ljF;*|&RjS;FJ-OP_t}iHjfo*e9Oq z!E^hx?L67RlZVrH|FL)Ov0iekCotm4b6{4nkt36IGk5`Tj>8gs>nDgDvUZMZ5Jj#w zi7H490R_uJwYGTqOT&w^F&3kAEFvXa@_4J*yk*Tba;pI47SlSBr+fdp_sOvrc-sH! zaQ{eFx9AB)^o>elDeNLhUyQfOir*AcvMx<|Qjw?`ovH%yY6MVYLhD$9@;USX6P37F zC1-Ss+EU9Z`0B(*iA9w)Dtkd!sFY63>Dg}%NAu=Y!JlO#5E66-khxMTR5=&tmwoT@ zFe>MQ!~1J(7^PA{DQ4@nF{Y#t+UEWxS5^tcH0X~JEmdp_)-pw>(%bj%#9Xtg7jyc> zt9yq>WS@A4Rv|^LNuzgHrfhReQj88%y)jkg4W?>JqKXT7+3R&S(i|=-P=-*Hweb#G z_3E-slpYqhPn*u0y-llLa%)L7hJMXtz=68;l>GVDv!X#HzIqQx~=LJQhw60{y- z^4hf=f+^N+Xyv(y1GcS4Z^tVD-lZh3A%pm3RJUl=i9G%6C&R_h^a3v*XCq)1oL&o< zajt5cQ#E8LYe|)2BCZ;J!G=&)Y0asj*l4RQMhg&lQH=|OaSB?N=~$rG66UN_UrP%f z{526h6(Rw0*653Exvja@3%uf5C$5`*aAUYI#<* zoEh2x*@_8_Lx=DsO9tm7M|Q@qxh9Y^t*irdJ>g8MY^cDOxS(A&aee<@%+>u}C+1II z91ai3o=`9qbycFJ1P4z7(&)_1rI28-yyNNS!!Qd_EeqYtmX` zpgbGZP7rGB1)g5`+i-d8#hu>s_u;-VH&qz^(26OfQAgCqCdG+uF3hx+W5QsPJq)B% zm{*mLF+uJmi%uTL!kSXqYm73%X%;91R7+Qs8MKSgGWeKv&+i3YYgQ-b^z5s{gCk~K zkqXoY425tJ@Y9;S$6NxWu^e*>lZpoMks3unkCwzSx%kkQ$6-JG@znL)Y@QqZ2uf)f z0&ci02f2^{S)&Z(ZKcnz|7-7;vw0`(Du-U!>F19Q51yy<`h-aY)tNH^L;^_YpQ08)nYV~Tf&6N%uZ(~;H+1!R%7=upF zZTisbLzw>g`0%;i!eh7a*eyJ6+sAElbhq%>+O+Hz9=nCdW)Zbbl-%(nxsNeDRu2%lZrpkIx=RU zAXF?W%At*EC!(kbRg9*Xrhp95ped_8}e56dPEn3k{8M3K`rgW;!J8Q*?GwZDO*at(kS!{O^G zWQ$`L@2%C-<)1E3tv>Rr<<}NtHOb*SvV?4?kqcriUPv|+yqL`Di?1$!yBK?cr`PkK z#!g%}ef!hH2hW61xhhZ1IYV4xnqxK_MRAOAdijarp4IEWSUxc9sU|*WRhR<#79=Xox|zXzrQm)1I(3FKr@w<2q|kL_^ws-007yN&0MdO8`gE=*Xiy*Egv7< zu?Il=PkecJ?>MtOncO%~p@Tf2I~IZ5lEzmmR3D7g6rsh1Hu}(u zxjugknQWKs0@1gu&c+ls2iDg;*hc6~-q@xTGqFhAB0p46vi27C>1Q zN#qqMmtyvq!M72u*O+bU^w7EebgyKGM7!8aZbLLQAVF_j@|sk1;?RN+1F~adXm$Di z;qu%~HTwgDA1IC?FvyfHrLBo;bCxV;$y z$DCk#{x`!X#?ArSbmuFWVh(0E;b`2TZenRD4g2V5G#eOl!a7q5STuj zU{l~tLe96QSjhqX6;4EqaTh_Zltdc?zg&)btX|+XKznhgJMJAmFg9pd4i&*7js$nA zbY(Bez+yB=+(si{C-5H(ZLbo+U1Gl4Y?*P`hB3ZL;!K9tIM_tkjzqW~q?#4^ zQTbFLgOq}X7qP+DToXL{#*sj{_56s7Xxv&*F`RTx*;VV-AUn#e3_B1aNAE)bU+3Nj zkjfU*w3o1D5PL_MUij;9dF-4ZP4D^JaPNqFMTNoh)fQ+20LJ7sdr+J-gl;R zhI4yHV#N3%fU;sNdB9R*FbV#k1-yFgZiwCJaC>HQ+B%3Gt}Zh+VF=N)3^R!9;ra@O z+%tQSs=;eGxLn+d8R*s8c`|C9Dz0EZS)4gO?DXIt2HlN1{qUjT+&+_#dux zP`Lecr&9WmSz{-kI(_J^Ax!^#WcXBf<*-r7-p*mS>)7o&Zric!b{)6YIJ;fPZr3sI zLU+54BU{Jau48M-G7tORu4A|B`2S0&Z7aCjb?kN>2RoMCu4A|B!18#v>)7o&Zr`x% Ob{)2^uO$>^nrp)6DNfUJT#f>0Z2rjV^m&DJkP!qiH_7>G2@AR*C~Hn`(`LU$q7ni}mzoJLBSy3q{VARG;m6GK=a(Gc&X zkI`}N3069-o&lFjQTg-?ctSvTKC%WrzYnga7q8*oj3`GC7ub4(8DdN$u=!`P})H{`5qoPT+)E3^k$Varal%bTQf|_W;8KT{E;qLY>D@d zOJ+FNoLWtZ_Ju%VrC(H+sltMSL{ykmGo-1Kf;#3@49arlVt(lZoGLnX-pmg{SS*;d zNI6ABfft%eBel=(J%tZJRz{j0%t2JjnT~&gs>@1=w8zddp&8fGaLI$_k!mKnl8bYH z_X_T4&6E)+aL2uIkqI8P3qmOy5N45Kj+!Ej(grc3QFMX{M2rl`2tl#&yeNU2B1(uw zQ$z`8`Y{K4w5CXIMl1{G%*j*r(Ad%#tSqd@2&R<}k)eo+&*;K%!8$}#MBEY8G+&AT z6aEM{q(|RiNB;RMoB$Wf_B8L6z5Pe4`w#Bkv#(m>*9B+&MwgARGT1A!O5KbXPfTIO kB|K$fQ}!LIl|w5AZw#$HvYgK4bS|g!KT2m_r1Si$pR%W}r~m)} delta 2279 zcmeH{yK7WI6vml}O=3{g#X>}{D;SZG%=-~F2GJtmBQ^oSWSO}$11qbMtPw2|MX}I; zr58a33$aai5jA#V1SM(2Vo~rPu(uFrHwo-E-jo(;hmUj4?>pa_r}Mqf=X)2HyYW?o z5vC{%Qe^{GL~_R%!NMRWDHk%uF4f+PU^KzG}U){#LEmXYxiB`~=ytD!8*D?at}MP;96Z!We}aGpRLH8qO_~ zN@7KLwygo~7OL`v23REEa6Yviet8A%XTv!hO+xgSAt#wfjtQkL zz+L%|6?lA0qJ-5*Y3!^*EDmL(0FyLDoCkxsU)3IY3+F-Nt+d!$9!ms9EVZ0V>x?kU zN+j2`+0r81o&R|U7eVnLjrZ`}c+m*u{-k`v)Mk8nD8ZBrpxN2@qIhbM;uwck#-t5e z^N4JXQV}U_hfHkgYWp&QQ$>TZer48P0)3SP~6Oy$f71jhM!oD}f{q zN_y{f9?g3VlEU_TS0G9X8-Mx;RiYL04*8T&rWvv%&d;n!9n(HoW=tE(ekp{eG6>Uz zwb6Qkbm{`NLJDVnc3=sX@>LRrg-}=q6_{g2Mff0G5Zni61#@JLq_BI7q@b_JYAdjB z2qT5@faHn4X|7zW`TAgeqTE_n(`F+arOkDD!c4?uM0rB2w@mRi#=_J$wWWOQD|`TM z7p2&AnPA7yU1io-c2s!%hggc-h*Ko>YFdCZB&M375dbv!^u8wZrbV+58TFuFS`gMyCCq9C#>I_nIx`>Lw@>mv!^4mj?b{_&$b zU%h&->eatqz4xl>+w!IQ(1V)jrO~VVMD2(^sxd8?z0l%ps;(+DTWw}ragoU~%VD-! zO>^d0Octxr?3z<-Dzcf1&9T-{(+Evk5i44j;_0^S)1@%n>9Tvwx={Aq6;ipJfSv$9Rpft_xlCYYmQL3-2Ur_DD z7DyGol)mAr27OBQnGt1TB$&(hkD=XYmr3dRFS)w5R;#hQj9SkAkug7~t=Ya3GXYejRY&7t$^eWZlLr z#Q%?@r(Na5Pc&!+*tkpU5~=P(=-GUty}|dMxc=iFGVCFv-W)Og!{)*bnhJqw&pO%s zkFaqeot%BcY+S1{(@!cRZkz-f`Gqa1>W{^!)6>17o5maCX`Jn9XlRvBH+Ca0^EIL0 z>KcekT(-d7uWB;s(gh6!TOYQ9jeHut`c)VymwS`o?9Mvx2q0b6a(16QI+K7(Z%`xg z0C$u-$KBtZJK+M*>_@<%i+Fr#=b(oT0QvIvCo<&Ph5d+)u`p`$u{IhZy?37Me0W~G zzY94iJxDs5lahS3ylZ78e$iw7!K(h2b;zKmEiqu&Ie*mx0_B`Jv|7kqQKMWfyIbG% zKW9Rll;>MlTlw=Wd3@GQEGEyY*{a%2KDG8FIgETKj3IBU=_(3&6K_YvgNH0_vDOi*QGloSoiH&8Q zW9UnR|3Jm0kXKc-E*UaVK@4}1`sv$NKjoZ-aB9k8xlH^MI?i zSsCF)9AEitP!~ktt2CCawBPR-lqrKy#zvt`3`2JuhYq{Mor3=}O%<#9a%EnzRXxqx zp8CCSe7~w!G#>{4ULEQ^U^adb&Fs^0GZm;mswiDCW`l&{+gn&06w?;Iu$INjlh+xp zV&_WQ+POm^cJ8;r&Z)iUxt)`bKlZTv>gL!aZga{jYi2pCowXG%dDw<5Vlm35O+Dn5 z>l0(X3$7rQxmy%%a1Sp&L>m(h56rHJaN(Y^x^d zYHZ>n?Bq3_T;-c8@9|~JIsdAUa%d&_f-e&!S-UGUD*|s)@MB?gPfrHx&XQ*m037nf zUs+T|HoHkKdE*xO@UKS7OJ3IYGZq+)rlMl2Qm@9jNcqiv)Kt#a+KS})FL&+BXe~Co zO(~C{byv=HYw78!&@F|LIxJ>;C@DSag?v>}vBSFNA;_ZJAB0SmvDjWLXCLgbbLFMW zF*=cS2m!A1nGAX9Gku4kLr_;c7n2oIV;v?NTv83DNu&j}=tSo?xG=Ne!R0+PX~Ae_ zI~$!IS7U*!fBq)0@a`MUW(Rh^#8l}K%TiEQId?du$R?C~D(V_s+9G=KX-Jiioz&@g zm#}}x%IwfO9K7U_kCGw^Y@!MlB!$-~qF+7@UFpneV2GDYs3-Q(770H5u||0;mpqfc z(|w>YN+S{{rJY##v16eqitN$Qjqky@Zuc|8^@=7uq$usCmoIK8koUYhPG0g>?+BA| zheyi?-yZz~Ga2{6&Y>SHkJgJx8@l4%D8pf| z^!Odx5NY_61uK5r5mxYzw;qQ-8X3h`ebNaG^v61ZfvXK)Rt|qOI!d=XHwwD256@5^ zL0@YNS|z`&OV)H= z0umv4TKb_1o+4IOKZkCQhI`pFV+^D~9zEJ0Z0bL=MkZ^0n6}Ik?EUS z9+@7{Dv>GuxgJK4)5sh{(+{;G3w{X8F$+!(XnAa!tQBeS2m$dbdMX**L?6eQLn1vr z00xq{IJ&P1Z1B66Q{XE|L)Xw~Hw`XqoIMnCtL!rvf10R%3>bVX)4>81|JTzyZv}l~ zc&JKYF{DKEAd2o=51Dj#24vHRk6?P@#xTz%`EhJ{8yb_ULJZ{6RTe0Le(Z}S+Pmrv zap+0o_KU3I+b`Hvj@sBb1}6E1wQ8Es9WpeDtTxk@P|z&Dg35)0%COcHu*VTxRz(I} zqW_f*R{F~<(54D~2~Dy8O%AO|qS|c8rN^_tNVoKY9wW6FjECzAUCThg8LW%Wdf4tm z>Hl8j;O{I_nf&+0@mM6SlxgK2roqrH?LoA@C)nw>p4hjmDIik<6RpSwsehpVA)a*m z3gCI;8!v+=e8~!q9=~%`(O!4Gm%i&*TdrC0fz;V|7Gb+~5z3%$#ICZOTdn9Nx9G4) znJHv8f}EKU26krHf5xXsRMk)8=&CBn(o9yS2-}O)N0^o-l`p3+tOfE;9A@Rx>4}@5 zH#xyr7`5*R1nIr@H8&w}>ia<)lF^pIkWSb1gTCZ^95uZGM)vSRKe#=>!<7U1^u%Ja5km|3X;d53SGx zM$vtf;bt;2o*7{nPKQr{blikYpd<2N5-CT1XoJh*g$=$nUMO&Q{FQ9*3T}fZ(4_+) z6IKZRUe2E^kLPyScens9UC|6%d|K00Nb=|(GC)Iq70<1sdM)ekQ}Hw}6NZy*@hl&i zqhA#tW*bpFANXG|HRbSuud_mT%_?Q!aq;js{3FruKM2LV&lF>)J8dv1xve!^V}~() z+dd8$It8GAiRV^F{W_EPXVirq=C{KR?L&83?tqH+%f!5nPY4D*>O+2pgNk5eJC*3l zA{gAGZ3Bbbt=*9un>xq+jQAewC80%f+CS{?`_=bvLG|%@vqw=M-@}iXH}Clt41_5_ zCMED`^MD6Tq%?s|8+=4Z4~8Q4jZ+`0Wr_$_n`e zI4PvJ2lP(_&<77gcVlaUa5pw#GcXapAtC5)z;JXo_F$6`>aQdSsBgn^W-B%%TnXyu z{7@e@3^K_%zl5_w!kGk)b#h$oLqDzz==NrC(D%o}UaA`hnl^sLQAms2hN1gzhPf(R zvB^k{qcFhD91m4=&?v}^!UQZWSq!~tVOR81l5T-+(I$Jb-9}BL&^H(`stw)qqaYX4 z)@G}qI6R>ZMSTWxD*p+jtIQ6EU67p^-G&T(qJA;PV$37^S=~L+PeV)vbbAJRtjrtw z(RJHKViScWy2Jn(oyaW_5PEC{^w)op5N3!F8{80m!sbDUA^Jj@N!$=|SPf1Tz%5SX zz_llGPmR2&qWbADJDQ=Rn9eW7mF6!~pqGllfI7>-Ky?+6OR#LyRNS^$G8MALz;e>v z>`yj|ywrDjDm)JZBs{%vjr$9<#RX~fz_XCbQ~$JiJE#o>Msy3s$5>EQY_vISe3v1d z#2h3s+fCMx4Ft|58M#;#l45I-#ZGr@^Y1(;asnGaD92G`wns8yO$qlhJJrQ>+JU-K zgX&V&s?tP}t)InqGjB_b@Q~A^>HMDP_zs%^wbuuNM{bATf{{V+yJV_=;5dW=+LDbE zg>7GxPMrxGah16%bS9BXZcatul5tPFDBOl2FKw9uW!DFS|KF@&Vu8^gf0cG>N-QZI z7(k{e#qu>F@R%>$DljL)$SHgsCqr@dWo{u`g;@w`NmLea?h4<|>hLT}d#>gV(oQL&uE31QkaP|eEw$eS89q!ek` zs7*?`k~4oOnx)1j(9u6fRd4i5SudnKn&iU-Vm_g+#gM}fgV0rrVGKRA1ahO*N zbP0^5A1p>U+hVm^DYT%19$Sol*to?w)X%rT0F}+;z@tn^M{E|lqXjwHttLBrQcPFe zhg8gS_D#7L{tP!%P%qd`mu`V!>UWsRcO{9S`K2TtH0w6A!3ri6AEm>$f*sbd(d-|L zng2yWdQfQ>{7O3~ly;U6jh$xP54Xx&zDbi${a)3_dSUW)k%VgQPTzS5#$G>e<5z%|e()5e@CzmE6eLZ05i%f_ zZhjGCh~b%_qQ@%n^meq4gOFSlQx?t&^qmQ!kK5T))@Q}eMyBe9#Lz#kgm1}A9hy&( z4jUmVv}asyjp1834?F^6$lbh#xT3I77q*4-lNg^t#tjp)Ovi0tLo1Y!m5knqkN9p4 z`(~yrW)hROkj_5`L-i4CrpIto_UdX(zWLZl-b{Xt3^Dn(gYJ03pM1M-4IF@DtTct5 z(1V>E(TTLgD>`n;kQVi3;8*s@LY>$Oi4Zh1MwqjGt1%7Ng`PgnLP8rRQZ93G7BECROjdJoNIK$t z3pN`w0de%MbV#N%Hb5HVWOU%a$W51UPIx7;*djP#!a`3cY`{hzTMzmHW?N*c9Hy>hb0b|Z)|{?-vE~qc*qZY#gSVZ0!)8}V zdSn)#RyZv~kUc2`*%S0UMKV?|QY00Ge)a_1NlTxFER0oI7C|Sn4*^_jO|)bi!#fT! z9+V80a;$32^6}rKB?Yn(+=DcWlt!jFO&WlllCh8wU29&z{nY$tAW^>aBXyh=V_N($ zN_zTP7||?d4u2T<&sczS4Cj!NJ`n|hxe*}a-$=`$tqtT+0<@Ui!^smtYe($c&B5m3 z-W^gH3yL|e+YsCBc1J|wq*I9nZI#G$e@#kMf{JPmQ+|#1Hw?v<4Dg|Qj!#l}A3<98 zG*ol~HWaWuuB>Z%+6mowf(1HN$W_%AuGgT#Y*@k&+Fu-^JJc>jrxTj^Jd}3AGZdb= zSB9tE5lF#wYOftbihB-MHl)F{%tH*Hx$IVQ%m*Bvbo1}RLWeoRmmpJc`NwD^jSI)VS~+7_$R+TG{1fti>}O7eo{IC1hXnD=>?YuZ6r7 zyCEO`7L@n3o_@I-J`WUsy$7<1E}6$1STyccIE6)m=|w+N_iHdGG9dbi2yrgIhKIH+ zth%^`turQvg*cad_wI$uKuVH%=hy5<@-aeMNix+OfB{$}GCUIxU`uXK=BX=f39{kW zv0G^NK4_u&ujBa#Ka;7iW0+KbO7mk;Bok;QT3ID^;+Oj2Xp zV-3R5jW&oA2^X2Fg2@%+!}Ew|n1Vt)-B?zawI`$r!wjO6gAKfs#Rl%>`o_Eq(^TYk zgE(3+nN=(`_%6N&msO;iH$~*o)lPqr{X-a|B8#zzWjW`Ir{ehIZK9Q=1bH(BF&Qk) zX*Vd%<8x@N(mZ}rCPHy7YP#`(ulWtUHr=ST)cLLm$KZ> zyIkVbnxtHQ6e-FA=@xvGP2jS&#IABJjpzGS9yZY|@1H@0#ckSkv7;-}xl zJ@8!i3YyT{T+*~Eq?|c3;)I;Ir!{jX%H-tr4R!T(4eZr7Qr(<@a1WOrc9ASpqPRw% zgKtB)E406JZdiXqa<>N&MS~%8P-uJn8VC$%a@(>H2FDHDgybE>f#fD6wXNn*aUnGh zBK)67za_mxT?PcFwyWz9PM!$29lz0 zH#zPY7-+HoFC}QuridA@PT@0Nm7|l**A&0>cJkvN)h6DgHf>VSzc)o3Kz^6$d=DF+&}2X=JAiDt&bRiiL6Hezisa{% ze=toE#~zPyoC}X;{K@u|=RL|g@qNN?T$t7Z7W8{>MtXQN6sVm-l`&86jL??w^j;CB zfo$`eT{eZ8r?)O>6S${$M6n6n(~B_27u3FlKSCvtZmDc3B`K-&nNQ&j_RaT!m!H8c zyxdf=!Ho|;I0Fr=kgtwk3DzPCTK^|_0LX|`5muF)1xm&;p8PsYEY*I7CqA*%`x#77 zsJ{6ODoA++5`HE+n z@Apid?o53BUlya_tD52}(!ZXAj7T^40X6M+9$MkNZ_jzSOvv6;-|jEr(d1*dI z70aubl;xcJ@&)d6R+n@|SNhhfDEz8Aj@Lk{R9(9a?^3l4nN>xzho2(Dsu=c*y``&4 h&3>^hxT;w8i^b7Z8up7t165k~YnQ=yaX z*$!ukrL-ictjtkfoMW?;mzI|_Dzum8NhfD?mTuN*rKH+IIMg^|X+MBBBzU%GbfG(@ zV!bjf%-zE+bEmq~-04F;25H(_r!l1U)5atk1!S*MGS&BmkJw_OM8hb*#QDec+WKa}xhWZXmQyQ?30 zP9+)RI?(D5am+%M6tT#m{Id7d$I9}gd9TJuTV9b%JKs`EuD2FQ=NnAKYLQwGx0m#d z`f#^uT%Frg`%5}UleH?E6;2A{uCv9iR)vMloaol2&8wSJm+DqLYz4`9Ia9i|RV_V- zldgW7O&B5VZ>*K7xB4gDxHX0R(w^~B#5N7ts-mV?k}3^b7aJ=lZOmMIQmS7UC+&Dk z6S~3&J$m?0iMj9T6v*w5oPD0kC|J`ah0snas*}^|B8Vp|g<|_QfkxU~r;}RW(W8P{ zr);(BekpVf3C>eJ;i9;>SrjuHjO}skTY(n{) z8UJ){Hzn$T-4v;5)k$!Wbc3|>@JM=2hO^h4H4=+fYPy^t6(32E4(}cTw#JmEZ~%+6 z=OY`*vC$@gfzs=H`b%?~wRE@#=MYiSA95J6$%jH1Bv4t=tKT3cJhdNT#jl zAohjrkRrEOt!BDJ1xeD6=MofFhuv)R;LmuK)by>ovF3nPb}vcOLnb|aMgvdrJy|sX za^f6p7oSvzIKmtQI>M9EbC){>>#yZOhs< zVH!E1##osV#p3xf^o5{!E;UWcF^05NdLR{&3Av!AyR#sX_DP3Ya#c;InZZnNrNiTK z7lcEZY9Z6RoK$3u{dqW_F5~m?aPB$P1OAzi2#sL1AQR@3SdCznlLe)WvMLKYczbLi z8Jze!`<-Ng{`h2>0Da1WLHT|S5BW&CVu9bYE_}Y3Vm?o!73KnYL<|^Whd!iO40uFC zo9s9-KKX!IUI96@hb;bS8H09O<$@0IEH!ln0q(Fss@joD=4%+X)7(j5pt&~C(uXEN z41WvS*EM_?hy8kufc@t*0`})?1neJEvuwc>GWS9meX|*c&=vh40geVueuz)LUqel= zV^k}bdHQxCV}VxZ0aaou=d!pc9E3#AZ+k&6plA9*dwS~-sD4S$PH>S;lrF8F6s=#( z6mwp~(6Sg!upK?3B;CoMG&}^M32IHp8PVOnLXx8y#Z;h3+!CAluBA(hrz>cBKZw`V z2o;Bg1y)2lX+>_;QOo0GqLyVr`j2@Qq)ldjbl5mZr^5$=g6a!E(@w07llVW2MQfq^ z^Rds!!H`9}^@k4ey|Y*r<@NU3{~@4arq-v(INutoR7^nr~#D;s;?F z5J}6SqTNvFOkQLhFpbjEABVvJx@9QH*^jB$(KQYag|1|imO>fu9;w6Nx4yyk!=NYG z9Xxmt8&@zK?Br-*NW*X#&DuGfv9X-q(l#xIyWRn=3ts7{dVBfJm;m{0jG-S+fZiQ`Dqp}q zS~#;jWj<%b6crsPYu*m%l&ldu56guzUkE6Zdq<{EnY=U)i7A6Un~UKgAVxiRj)W2{ zRO0m9IgEN*T>>s73BNdA0=-DOp8JK?sOMN`svS?mC&Kvfpg8aAf2b6B^%ngZ6I&Tn zvnO|oVL~WTK846MO3q{K88_O0iC)-$k)GTCIK3~x_9IWBm{@T?iDI&fyG$?af1Lj3 z?0>x1{%4h={crR#-yoQ;(~AJQL&*Z@IH0e-f#^N>QP@o*I+ILl90MkrSP5|ohuvzk z(uS$fou2v~RM1DKKtF{wJKJINHcnxUm5?vD*&I&RmP$XZgvqq!5UAV!+K& zvmChBGRqRc&HcQ{XPUy#`KH|TZpsa@DcAI(sI8UJmf2A1RekX@(95gvHP1kAq2{yr z#`HRG9wgD^IndFk(&B}X>X|YJ)`fQUnK@3g&1%EYYjA59TvM& zYx6hc*j+Y>O2QyzN!;ptf8THT;rcfw>csipVY-C|L52;A{tR4f;ZKIa6Q5~lU*E7{> zlFO?eOP=8_OAd;uUS6A4L3i?opO<_GGEMku8BZG<#_qDiN0!XV+^jHhL@(UCvH7>CsJ)8>pZ?Yd6DnxNDPiBC`#FsGGwS zJqwS~ZmYg$;#nnL9PsM9m=Oa}_Yu?yE0;#2c7vm?RqU8AyXN|P)2qLYLVp_!JnGU% z--bc-X(imLBTar*OuyU)qwhS|$?t%X>^F#Pem+}cvwjE~)!FRULM%yas*D7fC9{8RlM~Gs2z3AK~1Z`IEbIyO=3k4)M0v#cP z-&;B(Zae4Ps_>Nl3-kvvD1z?!D;{d@`y=F$;jF(oZV>jxi?Wd8Ozg?=ZyTH3i9gsy zPzc){0{;%5z|+Df=;94{U^yd#!{4+BUdSBZ2Ybn4oCXV-MG*r1o{Zq=2h-^4^>_l| zjNoU1A)NPd@N+|x;JTA@h3(Y%I+oKjwQ*=NM&=1guU zHh;O~YqoG}2F${i2IEG+AzLLo0f1I7&x57luk|gLx zQ<@+RE0Tz2h-28#(<7D9A2oP-6v4)_lz`W!A-O?c&-FjS7((V5`I+vN^H`MDFa~C9 zqQ}m|d+hoAH}E-m(J1a(S6zTbtTFQ<)>8Q7nauz(iMXg;ei0@TvQ4mzX~o)VmteWg zNS|nhZ+xUVmmq~4@so~Sf-^`G3?J|^{O&T8hhEcc6?xh}UBP?VD{Od1J9Z!4inthb zA6@8CT!mXez{Ho9bPaoJOnhmWuq?g?J&+{o*pt^#kOY&s#=*uOe}y_m#Pn_q>FFOc z>^gMxju}Y$1iGKUjwLd7=b9M81aHMvupBQ$q>)NqX0lSnU&*R}Ucy{Y2?mU?G!% z%!p)$qn#SbL$9f}fv&NT2Kt$e=wK?Xx(@NumkX1~Gm*lErbg0-?Bp?mPi_<~ViFHl z*eih4M~Y7v-gOX4)c3?^Y)PEkbFid$RVZd$vJ;6IJaqT z=ah7192p(zK7~rUCYRKK+vDg(ZV{3Y<;l(?U&+YTNSfG>yiHzJ(&PQe{p7Hk#^jSM zav_pFkWVb+qLKb%K1n9$BI!%{B%XepPfT;KqDpEi77+IT3kCcCDt_l#Q*jutKEtF&ikJC zyzg_K_xYZ)XS%gt)k$KdxG7GvUu@IKWwzxe>+AV>amIv1V`6fWY|5HoOh}M(a!j%* zA>L@uNtTlm#lLs!@Ohp0^!_383?Z6+&fhV~y6?g+mQM_68rFzjm=tWb=gZ}sl4wg#8Y#FNstrA8|lV<(_$_C;8=29t}?s9*WmtY zEUxUr5_wWQOaLr?V4=@KQX zJQOyp|LMH1Q$xHb^!;V3P#-+Q|B+Is%l+{v#?eQreQadW|07l(!Ns$}RLjx~5UN7YX$|uSv(*0Lw z5uL{K+f@QoxVzS)%2VHUnxKYVmN1{J*Qoyx=sP`89G% z;_xdW?J7*JWX|bujx|j}FHZBO6qrR4E%KkA!#0787P)%{`~_kXSz|hGNnxVenKcVY zR$C*LcgmUN1_JbbITj(0r~OHkn3C-vXGEoQQgbMa%GsM0-_}OYn7MD52C3z(%9Z=v`O$L ziUVot&3R0%J70tK1d~{6owBACYcYXf8drkjkY;;p4+r_y)l!cWNMr@O6dViq(G8dY zyv!_a%!h@iZ^RJ5riLU>>(fe)8+C@b2jaIxEm;S@i-3m1XYJ`A7n?sqYTpu-nlVwHQ4qimyV I555cd17huh!~g&Q delta 1420 zcmaiydrVwK6vp?PyLT_k!m`L~+pXBt6v0B_vOLPe0wHP5mPe4HXp2IDm5O445*`f* zF$JxQP-p8H45dIDW7=AArDKCNRyU1FL$C=o8nqZ7|ERR7TCm8&VHayP8ty-L&Y3gk z`^|S|%As8TNhi0i^Y$u*8oH{9;}$*qU^IQBtBXGJLhe7q z?d*&RdV1x>tgxG?3Vmv$qR}+$sWL=$I9r{ORkCA8^2)y;i<^uz|KnzQ{GAQAbu8|CX@)z*RqM9<(>hxS zn`(tZRxb>v`zN!^ZT~4_Hq!CQ-2b_b&ENO0i>y*dGiGeMZ#@dsh#w=P~^p70`kGrN8cF8*LG+c{|>00Jj4?TNX zK_;GL6AG44$|rnKt;O3s%^yutz>!m<8qe426#hlC!xjWFQ$J!b#^+2>C0u0D!I)Rx zl*E3755rlc(20cra#`ZdA-Io_&m=Y!hD+r06|SpZEM^|QcAT#_X%Gb=!j?eiEt~~%ZWQc zP|eGeaFt*m8w|r5zAFWdKpm?w;~_M$h&1dZIUW;PUmEJr#{JXrn548X_wg}MHR=I& zG6MnVWEadxV~=JF)WA&KBIFe<{bnJTi_D}Rud~g$!ayhAoQDFLe6Qslh3MCk>slrj z!91ZDze&p6a@RS72e)ju!2Q}Q_Z5|a*>J(Ff9_Y1T_J4OkKl$X)GnYz9BP7jqmT#qIF{jvb4_0woP=;FjS z9a{J=EeO@Y!Sx*|lW~+)cVeE@%dZ|ou6PQ(3yBg&`Sc-7gYXsA^IlcHw;O8-x#$%X zfrU@^KvtBAWu>Q$Y*7Gf!#xYv?AB_>Df~5Ez*Fhw#FFyagplC(gfb z^jMWT05_TU@>qD@F(d=)+4PX`CxU-5h#+8-H&l7%Fp3CC)p-m!Ff4eMP5=tB8BU7< zrE}4ImY|Vkx`dW-1S-LETm#x7#_x--NpZH$SU;VnLV@Jn*W5(?1*gKYQOWy72TL#w8719^J zinwP&Atg^!k9(2{n<^gpTnRr)q|~0?`^wm-uW{c$O!^yPvZ(Qo$rL)P-gq!RyKz?1 z-#8rC8h@Fb>Gph{OzxX;rl-!IRd4=?*XqGFcJ;<}gN>Jx%l=p2zb5^*d*Kx_tvYj7 zeWoLyC6gP^tvPk-z=kbbuV1}k^YyE@Y~3(m2d`hfaqWgd+gx<;ugTO#&$`na8`n&6 z_sk`y72n;#$dn2Bf`gTyRtHKmPLGWMFQ8-PazELnD(|rc#MS zrBT4SuTA8Kp)r1gf9m$~MVof_?p=S!;jUW1;wVW2p9vL79SCiG6^B6*$6>0KZm>_i zzh1H?Zsfa(T?e}AEHJ4b*}xcKrSemg#(u=PRW|hfKn6|aN*CqZz5FR`=f^sZCHIvu zq4boequ5KmBvg@MB8-yatYwSx?H+ifr@PLqg}sCfOpwYnNE8#o6FTB1uzt#-Lc5Yh zdpGSq5nDx)dx7GJI8P=)sshDgPYB7zqoPg&j#pq#7+D$nbUauXZsoxf6+a$x$X5M_Dz1i>c6t+ zUCof9M;1&Lm9>5Ae>8r~m~Ce53FqwG^}bzaukE<=myIQ_KiWe13mWW=Zc@H#!Y>zh z{c$0ovF~otxc8S|BbV=8_2wo*u57&UtL5}vmBzFWgnO@hYb>QV=KnsoarbXr*L~y1 zz?5U$!*8ckD=XjLsnjC8QHPEZ7{K$XK%K+(k*sy zt4)e~tgjnvu1WM(y~S>wCv_@iPbnYi&>4+@o#xdo?%V?$f7}8%gROJfHN^ zCwiLk?AFgBm$}Dhku#6EcV~Uj>dn`?w-%FrH)A&GJN@`zKj!3h=HTV0WmnH8KOXNI z7m?oI$qau;U%!MMuNqR)2xlLWpa3@hU){X|cXx+hA!oEre>4UBA7z?h)A!}I$K7x~ zSwOy5L_yHwRxKu1wDWtB`G2noXFME!II*|wJgUO}UhRy;{^m+@dDrqP@YEMi%F&M7 zehv8=`HK6}lceU>UrPqbH?xQD3Sw!i}wQ?6#Z9DIHXFWR1;adzD<6o$_w-QiWXVUcHsPMb2~2KTejA zt1|UoGNnRRx&t30%gL(j(e305gv8C4bX`X-FFUl8JW{3a$zK3&{mn($n;#(mM#yd1 zp%0PQ2>C$v;z!6$r0b&{ILeWU&7<6UCyw%QcgbC3ANh-{`=jJVLhdg%{d99v_l<{e zh!5ROR#)iXb~F#seCNtt)B17>FBC;Lh4y3H>HkyoIFc@);t;IomuS*)kso%@ z{;q7wtK?QX>AsU=AYS|#LSdSY83TlOfjc;tc4vS7BQlm`x4j0~`|;PwJGxjGw0&$+ z(@M9$PM+=R$lus~@=<+YkdObAyt_gcxs#5-6RvRj2w6!l>U96`Bml)rN5~F1%e8Ni z8C7z%+xZq*POs}~n(UuXp#9mozb1PqwO!4N%-{LKLb`Aq8FY7yqrW9<+=a90)!D%l z=&DM#Xaaqik}P8<)4opfRfnIw+4ZN=%R9Qhn=3V?uc_tt&!Er3c(sTwA+KgX@28)n z9f@9cJ+u}L05G*PdEO2Z1`+Me@*C`ricvh ze6X`?WB$GRsf9y)cL9Bhu7kYUbcLIEKAoC%yq#v0Jdk~HA-$E7N3-Zs`YP$#oquWL zsZC+47DJdTgpnt*&6m+GN}hI0meb{AU-peF=#DCRuK9A}*SkkHTPr)=W6S9~>N-TH z>8Uu5(A!4%t9%itM0ly@!uWBvzo)XO>TY}&J)y=^KeeGv1DnRuNUi)>_%ceoz^d3X zw?|bbWpDc~y@S+^!kbAPG3$en;ugJp#5lg7WvJ3XWn^ac5Gj@JmR(0LUtS_tPM=ku z{wI21o1H$d&gQW9y$`QbV;Prz5UX5)I5sv&OeCU^>mWAS{(5zJwa#s#qtp-4*K_G< zFM@Iki?s#?Av~6mMU{Iz}}t=g)rKJn}LG9$AvE(za8$gBcT^oYoNJQ%4F>Ok(3b+B0q|J z<;A|oz*u>X+)O8B58hJw2-)8HanUfTP_Z;y7I!*mzLoIx!Z*ugy77NTXV#G_qzV(yYDBt? zeU-*0O-+O=f<0B39e$&-ym|&=4rzgVP+vrm4mC74UJ`jxXnDrIR%wtLW0BFmVm_=d zV%&-s>DU@Ly3iqZ+A|Y@RV$HK=q{s{0-1Z@E_(KCHYd30qPbgc7|Ij@JPHJHEE1%% z7_?>RGsB^ZABO^ow|Ns~#B#QvuW~=xUUn0s!=<$+@?`Ytu*6Wq!F5U0`b1H2?mWpO zdGS~YiPG4@7*eLbu`w<=ietF0ibe)jT|}OT^eW(q zkqj_Yu?8E4CRA_%E5o9O)k*}riTBfG^%Akt?YN&#t|1+pz{hBZNif4g8LOdbVnUW@ zKIM>;CuJLVSLRpyL6W0%$M`gq0Ye$^jPJ)j=blY<;HJ&T%4VXkGt}!?M*=%5sac?f zCu6RHlnapmi5iNg64^=Nk*Gqg=Mujjr^E@vI105S~MxF!t zz?Z4Efx_G>Lh&&{gfSM9B9fUc^4yIdu52e~upmhkin>iO@nXWD8i2;((Rd8<)sqc z;pgZd)pepnu24)P7|chN$7L8GPzgNY2TBzAt?v728pR<#!a>6nRSI=eF^k%R(<|iv z9Maab0Dx3b*^dG#Lk#~kprcA8j%hreegEq@`YV&^c5bckT8Tur{dqcbZlvb$5wRpf zk4K3`=>$qo;YBtO2~q~qHu?$fW&0n&W%Re6FlGQuc^I|63Ntz~${g>w)vfI$hl|w0 zvI7-ig!u6=(zL0FJ*l|?ss#v=z~R6e+|L$>DqJv*VqfQumDpJ3P)aC^C`vu47z0Lk zz(1!9HCoy;u|)1pM8YLNloAp1ZHR%X#Yhowqllvt!N#32$AN)5P>z+Th&n?V$>`S1r@q4 zICg401^kM>%+oMQ6YG`9bkjtI*ULn@A0MLU)e_Wylnf+tfw?;1LKwy@fg2jn2WA+; z2@r2R!&wr97B`gwUPC_(6Gz62{34Yd{5%R%O(D zpTK`8&ipVELjlH01iO>Et5@Ptjh1pFx4pYMrKYtfVDlhOaz`?FN`Ogge7GQ<-9QR2 zvV=j+iBqVDD3d7wR2;G>#RCs{oGAgt@=T8a3j@3rqSyu!Ip6px8j?VxxdPnMJlprL zaL@kMB8&JcljvUVuFM1o0M0}AfyYYl;0pf7g@*tKP7^@Q-jMbwNGDGV4W0>SL}>+w zz!E$Gf~P&u6#Iqt{phvutOW?9d^4m2owtMNyMi1E2APhkPm?lzIN*UFq}C)-Ne-GT;1=PJL>!@QWnjmeWvca4B!xE>Y(?2^j1G=6-y6NUwXGz} zL+PEW(zmeeR7I@{z_~EkJrx{C4jGUG=@{G@;GdL3Ailu6UJmBKnQ7lk5F?4g1%-J; z2od;*tfK|%F4Etu5+M*rfYusp1s-rpI0I3In1y$sT)j+ctwks9wR&aAiV~r@afVqz zp@w)02$nYT1V`To4$4A)iU0v{Lk?ixP?y*b7>Yg&1t3B*nJQy)SYiV0gCdB8W49wW z7Tp!wftQ9U=p;mR zVn7DsVI-@7#*K%HpLh8EL2PZ9pnh>sfoY@_2Op4gd?I9mI}o75M*x1q(`5k^2ayDF zHo~JxB9$zU&jfwW@DW;z9im%Wivw(*B23hNeutwIavO5_aHnC~#lA~9b8Ed#+Ei60L5Np9eaT>T53@_1-7z@l1AizNO z`5HFOJAMRNUavvqcq!mwfE{n&8j3d1>PYBH6_6+aK`1~%DsDXw?rKI7o*WE3 z(t8{W)Yc%3k>SG_o&bUvM@gSpRJj+mEJTg7%tk(<*MNx8HUz8+lQ2jDEr-Bjy+kZ% zaIo;T5{d3Riz{c=fnCA&SY}YEB*qyk^+brq53o>Zpy5S|M^8 zurUC9V3KT4P=)e{Fq?qIMp4HdA{ujo4lF&q9v|=~P6Vr2CNWoD^tTk4xSiKk&zZ}` zC}_xI#1&Wss{j&mC4Ed~@W3H(k)JawLk(ovgNH-RVA)lSj+zpWY&QpBpM!KA_?dUNP@FxW|Nn^5vvU# z*j5D=#FIEaFs3ZU+5#p`%`VbXVo~d(7+SQCg`)VV^;M!)B8v8R&OSHXt9W+ns{h@r z+;#8WnLXcp-+YhX_xn!%?3vl`d2IH`4I^8=IdjLz&Kdkt#u=BaI9ckvkXmGkS4!~I zGL^|B%^dg6gpd~2NM88D?flOf_g@hAzJ(m#J>4JN{g6AMyUw>~tg)9~5-z@c?WK5n zLOlJ?$(-&J?%3|#{)OFl_+z>={Al;9{*2%0z179T?>1y!^VkKQW8>{VBXE1kX4cb8rw*sbCuTOrrH+O~&3+K1352^H0W=;tunYDSsMNy<)1XEbuWp~`vsacbDuef*a&UH8M zZFPJIR;!%5)H9`A$U~5fYhNhEi^B3QzvIUGMZN9B=Eqx|LgmsVOb08u%DvMeVJtB? za`4<1uD@OFqTY7jxdYoNZGy8IFQm&=;ar|b&t$zh^b-LO`z3sMsc=q&8mU3NW zGH|97l?0B>6X7gkz^0-|ME`Vki*{ad@4?eMg|J2>N)%pa$^>PD%TkqiUogwE5GqCM z7WGbcetFFFw#~g(!lzkcox*kGDk%&%JY+g$g|9Ak_?qfcmp!|+P+Pr4={s$i-qWj2Cp6q`2znAX+>5RTVZ+mLd;k>ctuyx;@dB6eJ+&eyzjm>!JHnN<4pxO6$$csvKJNY;vCse<(_~173lJZUOB6l|F%SOgMu6%nW-zQ{A zdChyt4+%v3_mlO6yr$f92Z7hFijRJP>?V2n?ycm@g!pQ&btU%tc!R!iq<7pk<>MbB z#~;+Xegw*YX?A?%rS$ap>h0t{`lgXM^Ez^Vxq1h=Ya01vIr7)!J=5r;BjpDlAPR(Am=}J3g=nc6{O=$*mOMFW*Dd^wtY|i_d+2b)@h8E4iV`%Hz-nwni@89I}o*)m=3#Y}$8+0kXaUku| zy^!*U-yk2Q^ww$d=)Ew*ZQmyEn9+K7@6FfGsbpUKBxK$;L1u~fR!pP+JgxlXQ{)>X z^jp))k32)(Oh0}C-9=kZ^;T}5)0aBhpbyb6R8pb+Nlkifqcy9A1rxO=bK<@hT}fud z< z8Y%q@Y=kqsl>U-_p;h86Prw_?k1e9FZIGD}-{+R|me9?VjK=L}(qGW0D~a?)(<_Cy zo`bDdoQSi&gDn+HT(XB^dYi3?sy$tMmFxch_)!XF+P^l73A&Z>sHenn&j60uZMQ0 zPb?5CN8)LYp4~}!S_pth33#Fs5pt0*nfbJk3D+_&%H_AxGn?^;m(YVcNukrkG3$l4 zN_(k;Ni!`IJm4WPQSMmQ*h)HyDKh1`Ptshe)CnzYVsf2^MA{;=MY;Q3jsL*18p-ji z>*=dj)X5xM&>4H9-Ed79JEg-GvW*+@dy!@kno1i`-P4R|94O0*)OzcciF?m#&Mi-$ z-8i+`Hr`8aQ=7Ax*4i%(z5j z!}!*%`&Ak)S*3lII(U1i-1z!GYMj{4v^KzAK3HJY#IQWia^bz_nOB-6CB!aowpA(< z+(VJ*AeGD&bmW%7kzjeCz_|Bs=-jyHA$oAxxsh%p*Vo)n)-&hX=U#B}(pSG?$*V4| zbI-}EYYe5wRxOB&ucn8cQKOo!t`Xf^$O{7#BvPe5x2&+jGM4fz~Wv?ABma~a|DGeWlTM*LcsSYfaOz8{}kxQu*az(*BBB#=+BNT4ZBr4D0#5xyN zWN8S3+u%)*R+NkGrwF#3p#l~dM7kL#~9fRh= z_*7&e^-Ai(X1TSgE%F3D?G@DQD^Mr2QlL&|T(FfMw}3C?>ldGV)vC(HH2fs-xyXx< zD{phngF!w9L6To!k)Z;JUt1*Y+~U39Ds10omcOcbsF5ukL!f(8f>NuC9m40RLP9#n`Bp5u;s z)mh-5QxA8w+B54i);oNcw52qlIFy81DrHt1goX$T3|S@}dp0c$m6%mgRU$Uv5WB(W%;StblaZ0mCOzMdvEv`oCBJGpMvUC87Jsq?_et6{03 z1{;s3B{iz?DxNqmLRREpTv(Ok0g{3%!0#wn!uC={-x*J9wu5(xPmsjHvG~jziOQHE z8Cl^q*P)81wsY1LoO=Vzr6dQRm8k$2;vJH&Oe;)v+pNZ;q*Eh1jhh~(%Q|_D-1w`9 z>0zBD6KMv<&E`&^x)y-A_@;AwahDXf%Jpqg4Xp~lr9{&Zovy69p!q41ngm%m9F3b zeOENb(_IY}i3EkEoxf{U(kVIU!|DXb8~%%)*Qt@qV??3wr2$5J zd9s5{56&9C3wH$wmbuVM3Y69a9gP<#MEBFpGvK&s3GvGW1e6E25jDT?CRG#L8^bjORydk)p^2(vP zg{5I)TgV()E-xS4)T_595f<$VV5HG#mkT61hg9L2hI1pfs(RZlhRckLj&AZ!jl>WS zCXMzf?8O_dehFizFt(s0j9U6EDD-G2a`Z{SE9feKUVHe~Afe%jOwqdc`;K-EEB_l6 z%&~OXEhWDeUNsImd3Bxn#w*wvb-E2;ae+Pp1v}AsP-rZXGXXg=w8!Y;!48yu^uD=a2Cde zISN~Eh=U@}iULV~(Ec-EVGKPmn!y&bUqnFbI5cILD4MiHIsXL6j2f9$VAY9?*N!%h zZObBI+@UAP6F>$)RSZjz+#nT3D|m$kJH2Ao>-dA^$XHwg<*~$}B~xg&0@~v~d(jE0 zmdJZdc~o&OyaA}pOqQXQb|9R_k!+330UE568K;jmjz3ANg?vIh$-urRVJLy z4Zw~8{0Hfhl{ajqE1I>Ft8(wm<_F02HJ6c24vQMsGm}@>S!z6pmJCqVUc;T z5BO{VOgzXAuq!SLy;X{FtmZsVCF)v=z9z9LrnH0XfQ*QNDDWSM7vKi)j2u7f#G)Zp zMpd0>pYLqf2p$x#8nKbQym8`!Oie(80Yl%QVMYaPkYhFtc1u|YDX2|Ri;Cs)L5n3}HX&SrJ^@J{fD05o92_aQ05@o=YaGN@ zjoi5D!shY|khX`)ofKSvNK6j`45N0QSc!N+lv@~Bzz-9UGGM7W*W>P~;G3unh?x)o zta|7P1e?l{HwuUM#~DI_MiHDb2ao7whRMAbUNHvB4cq%cbk)f0duF>vVqE*W#xd;_ z_6H4U66Ab*SU~0h$Qta5^%@N!g67$zhm5GX0sW4sf(GcQFp9uW$b<{Jl@M~)L^&I22so~d|ul?iLso~deAG%Eqzv_ligXwb3C}(Q;m6_k?@JmN`RdWS-Z`^fN^9uaW MyyLEJ-f-am0PQHyTmS$7 diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index bcc4e5d37d211bab9f33a6cf81f7ccadc6cf0e60..fa9d2cd606b760702d70296bf239d42bc36f0ff9 100644 GIT binary patch delta 80 zcmZpACEWB%c*7n}!_t&;q%>m-BXiRf6B8ptvqS?Eb7NC8^JK%6WXsf4 hv$RA@W5cwRwB+Wuob7Kp8G)Dyh?%#)^{EHeKqW?^{2*06|0RSww%aR8s__8FD@h61FzI{ag2GH!eV6&}r!xO07AN@!4xg(O08%-isaH|GitEzW#LoL)WZf z`0S7F^to0EljGybJK^GXnVggxH`J9Ya$qUM>MOGjiIm_1g`7$*K{=zfUBF9BUfXDj z!A!9zU%iv64RB5-SeSnKSGOaDmYj1%Yh~=D5_yU$6)H03q|l~m_fY>`H*O^z4&CY0 zxRrAVce)qGps45+vPFm_gOt&D{fS<1e2Xfr~<`UW7Y;OMi#xP;)h=+{o#8B*D7HyxK;%R3NBhGHU@(;IG9pQ z;+jF{;6;TY>FLeK`^}Y+cot+`SpJYGQEU@~1iPRJ<%$_yKkr7SNLMPLP*e1&x|MOJwvFMN`}-r~V%b)2q-LebiyveluPCym%%#vjk|WPz=SgKW zWMo8u;-ygH%nDpsNNyB`<5npR8l2dL_BQG&&LJ)&PGqMtoA1Rl8#xz>Yoweh?n%-H zl-C=i?@?UzB#z;90`vq@BvPWvVj^s;n8X~@6aT$IhF>QA`a*D_F`NAoY7i9nM>krA z3&9;3H9!r|ul4@Xn`iFZ`z}1N^~HrlFE97ra_=qo-oY=k{W4tcy@NOJa_=qo-oL&{ S_Dksh+j~4c`BH!M;lBZ-U@xQq delta 3814 zcmeH}J&0XZ5XZfbfNmkOY>4GvU!fLpbLN~mA7gEbpkcFx!4yk4Uqb|uNQ|IM6h*NR zL|OG!mI`)(MISbnX%#z(jVZK9VJEAV^WMF}F6f?Gc&~czG2EH|%>OrYf4Z}F_s-hw zFW2B@1qzJfb0#D*eHMpqI8|!?AlBrh5kqmI*ynpz}V+V(8uV3$r0-rc*EZU+X zAFKjoZNacFig^FyH{NLm9hkjeAL=31N={oHprCi03?cgv8H%%-)bdfSpo6>b-rVb+ z{CcN*?}zS-*+(0b3%zlevJKG@B=oEURZ1lz2G&_6H-F`Rcj;8`(dz0;wP-UY6@t=U zxhSDr3#K%au#Nf8e{>&on;?zwp=#++!K`g8Orn~cV#~_U-loav+1{VsnfdL*?z^s8 z!tBGpx{J@ZDwv+_r?17AZr173y;WQ4)-CzNxZtEdR;GZIQj`4D*&CO<)UMVd$a4SHC4nT6ktT_Vy+5vhQKbVT+Mu^n|!;_ zbaLX^`n^u|jl49A_qu0$MTp2jtR?LST`8hGo)d#+DaMW?f*g>cT9ybDuTYJi#AU9K zix})MqCrIn5tOl2W0k&oBe7yAi#}zd$Zk~8$~>rOCjS1Z$rC6Pc>`f9gcn~ucVlAz8aCZMJ6qqFoH^f6M1$@`S|l48qJ_nFh)EEvCJKZEm`2^YP?4@^6OCBS=IEUa zrwCa&k+<#$bbWTD#Jn*osu+z*NeB!Q<(=4}41gY`u2BLF)U`_ZSL&)KC)Tb-3wyds z6%}oiJryh1?Da?;Sn*&YgE27@#^7rPA&(uC@U+|$BX!XyU&QQ2Gs*hlZ=Fx_&vohk>n$dBfT7Eqq-D=o~-=mu+3!=|1Pr~}AKW;y; z{9Jo*_mgYuFRU)%>JqLl;eWobtuEp6{d08*`)TVStuEp6MfCr03BS2Kx$^Meer8II diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index ba0bcdc70ac8db300431c5cf0a2e17b0407d5d73..9edf1b3fdb446fff14af656c0f3ded8211eef6a4 100644 GIT binary patch delta 31781 zcmeHwdz>9bl|NN|XYS18F-gdiz}%ZiAdqCz)sL!fLNE~$FeH+M@N&UW-Ca!rNq9_x z@{AE5#6(_0s9hC#DB=TIkp0;oMA0nK-y#o1+;RFr~d1$2jBCxPPQreuq!WFckW!r^Bq47m>UVl z^H`d?%=K(Xr6CJ^7CL^Ac%F3SegD|GaZcS$T{p3lfGgp7Nf<>zoCGp)SQ0833$Oot z@v+iD_l*sbj=G2iV}WG2S9+e~1PQl26^TeWlFKB_A5}VNY%t-zr3(-0sC#ah*nY_T zz)w7p*kNGD3G;2&Wg(ZL$RAfa$UJWTlF=P?t^#4FED)ZPc!7Wxd=Yql7zM7c99QO# zD;;DWH~r*}j#}sht|MHLD(-o{7fDP|M4lrf+vUpb-yp6k9Wy4Fcpo{lv!m|Y4(6GL zp^80^M}EM3kGni_?KBPTh~@8AI>@}+?gWpMZshwi_2bx!J?1(xl`4=vR#-(|loXmP z9b_K2bA4w=E%Jm)y^uu;3*n@Gltvaf7!si$l= z!nWiN4}`Qmyj)yNwQP`iw=J8kj(Uilp+Xkgj`Xp~qbOohdUhIwLSQ2nQ!O229`_el zpV(28o=6kP7~@gkF=>Y(OWj1cVHl@e1o>3U#+a#IasB9nYN7J%Fpfmv`;KSB^sxJ| z6xbe#a=f_MA|+$Y!=k%>c{<%PB3sx-R#D4$ZGG=dGG1Rdl1#I(3-!Inkt6h+qe=Cq z4zga?(Hj5=qH8l(*7@6)M1`!F)E$tXv698P{PFo0W5adWQ88G7kV67B!HLVa_OAlnDN zAN~r^;n8~AOfp%&FoSe88P(9{w~sX1^n1C;6=FUV`n+}y^qK#eYbF1bYh}z_Xr&mp zj4YvCWUtOON)^39VEHvG9JT$%kSAwEH z^zL6x&#+h5P|NM*dSN#?qk<2tP|CR{LMi#5Mk)D-F=NRL{lZe{q!?y&Vm@V$Eh{w3 zi|s0Uc~CrL*(teZ@n=J`_>^n*@l$innsJ3@d63<68aZet@$@5`N!A^&lYM=w*RGG` zI=LZMdiQ2{gd_x350A;8b>^UlJ@|2QjlSntt6Dnj z?+-e-ea*yk|8~j&2W*Pgj5uP;jaS?_b4}anhm!*i(64-y-2JXEdg{m<*Hq8Can0EO z%2>VYQ)CI5sk^Tx|3TgMnS{`doR8#a;@?ArJ!+H;!#rBBThB z7QwxA5W;|7xQ#5R&NCC5dyszOXlt^*bsPB+@w4-`lZQ!lvH9jB2kDm`80QPukOlg> z3D7h?eVQ!Q7hg*&@ur^())Rf&I@cuItZh@(A73-v5f-qd)bRWF5IId;KqoMXFbrfk#d4 zf8xmbdUb_%ldCiyJ4@f{S>4$uK1-^UY&Tcd>py;;oKJr|E<5jLGL;NpgY4eBNqw~b z`2A#DcYWwa(mTIIrt0tSCNt(oYTfx8&RM(RochM|>l@do`ug+xHr6+7NYq7hE>ag< zr25o`jVdV~P+z+tACt(9vQKU7)mv^Shw0@n5wF5*+t&6!ljD1bic+iB_VsO2^$STOi$lHeQ94oY`8pYyU+)~a?&^hik_r3y z!W;I*z9&7gz#8-<3s1@({|;#bhB$NBiPTe_mm{*v4puX*4+M8YQ zAel_w>2|O!mt?2@guFf~-l5w&*gw zU`~A&+O_Y4$$fMa)=h2g`>f=WEvD0!u`1?-)5dKW#QAg=*m(zo@pPo;rSoG;m zpyj2-l~elY?rQb7=BC%C6-v3{GJ1b?ckvkg#C+?dZ2RT3ZqXTC+1;Dz!<5=x*(D#N zN73rME+cDtp_dmwPIpy%@+;GFl$%RmeA6fCon&eDl~2;|lIjP{*Pol7zg+k2w41K# z(rguV^-EVnO=kdY(<%DFRrD~uek(4VmEFA+v&P237h6c2J+zJfY8*Mo{CTi``dKW@B&SAVLIq2K%-6ualI z>8C9EY*((>{L0Js(fhipFPOW&cxa*6=O2V(e_cGMQ0%{bk6zPGy%E{fKcr{1lf~I@ z9;IJxBd6=@eoFsD=Zw(TJV}?)b4TRM{nnH8v-E-ydc|{eF}-+1p}28RVg8qmfRqzw z=&!G$p}qlE$mZ^DVvQWtt}vW3nfoqo1VYd*;ge?En78?99I_{`lGR=8q?eKX$)p{`iLs!$w-< zx#HqmuNtktsBilNRD6M+{sv9y!(I7|zVZfLM_$b)yh%@_JcJH5S9eZ#!S*28l} zAHN4L@+b40;zjh+#G0CYV-Niy>E5w^dG7BHxZ+0KK=t*V)`9x$HX?RBWIaZ!Bh6A| zzarLLsy|z`Cf)P^ZPy>IT1bgE(O&&@)taDx|6ZgGZ&a-@`tnQYLE7uUxB0at9k}*Z z#hO$6d9(R*>NM=lf9Qaae8|gtug&fpxb4Sn821}^&-WAxP zzHJGea2&3q9`&Z;!H;PG8%1 zX0DjMnBQn-0O$WtsAk`5?7WH`qL1jd#Gmserj4=Ao`1U8GoPC|G-=!ZgFnkMiGgJr z*fW2g*VwmAv&LCV+T&b9dPNuf$#vtbXRC_~Gs{Du@n3Yq$lTfOKG3>}ZXDUadxp^W zjJLXhd%i#3+DJBQe}c7{T$TNw2^PS^r_AlI&CEUaRgb$<1eMDOJ<|XktWX9l6kNb(qDz*IeY0&v zr53sY8jH$xCF+|#hQx8C5}r6*`nHUUmwo1x_RXXxbizQeC`=<1Lp>QLu}sn6O`OP= z%*~bct+m#dNxeie*Vp$~?0Si0UtjPWYl{B8-F8q-xhx1o>?J^Kz#LFA+&^a4aMj+QaAqf|-L z_AOSXv^AdXJhgH&*^It>vt@D3?s)(5GgdD<>9|EpSC{Nff9U8ET{+Xwnyvk>w@+MD zG9zBhTX+%o-6Z6ZZF?f-L5fbdgH=rwkEGpLM&DIvmPhE^qUf$-PzDkexS=gVSB8pb z)6%wENDpq3kspQ*_Ntc#*yOI@5jG?GsxivAm$XgDUcS2RXQWmlRd2i0T7GJYPq+!UwJOK122Ke*&Y)vcjHu(bJ{0l%a5~go*JKjdkCS&~>hSo7780!U-E^ zQ6^Gf_`$YWy&fBEW+11iP}#68I4m$%q>4jn2X>OeeL%g8)WOd|F>uJ74<9tu;v&<50MaI^CEh>|aE16YcYEg{MsN5t0O~CVA0p3R%MIde{ zH;Mx^{!F+kA{%GE1FsG>sKmo(dO@C>~pv0*Zatz>qu zG!}>O1(yV>P!MB)lmWhCK97w5N$o_l%P^a@!S7(0O3J(x;hw9( zVXe7nQS8(b(X0{HE@~TBON~#!bddZ=59A|5q_Gp>fLeohLaCw+exX>T$VnJTQ@|ZS z9H~%&9mIC3+z|X5j$pp!Efd=il>?|nfQ;jLDQwY!<-(7IUYO$H`nJv1_#(EIh>nW6 zlt>Nr=xsQ}i?9$1JgHD6j-e5y zGWLtG-V?_z^QD0M4I=0QQ4qzb0m>G+VvHAeZaG!`J z?8VCcq+TLc>J^u^vs!bBq2AqJnWSrvTivs{w|3)R*vOUd178T_9<~>Q*cSnTgCppO zG?F1Jf^)5eXqW*(e1U8(S)O!gBrDmD!{T0yU{IvuVF<3WMDBns6EI|sfd_2kZ~?rEZB-zN5;m>|!XMuVRZjEu7-l6U+b|kx zfhDTS(P18{N@gVro3i0Sf-rHAf(Q@AiqK_9o+IvJUt)oZx%UVgSrI^iWd5kJ=XHm znu`vC!RXKleKr6Ou`fa5mQiSPlnWv|;I@#+E*VP!>W~*2NOkMEZO2p&k=!;!;RO5H z6TSnC7{je%UndDlKZwH<8VC_&acp#8X=&)>4qhLLQ^$c^z1Jah_AP@qEx)hf=AWdZwnNGT-)WDqFwNRIba zrt;B`ViT5}KrF?q3Q&0v-b+yr|q2ajZnN(3@(Nm1mTQ9$II_DGXrzMpBlD z6v)Z5%@Ga!TLF9}NK<_rGf=5hlm;7UD^)>^^9aJhnSnTlA*FB#0A7LvDB9y0a=0E`0qeSCp7tU`-E{1FkB_R{b1kz~-H3#7V zOT*1zks^1n*C-L)K#k3%3cbg!%)<-JSWxgMC}1GM0<*X%qVX78 z&~tp0KV4*Ld3~;i^~P*ay}(#t;V1x}ilYE0f0&J8LlHT~oZp6;J|G&fClVu+%+Uiu zM#^DnX^P`QagY=%e=Bdllhm3^Zose-$vK2Pq6f(^@-e(KgVQh>Rj5M50W^S9o}e81 z3*d?(5+KS3K#r)9AnOE1!6_FMt2`io55QOz-Y~D@^w`2xVpL46JY1`8oY zW?zOJtqx;BoG@t$vT|F65;+a3^$F_4I4Y;&Z0uLszCdc87ow(&Q)(vT!{!Wv82D19 z2z59@Wf$?kh-}Tp3RaXr%H$R$5Y#l8gGnGQP$(QA=d^v>M!O630U0EX_C%NfGotl} zd2rU7`NjA_y`mXc#3kQ^pOw^sw|dBZgiSTB>VdG zb1SoZQ2fJzx=5PJ1PmocnI`o(dJe!4BFV11tFjXHQEn&5x_~gyfx;)`VIly^NN|o3 zo3;pHb=3HA*i#`b!-2B^tPR+0Vn^mwqb-ngX7`@d_H86+%>>3t0T@dp3RCoW4=S*3 zug?b6JkZ|>fn`JVFwvew*UUv($wp<@7Y5}F)bL?ncB0U>&AXUr6-939GlX(@7AKAh zKT$+5RIQt>%CLfB$yQ`TZK_ORdl6&Vw2BB81D~hJoe}S_QXY~n6SqZ-7KY=5yb-}7 z8}mfaLD4ZpM3SMKhS;$Vs)aEeY?1O5ooOFE7&zQCa8UYiP?NP|CKa>Mm=S)Av^=lh zmxyhY6-&fMxlQ#T?x2zmrcY=JnF{p+6fgmbP$TtNQlyZDt548+N*$ms1S^zfSR{~+ zVU~cA09gn{H3Z_k5sl&=9E~}Y2|z6aoZ0|n!?8~o8G3;BKqAvzG8&xCFUo$V^^8<2_RtYSiNZ8gleq`golH#a~=W-NLgM zT?fP_kOWWzK>r#I3Kw{jqb6l)z_7LD} zI>_@S*jLy;9Ih7LuRuQe+LRux9cV?DEX+`2DcOv}YV{=w+XoIyrsX!kA*c}w>X$Lf z(`k&P)W*sQRJVbK9E57q=&Z#le4Ynq8gisFCh_-q2zTiL@*$5d7PK&}h{eE*2~HgY zMB$)23V1eZSUBg4vNw7;c>%IfRctQX)+@ePSy5{)I?y}6Seaad4FPhQ{w$I=>@(zG z2w(tGcwG?&gKGrf+=Vg2dGrX|I5rImHwNDIMHIU{R2jLqVzL%^QU|>?VH!k&#h5;d zbj%bN(Xbaq)?(k@{$&8drlJR6RCB3Z-*##H+*%wWPZ0?k-3hwPIHwMtADTuf0zcZr zUcsu2qg##m{x|K zE-H)7r8W$!L~5dUPipJYfBc)uXn`_XuPy58BXa!(>r~&~!hIaXP7=8YUC1#+3}Om{ z3kI06WeWG$$ihm_k{3Iuk%cv1rD0W%lC3!mMV6>89KeN(N@g{Xg`pk*xaVRgp(wzR z*Q2!_b<`PV`y3D$DC7vZa1(7c4CT$WyU{t~kINrj80X_mSEIyhd&$ z2YJh$6sw9Zk@=wo1Pm2PfIfH^{60jKrijN+A-yT007?jG9w-LeL=OQN%R$8zzpDT! z>;tCz>@&iK(i1E3J@^R2gzUQhF1 zT`&-3VuSusvRrCtd@I?g!+>Uq=G1`MEiRc`kn+p~CgTJfHnuHxZ@K4@_Oz9_K83i^-ooVa*-#JqQx2^APm!D`Kg@*=8@ zc(c;Yx!udXcN&*M>lB#BkWg%7WVTG=B;{x%0eqmJ*D$W;zf_{@eS3)>C95+mN|kKK zVce<`<*@I4Cb8fH$cu{qHcjNmj(c^L&8 zj_eN2MI`eGtGus9JX%bJlj6XwrAHJwC?c}Cxa3+q?oAK0yo8`$P3H^P=O{b zYR?GJL6JM>t<0Y0zfqADl#h}{8U`9mw&gGbE79Cu&{%IiC;Z}0t?h;uEx$#}Z_)Ax z9~l|eDD#^iVQA6vOQ`W#iZdJQev6jhqU8@e2hgJBHx3)LX!$K#ev6j>E~iIYwESi#0$Q~EfrFgQ3Gyvk z{@xz}Y0>iEaT=gS%Wu*0oBqE@TD1HYEq~a7fEF#kMayr|@>{h0{T>Nu(elkXh88Wq zMav)bqd+Cx@)j+B(20>@gvS!q?PXZCX!$K#ev6hr_!LEpmfxb~?>h_7qUD?4Uu@Cx tTeSQZE&m;d0a~>D{T?;QY59S^>819S_{{#YkL)riU delta 30240 zcmeHv3zS_|d4Kjkcjite6Oxcjo-p?klNb^*+57B$&eVx=%t(F>NP8A4W0>`mgbBDZOT_nt1Tccb?Eu4_z;0Ug}GQ70NUXR2a(C_H5kJPhycjTj@pS z*`{CI(NT9o$8&AZ^Cfen5Vi^uXgzUVu7vMKQGUD9i_GoFnvu|4;Dvq?+I|pmnMlVM zcIfg{#(~E~g0-4WD80zs?r@CTVFTPawq4)11-3B^!z6W>ifuc9iFkH?yV8ry?Vh?C zw^IRjG4zF-Mp7m$4TCs|?NE5Bi%)$wzg_7?=63tvZ*B)8bg{Y0UF-&uyPI6K&z9w#9yJ5pn z$}Tdu3m3 zKN#}eq!ZSxy*Aj8T(h7qdmFdu(Qk|-pZd>T*3t8wGVV-~K}+n13G z@{h7fCz8%;MfUnK|Gjx(et$UsNasJzKf_OF=*iQ_oy8YBmXY)GSJ`i-k=I6AuJVjV z=Z=0$ACBa2sa3C=MNV&Wm90D8PQE&DfonB>oGWvtUOJnE$N#R-;QUj`u7U4|KLXTv zhTb`wOx8b{NjjTc)lldc<`{*#y|$Yx#JngJddEB{G=H0GC4ZG`W$b)trMS*$#k|UX zKEF__!y0OJSaFvv9_}K0@wTB`yvpx#ROPxg*A=>TSoSU7=vFyU*`fkgsMme*czs&o;lGtUtJfjQago7P{^{54t}7BSF>g{rz7} z&tS0Yjjj5HQp}4&DObKLw^h7t*eYJ-O8LoBD5bd0D8;{JXR|=z}kjX?p%gNOz?|MvTzkznOIF-G4~-nY&%0H~k^09_Neu$t?XZA0@9- z)~;9FPWtqQ+sMmxAp;rsvEm{S(sm*QH`_t-N<%wMm1CmtEw!?15ax7k7g?NCxcg3WAzjt3c{jc4!7tuPD0xrz#9mUNB+R~iH|ZnoSDKssvmUpH2z|rH$g^aN zCUsiV$v$!wxjy^mK4OvT4d$W+)B0bWbEd9$(=l{=yAGbDeinV4R4Ki+5TL*F39@nI zys;xjoUv(3a+conG`U!R@L}?lzUWPaxNBY|BTvYVei=6$yS{q)-u2@yEx-0MGI_TV z{?xP)Bd!bAk2-b7-kbK$Uf*`y8FklJM!*2^&-ym~)I@q9dwe48BJ|hQ>}!+g zTuNy6Z&T=lgmmdoOrx*EN?A9(I_o%@eu|PF{pU5hl3Z{0?shUGyQ5AwQ!*g*0I?ZlJw?R)inY+r9jzJ2;ONl(f)&Z6g0syg(ZY1Y!>qxz||yR*8;{Orpo>piRK zLj3_j50M3W=Oy&r*-lB{TOqgUBWKX=>`g_FSmdq@Z?;+Fe!XEK{cZJ@hQz1N^RXaESRoTKv4;M}BDJh{9lhEjbM(Cto?-OJV$}oBK%J5OW1bQEq=YWSO4e?q zQ}mnr=q!D&`QWVV<%I4c*{koPTdL%I^Z5=E>BAf8O1fcW z{}I-sFWy8SBAXxEOlQ#QRwHgrJy-IyZBX*Ik%f;uvXv&3-aN9{^AEq@?AJ~`cN@Kv zY}S9djjp0II`X^OH_$C)Pxh%B=sywCpWXfedNCBM5BEXf$Mc&l$Tn`L(xMNHG@G?d zF10y9KZzebrr1%|DuF zea9*NMm2wWH@0WAUR1Se`lY++N6GkXou*F^7+B9f*wi$=c^|#DTJOY9K0aNKdxiRX z<~?*_bw=ZpJ+DAc-#v62sm^YEwBsn9n5%HXy-?wt?8bZP_fD+#zV+?t`s06rZ#ESo zuGj0Hq^D?j7`bjM3-VCx{w&fR5M8e@ol-=v{QS-v134{%5m4c!B<)oxawYEqsYy-VTMG{Su7- z;LCJxTeUU{KRi04@bK+FpiftSVQ%#|Z_5?D{7D!CAC+(M!5`9ls5h$r@JvrH`~^Ng zb5w4VfBlcp#yNV_E3}U+$#%X%KS{_t^^Hdxmbl?Z_qoJk zo3iD^Rex9@fHZh!Ia(FZKN`Ap-hgO&wtAJmt% zTic1JzuRu5WVbPjo#asVT-ACPC68xQI;}sdkSFvPPq0?fuZ%M0y+Gf8qBSi`##qk~ zUH=MgqjYxvk*6=v9~x&pN1q>Ml)OHB{6uR!)jyeFP0(*X1I0c+!J4G!ex1(Oz1{e1 zb+>h*ejlR~^r%&Is(y7cKKsnz&!*_Jr{J^KhkiDDqBUM0nlkX)XQx>6bl22lZ*6+Y zn7h9I&OD@!D8hBNdAxNw`QLw#Ir{vm*23yb#!lWfy9lV?m}(uWzFzTed*s@{m)@b9Fq+Y*b>)QP76@emjkyDjPv2Q&^MiI zo&5j&A};N*-izKc>#>&RYgzNwj;zVIWX;wTN`TV&0-Gpq}#)0HQ~eKV}P$?2NSw9cc8y7D~u&`fI~S)%`C zrqxH@nO!~0LPd6=UdF7VB0GIHzFwYvV7B!_m8>$K??4Up4Tf~Itt(GQ+2!0?hia>< z$cA&JNozZ^7hUT*f`n!+MI~^LvOWOGlYIQ}P?4E$^{tyx9CR(P-cHFUGkJ#f^Gfyp zF04V$$!oga%dIi=fkKL2zZgmHg+GkI!&)wXZ@6Ly(qwXJiRxtF0CooO~N2`k{}Kxlic?MClR*vd?6j- zX8eZs6_t9D3fD^3{seF>uLKa01;A(uMWa6>Fm641h zk2xWC0;Uh&R+*43zt#F%QZJDUFyKn-qEfl~z?Igd9>sn0P_8YNEkot0B#ji{-0ecQy0L1|_5W5F-JyxL)*gnmUe9YQIYOzQ~%n}|bJbWUe(1~Ie zg=rLXR|cVmJ|<)b9=9IA5}JyYSnd{!mCDt8t0n58Ol%g!DKP6$@-*=QuJbq$oJXz* zrJZg5v$hqL8t`M!!K0;|%Q*D|E(O#ag$Z{V5aEF}AOQz%1mM(@QU=@y+RQx+IZ`fx zo)&Akzo+sbsg;N=mf)6%)z9B(oi@+)H=Hwn>*dpLy6Lp~bQ|*$NKRo5KsQ7jCJvD0 z)DF3=yioCM$6jlBrB*UR$qs+B?USUhWKY<12)tnVWowsRbnfD%YfFsK9eQ=#Tvu%R z<)`VpuBc30T(+WO-L9Pg*av(QVuloYBH%0%wl7o1R+uPdhZmV`6t3f7Y!ReE?8wMX ze4p_EwiYwbPvfxglb^l2Z6~QkzKURp3}Ys2riXu{j&dUyY#JmSHulZ73EA$m+P_75 znv2%^FKb&~FOlr(aqnrHRQI@)nDTJUEgXr53T@j?W8ap-WsdDNcCRjBV;EW430DD( zEy4dh#}*zJVTzGh!=-wd7r@`Ra#)Ok6sBXo3L>}{h8Av`>dil?Ow4w-wS9_|%GJEu z&TA!7jYCb*%l29mYJr)GM6u%sB9Kn(!6;KBA7;nmFwA~-MP+5B2NN2&cFb+tm6#nN z9$;7@!vu3ZKlKX@uluI;L4x}UmSC`i-Sx1$cF3fPLY8`n7m*0F6|>sEKNtM3`FZ13+>Kze zE)zVE66k5@I02@q4!R9bL}?NCa<{4nfuH!XA0W>mo5c#*F2IIhh>PK*a%_$GG`^9l zN`wP(eh8_mL^#t29#x@c;gMtO?oAp0m!Z)O^qJ zF$u9l1OOReO3HbxY%EJ6BPD4OBpP<axo_8F2@EtN@6$Qp)upO@5QkYxL=-i^NiI~B6(5R z#_PPfP@$iB!kTv)bC(TDST2KC`8J-P%fLly_26PmC>}G6GBuuaU}H+A>w3oqT)Oeo zmD@-ktgP9_1Vde{%qWLmU81vNnQMvNd}*R^v54_RLE{RuX~g_QNrB>m+YyT$&r^1h zvFl9PiEtByNfk>LBLI0`oQ8%Q02^@ZMkQz?`-wPmBNl;65hy=2Tm)2O*w-X!1l6Jv zEEBBHe9l^0Dpwy4+9%Y))DM{*_^3=>6oVmN!6H$-$rO$uvZ9)e;T=KbVMNWDOwFQs zf<+|Qb^-s7i!!Qib2wWPc}k+%0v9Aeq(~fB3H-h90@Q|Vrhelkl_FDH-@l*2hLDTBj%ZbxT8dbiUKYq z!397_!-fk`Jpvn^XiDxPN~pkzgpXYdQBi`q5=cztQBFG8bQHpc-4;&PT(o}bjS8=q zNOtv;-?L`TlkOGQ9;*tGd_g4fLeOm(@+VpcAJszaapnnlO46tbOUNXJFBT3~wnsx< zro<|T<**Wc$$=cUq-apDUY0ngMo|@AO}TxPVy22 zZEQPO5GW3j@6x1juzJdEm*dA_0EPuaFTfE_L+Khlf|RL%oTPT6 zPjRHj(3C}~<0aCC-#RIJl-RR5k~T|!FxyP5e*8_eS&R?LS}|gnZ#yAe9xXdh;Mv$2 zw1UDXOLTQCSuHMGQQ=EiF5(8~c7PT)u>nV* zRzgLES13&EM*Z=xs6T2bvCx9DID#pSD1Ic|luO=8?gK z6WqAFho;weSda){F)li?M!Q(IQ&iwc#v*c{n;3``ibc>FgV1(CoRn~_IP~fgZ5@L$mXs_jD7?!7YgYk< zHdQbBED*mFo_c=3B91T*OUsebx?z6-nz!v(L@1L`{o4X5!A~N9(k^=X0&xdYtU#JZ zeF78rO+9IQ=vjeKpbhk5f;x;+^|BoAO@O*2 zzz2O)xH1I1hoBJwopDhv#lANv4fNpoP}Bm#L?YtI(2pD7m6!kiXT+9w5&I%|$C^Qresv!vp~h3Eak1fQVKBnnxE@ zJO(t>Ne5y-JVhjt&63!YzzGoC92o-JF=@lWijBW5{BEU>)I^FR5``nI9wQbPgzx}h zeG<-u>o=3^>jPnB?mX0^gOEcXYYG9~0=+~~!^{Idkh;Kk zkzLWy4%(ku2_3!YD2wi^Y=ee6Qi-h&gYlCRt>wV{32hS>mn=;cZig`mCMtj~9EMXJ z$VE_uZ?Gtd@f2cSjv&^9)J;Uf;cKWF(S?Nqc7;kH!sG-c%YfG*@4M*bYpzQ!N z5db$_)Iu@JgktXtuPc%373fBp+ydRetOpp1nd-ov5H|yW9gZz=utNg)46=2PV$gN6 zgB*pb3Wo$dU==9v19Ae5Dcp-4ZSNyJ=rdCwZaCQiBmh>94ic?7521KwH--@R zpKYc@&E*0JF@r92Z%qWlxyIgDIjs)EvvJM^kRd?#l(|54@vkIFaB2Y9%0Oj>`YQ&| z6aXcM&oIDosf&XNF%F-Y&RCO224IakS^*qez<4P{Eo^WpoYvq@#J$+(_(>xx7cfnU z@M0k)vONQAOwtGbq|yas)9ZEkAcR9Hpz=0?0#GiAXGfee0Su^zV>1_1#v-~i7z)0K zP}X9qqr3p|ABb&&#se4=n*0KxhZQ#4qG6+~607uwdSjW|28zZdWlJjj3yZWE0tE14j5%QRp)BH1;bdjP3nwd)EeaJhGw}xZGZ;%W z748=Uu;#Mi9QRgwYdFt_;e6_u(1P({iu?mq0-=ndjkIBi8_dWA&jVc4K`=y1h(k4j z9pESs5Ak%S5-&>RMr(=ehQbo#X8@o)vQaSt^pL5sSrn!Xv?h-i%|&DD@_5l)ba>3o z#?JKydze6I1I!WxIph%pnATvvhXE=;Gha0Jr{oaSvCa$_eaZF=^_mi+9OjXJbCn7B zSY3bk>y_>$s`;w?!pVSDAt<6+1h@`_0kv}K#b}llDlJr%@jz*U@Z+Z*;4Hy`2rD1O zCR%QR;u?t~DT=~kyv)-y7C7Lhq=z~T(1)Q!C>)=I33x*@S($KM|0RHrsJU#WcmJ|7 zxhD<~AQ)*P5xmJh*d%_T>gRoiV;fX##k`n4}s=GT3| ze+pX091#maMGz`fz5xz!f}Mf*-q?&3pgl)hW)NQtR0IkSU^pf@py3HI2{{JP*Oiyx zG#>CsR3MToY^>*DH~|s`s&dF0RPUBbFMO;-xU2WgZtKxw_qLyaD#q!RZauj^xO&r7 z$<||-y^k1zxgPK*Oe4bt1uhUVfy@R#2B$X*x8J^^4SUu6q+oVrqakyYY|}7kqr^Uk z<+L&dnw<8-OWP+cZoa0*L=1Slff)e>pj2@IAGkh?FucML2>HrwaB_Ow2#gFcEmJdf zM%1)@a3#R`h>@jYZ%{_-0Z|8d7Yjm;!87K)K>|n|h=^@|80u3VZf}5$bIU}VpmcR` zJ$f*%`J}eRm$=QJBFAnA+BS5Dj5Yc;^zSHPG4=+4VZb(p0T@RO417bzPEwSVwb%(F z^lT0XkYhkd)V;_mDow%nGDF;gI)y}snUHOOcw`)m-+AZ(LqZLJJjWUX>w-E}B6gsn zERk#caEh*fuhI=36N+8Tl?4XLhLeIpIF6|yIY<;dheKbhdRPMv9mZO?;f6R}_{dqJtvm z0jX&wHZnPHN-d2e2eUfCQPYYjKu;N)R@+pAAhir|cQ78smV!NH_!0;e1_lDB#aB)e zA+)5~;nyq>Ccxbhz+BN6A>H6MXjmhJE0C;gP+5j%iW0$%Oi?0NZ+fnMZV!qN{5b*C ze~^k<3ovnX%Q)4J9vtzmu)?|z>K6(PANVQK7`(^}~g=HOo zQ37Kn&=(TSF8l~B3eLN5Gf)Rc2SlL}DB&w$N#V~!;8BbT`XE+fyD@dgTn#A6TZy0t z5IU2Iiyl^jh5_!K9|b0bqrFvOtY2IKxUxuUWwLWeTU{bLN5KX%^>n1_nZ@3KZ3sLA z@jgKg_Q0YIKnV?jrhrg`H5Li3ZVCyoSm?!w+PD&t#_?)r`h)xqK#1Mzs6jm)LpLlCDSU)D30^Bm zVv&tMzk)N-Xs+W1y$^LovxCx&`m*_c1;bEASz@L`-Lph*fvGRQy{&!Xtda$J*i*2i z`}qa4^bhB^r7aeIi-q5W{9k0~77M?{!f&zgTP*x$$3ccM7+Wm-VMhR3Ec_M=|96f@ z4C|^|Ed1lq|645l77KsK-+ep=CSruvV&S(~_$?NGi-q4};WwxfEf)UZGXO0XzB#vG zz`^{;bBl%FV&MbEDB+d2SolN!sz-^oS}c6?S69kN@cFU){4iFFh2LV~ANRz_u=yA! z?@iAxn51@Bi-q4};g`|L3%*o~g+Gk3Sf;jtqOrxoZ?W+6KS5PODKAjD;?z!ygB9Ef#)@h2LV~w^;bcJ;%^u;kQ`$ kEf)UJQxpI9vGC7%qy4?)Ouhe&_O1AP{@ri3zkA$&08}-@VE_OC diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 3ed00b16b113a97e0787448c84e1c8e4800a1fd0..eface700a118c1397e251c3c0483f5e0575a4f42 100644 GIT binary patch delta 5056 zcmeHKeOOdg9_IbsnYl9vg2Dg_!l;RsAq=8|T1w?d7HFiaZW;}O4)P@e8ks3&rB*9? z#gpc)W(t+!Mw1>*OZ-YrMf}{gT+I!w)l4ZhEzCXVUQ8aIXSep*r~jOPX6}1_pYQME z-1+HUpE>({Of$`8s4{J~Ig8S#c6SwLPmGR@>k-={A>P?NtygSZoOAs6?#}LUF|irr z6P)oqoC&c#;?v{eT-{xsdfSI-=1~@Sd1;l|YqWjYR=;uCu7ZNp%$zh=wkvmBhL)5w zdO+(_oJYI;wKc_$YY%}U zZ5_0V+4j(8)H!Z{Vmu|!jPTV`-U;+GIQfMV?cnNAt@NEv_oZcI=jBe2q!s2l3f&ow zoVH-N~7tVe!D| z)Mmk?W)>6_WjLC7&qys8mp3`XJBH;CLa^4d)<^3y%h&Ae7US*I{9pJ5vFJz-t!jSI zEg@Bhdd6t&XW5%!&ZbzPl*o?4WB@s@|chOULRy*ynQ-@aUi;>h# z>%Zy|?Z%>xO&T$Yb=2}$P+0S^yWNP67*DJ6NqQ&xH=oYmrxgdsHjhT^gC@P$WIK%c z{ku^RS-&#k4u${6K;+>?sq5d(NC&Y_gY;mv~tc zA9rWBx4Vn`ZudP&sh+tP?IujrmVe)XB<;_alc`8yC02xMEv{^)X$q?+3`B{?|7wCt z3l!~ORjwyzIf4w<7{*=ZsHIh9fCJZ)WO8BhT(!jQ6_%Ifu|HT-XvUB*oJlavPtDg(7oV6mVW>dtf~{P(ZeR)dsdY2KGdXp=TV(;mqMdWGJU?~9&93{@o7S|vqz3nQgB3q(o_8kO{vqx)JjyeUm^f<1 zBC61q^*@Fn+G%26R3L=E`mAt&;=Vy7yw0Wa~_-^M;t zXPZT6M}66_D2m{7SK|p%=St|Bubv2Ny%s$Ug>S0tI(3qSc^2Wyeb8|vNx+m z$tMjUD{EPWe9Y!EtI!@a&&>Q|sU5F=AJ<`-FJ&h+kv;nX5;33U?-%JZv(X;w*Wp=j z@|gAZSYC}`gpIs@8%7bfGVyKasXOr@)IHLe$2{^@ORxX zPO=^Q@ipeL${K9Pb}qVeI;hUf^6SJjp5wg^LLpq_eGa3N)Ou<5sGpIz{TLDrWT~It zj6*MpM*g8O(lf_!$QL0je=r&U40xwA_>)567QXIlFoil>c=9*!Q7Fd3##}^{tqhG@ zgUz{!qherEFX4a;MJ@@RT#u)Letg$=2p}Y~&o7Jq8YIp4;h9%(NWt(XzTUYGAHpB` z`k&xWaPeI?@G{_LLvLcgR@$XA3%??oDUVfUQ$*P`dKX1J64VBm%K8(fV7g(rhUlCb zS`)*OHgbzGS>#W4zS4)DQ1I4zfBK3nl@>wGVCD)SJA3Lbgfm9~?FDDw1W+l8*z`d9 z7y9Y`_)B(50DCW+%zQ@>Z3MRP=Rzo%P|f$ZrFOtJem<0X!m?f3bg)aI6vc+Oqqnhz z-DoGG+h;`gN;pl?3;7Ghc^&9Uh?+V(iSWMcNJ&7QeE5f`q+cY7e{h$K5Mn#i8^Bdw z(}i}CdQJLK0$Ji=QLxf4$%j{Wr8&Tld`J{MPH13%iKa9(aKw;>EI&)})of@KIe1ho zy+x{*Dv&*aMqk{Bqn-w`I#3P-AJc;vEF@(v7+P(5(Muqc%HE78muk{abXg{3BlwU6 z8V}VX;b^-tc*lB^iO8z56Me}gzIngB%^LD-e6CNW!nx|V$;1LtZrCf%#w1^ za^=8sJ}Q^SKwTmAI|MhO{!|{-5?1o}CW{tOSIP4g!A4#uCQ}%TE~G_jxr8^~hMVk5 zp&C~ttNS*qokA(J)(D6lm_cE@cq)ZjX-{K}0{UJ-E#LkEl`8m*4}Y0_6-%A8oxw`x zQNW@AaZm1bIwRDFX7PpnYm0{}p=Yegsig1K~y@L*mEy_0U65O6JLgEka zru}BRVmvYN6vlIE=(Hk6X6PYWqL9VLh8?0ne)FiH$l`Ak?&q=j`x_bVeOxfy)}}jR zT|T3;LOswxe*VL4MQIbm$;+$kR44iV$LC+9Bwx(rry6LW uqSY1!mkm&Ms4q$iAluWj?TyvBtEttdy9&&q2_&TC-Yn|G9U6&)@g^zHjfl z^q|*`4PLhS_EN_-+aBFDGsYF;>KBs{-EZKujD7=S;|5Ic-#^ynPLJsy*KdG3?n&45 zCkH+ClshARP(N43^o%Dfzt?w7qv9`(t=XH5sQegXOODT-M~6{AGn-;zY;Epq9L%dV zM(3s6c^qL}sn!kqvq>0fgy#lQ@u$X=*?$+&T#ig_@~TY#HbJ2_4w;>v8EI$Ofmq{I z{sBy>Tt8dG7;W1}grf07O zt6p3cm1$31;A7T%U`?`d|K{#(IcJpJ6*x0@=AK@o`-okR!YE_&S6wS-f3u~7c8~;Py2dW`M4~a{$K6_;6cniJ zQWPFC&5WPU+7MD2fuPDIH;QaVbd4u^Y!^qH=2C?1-y^XwNU*4#qMa4ue1pb66?5Z!gUh3fi5BXsm{BRW+ z{4Ian1uaKr= za7m$S3ZL!5R7Go%`Pb_fGOq!Gjq_5n-yura)(s=jfrq;h4Dz!{c357VNZpCgkHZuN z;r!fSL@DUS^&xNpeR=$S7_VqCHW8vlw~8`7+)Q}H^YCFfMwDoi5L1{qh44uu&@)zh zP)Vl65(bYLsDh*H_RxUM3Ui$j)*SaxGOZt9BN4BlFw8GQsF z$q@-8vz#haA%*wYiG!q%mX;0PqMxpP=*Bzm!4ss8k;0$Zx@v@3C9bW8TQj8%-t63C z)Pt?56}|Va!8F1+mRE~18f|Z##ScNicpkG4!K9_iPY~|M>38}2*v>-N()gD1_ zb4dB{kMTkW6mlW?fH0rGd>pBSB}{w=@k&z%r^@)y48Bs4-9fB$og zQt-AFw}Op5gMVW@i$9BfSjNPRhVjsINCR!Ov+pm6!QIB|8lez&@cJ+D9;sC(53KRT zt&+4Gk zPaBZH-}fgcFogXpfW~4t7g-`zJbqiY_nnj}mWy}mMtKUJ;VZ(aiL`u~?STNRADizI zwY|g&|3oE7V4jh55vrMl2lk*rpd!`WA)eEd-U1eJuU_;pVKINAH+6%yREE+!wv7p| zxQ9AGv~Fu3`W%bcYkg@f8{wpTtYL9R({r-h?R+%HQkr-wSj_+m;L zxk)@DoQslo0Uz*5gJ?f#H8Q0V$PRyr&MfpAdGUu6XesnsDW4H|Ya^QPrM|?r^dUQo zNfbHu@s)|Bl3pjxHny4V9!ljz`&BmeeoEK&TS~bqZvNZ-^eXgvDZ12VzkVbw0v%9U z^n=3wfTc9;nXvcdCm*B?&>@v4CQ}q?howPEP#Zt2G=K6GSL$J0e>P4KXcDv; zGH&fo04J}*h-wAFfYyLvAZfN#F5xt@1Nd3+`^+{S*YgEYrKedov z0diT|VgYdu7Z7JTP$Hp@=LIEnLILArR#Az9bxeE*u`4%W<2M*xBW&bX-Xs;YU9(oa z(;5l{?bb{lHw)1avg`RE=QC~sPM4xHa zB^~@O&4YGI;w^W!S6TB9O0uL`PU{Bwjf-TBRDd8ySu>_4O^ z^pnFlnw8Bx9V5GLz43Qnqcf_e3xMm`>z74f^NnA5UEmt? zBl(l+kh-dN9T&QximFR-W4o9Mu|GRfj2LJv@rD>9UuN8(D%kl$Hz^xf&2~1^dKB^W z-zXOdVnthV{Tac?{Yv*UisN7_R&Uu-vv!&Cl> fFUGQO{gqnrTD}*cd>w#dW<)AIu$=9RR7U?7GO&I! diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 95334b6d6a57b72e67b76fa06cd54be53c9dbba9..0dbb95d4a7aefdb439085c8aeb20826f4c627e53 100644 GIT binary patch delta 62 zcmaDP@knArAfsVvO1W`jWlom9k%_61silRXagw=_iHTuanz5m=iGfjSnx&zIsiCEj RsYQy3NuqJ$<|f7mTmV}s5=sC7 delta 62 zcmaDP@knArAfsWPfuVt+u|b-?u|-mvv4xSjX^M%7k)c_lfr+`XshN4QVM?-PYN}aU RqNTB6T1r~-<|f7mTmU$15^Vqg diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index aa8edfdc5b3785e83a8306c92e4557592ed5e3ae..4bc5d2effcf652c9ea83a61a2871581234b2f8ae 100644 GIT binary patch delta 72 zcmeynf#dH6jtzS_4NFtXjT0+#vh(LDGoE|%$c)$yf=2dH@3e&jvHyy#I0vf=QUYv zIiL}*iLexdhCt`S7%Z~3ArVCr4}OeKJZN%8Yoz!@2Fd6Ui!EA{1jLkGvL7bpZ7=BH zvxIL=od+BeaxRfXfTPn!C-jD~wUD|mSxpR&w$#F<22#o7LkbQvIV5IX98j`_V>aBL zV!O2)YPx%WTMbXD!v;t^B+2ZHuO)K;UpTP!$MPSYzg7~_IVp^t=_}3e1N6i+=Hlz5` z0uq|Ken5r*hJ!AI-BDJP-LEBed3bG8eN+wolZ7tb^A!b6FN1|;b)^xbC3}%nw@39h zn2luyD%CM;*`7DaaN?4TXL2nimm)b`v`N*@Br%*BS~cyeSr>p)TYGpR(uqBq2(e<5 zXYr%9=QZ{6IMvk4;BZAbvH+Ug)!?7Jnt!=E*xsIN21qSN7i$iHDT)g=g9fSBO|b+g z=XLgFV1$Jo^-k^fcxMK6_N}`Q*O!(TZ{At&yV$?cu4jpZ)w%A|nwoBU#l3i=LN{1f d_xi(d5z32D{&{FFLV5Cy{HIV3Ybd`@{Ra1vEFJ&= delta 1969 zcmeH|J8P6d6owgC0x7IwVx{}Bbuj15Idc?YnZw`hL zaZSv(8<)jG`{sri9qkSp4hA(P;}Ild&;dNFqCJ};T_76O(~G;hA_R8t(G3xh9~=T^5#C#hHefWC*IdcZMl& zz&Zn6C+?6#NHAeq?lmUWx!H(HT3`**QnIm>q77v9*-fB!M4y4ZN+tVH&!OVTkY&hh z$*J_4|0GkVk1x=FC4YAO4!aaH^Y&#f= c+ud=PhH@IpKM&0`lt&-Qe+uQOhVtwDFGqPMO8@`> diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 1f2f40462315d32dd30211427f8fd8faf0b0510a..1da877d28101cec457ab78a9e430be39a798288b 100644 GIT binary patch delta 64 zcmaFR#`vI(af213VQEUaabjgomcEgRsgbFrg`shhxsi#9VOpB8p|Od9QEHl{p@pfT TrID#ciit_0apLA|#;=Y5jaU;x delta 64 zcmaFR#`vI(af213VV;4ZfuXTMn!d3`Qkt=ak-2G#iHVV+S)zf7xv{C4d9q#;=Y5YMT>f diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index b6579820da1d7d31d6421a6437eb7f994f12e5b2..74df20df55d917c6239b34d951d27f95546fce6d 100644 GIT binary patch delta 68 zcmbRFgJtFqmJM4t4NFtXjT0+#vha&CXh$!KB(0P^q^YXATM diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 3198fbaba893ba222dafcbc6450faa8a946f0173..5136128d0a4e66b86738afd26f1e61186af17d99 100644 GIT binary patch delta 9261 zcmeHNdvF}Znb(YDy;t7V?rQy*UXKN~B`l=rnV#tx8LSv=f@8pzIM)FVIPQDO5@2RZhs) zGb?E&5zYT8sp`|rc7Of-zOTPW_w>v+U*3QA_5EkRUx!D$Piyvp-Gwfd=&Ej+SaYaK z2o3@bYeZ4~z`~}EEmb!?LTt_c{N=hYUak{>M4(EbDxgI`)j%~swLqMw9;gAR5hwxF z1hg0^36uhA21)~EfU-a>Kslf#Kudv^0WB|Hu9NQ5g{tEA9_gvHY}*!AO&VC#B82+7 zse8Wasewam?D z5@WeSi6`%thI(pX*0fF?v)oC^o%(U)r1XDNKaSZ_D|_r4(olKJa`xRjq&h}UNhhb8 zFPxHYpZrl&PfJgztm>e&h9$R1HweqvJByIaUim{~iwa8X zE_^1^?c7>~#r?_S18c5|Y#vE6dsw=r_{Qtf#k9aUS5Ni7aTUfnVww%)P&Hd|Noo_0 z@rL%~L2eW%@NiwIzzA2s5C@a&)w`rl_T77=rNR%Ga9J7G`X+D?x>y6^&m?-F3omqnY_k)K)o7<6T*oFF(6x`9kZOg0EIw3= zngwBd*p%4Hx7X;A-B_5R|W+ad#+{f8*y$h`1^we0E zZL3Gw#CQ}RZ6F2Mg{6t5Y*!YyO#A)t6$A)FiG?&QkRp!&$U8iiF|CXu0@OifurN8^sq>VH6}+pjP|D4tIpS2}bN#2@>Fv~jlhm&?SDHiP)4=16=)^K_8a zHZwdZtzu>xy)CY3j!>@V3>{*!IYa@Lr#@`#`g1U^ahN?qFFTeiWvg%-n^=OLV~@6= zr&A-%6%|7~DDSBZgK`%eSccXK9%t9Z+nQPLs1(Y^x1t+ooAA>}_G4wTj~7AqULo}_ zv*bP*$^E-X?(zBM{w$LF(=xdiBAs87K<5u<$)1R0|00roVSd^FAIcWxG@HnSg^;I^ z#ouRduRzZ~B}1 z{bI3_om!d5vvsX#ldy*!X+=0$0GzU%xKcddiWZ4bX`nYuq?$kSxGbdEQxlD8mRp71 z628JaJJ^5zzOhy~$~sn~F1UPhHCiv6ih2&MO7NanR-*y9Y*>Tt6rPF%W)fA<^5ZoK ziAON7h2HzLySzRk+9|*1`+~_VQGPFDUM=e-6^fWv0Qw;6gOpfA#7&@@S}DKxBP}o z1;YPcGt(uzCS97c#oMJL;z&vH!OYAB@kipr8Fnm?wp6!r_AeJ7 z&=3*CQ=tZJ?Cm?GTy zRMH0uwKY4^NKvDxQWP(OGB-)x;{Rrtuq2@@znCdi-YR+Dpj=jWfibM07c6v@_=kua zeBRj&u{7DYV-4yN7iU9BywU!el;Kw%Xf;+z8(v^%d%LF;P*1OefHJaSKs9LDii#5- z|9J)cO_xC>8->^Kb?BeOt=Xsy-jWT=pqULLOUZ`C_Rj>?<`UEw)&taMBPj6z7Z9!H z!YGq_&?r0AgFYpmC;>bg0Xz@^jArKz-M$dvnrLryj-AaR9r@HfZ}oy3@fj+ z|CJ4ki|`ufmCI@ijN(OCD6rmbXikdkD8mt}TB1A=S|T9jCRE3s*o2;JZflu|wyY&8 zWw~%fd0@lXdEmTqxXmTFn@Vs`-VAo_nT52og!IWdNHA<3q&?+G50{X>TtfQyEr9g& zETnIhkj~6Of?@L@jg}+5UP5}Mg!Jxhfb^SLNS8}U@6ADarDdutlpHoY=MJ%NZ$tke zW^?S=ngpr&LRmu0W_^hLcQ3j_R<*z&Q0A~@c|`Sy!(H%)9}+x1oI70>KM#{^l|JVUV^!?7%QR>G#^=)SLDqF@g@ z1RD(ICCwI(p+vDEnSWe}g=c4ef)qYM^P#hQE}<^gb*GeLKXg&G>|F~^|sR5?`q)isMQO8E0>H#4{aWn@E*Qp(tiVaV9C7TS}^{9mvPj?&welxM| zyNV9JaXoBPdyY+U@S#mIi9u%*KSAw;z*JME6I=HVcMaX$dhlR}-0H*Jnih3j#{<1} zcpz03E5MqqDLPdg!p-Ze%Evqhb59hL_oIh|Lvdbf1<=jg?%a9n){UEP*%=e9!A$PB z*=xPKgOO)Y%ceN1BHIm3#}2rSn5sf-&o%=HFgu`F^?ip1#fj%pZne~+isn&JLl2$ED~J^Ye!wHm$HXPJ9eCLERH8W!)okjPVpLNC z&kt-ZcpNe&U7-v&xh>{ML2-Woh%>>UG#D(?Ja2?{? zrsq;qg%VcW@Em$ykYj+&6JN~Vx;+k(PtB;kd&F<;mNlhQ3CpLgIyxxfff}$zso+xw zE7(=AYCA6WCLJ0$foW*4klBGw0<6HPr{x7EoOY@PKL9Odo&%}tXqcLTuMt%zc0g1I z2fkzK8muB@PUgkIhar1y9D2EBt?X45wx_4-^7XO>q3SxmYZ!1iYZ$~fHP3_Cbalr! z;aZAT%~PqRgBxKl0!xT%tEvq?c67xLF!t0*<0#drAMoPn5Z8z0+@_XcQeD&F6j+

OhP%%F1B`Q-eli=2DWnxTh4_o=falrBOj0!wwy8h-GwdZ!j^OX z2ZWjH*TR^PPu!a}^aw3r9u% z|6C3Kzd39<*TnC)!fWNDgXL3;d41EH0eqcZK3DSLGXoRDa!A)6jvTVSmrgJ^s*; zz3cel=KP^`H}2az?C%|xo!$G~`(%IrfbS0bo*cl7mf?P1ZXL8g-70(c4np(2qy9R1 z@4mf0^p5QHIwwDy=!uc>?%}V4ly?uGoGYg}5;XlL{k`xUy7Q)%!bMPi#3{6c=~JIs zBsx1~5Y^o+5BvLvC-G;sPJOoVtI&^mCKsd{c50%rx;~Q1-}N7tS4ur&i+1~?{_gQD zm19-I2L}A{u|=Eu`nL9sk5%oycdtLbW${?`(7usD*B|e1=Wn6k0iEFeSoHaa&Hno8 H{FXlf2PcAf delta 8704 zcmeHMeQ*`k6=yd{@+8l^m-k)*$=;Wj5F#-c?(W{byBi=WUlvLcB4R}c@a~r}ibg(^ zI*kHW8%FBLK)L-8QAh1q%S>pCPg|{m)2WtL&1jYCIK{E*P*lp4!46Yv&+fj2mser` z?<6y4vv2RY=XcM!=WFi{zOm`iS2hhk6O(VoGL}{B%}@=?Qw>Ge96}VCGE8(;qq;3S zw&}XmW2P#5j%VL}EcU%)F#$*fDgzo1bOF!=pmLxJAfM+#pou`0KyjdpfU1BJKuMr# zpcGIVC<9ajR0}i-XfjY8P<{SbOuA7MI`S*Jr2VO!V=B5!Y)`|sMNGx8Oe(9YB74N7 zx@J23h=R68a^+uMF8!w>#|&RR)y4{S307=FCoXj~OEx{(7!el5l^<9o4Rn=L4eRZc z?4~Hq+xAFHhad1Qd!$cBe(YdU6W{%iw7&RBJ>Pe=6ys#Cv}fe;k-gIL;U9VBVd=*T zPp^MEFVm&55X55YHrb?r6Y?&q3Xuww|({X+5ny zmn?ZGKP`@q2toxHs*ourl3bV+$MAD)6>1Hi*75ySNEe$%hUydO>%$Ys$kW#n=CNc2!kQQ zUR)p)%@fX)FH%pvN7P}-M2}B)WNONywW8f3Zx1%edZj0{fo*P z!Qi>c=sEtmgnm)IrbKvmLHOl?a9~Z=BkZsEt7IPzWp6H$-5<)X&VlU5N@VXY$le*s z?mw^WH$&OKE0TRElzr(GkbSH~_PYhyM?%?$eAy}fqKT%QYw_>#Pn*#u@u4!lw=tgO z_e@0#glayg6;03dECwg5N{w>$5Au~Q=mJs51uQ$4)m2n1`OtU9subUUvNFZlH1t-*6?h@4Jj|-FIllkCm)FoUM2DJ4B4i(N-Snup2jTCF|kfm-J~?AFnSbMQ~#_P>+N+n^lj+e zb;yR#}@D+1QpRGfz4YovwcW&T7kdG1=tEZx@ne18Wj z6NLf3Wfqz#K9CMG?f^eA3rz~2*72s<;P#J>3~ic?(D0D&YT~cLA#oth*$<_(|3C1v zTmbx)?$p8$cA~4qchjL09Z82y^yhTwM8EGsPm8Bu{eDV4nGT%jy>#eAz!T)uf)kZ$ zgnh{~`P*~AM;kMt_-rN+FVyo#x=;)M(Ok4F_Jgty#|3}<*j#j-*pUgr^h^LYB@=?x zXGVE!DVXVlwFUbvIQ;ebh>9%ZSN&)Biwn?!>VeGYTzf|*%(b`syg9$*7yJrl1z8uA z3Nm9!WXvtXc{0R#qJZ=6LcsY`3C;@zoaah$VAlC?78l`s7UCQ);GABJ4kW8KwyV zmkpU|24#d`gF!oQT7*!?bQI0?@+bd*y2m%jvV#p38hzpt-L{x(TAr;Lrt5f)OFZ7a z7Nzn>pGWrzIqIoQ(^U}Z=mZnba5c@vOrxsqP{)u1-lzM~n?fWwA6kXFSCR@~DQ$SJDkGHlA8Y$?RU1YQIz%~cKHGj$s*1vYqA$VGwj zi!xapiOHWlj@tQ*l~QeUQ=p569ocpb!+|9d#fBA{x@o(vVp_7M@x&0yp%QuULS(4SVU}XL9`+p7lvSmmj>@oW8qC$Pia`TrX|_fkN-U~+mZ`Y~bz*sr2I3el6QO;t<1l;0W}MEMeUgHIE$98T(e~9`~}}!6Xmy~xueY2v}!tUeh1ZD z7Nucm2h-Mc3nCC)(62K@7{bV3JJ?*Kv#DFbX}4!zl1`#-ZW3jvq2MQw&0xW@;+D zQ+uZ37*toNSx^o$1ENhMx-LVw${I5))p5ZUWfL5pIt9nIsBFO*gsfO#1UR8E;dNg( z70e)QQTS1C+$hj64x=#rI9!m!w(5D7<;d7HiEBgL$Q}SIvH^z;L@Vr01DrVc!9*BS zHKMqVWiU9DP#}%Elu*p~KaA4(*SDiPg{*Gs6uXM0D@-R;p|E)b_775}r&>BcxDUd) z?`8B;p&>9SB!>)U}La+z^ z;}P4>ugt}!O6{V6j6&x_W!WWHMu8Uxq&i#_A;rjWk_YvkQUX<)L8663!F1U#kc=mX zMm8Brr)@h##WvW?W0<+r)n%-!ghHa$?Lt5rx@Y+MD27If=P}4#n#@cvmkO?A4j0A< z;6f#dfaK3tX7wDw%vKb?8k-t~AGTb_P-O!e55=}^QfOMT9@y7(97Sgqaj{`RSus=x zLrQc_TPX_1999SvBB+BP&XpbWJUa zJjnVQ08y-}elmw;!ZD_;KsN@a1^9miO<2UcWuOqRI)mcHMKEf2Mn_SUkCt#pm~A-b zS|apwA?BcA<3m?SE&S*+XjNoq=$DMKwsfp5{pxmjtSvoPS3ew)V{K`!DXK#pYfH!4 z(%_9^bkQ4YOV8O9kF}*^ZR!7f82SHcODp+4DH{`q;BeLdgnoN?xcYA?yH5BZe+$Yk zFB4GyrCj!-GVyc`f2ujVTl}ns&zqWEB%Vs}`=@5r@=Evyw>|6eFPc%dtoNfDer#&C z{jSq+0=%tvo9JI(DEF_Q1y5eM$iF`YpQyL>`ZKq|47hIWncTl?TJLqW@I7x~FN1%* zs|C1N{@r$v(rf#7hd@%VIACjbBd delta 64 zcmaERiTUj%<_+sO4f6~P4GfJ9()5ijlG2PVjLc0_OiYXn%@Pev%#BUW%##gMk}XqH U&C(JrjSbUM(vmmd=j^)=0JF9gN&o-= diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 9afa0ccbb514114922cc84e90cc7c07d9ce62d05..f89aeb18475f735848728486d3da59bea2215ad5 100644 GIT binary patch delta 383 zcmX@RpY`m1)(tB-4NFtXjT0+#vh`)~)S*BWL@`pz8$)#0glNFo9C!16&PkvHmI61u94X^z5 znsbv6)k;kMS}#AnPKi;HMO{Zhefk19M)Ao4buQEE~v>eHQr5ydsOt diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 48a412f64c0885e4645a2656374931218c5e9fd2..1fc97e5632448781e27e0afd74164a0cd79bc451 100644 GIT binary patch delta 1429 zcmdnBjceLAE|vz?smvQ$j&K^5rj#2eR_0{s8=06InOa&H8Yh_>nV1-+r5PIOCdnOdZnm?Rn}ZvM&n*Hm7Qm4U&gpeWUjOIO#(z{ptF&`8(NM8VL)%D~*p z#ALF(cj)AEVf^C8ItoT61_oB9MyUo?hKWFym7#%|`Q&~FyUC65K9g(1b0)Vs^6Tm9 z>gjqr=@%;iL1vzUfu3P87Z(*T!1L^%sRBO?PH1!Fx^ zJqtZUbD-s>CVEE3hI)p^W_p&B72;!A!Ad5dbMT(*;L^xqW(gEt?;|AuH_TK)11$L7 z#eMjDQr~MeQ!DG_zAt){xxBfNLsZ^76K~wD4G9CrUHD{$ASH_9ZVjP$+u)Z3jkk3n z*YL!dbU@hf@{a#xfp46Xxx&IErGWX3(wtU7aZHhw%Zeu3C-C5jwf8ROic>P!W2a;Y jMhtInZr+d(J%8$MMs@b7X-td^3=FN7j9V?47-s_jYR+%v delta 1436 zcmbQXjceC7E|vz?sSF!gj&K_085kNE8XKhP8(So$8Cw{co2HnU7#W%+8km?Ho0^#? z8>S>%rly*uC0ZIArlq7MZ~n>o*Obv@vZ1R8m$8DOxfKYRPEHI<5i`+IFfuVPurf7D zHLx;F1hT9wO$;YbaIgcacZ}IS`G6Zgi>aQ4!Q_HaDFL`V0_RYgo$R8PdY7A zwbU~*FxF8pHPQn*Nzcg05XiTL^9_xSfnw&9d!1uhKq@CY#Q02p9b!KDLA*84F1E>U zJUR6YfqH$N^otdMATv+FP|vuSi_6Hs$XM6VNY@bV2nz)bkjlyW(dLsCTm^=^2RSDv zdu20rPfiH1LWDUe7DFfh3=qK|lhZ;%C-=mJPv#F&A|*CmC$9=lCo)F$Ly{mddeJ)! z7^97(#^S6{e~t|H*eMx;5yRMz>m(Ie85neRF;g>9`SCC*u}48(bSE|T^rP*EtK zvjG0XZ7-^7uV7_p@1$dEfFh$~Z*6X6Z*HPX?r30ZXJTc^%E-aU%0O;xZ*OhK!^C9q zzZWoC*%~qR?APwYi=bIcsM(>QVCf+Lu6!5FFhN22CN3!=tmvGup6H^fxPQ_*ZS=vz zN#~V_DE9rA_im`%>(^u%FD_=Wcv@wlUYc2UT4Z^cK2(!FY8t3!I$X#y&Mfn40)^dr z+UCY}?9t)4-P3vIMhpz*Yws95r}JZ&V(n^|61L(9<9hg}myY?u89G_6z7-)3$1vj4rrkis|O-?dlY#-Ywq!7srN-aPvMc&U$}jH2Sb zSFc`iuDcc#6i9@Nn49M`w+fv7Z7eS@S9K8JJh`}WRe0myI}mlnXnO`wNpf*|6u}LHMBgO zPnPU?LYJADsmz;^nE1fa(NUQ<8LnWv{+}yUf4sRu6x@>YUBShL+p2o|=46#q>(o?I zo>o=io1a&uq@;pc;ySj~YTdbi{`|?s&E1zSLwpmHq;0Ik?8-=~1#vjl_I#+Ia@8Vy zBaAA5-|axvUfagTX2NZ&#(r~x(9O;5?Ci|>;&_Sf@naV5i}lf>pa;BoMn*~(p7WD^N&x}V zm%h=-$z*1~b21&*}$cAE>Jab8J_A>c44=!||cA0|$!^DCYmK45fV zVWI1Eoe;UPzCLU-V{&?xyvQruPoKULuv-i=*VCiyN#fV2^ZL^kW@~NzJ{+Ts z)u@||rzeo9miF4t?_7=GkO$nh-!8Tjou*9e85O#c1+`1d%3|`h>++_f!@?epkBqdT z<1^;$k64VCwtH7wjB}iq!h)F2<2_NQk`AXz7W8^uXVDTw$U-i7x?Xf*p`NRp#H{0E zZe&DbWN6q?$j}LoiiJF1t*B)=;px+-L#4w@|JM5<1?>I$Ec>WWT~)l9>4o3L_(<`FLq=OGT{R<<++-+jsvRfkYK;kEorU9U{BL z?qtDGsWb|5@_OT{&`>N=QqlxLui6&7x}6SsIAC|Nv4ulP`JGQzGDb_xV)|lV*SKPn zl3EsPmKpvcx`{=qxe>o;J=<`D)bmJZtkfbfFc3W{DJh7A8^=2#fh4uyanwi4$x1>C zbPSB^Gq46I2|NxT;V0GA)qnT)*iK@SljX$3#NKUc!}%iRkm0}bR;c%6`FAccEP!6~ z$NOEMIrCd=!l~5UH>Yac?B<%#JdYRfb#--*E>5?O|2AU%+tIJR&K=InVHsgJkT7ah zibzVLxgBmUoF7h?9k~((f6%b1i833`+wP#x@6A?WN=Qtsa6e|j5u=|ribJNms6@Ar^DdnFcQre|&~@K*%5^Q*^t94`#YZ`NVK7r+Z*x+k z?z|(4UbD_K5#Dsr)e??q`ir=RNIC`DCr=iV+%{*YFE2QEmwH-%{=DLysgS|qw5eHp zyh!}<OPU!MDMx$ID7E9bIE-JGs=DQe$V&y6lJ>RC;FfkGpfbUg)b z9mRfYD)EU%DYN+qbE<)m-P8YUI`ZgM*7KDW>$yFYVvt?a8Ex2(G3ohBVa zWT9QCkA{N#=*9Q#YBe=AvCxh6b=2FppG6y_nid~yjI(;4IVz#KP{`CJjr}(JXgWvf>JMa;k-}1WT)%H4Pr;$w{=i*YW<7Z=wBxE)Gq1${rPrI(WEsRo9 zLgLL(mePd7u$G9p_^@;LQ@xg%`T52lI*mx_7%9-JzPvbn5zBlUM<8Ecd1Ez&`_cjS7#`gB|D! zj5IVfo!-^93sR|W4vvn|Jqg^Dp@ghrj<&YpH8nL0P(wS2g44%Jlyg)cVi7P4IojJt zYH4XL2zZ>dG1Z+FCd9{^Mj_APw|Mx%W5-hHy1i1gOiUS2pI;65FkRBm3aajREQ&d3*6I(ox3@|7oIi0+IlqHlVmDL&Ha#gEmW0~h zANsnngZo~eIN$M~2xk|U?I9Iy_I-QUhxE@xkS2=s{VtLJ^Cc?HzwceY%8Gq6mi7sb zyn=#_gF~*$7Q=tO{{&wxy1lbA74Gr7Vo7VHuk}^9WP5klY}Mo+a3D8+#`wBgB11OO z^Z}(W?(+CO&1z?CPR_DNNx}b6h7Yl%r6r@Mr>9}b6PyOLy-qtzOUwU)4eJP9*~$YTP)Trd(*CE}$UQ#eMe|ClwVH+jiG~FXDiUh6LS4{S4EdlXH#8%(CE zUH&XC_Cwi)vI4c(>+*D(?`Y;7J86+|9|e@|ePS+YWFHiZNJ&deN=gc64{_`(URQpW zCO^Bi6`Gi+RTC2P2QNwVyzcTmH0HHy0NlFY%*>nc@NnnNiX~O3aIA)1%q~Hh{t$n{k@S-p1O7EN-VLz{A*5B{I)AHqUI`R}ju@=8cZu(q-J z0-%8Jd~e|7X*d;o+{{?52k(4KaH`B_4!{`w@G4Uthgv8|AE%O>>tw2{erU(-v`G?9 zH9J4Aw_N}b{C~hVG~gJC@TNvALG$ebhdx-cyu3UHt;$GvKjgW=>R974JFF`H&esmD zs}szxIUoXHK}AEe3;lTa=PfdnzrQ%A+1e+d^3;EmjQCMdFgt3LOifGc4+WsWY?v|0 z>*DxPoPt?uv-p4NN%^bwiHeB*wc+{MSz&i~KB#moMTWoT-eC#MKr246Ih^(qME;>r ziie1VQ-zT7->wg%6#qmOFx%*N&3d`_VM{2P+<2*l$#gA0fM2p0CheOuCBv_uhf}4? zCU*E^Q(8MXQ1kG_cXhpp*mawIkKb!r;{NyNt+OS;%h^70vIT&Yv*T8E?A#YfXREEP z9T^>+U0G?LbefhiHGPa?)RRR0`0;H{PEHaM5-97p;9T86`rF=e-!;JWe0+Qae9qRv zc3A<{)qFSa5c&G~-GU8ubb7kG_}NOC7#|n+`QhfI$w2y@9)VMag@pwaKx0X#n^jm= zR#wQb3wrXwb}KT*-2d`_R%Wsa-@C0%f{&m7O1bNPmS^3&ch5_ta@C3q3-nqsYfo0` zf$($z=(|yma0FRdOjzc$>goieWDfw{EYS>V4e;znYTU{$Nb1fHh%Zlu>!7_iwY2QO z)A~DRmQScf!^#=~kmRa$5C0*-Ms~Z@7mYH@v-2%4@icjxKW*4kUY8!Q(^QKL?`+i^ zl8%>I8NtDax?u~L&EwgA0=J#Dt?gWDsKD1BKRz`ziPWS##g_~x;B{mO6};fOapOjg zMp+0P@GV#tyS3c1)z)+9=z#x1u>_91;n^l9@w@H(iI8KlnG@+w;BExy`z|5^7kRg` zNk?LU89$6kqyL9??tcS*$dn><{E3XyGNCUP&I>E>o8LKVjdd6MOz_|5pE)eb52xHl zfs&b+n4p~PCSMMc!Dl2bEGpU$C39VVXxNh!oSI5m<+Qa3r9e6Ea-lN@NLOZG2_^{_ ziqO_n&6T6w9zi+=27PFdFOvAw>Z~p=&d(0Ut$clbne7%|@YpZE=_^4;M<1&dbZoVKwz)y4J&tuLamAfM2_ne(KjA`$~-3wOw$#HrCd? zp=elGMo`U8yx_w&^!2@})28XR?_*Htdmtw#SLw8cNn0WNA+~Ut8vrQqA~-rgKw6!q zJ#GoTdWD@L(&V@~k*Qt#S-_*RmcBLF>!LkNDH|0P^$oDYAcChp!Ni=uFa9X$tn{au zPgTdkhTA#as$+#up1St=`BHacHouitm17C=WPl$D(^GSE$MyF1iV-v2oe07p<_H4P z8v}4MwXp*f)3d&T~y9>wR~J8suKTJaE)zAaW!PfvmT+LNpc8&%cVzFH{F z1ttTJB3f%NPS!N59D`v;l6l+Aw_pleu zf9$og@}s)lZeCjn34errR#jBA1KZyz>JgyVu60+7Hc-3yCyT70(GM%;ip$a8S+Q{} zQa)O_SY~0%;k?B4KYyrh-MG(j92g+Q?=9XmGw}g*?2M=SIn}zLS&FXlJK1QUU3&*~TzxA+O9- zd-QB`v?ybJd6|}%o4Xww8{1Y>Gl8MAkk4gDf3&q#ytJew3MvAV+-DA%?#|9^ju=>@ zb32_QD|m;UD0-DY-@nt2PEEZg<+4sW>tgL8m|O#XU?7C_ngt-8?a)AW;J{PHL`Ag& z1&56l0buYk+;Ar*CZ?^BkT;*%Z-&$*6L>+xn!M;`Z@lU3ZX(tGR55bnP3S!X`Pzc# z^P+)xPpzh^iCURnSH~XjF0GN#P*VrAMF@F^*F}bh`_$Fd^%cga80f7!l!)B&C!u+p z5`|4f)bUj`a4!_#e$QNUV4pENRXWYi_~^963ptV0Aw^snc#Jq-5%_2-{D%vT=!ROf z=x3itBKSJ}0bk)=c1OSTSd%EknXB)KV;lWeUc5SZKkgsI1gb>z78EH!^FJ@nPuC_z zUiDhTJ~g`M!c%mB5m!fh(;==-|8^ghG5etYrg84})wd4;*5-7>)soWE^GnHIi_leR z=;+$@>2gxGT~-!imM?^y&gbdZ@~!tWQ#IARMC+c+yhVBKdYqOXnRB>TUJEmI$(pw=H~b7>*h$4zD4F<|MT6g_uiF1N!qx) z=Ly8CY24PzOwj4IuWhwYaRu4T2(`TZ_v+-e=LZ^aM$Axv?kHwB6G8Q@{c{eg1zs49 za1AIBZye0c&7l)QdF;~ZihT+SSs0v7AmjC|WM1Y4PwG-G^zj}`+a;B`eYIt|*vhk& zpLMCq=;L~uLTxkcaro46UG-cq(fRQcriHas?cK#G&f}Bi;mGJ1qJT%Ro=?lUM0cB%uKm3ukZaSw(BDWO-)S`%bDsoB*WXfyIUF? zQ!_Jc2cW?Dh#^WKG-HqJQsTUSlQYXYavmRLu%fO|PO_9&sla7R9+&Vt~`P(t85}n~=wtwWQkAoTdYi18l&FSBL}Uk~yX-E0 zQO-m=L|ZDgEW_T!4N*_aGYseUx^Rb|f7TtlD*W!R-R`yCB@QLgGA+)$0*MOs6nq&T zw!*H8?DxU0T0+ygKVee>>evCOI=j3q0h0PHEK+@t*n)`Iv-+0$#y}hIHMh32(`)cW z>q_GP42ONKELp%KzQk-eJUaTfZ;=_d?}rbCpxxB-iCaJ4E{3oAvSoWI;&8a$+gS1^+eL%VoQH$ZEt-PH&?k6irW=Hnw%>uDhKtp8PGlk1_JN>IXz8w>(;Hn#mH!d zCU|zpx;a1CuY)$Dpxc4XwIm)dv-?BMR7|zh=yl<%yC%zJv8Q+_7Iy!cvn;;L7n`|moMp^^(90S0q>r#MJ1~T zw-@ewR%5&3?B>P_95Km#M-n`Ty>VO|oTKBVZg^V^Iv2@N z6jJ`_m2krN;N#9Cs`bdo$X!y>?!U8*Hja*#W9@K%cz$xBljy z+K#pNT65HMyvfD(>f`~TwAunYvoGJief#0Crp)+Sk;KQs!Xl2#h62Psi#c$me4>4k zR|%UR?B}lg>@rKuK%}&yp-&YrHcH>=wB*G3^N;!?FmU)zmQ!DR=D4G+t=-Yl@pos( zbkzj$v{LSq`zk0zC@IY*fI_%=sK2XcF^_k>%E`|-g~BkUrhCuiD)mmWvrzy=(&H91 z2B69A9v=Il0A)vtjIcnTu5mkL0WBIp^pBza6b+!BL$RTkI3)`D+j=SW!L)f zc*yQ%z|4oRjAO6pA6$K;l^7O2?Ii*r*p?&g2iQ1LA)zuFbVe5d_kzzC@9GL4t>lv( zp}ZrlV6H!vBqEL&_NEBiZ;VCVA?El2x)B&^5@1dE2M6Ckj0I^hb$!_FpxW-w}b|{>(!~hJ-)@(yr=#koC+HUr$IrEzZs$N z@Vx10Y2QF$1mQaf_z>IvJ+RWGm+Do1uw7S{QS>A|>d4A)vaxw6Adm!7Y66h;zAw*j z0cmOdY*pJX%~Ydk;Vve2Gn8)!b=vEaAL=X>kd>SqhV1SY!)K@&kD9)PDu~JsRL>qT zROS|9eV(FHcynLz@qIWbh(0r6)A|5D%u983Dd@(ZT}@#rs3YtMJ(I2#D!VY4%`PqF z5V`bMq+yY8ee&_S3gX3WApmTEhO;<4f%ic3R(fZkrH~st_`>``S}7 zGpV!gD&thwY2BB<2fQaXmB|e~?XKU4Ou_#`y>o|}pZ@_gN)&xHL+ItmQrCK%epN=N zM+M{d=5V*-$43teZ{{W5aMB)VRrSyFeSPTE{@2FE#U-&-I$S@>Wg^GlUjg@1LV~6i z+po_VM{LL9&yw3aehK>Q!a4I;sd zBT6Xw4}rUhIk()t?n7jA_&%WXUcvQ_o&f1wJc}$WaI@UEoAD>07(xHDT^*zY^fj!% zYqC=8y!02~@yX$qoV`7poWL;^T#MLSAkYqg9aGfZr`SCU^$ah7T)GvVNEU25G&HpJ zv68^AUnx+)Z*rb_dn@R%GSud^RN?Mf?wF{Biqgq=MK-joftO2v@sj8Fers6418)VB zX@C6e{QR@E*rHx0D$duH7Cj@QR;Wh^zlVno7V)iMF}rz@XRIyyVm$}Asb$R*=R zJO9)15JeP(tp(6+bT=m|7*v0FgLZ@HB4CaG6J1|ON(Q{D3Wfts%&sMj4iYssJc{%A zx{H%Q(3x!3N1pOHZN9L#w+{?(Mv6qeEl8e{*+V#Zcr9>dBtbBVV>iP?R3I|1Gn?R6 z2K8c8=&9#|f`WC#TzbN06rc_l!|bbz7|nL zWF>s!nQ1xlLnndDrong|6eExyq=Q>W#>e%nthDDn-`2}(YH3w$l#V0rHPks0E^Cx1 zsrR|L7XQ`amA`>52kNEE!RBNqQV>9vQLA!%g2?FLuv^0YT0R3*Q*nMU?s70{LcZ1XFSH4`Soxs+0e`hd7mhtV=eVEGc01==k^&V6DOsZrS5? zfeT_rG^17rsG%d!=q8$qO$J()w?VDvw*7+&a>he0u2^8$pb(mIslz8_SV9`%D&54r z;v;|DdVu!bU_#O|G9sQE-^J0q3_tbTdVhe7I3y$(h>&`OSgo^uWFmgHK#9X&f0BKs zes$%>in8D#s2&oqqR^(qNI!tqLrq7AhNv^F`fYas_8=k`0jnVfJhC*;bzo-*)_eQ* zErR90-Uz%=d>hgsY))`*6(GhTX@Zr>D$YU%yT3ES0!K5~5YsI^DM^U@2Zdn5$=ibI z(1ij)QoZ#|a*KsgV9+Hh?CHoSFGk~G}c zA*EoQo3pUbpRd8b^G#ZGWhfh;gM;H+25~YkCua=cePGp?v{8#d062;4Kw+N$^T$^` z_YvqpU`nf6c;-IX#@8S>z6y$9{WUDUdQe=0cD{gb+yu2PASkG5Xs86ui1se(YUBF} zbl1Lb&*{x7Vx6$bjL5Pz8-G|OspoPK+GKsClDs3}CnOB+n$M$e3K_Dnuh+<|#!G{J zeXmD9(GYv_0^|7jScZ!isy1EXBu{F1kf6F!_-(;qVx!{q#YHh=W7=$${F^gP0k|Nl z?|#s#E1`s}PHzx_fIC+ruTwfG!*GZS%|}@fg;7UG=ilazeH&VYh3>~N7)TTKO?URw zd*wimxK2=&o5jgIL_h({uim*mJ39-_YoeFCSeZ)A{t@;6qGOR^H{l3yVxX27to_c_ ztaT?u0SVKxVgV0g1QSg~xTuz-{|kesjZHd9`qBH5&o8J_N6Z+Hva`Dj*h?&&3Roop zi#}>VK)}~#f^=;J8MoQspvDu1Q}sdFt#nvx0Y?|f*?_3q@E#bP@DbN3Tfm$C0=GlU z*Wk#afT0G8W8PgEL9@??9fXB}Mq%|DYS6#kSa| zda#pUD9EKMAu@As7o>MUlwKt>Vh%F6y##@wqK8X8oR z6s)Yca&kSUkHUST{TMp+4Gk$IZHsY$4c8nw9pFB8lqQu)>)NG@6>4d*i+j5SK?+Pfw33{`T$L|5WfNPpBCgL!i#U zsekWnN=}sf;TqwsHioXIf%XXIeCEN&B||Of@%WHRLDm}LKIusx>!n7<#=a^KUtXs8 za{;!`#mv3gz4hUYerE2D)`td}BVi?FWwB?^u2wm2^z(+gxwv58zb^_aN9-{ACGF$; z%Eg+6Gdw&RhDE8_`{x{1G**kEU3&I0eM8+wE6!kkv#EZ)=4%beOS!o(`0r`wrx@jm zUnSRqyoh}^jVoQ)9|FH=YHclY89gUr7gT_Vj}mm$GuVq5YY!wJ9~pB_$^ru!z!-&6Mm^(~FP7x$>!frUa+w zszt5n*L~7OQEAYz8#3>w4At{aexa>ed>Udgn>N5XT{sD!WW)aZ-5a6?Ecmv?d*<55 zeCE=08G(McFS~0c_Jg`h6bs&TSM#s)w=rfe)F}PL*Q+C+ph;-j6Cs`4`#w5<Xkt&9Hmo8toEn zX$vN!p0y<1&tvTH%NOR@D!bGz3Y>X9*`$bVUm>TAcpcmQHt59^^93?WxyzdnKuTk=sNuqdD3KaUd^L#yI^2aYE{eO6z)tKt?Q zTx)ueX3CwMs$&oyZFzY@+!uHO}KWQQ;Kvki zHZO`6UYB_eCJ9)i3k&ayitH5RmeN~0I|ISpLl#z%3+*|+@LIiKf91S7I^&cfmP1iY zIe%}o(XCPJ-@?IJIo`#Com}Z#en5;3WOLJ7<{fl}V_s_AM?)i{A*(4jW{l_#vIS0=?)va#GhjA&JJEhMQr0+jvMRj4Z zNwn9s?i`(*P)LTidqMfMTwS^H(QjPKY4SbjS`c;I8<0~WW(6Yvd}XjuO?(JT&70&C zQyfy{8=DMD#<3-E+zmecUH^^UQZrP@aGQbsP%$&g?aYzqqce+FZeebvcd2YtXsEvN zs2xj0&1I};o0d2s_lD?LnU$4&*D_mH?n?MAU0|GtIS?gsZ~Lb#+b$!?0TXj zcZcL_%Hn-4!N$FJ@18YckwI7t%+$TPREUVl@bSI}MR*rbF&N#Ayj#`JRaJLC?v&b# zG)eZlqEZuzWyd??Q$jFtwr7R{v#MaOvG)Op#9G%{(nu&)4Ekgul`yKOgC?<5%B5#?uZu z_lcE!`s?D_$b?I_l4*lSLq+bmh3~2FFoCcc9k(_QR(960D&c#=uHeMZ=v@s{z5~M` z`AM(K^R5K$h^oy>bQGX$K=UPm|CKL9Ye0Vr@?3{T1r6udXU^RQbS8319H$AJTi0%3 zHi4p#O(}*f0t)2+oB?ZX@9#H5s3awY{Nk|ga)>KbDO(x)-aTJ%Js-%mk;`kzII3NNL004Fr9v?3S-3{E#uMjJMvOc%4&5o05l+YFtHH{RbH2@wmS`v`A8so*Xo#GOs^I!lNEvj2 z|FJxffdyXn0>op>tE!4TP90tMmVf4!O-TWiLIJTDAw7_b!^OpIglhnJ%w}dJ>F%!% zy@+QEsIM2Qy}WQE1-JO>)vE;HU-gv$Z0Z8SBn5K9F{B6DLGwI@pjumJ=RBwk24G$z z@&W`SpMr|}0gLSQ(ixDMP+0S=>RrtD@87SFmxY2c?|C$P3;Bm=*PGS5vPiN~Sop14 zPXP7dVEA3o*w&t>DTmjezEJkeFCo$XFwyxj#W*kauWr^iU5&2lO1n~wWc*7B)C%;L zC#B9j4>Xk~rdy+1X)qs=lcVG+OM_6s!SSfp&xBn{K#l$vefE>NejM9chV3bqZx3H( z{q6!~r4Mp`5J5oHa_AVOZtG7|pTZ;71$Q65ciX$XoD0SCbb}KGSq2EvHUV#E4g*{Z;;0axWs2Q*SGARUf(C%8*s_bZmD5dAfgLMvAh2ENOii7AS^aW> zcY0I!1@VLS=0N;cnTjVLW9H^`9oI*G_HvAtH`N&O9Y)8hC|_F?(TsQNRv9{bEJ;r( zO?&Lk9%LpFnN_k2LgTjA<)Ih2&L4n60gi8iFBy0c77lVx;SX|h@|149oL3fj`1q}y z)9%j!tPyis>bHkeBfoQt)Y<#bAAQ6(13U(q98M&l1i7H^Lmg`xuU}&dDMzm?J9unn zas%#8anQ5m_SBjWu~hsjAoK8Q4&6o8*X+tpnZ~mw8%gf;&X*_<1`h&0Srs!Wm`k-i z66$-JMYx#JGMYDsRaGG!_$wjab$o?_@q?0MG*#rZakZl59>11EPhfNTed8bW0~Fa* zA1$c!ic1zGRKyvb#|am7N)-K$h~KK`E&?Ytga-*^GZAe2X$fX;9FLXJA{xM+x5!!K zj|=U_Ey@ZY{3>w1rvOrul%e4xAolb~LIf2PlY^%f@;j;px;G#hz`Ze6qSuK>-N5O2 zcI4XQ0cwoz`}c^vwmsj0ExISLyim)@Zf+A=V_(>`0B1F{82 zK+=M{P1^ZOsK5d!wp_h;vxTCb>dr4FQ`+A+UgaFF`mxcB_j_D6xqt05nmpWrk%g40{!dCt?rxBH^xJXI`M7j$<- z`v!9lSqv0`v%k+l4HyN@5e#q&2zJ7!jmsG%2D<=JslX^$B)dGi1wY{1X`@8W(0&pq zhfk5f%5c7RD->fW;DH%Qt{*|VfFyVupnW}`8^f^`n%iMFF*h7GmY#hA&TjE>^p4dMsOW+v;EV@e08Nrc4Bb3JY+gc?TF-ei%~|hsXv@#684GaGCb)z zN^8F(xfU@qF-Lrq{;j^!;iV=<{pgy}sJ$hwcNoFof==)TPqZcJWQv_p`K2e09cJ13 zX&I9EhCI2PkPwQjtgJ(bpu_4tu(G=1*#n`yfI^xveFz8m2N*ny-HDx$F_>;iaLi7F zI1t#+18LIuAdKX?TK4@>A!im*39+)x%*Dj+jXf4!OzF(NU5S3+DY5_k$F5wns* zMqqPSg^}|vNA#%_h|}?&87RS(}biQ3pC?GUnQrB((AU{et!6bXU=vJBS#B8 zzJuxj?wa7fEk1q8_P6jrDf$5px#!8*r9sQgFR*1$@EPknqI~)JQb$$LIqrkP@)Sgu zG=K>?ss&#mHEWFQ$qAA{DvYkXR}A|IDC!mONrcxkOPGfovEpkDX(=(>_q{3o0f`hP7nRJ75NH_m08tTT)$(M@X1pQ9Nw_-VW3>G(?vC-P~BeOEIZ+!lE3GJF)EW&i0 z##jw8iCw-+5)6vz{lSk@NK{dH9hJl2_VkEu*=0O9d%fs7u8RQ(-G4GaXA~BfZ`eN+ z57{t+q#1Z4ED(FC!BW&4_;lS!`aCW^cp9cvKzu$fmm@1*WBmR-NdEbLT1lJ4@+5KX z1(B_7q{UMA(@L*PL#-#YciH~U^OWd>aDOus7wsic*LI@nOjxZ}_xOxL#dU%kbgZ(A zEAvvk!DXRe_l+99{J=naclRSG0-zIN6B0^7w8lh^mcIYf0!O0Yz{E&}gP7)O6^XG! zVPT{Jj}W~X_pog9cCDkcA?f!Z&mpSi@iIS?ftdk0`u8fj6sbnt=A}bESB3QuI{p$@ z{f>FO_F;J;#jfj2oJQjCpoX$-77lSWC zAY6bn1eX5uX+~WrM&O7d99;c!>anpg?>)P-xcI2)SEAuN$o_Y6q0z=HqO?0aJmKzH zWB%BOrai>4%+LRj0pnm(=|HRUx{1kmUVGzhw3(}K(~zO0L6O9(={|Gj^R4OTw^!{i zIcWPhIki{U9oHC#?&ATiU7yBsaY=90th`?3C@h46LGfAq84YNpBqntvPn$;SvP6m9eN8_(p|?G4$fjE#I6ZBeV^P5pb@PA*?Z z(uG5;AU|ts{_QpT_qeoM5#v@?)h=cFjIVt=V}!HcJ8nc?(wJfgm^~@xnJsqS)?I{b z3qxEI#S45{rw{%{ABB z&2sb_;^MOuH5QgWb6)J3ENH6|yoi0d>*vGmVj#|`i@SS!wjy)SDV+OLdfN09fA56_ zYUMjf{{a4k*(~9-LfIHv>FDuQ9yyt>83ox}U9wy~?ZO(0ZQY%`VPV|AoBNENnyaG9 z#!4Pm{y=pY;;%fkIX#$J%J9GHy|?H3t4hi4i1}>Wk0Ksp`>!`PWn{ur`Wn9*GUC}d zvH;Z(%Q%>54!@YWJMmqU2$$oF;{&6QiM(IjoKUg+lKANfH*PQ+d|biut;CtlX3!q{PDSB9 z^fDH6T2{Q)>Hg=rehE1_n*XXGK0Z19x?c;%zp&YJ|KMPd;$mWaluI6b#v*!eiCf7l zQD2f`vgN}y%mZKi7=q2Go@8Yv3UmpN-BYgLH=o8N=8T_mI;1gx>VVy{~ zcW|!2g4utU_fO)wQg^QGF`Awy;>;S&R8rSN$#q5vLQ`8;*Pp7b+D1q`fV$-h35GXU zhGI8f<`j?^e>|Z|z>mJa>J?+=(!pZ(kt81HqJg&}9GAuvPv!#^_1jRa30JdJxlHbq z%pbKciL3L$`s>O|D$!pL{x;Nv0amvOh+g%}eP1z3xnF+U^)R{J(Ru&r8!0vyXYaZ? zicfqp?gN5uc#uA8KkP#z5YoP5NXPS2G4_VM#pNVbbCiY=Po{L9BWng)zOZ7wJT%V! z)LSXySV!a2_h$8J{t z8_n9Pl1BhfO7UPUi)dy_woq!6q(p_7*z2dS^Dsq@%0zR+BlU+*Hx+ii+K2fyi7bx| zorxUv<;QXMoY6ys>hAsf%^>F@*%Lq|AVqQH3UOXDW4iU5es*Fq5!0e-PIv8@u-X-V zrh9fd*#*mC`h-@&A7I#uhk13ud4q`Hwh|Ll;Np~NdpF008!kzXdqMA0Pri{+I&FC& zwJ`yA)%M(C3M7>dvGQw?=~bcp2LyoUPRoGenB7LGs`)gwLNsxDmwGD@Tx{WnE~8C zOG~&UBwfI>P=(-e#|e1wAXpUqOhXW%MMOmI5)hzz2M6DQ@070Y>dC-VN2T*N1(Ljj zKmeEG`3KEw5MG>v#1`cLCab~u@&V!rDFH6$zvLh+)3C7MU}1%})E&(>cCdtFy19vB z*smG7R_EvMSS`O)ElS@Z-fs?++ElQ&|23r3>iJ>Ia8MvwW|!Vasl@-0!4p@cle@?39s7P>k>4n`9Bw&y1fFtP$!)6|p{6eFWFpB+dXLEas4{4J|CH~^uG z0LMqT4Hz*)$r&jr-Vjau{W!t%WQ7I}1Nc%`gfytV*kG;ztmhRn7(Ycq&Ud`mhV$+A zmS2Gzd5t!j3bdI&kR}*J&wv5G{@Xng^L=yg2OtgA-quFmH6vIcmZ}4hF=QGJCT|FG z^RL2SYjTC%(kj`~;^N%Wl2ha2#8`m8fBo=q3?zPRPWDU=wx;DEe+Kpqz&s91%7vq& zj_D!Oh0oeCj3+Ye$`mdxblB-Vf-2D~LdPloL5fYjnXAk+xKYkZ?W~R6LchK3o-Adt z4tJ10e#4lV*+I6`@Qhk_upl+Oh^muZvI!nv`_Qc{ttb2$u{0`VGpQyzK?>9jvnmgd z%Zt?@}v?ZN$*ap(qv-AiNaX?KOh{V+T5F@+so zEO@fp3aA39f*ApF7{)~+>0rtuJ_}6Qz2=I8IY&^2xjfIxMTa8{;$X>k5D{Tw3p9bf zk)J=mj4l0msAPAac%QZ5cCqs;o9Q4eCZQOCw>YVbFX#`*#AvL0!TQDq1kvhVDOA&e zVrBr51I=>lx3JP-;o;A8btzyQ>VQ2SJdcqWpLK+>LcrB4!8W88FqoH!qjR#aVqhfv zRz7$*BXng=tw>PIVu@uSVB9#aN0I%r@`qG$`fLm=(i{>iy=%!HH_$5_n#X5Isax_lxSP=RS77|pxVoy6Y>GhS$@sN_66 zMAOQ9SG2c$?U4O^G9k2p zg$$b4x^qJpTY%mJf|p!f&@c}8`0YbON@R?KvyhSm%O}eMf5I8^16@IctXwdU1VSA$ zvnBR5v%Gv{o%%OVW@Y5v*T;9J*QLJIdO%U@cnk`jDW2?|Li!(nH4V9J)}AW;QXau9 zrmRoP-YGY=%~BBEu{L~^X;x?SZ0G)g{br~312^SU@5o-3s&&>+k<0f&9@Az?JZ5BF z`dlJRC7H%?S!?#8zdL=86$uFhUxYxk-VXvakg6AkJaR0XiF}D3xaDY=n2(s4LSf2a z6+IIficWG_Bt$gXV)Z8$W5vj*QttkV*Xj6lTSo^4i@ZynF&h!g2pdLQUp<2A<_v%P z0OmL4Kq!W(mVs1pEIX^Z_Avd5{h>%PQPDog%NN~YwzIPX8wE7xj8Q*S4VFR%__G81 zuj-NPgyV)f3^6tJetB+VZXDIUvmoWdPb)dY8hJ(udh5tm>+e{_?9*scRywicddTrh zVLy_DS?csVq$NbEMDnNd5oWijo#lsZ2krd2ig14P;-h&7E?B2O8@WDxCy75Q4ZqP} zL6tzU`Y<$O3CB)#+e~WnZdo8eT1PZCK5++#s5g@XZN`J1*+4>3sj$}h0LKYMqEK}L3- zkEcT6!2AQ{lflC0vP`VocG0~pD!yI0KS z8R(Lkg$t-h>d1_$I+mWYZBQ9JCU!hgQATmGnLMie@amD>#aEGE`J|F8tvVA|p$2w> z3)2iCAt1Og3L96d}RRXyy&Gb zE9=+mzw>m>Nqx&YR{5}$`>{gWSXnhBDPTTlgrgA?xz^SeMXQF{x1EgXX)BMB=PFug4tnr_YCw zfn;K|Z!jRW4gG|olLg|G2JlxQigUAdY*^Fa!@Yg`_h|m(OCHx^LvfD>jEqvXGreCv zj^M>UVv%o;n5b5>LFN2rp^>)G@k8h9f)u?FDvfZ&LrEOK*Zhaikv<!*LG-~0y zsiF*X-S?*#2jfFx$11Ke?IyP|6iGsbCGmQCZsFq(KKJWAUC})_KU6sXG8+?Wo8@5y zHvOydKnig(lE6G6)BCSh^jgkUSvhk^krBGHBO5>y-1f_NAteZ*t(}$;12+8X>U&=j zlJgZisj2BaMJf*igM<5HEN6tMrKpJpv4+|WsTPX_Uoz(vbS!{Ta7xDU_bp< zTA-{M-LFS0A!X3U=1*0u^c=sWkL#B=bN``L+K-&OG#WJSj^^SXOg{*I?)q4A zjWbMJK1Ah$-F>I<(-}{JweH=JET@?@Kk{EQM0t;`bDzv9VvS#?A1JlZK;&hZqa43D zi%>W%-BIb%!L+=LyLg3LVX&85vQ${ip{W@u(dG{v;xXMTk?`PPrR>EnONj~f<&js% zG{#Yg0m|`R@i7R`&*2Y*^c^4(G%#*hb(>Hjrl(!xy*iN5A3`puE$Mp)vor^Xj(?J? zYpTp@;g)}9lNs}*@o;#-?}pwjy4(q_u|dh)V)x9uj2himIyU_jVrgWJ{MrFT6$zIS zuMOx#CXO*su4M$#Fq~7x6a~`KJ~4793-G3~e3j6MF7|fgTFM1x$8MyVy(0aTvgq&+ zDFGGA{_PV1(k}Oiz%1#e^ccHG8lAJa#DqgD*HEhtKm1BnL%S`RMXFVD6_1??4^QhoX za58*-i*i{9e8`^NA5p+g+TQNy@wsYD-x#L-g(`o?b(8e(p~2l(qoqH`4zAu2<4mq* z^N-8_6Bj38k+O^^bX9w1N&mOUw)a*I6L%*K0VNTwb>oLMVI)Kq5r7kb{BCRj{3gJHy{+kFKvuZ;_~PK95p$T&oE`5@xGW_`z4N=H;5xK&W`s%dGQ6fW z=xwQmj0(lV68(KKG_2hkzx!?AroK(x0{?0e^(rNkse875tntUTF z{@O~wkU$&eb)JXP%tsOeEG)+c$KMt*=G^4vqZu7G2yW;3oYT$M5rsTnR=N(%Ml<0t zrId0hzVY33+h3+4E2&1wF8(l*3FdGIxM`9vUg-aw`H4Zu^6lq`Tu2BtqXo(=j<>f- zNK{At#q0Cz`=$Ic_IV8v4tm!d{Dq-ZK#dTon_paP3BaWxfB|S2i{^tt2X;~z1#E`H z5bPWAaM6{FNM2d_L$1!Z%ST8t5Bv$ENRX?;#lsT=cn&~P7iIxY&J7FBar z2zr#k@77TI_PHxpq^@Vl5Q`ElEC|~c%7<$?tXQ2nH;X9vRYbjsRt#b{bcn0DR-9?f zIgl44Fs9cZFC2bE-y3JHLQD~|Fu<6R&`|iXAyF)^{ zQCd<$VUPJd|NZV`AN%Y3#kJO z#F2k;;)ocWfqAkq%l*sn?)@W__{>d5NLvC!h6|7O76DTeL{lcTTnd_h3b~%JA?`6G zkMc?k1h;O;q_jiXjfIV^4+oI53mXLcFd(qI0=EY72(+}k07b|5zZw8H{~s`VVd3Dc zBAqEPKJ_ID#6SZVxC`sR+yMej%lGdQ@cGi@b9h~jnIOUf=>^V{1~ojyMMDaYH4@o{ zY*?BFKa}F|6MVrJ;4Jgy(_!oFDDu}O`DG$Q<)Yca#d?n(w>Tzb1lt$PMo!2lCNh}e z+jj4$;e6pU;Uc##^nUu&b?bMvatC2$L#XmiKKx#{cD@wmYerlrQ*;#=6@E%8lIea2 zwF$E6IpZ3o{FZxQ{e$b3c=zrhoP;U4xue14gG=!&--7E6g*k!nn_a&)=2*B(!9Y*Y zygUKIfPS;rHSiL58NYrBMOX^dK8`LV9(&-;dHnQg5~B)=U^Ut8mE)?YeaFV3S7nVsOU&g&-_KEfEPJ zl>nQp`1<-<(l>aNIH9ZUmW*8eXkEqJ;jb$yjQfr(+FrW^O_Sw5_y)_{6Jglp#FHY` z)l@l6MNcjww0vd+9na0$2WdC&pCo>8uPBen;Thl8bIV5EKoN|I7QoI82EA<#fD0Tt z+13251$iK$Uc;*NMxZkfm3ea{aap!%nepA-#><9htfdf9z)g~>;=|XA{$z%2JN6-t_T7Zb?|<@iJz_Y0y*-%E!=-6yHVcSw z$>as|H8h*+$!wJ;wzt2xtwoEyWdd(m`F|o8FCek&J`G1lBv%ON9U_oQA}7{3v^{0y zetp^9C=LB>wQsWL^}+}PU9on8p9HT`ZqD^U8u}DP9`EVm;h)-i=3&&Z%0i`niVDks zg3Z;{_4m<{sObWxwxXh9(I#L%5Vir*eunG-gu!*-42NJ<@wtDGFkGCK%=pXp7PnY;u_R(pH9oz_p_75oHe%9u7KoGAbK;rH^e>*f^3 zML<3S$=)B%>w|?wW%&dg6`P%aiVA`i;Kj?ABp#{#H-LEsnd??K2Eu8I64L!37`M+9 z*%-lFvYGVb)>~!vam6tMHJlZ5&N=&hQqB({fpGOA4+yN9n!mg*CmtNWe9UyHv)X#r zM|5(mzD(}+Y}K+MQ>dc9cSc?|$;sq{f(v2g4Gn?OUXDi~asvl!bDP83#scL{5d`}j1x1SI*qot#} z0p3_p_Yf%*3^{0mN23bh+Wih;D8z2_&q_;63$dsJ<%`6~=qIXs(GS60AxneUHC{OX zayh$}K6XtszIZ0%r+Xu^{2)fl-Pb45RDT73d3EEtkB9o4(|G}E8Ff#U=N3d(eh`&O zgDV}Ugy|j`S#VKNksZs(jBAi>gMv}dqHfeGrBT$<{&oR+Lg4Kq0hJHZcc^HTE#x+o zZ}26{wf5lgRzNZ({$sU)(xH;wJC2FIz}`&Q3Y}{|{r&5TYy{wF*WP6B@8Q#s!;x}J z%%$FcB7;)((n$@0>YyqO0q3jp4E0D80WuMBfF+oe~ufk+SV zV{z7-qgr(#v4lg)2Rv?t9!w$%)PAY!U`>D~2qpwLA<=+1M23flPfkuoFVUk9i)!Ee z+IOkR`KsZ^>79{=&YU>XLWK4H4X4NjfhC{vKf#NO(Bf>v;j8bKQ-0jxd}Uj0NTZ$H zuI%Q91i?9tL+4o1U^6*$tFErrsB=WjXlXYhCA8UvgW7*v1j|qn1=6?v^NNo2Btp_`@MgQYzjo_8sl4 zsIOPQIbi(69UEkShjwW1JI19>h!z?%RrmfzE}rej$6MxdB15o1e0>>gQ;!__U%zgH zrWmp}9&H#{V-;1)b8!$%J&Rn)>wYY+d@X70!`G0AovdSzPz=H=mQZeq+L5y3=TsxQoF?Z9WXjn}8je;x{=QFg zPDtPAmdmM&KiV^vr!onAA0*ZkZ2-1QfVgnx#^>S}U`G3m%I|BvnYx(yS|gNRP(PZL zoFMEjTa2AUOns)9d2Ycf{Cjp`Qo+gCDC_X=t=rdGS$WII8$9xNHl@!<&t4Z^x~lUD zIP6eCixaQ~Xb@(24(X?-&WCJxa{X^oVo@V`;fltqJv{~EQ)QLa6&ls5CVNtLh#>|6 zQ5@b41!Tq^SgfojG#%KXJ_Ze4|KfUR6BC|%;nxiZ9`g3pvl|g#jrR%pFq9f=p~cey z(bRZUJhLC%lPAFVfY2fozSQtEgX+KW2fX*AnM~NWqwDwdGwJp9n2zH1ldMDUXYCfE zs&akhAN&%!_xEvR+v)N4BVNL-ZN|axgrC=W9zj)U1T`VlP9Gud03qiNNOmFO?r8QK zU^o`2-i(ZQ-XI#lVn{fy7?1MNHOrHL90+;Lj={kY@L|SsJC}-G^4r9m zZQKjXrEl!4W}exn`s7%A##cs6U990i)+j8!>oq57X=}R@t!}OZg))>TQfr$@OX@y=UVSMAtr)LJT^ zOXCwf=@gMK@NRrOUvN2Ez8bA#amR!YYCiC3LqY(udaogvMZ~V_V|AnQ>u{`^x|iai zPf%Re;mo<7`@hHX(JOyO@1Nd`!>*0dQ+jZ?rtIs8VFiRAh^!fa-nBJXpV0gg)8@~v z10|(`eLc1+rQXDVE#6-6eLB0N(I;G$<3oC~53_@uN#5ZSvVDM9XY9<+rKK0(39Fp3 zz6HuM%8m6=_6t}@%Or$|slD>Hl8zd+=NoRCjf6nI&n$4goBL-XHqco>-WG5_C^QOB|&8{|FsC>hIwV3bENFczo5KIN>pitohy3>#Q-E(2m$A#~E z3Zvo#2jo&XX^ys|CPrNT=k6auxF-~v0?NwK-T$Coc7+dvSfJqSGvNaFA2tQ%v^L9- zuqVG=%*n_pjeb>X&K&aX*8NjfcwIDxr2RlzbOK5ZgwJllMZx)C&Sm#0Fo_rs{6B0g zb$>E`?R{3GB;pQk+2I5~IinRRzj})2Uz;!OvX0q~`_BS0cOjmG(I8k%jR}wyVG!PUST$E7-jQHOl%(%#_{tL$nQq8YMVz@ zbE+`)SOtFmYzXbs@<3|OBlbbQzua?90!>|1_fQstkJ%`|kOq$<#Npube@S%#`{~rt z=H|bbF;ChakoFWNB$w*RNZqk9mRref=pA>;b z)s>wzR^?m0c>kA3^B%e+OO#xq+NY!tGH!Ej@eh?^G+SBK!Oj#lUz~09em;IQ7Ed)d z<-9c(Gck~~Y=_}_Xjo|u*BLE}Y5uo}NO4Ea8#Zn@$P7YXpdVBRa70a<{c<{ z-I{MqhW{>gJ+%hwt#@hZ6Qt=0CT_&f3J(Ku(k=uB_27UB4oK1u;NXN($U+WI+*A?> z2oe?;8#q{4uk{fjM@a~QBj8V{T4ztsTFDaiA`2Kwsh18 z7bjR_?A-AdrPkWbvO0cjp62~uN_tFp)dJ$yF!_rE1vG z&8Wf3>5tAm;x;;(u0l=ZVOzGASsyKzTi_~9pjq`nT_Z8fm}AC58ggxYaFpI8b$|{X z0;sZt+k;%NUdY(ausx8z5cmN?iUMT=t_g{)qak;b6nY0>+2DZP@n6g#px_XG$!7|o z!d>4#u)6%-Djl?ja3mEh&Hq%DWyG6k+e?s z2wijM;j5B9CJn+e7GFH~4*m`#IekyT3E^U&=mh)W1&Cf0A0WGYhk`;DBIv=(P|m8P zrlunN?i5AxP36Rflcig5970HZkasLB*0BUaDCF}Nq5jW;6%3YH1ny`90cEJ41E9qY zINtxX*a3L5lQi-An{kdgP&TS+YY)Kmk_5(IB;*Isfx~k!PxgX0J|HBd@=V0SkQ{Q$ zAk_5{2*X3D_xEJ)1?MapDEg3Fh8{8!M1@XCcTbNl{5E1PfNxOO)KvXk0#%9~s@Opj z9i^h|KH7ORg(0(#gZXQPe^kzDaSdHxZmni8HM!cj*5mh7Vh%*oW!kp=5EM7@`NtWP zDj&!60H05l_(F0b)KyfY-Z z%3^<-e%*FZ>d3OONvAHN4X*Uucu3H0Nxc*ZE<?U`R+xra}r9f?SA^Bdr)3XppYFB1t_9-jk!u#>`lNcz{QKf&$hj*y;&D zD1#jC^7gj0l~u93($y4LJCWsIGy#y@-k3N`ptpT=?}NL8$ZC)USXo`Qf{^e5Z0(Di zo70a+q&5sbAnn*CP&z3?1YhXu!~c;Qe#Q{AMgU*jgwW4wp5Kc1iETBhyEu3=V$INK zVrS{_Zn5oQhi|O0zNrC{1wA`TlTCgm=Hw3YBBD-Fg8vIN4ON2A4R54T(wbQhZ;cCS zus3=6s}%I=t;xN*pFPm#jPVK@z2D+prehfnHdiv2zRC#%0LNh>g@ao zU}C`9r3)3pOIvrc6qG37fD5NE*k=?r?I0<7da@i6$8AOo(ky@>5PmHnUCCitlm?f` z@87>4GB8LcpKn2w=;@!Cm+(+Q40sKiny%;Dm4XP+bnX+x7ZIN)^tTQB<3+)*0CxWfg#$_Bum#$?MYt+btVUDveT###oXNwWbrh`5=HwP*2i2s7zo@;23 zf?5Kk-*l&2*=Hhk`Q=+m>i4rVwOq}~f<-k8_%xLJ@J-)uRNcPh#=H2#JTdhrBZ;m1ZzuiU~I5sVigjSjx!dZY`3PLIad;c4Y`8m8hEjgw#mj~P%2$HqaqVfnoSC~PW20aKkbJ_3C^@Dd037^ZUdZs@4@xC~=RB-JF zW?%^;`9#U6;kMIk(^^aS>8Vdm)mx9cxId42IXXiqjNlZeudk1`0CFOz{Qmy_cdE1P z0NitsT782yD0&09y*OHqi`OVIo|6FrfpuVD0I8-0cB;H#S+a&@LY>>jGv$k8wX%mS zw|?TI;4n*b2x-F-0eO2dC1zMH4WM9yDs1x}y*kwzQ;4)i=HGnNoc^hU8sTV+;J)x`1#fXc^GOo=!f=$rZ|Q!$ z5q6Ww_-cIbrd-j=@2MXkDuAXqsxno6RirIvHEp;D+ryM`ov)p%o#(fe!@Hl1m2dCU z*9>F*M1*y~L!zgEF%CZ0cW|6WGp6*ZD%Ui>Ng)xoc7OKoc>B8$H=Zobj>BHNR3Fc; z^*Bz;6wxpSn_*NrVwVJ6D=jh*%trU_+>tXiIqMe(f(mH=t^NHttgJ=R=a=8`ANF#9 zxe~!kLrXg^=t4|A_el(VSBN_gt^~EMzys4s%5iNUUw_@f!$iOb_!mMGj`RlId~SHU zV5q?Z5T2a{yy19;$a27cR4TM;HSulfBDK9sMHck;UtCNrg?k(Zb#>ITvtXa=d~I-N z+}*Dw1aNgrfZ~Kt6AWkhp+=8Og2g%4G_XX2(5B>{`F~>0vU$n1-M;slz^4oUGm}pW z>ST`+)ovfDD(BIAF<>yAc)<8i>}_#rn>V>Qzy=Wn|JH?_pK4fAuKS^ z7C|dBn~nx*$Oz(+GK+b1=dEXgBrmXHKf}kyBPW*u84vne3$ToX*Wx}%$fX01e7^Tf zXr4+92IH>GGTS+j7SS*1_owf}CX5gVbWPx^M@|i3H0QT9CRP|sz^h*e*f6m|)Q8m! zri%@UHHW->kz=~vpEYI%xDn6rxRxLEhEFixx3YVqtlR-hHzF1TXc*w&?0^CeJEt-} zno(@YVF1YkF!sfe{1p2{s58#~f_K(6HldNKmqW!`ib;moqAwld3f7>}rT+2U06GcK zupM1^4x%5G5995p91`5(I-1LCc0mnZ|7Idwek0k{$Vra`hdI`hHBUkVGms)WtYQAsO;f%~z4 zX4Sq$HNCnvB0`!cRjI8GXn_k5@7bAiv0-R1k_5*cyj-- zNVMn{-dC>aaS?EO!m3LS5$p=b&p@3U&Lt=;S7QchG$|B?d0gynaNdNHdh-&Vli4QK zoADS#PFz7WFKa3s*1$u0QblqubXp}aO31~b5=ot|QEEKk2Yjc`E<4p9k*pkW-_ekx z515|2;5!{MHaJe~Udl@Eg}TyLZ2GF_Y8pw@jsD!}#q-X{WT}^t+kSctNm`nrE1C4u zIGx;FYZYPaq%q02vEoAC_UK+ph^1mJ)TA*6eVo5;z>%J-^HMNh`?j5G_1niw`6967 z04FIuD+`+O^S^;oj#z6;>+BFC1H_f!?>e+2}5(G%wm-Gz&fRt zXx1{lAek&mj6k;V+4DY~42w9`;gmD^pB#9B4#DY>DEH~V!y(1IuJ2cK3N_w{s951FP08OiqE1XqB!nO) z^4P(&qUMec=&`Zlk&u`Q%H_S$nt!>;7y8$rTs-0t2gkbaIzVmTjaA>g8Y~KQ{qB-J zSl4?&z!Hc4L@yWC{TaDYh5+!VBjusmK@2yAbY&HX3~kSbHG9bKBEH*2G^o7MTCT2- zmu*@j+6wB4vg=W$A6~;RKhCfI_Sh_+VK8~)!Q-u#CXCa~%;7?mbKLdq%bA#TKG~Zm zS;2i(?GJMnrY#=Per!(?c+#lO^DkS}sL@dCIAq}=`|kej6y^22?KOu@%;V!e0Xs<| z*VUWvf1oL3DJKWXw2h758Y)QRD7gF?Ouc6=H%mI;BM^v8+s}nz0S}LYz3V~W3nXt4H8ALEvfMUhH zN!s#xVXb3So^)uzo^kxpilg&c^K5tYrmq3bpBPQqtdqaO{3{d&CC=9?7y_=J{aBjM z^xKt*KEomk$IH4ARTJBAm-}zQPPW9@{zZ*(8;9G|a?#T90?N~tYiGV6H$Rf_dnGV* zdt{-CYT86z+`1Wg{q9|`)p5<6YSyD!+{d@aY1|c()y*X^Ykwv6&V`Et=ZHG1;Au%f z;{+bwe{nE(`DDCkmNQEzjTdWVhp^@H(ovYvE(7{;nnWrJwNX}&$e1JKi&hBST}{$p3}64H#utK;S;3KD;C3L&*|a=}ZeTiPGh2a=%1~~i6PIv{ zR_0FbSP9_y4Ue`=sNzwK-P$Yj-v2EOsSdYPhp@6%^a;6cZf)mjv;M+e)r$ANuH25d zeL`M=y+Kv_PlNAzkujf>lK17V$@|;yy=`QTMt3UCUZw|5oJRSp_!#4r5vu)_PkKH? z_%;uDUv{>B_ChmfV;1|z%&8;q)OcbIlSI|Yk*;AZb1CKz9gDP2kp^*N*L#1s7bb>V zi&~O)+vPV#dAbwjWG=5r3hNJy#87hz$2HvT{OqX=Q4&Gs;B;KFPa+Ct)TbDHq9aY7 zf^)@`gd%x#^qx^ zTmQ-k9;wvm8x-IhN=4=>c=_p~atezXmzmmUHU&BI^CVhj$Xt3c=>9BO$drVCHE4603wCEBkUkb@DA9R}SOi^azKWDQ)P_Riz7aqgTf79=>yz zaPLbeG|+3ea#r(_C<@Tv1dv69x1xx>a_PT1KZhh6zUe=99J2!Nv{ACzMs(ZLV@bR$ zcQ|R0$nofC+Sx z5zp|CupH{h<*0(HNb%()6beSfYY8##1pO%p!1`zKH%m*IDWPPGo;HzvB||a)?O|ck zI~YFfNYcL+t++8uyyER0ynZ>w@lArH*)<_1lrg#!bh9?8{&Y)<&sPOs2fDGYl;{S^ z+JJt z1^%f3xKpMD&TMbunj==a4o9I`o*DtK9Iap0HHjvJJ?sJ>`M(gbG=j3pfgVnsS*S)D@MzBnupb6@HFAe_CWDL2WNVr_Ya$@re0 znTn|m4p%wxYOBldJj)vF4iuc=qt+VgM(Tz5qZ+=MdGUF$d~D_i=SbFXdEw2S92qAa6iA8*6CEl< zcgoOeib>(2g-Zt4%c9w9T^LIR9gf+TWPWOwnm1acyazTi(SpK954xrb$D>8Ql_cr( z5?MB4aPYjW79I$zXT16eljJ&G&JXuYQWg}5aaFmw$%FDzn3si?&QF}LMCbaV;p?m(mZ19)WFc zOg_d$-|SbLFH^5ZH*?OL#4?)-z2`75=!@RV?7@Fyqx;a$sj5w8P2S~KIVeVvkn$g` zh0=U*GodXOa0x$@P2d&k6jC(Pv$BP;&SM#p&?q0p? z9yKi%?6ue$Wl)%VHQ4W2(pQDtaNaLUcQZ!1Eb~b*e|Xkf{5z|wcJz+9IUp%Xb?c!5 zM(2kwfsTPJOiN8kQeC#YDGsnuulOU2u?yzK=eZ9`DjXs$37^N{Lh!TQR`z!$AT6S{J~BiKayiV$t-x&MiJwv zS}0jfFi!0H=_o^@tvE`Zl>eHy>_d-C^3DO4n1zMosMMT}XxistMBS@OIeFFQYJ9dN z8JrW>`~$tZdJG;bFw2bA99)}j`5KsR^}$tD;&HP4;4=$NKd+ChSGE0C;1(LG|6X8W0qxIRp1+W(sK0q+sk8K3M+z8|_IKODV;R~c zFz+WkF0LCH@&Y|SLZCsyQK3Uu^I_GMvJ)-4@#lxRrb&o;|1Wu`zy_8PfkOPq4GI-5 zSI#I6bAK7*xNRGK>c09$kJrDXT~yBb)f;}DEsm{eD&b@Owhs4?d-{o+d?#fr^q--H zyLeSsS0T5p1*OtDt?J-~&AYRg6B(5H*jKU!dY0|C7ht|+Smu;k;wKh5#Q}#^j%dxe}GCD{f+QeU|k=X1GhV!k5uYXO$lFAj&C zPcDjUI>C)IYCqoVU9#i`E=OE)!7ga;#&Md2YsF?|WWZP|u*kd>zx#GTdJJ$X*;q*? z={XtPt*g8OBuYv4=;wn*2?pAhlm%FQ^+HlUi35ze6*m&-4}1MiRjS(OF$Ky+baVZJ zs@0UKV@AeairT7>)Hr4zE^mmAp$g_bivG@aV4fXe^jTQpZ9fQ}62jZr^D8%vg1NX$ zX``jMo(d#>)Ta|H%^9v$is*4Frq41JXsPcC^1iKp@U1Vfne-9Lyv1dl$Y0ZEY(FL6 zkpk3ZXi^LpEtO*;6k2dXwSd116r^!;P>(q8AnSa5yw7v9>SvkXl)r16>J^;lIm;xe zj23=Zaq^g6=MNcHA*gX&eoxEJ-Q@Sx9ks*~St_K|TfM2KOcRB-lCw7VkOc3Eng2IO zLmE1U+`qG}FS~D{7evywKZ;o9D(*4^kW`fjcigwm@@QioWW&;1=0Q`d41xOzMZQF;xtqu#lcV4FP;Wi zl8iRRjfY^)YLopeH|G16iY{|u&(9$#OY3kwU>d`WXoGh79mZhHQy&8S0~NDHH4hT8 z;F@a|yJv3ibbqZYyv-J|qsl3$h(Sp(Ba3q`{Se;L%_zvUsgMk0F-k&>1r1IXie%@#Ml~ zR8>`Qw9rSJB|#?6o{n{qsPpwGMcr+;^Om-Nj?5r}l;IxbU~;beK`|KKI}0maw=IL+ zqCU%K{Ci&f(q%2?X&X&JiMYdF*RuAEn98M8vVK)z6y11Ywn~?U zdZ4aa6^{({%kAw4;O8OjQb_y5R-zy$_l_zadhNgW_HyL6>F>mbWaqwA9K%8_9GbkX z#O+~-XpuEqx$E*c;&1qV;C(%!2QDP3&dzuXt7=Z~vt%Uss(t%arBx{u%U>BYFx|Bk zqSjnHy(D}1!j6=+Fv9aX)|8ep&RL-8O&iB1*4v$4oX@R3??Cqz+CrQ{{Fd9qb$_&0 zmxtu4&dtRG^m-lsa7^SqeaG}AJy6I=ildO@Y;HHDm+fth;$1B?v+0)7!FcY$_YAMk zC{7u4(=w^H&y-8nL-Hv3^_istYIa%!HR_$CkRCDUl6T0+q`~%mM-Kh@kGpR_0r?XJ z*c)wklf=zb<(HOh@mDY;=qhN_zF}Lq1pH2A%>J{hkgDK!a@u^jZusg8Y9r5R<=$B7 zQ+)$^v4E0%Ci-%-JSrj{%D$u6GgygjZRlws7NCd!ZxR}zVPRp=cSvw39?QcIyVYZQ z*!SelCHL09P-dCWV`_;fkue97%G_zUf+9;?%x<6Tb@m(t6JhihH|J-3k&JfcCQ1!a z^z8m6_j0D4r1X^*88S};X$FqS8}N;Qe-Fe@0J6hGr0%=_A;97hzR|$$jbV(EU`@^uf0WgF) z@)SL!Z*KZ%Ppdr}b#r~U_4fClBA3G8*V2aZc6dlIsnpkI_*`ejH~M zDv$4R+n#DB!<_HnA_iIpKdWiaW%uQj!Hz(cDr-F2P03BV2wB;WMUC8>@xj3?IWwKJ zRWJHGXTOdgbCL|J5Nf1Q*|6{y{KgW5@sskK>N zoX%TnH8joFm04q=CC>VX0(ypbu&6?j*1Mhkh2WK6V$?s4$F?P}nv8AtET@r}3dyK+ zi%H)Vmk4+`rrez=&v>p`hreg*Ub%N(e{K1{Iu;l@aiQV@T*HQF1k}mZ^0E=i!g;UY z?Z4`mo=*3Mk_-cr@F!i|_jFFSZ%Z%#*6cgZKchCvjP_Sjx}miRhsxp64l`Sf<7*iwyo)7%=U{azweB15+RR>aC#YR#`5h z1M18GY@bMW4WjOewo)h-7B)T1x`Wg`iJ&q|HT7*Z+nYS*Zg}_8siJszijw1Vm-?)J zSBOz3l*ixV(F4{3G@ZSME1>O%1jLcV4)}wgDdEUp=G|DoNA*-)M0Xb@iIVptk->myCx3d$e`-*Y%AVebeb* zP<-Ilj9fW;^zvPszhM}Op-=f)?HG?rcYMFEI?STndI!zgU(d+By}S_M4~(h{FrqPL z5-H;MOlcrw!Eka>38X0yJN?aGi6i=Fr=uljV_zO0JD8@Gl>*!(oppaFXY|-8=7hc( z3T46V_YcU+dpz}Am1d?vvsl!)V^mQ(_KQMaMBeRRF-J83y#$W~FL3g9i{_ectKWW^ zOTk^}^xSu-rvAY)rk!V>qB!G6MVv_GfU+O8FN$sua^5&Q%&DA@R-$9^YyG&`6V=1b z`uTH@%iwB_-B~TsasLyzmXSX$jCyVUcM)4V2}v(hQM@qK5J^ozdIIUnLE9wrOKJ)h zvRSf0z-!;3mFkUDLgdtRT9g5c(StW~YBJsHj6PQnv&XuuHN>w!tLE`9J!pLOz(K;n zq;v5K<>~K%XHk5@T+~~Vc%R5|REij)4AHV==!dhp%{Go~Ik|}o`Zk3q3bvQyCOn?? z6bL^9gI+k5RmEsjFtzZ|_gf?rl8srB-dKXxjub+(myhpOvp!c*|CQ>8PShiZ*J4Ih zWkHYalwv~pdVO6||6oCwGMSCCFv%y+VCW4FOF7e{_~ix7az1O#x3$%lx6+|qjkL_6 z5qk%&7-oMV`7CJbAy&hdh6Nfi;Ji28d0DJ~;%TT8F;dX|fUow6?_WIXIG40FI??V7 zJ7U$(^n=d@+GJU)0(TSJ8ar_d?rYesCW_->Q)tmA>JuIBs$5liLWQ*A2(VN9v!E3R zmUZ@Y7lHbr7vbNm@@$DFqVLPQuHWcV+xgezJ9c}($Z|^Z{jHIvjHPN*+>AqFoWB>f z;eV7LgxBM-OO1UfB1V7zI_Rm?*=U?P(L|TDlR6#}I&qkHgML$~*)%tVF0vj-gC7FI zvkN-E-mw}VL0xu-P}i6wH0!!;JSE+&&kO( zE>yH`K25~0=1EH4b#8L9goen5It{B-A-mkOXV*XW7%bKa8ek2!%Bm_eb${$7ro;3y zW0=2vw5?zyV_jLEuwQ|$jzK{|vD0|zo@NGR+F$5VBNR{~B6@3m3p_X)-@wMgR(#Bv z;yMJeb$lyBZu+qkoW-L`J)$J7)5W*%HpTsfW)`^E-_Y+)MA>7E zxmhtt)!rNUnbKhS#om|itp1}L`jE0~6%otRxbz>-2?@m-nY#IMoZpWDat&UOFHcne zM%u=K0R~!_kN-{s1L-Sw)+7EZMtmE&%As&7eEYdsr6i>iIN_)D(R}6}GvrChqsebJ@rNeb;V@s)P;OpSZz!7VC<80R$Y73T>*RCs z3n0IqoSqKD@U{A3!+JJ{Q;BGu!7n|XC@#U1hlFK+hK#wOQ3ptQnlErZbMl3;cu_Zg zC3>_>TnV+qmAutd`J_)3dqYi2!Ia7&Vb8rNDj}Vt2rvKogS>e7-H^GkQpJ^&cHm^c{H2(!=I*1@y+$&oXz;Hk%kqVAo z7$|K6U23qL27Jn|%Yq?MkaNSuU1OHM70&}X-m6Mh_I}+FQ60rKzXr8E=%Y~o&Kd90 z&r&$6`aLmo2_x)v|pCHPcjcHVE2o77#&}Z{b<=ftHc~bpvDHt+!@?}0T4 zuY4rVnTBSZC6PFMMl*q~Ok`okC&~#}tH7>-AjqdVDHt10i|(-)^6ts{`UY076lw-ad<_l`7tnvFo)S(4N2roB#VbPBUMc7*m{`1H zcq|``urnhDB;SqF^-dX)3Zi9XMAfziwyDie<#AcUMlu zM*VpJFHwb^f5^u&&Q%A^fdKWWWt@93zTgpeg>`aiseF>rl{K*d&Z(MOt~gVkZ>PpJ zr}y%o|6gW%0_I0k)6+<+2bq#6_L(#QX7GSpwQ7Uuid@_B@5&16%Pg0;gGQ>IOIy~# zh9ge{i8D2`3`$-)<-7Puv%O4E<=^Z7>AcHrzrA_O)Pi0i8LpKEu9aBYPyGsXG$1X> z4tXyyCBFi!d;*V!A!0>`yjDp(w%oOT0ziP@K&81j05>t?F~g&;C2frisB(ESd~#fO z_fKI|VmQAHo!mpI=nI~^U#L21sNKv{VKh^4bu%3-u5rd6&%e@&g0Yyvj1_%N^6>t$ zO_(oar7K=M`x-5-LAkiFfJEC6^DgYe*^FQEv?Eyex>|03JHl$}m{q3`{zl)0X5)30 zi+Y`;%%Pj9kJI$?nH4Yy^i}yB%(iuzq<7}_C^pxqRMWaG8HE8G2h?jYyz&8A54^*) z0s;x(5=N{^;3|xF4n)5N!*L&G!(?x2ojMPXDpw+T`ACbutE-YD<+ZhVV>wH+sX_j4 zA(j;w5@N2JnSuu7%k?}0^1>T*t+xw5VN?I4=9_d37?@D8x?6ciN}Ar3vZayPEXk}| zS?;`YBi~ED)aR|N^78Q57&KjxpRCayr;766y;t=(H5(id}-)y@+HLJAh z>Y~`2sV^}r?!aP8gPZ@^J@IRXkD8fQMtZf|#%FV%A3Xi>A)Lvj$OfjPq>3bIl|@u5@( z)oqsD>Fjbj3v(`un?;LDq6P_KX^vN*M8J9XR50>%W$i_70G;spG034usCTA0^af^7 zQab!OSUu4Exj|}L_|Eh_)MHk&6=cU`&hp{zf%`Mq`?t+HI$A%@CcP9tdLMLqf{lzc zFI<31B9PM2ym0?yMZ!N2{l7y!EMT#Dy~ZaY4zn&`DsScuR!tHzxd9XN77tCgjYBD0 zLtPUYdAE4%N^4k50jdZ218s_aXjdaW4?wd3kAwuYN@Gs7_Pi4FS$+iW0Yhf_0M>{w zd&mT$v0L%p!7M)=qwC+ZUKVMM{n4yWb@e9~GFRiYTSpIhs?3aT$PyhdKi>Z9Aw_9N z9ODn-gim$4ipMg%_7wipO#;OS>sP`9_czy9$Y)y08qX9m-;7iS=jfc$^H%Nu8C9f4 zVPz|!VEj!U@5qTpO=povUFr#+W{v)PSslj#Klv=P4_A)*C7=p;77>-qQ*6x9#ugw5 ziEr2)JKZKV{`;c|+XiO$Fa@Z2#YDsm-+^f>l8j!t znDOC?{}OSU!!s%qsAzNOVb-c1gtmbRhY8UbWJ>{4#|d;ld0|$7wOKow7fB#hHcM=?u+A}+uQvR(vT)Eg{hb@+vJFZ{i$b@bD8P&v{&=rddDUhb24qlCd&536cPlg zgVS_Xz5#^^MM7e)>G!glh4f;Z^#w~LJJ_^gpo;dt^sq3?@= z>BBiol}hsH0`_z*5+A9?7#ACrHx6CVH3VAx9~8J~3J1fCynDd&c68(g31JnsI{@P; zGz!7|FBKJ)18ntc%30v7fT27{!WQ;MZ1xk(Kl{C`$hZyIAoIw;4UR7S{ar8t3(rlP z$L8SbeGfCuAiH!$azGMBmVv=F#cY~E3Ph?GuRrZ^3kcl6QF`oGvoWXL_32qN(^LwOaB0uL%og}BcO-&1&rddk*Nx(UVWD;b|x znU#WA!~B`mytws=u#2Nb#V1;J{&{cC)$ik1OkoXJ-=`Gc&BmYLtaeIZ^5@*3%!}9m8|KG0}KY?y=lg1{?a%pPOLp z<>L9l`#`x}A{-FSE0(-vFnv}cd}31xh02wblw7gpFFJP)1d{)Pb+w{`LfZJaG9M`} zvv$MZ4dMR&5p|1e=8F80SohKmdc}?tY?FWPx4TVpKg@YSx^KlM`An zdc=f;b@yc?B)ZEdCUwMh%6T=2|5gaAsKmIReNWCUEmg3u)wF2*SMhb^DjMZ>&-|IG zsi_@Q!emdK6(=Vrd;0s8W@f6rYnwgxyBEl%V;nF;0*Gc-B5w<6yn6A%3puo|uC3*M z{VMF{=5{4x9kPnvqGXf|RECM>_n*k1i7BY7CtMt639Z9)mvAc4SFadpX+CFK?r99i5nD^~*?hU^~sIksUU+QTkY zrsxk+#*Xz`(A$zl*h7#zw1r#(BO_z4cJ2q(4d6+Rx84@Y|NI$uY;=?ksK+UsN5{tu zEGz?UKFhbB$mn)peK@VtDnbC2$VY{(F+3fj&CFVLZy|)2^<1Y7e!QrNh&b_#Txm^> z8i+SFFf!wxy0H%l!N=S8+OeL0BP1jof~8JLTf1my$6O-3-|#z7jxY*UFhBVSUF?PM zTP}Q{qKCW?eAzYdXtkJQ1}<^FzE6wRoY~l@4gT6M8=ISB-@m6({9U*n|IDpsviOcJ zd?T=zq{YV*mseIwg`3x`(_GpUX`hY6yq4kRrjuzEu|mI-j|4cgGcrVh7qaJpu?yRM ziCRHVSJ&@k>nr9ygFnB+5Ze^^8Pysr5+kr`A406@V>^$KDk(17qovFQ^AX4k{`(^Y zqeGCJNFMU)=;#O#Dc{K)X6_PDm=iuF2oi-!k)yDw*}^jmx3O!{@?>5G0|R4YcQG2P}lIiV>PT4PlIUd># zOmeY$9a!*}pkaaBY}}8)vLTaKQzI^wCbS|5qF!*r2XQ8$-%vMoLD&lYgB2b8TrfBo zc0P~o>gr+>crmm9PaxU{VYrWIXx?-(@GIttG&DB0!QkC;Fey?*n=<~;U z*e4Q4wjfqkR@Sw7go2($JfBTwd_sZ}YHIFnkB}U zi#`5&#p#V?Rpigjd_3;jTt5ntsJ6&Jey8*?`VEC;=iu*Auq>6sPJui?|Esqv4QevW zq5*Ap+fhUX1*IEVL|H@x1&o8z7*G}^0g+832m!T;2#7$iM{#437?uVX5HLW1peDGn zD9Wl4l^q%~f~d$M5+V{s`h4_ERaZ^bRL#`X{7h9U`M$T@d+vMpoU&tZkl=L6^#XGxyWu?rYw|U9z+Ad@iuN%%$#X^B#YH?)` z(-+bOtF*N29UNXbJ)6G@m%v9qhO4|o$ z*4DH9E=8^g82Xz;_Ce)zflGa0YmbrL#4dsTgc1EF1h`MK1Ij89kwD_4L{;8%)kT)n zF*MvorBa*M>|pN~x_Aj)4zJUQbm-b<#~Jg+)i-Dz$=Fj;=RTu_>4}NS%4=0Ae3LVNIY~Hn zKri`^aZ=LEAY5>eZiPif42T%Y)qVF$X&Y&p>s`ga)`shhe=)&?YHiY}^~lwYqua=n z=qt6FO=65b1<3#MNEkGgC9CRd2zhgr7(wgUxcDE<9a34J%BkI2cBInmS0kiz7qx6R z>-#Vm?2bdD;xc!odpGy1kRvWVDIk5eh^n7bDOJ`arPHypbMx}h5Hzi(H&Dhu=(Kw` z#aCWmV=_@}*7s#FlxZ`S2SZ4ACKE^gtHc#pTsQtN`~1I&BwDroq=ygQN+|5#4&APy zAOJbv|2oFHJ8#aZF7+HP*NV+yv-dFKRFB$@_Qj?8Cx} zS1)>U=9~ZR_I!AgAP?xMsqNj$TEA&|Rd|2EQ_;hK<;RyDITHOQV00|(eQ)mzAY8@y z1|zF9yf3LEYx!U{Gh_$Q)i*>=o@p{jkE0*@KK4sXcXBFS5c@^youW$*F!^&#%y`NW zGH~yYEaGi7Q)k)ejVc4<>3{s&{MA*LD_#*{)}Z@egDTg6`ELT3+S{bEuUUkIRmJ1S zT7V}pF)`j&vwQ(3Yo9%%;Z30=D@BTwt>}@3_CD?!hp0V{Pbt_QU@Y-sHdQOhYPu!RU2 z@oX$s8OUqWn8RUPSmS*jii;N?2r9l1jE=2?;!?NZ&STtG2a8TPfOAq)d0+>YNSpQm z&%P8xGigW4Iz(-?zEg|c?JX@&g-Y>~D+~)yatq<+D^3%}fFU zgShtGMz16jzSgz?oOmSzQ(851<7F8jLS9tVv|AY`V-811Qd8D?opX;E^O~T~GatEt z<5+2`_-iF+`=wk%hv4Abgo8%x{IxLk%gnHfdk-eKl)PyE{B%?*PSfY9t~1yj(mObq zsNUI5PrGx+c~s0|JvgqK@fKPHB`A3v?d{WGGY1a72ktHPO=;Wq2z=tf!Q(^x%?5It zDI*|ZGf+ZY_v&)IO!-H6x2=y!1LJ=yUdy0jxlZow4L zD~NNUsk5^HB36Fr{5^N}tbwU*%TQ>EOQGip!djhpV<=Vbgup*;t-XT;7o?~&82D~z zPl6MiWeqT4yy9Y4;LPh@`zm{v?<| zP67(RN_9cwDDdLI(*(suE;rp&GBA0R83Sl`-WTlNbgq6bRx+%u+37cQlWahZgJ7E@m6`zc*P*2pRIT{jfXf47=UOX&og08# z`c>N62F9*4Bx7NrU1v2%WPN;IQ4tMj2K)V($CtL|KzM{iR?+gD(_s$a*KzMC=eh$s zHT8HSZ7GPEG#8f?%2^B83W=##v0LJYLrXMPUNebNN_vt7)+IFSaxjX3nBU$e&sExh zQzGi#z3EtbL`~`SWDx*91G~%HYW8mIU}EqEIFW{fG!La1d;hK0h2UE;?>%1#`OHS; zo6s5Efje5ESH?RlvMe4(HJM<8yNk!31vj*`Kr-L@nQHVkxF>FgnW7_V)wOHaj$l{x zLXqNb#OFuLQx?~rHgKR)doBiwmj2Y#l)on&dAJno@9LvhL$E8Y?%$?1An9yIX2(P6 z*d(t0nD1WF*1tsULyU3fkmy&#ssloo@LLD!KEYHvMMXOk%T)}so5|lnue=y7H{o?= zlIXhbk65(flOT6r{M|G_V|BQIJVmNT_iZdHN1KGV12;chP9pT*CfEMOJ2=CnLmRn+ln#ID!&FymO z_`qQu)Q5+QKSn{_oj8j~NKCY5BSZNyEie;!@M?y?f5Q}5LJ*v^|syARsBI2+|$W(s1VT z{eR!hxjI+p!k@TVuD$m2%xBIq#~5=5KURK-b(8ES3JMCA+#~6yC@5EyQBY6=(b3?Q zu$$Nw@RyLIjHcr=n^%r52KL4%N(PR$mNt%-W`;D*#`X?oHr6~G{2V;&G^UP@whqFa zoL2w$0uCE{6VAbdmIJs6hV3IQ2NV<>1LO~CzIdJ)3QF#4IcZ5%*W`^97gtr|UqM?u zQBy1|xK{#{@wI6((C}C3h$SRs%4tf8KBE;kuAG#-(7LvMGbGbDG?R`MO%gpI@iD%; zifKW>dp(nZ!|oo%SCMkuQHqado6ADk5*(%+20UH`ezi$Gbn}j2=&O7uL4%8a?TTNz ztSXi$s^7nV`RDrMDqs2U=T~$AQUALn0ezO?-?b7im>vjXz<+{Y#0UR>yfpm@0Tq?9 ztLxF-Mm<$k!bk=@A|m6RiU^TibPf&<^_0Pq79T%}$D+tP_zUkH{LrVD!^g(Pe%|O@ zGIFuKZR_vvPxj&!y!i{=09$ORaMomW8^b){QE@3U7y}y4x946l1Y(QP;gr>sa=_@=lT2h zuj9tg4{tC@o~o+8+Bjk2Q%II>)*mC&Kp1d805~*_6B20 z>){0kIm77|FXG=Cj*h&C(>~&x6Sdt_Q&i&O;(DGtGB1$b zUXQ<)7srD>_!JahZ%})-y~U%~Y;xuLmZwtow=RZFV;3HZ02jBd(zwrcuU}wwqL%Xp zHU$b{#^UmF_pcfYHp)ilO>JS9KVN6sU*BygqxL@XJ3I4Cbzfrh}GtFk)e0DL6RCyyovNONOUtokp#q*D^~YX?DZkvK0JDR{sxcIPKffwxHg+50Gj?6XIXOwzp6FB=); zL{2xV2uVn)tS0y+f?w1(HuAXdo0jUgmR|m7_3?TB{5h=a!x#sy<%{cAB+qG)<5@0T z)_NhFlar&iB&^%uh!G<%6UU+Z?&Imv(F{CPjzV0a$e~49b6{vFW=2Ma3AvW z#16vz<)6v==gsahnVEEdx26ZXseLSW4tUA1vK~e(b%l{P{rzRJzcPH)#Kfdjx3P;p zLd0LasOBhHyM&mNlQYUq6D2h@RgKEx4-$nZl1N5)%-M8tvRqAP$#G>U^aYZpH%}rlk2w)Pkx3#yU z`mTP<L?h2!BL65)eMH*%N@@UfyPDMRC+9k1}B%Etm ziYO+7sn^rt^rJZbnM|;n_{inB@;J*_;{R+YP3+pWE0WDa^$sSlzQ(sNr}-$$%ZCiN z+}~;<@P+*#wbE~JWI-WdQq13NA|)l2jewMfj*c!7Yn)|X{k=qo$NS9nd$CproNrPA zYl;$`+K)$Kqvm|RA5whT``GncntF|H(d$&Q@9lI`8(CQNefdC-8ZYd`N){GaJLO(9 zQUQT9+2mH$>yYGe30cw`7Y|uAo3ryRpXCXg)-&>)8D3KnJ7$2TW#Zrnhj)7c9|!{SXf}viv&FOCd&;RENu4;nFXhrCXiTYY|H4z1 z*2vVa2x!U9miC6MXzb(TGyeU%`rp01C=zx}8WLh+valk}@XO=nw7!lYoH(5tbH<5@ ziN2KkF0uM(H<_d}g61YB&E$)=Lr+l6t50 z@4EylBDCGz-F?1ikoZV{7eVFmoc(m&?Q1+&WmHtu#^&Z-$Xt)UoASn#*1$5>`&?dB zW@TkpAB<@%W@j@LO}4@*7mH-qD6b-dMEdH1nHdYjj`3V)u;=k&9F{1h zpTy8DTp=ji>Eo4l^Rgq~z9|WNVnQfc{oB5w4ME!(l!p;iizT&Fnec2BVxDywc~H<3 zG3e%yzbMnZ{*tPQ9uVs3>3PDs{CCfH|Ni$sjKG73#KHf5{3Q1uZfH{sKxL8-4SyqDOVvX(X?M){>-epxg;9{gr_JvE%&d$i($^L^DWbfHDN{8Ukns=km zUOVBxu2K5Dy}!T2&xHOT%9v4)Oi2k#OH0$T3JtKma=x3Kl$7*8urZk%A5}^p*>U~9 zTYZ&A&h`KM$q;yeTyc+pHu*oeg8u*irP)20%we(};ukwOXXod3j*i(5%L7dZ-*vuJ zP7XaI`1iy^U(3x_Fh*k_K?MzpoxX#zLU8-`m-g2;-1dhb+PSzaLvY%xto{eWOl5i9 zW~*Jc^#0T@Q!y#VqeygzQy%|m+=An1Hk0tbi>%=y-j`o+krX^$WwQFcgnVabXJe{4 z3F?Eoo8prvcrr3FC*9-Y2)@36fVkRm@@HOkNsHQ*n0Y z7j@s4C{fQEHa$9Qz3i955mjB}f|Iz^FEHKoriu_giR82Fy1Mv)fNRy-R#GZ5FBnx> zi7qZKevXfit+~os&uNWbo=#u7F2-oMZZ#jG-@3&Br~)ejzt+u}QWRCj!c;PLVC zhnSc*Nl6nWi4DjulW|qDI~?yC%gf6{d|9Pr68d-fsTVP_uwdxu==`d+iC~cP&AdAK z`*;5cs*>2;elJ_uJ)aBDT$MCzi88(BI>%Lfc+S$Ng5whtMm9D+Yh2yH9W4#N`1tW7G4=GqqJy`$ca9CJd5v~}8WMkxnV}jc-eGLv%hm)6U38+aO(7cXcYhEo`A^#;w zUHw5OYP*w_tcZASG{b)M^6t1 zq!{=8m3E#%kt}L@xu>r&N+CaSTTcpVSDX4}Wzi#dd5t56G6Qv7GLoSMN}djPTxX{= zgWM-bNpnUW9UUJSg7fq5ghrg7te3&h52@Tb=Zq{e;ql=tYr%W<#oo18DL_JUhX2LM z{;K8Aa#To{Q?Bz^A|fJhBO;ce9s^1hL!D{dYO#1p(l#j$jGR}VNmp;gak^S za*81Ux~8MKP%Q4eCE2Km|5^vzqMywk0_6ObZ5&A^64bGdr4NmJQn$7Nfx{c1C0n_8);GkiV zsV*iL(lIj!`CYv+H#_Us+$;(q-gN$VBBo15R(1pmIc!NgvK$aaC;-e1*G3Bf-p>Ox zJKC8Sa$1X)amdGlK>gQVwU-!PUYw%@ym>Rbx{A?uu>RxVl#+siRn5FVfhP#wc?Zr{ z`O6;smg6OIlvK}Mxys7Q+xMN>p=^r)Mvjh-E_YmgTB_IFJJsxQu>7;hjpy>v=Q2n( ziajDIa#yO z`7ZPYwD(>9yu3I&c3l4+24#DNpm2F0B{V9E0I3>qW;(mN)~<)uKZ@)Gc1RV z&j>;lxgj$HL%?v>!}acSsOVqQ#M6*xh!DSs|MRx+~ z;zN*Og(+3+|7k#LvdhaKbEZoizo!uc@L*{8qm-9XFv(Lf|OCAuH8c z=c8={`dMfS>6nxfrHj-{;ziuJKYaM`jzTCBkRIwbw`nuY%o zeVZa04%MwY3eEuJASqTjt*g5q{?T3Jg6{KcvQQKt$Xz&_2q1bjkR1H_^=og%M~~2T zYOTjECn}9G!^6W*&V}uALtiC?{DH_tf=!~wiMumeW)O0`R<$W!BtwPwxx4q#>%)UZ$r6QTemn;3~i!lW)07W8!W^NUDMNG2ZxD0g#Ov zKKaDT$=Xh!WB+$U3*sc5M3#t!gM*2l{x#g0%<6Lgn~I#0(&y>vw4tHL z{FXo47W?8*WmFHgrqkNmB$QJ{dV&d<_fHi+BqjB&m$jDqP*6}JrtuIhg_$|)nK8G4h=v5fXhz=^!macCt*z}}yhuly(w-lsx>3ejv8eTP4>!sUI$lap@mt0Z|AjWE7qI?& z1ccrf66!%kMcqZ9gI27u+i<1~Hw}UxV~w>gAbq}+NaeTEj@b(j35o1}M@rvVU*7|P zWDmDqygXYLuVnArg|_FV#J`KRVizF~NIAQ>#5FfHEg%}2{ zhligy+uKJe)wSC{{xJoyez|+0rmdIxjt5sISD4gDNSXhM?yPuDTPIe!l%l_ts#-;1d z+-FEBt-U)6vFrxz{@4F;2z0v)xakX=j0_AjTU$2O#Z0EZ;@x%c4x`d_%h8y=+K0vk za{D?pr)Ie?P)F&*=5LjPjrTtHcjk6x4x6(E=fbZshmm|dMq{6R?Et#;OeM*ynW6Vq zrHB2mV;;@@BoPc}QQ^OPROO4g-s^yB9-{aUXi3A>5`d-H)Qe}J?WwWOypw-_Z+TE4 zL_}B9#czL_@O8uf^vD}id|vWGZkOusu6}K}08iDI;c5nE<~@keT{v(ABqS!4gzAqk zn|9aO9KFk{F6`Cgi2~QLS2^Vu?l)pyJ8Ap6^eLp% z{_>u79}akY{B6kPp%D={{QPrPE=AjptOT;HIpi{l62T%lm$Bi?x~V6207QXc71m3RJDAZMJe^y-YUEg?K$U=ExWAm)O)oO zxhYb&iy{?gY2sx$COT=Z@E@UK2w99m)IAzO{BFB1?HwFQ`OFCc)?a?PF6GKNIxog%bzm^zsQ z?%)3{_f`enJfz=B|yE^oRJNU=m z`ay$li_UAnm{-wm%>bZj8y@}uqwwDhi8_Sx&kl=TrZB7 zNqJ4*d!GW}(WcvPE7} zB*frH?vjaW_mm(X3lmkM2BiYV;P8@^V)qmPZ&_pJ;|)%1C?1D@AdAaP&v=aHKRMe= zyL`Fu&d}-_ehSyXYLdtWZzb7U0i?)*Si!1914eM7n;~A04GnMJu4E@M%nHp zP{D<)=S&_0PYU_38|afKgFKMnf*Q9PCi2|}7{9zpFMIvYKGi;A(f&}^<;S|nue$q{ zu1`5fjfbgg7CaCNOyTeiDT*OU1!cw@s7+QuHBGyD5DV|4|@#HKQB4r9Y@I9|SdS?;i`4CHcd zSpz0?sv;s3Dk`($47ihjRC#M1R~HQz=A)0&ere$o5)((hfA0%4J@EL%{VYO7zMbpG zj+UD*orW3m$#eBI6dZlu3i9Cs0g`Pq-SUcgo7X!FKq$7v7!B)ft*WTCPR(R6D`f8d7?Tet&Sb&A$}Aq!_rjdQUH{+Ro*r z?Xvm0xZ#$u4}sKDw~Dd~Et zb-c-*hyrIMLCi}SVUGZyoNRJ&ah(BfeQ9jWH?wi=3bZuP@`#*mclf&X*#u(G3E-ySnrQg@j%XAjFJ^k@E3Rjso+4c&-oLRQ$UeI{eOBX!M3s#aR z4|vDELUw_^(;L z33w(IRTM8YK>aG>;Tuj~D(qh84!bLR?-_zQbQ|u0*puoyhml3hf#7mzzX*wl)Ev+d zqNag?kr9uWSbgyVdg1kNWY=O5;=OLuZU^l}&mX$1M+A31(z_Ju8K-vus54T=1<5hs&&se=DU69K2 z=$gPgk-JAlZy7884jDYUs#tnF3yCIMF3R+G1K;)Q*DWVLh5-PtvY8fx&qwC&4&hq= z-U$oenMJ(hEhuHsYrmRl^F!3NFmi!P*BwK&Tel^k5C(^YT%qCO!h^Q@+z$GzOrXm5 z|NKtU(DxcEbZGdE`>DWBYxj>wSL{{#%^uJG{yWQN?MsfaO{aQNie=-pa`@1qA^pOn z%d{6l3_##~v>g8g#i1T_DJhjFK)X0$`&{kwe{mqaxIAl9?CuUc3O0pcTb#ak4?q{w zZ@E}EaHtkGYp0iDH1rC1#qQn>0}U)1(Ixn@@M(ZUGlL>8rJ@86U|d<+UgjYAoi)Pv?%9dI8oi2e z?LLT!@8jaS;s2pRzp*%3?-0|q1)Bm8VIAu=yt&=*9EAC@Q-%=1^ZS zGuMCSgYD-s{Vn3#Iia`mcc~I}0tyOXKfE5v$+ZJZgrXHYUS~&7dEYtPWos&b?9FM1r_^|leGW-vCl=E$(HfsT$kJPxwf|U{7xi;mN8W=8{OO}N@sVs2C>rK zGMkvvg~5tM~CD3BupZ&Cd^;*Ni1g zLKykRrbrfU53?3z80Q5h;M{ZFet{G#NIa;THReR0KYzyJPs>%V!c|6~P}e)sYV)z1 z(4o5@tbGQ)liXcf4M{t|TB61;qg®`eyu4htKJsx5vXjQ`BW##e}=BPb@v&9XM@Q$nR*(nRF2F7z8V%I@B&YB|du(WXY9C$G64ra{0y_%1!~lpbXz);G z78gGQ*Ji3(K?g)SwUa&eU_&nZV9my8dZygtga+Xtfn$n1;52T43fywC#&*u{<8z6Y z{NY%W)jz>svk&vOqjQ2@HQw$=nh(yuA^<4(6)sbl1i%bsa#_d)>{^0{cz`~+-+ z|Aa3PjSV0@Bb3eFQoj*EL7;6Ak=V$@q#OD+MXG0@b&p!p-@kvVuB0*43G8$yw1AgK zpb;TWI50%REnXh5Mv01@&k({r_S*uzGKgCs}5H4sH<-XbvTVR`p_grXA9-EpWI%KJ)|M(hmum%-tMeo%3%bHrbkg%MF_vRd@&s zT;$}dSN;N3OH1p-2PA@mEwh`6ECT}r?~Qa%0%L0^?O zof;L@0p(4?+}!-?fHIPBfV%`ek?HWa+j2_G6^vZhg%1ybT}g0ab|xQ&)dTevaSyOV zFY0r?u77lTS_Om@mHSEt6uKGyT$xZ}*$6nj{lH=f+Ra@9p*$ccXnu87>+>)y*b5<0 zqpeq1CW(2E-x9Rxy8QkO{mdP9_63mJM0Pp}utXXC+TKFo;NHHC-Uc^0f@6X(8`44c ze(4F3k#P?c?QgNTv8an50?3euP65i4EL9+64dCOkeZfz_1IPBt)vF1-X83SMXQ4;^ z9wF+qMo9lKJR7PJU=_LQ7Ztv*ppo_O3eU@9MmQh@4gd`;9czr7cyI}P+G@R=8iJ1X zn)*VXgE-gU?h28M<@tB#cI@IQr#*$swY9a(OiY2|7e}vwsGE9eG>vd}Ko;2oA$b8* zVwJ@Yj;wQV2_WzSiAcaP-e)@xiv}u$0Q5@OVuH^23RGAT=x~9n#41q_4O5EJ=K?j~ zIC~*yd#OcWxL5v}ZAtNBzn6_R-)^>o3?hN^^YdqC-%bO)H>s{p5Xd%+J26Y3-t&+- z02@5Jun+)2#>*RxNy4FN<=s!YL!v`tiUM!c0SEsJ=rduv83^SHJSPSwX2;lA4XVi< zTy*n}#f?7q;cO{3i~2~1>(nOHMbA6RZBn&M_(|;wp&B}g1xZK(XW);P4b-mS{rl_G zTR$saLt7imsjvL`utY+N^MexPGuw0CsO#|~uF12*Pi0b!`Fu`wzphOuD^lZ-+uwjOc` z_%oJ4X-0tzX4g&Wa?f-q9W6CQ!uIsBrsksu53V4Qq@c6(J~Hl8OfuV1{mF0p;cM@c zl0vJhcp@1-yno*Y))TNy5Z&#%ciy0#c~v?bIK?jjc_8h61K$Pw1#IK}N6N~?91B+@ z2|jg?=Sg0R3J2J=3%U+UI>=8muWP-q6J4hc6;cg?)h1aSs&sz*N~PL_SRa06wGNjV?dLL5)Q)3{b{@Hz&Gb9bqBx z@K_)<)m?wPVC$D23`heH4-Y{YKm%W#?Ww?C4P2a`%E(oKvNOtq2&%kXpmo7RGTpiJ z7D}V@pUIy7B!S>}?_O?AHG=})e&+!rF8W$veulZ;=)nOY2&$%;|Mg4{;R>YXgn|eN z+Q7zU8c9fr*Fk}L6e;cQE)1527)6HbO27ijsi-`R%+}5mK)-(_fYLAB?J=Z%pnfsX z(T8mAgX9YYAYdr+82RF_nAc(>fdYkKl^HD{g%7d$tES`gXPH)|pO7(YY2ggWX0mW{ zMzmg>gwD+wW@cr9{K0(h-edH9VW7nXlbz%D&m2WkL@@r|lr4FxW7U*yH#;}?03H;a zK4zd46$b!kVD7Yei4*dc006|skonAr-WR3oBsMGeu32~B6h=nk8yXt^tTKt1a+~by z3x(#@9g=fdAGVSj`zY_0Rour4hF2H`$3SvTDNlXHNg2$?&SFg&9NB?tXizSF1AP_& z+96R%GZ7lJ%=Mm07UZ`tIj&9qw%s$A2nh*6gl><+jof>S6okvO^Ao8aR9=4kEt|#O z&AF_^=81{ ziY-;JKKPTqzQJ@)(MD@whAQS@gn7hi^OpZJwj!D3#6rz{v#G5J*EAQSX+C^4qHeeQ zZUjO?_%-rjvPA|P5k~z~$gPS0cWYnut6NTi{$C5b1wRI83`~3XIWr5iAM#`<5)wv# zc|I^Q((H7+S5BW1jZMXRHgQTf#x49q^|Qaw-rw>=nyUQ7Lv_-ku2MQ65Pn8$Qcdi} zkI!EZOM>kJdLP8~T2T-M4!*NUG6Z2-i{ob&ktm^D7l^h?>9FaECcCbUCEbFC_JQ!B zPR}D=#%0rSw*o>A$)L`@NjqaS%BA88O%Y1v`_FTZP~Lx#>rt7t{WUAgNc=USRwxsL zMpXRwN?tv@UEKb@V`OAx0Ffj;_)dO(v66f&x7Vye=+>Xq&?!D3Ag$Ouh$o1uR7 z+pZsix+0q zuQKNHMH@=F(2K4GJM);ta3(&BczT9}*W8H+-iWf=T#`01sIFCgp|1=-! zfgKG}HMBapBZweJBZm+AhTc`MFVKUJssCyW852j@RJcUs4EgH-liH8>{-op@KY3A5 zpC?~3Ie*CWq%-O`Gb2YhB35}ZLM7X5+=V~o{4!o@sF|6RYu;G9*4oPPE1Z8#IHcLs zBNiEDeECF@N^&!~`GQ+dC}r_xNep7^O`i20n-@;$V6_AIRngOsbvipbq&UUE z-#FP;_3US(3s?$wF~!8hnhvKtuH6uL9$hO$N2lz+B-QpiL?cQ^XMVHck!m~E{N{L1 zNV;JC>i4f@rOA`mkakgbdw#xm&{&dhP<+NZ{sgP8rr_J6*K-E0H^@v8kOS4+Ha2hPxX<|Ah!^$Xhv(%)0pBU2KRR#z`d4XR zeZ77D6N(tDIUumboH)G)kqm!YPOYJv_64IKXnD(PV?`(n3k%yIvO>on3bp{CXU+ha z7ui#Rw#Y<7g95D(eo5$7wV#@J6Dpyp-nB_AQKsmJ z#>v_poGN~Dn8c*-Y3y6<73p`03#G4fGKmWB2plA>(VGyZk&xJY>GSR1qY>{YW^olR ziYLyd6MCqiYDi_m%}GGQY`4Gi1o88NZhr8)%V{o?%b-+(boAAGwWZR&WBEQ69=41o z+I;Kdr?RpS=2GHa-foBHGvLZZ_r?P!J6xo}`O#*208G6=MVbJGf>;PBl}R`bAlh84xEk_)SRb~GP>&{zN~-T?hY9nQ&W5| z%LK7d>r(RFj^)qdxBUOSu~T4ARVLRU!r8A}3=V$1GLnM{{aJN2ucf7;C(bwXXwOR7 z_ZsTdJ?mpK&&fOnNHmw4jUVY|s`e+i?JZ^e2d5B|1GMHMV7HSsf_?r9rcEt)4P|(E z_@8v(ix46pk~u)_2G{h#1Qya!0F{Jwv-|`^Ijumq?X0re!Xty!<_&Kdx*UCXQj7+k?%hd%cbi zUg?dBFfe4@QLqYlCxjQ*mArR7CXSP_O`BHu`sQXwefQ`O?*4EVj+DL zJyrqtw87;IN&(liTE~mO3S>SL(F62J-$+|8nKqw=NW_N43R#fnG*CV+8WY+3$^-t+ zD4?_K2SpEWW1v0GVQGZSyxOIA&rs$ zjId>pY6n4gM7=HU?OC!c=CGs)JU+(Fo0(pxe^H({I0k?D@@UHE(hKoB*J~vtBrGg1 zuU{VmOpOGRzV~s?u+ZK5yxaf~*%AeW4c@1`Tg~B+8`o#LqWJX3S!RRb-5rygp+$ds zuYIp$RFj<$KB~#mbtlxQ;r1wtw!bIW0kA^qY*g@9Y)TgFF{^r4jlJa?_P)tGO_G-K zmN9Df!sY~aW{yJo2?@BAO54M(U8%7>Y%F8b5!o?z?2)VS&jWnyx$H4<{2K`$tUoQU zFnc=YkJSz~l)gwtg*vxACh*=_=A1*5`x08gWHGPA^74DIE*NdlCx<{T1d?(NtXe>D zqyPaD72^)#f+0{$>_F%HoXt~1Vcr90*KYd_>QVQpH*el}f-x1=9>fh2q$7TBK-V`gSNej62|ZX$?!t$covD+ z3-(*R(h^Re9u_^JQ&8iGiNPo%2_H*C9~#U++tG*_P+mmQm zHRZA5TiFZuE6X;f;~(;ASsr5gHftNcO-r1m9PJ(XR6I>K`M#PTV?e3J&*s6EVtt%9 zZ&02$xqY}Btb?M+p&z~}7^_T`lJ4coEb@PU5RXZlB zzVK^U1#a5hn2Wof?|!l0)yDg6uk-oK2kZKh!kk7XO1pYn)bAx%mE7<>m?M-?}ruX)T?~DL=+DFK+rpnK4^utXqRUoOjaNGR#spv1Y~{Fl~wdL zV1KXG-cZB1$|LQoH5!C|kLY?N!@XPhN%R+AWi*^L@D#3Rv`1zz$nBe!(w-q&b1T3Kj+iLsiV4r*~f(vrOO< zkdBq@`bbmVSCK7IP->sJQwb^}R-OH3?lYg=xna)<3{+#IIWaRuf4RH~1Rj5XVypN20rztT_2xY0Yd1PB&U;&mG-!oLos#&K#896D%ZMyYVg8f0=qK@JXFsErB*XqpqcNT= zEh*?un*GjcIP-iP>?ajO!`!_eU!-9$NVPI@9SvL6Tiv+DL{=|ByCfGjXMdHb^Fx2p zc#Q{+Rsw6K&37Ba3cg<%qodok9DRQ3GFg7~5BJ9$3hr7yvY9QOPKizHZQ8TY(oPJ1 zvQad5>e}XOKYOkBbfL6y&1Om|flXuP7vGS1h8o-AWw5sNTq0(_vfy3FTGug&@45VW z4qEc}p>KG+#P;?y9N3YO(dZ%U;6AIoHC&dq+g(CeqkP0ae04DLPGtS@)8Q@2GwpRj zJ7z|fG4=ZTr7&?Hy<-xJTLet1=NT`Q^~QUYeoD87!kbpQ^lBWkxaRT!W#yh`S&`@mYEs@e zJ;e!*FUBl`m6;eB-+*E2Q%467G3D~1!6(*1Pk$`7t(D)IZ7P4i(Dc$?f$&N4yy~%2 zBx5imDCCV7oAG~Q5fF$AqH=$W41f86>k~};lAtBD*|fHQpkE4W zwUs>nQ9z)WQYf8e?no(cHRVNRw(uaGfDOU$U4<`Se79P7h?VZ@u=d${o!l9Geetw% zS4o(kIGmD=B-3P|ZK*#d&I&%WfYI^O({9fzQeyOMY@t8~ApSzcDDn1fI+y{Rh#&La ztsT2=!G0q#lOJRGnDO{zdeJ31?hd)lE$*v}H zuVdDq*lI6pu-1)DEZn>n@YT>VNeoGc}<-K~)%Us-Mid zk#3=JG%-y$`|=K$ggR?1ZXEu;fg_eLo$W{=k}rMexI!mK6vvF^F_uu_SumhPSKOS4 z2n|$J;o!R{C@4T0D5J&R7yvmvyB?*!*7chM$}aeG1co)zR=@3OqB$>D^Gl|mC}Aw4 zY;`uhmbI7}TbS{UvZ`ONvG6APpwaeiXub#c_o=3d9EyB}uY|#=^L+RDX$K}}n?+fB z{*x}e+!fP1EEOk&h|?O5#|kjiplzPPG^Fe)G`C7GUeLf?;WAQ0y-&fYi12hkG=g)n z0`%0X(%S!Q4@zLbHZU+q7WE*0OfdpHs)DBGZBQbO0NvI#H0(mhfy@U2+ChW`slZzq z(BvSKIN)|%8Dx{g=WIEmLqt{Z6|1|xDpsj_D+nz7<^1++2S`VWd@TT3GBbB=9l<&6 zrL_5x0m1=k7s0e3`|kFWf*#{$y1wl`PWg*4Y`LegGY_PQhF{*!8IpM%POWi`-Kg4Cc4WOpV=*m}|(V~^^Nzfw4FOYe}B^yDbk?Nv7q|UXqdi- zdx{LJUAE8h#c1D77uG$(LOnh7$0rx07tI*AR9iGxZi`cGY(#Uiq_bO5iJRVzEH+_ z0D|jz9~*~Liw_{IH5OJ5>?Y!Ousu7nD-sj`4x=Y|;5k7OJdE#!NPV{XqE-&^G6nNK z?y2LOeQ?t|EG)E82@$Ou)KDu|1xe}U}H?WIE0AC{&GLDDMVWtfg z(K2DCE%-lW5qt#6DKR&DnNwY_z-%R;{<^(^`{Q811_SW|pjS}bb$wFdG7!47OKeY| zCjd7WoJe#Ot2bxEZ{MQBmgV`tq-w|X#a{swWLyr$BogksaHMNS-nxCy7btfH&SYfr zmQ95I;9(Srau7Bp9heVZyuR#&$vi+NJKzdM^x5i`o8>SA3z}k{4}5qSk($1n>*wf0JZsz?4Vo7*k1=ZLod?@G2VsSL*d9Lm=$nb8-+sgR`$TBp<(U5LcY_dV_#IqkYEGL?g}XQNq%{|M@H%QE9E~;^aTC* zHQAm|K8>cZZ~K@JLB}AT9NL{hAG9 zk|4{kyoq9Ysnylr9|i)Zj-#knY=VFd6=(B)B)AhfIAkM`sR}P_@~2!H6?)?I#S*aS zaKIMg4FXVIVay7V1yf=4_hDSM zWQ)a>cCo9`oH$Z?e7dMGKmF9nOjCvg|7nfSkIle{2s@mft2ffw@v}?@sph-Y^_JN0 z+)2;Q4p27!Z~*RwypecdP$Qw-M8(E-A?%I7w5Jq^RS;;iz@02W;<^$2r3B<(y|J%5 zAc_Bb6-F_;fFFbbUZ8ni?i=T_!t4;Z0A{ix#0+7G8isoOk@hfdC-I7so?tx$MaLUq z2pco#q;od?byT2QCGc4ggX6+-x+Mh|1oGhAPoExC#c5h(&pmzc=vctBitU5@VPJ_) zU(r`=s$y-yv7XYlPYwyQoh99>d^+B2L)bUs!h7dKdJ2?{dpcHE8A?t+VC)oZSWG9; zTQzE&_(l)ydiIdeuneR;`W$K;h38pp0AafO$;@jW2r8}GX~ z!nX+^Lo+bjfUp8E2E|4R;=dd~0H_>5s_E!IIsl9A4w&f?<2aZy&4x3tPXqN*^W$=2 z`T_>p(F_cFPi3-(@4*OmRRBR7IA9QSB{E$c&LHOr!45>|*yMzbErXV|H($=|>@2wJ ze^_4q`hN|P=KHjta^JD{!APJN;XSZhzziuekc*748|fA~ik&=SDZ9al;Taq0lRa#H z`*i*%Ym~Xu^awrkLsn`*@MUm(V!+Vz`CZ+fr4A0PLVa_4tE_7(=Gx)zv+-`~SBOvO zP;GMvIifL=+D_Z58Y}k=Z`<9(4y-)9SdF%%i(vCs+OcY=$ohstzr*{;De`ihRMVS+ z&F@|1USnZ;t1gxRt=iud?!29f>xkG32@{W+8t0A>!I;-;YxDS!)Dywu(PUfi6W(Hd zeYe$oV+BU}xw%YDx9mK&V}GLNX6=sw-PA$mu|A0eU^YP*EZ{R{vQO;|z^rQU`Q~2i zLRW+a>*h7$D3}gHHh(DNDvbZCi`F8;2@jJMGx|12csUs4xV42v!G;6`s`SH$1Ox;f zpmBo*_wgqE<72dAQZca;{kx^o=0-12Y5IBvY@SgQF0p5XabhOu7zoMx^cN=ADXCR4 zn$0{gJ3bh&xjIe5NM>T9q4!kGz~4~8b_I99d2!GvZJ{bU-}2|Cz8>nrXQladGTDT$ z$D#Nw>Gljg6hU^FrsI{2h;9JP6+JC&`y*c9Sl_}4PD3~pp5dau!Fr+x-j0y*mWu-zA@m{o5g&xf|bzdtTzsU z4sq=~)J!;Nt&$-oF@GY?#)|G4-@HYwJaLsvFzt-f?M?5Ebzci+IVZCoAr(e_cC3iq zXT)FLTRna)(Zf0puf8sk;_L@cuRmEe>N?lt5hx}`M(&`35dg6a#-5dL zc{ud4@9OxRNyDyla?0FUUSb`yx3deO{_yAA&?sv^hy0#I@Y7(lnk78k^s{e7g)50? z&VSg!L-qji_Jhj-3`F}I<54h+hD${B8OGf9Px;8OD%pQL4_=;qlG^FMbZgR$Ie+Y0 z?M8pPBlB~PoSDbj?Xp)H`SIPtSvjg}mJ8!Vrv}6pV;5OuG17GJKbaOn^))z@nRy>6JsEg+ zfjDL^#^Y*Q@-2o|XTX8JS!<$4e+?e-*98{cd|nhPIQEIZy%$kfz%&>Y9o-q;dNDWI zzDW@*GBBLdI>PBm=kktB*Na2Jq2semaKJ6<(zm&pbTSO%Kfz%*uo2kV{{~{)$NyC@ z`1567%jaZ53kBa`KxQRwzkrSmHXd!y?!&iqn4^L>qMlOHnxnH*LXT>#BS`E0Xv$p; zeAIWWAFkkI_Siq+u^+J?6S3sgZnJ_$BTyHQbwbaHyP8<>DS6p7$Q<;p?V0 zN!ei!l4E?t@jtn7r~gUmuzHEB4$)*A>+$o0M-xdm-0qxPmFAb?$2{$Qqj_Na~PIrxYoqhcyoxn~`AmSmjuCrY;Pab^tHKi!))aNJ$VX4kJV&8RjQ-r4`w zTN&8mU&<<_@On+~o=hvWY?g(3(CB^~j--g3C%eLhyFp_{}n&k@1k*DR{d z$%&6y3KM~nedIFLPWumXELuE{D@XGA?>v%Q+W3h_+|hzq0h&ruX1HX@=0wch@hpac4h|zRF&}XT%nd7D`||(vYYYU z<>AE9?zNqBxzo$in%a2d%u6UBw$`frW3xoca6dCMDILijw^vM0q&JTny^5BbslX85q!lZF3$*u{yfC(8$TjQ{l^VQoa6;n@2Qy zp9_Q3v3m=AObH7RKuG|a zikpWAaR~!{oCDCtLOoeXbes1hgOFA*gXli)E%LzL0c@`y!n%eVsiGk!VH_ila{(j1 z4xMjz_u|*_t%H;5_)@yDFzU!3q`g_kkjJSvkecyZmdIJMmAA~nsqFZj{GRc)BOM88 z!er$0NQbCxQ8r2Wkh$}#?_DT221zf+Y*i&AuKYX`u(e~2xT7_$m#!S&%U6V-6Orn5 z!Ugscg{M#P8(p@T`1xZcU!!rkZqEple>4ZDekVKE>e*d-dfFZ3ulJ>oWO%hD4X|s> zAFuaoRaJ%!5+(j#@l*WaO!y>+BoWh`ujh5d6uFuN)Y^?qv#gX^ejZ z{y(De%r5+yUW1M4{|vNImB3ud*0g?WD+3#*TQ_!2p-f!dXiM{)BL!uN>yKpNoVR|X zs*5J>4UxDyFNcWqvYxQMxRvxdQ3qpb&T9PU$)_n)ZAX+X6w@&&>P;@Qei}K7)&Ga6 z^A6;?ecOMeA*9T#L{>K0tL*H(XZGH*B|-=xM93Z=o9tOe_TDputgH}<-}(MN-{156 zao>0SahLbHuJbz2<9HoweUw2$T~1o+D*iG$<{7ztQ>qC|osu0a8%>TkWfq*^Ex}Jel5X7h+p70OiYzC0SQ1lbez4Ydt zA!vTXNG1=4v2=pA@=2V*z=Xk4K6@epQ$s|I4?Cn2{BN;oX(g1rVBG_?LAqm~k02EY zDd<8|Qz^tlZ_{#djs5&MaLm?1^L$a{D~Qj12GgFMo~|xSCk&?viyy==_z~)mt@Et* zx}l-Tj%{?}!ZuWSurB{PLKou16eib}H_tY3N`i zUT5u5$d3v$uYj-2LqtK9q`vk9vuJv4C?;Cfww$I&`Vq69J7fC#jes-&lhSCh9xu>` zBw;_dwzejJ;;+AGlgTs38kji&H;Wy)S&q%8xflCTL-zv-Ob4J*!yoGJ;N!!UQ0yJ^ zTr3j;u}oI>RzZPA!~t}~5cJoF@v)Og-i6lg?yxL#itC2Jg)sya)PFqrAb;m~`rf)@ zzM_IS!ssG0tQc7yElmxi{#aW(Xj%DYy|pUY{&;X`b?j00`}fKCZ5oXC_>>EJMvu56 zB3XzP6L@B-R1ar#N2{3h*?L#%UJ&|g-z1*AtN$*n#z=2u%*G6VbuBg z>-TvN!Y7~Jx_)=Pem0|Nlxt|z8(o!=NtLgoPE-YiwL5pxYkHlWoQBrNHx70|qiuQY z(y>F$U^D-&7E{e`DANL5w21xrtg$croJ(KP|FvED}5wg1FSELTroXtP2KL#&1hB=mzml5r5}EgeR9=D&ezFR3b4~;`6Vu1v~_0!8KWiA%&vh#WkD^7EIdb;K$_!*GNCDdWAXTPlxS^t~YQky8KQ+W!}45sHMHv zf_vKEmQdPRv$np(G9@$>)b;BAU-Gpto6f~alXOH1^e-g|?%i|D9RC{6)Hw-DtRY{C zdb`4f>gnlMj#06$*z$>74JN0qK>R17)@a#Q4-~qekj5Lej(pzow0?US)0o=WTUb}3 zj~4VK_RmR3)J{IBOgXvLQ`cTuZN_CADjNfRedzE#fVlz4QxD;+?y~n?lq(tK+T=hl z$^k;Agb=ol-tO8j6~jKoN&6s!*TN$#DJjvst8fMGJc2lYuHk0zH2fP;4I?lYM1U(J zBSS;`Xm|ot`LZwVKqkb%$e3AHR@S*S=RRrRyZ7bBnJq|@5c_}OoVc1a^EkH)d^qr@ z+zz<-i0DlU$y+>5vBjYwg(*G#G_}y0#DPq$P*lpqcHN38ND-m^OI$PVvay0fK@j72sh;zi3DurTZ ze54saU75GQ3Lc4%i~i@4AQ^rP#&#&JBFv~|^Y96BeNzmv{EBrj!*zM#O=H%t9by>4 z2>+>F>y$CxJ_;s8&;1T!7z?#dOb}J+_Jc+U=>uLt&@W&G`0OyB42qZ@RIpD+CBP=%ld$e zAdmQ=t$Da=M46*$v@7oVfy7++>6JClW9^ZaUz!=cyBpadswA;E2~h{1ofNT%Y04yr z@6^q0X2Sf&q{HW!~?B#xZdZsrB`qmHvlW)(PI4 zC%>ShgTT@n*4Xls!k0IC64>?`m^=K2{+aDuzWOMrwe@Y`1zg?n1A&9Xr4ibnQ{}4W z(K9*E(_BFdW_davzbxz%P}H6&)e_o*h=ksD_?Zh+kFR5%u6-mXf&EU9#c`l%-1UcDcPOo;>s}r4TR48hhc+?U%3ZQ=s&OH|TGg7)dOb?C%1J6QO5! zJSjb2Xx*Qge)R93nArRKe&2Xn!6ED0)NLeI`l#xY<6}!GkDzg*rf%_hCRc$B+)h7d zstRKQY~G@Gs4EG_XNxfOc~VS?w7zUf1GKRD;?W?Y8V!95Nvjm7gfGPPg64-}KyB;y1%2)gYW zF5Ley_6SC?n#Cyj_M@ZY)vB=4;n{Lt*pz4}_{F5JvfWo$Y|bylQ!oxudY6>@?x=js zvd5!GG*FReNCjuIN_iXopGA;Seg(~ReHAqyPNFbb5SI62V*tD$b0&~ym4m7*HZBe^ zgTpu(S;C<};+B1-s-Yy@#*dc0n#aLrV^~@I9{(nGL6wv2vuF7PQMbXj1+7Q~kOHHs z1DI}&c?AZ#jJUi<(Vd8%#5KJPim`&nw<7Y>Kg+p>f{JSOt4v{VmF?27^q29f&YrY_ zwh$G!HEbU97!{Vi#fQ>+z5V8J@&>0@(QwPaTu$?hL^i5t*VzHnL+DzYQHk&EVksHs zNrP{W#%&Ghy!fCbt6PZ@yvJpA2T%r7U=#v)k2647SW#>|0My^&tzBm0F4K6{zAu-7d#sXF48?YJ)N9Qi&ll-_7YbLzN{{_i3>_6O1BpOIeY0m z#i5L#*hLK4^Y?7c0S&t$imCGS%Qjr$!z*k3Q)JBaM!ydq{_7ze!KI`V5lQp^cg6uH z>y~bI^*`$qHhTWaf_cVt( z`DwS`*|AAu&*)VxS@K@}ui6 zRQIhgOC$&qlsli)XoqKnQ^~knL327s&Q`EVZRGPL@XMgsUxBVchDEK}p3j}y!BbZN zGXl<Ru5#@&!Z8>>Z)htXk&UG5-In_-E$==bzuhQvkcE~S4HVKCL zr&3ZO-Tz>ajHqnkycP}O4S%dxHvJ(N^6%5V2)eup_T!zIu-sisO`^8~ zRGuzz8!IUBnnq8%po7Yi!EY>5^jv1eZ)YSUvtt<)nbtZ7$mZre;$lD2j^EcZ8mrba zRNF0|oZ3G+LI_33fuz~bM=FxE1EhYNZUfQKICp$cLP6308ndc~xDF2TaCR#i^(7S~ z!pvhf$a6CWnBYph0{g#Ck&;1c7fQD${-(W5pNN>X zjbHdAScEkQ3SIF1{$=1UsV@mbY7uu_q4d8F2pZ4}42U22UFqPi{5d;ISQolB7in>z zRkbCfwf@>B=*MBbvEt*oTXj4?EL(A-wdve!2&}YOF_ausQ8%;}bJQ=3o8`Rp#~VpA zx<)W@WN4Qr1|v1IbeE>S+?AnKd9T_YNx|DC@J`aYx;&=9Qq!erL0Uohh;c;UdwV>d z7Y|>@b3b#qI+&R4K*}U@yrdkU$sn_BgStHleyWps4@$uo+hsj zDE)rNXsnHBms=IEQd0*4`AL&00b}Bu(E6UB*X}&46kU?CA6$22&{g?lj4WxUUgyx; zqQN{j15{lo@iN~qx7k$Of*vdI==M%d^78Yawfs$iKK{!Zx}nlRY3$=`p|Ky=*0(>5 z;>hQ&Z&)t=J*X_QfRs@4QWBb6j z+hn|CG_86M@&EQVdN<+1Lgb}#`0gD_0ngDv_}HeGEG(?i`oX(}Ut?i#*%ec*k(ZHC z6vf^^bhC6p#?63K_CMd@MdreZMvP4OAoyGZ9uT7RffwWrXp5J(x8+Sts9AJB8-r~N zN~!suzM$5(Kn7^6OrLdH{Dl#{F=)ww!3Hd0DFEMrY6F*;RUbrr9}vzoG>4V}{QQ3> z{QpV=0D|!q7=GQ*{CvdBYz9<4pu~~`qtY~5SPHb*P!1r_1TwPOpT(5S;mBMAS@Tp? zRc*-iR80gLnake7L_W@5eT*^eORAo;l9ADM4~Jk~S`MHtK5V#zlI>2Zt+-3W^5(6j zrM=~dy&rLVdu=_cb45CPeUHJO5blJM;v%7z!MlCkVHwy?W|o$fkG*+&dG4EOtuY@Zi5ooBsuEfF`X;dsoh9#jn?jk8w+5x$Yt2klZVL}9Pc5!f-YNx)^XB&J zpie;+S_w(+JnSFM(IFZU)oM?~@9DTJICcLPcW za5#36D8>g7DFx)#{Nbf!4Hu)v+RoLc6g&HaL~ z9JiBHI4XtQYc_&TnOYtT+r`@zo6(*4v*Y0Gb$idEusV?mfCOeiEAk5BT?Y;%_!o6o z|G@Mz6;v{Cssd$lQ85tQC5$Q1GLvYGe$qs1$X`?)azX?%FK`n;xV8Bs}up{6BhZftf z_Aop|RbszW@1#pu)zb7I>%5gto!iIBl2QLAzF@UHxoa@L&SVG=m&KOt?gV~rW9QqH zw#rz{3-kNeIygyK87nxs$YqA_d_v`XiVk0*uye}u|JC+BKD3OSy?-`UV1K{LRw}bw zqqu~37z61}L6xdfI4)%%a0_ee+vx7#lgl56gHJ5sVqjITfJOD0tyfJ)ldbh01^ z$NvA6&Q>Fu#JQ6?*MBEx{v8X;*rZmS*bdSfchBCukQlqOkFxP9lInYtroEhDj*~T_ z_gXQ1ZhAuz98zVKN^|LnEl!d`EWw?SKV;Oq@ch7+`(hovcLnVH{$1_BJK$Yd7w_#d!# z5E`Uk!w~~9&BEU!nr@xd#m|5*Dzh@VvJxoIRZ+#s7#|LVmJ#qRWeK%_DGQEMmjHT^ zfnv_`o%yDk7dX?+hpvG}`PNR4tf?@uJtwh>=-#yXo?QI57eL!W6KndVr ziV!;xc_&PL1EKZY2WJMmyqMFXUZlAmoDc zSm0)uP+Fgw?QN~Id*kN6e0d)JNq9rAhCF5>y$FD@f1|DXeZ3ioFKw*7bJ zNpSux14<5T%~E1wfg)k@4{GD#APlm&iuyI$#?vhssT+UNHRrwQ&oS}ozVGbxL-h#y zCNnq+!1jT(ouC~>S`&a$Xz$hSH5`|Gh1%@U8Xj((A!lV;3m@m@o(p}6g?U*(xv~2Y z2(^G;xDW0f*y!#Fd9s5~7>DC<_IfG<$pX8Mk}?uY4_T{58$ke zYpSY>LH7We+dO$f$-p~hr#Z&IY$i(3HP`G>6_&y+)z=se{01I}xo0jFCcEFie@9>d zh)^Pq;nV?Jo75R^j4hIO*(}CMwLl%gy&x+$;=hwRN8U)#VZDMm&6CT&l?%;Hj{u)E zx}I2T+xO2%KXN5OX}4F{&yPiu@&o?9j92h}bq&K4Hbf0)| zS$g%AUn4L}5H7JO=$|>P5AF|Madq8TSvL8%Z?O={+>3aB0Eh7|A>n!eXo3D`#-aWr zb0Xl5Vq`=obqcdC$_J7|JU4O@-(p{JpL==v4`2?D&3gzCOC~}M@jIEfobJ08sJpzX zdn&Ax=o~U8{k0Ah#jw@G>wQn7Dn-aE7TSsUckgB>W!uGms1)LHt~;pA&Ec^f+#=Gs zT_i7SGB91qe0*Z*A9|ZR%E)B{4+{@Zd$^cP>9f7wKjX){;<3m#Wo?#-q)TLGX8xRS zsJWwPp&FrXEGj&tZ5XOc8>;mUTGv3X%4{AfdGvrsK zqlUK3XT!yce3#1+Y_;A;j8~xMdR!c{nW!_0#;M;*C=Ag58+OZFF3)z|NX=^U(!ZN0sP8y8RP zu6I?)>*|sMVFKEnqnnv63kjQjv~a+O)Ppz}%xsyUvxP){Q3q7Lr*M_<)0qBO1|U<*yT}LteXyY8Wft6h(8~#YzmCz-(am)S zrzH$TO$*=M=E|6+^v%3Aar=aERF9EO*XzT%IsF&FX#s8i5zAc=#B{;bt=OAFl!ZeL zTN6)-xaIl9DrN6U&8NOV#mBuTizdSuPEZ5-|2xvEs3hcA2Ou=GIziakETwqGak+R4UHJGRRpb%>F1 ze1dYS$e)+R!V?~S1a)vd^?c)+KrUg8g8I(Rh zR#y@37;F@5E}t;^(`IG)G-!l{DWK*>nvHND`vs)nN5OSHOf=J><8J6$etmc*&&bBY zVh$vBFgpQJ7}50Ccsz6@QKe9z!j*L_SJv2VVr&5wG5) z<}GRSaJdfw+5?>h0O?15Y*o4}>w}+4)vEHO3OQ^{$hQgK)|WR81kT2KyWe))26_jY z?1wr=M$Nw)6UWzTa5*q}Q3MLG8`L<-pXG|8K@9Y}8(k&QzG z++}-;1HQHn_)riozK~F(As)SLB!6I6k4l{P%E$sKDUsH&5!>Ut2cP>cw_Y}mu8BAZ zBzVLgGITw^z};%qM5pAo>ic~QRZVO>-N5Y9y!^)y>p1{W5Twc5YFN$QLii2|B_$=& z;G8J_D2Z+}n`6%$rXyzKUsu>z6UTcfzWx{{KoRQ# zn9cBQLqo#_L^Le2q~xS?yh~84vf|7(wY3B_@Z0Ey^2@mB2Jv{6hpv)3FqVi|vwMcH zv4J6k%sN1Ygz(%0;nxVKG;_FTyW!mzHs{GH52~w?)oAFw^t_MmCXai3iH>G^l6dXW zEY3IICzTZsx)n96$)fD7`s^Q?^0D#~n~YFZf1tgHgW|7ML0T&T`{ONIPMU(}D`-Hg zx2bR`muS}s13m_%ZNN}!37BjvaA^1r6DA9T+Msm)zi4d)oC2n32BaV#wy-X_$L(>GG;o~zNtRRJ2+PR z7F)aW`e%P;5}wFwS@%bA_Zhl|Bl6*wH((IT@!-q;%Dc4Nk1YZUZ96KN#-!TEft_;) zkWABnHGqx!JJcdz7`+aFu_l9%f}8JwJtEVGXNF%|`S$JWc0rEaJ4?h=2|E}Hffo4A z-cXjELOTHIjKa!Z_@W5*A)rx9U1HP_XI!vYul#zdfrW!7OYM>WQZ9mNWplKHoSj7B z0N_dx1Aq~g)@j>9yZO-Y+B)vLmls!LtVx8b*4Sgd#W$NuR7PgX%g zLhCu<@{H73J!IUk)q z0%oz@c-<|GBT0xE=&tBPj^1!Cl2=z(ALYg*m{WxYg(Ut}Pn-TFo5RHFH2LycPDT12 z8y61Tqf!CfQbtta7#YR)wsRG&qscL%HPsaFyYC(;Hoa+5BEF~-?X{ALI1ANLC&NL> zImAr&J{y+~IU3`!G1+;O%x`bj$$};Wx?5Zw9cJsrv}>sX8`3Pze^?G5zr21U>~zu} zy-L=|z9wCbzO2UbqRzGF`3VwR`oaj$4xS4M6kt#~<-)Q3 z%u4Oc5@pv^ZNLkZ+m(^j)Yd}x$aVQarP4&W)`?t@o~C)NkszTz5K!Rc?hZ|$U^py1 z*QCpjaTc{l^&6ohmn?fK`$#9abNJ(}pAsbMQ3~pb>W29BvQ4P9!~Nq!sdM$)thK*M zgCiSwyL7{22VES_y)U%Su)R8T@wM3BT({;X>hHhl8XQ$;tyLA4Jfr56c&8pS@*oPCt12-E9NgQ-h zZZ0puKom*jfny!z3VpqT&i7Nl97qa%kF-HTWl0L z3cqA>^F5vy#v%vE3l`L$UuFfL-cex=hbtF^C4DqrS+t2tR%hNV4fAFmom4a6vi;}1 z%x0A9`0R~;ZN|geg4n+&jK`>m$Q&iZw1Wp+1iu<9H+_l=h`$$S_LVF}izmKO7|CQg zx7wJ{?Y9*7?Y6Owwp-qXGYc%CF>wziqd;3)TfBWUx%L-67y1}uLF}v5W-Jm5txk<` zaPcdXMa1?Lwxz&>kiZWp4#nm9wSZwsxZ-2a%X`agraoaXD;D3&AU3?;Kx&h(uQ7*B zPDFmIPTnY5)?QcJ!m=&t@$X?99p^P{*Ln|LJcaT2A8g0FJ%O(=G~KqOK1C3V(x)u1 zJpb{mtfthrDWDypi9c`?d=Kl^Ok>5#b($maDqW;Z(>z7-{ru=;BJ}yj>q*M$4)>it7Yn%S#5(P7ec3kF zTl-zpwjf3FsF%|=DxvIg`TI;&NvD)9SYhH{`I8i&R(`mMnhlI3(sDgbYQCGN_)1gf zx*s)vQZ0`?cqZIwPp|Sx&jp|f4Og?=lPF|h48$TvHRmd}A3^KDjseZ&LA9QM?A+vN zLY}xC=7H*HLH6srmXFJY6K&nz!2OnMOT0x%FB*r0m|z6fo7fbTG&8L*cg$@G34G3y zX;Y*)mupb@ITk{sit=yokWa!&(q%QXnfB0-8$4$5d~SNTLg04(zk|$aZ9MLRM@zFK zoPM_S@7903zjUya{^T%!ER0?Qmn2*y)DF9)7%vHk=Cj| zujRbVGo?%X#fkN~QJX7ua62K9C9ccOhKhr>HGv|Gv}E1-bh55wPW}&0=nJ%|Q@3&Y zPao&$q+0Yf3F#7gQMzZG?I8V@>-oLaRz5c*(mFtd=OOOE7%ErU$J&j%kBKHI_>N{M zhg#iSZsS6Kkmytx_%SCYZLvH2tjdm|(z!}6_n_q7 zZDMg>O#K%@qu-wYYn$+3u3_n2lzDPhaA8#ID96!fzNqbp_LNki&I(=f8TSk3{NJNi zTo8JKWVnIp37P7EeyPFgC9M@61SZz9FCt#a}#+$kG#+`;&P`a+6_|B-Sh~r`WiYPq{y|O0(q3L; z(|nC^e`1&3HpNkLU9&Xf94zFHWhM*Dlchc7=a+R)i~2R6A#(6?vr;RApWpU6f-Xj&z%ZqOOA>!0 zs_`67uh13Y6A;j~bU+uSxC^**yJ4$U#>ADP?qXC?;WPW)LG|85<;w(asike-dS#kk z^5%qa4-2%($Ntm;0?E+rhH9?YFa51<+=qIBgww}K_(`(EPuC=^hBJKi1fSG8;$d7* zSig@(?s((!lrWY{SshOL=6r_eU#hUOIJ>Lw5=L8PMz zU|PX#dGkhS$mu2Bou3H9-L9aUt3tqSSuDX^wK4)lKwq4)^K&snvUpva*v9pxMwPEh zAc*yh0I8`yla#H1bimCF28~?SV8?&pdsIvQ&hj5|}DFCzR9qyq}8Z?#qzt zwYIM&`0-5=d|^aq9(^b z#Wz(n1~w-)HMH@G=A?n@7E7a|t}X%MP$;5}L9PL<-8&7r@7UR_5@7YPsvdiR*{`gB zg^mnutE-F2qTNSub8e9T77rUkahNmKJfz~@~=IKVe(acDq91@R#@M9Vmr}X%xS}Xby?0E z-S45_Z@%M+vm6osjEDhqGfCIVG^oCTjmn(%^ooAV?Hjma`YGi*0YO*iUbawQ6cJL@ z!{ul^U-E;mX}_lBUnG#K@CXSdffD)h-w`o5=S)HOf%KOm++Tes8v5Zgu5)#`u*9q4 ze;alQ125*fm?oZ-SpBhLted-&I>b4<-X;6N=jG*xp}2{XWA19-;iI;~fd&*c-uG3S zyQhDZbvp7F_y<$Unf2ChM3^*f$>DKkvbdR2jzpT?z= zQMS&UjBG~yMw{Gx%Gh1TyVqAJLx~f#d1}HB|N7JEvsH=>X&EF4%iivuo)Bdg zP*c@cnoOmu75l@lab??1oqGn8y#Bp)g5Q_o&vfi37tD8E1WNNasqJ!y z*vQs$T|!%MUf6_9(coxRR24G2yx$fk474~oHf>T{goO;2<<6v$=7lHT3w8d$wHA_13}umLhQ~#6Jz8ya6Vg!P70@#ueYlZ$Fu^3>uxQv5y1vd(HkbYUXudknOsRXfs2mD3$bT%a#?HQ%0DWhtZ&7A{_1<>(tFP8uT#JW$E~b! zWiwOhs3!bGp&4aVwe=lablW*2NjF0kI8vYP?~RitUOk$)ex0(f7PjuycThpStBqcbXb=Y>m+L@YNFG+MhC z2PLF7Hh%ni;H<@~7xJf@Z>lwd7B@?>BXE4Sc6cx(=HYJZY{Lu65BI#!eylU8P{=Sk z8mL}9b3Q%Q_*6qx9+H$_knQ~~q30BPhk9;?@j^FwSvD{K{$tdBk$t!gIz%=?h@OO# z6Fby82zm!TX{5)A*ggt1Yb-DghW^5K`XE0lo955H^cV?=&>ZT`Vo8!>(hCNbWu0$s zW1oDnn|#{Z!#Z;#h|-69G$Zei6GkLnz4~iy`;C%Qq<3nyYTdu58RE7??}hq^iYuOZ zthS3@FjlN@Pa{dTNEa|K&nr+mI#l{}cY4}shxD_pw9}S|r>)tD`UeMR>RwM$o!hF-%jVI~QMm35#i+kyc{TB$N9G!}yU1bL+qWB9h}YZoL8n z;-`j&X)#u^ii$`Qj969PQ)7|;fQpV7a8?|T;)tdEt+6(ado(L;B%>&ZRqCHdHh{GR1+av9Fi;NY5k79Jw~ zP3W=B`EJ6W|6O7qP*3@wB@5#^69B`nN#6(zG(JB*_*Py%R6?=IbmPOzfAt$g^yb0s zr3NigXFX^?+12+|MusbLV)N&HyT7zBmC?DIdF6Fm)<~lm6Hq)vyoDLEn zwm6Ppeg64FRTg&Xyq>el0(C~Zxf`OX&{p8PS%ca(avP-pUetu0G=VdkB z9$S*6w>@miJ-@09mLSP@kkXhBZGs{Kx}|;*5H8p{<|+Q&_xXxm|y<~jWb{WMffD3^0AF^*)Ur3(35+3`0)uO zUS2(GOj^dhM74!$xTTwC1Kk0Z4s^2%dL17e(isbkBb4cW-o#X)rj7i56_I7z&r$Tr zGHMmlAi2^IR0yN^@9^e>^n2!SMDXkP5D-$?n839&sbH@WB z51QjlM$Za^H45J|WE2Je`xN*dYu+v+*i84CO~72j(1FU(J+3hvEVZ*aZXO%_oC3M_ z?lJertm;OQT8qNJisYd#gWlH~OaraBNI~}L1&Vn|+{Re~2+qkLB)EwkV@|6i6yAVbjN zbuHW_T{$GHEFR-JBbK`>TMS?SI28zd3A_k~;MR=?)b5HLW`@_qqEO3y`-&A(w0au59%|#B3Ix2oybwcd{CNkw4Mlo2aC&Nhq2?%7v8tIwRHy6+zcE@&wyTe2d5r&JTbc39Eq{D(%Jln|?Lrgp18xoco{By|k|IY; z@GM6Dy!y4m0q8xl6qPMo{0fe8>6bjiKJ_`L7yv0ZN}c} z%2Zutxf80kQ5{V@tNWcTeWb+bBes{-FDTmcaIy1e1`FUBm@IFi-tZ_VV0!#gx4TQq zp`n4FYesl5mfUt`-UQRw{|~zVX3KLhdc5-PM`)z&ZDqR8zc#NCf<1XY{LKVi$WO#>55W?tgVn1SJyqss385^O?IX<>BPqIzA_Jc4{ z)lDQmoz3KLA_xARlXmKn!>mxc!?0{hO%W$eT;ar%OJaTDx<;Lmi zt3=Fxe@uZHu^Ze!x|IWC?>IdCGG@;H=SxT=drme(On;X2k;wD-T4$n?#HV`Pwd$3x ztrU+^a^meK99ZWtAXbN4Em!_IOl~D4C7lm`$RMO8IQ)RaBD;*OHWH~E*xQwvN&M4w zv}Yii_ZG1S{X4yE8dt}WlY z%t(2vcwN(PF1}hon2;v#@|%HCMwR)7zP@qa19k$1HJV#Bws}){+1U)|D=TEhPMjJF z+Vi!j*9m6p0cw+?1co9~nu@oLzL`0-?s9xRs~v5DG>rT9WFld8z|_oq;!$!SawGJ> zd?|(89CNTuNk@~pC)k#h0R!E>XA!q*M@_5z!xw@Hho0Gh+{B5m-@b){$EVdw52PQ+ z2^5f55M>-jK0S*8)hD`my}KGUSGw;|N5>;VXA7Q3<9~40`aQDl#j9Q{eX!hmmMn)A zC#MwO#bs4LQ<)e09VcNu1^OOXc`4+phIXWjFHge9Uvozm%38_9-V$VcX(ueG9Gh_E zIO)gQ>Y=o+h!5TYr1rA!kR1f+COlv1?8)q2G~(EU3EtnT39IkFt<4|po>}qjKYkz@ za(&>6u-#Kez4}6hPXext2SwBGYpR!vG2gv^{~FSgVFLvo&``_Emr!oN>>2_NFgIhQ zG<}%vaIqUSkn(y)Mr!n&yXVY5H8)B*82R-O$4aUSu~xZ?PDR?H|_A31a}O&lL;L8%gu1X5RC^74H|5i&dZU@>m=aa>OEKHrwfd)y;oHQ~Dksh)-15vUkMlY-1nAP(m#NaB#T$LYZ; zVh;YXA#n3%GDYMrQ~uMTclqk<##jCxB_8lSRx4+y-D0gwe!no~8dARAL(y6l8*VCM zz-W-$L(5pDd)Fpi;=Y@9va71@7lz7LSqkIRI6qOCg-)a?}S%VrpGc~=2 zA<7AyC(b-~Vu5(Y1PXNU6ze&D)?w;1@Q*d0sww?ju8V^!jB$NO7zp&CqqpPIK1Jol z(F3GEU&DqLUEsuM&z`vJ+3RJYJ$qc&#DMzb$uZLId3XCBpO5Nm?nq}2RQ|wSLqOl4 z?Lg+EAo~MwF|hpU^KT%Z5hETsc7sQv))a+6_M0S3d=%S`q7was1L*<6_?M$Xv-QGt z$MJgE>LmQmE`dcAR`D6GL^`aG#+zV9Ru_9M}6gFf9#~3XrHf|eqYIM z8>;?7o?&ik8Uzz@e8R7@JDF-;a>nRFGYvUAH~4_4u&EUShjy5;cT+25_`{!roj+0SW=l0Evo0NIY;h z0Qqr06Gsh~M^{;JG|eN2-{$|Fy}x5hVPbiLOyPm@uYOnQ>U9PcrqlvUJG-N=1+3lk z<6&R*#?5NOKphT$6x>!;sofkTq6Au9NV+KqZQl5?v~=Ahy@4F7a(~Vc{%X>a`8ghz z_t&>W-(~QANA^&sR5t}@8H=(E-qO6Vjw@@l5&A=hibplP?1Xm<+5^zQt7J*b?vic3 z^Em2$$nx^RJXPm%KY1T_PElC$_Vv~&2V*D8Lzft4>s6CC|KoBuZw)|0Y-~+FC*X!3 zfW#vR2*U+o3@;-~DS`9W_o$hX)jTZXp3t8&`{~SsEMYpTGF*==V`JWV(yvia|D{&0 zvBLyYF?}Lg+9*Ml!mkoJF)zs?gQUsVuy6zP4NB|(>bK8Nb}a!u1@HBnkgo~^G32aw z)FpQpWLd-2R&#j3^=QM5zZPt8{n(;ww)Fe9IWxMAjRO|LUHZ1_+c$1Mb*VULU|nx7 z{<etMl~-J|BuMT1=ac)Y$fmqGJN{xOWN6A@|C$T;IXmM7aYIDH zot>Q>5)ofMWCRb5kk*BTG?20CyC+;>Sat^4n3wUY|Jnsx)D6vF>vbL?<;*fhg)ANz zH#!(I-$Jx-WWqY*CmA~0C&BO=CJH%!|05Q2o47fH$=3(r+F9LBkDnH6LZUo5k|qH1 zkgmZ&OMvQw10e-AK^4__G*tR9q%@$5y1V_t26vyjL`VDk#6MaR#hR!rF|pRcXpY$S zu8UOWLEKoH9Kx>B7RKm^i0A#JIribDjz|2OlcjAlRmR%=kBtMII}%8=ZDe&Q)@E@2 z;w82((yQZ#71Bc>FPtWgA(RkdbGuKw9{K#$xNqpKP`hok+;S^g={ZSU!54j33T+>?uI@MvA&1Zy4S7?!pIhe9ygk{vFyM`{)LBDrT}51p4;8K5gU_A z`}@Nzy+2mJpfqHSs@~m^d`jZ)l#}y_pKX7?Q_iiqIXt2^_&-;Ks5Un2dLtV*TQn?x z5Pqa>-^79(=9C`l2-4!d!1xvw-+y==lWfmd)`G=DMW$+fVnRZ_=*L)|OwTZyXcNQN z5xnPiz~yXg{(A+Rg?7y5kdd~3N6o_pU!uu=!k4*624!n*_*gtgb-2dS2vpvZzP>`R zdpu}2ek3d?NCqb5rU1xpNse?ngLG+62m%4BMg}CqBYd&fAt5}!KV$S`0tHkKJ5he~ zYW%HVEtJjwh#*U|+L|kzSXn=1wc#_f!9-5>#c%L0`a6#m8y*eRTRTFfJ&OqL4 zo{Q67(RRJ2=ZBC#KUNo)IgX}gzIT0Zkr(4*$Ha4AWZRxnBGyvQxAxV>ckSRgDj8Ms zFO`+?-z*2kJo)|`^%9rx$%1oGMhx(RA0fk8(sN_xXMl^MEB=M;rdpm+=3{(0*I1iT zv)ZIA%|guEw{yXsaAuXu+>6+8z>M9%b+lTX+8ctON*)w2G$n~058LZiar(AHH^p*h;B<@HRwU8aKJ^8g+s$7kY14p1aMy92y?$mKc1TT`q^6c zN4}gne!uKzN8C7iCWo=8sH*0o0VYh8JX1+CXBqkgk;zeHMu6J1;L;c^LCpnz`Qb10 z*zl~GD4|ln7?ZqPF^Qa)*tbJ_U z*d1g{2*6T+*#yPKK~M(?l9Pex%Aseod^y{2nU3208@*DB)gF9D8JnH(=F9A0x*oPT z39Ek&Hry+UTN55L1}+puyHBTQY9x{kEc3ASk|^kB_r7s4s~uOl)Hu&R>gVt$B)#aO ztj)MvPx3mmP@kXy))5aP#uI#!1zd zj^+uT%lMt!ugB{uT3SB6g}bXy%-uKD7p2lP{B2`o^6V3@VCn4!-BH=B9h@`q(6#~} z!;3$t`EEhh&t1!IR_(p~H@sB6aTPa~>Zf;JXlQ5@R8*)E``0oe z2#5&^;YKl{&S^WI;E)i~9<;0ek#IuI8yg9?Jt6>TkCmBTRB11qNt1St_pw7 zeEL6dh}X=y^v1IZ_|>axoqUp9)~k8JdImJr3f)vpEL`1K-_ZI$R8} zE*jkX)0AQZL*=aD*|!is>9MJ@0ZAIHts@AL1IVj3@Q#}stQ0*OBng?2WJm( zGsV#$&{f_O{`<7o_H7Es0D!*%XbM4QL z@jt5dn<>Uhq(+&O{Hcms&uknWCz(ncGeNOuZf0f$A=w!DhC^{Ad1#a=CF|<*tKKfH zS3GgEM0bHfqhW1baQo6}^&?ahFkR+`N~(m?hLG^G?v*SDj;W*MaG4XJUl8& zQ&BMrw7sQuPrhJ2b<8g<)sm43v$3^}Pe~~P)`mWRe!cG5URz0|Y{O%#cU(R%b`51t zOj#G^606Z1kd_Xzynlw&r?-W* z!y9Np>hQL7%;XhP@uB@x0Jp~^boLBtoUE;^h5)7D1}P+v8z`FEuh#M>v(kBE(#Yta zq=|_DS=xfLbaX>Yo8XikkA}Ls6|hD(fBtMFgeate@yY27J;N$K{msUi^nwDJ7Fe&w zr>643iD(a&du1#1fQ1*QH5VXJrhvK^Zlj8-YAj@w5OO)2Sn~c+%M7SFEi^|LtD=scJ5F3T>Ss+NjJ6^hvZ=M0(lixY@^#XnfDrfDZ zBaIBi8^R492Co@`=T+gF06ByDH**%18;~754Cnaxn3xQxENr)T<{N*h&qq?j_1h}u zsZ~`~F+O^v(uPa1SgcuyB!T2)XMfPA5b6iF&u6bg3#|_jfu;t1jJ$pS*ORHJt5-ZM z%eA>)Y->l7JeC4KmnJ+jBo#d8$4`9lOOlHC*7o%DfH0RzLrZH58ou>gB@JAFCS{s6 zZ)LYgX@83!aIx+t0N-sESQ&c;OAiI@6ci#sNnQ+P=IQzQM|~LOxOe}rxGRflD$AlT;4F#*ils$M z3J4NVQ%ngEnM7u*EI>>cWR$^T5*Y+hAO)g8?`QpVukN+_qie1H$yZ+9%e&{EyU)3I z@BMMSe~pyX@gL5MFI8jwP_a1Tqs;P)*bljvoxPK->2Ji6l95S=IJS9$b}Vt;q1T80 zy0>?8TF!lEU*D`%t5(r)Xx(P%GViB7?`84ke55yS+}M`yo%mcJXzJ)tHd(T4Srg1= z3p@A{1ItK$FlP4_6V#MsGT1ZO(Ho#jnX z$+pYD82PjPC|>6p1{+~gorHc(Q%j2(3;9t5GyCB3s6^%E3kgZz26GKp6!V#tVB^+- z?{hrAoqQ4q=aV{I4j;NNlpe$If;4{>0@B9UWDa0>Q71D;dDpHj&&$sjxaGy!r+u8_ ziV@~ene}v-)wNf7Z6r4OQgC|Q9`TSlg1WOlNZNbp>%Kd_ViAY2j+KsyL{=^?sh8IjNS;|uNa(>L%+$g{qevq7GK6k( z%zQS)BmRgTm%8Q=#CI!xSxgX5zQH$%h`o3-1aWo|1D^|4#^X~0<3tea41C1?>I*ua z!(j8%32mZd5$>Iz6+RPMjtz9MU@uhgZL{{_Pm_N2U)wAo*m$6hU-9)k=%1O?L(_@> z6=@rNAGM5a|J&VjB(s0)((^V-^= zJ*Ddsv}70~Q$xACMtLpQ_zd3D?%`E&a@%xu9kD#@0|EjrOlGxuAl$9|{c~UvJ^fINFtXR-(1MMU_odVv8m|co zc$EG!k6kzKp2mdSLWzN|Qh2UjUe>m@cUql@$CO%~d;{FD&^fv$dX3g1iO#XhbFm9*pPle5 zqS2Nm+}xHpm6$d(P*%NFGD6y4&~^LnU8TtK`Vk9rbMu(6p|@|r_)~_Wlm*_vt5VF# z(tY~+OkFgh!#-A0>hu+kmfn&(&tNNj?QR*?$My)8)ZYR|>H$~*ijs#1|e z(;hvt#xk&8)9-jpf5&?XIYON3ZMY(!Q_SY;l)AKWDVeVRC05dvFIa@$X|+vMM^H+TjQc^vV1byXQ1w#cpqE$X+us9GcWxx zVZ%7M%=p{XlwL}gpO8*j_b_z*nMLNr^y>dp3i$6yMmJ}v&qA!Ptm8SY`!kWQCh{W_ z=cLE=f)+7YAePISAOPiUker0|_4Ngv2IZR3r4qAvQ=WylzV1(EVvGk)o#YG+98 z--hZ|=8YRS9Kt+5)32SJ>%DXLZ13-L^fzw?1ikN0Xf@$CQ1l5ZQ$AVk7t&3}P_4r$ z{nJDc8a3~wh4W-4XDd}T7FL$b`3kFF*i_EgshLY>(PjQAgQn;>=h@}K@cT%Hb&lBw z#ecb^n_9^(?{SdvIH*bc{h+3HK3lUhnDyz0tIW3KXFR@m`k5H<)Mnx-q9+T3TA%L0yT{@J`6i&fd?J83+S!5o6MfTOtxU z8zI>VA%S`vN|jo%;=4diho{{>E)c~D1=*GsGIo5s{bNfkGh|@3CWWNKslXU+dUZ#= zOOnu=Fug;>+_ol($_z`bLUPPDC7{8$-K@Rr=li} z#A62lvQgVD;_3Ile|jPIaMa|ps;U>dvmYd*Vq)CkMB*IN`vS~U4k|`BJWi%3@TsDT zN(&S|6pLO_(XU#qG_fE0sXQ1e)==BYBN#K#WKd7rR67Z^enkxpo9o(R7$MvUh;%jy zbF;zu<06K}*8jLtv93$54lk(!l*7u^RvK1>^8!j~;~RRA+@o&YI_BjoD+HRYQb=q( zIa)$W&H>rPF9GAD$@r zal1U@NCnlI9_cbmq$-j!-FjAM0@_e+*q%GIrH;iBLd*CRw zW{u_+rf6Y_JJcy^AZDCWR#v8_sR`S}enyVjn2YWorBp@5okcW0DNE1~A5S6mX>ZBg z?57&A>ggzS{GoVL13QCQCd)Xd)uYBRa;+wZ!(k(D)*Rp%X@VvhlJd$+BSU`r3%dPn z(}w>I_68SAJDxhQHqsEYuViSPoGZ4$%5MXwm8ox^R zmSF7lOk@uzg-v0aR|g$osI+O*ufLg69`8nJ8eEJ#z1^|Yo;86=hgVXb+gcLyQlfUju$=6W8>b|UyPzTRB0C%}8U=wMaN~lNXlQRJb zg(#-Y#voN1SfP}ALg@R5b$!s8>Jr~GJ;1^9 z*CUGZoU7ME!UGx697QXwNShE}^vmK1VjP-L}OGTSpM)goz=;Aamb$XZ`_Cg$<(s diff --git a/master/_modules/cleanlab/datalab/internal/issue_finder.html b/master/_modules/cleanlab/datalab/internal/issue_finder.html index 2e0a4bba0..cd33dfa52 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_finder.html +++ b/master/_modules/cleanlab/datalab/internal/issue_finder.html @@ -583,6 +583,7 @@

Source code for cleanlab.datalab.internal.issue_finder

"non_iid": ["pred_probs", "features", "knn_graph"], "underperforming_group": ["pred_probs", "features", "knn_graph", "cluster_ids"], "data_valuation": ["knn_graph"], + "class_imbalance": [], } _REGRESSION_ARGS_DICT = { "label": ["features", "predictions"], @@ -597,9 +598,15 @@

Source code for cleanlab.datalab.internal.issue_finder

for issue_type in initial_args_dict } + # Some issue types (like class-imbalance) have no required args. + # This conditional lambda is used to include them in args dict. + keep_empty_argument = lambda k: not len(_CLASSIFICATION_ARGS_DICT[k]) + # Remove None values from argument list, rely on default values in IssueManager args_dict = { - k: {k2: v2 for k2, v2 in v.items() if v2 is not None} for k, v in args_dict.items() if v + k: {k2: v2 for k2, v2 in v.items() if v2 is not None} + for k, v in args_dict.items() + if (v or keep_empty_argument(k)) } # Prefer `knn_graph` over `features` if both are provided. @@ -619,7 +626,8 @@

Source code for cleanlab.datalab.internal.issue_finder

) # Only keep issue types that have at least one argument - args_dict = {k: v for k, v in args_dict.items() if v} + # or those that require no arguments. + args_dict = {k: v for k, v in args_dict.items() if (v or keep_empty_argument(k))} return args_dict @@ -631,12 +639,15 @@

Source code for cleanlab.datalab.internal.issue_finder

issue_type: {arg: kwargs.get(arg, None) for arg in initial_args_dict[issue_type]} for issue_type in initial_args_dict } + # Some issue types have no required args. + # This conditional lambda is used to include them in args dict. + keep_empty_argument = lambda k: not len(_REGRESSION_ARGS_DICT[k]) # Remove None values from argument list, rely on default values in IssueManager args_dict = { k: {k2: v2 for k2, v2 in v.items() if v2 is not None} for k, v in args_dict.items() - if v or k == "label" # Allow label issues to require no arguments + if v or k == "label" or keep_empty_argument(k) # Allow label issues to require no arguments } return args_dict diff --git a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html index 6e2347916..56881bc81 100644 --- a/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html +++ b/master/_modules/cleanlab/datalab/internal/issue_manager_factory.html @@ -731,12 +731,7 @@

Source code for cleanlab.datalab.internal.issue_manager_factory

if task == "regression": default_issue_types = ["label"] else: - default_issue_types = [ - "label", - "outlier", - "near_duplicate", - "non_iid", - ] + default_issue_types = ["label", "outlier", "near_duplicate", "non_iid", "class_imbalance"] return default_issue_types
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index cc9dea629..18a7f1313 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index f583dd1ef..e04676ec5 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 4b00fb862..a3b3b7720 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -323,6 +323,11 @@ "\n", " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + " # Assign few datapoints to rare class\n", + " random_idx = np.random.randint(0, X_train.shape[0], 3)\n", + " noisy_labels[random_idx] = \"max\"\n", + " noisy_labels_idx[random_idx] = np.max(y_bin_idx) + 1\n", + " \n", "\n", " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" ] @@ -730,6 +735,25 @@ "lab.get_issues(\"near_duplicate\").query(\"is_near_duplicate_issue\").sort_values(\"near_duplicate_score\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Class Imbalance Issues \n", + "\n", + "Let's inspect the examples that are flagged to have class imbalance issue. \n", + "Each example below has been assigned the *rarest class label* in the dataset. The `class_imbalance_score` is the proportion of examples belonging to the rarest class. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lab.get_issues(\"class_imbalance\").query(\"is_class_imbalance_issue\").sort_values(\"class_imbalance_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 1dadbca71..6040549f2 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 341365ff1..a4519eb36 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index ebf22ddc6..c4a962c82 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 852dd9cb6..31f37b481 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index d31280e3e..4336a0a02 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index af2ec29bc..394974872 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -72,7 +72,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 8d59e8bc7..8e4d46275 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 739b555e1..1419ded5d 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 4ea88848d..4c367674a 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -103,7 +103,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 188a1b7c2..29aef5cd1 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 9f39834fc..324cdf0f7 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index cf618864e..811cb6137 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 2045866e8..f1e359eaf 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/objects.inv b/master/objects.inv index cd6d507e879f394ae389be2a2761c6421f6c75f7..8577ad74fec4484e19b0c19bf3a9e7edae6f1ff6 100644 GIT binary patch delta 23353 zcmZ^}V{m3&7quJPc6Xd~Y}>Zgv2EV5eFq)ew$rg~+qUub`+RlIuXBEmU90A;2_ zC)u0Su|E=N^`=SjtOV<(v-eyhBVJ792psSkfVBON=|JwAV~@0>t&iFi`AO%==H?5Fcn^fL_2u9 zjKbw8wK}Q*NDV?0lnIk8RViI8*Tu#O&;x=*=2hsrJ;i+2_Hr=c264V%kWAiOoF5(y z7lgiQNrwJX0f}BeQcv8K*(wxC`WA5oOST-@@=EWeXK(r{5}s1J^%J@+rQS!?671*L z#wuP~NKF6K(+dkG_hP<_T*60tkZ;PUMiEbF@eSMn99;}T;raVXe&FE^D8%;gM^BFc zGKGTUO%81qcOy~+e*hsp__HJi5JWwGxt}1m|5Ce@4t5u7ZeHM^?0u}wVHFDKj{Bhb z4t*UjtAnAO@3#tfou#klUMTn}3s)XAls?R<@HAms$ctQBnf>8E-(yW{R~Ht#20Y3j zfuXkmAoR1L1qnc+?`)EHK){33{v}^+U1K?$nFZYe=Oj%6vM_5$FIxZ?v{Ya#N`k&4 zg%1hf(B^1aFjN&2Dt(PpP85@p?NwoV^q8dL1IBnqi{DVhi`LUvA07fISa}&mi?eYq zb;wTAYbmm#gD^gyru9cU^2r=$*6V4dQ3AUGl{1DoMjpvd2}wFu3d*;#%A87ZmQBW^ zy{7f;KfVbr$P<~CF(Yn8-W4&>*CP0|8a!`98>?A7>M&V?uz9q0yF9?<#Qd@1_CoFN z{`^To7$!YP$U;WDZ$U%quf>i;U)4UBZyj9j2e&lbg3GC@c)wOE8WvO$px{j0M8 zK-hmc)Bh=E;oq#_l&|24X6ulwN@gaj;h}!(W!#A({0QxzS2%rsIyC-9*8!a-LOD%O zFinR!H_4M^QfQ4oIvR$y^&Z~D11Hm~m~eXCt*IqFrAAvJ8E?HeSunIB^PB0U)XQd} z>RP*OUT?8Zk;n4QlI=S`PjlU0M8I_iPzrPXPQUa>93+KfqB@cJ?m2F&yC-qSV5g+4 z&-S-8h~MS2!A?z)>PV}AzIf(Z+I-PI=B8X0d2$W13(8X+(N>@}ZGq*y>sT$usfY2T z64S)F=lSF`vuVJ*e1pG@12M&Xk%7{FFNKjpXr;|dnX<(fZ!)_7L95AI@UXte-0~5_ z{3PHQV6M)x$uN5EV~U;LxUrNc73KgtJM4Nt&&G~xail~3yhGL)NR$tp`PCjunfK@% zp%8d}M36gCkmnrC9F_i}+vFUpBusNM^BAT+S$BIhyRCfCXdqhFRq7zFF>;6h4d%QK?R5F z0z%2VNQ#|uW9)U5je$*6y+`;hKb`ZP{h)%=jJEBWR1J573<*eqFE;W-%Yneurgue1 zg9kEUhlHt*%PG;K&6le^nMei z4)Ygx-O*Hko%77Lr;8hu_)d+A`*Gd6<>K*mdb5NlF<@Q`f0vPnuWHXhe&076{qCUl z9q-W{Uq46P)1bgsKz$&?L=CeOF^ve{$!h)9fb?>2e*JmbJxAb^a9}Rz+u#JQDS_SX zHhAe~BMz#ZhWbb;PjtO8;@(FFL%Z*kdmtRK9L4-a^m}#^DqJ~w$I`@Rp>aLxjxv<> z)an_SO1^&u1;(98EqR_q9tO@zwJ^NT)(DwGLS(<%*biEiNW1@RfQSt2grNn+1)jnX zfKmXVU@1Ybf%LFspf^AjSW*B?=*ls{6heHjG&s_{gdt?pFl#Vo(7EY}ol&YuhQo>F z2owtalyL}Q#dYHoad@&&Pd1El>p7=K*ziE`_0ylsw9X{~Ci3V)E)!PLbDZkCKq#&) z%)w8BJ1~xks-Ii46Q&xZSBm+oqDv+ljP9?9=|YkyYR;obn>FM&C6^A^q#iSqq&FbBV3c?6JH?ig=T;pI> zsY0H*U!Gk8$YL)^NEr;=Ma(vJ3$wiQ5shWY))p2DdJ$5T0E$K8V$>V$X5OFCBrZ=X zi(_)^g2&9w2eZgrUkto-o|#PVaze+r(t^n7kb%RjA3W-T92*t{$FvlUM=O-Ne|~EuCqh z-uOvK^HLF00b+X8%bIVj)metUyQV@<(U2Ft!AMzq07$Fo&OCI6RyI@5Hr(1z@z252arr#fTsV5NFSf=gkjOlJd((M zn&`rIgkpK|JFqM|{tTbfSvV3)c|zk5n2W~l^hB*_`^?B=Vf9$ ziboxFO0j07Jy9%~_-$t>0uNpFgRSVB?@4H~YG&CD!jHu&zra`+_GGb7Ju$f5!|dDr zrwbGd07Y*42U85QUS&DvrwwlO&Ep{bFdUi~Ct9Ex9Ewa9UAGg7ql@0Kr9@GM#71nYw}g^5-Ps(*%fTo=(K9;J2a@w~AEDM!W(nv3 z7x8$0R5Nu-^9@4CJ@0nG1fQMt#y)-W29bdS0Q%cSme*bOUjgmMJZ0H|d9X-pgeYd9 zQ-?zL3^_ep<}uDS`dyKaBU*n6lH@>E!S=rGo4=C|ui@tKU4(5|YSqV|&@yLD8P#J< zj`)v}iQIH!q=UoNtN`Y2=WagByq2k7)fGu)EP=GUwZQ(RznF*F)%1G9h3u(=LY}2P zfJU%iqnMRx()D!ODWipsBy}lze4%P}0`W(D^7qh2+L5!OVnmoWWJ*a`_G3oK-0`SC z;27TgrOutffK6wS4becHBbAZvsdCoQ`#{lnv9iaQaZOf!C~ABHLS^+^@K@dCfz$y( zf@fGtTeS+~3W??1X;PmikqYmVEygiNK#V6gr=wG}Ii|;9-(Yd126<)uvaMs+NQv(q zn%Oc9+QqO(ax7usrhVt|y;%p{EW45| z>z_n3dNU(BA&`K}2ou?KFSq&B3z-`dy-2@hEEC3Qq!2w_zfNCw-^Zt?JKK*IK+Ezq z;Opb*m!J3h>-@067k|egcFPX|Uk_*J&%fbFKel|l0KPnb;oR-*w+6FRjx>H}!vV-r zLK9kl^+$fr@TcWfBZo{LtdZ8i+Uw3tIGx7Qwxe_lMB}YL?aSak94a1=9Z3Rdx3H02 zHjpKjY!mbqEEv+XDioggiK7TKVWS>WFnwdaYQoU`@%gf&#k`y1U8_UfC-gu9ne_o3H zMfcD1ObRm}i=eYDg8K<;B~&?+`tW~Rj_)qft(-u)&keh`aA2s9cq93|E zE{fTVO(aV#&1M>Zo>p2%)(u6h9raM`X0TgimHb^EVX%{y&Ph^Lva8>7w8B~;z%vW~ z%nvjd;oMUczV9okohUXyxB&z$@qpM-`7+_MrT7KNh=%UPgjx2L0J658K=c=ENQep& zW1nS|D=PA(>lMKm*9*^Mqo1X;ggyWxiIi`XHqw5G$1ti39ip3DMWhHH z;7cw{xSWk|MX|+)}%uKmMH>% zHv2m9nY>(Ju%u;evL*9p=p}GF63v7U15==I7ExalX4%YD;;bgxhxtp9Db@g{B!$CM zZKF_BGXIKr97U@lyf_OmncTu!70d`S!6hI<(UrjM`gC5p^;=EFGaC~oE zbP+$n>SwHewl>DI!_t5($*r*y4E@A|h#PPSU!qx@B{x$<$t3XHq9XoE0_##M3SB~Q z9y417f8jOM7#0Y{2$rkfI|)@g5k`M}Xq%X##RvI77DdBwoG7Ky+`~3@U=1F$`qc08 z2^p3&1~9mxZSl;iL-8DmG_yU|?Zy-(S}e%D@|ARyYms|HVQ!AJbGp?Pxv8t>x2uNo z6Br9CTOOizT!3YiskKwxg`R_x-)x9;KX{-+yjfl7!Ls&qRS@DzY2E^K?dovRh*pR+06E;yTmo7wds8LzK zk2fbNxj*~;+Pb1*uwb@Di&H+`*VFCGz|SrLHj_FzfU9nLgKj`d4Z|8jsO9Baz9sRN zMKbFR7Ea~WOV8=L8b$pGH~}%oy*x(elpsDe;MkE^S}6?a2%a4!boa>Qji1_!uT*4& z1)O!SgSSq#-S`az)0xHhRGZ#ej7dT)?8-uj__E%g2vU?%f)>#6nM!0;qEQ!f%O|+8 zN-ctCNh?YzJ_1#wrL0iT0?z|tus2cj9e1gN4u-H($y<4-ZxUXcO`V?oAwV3kGQ|2#O&;y~T zr$RpA7D*D>SnuK+8-6VVgaa&-p!nXs)J1W$PJbrokYJPt~{J6M&PHlK63WSSlq!=0(i5AUn9YpU`e#> z+#2RHN*%59gRUj@Mwz-eO?4<^U(zzO)6N#&3g8qJ@ zgUlFL6o6m#R2Y}GB6LJn=tbOAk1QP>mO{)G&MRR}dCia70;rOC!TxwKsGU)r`E$&d zkF18?LKeaW10({Ih{+K(Ug8{krf4Snd;dbAEoy2ISV#6KX>=FC+OZGuKVI#oqjao^ zsALp8u1^u6E(fnH620uq`>1%Z6+0(=uGbyTeow#EOPhF{f-!e%*r zc`K#P4iEFToAC`oiwBk zKVh?5soVBK8a+rt8mWk!DL@!F6AGq)H(xYTYa6K$MyJ+aSUhXYU_Nx6Mo!vYH>)Mb!wzk_X*ZDF}^zGe!Sn0gy`gAW9V(mlKaOJ-d zAG6mCNeYU;EEByRLZH4_)W1#z)@pq7(5sOS0ly6CJC0F(iOK>e^Nc=T1GS9Gr~TJg z=v2qW>a;9k$l?Z&R|QneF)}2%xDQZldF7!fJ=BWBA|89RFS^ou*Se?oi*i->apel> z=ROnTfja@XC*_%7$@&}}t#;YWi?&I2RzZ%CKa{jWPe+H(-{O1o!;7H{WKP8nK^;rAKhDH~eJX;3 zTb&Y>Zmn@oTKtoJT5;Ap^w07Gs#_dU03?l2#Tz2(Z{{-_Ij z=^Y!q+)`bT@~JGHA_(l?FHaLMS3ixzJ$*tHcE~PvvTC;%I=6wFEf^m>+_M}9FP{_7 zmlL0xD}F32J`4^BD%V?gtC>z@tGL9K1@b8Ktpm)&#yA$^r`M~Q01}|Zq~#t;m1DED zgbkUfb7hy5x|$My8p1g~7I)#X0IOIuhOzw%DhF?hw_{QJ8~PPIRp~Nq^PQJV#uk== zPN8Bf%`AHnkM7Zp3e7|c)4w()B23BPo*mDFJ#Y<$4 zFZ&(}gXV}(!@z${SEGn-g6(FDplXJJv0wy9wf>IqMiO&Kv5kLjKGt0$7y`BaGc|pj zWo7t#dieW7I^6rgr8s2f6dUE;CK5cyocj0olt2^|AZG(#VSVc8HQOoAe>x9iM{c7# zlBs;^nkD`e2Y~ZU5Gj7HI`Jwa;#yzKa=`WSp}SsyA~%cMB#d0Di^W-$y@$YuV?&-b z`7Hq#3eiG`+5np&&&IITjAfVLU=t@$Kkem)VzX5AYFQTSW_sSba%erN@Z4y=O#&Zs zVrhSQtEBF!Kv?U1QyVs6F6h2q#2=F|o&Pfvm_t0?3!r$ng!92F+R6Mz(1K%!RaDt& zpbELSiT>aaHlKfKH4_SI-{eKK3ilQl+xY{7Xn=H-rig!YPmStR3>g6a^396}cy_Un zJk~iB`LC?*oE>pg5976&zbBTRz{ zKf&KpJfMN@1SJ>d%+DPiM8`bKZDGD^vpnG}7^icP*+e|u`}}gD8{6giwh+@8X5)my zv3{8Fcq4z|RMP2)VxD0ZT@o*UvBOe1MPz;FscNLqw)1nUc^d58xV?3o71G)nfOKA% zla*9E0ak}zSv9W|omHGyU)JA`8Q4^Ty`TH-I?d%8i9c3SVy#1-j`2b1kQTO(DDb^{ z2z2R@-_<%sNR${}D~w^SmEToA7EO?7Su+XypIEALU@VdeKAP=7Oa2ha?pyXnG`f_b z=|u>X5nr4rum&#uod zyNbJcS@KYrtl0mctAAkG-mHM&~C)wZB?s&QVLsqwZ&3;UnAZfk_kUJF8R2Ct65 zoc>~+t~&A0T4;%dO+i6opRThY&7NC)vEhyO<$6*@tn}_1tkI})qW`a^%-&#)J)$#% ziXi3PF|L|A0Py(GsJ5U$GE`$<<;?UJ@9cs9{{yl@Za(OOLZ!D*t8{Ju1RG^uT{WUx zX9kqBgo!yOWteu47#t}-o+B{!0C-J0@vWy94=(jYW*Pi!0tw_p9A^{!#bK%)GlpfvAlIh?xkV)AWCB zPcce232DtzH)^`4U?q(7*#0M}7PD-&k7c?J9%$Moz+4IUbD>{F zO-KQkOrg7Rn$WUW%LDt%;SqL_5&sI?HMxl1T!;;Xb+HEk(2Q87pA8NBKF@YTkz-ui z`v=p0eKQ6+GGlv5O1wOk=;;e%-?(J!7sx4_tLgqfY7`3hV40#pxgKi@e8$(Cz@MA3VjmU|egw*rxuT zMydPGcdSpxJLv2^SJX7uTTNqnr(oGr^I~=U=+HqF*$(o@@~IQK?s0gCTLynE8ImEU{=Sj{g2X_i$Ml-koYC2GL3YoLnfu?UM&NtXp`1%3Y#uo zOMDNd+2LoUW%~dr8wpAFu=>%3*)L%pv+hH6oSfl*{5*<-s_blz9VSH^N0{e3-dqJN z46SM&ldO2E5k(X-C^x&DsvSC8p7B8!EoTk-iIO1QKiiPY;}0OMM)AVTtdcy_*pW+t zY(i6;T?L^TY^ts@)11_dmL|g!P6zZ@Q{6!99=m##XBlub<*IKo)yI^>R5u{79q5#) zo7UAhQKF|CoN3#(TT{^L(4)*fEf*W+$$S~TnhKJT99 zJK}Qqb+^0Y80`JJ-anpHe0(vplwULy(O;Irn_n#30IpR}!v+G|y6CAK)qg$j0VORQ z?z2*bevlzk+iW577TwKYshW%(12wt1dRVlX)eeZu44hK0aB!#vzq+TLg|i9V40N=f zl550rcma>cy@0JfdAr0&UlXG}B4_~ej$0(^>Vw`s$Mx-RkNHJu)= zqB+TU#@k&`$j_MKd=iqt_XU;i(D)r_bD@l7G#M0NOHVIHgj5lTu z4N-h8;1rO{6GnyJ-kuZ@&z?eefay`1U?>G?D|jWxb<~Tnp@uTvHxPuyDUO{8X;p>l zo~oI>NT47kqf)XQ`x|QnP>uC(X@TpbS&%fr7-y`V;Q4gpBK_nNIotxf+YQA4Q5DZZ z9s=n|x(m@{*|HRsH;8uXOpe%jzCM)o1y?J7nMB9gCowhSW&fZ4nz~kfD8lVWQyk|P7Po(h zSdd-WLQfcgRn%*As>+fg?>jVCc&^nj%@tZe3ZBNEWYoJqZK6IbGFX7v4q7EJ|2yxS z8;M8$dYtj-#?}U~lkhGW&J|_v-M_TejbMzlJ=DBuujviR#4h_)iDXxkS43<>`_Ev* zN2QLQ5rsnER#RPpuU4R#P2=?;6GO9#P-F3e${vCDYe{!gj;FKaq9c)~FQQiQQeL4T zl^NzcPpJ!$%q9r<>p%rK_)s~pMY%5oe)d4zsLd!nDnI6{9(jr4Xxla&kN2BHH?G!$wDu!Ft42Se+OWb zHzBKsxq+)6}kSdoimXZlRK&Z(A{2keQIP zQaYC5Lq4-LV3-UZj=N|ssDv@MKrRW%MB`A#t^ zSV!joxtuiM>otj{<0s?LS^Mr#}q)0A~N5pk0ck6NyU^_!X>+|%TGIqgeqieu}W(L5f;AS2^GR;bg`TX7!Yi&9p=aj@5;8gB5#L^eOA-; znp0O9#-sET#J<7Eg-qc$TwA)Tz!m@oGvSG;ji_TcQ?U}SQe^0MjnI!fRqkdk6-Yr7+PT+*r$2uZ>=OYCJq0N!-#E8gBd(0^)F#Xt< zQ;Rmd-VpA$?~O7$fNB?{sDoigtqa-4lx8TY_wS%5>N!!#!EcBE`*KFAC0)zQ-**2L z|DQHi#P|tg)>PBM!);KU)0hFmi((Sla1l+dL9(eR!*AF=HHV=0Ioj90R>PDR_>5r# z&fgzmb%WOyLyW=5S_R zyOxJn{D1g6bi>$^1Qb`eVyAEldHQF~Va-}*M~|^$}Quf8w1=sUrSso>y zxKj<|WUgOc#NXa`P__zl^}N`4nRA?Es@4qRFOfHxr8Q19EE^-8Cv*M9&QiH<^5}0L z09?3uDCnp0GU=!CCE1%jMK%fadG~#p_?p+?WHs1Bp>65hBRW0G?=K%9UE$2DynVJw z>`(ZSMz89cI;H#txXWc;*hiyp*{V~1dAnp@y?$d!_GTTsF!&4nNZ&&Hjf}HVz+z_m zaD_JWufQKqpwAiy(g}F*ef+5$1W{)Jz>y(<$eF5U2c2x9PNk1v8pz1ewb-*sGw)7t zQVVrI+!-N!PGI=*kb8>=J2f@a#vl~M@kb_7>m#>QO=uEj%II?)i+6?3>$wj@hw;Y= zQS$kfe?oz?glAwnksIY_585W*!>~=SPp;?RppMV8b)q3n;nh#m;?X{aAz+9BSf3n_ zik=p5@~Xk-Bol)GQ7YfIR)~wM6-$sa2z#QWbzx8Kt`YOvP_Um^a?8d@K~0++WsTsj zPj={*y2-#73S7;C~F`^}GLHJ6^ms=-) z3rgxF9j#JrH5?`II}9^Zs!^w zN*Nnqg;DBcZ3ee9W_XxsVh;~!dG|?%yD4cnJlQ7N&eqF5{L+XETBf;8%OtpjASS{@s!d92)B!YE?L!c-7r<5)Sm@xeLD|^cTL8BeAJ|cgA3J%@Aykd; z4TD_eX5or#42X8pHO~H#YpjN`rLaHe>kn~@YftT1SGK1Ht3hgol(s=wjCC1}(x=9% z)({LV|J5ik;E`NfbN_Hm-lmFu^s_tQ)|$-%QtJ}&`!ELX*&nsfP|tH>HDz4CsGSl2 zRU8*~l=C9XkYb1m!swEzi?nPZw$n>iZ-tzH39IziDUn|NW{O1xp&H?73HgB>S8c{7d={>?q)Xd%w$2Erf3{s0oin#-(~V#Q7Ja<@S*M%=0xuQ9(}Y(-x4B zB`v8|h#5J)7Smu_1VD%H0(OnGl_;JgE-l4Q4h|^j=r~0S8 zJ~M3Z1hy!S(mN}VxSI^3cLL)-fvy3YMHPxjTU$WKiq z7}-9i++~>?n$+z6F${rKSZI^pqLy}mLqWUmDy^GUgA!XI%mOrLCIYy?H~MjK^vTiq zzjd|ICz22tYGP_B4gK*+(6 z_I2Vcj736F9r?g+g$SQnKC+mu(DjUhc8_>EpFq-j`Oz#e=AD9Z+i?U#~b!Oxc z6fZe{lr$(4rQU)Ql6F*V3dt$2l)_O8Uhe8viV)iCb5`*9&ja%7mGRdK)WpvI{os?% z#B`hu$FC)^Q^Yepzzr@M3qj3!Cy69G+v^nOLN%s@_KaC|HSKU?!B}vMvUAVFr>V%s zCCyCWDp=9?FHkl$_5D1rGVS%y))6wMV*Nh?4orsJ5CNsAFNW z@esikB+|#yN{Q%Ws_hXc;`Ote-x?8CKYvYvDS~SQ@I`L;scHV)aGQ*xUskX?P_#AB z{nBM|qKP^qCrCxaxl)JGoF_wC^TIQFm~{y!aQQ+LcvXG@3@OZ#g~XIU@M?~53>KOd zUCnNzD8x;O-*XRlcr}bFhHLs@Yy=Ju38q7sm~Xaed=UMCimB+krI=*C-oLPfZH_K@ z`c;Aj@E6`Lb;McJ1>FXV$7-9}2ojVt|JlAhzk*f+5Ajip>^1X~^Qw;Ox-O5K9c@C3 zS1TQxi;p^s5FEX4E&#$AOChBmTsL^JQ)o<$WH5HJV(}t6$KlDzM+Hg)Kdt1qXUY;; ze1flt4Z0CxN7AH;gt=8LQek5eS+wZ;aR!720P{^brm;sv+Rcjfn=SUG^3@Pz^S0Df zHcNV))Oft<6o^`Aei17Q4d-5s8yYaXhoQ?R& zG~zh)vl`iEY-h6k=jBHh#&+U#M%h=!XNR!^KE*bc*EQsoD#?Xb*J?Dl#%~*~fVywE zi@$NLJWwr$cnuDm?dXP0bhwaQc&-mq089e>o(EX+W9GPgxUb8#}vHkBBEE-u3ru%NZF zvqSZMbL&dqa|(Z>jNdXT)lDTb#asF$_qWLbHsWjf%C%vWuLP%;L3Z|@KE{nd z>YO9kAQHJ&Qxqi_$91-f^$s{$;WZp*5E6xdT!_dpdj@pL!wod%T!v}lHiz?xgLiIE zFHh_$L3v)J2CH$4H2ymi`G&4JfPSiQG^dl#HBrs4raV?OOWV)`yCS7o-igoyyyLj^ zJaQDp$Hmtc#XhEN7kO+U_03@R9Si}+$*>+KJNw1Nnr!(8h;_~Bl;@^#YF!Ox@z;7R%7O9&V zgZ0HN^3dKwZO~dZ0nkW-iW$ZWg4=s7?I~%3XBS;&LOPf!HorG3Z@U1ehU_}Py2wP0 zv*KwTC)+u0y`7c1mRR98Lv2uV}CP_zxW$ z7k-ITq0`CvIM+vjqci#Ugeut*UM%e!`$GNSG4G@asr6Y;C-|(e`%S!or?>Y7J)LW& ztT>~K+5H;{gZ;l@AjL2y z+KBj@2@{dr2_)kgNfz+tl;;!S1PS%c9lqQFZJ6L>`aSNKHA_yqYeMKDRQFRihf&l|`9u61TTRWF`Osea4R>Y@~>b z^uI@v91-@$q%X@xEsXJX* zCy*(uBX9B(Nyvu4KLe#hXXv^{pFifRv7XH~+)flwWxR1B!P>1XZVMzjnUx^xXmsQD z!rf1lU_y6lCrLm}7iUvBTa|7wX1VFBMUgmINw*^ruE8kTD?_Ew)-btlGUYF*d3^em zry>cfpS2?)Qn?@5t5a^%n6b+Wsmn98SeAWXjh|EqvP2pFEX~JhEJX}%r*vwm<_Lj+h zf1o{<796QuB#FZMY4-%QN|SR(wj9*JAbDYf{_N4O#fqb8kh~v6zrEXg!4n2`i@ZJ* zdx(t}jSjY!2O;?xv638=h1Ef30Q8!W4;M1kO7ajQqB}8liK^FJYSpfF24Mf=F*<-A zwj2fc)fmaZSi4dIeNh1w|8PSV|8U+&D!~De7sOwvAfgyQt*(U6E@Ym=>OBOr09eSD z^(&OG^ZBK2rMjvXO$FFk6;({VFQ+8!W(Qe+Nrj0(Jw-Vp0e}z7wt4k~NcJ5!7#nJ+93(9t? zJ#@g>GJ1!m0KktS#N1M@84 zF}3VwjR(GoQ2Xc&^fTb_>V1v=@&u?MMtvkA2q>JnYU>t;mH5n%AxfQ4enWjl)4z{G zuL*AxqF6qEiQ+qyW~SPzkS7BkF9rwmEl-!iA%511@{3jeAf|ItQiq>QzbbJBE3_sg z%Ok`*Ep3jb2jfoeV_?A2N~i>tnG2F(BcX*jHz*sxtO7ANQc>Req7OV{2X9VU2=Y&Ef#`+8x z973QJ)TU^!6W{4}P$wx&)YU-w=o_6D5Lpll6b48kNCxP4*0as7l7`6o^`~a>A-eqa zLOEneUoq9Re92N+kDU6Ac%cJZ&{{a#E;^zWj%0SngK4v*XP2jjxr zliW0b1-$H9#NyP{guBR#HKtD-v)3&*8rAAB0h6@#zJ7OToOiNawq%l!xMSh;2AQjR zlM>sLAt@liiG#Sv{%m|%X&A*7!4@X2itZ~xGm{s_0QOkBcJo{Rf}Huvi@6$#`EBV- zvXcB@^Lcdi_0{{SxjS$gb81!n$ zx)_yldGU8i%wE`m_{oD<+fux*qSu_W*gh4&1kVD|EtHG8 z$d&Y+?rvNtU_6{Cy0hkuHn&^40y8SKMoJ-97$%p5DPh%pHr2!E2*W`wj5E}>kVncg z`WqmJX;0U!NB#=7T>|YPns2jrK{k2g-u#57l{!>EvZI7qCf0)isv??}A38b$ZeqhJ z(!uornQ%7ekr-f^`*c4dP_rUgWoeX-s-9Y8KX!9M1n+C#Y1H3JLx)?l;!tfFo<6Jl zyvp$ywB=yku6vXh)BAxNa;WR+_IH?W|e zVk!45bC>=Aj$Uv@-Ep$w;<%Zw$HMx?Y4xLFW~egeEL01A3-rbixs0+BTvHHVng`^C zfLmd%nB4LXbg9_Ym{9{#em+&`9g2w|iYr1NpVRulgF;F#-n?FRE2?%Eq$ZM=W&~99fB)CFw`4?GrmN?d#Isx2Sr1oj7g@c}NuN&h zR$RwP&BRE|D*O^v7h|r;KubHi>g(I2%;B>qe;x4(k!Ddhht<=yNu*1Gnxr~33H;?~ z3ahUp2|qB(Xu~y3ZhB5jOD!Yf?>vhq5fOtFBAw<^828k*+>0b^Srw$Rlr^#BegRDu z!WH>9-R?+7UE;;IOb$CE*AUFh7W2<)OcDjPbkUz9P8W4_5v7|p!X*wrwk;qJb3ia}0T=2Pa3Hv8rRQxHeL>oOm_F4JQG0EtQX8waxD*M+Y`b^%p>$)b(ycO%- ze>Qpr>O4D5#h#NzjkLc53f)mxr>xj}f2zR5PL$EmJ``xiMpS~zq$gV=(sH5sI?~oc zBKyj-Y|@J|$gsU==f78q-p6jt-TCH~q7zc!zEX5Y`lD>YCRwkP^eUcN$I}`m>vfU^ zvV(Y0}z)zT^vmrzAhyplY>qO9BrxeD+QglG2%{caKegFI~1W8ajf-a2>Ug zC4k)Xb@M3#a`U3`weO;FSvn@OMr#3?>FP15<}?=rokc_UdVwC2tfs3cNxfjiK=AL2 zLvd&Wcmjk?EV?_E^Hy69WrnO)!MZJaoDQimf1Hx=>{1tq6S8hEfu%%12pu8q`C3A` zzT~e-Rfw@_gJDH2Gz;nRSP^=;Wx8$4iS=<=x=$f~*`s|?K21B~XD;B{e^vmj;e`h2 z`gouU{VD-yD+B9QIY7h#rtGGZEa_&0N?5ne_YpMh6$@mb=YPN#|NUP?12USVOA=|A zkuQ2jLz#HPO>FPPC(%bWwAT%6v#9|ZJ=(H2uu%saHL&2!KCIev>jEka3+@LIFiVqD zOPZ)o&n*P=+5{79UKda;H`oAT5H|C~KbYR~Oc=C#I-ruC6-MGW@~ze+!Y}gdiMC*@ z4ETywzLxb{XtVQz4RDH_64B)+lUqg`1=rv5mAR99Mj8upmO?c^U+CZmcLS54MjC&N zLqMViWWoo0IUHR;%}0MMz*=AuN+bMymDQM(5@|YjC|`5~Ah4(=QA0_}621?3wk?bL zz-oYjhn!USb)dp~s=_r>q4ggZ5s4yLdo>UdfrzLTL0vu&5m6B=+8gmM-W7GWhHqZ7 zxeSt-bR{rtB`Zh+gEo3jh>E?_&~SvnQWhZM*9+eW9##3}eQHY(MFmRcK9}b-}3KoS3L7-KM&Z z81abi`>g50+nQC@g2Ny%`QxJNI@2%W+Jj#E0@pWGbc$Nj)DJfU+1E1JT^E0=DVuuc z!%Y)Iw6&99cV42{LRXxA5f@4Hnmhqp<;W+ZAyH}k{LMv`+#^yli>%P;O8=%r?e#_j zRKgVjS2S@+0dPgQh$xrZtQ51+K;IBpArAjSU$aMgrZh-><%dY1KBw$=x)GR1q%q|I|bxB4*B8s`tGxsNoUy`7KCvI`VsaRWGPh9mZ^NYhVD~o z@yR5&O1D=R5Pgu46p8E6Xl1`A|0ONnsw^;GJP_O0qp2l9TLSuv0`z~+3eZ;<5oZyX zy3tRGu|z`_l|?^Yn9UEc$rQTT4K2`qiRij@oloK?nAY|n=_i=>Hkf{3Q#%YN>TpyJ z`NQaRgod4e7@c>B{xCYvpweocl=lnzKu3iufg1jf*xxE}`nPn4+u^B#22^Wzn;@UI z$kN?yyhZNsZ1dBA>r8)62s&!bO7!qa*di=t(=Ux1IU{*2E{&TgBcsU>LAd3*H&L|S z^oJl*d)`Bo@{rO^;ur$vdz3wOV_uev69z9DD*V*|4QL~vjTmh=P-aOyVem7pJVpNNQSA+BmMOoy5GWIr$MMHG>2Mj z=%OaEqK=%QQCCg(vxFuj+P3`m3o$J$&mj0#UrA_>-Gj=8jfu_w0?W)XRZX1{6IaI_U2%ONQvEm#3#d(CHGODBZNZ zO2mL1JykuDf;nnzibqJVFnjp9iE}v6Mi~>oGW=m{N%6VQIlhy-se2afNcBG!`((9) z(7qeIf?br1=L5}LNL5ooCI?Z|(cfeoL5rAKG}(ae^g^>HB+)R00t4M^L85}(Iq zq#E|POuNf12{Q4n&>kjXFpQ#TUYvaFFu-XJ1z7yy;^l%2HUDt&qja6FVF}&JWc^KB z7GaNoo#lVmNxK2Fhz&a#JH3oZcSqQztA+ol<%`GfNz+mN>!1Gz(?*XbO?SzGco;(q zNSe|;Dx2{TDU^Tx^Z&sp*%Zlsu`LnG|Mk!RmlhOx{)9537I|RmqaZo}Y{X${dke4; zhlR$MwBi&t;;>N%8#S=BdWoGJCcG1OkIDBvPe=sU3xqkR3ExG6h;PCQA`Re`s-hqjR4JIV&YsL% z^|!u|Uv-5De9<3xO{9GEbnNf>`TEV-aZ$r(U^bj$GuS!J=PT(co7K|+3A;t@tOgl_ zozr77+P?I~>){@1K0``R^rURv_EQs^U%r195~xiGO{arkw{vqy>L7@>wEZQsy*~vt zlr@a!J0HAcKIqR&(fKIYY0Zyg9ftNMzW7n*3m*CO&I5<}cvvF?N3B6=t&UFM)%MAc zGM{M6Y<=^i%r`vh>K}rh=5(zMz(9>z(F1|?ee~+JJmKD7z1y7&sy-=M+eNQl%Ts^! zS|VEyy?QOrN(;tD=Bro;)N0UkQg?LqYGe`JkDuC8euIU?4`Ypl4~YB8mlb{YR%C{|^(F{o89=v+4K_ zO1FeFPhqq~cj^D@pZ~j8DZM!KTQLazo&|rd-$zsm zU0hD2@LK(S1X9cj;N{|57Mef_9Ia%A-VZwdrUoT+)%O!$oawKd>Fe>%gC4zMehbZZ zPz-XoWduP=Q`}EV)>zt&e)}CgH=Qkm<+nR5 z+EuF;4(|1;M$fwqass6#e$?vIOaA-X12CLvrf^|?ym zi-m^^nB{6mISZmcJ?`cA=9_E>IkeTfV3nV*XRI-FLhZd3^h3SK>wQ1sNib}~+m#6K zifnCPHk}o3oUM50Y=uy?KSo@!sHYem(L_|SX2=(jLQEp2*kHuR6k~rM9-kwnibWHO zMG5&|)G20CGyeVc0v0~*msz(&yyqx>2G+jLs#I7tGBzDNUW!EGTU&{($N&9x)Pcy{ z$j{ztK%x$0=$+ByWrSm8q$j!vH?B<`A0u9=*3wErsnSWF7ga(Yjn7^VXsM=en_LbY zQ$b3%X36U}4OR3P?x}xfD;&$Hp*7Ua4~@rK@=4u%tl^W`F~?#)sX5)reAZJ!GIP2^ z_)N~;Gny8Xn!}ITOY@Yx%jmf&v{E!19oX$7zYz%X1wIr!_2^~iyvz;!{Jo&+@I(5z zjHs2-Y|CIbs4y83$Z*?TFLk?Qe?1h#5>=2DJ2D%LWY@o7xD0=Ze8MXuw@S9%8;g_d z#U~gM!#MUL_>5ga(_u`y<);hs1y{o1|E%xjm*T9CG&S)7!Tw}~{nJIn8F&!O`rC%# z$mB`upb90WH-j!U;9437wcAOD4xNn~I9c04x7!ml)?+}J)ppb^xsi=cZ?(AW$!@!! z#a{&3bfV~{lih#xRvkH>zx&(NCH<1P|3}X$mwDiwjGsS@#D|lbumjoJAL5mSeKIF;j;o(RKrRK*`pLDVt$y2;0gG%-^@!Ezp5=PCT%ncTw3H z40}cNWxz%ewo#f=x0x_7lJ$N9wTY=eI-FxSVd0NDC))jJc%t2uJ%WU8*Cu7+PX}u% zrjE;)u#tZzBG|I{x2-tg3mmSeXuiN%K3#s_8n4Pcc-*EBC}-&q$R_TJYVj@e5Bc-E z#WKy4@`)#V|7huzpWOxXyWjZf06bix5G-TDAtC`HVh}uq{6`Z{$ub$1w%^F0ZX`(# zQ9pJqK+N|>PxT5%)NN+~{noHjePp*0Ts73vsw96`K(Fy%7ms;+{fUvzdaZsRU#s13 zSdLbaD(v*q;LA;%shw9C=F+^&?FrJVE41gsaQ2o9>(&_A+rY=$?8~?r#pT25mXzK? z*{%vQw5K~Urakn$f1*yi$r{E-t=VSAT^R}K3~TwibJY8%^|X92)@u1Q% ze9?cBPj<#~gL%Vu)D1Hg7j47W?|gkXl@ObnbR%+G-m6d`C6-zBBF|W=sK#tfQ&)M7 z6#J+Eq0eFJoK~3jc~33A18bsFYp8^?T$^ohe5qZ#mJV9OW}7412>F2>bMS4I?)TrR zg^L{;Byx??+&vA&u1k$1bXJfHo=j;Ew0(a`w@&v?F<+&dqr1*@x`%T) zzqG!mk^RW>$?3?6Uo!c&}-B~DHkuu_n zR}xo1mmNa_+J_5XNnD^S;FZMmj@Q;?zI3vc*lqo3_2XNj*`{fJ+zIyDl zD>nzjfqiuCSi>M%)RlfrPd|tsl5A{FRZ34=Y<9i?2>i&VVD8uy%rET}%rCuZ9##nS z#D%{~Ph3!`_H5Ni(mWG^)kn=UCX{~$dJ;RIo17;9)Nas&{irhy_eU)|=tiFun;sUT zwqOd79-Wk8)u|vot%U=IMxz^nuFKqtJ7S=%{nQdk1J9u>>m%w1%J@B?{zyxki(Q5q zdb!i(NHg)&obIJ?3cPga+|42A%vcO95s%q%mMI>|(}4+R&eyU*csFmMnyr60@)QX= z*wk#&-;qGIrYnAQwxtbyK~O&%ppxk2GrO<5x7UDKOIHkuYoAB$`RRgBpg$&0UCbm( zgSbg3pQ(}Q&@>|8qn&`CF8G)VINLH4ErX^)DDAaQQ{me_n)ep>1p;2zehu>6h7BD? zTY53|bSAV%sh$$MgKLVbbVYyu=;$>?d(43zX*+-ZQ)1uCi*{bEpPdv&2HFO_WDA5w z!CtZjKF0~pj%Gq-m#pTo&OtJo60Mt!$&b4fPIF?%rS9o@!21+8i!z!`2iodi8o_ev zh*C#z7+OOeb=1wyhY5qEb8VP^YYUNKvVA!=OFFaGe8>y&L!OvabNYYyH^qvrLn_$f zdv@3@QGgbvfi>ee&FiRO3-O!RY!}poj;5K%W9^)>juMT8eZa-R@~ix-8bjEXTO5>M zpw>l=y$c#;yVk`U#rO)dyH$FhR%~me@{~0{mobLBgwg%-MgNyBp6as2ulth4qstYo zyT;*-iqpN~E5ly#=nj8H52K3VEs7>Xil3~96n#r%2X%-yD)Pmwn6(`2x@?{EA$zvT zj^+?=Pvkhxl~>0^M5zv+MC9_2=hU!@%CLH=hT zAFA{%==q&A+E**&amcT3k4Y$^0`mgoK1%EG~^MI8;?b~ zw)B9x9BO{c7IlAYr19?9#B2(%Y1)3g2}DLbz7<4m@y{mc$J;_=#K)UMMy#VJHnV&a z^(8+fhE?#!VHS1ygB~uB@pM6s7yD_xpr7RWm%`(C1ifty3 z_eq{?>6Si0d{cbwWvkmdU8CnK5?~bjJ|okGBC^J9(I89y37)ZgnWD=bTHSxs!Y+ww zyM010CSe<;sr+@Z>PbH)V|}^!Tmec?28p*QN5a*kqxeG(CTjS!6E~>SGJIJa(tjqv z!B&4c3O$qGR~&!6&CuNa9Zn_s_?S1BvwmPyDn%N<=i8Xy2o|Sntf7jWkty@OeMkBp z`YyV@!YUQiwNpaJ7b5cFpfA+G)J<>zTui7|WqMH7BOS)RX!g~8hSTMaI@+8u-rfQu$9 zakF+jD=UGI3nYJOi{pz-Z6tD5CY1lsmfNiy zv9H`i45mr<)J7TWS~kS6sc?hKU1NH=tBo>JAf}P@)rf||9XOLpFxsXV=nXhW#03py zk}N(-*Q?;A9OK%pE&4+IlG1+(=j=J%Q4z0ldAKGg@IQ-xeq zh#rKy)qrkko6$k@TLG^An2yO9r1)F`DxORhFOzDuQ-lPQT*6l|c%u+a?^=xcPJwBe zJ#r?j_o$P?kEE6%vR6C^q~m2Q-V9cD1v zyH0W``du~ONFzPPByYaeTqET-&U5rltI~gJ9D1avnP_0)ffo6z6EfVUJLWkcyZA^B)5CNDDpQFe~j+nV~gS(jN?oBNczT zm}dfxU6DS3V;84OLDly4X^tTKR*P#t$7->JPF{n1glb0~lkplLJXe4!EkB}?6?2bh ztftBc6}42>M~^vkgkJ7cDTCU%YI1cN+NWxQ-31xU=sEif#Sbq<&&%Gkg5XC`@yGPw7gS<; zOwWJ*NA&XIhl?NB+N?u~q8H@ni*HEyCaD1jdV;@D#2@JONW3n{HmaI$YK4C{3w8uR zyJ6MSW@AD93A=uIs&*u3@0o{5_rVABEhBrzc<$KyUr1qn(;1r7>$DJyY4D2izM)jI zRcLnygjTyhu{Cw#64nl9Fqs-B>jy~HujNuz)V-;?*U_5>q`lh@>J6w|v0Gf|WSJWF z_c~qO<0|PV;&kYTioh}T^ss*(CcL|=3YL$xC;W8R5z(2yq*=CvB|088S_+c>>}7XK z`Y}0Q-aL-k+oHjb<{>ruy474k4ETa%~yXnbYPq0cexbu zf4B6M$9H*i9@`jfTC?o~E+k0@bzgmH#`vX*G(aIraIpJU9 zXu=Wg0-P?ZK1)ijhp+Ptk55!l$n$vA)Og=4mmm5N71_3JxhB@fQpk7i$%XjYq6dtaQx-&tGFhP$Xz>&i z29)7>MEC4Yar}^E>3SZ~Py>p6_7tyEOvEp1;(*(DnPeG`)11_SKgY{7_vVLHmSCK2 z($z?%@6)Jj`GD>cp5LIP%=yWNpO6h{Ls-=# z^#IohhY?bRfZd{hD!A$(gJ34>q)OtlsH>)B4j|`{l*vAb6^9b7(^VA^nl+NO>MmSv~myrvtCCaf>}P z)Sfio6hUx*L1UP%kumsFFah3OvP-Zq!SY*@jjKJQ4jml;K7cbqIXNS<#dwW2Nu4#7 zuzEW9uP9W`p&&z=Wrl(ZDw4Ht%n}`nvhs}z18`SNGRQz>o@7&f2&2;NOd5LnKoc4s z7$Q?ojP@-ObWK>3PR2ose*0%HRlMFDFN9G231BGc^Lo1RvVP0% zLFUlOvkS*_ONDUr4ka1s+D2mXp@jE7V(pH?QZQ6x`nxYy7Ls!n%PJDYnt1c5G4~Q! z3_7YF8+GfuR_b(Dbu83QntoW#zi24dcEF*3A3AVUg!g?H>-vzvA`CJrX3qV*L=jutF*!F2OGajbTs@(&B zDwhRLtEV_a4?O-mvzqCCNnYnGyP-+TZ9O#U5H4Z#aozlM9h(d^^R1Hm;3Twy9!4jj zRdgMmgx1exd=gwY=K;z*8aj_qW>FKLt9H&~l+X$~bp4@KbL{&=tLLlpchU1GLT@|( z=;2up0(!rkyZ&RH{3zq0(+{SakM2H`KLs!heIUl2Hs!SLtQj}mlY0dkf4Z_m!{}M7 zzDDd67a|DwObXFu%;H-W=YdKPg`7txA+$P|>f<~P@vM)-;KQ>fjw24w+V~n~SgMs5 zdCKw*7>_R)tMvebv)>l^_4SqO5JS|(ixTdm4F4*57-;xc%5|*aUn7@}Gk`YEeP<}0 zoV(9JisAFo$GH>ruaZMQf9hWu$F9`BLcV%aN6m1$KV<19MeF#!$o9pyD2s;}@6$3T z|5iMcgVt_SPkPmvT@V2n?Ynqjz9s*0?%rE1oW*4wirCFfp0h*m|hJ}WOd3`c_K<2Wt}qLZ%yinVej+Lj1o$l_?f?%#np zZUGo-bMdKt;ALNce_YW}8oG}lX4cok*kWdlT}K@=tLriznOjxok;+LFb{@l=LTmh$ zDC<1#nOR?l5y;G%I*v_d*4EdkC4kyOhY-`0SsRp8b&0U$^2Z!1@+8lM;&fWpkbvTV z%1u%3(|j9m%c4G54F;u1)+0hW+OPem@8O~A*l6f>k-hKS^ z;rjM{e0lTh-RHNT;_EBh@9VTCef;(F%{9@#vE$~=pWfcweVw*AkK|9QzK4PRX${z< z8G(yeS&iY}bdA5lQgEHDoK}0-Q~g+!xN1t_E40C7{&ix_ou^~xpuh9%>>?IpH_Kavu!_C#G7PQ6}%0Z zo*Qy%+xcH3?c&qh_t$ryKm8rV(!~ESbcNbT8@qTyYkKZS1J#uj^QcgwZQ6|Ud`lEs z!s$B1hz+U`XZS?_(TxU(QjFl~$k?c9w-@D43~AEUDDEdO$K4GCbUIUz)+tL42WU{J zkH>3h3oJ!EKC)?t14<=X#_zuxCX=)XECHF5;RqZ729y2>Cjp<6CJ7_~@{>ymBYzkS zvClc286bm|1|-u*VFk5m8p4Xf^)hrfu}iW|IP^4R0|*!AvBHkkcUt=p#L6IGPXr;{ zbsW6IV`9R0drZzuUh8K}2_tC^8O_W(hO4}wL5_DtaX*K=zzuUNh<7w|+0}?UlxQ}Q zHJLZeU4DaR5CTNiT(U#=POYFBI)7Za+&(SIM1ETmhlZ1b=NhQsT|%n<9_@=V;6!ka z4!9~pV#jEIr~-P36m^;hhUaTv!DdkqW)5ell*tZ#C&I2w4erC@y)6G;PX2sFpOCi`PLVkWQaQ-hb&GCaWC+ zPn6-rkq@s*lPvuQinDSKfmwlZ+^-#B1htKpM|c(<=et~&H1@OBsNXU+&6+M{WqX%% zd_b@?H65^4%Xbn?XZWik-=u586IVMj_ShBKT4#Ac?%(jc= z{G#!Jdy@Gs&RMlcX(W>>N6OnV(g zQh&#o44L#MERN!YZ4JR?p+m9S;aNm&(#o!=#ujak#X#RjWF+*m;eWEIE9D+bpT@N- zEI7O@h@PtdOwS>yoj5H@8Gid89dt$?S;80+I=Rr z0$&*j#0aftaUz5}Noy5Dc$H_I4Esgn8Cwr3ODwvX&E%qI6AC#);~9JKJIG*)Zdv~w zY$Vi5vDswiMXte?Gk-7gj5eV8k*K*H&5JOD&1rt*X|LRS5ofT1??;|ic;1gFy-jUi zWNB}4^CQi8!ju-PK$R|S_1gMKxcxA(Q$Oz26n;nqSgQt@eqbB5av{m7hs@S(LO z(UTM2aCro?uq92iZTN%B``ZC`j++>@hgFw0>NS_ERtCK74jso#L-JnQ5 z@NHUQuaa33F@O1jK6|HLyyx$ac73Q66Y;cw;u^!I%%t4zlP`3OOAYxP<9$NDlrK(V z_|gFxap&mwc$+?;+!jyR_py9p$Kho=Kc->o9QG2`dBqJRKQc3@Ce4AoJi8ny<0t3a zObfkzR&iaWOq~&A35T5=w*Rdt_jGsZIwrNbEDp+~0)NvAs3cdgXDZ3IXjvwc#)-sQ zcJ&xm#r{B=_c+ZTh-oQC6BT(>u#rSjTD&QXJ?KDYd?>u=117D{2~5_iE6y@bVwg`M z`#P)AB+m;nf-Fj{Z(PQr@i9o*AazJt#Si3jT@zmt1999ZoU~P~j;$VDgFcV&)ef!h zp?kw9$A2~EUEoCK7|$y3%7u$f6|YLzWv|=fdXZ221gI7IPwdgMDQs*-l>2<&H9?zTYwnW=Rb@d;94cLh79XEa(r60Iqd zym`rFhLyu)yd(r+<=`rz6Ca4-LcG$ew9%V}Tg1sbg@(rd=_Xy#y|`M{TFt0o-hT-5s>sL$gG^2 z@F$bLXQ^aQAQ+Wfq}la(7f!^IFAF}cdz1$f4+In66p(0qJ(P@;6Ux_o%^70$heD?b z?L>@Vud?*O1C5Z}0eeJ+q!iu&Nm~xLZoxq>IFFh<`NGv(`!PhtW&A)pAwPIpcCvMt*TqQu?H%igJ?`k5j9_=FqT0>=zY08^RHX5}Fsjgk`q;Vu1e} zwB7-5L+Ojjtg-Y9Tp}_RZ#+x`K7Z}Q{W()Bcm2|#el3HCARg#4gfY~8kcVxUz z$_mE+hb(!b-^`}u*HC!?ua~fO?SIBkUh(KA0-u0B8+f`83PvI^O=aN+w9fIa-fS`y ztl6YPC$?t;`$vq)#3%FK@9`iPKj1ks^z8^W2EYO_UrVK%OhEC+qP(A0dw(cRS4>{y zbbBCMJq{*@tqcpnQ5;wlTMYLvgeS+T3eDm9r~pzWkSZ*}-c9W_VpJFRs7%IjD1{!* z#h>B7e=A`=R(^mN(p7_FU;{*T1`;>esoWoK=%X1Oyg-j-aBvfVgL-E47C>9*JIG5w zmo&Uqzz)`bEflarRYgHWkbnAkj31&>3Q}-*M>$o`qy1EpMz%*Y(#-bhRt3z#$WX8# z{XFSX9@90N8ez#qjmdy&m=F{)4{6i1jtATQNr=g~5$*XYd0(RXOMH5}-F(XlV%R?U zttdg(Ls9W0jc)M5Mz}VrJ5qmTTgN5*;Zz3lB z|OjNxQsRrWc<*7w+54k305{Vy^ zLvUfHAF`V?-Z-*7ngQh;iXszSM_Yw-KeB1hTAVlony&Di+Mv!i97|Xn}K@RDb@0N4d@GjD^TURy2EC z=kl!}@~9pKb?-xpYkF+bhmf&dbd#Is8iJ2?^>K4G@cU6bOuaWwiK7mHS%P)53O|rm zaO$3Yyd$S?>CmGp4if_pMZ4SfRn3J0D-=JXbi1p%L%5JdCWbpt#^?A`68gPi6Ofqb zuFOE)u!Q5sG0HZgf89}wa*ax@@ums|ZDHG%a@5_upBis>lovFZHi<{6 z^zkk(;mr+?(@EPAIk*9;?!5r+f~50=FoLR3&@_BXo>WDdu3}Q>P+28uuFBZrM<6;t zE~EW?0_P|s{p$w&$QoO;aF;N;xZ@6wlLyjS9Fi3ZCVxTQcY6TW$qVmCOxR)u3G7-X zkEV=_fI6Is!B8K~d~_fa)RTbGmS)*e2dhMisg6^m9Su_TK&Jv!5>)-*lv0vfgu38* zVB)EN zk(Ysta)0WRmGO*zx>6xipYVtj{ZDyP^0Y|xr!55^|HPFNj6d}W;hIwQKYeF;qfLPn zeX>aylVj2}OiR}ntJhTcl-M;Lqld=yL_Tlnmt>N@BQNjCXot55B^l-5YWt#9qaIpG_ZG=nV6AoZ#WuN_O1g$+MV{FjiPo%Jb1^RHvx5R*-E^AfL@Er zgW{5yy=PM-5-jC=Gj^Nv(BLQ}7zHB{O%Lrlb zkq~=UUv~3=dkAYev?+rR%bN8Z-)1$qMt{^E4dSPR0-43pEqHvGC@hlswoiaIW$
R|z^2f#SrC2CCO`0}j8$+ceY7Ie@+FO7G`p^Nc9%&R`bfHjTKe*h>CW0JaDVj3 zbTn-A|BxAkr`=vc%n7CkH7-io~o&~1Xlo4y9a9A7}FK=^lLkTRsC z!xjEx9I*3B^KkI5fkZXd6~~$)aMYC_X@Z-Lu}{5wxF*D|_R!GgX#KXcN5nNDcC`mS z_%z=XUX5u%wJE)r0S;+X6nM9%hi=Z|%|aZ;G;Cm#bFJGYczosC&KLpKfPdE281J8t z-lyZ^vkCXf7=A8ZKa~KViS8%j=ko~gY3P0yem;qeUXP15Nu4##AY3}^*(8+^Yfdj_ zx0ithwOcC1p4Hj%B3b)25&*TRTvad8p(rb_%5z9fI#&Z=RmH3N6i|z5LiORK%3&fi z1*M)^ZEG@_eZH!31()8^Du2IE@??ujjp^G6Go8_0mMEc1&VMiJGWz(KN7t;U_`s-) z^?8=8AK*rr^@6@y(3?Tsl$1lh;SZU@(Iq@I*LIoUbmdXiW4u4X6E`JSypR@8q>vWH zW6lKN1t)UUc@o}#B}tq6l0Ynd&EH~2TSkDdg;&e~u0FQVA94%t(SJHkD&(>DC}FRK z7jAXwP$F1GOL1BuS7-OJei46}D^_E)cucF^La%Y1((MTDSBxTf5M52Qw9OVrny{SU zLvEKf)^2MR?6kFg-@c13*}Lfa3R`IMtb4WKuNLVVyDF%HHPn0Rgo%ur`lku%(H9!{ z&sh1V|7gGVh0btwD1TQ8bJ;zQ=<`T5*c>XxpD&mtruq!Hjom`ETojvy)=ct9{E+=K zbw;s?l(Rz)(T>N-Sc|<^Gg#aAdAt;qYCNNX)J3{q5^^$lUr$D9G z%`UE+r%ZJlrJLGdT){_FmSKAG@wz@_uqmSH!RQthRO$BZqkmefp|6@(T>W3#S2i{@ z>tJ}XDar+8wh=t#Y{oeH+vaUV-bQc9TcJd3jG>vy7WjZxuv^8bO&Bpkj(XjD%EyUz zO834dpS5TNdhoS6)*`B;r#42!qIX!^wji;zT&#KyLo4Ajd5 zD&dk!n6PZiqCR-4L}S>$_TNSC;hlX28xiHRx@n3TF@J8nD(cR4g;}mT)Z5MAl0&*E z(FT?D!e(9Q0o$8juA@)QuTgPZRMAO4t`f+kt1ocK_@4ca?%3~fp*nM8Q5K_rubKs` zlTYY{ltxlcOh@V4+s5F5R(%lZ+j^mce7peC-jYU1=rxI^(x*V7?TR#Ld>LS{@ygDa z@f}#>^nc!r)ZRy8Y2(<2l2LMB7P6a^QCSvc5DVW?{I?X}j68sa7fHFrq0MAMEOkE^4k_&5xLZ*gQi; z?-^oV(?{4ndIUDC1g+{fM1VF^86^sx4wYaC7tYV09*+eDl2N z?6zTRC%NiP_$qM|Wzg5Yp<4RgquW0i-Q`~8EVvqJz@eetRZ!zS*##Oq)^E*?J?ExdGyEIR^d32Kc2%Iiwc!wAq z{_*XZ@zX)Z5cBv7pTJ4j!8>8Usd>LAyKgD@cXXm}$npD`@7tOCyRrRdX82wp4O8#l z^4XknB-t4utfNjarg0g|gdD>_TTXw^=6@8KL~BkHhiJ{ST{~hUA)0gTO|q(r^2uac z->}drJ^!I8Vx$;*(~r2}u{?__)zzPHUqC^xklqBPo4{T*jL2HI3N&$RHLHGhxH z1$C@i5~(X7DUjBgW;q|TPk3S?ak9#CQu>4aZLOrPEIK-S$7Gqa1h(EFkCazWjOUp$ zVh`;hdZ}=;0A$kxd-0cA3!h*{zGRzkUB99pirIJ18{Oyau@Cb`=NN*mZZ$tGmC)@v zFFGzbz|#H_PrUmu$U+}DI@2DU5r2=_M;@`xz`fl9ia{K4E?@VR3k7@*r66qhKf6K@ zbqj=h4n<%+6qun1Ooj`VxaUv=XW0gMZ+p(A&0!p{hw1!$-l-M__I&)$u7tQpPiI;P zoqhqa&!#x=d6ok9@BFi9@b}5R@v`k~p6@9a3iupK0p7&zs~Dr|{5}Jjj(>si&!K3v zvSQ9(8mi2i&XDKe^K)&FLNrBZ)CxVIa#`TCdWtjjU~rUlHvb* z+gi9qz_Cq#WFPhHAlRx)^V3oZ?aJ11vCG$*pYCDLzC{)a(QI#R`Y5Zorw-UTc-TYa zGoZWeLZ8OSXHgK&!OxK8V1E<+GzC73QgDuchAah}0H`VOS(L(gHb(v%p|fdxT%({t z-EJNRHN-umB5(|ZhA#*6NT?0?`IHDg(}KVO{C^&ezk4_|r1P!fp~lE(Q4lU+w~$3( z7(8me`w6~5cLq(G)EwGq zZ?f`cj2ih<`^JL-bso-yG3;N3clKr&UY(`|9z!+$%m%iSZ|K|F31%hrNBvA^A8*FpSk6}8raJF&mdtts))n9Q!F@$v+bk6`j{^6Hx0qsWDw|3kt`MwUy%-1muY1g?Q`}HK&8}?~Xj1T>z-1mnOaA<47f;dwJB4SRBS;<{ zYZEroz&eFnodZQ4-D(pZ(!e@}Tem`DN|zCuNAF5h@(+0mU-vbLwJ(_r?{c+f!H`c; z0B6zJdFkX%)qlCU#yEZY(LAs@4Rt!7I)*a6JJvjYsfl+o7vuBrEcWBjlQf|2fk}_v zw2DURfStm#F7Zc?J~a$Fj>DY7kLOZ3ebvhoR!Kk6M2|kT4k79S+IZP8WM_1@pVE_7 zLJh-nd6B2-+CDJI`DtX3{cR&#yV7tL_K$mXP|)5~g@4;3zrMb*3J@w0PUAWcQ9`eN zvvxYN4ITz0OfXzwWgO9BQGR$i3&%E_iAWPS_5(239=#(>%7K z19np1ItExmIM_VKqK$Y;SL3tsF!trxQ#G*e0T;hswTiju!JWv%E`b-nzBP=!OaYz9 zpJ!BA{eRWd(^gSGff&EOwT{K;L(buCobC@f0;|wuQR{^|M3vm&v-&b$nz4`U#bNu<|PjByj{&;hB7lna6rSBa>MBbfl6D!ihJDr=ILr31-Y!gG$ z#5}Je{YDVtpnK22DKSoX(vtkwNbsH4G6>L!HjA=hYVYYz9u=0{Dp}diSw) zNYMn;&g+Kzl{l*hzgh}54kMOmTOy3fRM+)xi6bN$*X*9U>GZ67=utfp)lpN&On+=g zNH$5?Wa?;tp&c_nax2WwJO7YpQv!z)t(B7Z)LCTWIvhRYrn*ymU{U(06{^b0!UkH^n4%ZvqO zy#V7R#j)rNS4f7c`YaSzRSd)Yb-qUB0hODg+^6|A-j+puuwQzR!_oBz>3=H^ifUJ5 zIl|y6edr#MRr|qF-Cz4p-@`+z0IePT`Inc6$nD7r&n}SbLDpALtj-bM)0L`Cz}H>W zS5T&#G$U~FDyuR4o7x_|I9<_7ESO#5S5eT8A^%gBu=xsryQr_AOyMe}$ASoI>f+Z{ zvd0F@E$}NS<*#uRHOJ`bD}Na^xh@o)un^7HjhrQYH3jOppmgd|HD6!yBkpS{U;I@T zE1sn^zlNca`vTSJiqdMm%7d)0pjh)F9&&cmu&=G0Z$HMr-d?@^^vl~%?>>I|aDDqe zzP$PM?(^GE@%2@7O5tBYP2fi(+Ty3>{?)bGAAkLPb4^^{xc=tNpMT!o+(jpm`V|y9 zf7cW`q50YhTw=lO62F3icG<9Sy23Twzu+Y0D=0*as`x(733+nZeQjmgSAI@mUqi`$ zodfHc#?)WWaN5t-meUoe^-dR0@_ZEW;LU=*@m>&eDaIQ@Sl?r^IfZlZ)5B9eSBF1R zbs8f2kN%>Epvg4&r+)@qo6@&gbgjZ{9AssoD947$yWMlxY;3QQt@ajhPN_69NSOHW zfP#K#{D&N%?1_vd8ebU ziuL##LSIN%neI_eKH%r8bd!|vD$hs0Nd*J_MBATQ0y?LPG#4Gs3JQIhn=7J?tV!p| zoIHdnm$$c(28}lpF5;MaB@Sat2X8{`&$?v2j@j1}$UZ@U8M#Lr4~Oh2lz9|eo6?_A z%S~1!)r)@%WPeu+Z$j+Rx_YxgB@SgAM>nALXWD9)X6q6KY8yLv6Jn3n9qLeq5oAp| zkLJ|tB$Pb>txM?7qIFR(gEjUXT%XjVUG@GDAChXdL!p|Do(NM0f0m+$BnxCAh1MnX zXwjFdOdu3dhO(;@U`FoGM%qONGLKI!j&4Bf&ol^*vA#c$b%Fph za=$jRx{j-)LIDjGrC9LzHTjT~$sScfOSY3?%;DEqTrY#p@A@)~Is6&BOR`NM8!5Cd zp+Ae#U}Nc2b1a?u97~g~XU#t67*a^!|M z!F!{4OxV?s!hOn_j+mvoBUM8!1 zm>$HtqPP!auR@qTYY0DtoX`xVSnvcenNJL7Dfyl(YtDd9IFx8sN3`;sxI;LkhK0^K zTLpM58-9NvW3qjhDHhN_MXTbt6eQR)Mn zUVrTBovzd%_GsPHAyofIp>+xUS@b2?g2ETg1%)p@7Zm=1%7Tu60vXle8&T^Sn67`Y zP#d_&|Lchu?uwQxZ=r=I@bvcRqC&}PN4{F^4cHwA+kxHw){~(s_l_u8|5lSpBOxoH zIf+Z%QE*=~OF>p#zD$QrJ#{E^TX1bkUw>w8ijtmmg0UuE?GV)6GKh_GNp@_$tS6mf zl_pvG4-{u*VEa|FY#Dv|AS*DAyWc@M_JbfKq9 zVCoWH2{G-P#OIUP&&0=Og8HmFQrT%Nex2u%?oVCo8Yt!MZpIzFG1Wj(3#H_wD}N;4 zPrgalgeb0dCBnNRTjQ7pPu5Px_|(H6R7h{qgPgKAv-wf2fe(<7zGL@|@TH)IFQA$I$WMT? z)9fepb{l-XGklGJjRPqRr^m`mlz{_&N1dV=4tf4esvQ2kL#Pwu~YD zawuW9XIU&~_sy|n7v_*Y!UxhA#7Q~dIJ=W*!({A>(a44W8Jf8`lj+qyPjM9=o=9V} z+Udp^`b;#q(0imUOi{{xI?XkZW2Lmv)%i+}=)9YC5yuc&h0|6v7mr>N6MuU{CGxB} z{X2u!)EKA#K!Lp=2r_5!Z})f}C0|B2QVi++n~M&`YKH?`%Y~Sc`?qzIhAvi+U_k5N zM3`RfQI$Y_iOZs{G}i+hY?g|2VGiRJy4w}c;0rFuoW;N0u)$kz@zTL&F2syHgst0{ zCYaRB_u*u*Aj*a*fc3#k*?*vf1C;K*fLHZCu$8SCQwIMQ=S8fWPRYUGMv5W5e{*3{ zthv+L!Q4iQA$>4&X&4}x$7n9gip#$PFw&ceJJ?M{m=K4svWm$#FNX6c2v@-k?n|@e z3*&}a#$VWc{DlLKzbLl&9nDw~#&CM2MW8!(HVnuS2+4C!R$85eC}@jR37wc#!#Nn&X4Zw zgt2VtqddV(*UzHvZv1FY^$D&}4lv8L?(Bof%x~jj8XbA zFK(I2L#D+W(j`XO-MzSED%ZOfZzz}O=74wh#7IW?F_utvr!&o*QsbFZ8gAxfkx$;) z0eacxHMv7M#vpIEvqQ%7cTaGIa)5DedS^H2WUANV4eOFwqfA=)?Dd$#dS%YVZr1o-3wD} z!F-^bD%afsBdK#od4ifA_9Xql65TWO$85oTpn1Q8yZ!3h9>!Qg+5Kgv#lkPfi-ljp zEfyNx6_YA1D1T`Fs~)+fMg{^@S*|u|MrM{H>9aTiO_jy|mU4I1m_Iv8mpqNHfiX#8 zsa#xRxbq?@xBKJ^Oj{F8@^Ank99p~uxc$+>b7i}l)lR@bc z>S-+G|64xAG=Z0evN9A68eJ9Z9P(V&dBqEZ{K)Lolz$^>(#h2wwh`==hIR_Zqc(sh zYRNTjGZ+xk7NvPMiubH}qz~M&j7jJvfsN}b&9ILCGB)9!g5C=Qv0Z&=C@*A`G|O^P z?&+l_>zFk5WpQ}2)!9v`3$ux5hIMgFoV6#6glHFa1-WmNY>SpC+I}N@b?qDJ-9%a&({!PyyRm(pRcVsv zMU{|=s{V*f%Ez)hOWv4BmXw>6luQ>;S;Y@zJb$nzRge@8j{AhxHh5IQ8&Yr=cGIzW z{U*qDV-Mk>)ef!hVeXGnj%&>019Yy6!ux4lx(|>bKI1JVE;d!XD&cBG%_)<+!_=ak z5kk0%hH93Osj5QzLyT96`Z`a4UXn|7VGiOOn7>woR*==+@L%4ja1R(E9M+Y`oNc*W zs$C1Sk#CeEAsL6gGt9&o4S`sDOz%i4wMSk(rf%3JKGqhfD(N0wvfY+wt39eZ(oajs zn@)%sc_>?_5}WxoT9Vn!j4zlQ4x}GUml^Eqs&>U1&*P3GsgC@9-9tx{tS~GA36t3{ zCKZji;%d$>u9NA+9oR9#lFvRVx5^EZ6fr%2w?jOjGTDao(}++vcE7%%cSF+v0S!bY z(5?$qhEp&*SLy5E70tgR`-{7yHwydmn^dF=vtO@>jt@Cd=*uzY2xWBeG4+S`iNTn9 z$Q0K4ImXmOi_FHcn?TZa~ThQUys;Ok_lT_l4VNCud@qKfl+Z?qOT)YCzn zHK$KkkT)-xgka_iB8;egn#mAf5`ti63L=cCeVU1@gf0}r0TwvX5X{&kK^8pPhU+v^ z`inzH=IX=iv`Ix>WvSjWP(w=FJN{#T0#Z^o&D*L>atsTW@j4~0&Q}P>RiQa%5LL03 zVaYdTva)k!iz!6x<)E z+#46_iD3fY>96M>q5uhfWwek;1 zR{PSMV@;D-X-g(%C49Ll95*O`%jC&j>0?N3N;?y@j-ZuHM7N7Es4(D_UJ5%-A8|aLp(h)8_nw+@9NDa zLm|fEqu>@iHU`olAj@^7OG&UCm{0F4!CT-^UV`v`hLzSD*ra@6YhxzcIWI6i<`RgX$NX zwDPS!#WbMxVFtwF=>=cdyEOu|Ig1b5c-C+4hBdf`^d3#3o2HUbhH-Q&E+0nXaCH)! z*GcTPPU3pMPn7qTIT*%q4e8xX!sz#!oh|oh&s_&D&kg%sAJ~+^n^i&D`8z4T zC7(A_{Wtr6cgNs1OujAj-V5BRMA)->vl$1jz}T_^WB(P{e;;vo3~s|TX5nylC&Fr5 zG754u>*(bb9Gk%O2_<=%M^Od;_TQ}vSfj7vtjM=8w|-35Xd?J6QN<44hRM!KXrYr; zl|G=DP?R}c#v3~cXJX?BxH*e&`(l)1v|lPOv-V?uXeY&i*WUDg;sC9b;ih(vim+u2 zW3lfd*OTRpVDF55@>@{?@6Pca!JX=p zMtNyBrD(aQgboTuMt;$duZsO1cH4J^qxa?MDegr94;UdGCs6EAl2yBSV&LZ8b7~EI zfQ0maT>&}hU;+48ICN~Yd2mV(e^4R4Stj{?vxW}02MQd#T||Ons^U z6^&jms^>9dVFsViEgECFdD?wP;_N3qFQ_ zFwtb9Ly^5vb*-Nrz^l3lLoU@|1N9#F!AeZLC z?9&(cF*(fPg`pffHXoK7j-BjHpB^ch@%b>GPmI`&C}GT&h%n~xVd|kMGNJ0w0aChG zU!Gxav09QXqn7={5tUSixv_e%Q+*PDkLj9pcnu5f^NwS}VfgF#wnRJNx4TO-%cw-FCtQ3?HX@jvs$v+jqWg0>1qh>!mMX$KN`?% z!W*BHGsi1^2Nqn=rxVyh0S_22*c-lM-9(2G%u9H4(_m`Sc{1T5j?)}QKlPGL zTjCH#Nu*eF`Z8R1Mb*vlkrh=_PJf11flRFojH`TqnL|&KkY80%rmMInT|ikSX|CKK z>Sm-`nlpk=hoA$QCZPRH4v|Z9M)2v7;2-*t5L-r{R_{@jz~0-qBvZFQ9hO{>3$srT zj2^Fbw|jWHR-46_jpGNy-3&ZB7p_O|%QT!kkon&sQC<}0W}N_U&f?9+k*JZQdHooY z4z)Lbqev}>h*}AUt#O#TIh0|^=hNhXO$|10YOwdF1`ugI30|;$Db}1*h96Cy2lz(z zO@isoL8k($1Ipp-Rz3BXL_hj$#vwF`Di+|z924e^l*3p=MP|$tl-lnYZQ%-I%>zv` zYWWso1#ahdk-&88uu2V6bTe`d>qfTS>Oa;Uw#BA%3@O%>cnfTaD(12A# z>O=!_OePUflb>X*TPDG1&@oN+M65AO&r_Qs6#zz*04Q00yQ&b8g8ssO>f?l zk}Edush}19ZZ~?dBlf0^qkK1owgh7icSD=|9fH_605>6aw~XIky?h!yX=Q8L5Z#D> zTF1E2k7#_SjM^qW(4&t?c4_VO=w*ycK8l%;(-nz~&~#KYrJk)cJ2nF^3=45Yj;-k? zBJ@geYCJW+>EN_f43r53f^yi>Jqfqil+C;gqO}ax)(%PAcgj(VEl0L$t<| zzI>q?Um7s^_dqw+qhx_yFqCG+W#R;_k9&N4I&Hg|kmlo7j4^~!L<1NV2hxe-qAph` zS{JKYh@Nz#hK70}P%nDaDnUA|hPo6v-`zW0tQDn-M3=%35s9Z5CKWVt{m*N*d_Uz)MJ(*29;$| z;strMpqJ4t%3@jLYQggUE*{f=YPW!EKA#q{8<7MZ-B5qLh<>I35yNHx5qT6*fQSL` z8&o0yh$ukR+=bNHm+lW`@qjx2EFRKiu}|`+MN#cgxv0=;M=vZ^TVsOp(?xX6$UA>W zgggTBh>}Mgc~8?ES4oz&O^RBbA>j)mlRaxcSrPd6I$hn9*QK)65lQ}k(*F6)^L@I7 zPa@y)zfk<}^0@VqQqjij=i-q}JU9V@Kj9K(dLHRN|ASQ2A1;1~V00KAN<^&q;o^l_ z<}+U9lX6SjA6lOtk}^$}q^9M`o;1d!+HHsBsMO8?@REH>4JECK4P}(m8%i1Fi29p4 zr-y>57}`%*DLn=Aj=!gWIcTaZwcu{uKUf3TyFl@dNokD5(W0sl^NO<1rc3w?J$q}}@yZNQ;&Ubantl~mTV7Z;1BrCTF1 z0D&#?DPsKyX_1SvT9DRsKdloWUF#qT?WjmcwPkb>(5V!Dd9lcfWDQu79$cy!VY%tC zkj@((fE?ac%Vqs|v8XYkpAGF2Nl{|z-zDu~Y0n7X+6E<6U8es)3(Bpb5<&iTfGm`p z8kuz3gf9~KdL_<(E*K+UbITV|K9zy5F36aTjJ^m^QgW#Y8~8xxlSNTii(<3D$^MX0 zZDIQs(UsnEu}rhHN{3&A)LbIxox7Y@Fy^WvhQe)4*cc2@q8>`rqC`Cul`DQ?W!(Wc`+Gh$GdS zwkL~A38+{r0kmmP9Gf8c>R<|!BS0j7hv&N5JX@6rI#n=VtLYh4^Vy{ejlG~Q%T%q? zgr@xQ>qYZ?(YgR?B6Wdk@}sMNqwwvA9KVgt&My68b0n-x_Kg_3^I!&edZ>qv#K3cV;?qu5-E2R zQu?O8d>wTRQOD2@;jy*FKN5?R2jMH>Tnl#k-;2FO#$8Xw)j&qy+8>FvguMGcIXTb2 zXK(8(_*@~s&LUZ?$c&o|)M>3DbJ=7&T)VR~^%Z=reG%6n;sY1axAYZ!tUw(l5u=Vo zY6C;JsM71(+59AF`!!p$-#Z9@B)ob<2sSfHqK? zhTy`eyCLii%S|nVtFtOJ_*@-q;duQ|GZJ16KEpA6yZDRQFhk%Q3^bxThw@+ZZjAJ2 zEG7 zl6-;h(*ryrqio{rB+c-5w)PTPm&UTl@v$lP#-c5~?dOqyUa^^4)5J70tS(C5l;P1m7W&?J#insrS~6a->0HwgHM6NO)zWGYtu?>q7=X1T+z8nNs&w3Ie`p~3+z^cd zKWm$!U&?dY{fk!EcYTA z4y+1NS<0GNa=(Bk3*n0Vn{Icc11#}kTPBB{k!uL%WsCV|H6|Hdv~tXr=8x@m~SAsC~eUkPc5a^4WFx`t@cG(;?x&7qBKe{5So7BHcLc?-Bu zw}1n|O)EWbb820#HzMPWQ8`(4<~`x+9(ltG5=MLYk!QuID{bJ@-}uN0k-0{4}oJJO%M3O31l zrKDH!%sQUdC|R$QETCOjT#3MA9gBTCV$^Z8I-B(xoiw{HqZRAgUv!EXb{4G$Mm+`O zpkO!TPWKf8E$uDnhSRIwj#*yZq)BTF`jT(3os#@)gR0fee=WE=(D2ziO-M>-9yUET z0lswEj$`Nu7Q_9?MwS3_&)3bT2*}Ng#@D`!#$`*E%o?qYS*E+Pq?*%M40IL^-RlK< zNV1ylN+k7y5d*=$FAl|_9l#SHY+}*fv7EQsaws!I-CE|TVWyRmF$2NBN1VCo5qcl= zCi#8*D+U7gf9byYiYy@8E7*r8?cy|u`0?EVwOTRKws$O2X_;V zT|(Yu$##p@2L5#s(t3=7Q0qB}Sos=|ZjM7hf1(Ct!Uuet8Qqx7XMb#fwZLR3jqvkT zR%231r0LwDe9=vSz@nOr8cI@@@O{9uZCTU@Rs#$?hghzh>BpNy%F!?T~TLi_~s>twjh{Eci7TavVt%$Xrt#ej(lx~48CBT zfA9rL&Vj+QHQmD7a#9Z|OnlrW74JxrysN%^&9v=(r!D%ME)Wp%J|+1lP6%S z9Qi~vBr1*PwOmxmJt8Hu$O@gV^lwVkUT-u&C0r43MH9*Yfh)pAM7h*vrI^hI`i8*H zYxo!Xnmy7pr9tW|KSTocIc2}ojW{Lkn)dw`lHQ9qK7nE+bP9D%@86RhIQZr1e{%sF zu~ml+1UWu-(RDh_v0+YB{^iAj1#Q@vi(k*ehGq%g(Rgs4;>j4gU;%-Ar+|FNAwS$+ z-+dM%=`4D~24S3meuO;+SqN3MWh$Poq5D)=d@{(b((Tm+j6TSa6p8!1Xl1`A|0ONn zsw^;GJP_O0qoE~1TLSuv0`$)cf6!MK5oZy%kkLTpyJ`NQaPgod4e7+rUW{xG`Epweocl=lnz zKu3iufg1jf*xxE}`nUAt*x{*y22|_Rm>{3F$kJ0|yhZMx81vJB>nu(Pe>!TdO7!r_ zutnI)re7L2az^r4+!{AgMn;Pvf^f@yZ=z_u4&jr6ZDFqz=)_ zm3ldl%7CIrL?`{-CB!f~>c#0P5Olf(C`vbNuM#mJM^9Ccq+pI3o8l3|E6g6Ak8lnL z+9+eT5 z0Og6=sqBA5oTqz4f1Sa3j&|g#Ol3!otQX!D_UWSX!%Ies?+QyGyp*iy@;VKCRXg&Z zW@5uvU};LqKbqO{vpz0Ff*Mi?rvYg@QR3^kj8wxOmt}XkB|#S6723lh42D@0jf<0y z9VR%fTStiqq3O~kwW>`KmQ+$l1-897uyn{ z{9ph4e`!IH=T9gjYLN$~J_@1(z(yRFwzmKqaad@4Nh?laBMuvNuu%g`tCt9?;ZtZ@ zx>OHzz|@UVe-=r~mrIXlgX&~apu@rEwnN++OnShQfnqS*#l!+-*8 zq}Vs7OZ%PnZ$+9{3-Nw?HO?yug5a(_L+;H_yDzQx}y z{_vUw*2n<7`hEe4oxfkOG_y?_G*YEt%{qHBbJgGaLVnd1BJf3j;5Cu*(X7+o^St#< zPPVAwGcX&n!wgO&^Yu!ay|Q{bAmOyAoz);?a3Xn3M%$OZcs)Fu%vVThrcBD#9X~a( z`Q>XNe}LKyq3LoEoFZ{CJs$SRKngP`t<_OxTWz2GDD#Q7%+@zQ%6!8|UH#tI12n$90GpNhK=7Z4rNLjXxN}#)|?)HPrUK}eP`+Bo=WdL zt0c@lUqp?Rh)Rh>DZO#%x8fl5dp24GMZ)#9NcYQzc&6)nXnZ6$HJm}Gz=C{!71jQhRTShQQY3g!9_p3kg&7h9m5!i+6 z1H@NIlU=Ztian}!#TrYy(Qm(_`N-KeSbl55qTRK6;ox4cYV^F@AV+``&yj_X#uE^H*Wz$*l#@UK@&Q=IT`(wlvi+YOD z8BIhLYo>e=Da0gViVbFbOfmN1fAKX^s#r9kSd@_eMV(?MHRIo3FJR;2ewlS!#Cwk7 zxuy1XR;9wOk+J3A@lqrb-`YxSJ^t^nqYgyoMxN8E0f{=0p?5~p%Lr*@q#0d=o6M%t z$B0*zwX{-Ds&ta)MU{|87=Ge?9HK)sXXT2mOGp9>#XOh#-Xjw>V4o_c~<|%oX(Yz_NQZxr0 z*sUJF5eV`HJ`_Ck=;h?R%ndxRT~Kv+@;fdgYGpLXGT6-|OhyDU+)md^-7Yy_55=%V z6-333%myRbwJI1c86uzXf6B4JR0m5@}Q z^}YPEne~yTCO#n8pNz17x`;RfAH=f$wqZCjdD1$lLP_b(pi2$7mc~KtcG00jXY&S5 z)^^bC@x+Yv7%{cY-!eo5T_ zqxrvO9(X6?=MN+C;iM+)c!_YPcCalB6RsQ%RF(y8%6* z}zE+w=kDEF1#S#9dJ>zGeO)e}1=Erg>66@nG*CExq!yyI_8&8qW^Ehf5TK zMNBwEBtS$Af`^d*XyPeZB*W778yVD%B*-D^$I|V`{A~18uW&@&b_URI4J*}0mgWDd zp_W!9xdM8PfB(98%-d^4jC9s(_51i*?S8{@w2M?>r3Kh+PJ752=0~mBX2x9^ z3F!=L`MNyn{cJrgAI!B{J`J<`NldzKnUODA^2yFve{L{u_>Q_^rsAS)`1+l%@1_#Q zrY7Bp+?Mw$6bOlBR=vnG7AmSS+tbulUL(amDnRISSURT_rhVR1i=V)n=+qi2A(v}& z432NLYxmMYYuFrfWCtNXurvqXR_T8Kom#lqp+O+mD9qi{Q0%(YNJ3`?vEa#&_CVX0 z^yqXie~bAl-6Z9UAEstoeO+JD)6zYh%K^?ydOCU`=0xWtvI*2c&tWekKZV?O6%Ds| z^@pAz!_LP>(6DckA9ZfKtoCG~aP`QDD_%)l0bOq>Ullj)k zR$_Pbr`3-iiDrkUdAbw!t?C)gnuEp1o`_3Pe?)UgnjNG5&=V1=G3ka3xY*M@8Fb%q zljx1!9uFJ9+6}{6w*J)=wcDf&40N*$Y*ua(!_hnFVeeSOAX?OweoV6;#1Ba}wx%kj zr!6+iF8~5RvL%>1wgmG_y9Dz~Z<&V`0?oMaS82utm1@scjU>&S2&_J8=9o|#=t=B+ ze{OPG{8PI@5B8(ZGTa}v?4SpIQf!(mL~X$oAWfZ=VpUdXw zy|V_)TDoIM-1|Ig&rcV80sS#~>c&i>G#EDtVX0cTrgqGixj z2&KK&X)1i%N8{e&xj?|{+OI*J+pwX-XiG1Ao{og}DAh}1cX0i0m9EGi9lfS#e~&TH zBW>r8e@g6odC{(`^`n!*%s|_qmu!R3DA-H3!RI)@+0jg>>=M;H);UN-Q=)ZqF!^zp zLN+IsE_F}y0q;}XY|3a39cZh6X#~ruBT5}XGPH&|>ZqHO4-*DS*V-`u))peeWczY# zmULyU`H&alhdi;U=JfGziWS?3e^ju|_bk~hQGgbvfi>ee&FiRO8}Xah>=e|5j;4{v zW9^)xjuMT8bHK&H@~ix-8bdghTO5>Mpw>l=y$c#;r`E+A#rO`hyH$FhR_th`GRvBu z%NWC5!sveaqW?=5Pj%Vi*L}(2(dCNPUE}aZ#pz!0m0_=VbcdpcS;g=ce?^li#ZT5# zioPYXL>=OdihMIGW-SN1hFT{-WY0EPY7X)CL@q>Zp87c>y|!BV@{X@HEs>Ea&cMw?%ye;n#b{%0T`s`M@B`JHsMuU5$8lwWDX{8RrCdmTamY6Am= z0!B=52??le2of3?u|hhdru4%P`&;;6znh#_t4)*6ujw~5{P@{7G%?He`1MgIVA6Jz zS`CL63NkO`YoBm9n@r{DkVgn^JQn5J(gWslsQE2h)UlDqyJHihe<{GGY5VaZ5E=3K zQ4qDoKbxQ*9}AHYA0G}Gv5sbJX7MKKOP(Z#Rq)1P7Ipc99xjmaa97lkMU<>9FWp+& z)BsuF#N2|rF|_8TEEMz2GQsJJ9VU6uQ+(}ZtJ^wVqvtC!z$o^8My3lz zWR2URLHrXuWA`#eM3+0Xy8otyT@uxH`-EOh!VXGP`RiiUlYUIb`f~BP0+eP3iMJ?6 z!quar_(KjRYWTDhH>lGxeAzgp|4e{`qyBOfnv?oh9DlRT(A@nUvJ!oK%$v(uKQJnl zB8}hkZOm^3i_5K)BC66VL;tC*T6cAUg)%KOuR6_7ZRzQLNnS&5YazX5<|Who z)R%5h(T*9#`mk5E#wq~q4nhaOMH4o1vCx1rGJnbRPi={Lk*BFu-DjN5@B;qU7g}dl zRstUvNdD3m$2XbUNaU6nZ`iq93GVrH^< znN+KtVn{H_C43cwHww}8uEm(26quITBWJ>Tk2)zlCAAEZz2bvF`gg~sG4|6N^R-mW z8GQC0*HxO~aaak1=+@o~sXSN!iIZ%LmVae3B}$}iq=?TX0{YoFbS#o_@WPY4QHf;c z)9^>BAx|V1go%&GCFvR_P#?)r88p@{4~Y~Va7!i&FX3Q0b{|1OCcz6_)a459cz;;cU8STW zpgmfrWQ6W@=}!b6tN>mMuX+oCJ(zgKSBGM_vm!1Yb61T-B^C`jyIlj&Cs(8P>6R@J zJ!gNR_~E7KdD(kb5IhAHe@qjp>vVOGtE3-@)1e$tg3MkTMK5w<;E z^=?YK?r!&JgkIKscYi|%wn=`MOCc{f^qaqYGq~Ja&e7fb&68!wzP=`%hT_W`UNWGN z6!32EL1uro0!Q};sB+QDA!f<&uaTN?M7sdlW!1T) diff --git a/master/searchindex.js b/master/searchindex.js index 005a97175..02b0125d8 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 21, 43, 61, 67, 69, 79, 80, 82, 86], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 29, 50], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 78, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 82], "els": [2, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": 2, "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 64, 65, 66, 68, 69, 70, 71, 72, 73, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 63, 65, 67, 73, 74, 84, 88, 92], "caus": [2, 35, 40, 74, 75], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 67, 79], "again": [3, 48, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": 5, "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": 7, "iid": [7, 21, 75, 77, 78, 81, 82], "imbal": [7, 18, 53, 58, 59], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": 8, "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 78, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": 8, "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34], "At": [14, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "10": [16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": 17, "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 79, 81, 82, 84, 85, 86, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "doc": [30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "howev": [30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 85, 89, 91, 93], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "demonstr": [33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "fewer": [35, 44, 86], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 86, 93], "452": 40, "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": 49, "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "vice": 50, "versa": 50, "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": 56, "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "95": [67, 69, 77, 79, 82, 89], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89], "02": [69, 74, 75, 82, 86, 89], "03": [69, 79, 82, 86, 93], "04": [69, 86, 89], "08": [69, 82, 86, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 75, 79, 82, 86, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86], "56918": 73, "19": [73, 78, 79, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92, 93], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": [74, 75], "77": [74, 75, 77, 86, 91], "006939": [74, 75], "007830": [74, 75], "40": [74, 75, 78, 79, 81], "014826": [74, 75], "107": [74, 75, 82, 85], "021220": [74, 75], "120": [74, 75, 91], "026403": [74, 75], "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "463180e": [74, 75], "07": [74, 75, 82, 86], "51": [74, 75, 77, 79, 82, 86], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 78, 79, 87, 92], "runner": [74, 78, 87, 92], "297": [74, 86], "userwarn": 74, "327": [74, 86], "306": 74, "34": [74, 79, 82, 84, 86, 87, 93], "54": [74, 79, 82, 86], "039117": 74, "53": [74, 77, 79, 85, 86, 91], "044594": 74, "105": 74, "105121": 74, "133588": [74, 75], "43": [74, 79, 82, 86, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79], "169462": 74, "109": [74, 79, 86], "194566": 74, "35": [74, 79, 84, 85, 86], "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 93], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89], "92": [74, 82, 86, 91], "574261e": 74, "583757e": 74, "91": [74, 86, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "32": [74, 79, 84, 86], "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "931818": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "864232": 75, "586131": 75, "235095": 75, "970324": 75, "825563": 75, "548979": 75, "221560": 75, "890575": 75, "533367": 75, "622256": 75, "199185": 75, "755724": 75, "499498": 75, "179601": 75, "948362": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "inde": [75, 78], "miscellan": [75, 93], "206897": 75, "041667": 75, "793103": 75, "071429": 75, "103448": 75, "928571": 75, "053333": 75, "101266": 75, "946667": 75, "portion": 75, "huge": [75, 82], "worri": 75, "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 82, 86, 91], "94": [77, 79, 82, 86, 89, 91], "78": [77, 79, 82, 86, 89, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86], "941": [77, 93], "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86, 93], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89], "86": [77, 81, 82, 86, 89, 91], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89], "96": [77, 79, 82, 85, 86, 89], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "58": [77, 79, 82, 86, 91], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "apple_pay_or_google_pai": [78, 92], "supported_cards_and_curr": [78, 92], "getting_spare_card": [78, 92], "change_pin": [78, 92], "visa_or_mastercard": [78, 92], "card_about_to_expir": [78, 92], "beneficiary_not_allow": [78, 92], "card_payment_fee_charg": [78, 92], "lost_or_stolen_phon": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86], "41": [78, 79, 86, 89], "38": [78, 79, 86], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": 78, "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86], "575507": 78, "575874": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "ground": [79, 82, 84, 89], "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "light": [79, 81, 86, 90], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": 79, "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "29": [79, 81, 84, 85, 86, 90, 93], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "333333": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81], "002216": 79, "000974": 79, "59": [79, 86], "88": [79, 81, 82, 85, 86, 89], "000873": 79, "000739": 79, "79": [79, 86, 91], "32635": 79, "32636": 79, "47": [79, 86], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 91, 93], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 93], "44": [79, 85, 86], "71": [79, 82, 86], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86, 93], "98": [79, 80, 89], "452381": 79, "459770": 79, "72": [79, 82, 85, 89], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82], "68": [79, 82, 86, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "intersect": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "num_proc": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "669": 81, "331": 81, "310": 81, "604": 81, "01it": 81, "94it": 81, "492": 81, "87": [81, 86, 89, 92], "085": 81, "687": 81, "330": [81, 86], "290": [81, 86], "541": 81, "26it": 81, "50it": 81, "476": 81, "305": [81, 89], "851": 81, "328": [81, 86], "335": 81, "408": 81, "90it": 81, "57it": 81, "reorder": 81, "vision": 81, "low_inform": 81, "odd_aspect_ratio": 81, "odd_siz": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "especi": [81, 89, 91, 92], "near_duplicate_issu": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "truth": [82, 84, 89], "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 93], "76": [82, 85, 86, 89, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "196": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "63": [82, 86], "121": [82, 92], "117": [82, 89], "62": [82, 86, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "156": 82, "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "tolist": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86, 93], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "159": [85, 86], "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": 86, "323": 86, "226": 86, "228": 86, "232": 86, "219": 86, "239": 86, "240": 86, "209": [86, 93], "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "85": [86, 89], "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "223": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": [86, 93], "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "isin": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "659": 89, "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997436": 90, "176507": 90, "64it": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54315": 90, "33591": 90, "24645": 90, "21054": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9149": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2023": 93, "2400": 93, "52e0": 93, "1a00": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "959": 93, "94k": 93, "80mb": 93, "mb": 93, "directori": 93, "inflat": 93, "221": 93, "133": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "2mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 81], "non": 8, "iid": 8, "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "run": 80, "identifi": [80, 86], "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 5, 10, 38, 40, 42, 44, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 21, 43, 61, 67, 69, 79, 80, 82, 86], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 14, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 29, 50], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 14, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 14, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 78, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 14, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 14, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 82], "els": [2, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": 2, "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 14, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 91, 92], "like": [2, 3, 4, 5, 8, 12, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 14, 30, 34, 48, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 63, 65, 67, 73, 74, 84, 88, 92], "caus": [2, 35, 40, 74, 75], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 27, 29, 33, 35, 51, 54, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69], "row": [2, 3, 4, 11, 14, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 77, 78, 79, 80, 81, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 14, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 75, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 30, 34, 49, 58, 61, 77, 78, 80, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 14, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 80, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 80, 87, 90, 93], "deploi": [2, 61, 80], "care": [2, 8, 30, 34, 61, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 14, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 80, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 12, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 81, 82, 84, 89, 91, 92], "fashion": [3, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 14, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 67, 79], "again": [3, 48, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 75, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 79, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 30, 34, 57], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 80, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 80, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 14, 44, 61, 79, 89], "csr": [4, 14], "evenli": [4, 14], "omit": [4, 14, 56, 57, 81, 86], "itself": [4, 14, 30, 34, 86], "duplic": [4, 7, 14, 18, 19, 30, 34, 71, 74, 82], "explicit": [4, 14], "precend": [4, 14], "construct": [4, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 14, 86], "nor": [4, 8, 12, 14], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "nearestneighbor": [4, 8, 58, 77, 87], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "kneighbors_graph": [4, 77], "mode": [4, 30, 33, 34, 77, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "start": [5, 30, 31, 34, 71, 77, 85, 93], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": 7, "iid": [7, 21, 75, 77, 78, 81, 82], "imbal": [7, 18, 53, 58, 59], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "three": [8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": 8, "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 80, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 78, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 79, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 83], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34], "At": [14, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "10": [16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_scor": [16, 74, 75, 77, 78, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 22, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 22, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 22, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 22, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "null": 18, "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "nullissuemanag": 22, "miss": [22, 30, 34, 44, 54, 56, 77, 80, 86, 89], "null_track": 22, "null_scor": 22, "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 92, 93], "50": [26, 34, 80, 82, 84, 86, 87], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "ascend": [29, 42, 50, 81, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "arbitrari": [29, 65, 69, 74, 87, 89], "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "doc": [30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 86], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "posit": [30, 34, 44, 79, 87], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "howev": [30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 85, 89, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "demonstr": [33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "enabl": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "fewer": [35, 44, 86], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "th": [39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 86, 93], "452": 40, "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "second": [40, 42, 44, 57, 59, 74, 80, 82, 93], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "extend": [41, 81, 87, 93], "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 84], "crowdlab": [49, 84], "unlabel": [49, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": 49, "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "vice": 50, "versa": 50, "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": 56, "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "segment": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "95": [67, 69, 77, 79, 82, 89], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89], "02": [69, 74, 75, 82, 86, 89], "03": [69, 79, 82, 86, 93], "04": [69, 86, 89], "08": [69, 82, 86, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 80, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 80], "platform": [71, 80], "automl": [71, 80], "foundat": 71, "smart": [71, 80], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 82, 84, 86], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 82, 86, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86], "56918": 73, "19": [73, 78, 79, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 82, 86, 87, 89, 90, 92, 93], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "address": [74, 75, 78, 80, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 82, 86, 93], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "2465": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "463180e": [74, 75], "07": [74, 75, 82, 86, 93], "51": [74, 75, 77, 79, 82, 86], "857172e": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "297": [74, 86], "userwarn": [74, 75], "327": [74, 86], "306": 74, "34": [74, 79, 82, 84, 86, 87, 93], "54": [74, 79, 82, 86, 93], "039117": 74, "53": [74, 75, 77, 79, 85, 86, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79], "169462": 74, "109": [74, 79, 86], "194566": 74, "35": [74, 79, 84, 85, 86], "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86], "085049e": 74, "087324e": 74, "89": [74, 77, 86, 89], "92": [74, 82, 86, 91], "574261e": 74, "583757e": 74, "91": [74, 86, 92], "314215e": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "32": [74, 79, 84, 86], "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 91, 93], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 91], "87": [75, 81, 86, 89, 92], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "246459": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "235095": 75, "970324": 75, "816965": 75, "548979": 75, "221560": 75, "890575": 75, "530924": 75, "622256": 75, "199185": 75, "752776": 75, "499498": 75, "179601": 75, "948362": 75, "090224": 75, "632385": 75, "292800": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": 75, "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "reflect": [77, 78, 84, 86, 87, 89, 91, 92], "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 82, 86, 91], "94": [77, 79, 82, 86, 89, 91], "78": [77, 79, 82, 86, 89, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 82, 86], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "2169": 77, "690": 77, "246": [77, 86], "185": [77, 79, 86, 93], "582": 77, "691": 77, "168": [77, 82], "915": 77, "187": [77, 79], "27": [77, 79, 82, 86, 93], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "898": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "619": 77, "620": 77, "621": 77, "622": 77, "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89], "96": [77, 79, 82, 85, 86, 89], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89], "wari": [77, 78, 80], "intent": [78, 92], "servic": [78, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "supported_cards_and_curr": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "beneficiary_not_allow": [78, 92], "change_pin": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86], "41": [78, 79, 86, 89], "38": [78, 79, 86], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "0656": 78, "160": [78, 82], "006237": 78, "148": 78, "546": 78, "006485": 78, "514": 78, "481": 78, "008165": 78, "0000": [78, 79, 82], "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86], "575507": 78, "575874": 78, "0800": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "ground": [79, 82, 84, 89], "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "light": [79, 81, 86, 90], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": 79, "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "29": [79, 81, 84, 85, 86, 90, 93], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81], "002216": 79, "000974": 79, "59": [79, 86], "88": [79, 81, 82, 85, 86, 89], "000873": 79, "000739": 79, "79": [79, 86, 91], "32635": 79, "32636": 79, "47": [79, 86], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "93": [79, 86, 89, 91, 93], "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 93], "44": [79, 85, 86, 93], "71": [79, 82, 86], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89], "452381": 79, "459770": 79, "72": [79, 82, 85, 89], "523364": 79, "460784": 79, "446602": 79, "57": [79, 82], "68": [79, 82, 86, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 82, 86], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "intersect": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "60": [81, 82], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "num_proc": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "super": 81, "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "530": 81, "331": 81, "310": 81, "283": [81, 86], "63it": 81, "88it": 81, "492": 81, "085": 81, "540": 81, "330": [81, 86], "290": [81, 86], "215": [81, 86], "67it": 81, "85it": 81, "476": 81, "305": [81, 89], "450": 81, "328": [81, 86], "335": 81, "416": 81, "63": [81, 82, 86], "61it": 81, "68it": 81, "reorder": 81, "vision": 81, "low_inform": 81, "odd_aspect_ratio": 81, "odd_siz": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "0268": 81, "30659": 81, "000015": 81, "30968": 81, "258": 81, "000017": 81, "9762": 81, "54565": 81, "47139": 81, "000026": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "especi": [81, 89, 91, 92], "near_duplicate_issu": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "3312": 82, "007136": 82, "119": [82, 86], "033725": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "037825": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "1960": 82, "158": 82, "159": [82, 85, 86], "161": 82, "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "truth": [82, 84, 89], "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "69": [82, 89, 93], "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 93], "76": [82, 85, 86, 89, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "196": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "62": [82, 86, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "156": 82, "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "300": [84, 93], "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "na": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "tolist": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": [86, 93], "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "243": [86, 93], "303": 86, "316": 86, "247": 86, "323": 86, "226": 86, "228": 86, "232": 86, "219": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "220": [86, 93], "229": 86, "85": [86, 89], "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "223": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": [86, 93], "145": 86, "173": [86, 93], "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "isin": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "semantic_segment": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "system": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997436": 90, "174023": 90, "51it": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54315": 90, "33591": 90, "24645": 90, "21054": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9149": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "637": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2023": 93, "2400": 93, "52e0": 93, "1a00": 93, "1067": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "959": 93, "94k": 93, "kb": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "9mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 81], "non": 8, "iid": 8, "class": [8, 72, 75, 82, 90], "imbal": [8, 17, 75], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "null": 22, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": 71, "mode": 71, "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "run": 80, "identifi": [80, 86], "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 0c674c4c7..c477cb61f 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1488,7 +1488,7 @@

5. Use cleanlab to find label issues -{"state": {"a7b6b3ae2ad14bf985daeb5a4c3e6f0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef21b82732a449a29101a39dab3f65dc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f51a6c112594c47a930bf3bcf0a2b9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a7b6b3ae2ad14bf985daeb5a4c3e6f0c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ef21b82732a449a29101a39dab3f65dc", "value": 2041.0}}, "02fef93a1f0243bf8f01bef7633a3a62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57824ef333f74c608e28c347ad773316": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e2b601bca8c24f468a33608b38dc60b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_02fef93a1f0243bf8f01bef7633a3a62", "placeholder": "\u200b", "style": "IPY_MODEL_57824ef333f74c608e28c347ad773316", "value": "hyperparams.yaml: 100%"}}, "88e5e074f66245d9b8a33f39a0599933": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e0fa7cc0d54847f8abd51ea6604b0d79": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c7de2f0579c94875b3e61cc1fe130d3b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_88e5e074f66245d9b8a33f39a0599933", "placeholder": "\u200b", "style": "IPY_MODEL_e0fa7cc0d54847f8abd51ea6604b0d79", "value": " 2.04k/2.04k [00:00<00:00, 353kB/s]"}}, "4af911423a2543b8a2d4f0300b846ba6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "810014f2a2e94e6b9e6f3603ce8bc395": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e2b601bca8c24f468a33608b38dc60b2", "IPY_MODEL_5f51a6c112594c47a930bf3bcf0a2b9f", "IPY_MODEL_c7de2f0579c94875b3e61cc1fe130d3b"], "layout": "IPY_MODEL_4af911423a2543b8a2d4f0300b846ba6"}}, "729a9ae74a424be5831b997818af3cde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "690af6d48b7c4f5d8d76ffcfa3773c33": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0dbd30b0c0aa403396fa1097a6643dc2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_729a9ae74a424be5831b997818af3cde", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_690af6d48b7c4f5d8d76ffcfa3773c33", "value": 16887676.0}}, "1125b2cf584d431b99a043b3fa314767": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7e9df84134f49969cfe658f7679b845": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0529565bbc504d38b4358588033948fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1125b2cf584d431b99a043b3fa314767", "placeholder": "\u200b", "style": "IPY_MODEL_e7e9df84134f49969cfe658f7679b845", "value": "embedding_model.ckpt: 100%"}}, "809769764d824e648876ef72d6ee92e3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "687261c90d1a4be9a540e32fea9f129b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4e6725d9fed9414d806640d5149473d4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_809769764d824e648876ef72d6ee92e3", "placeholder": "\u200b", "style": "IPY_MODEL_687261c90d1a4be9a540e32fea9f129b", "value": " 16.9M/16.9M [00:00<00:00, 167MB/s]"}}, "29684a44b25f41c3997193c94f068dd3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f34b748bdd064853ace83a8979beec48": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0529565bbc504d38b4358588033948fa", "IPY_MODEL_0dbd30b0c0aa403396fa1097a6643dc2", "IPY_MODEL_4e6725d9fed9414d806640d5149473d4"], "layout": "IPY_MODEL_29684a44b25f41c3997193c94f068dd3"}}, "65ac5cd3bf1e41129fe53d6de65be6e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b77024d970db41e38aa5911433d04152": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b8fe97688aec475988139a33825e15bc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_65ac5cd3bf1e41129fe53d6de65be6e2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b77024d970db41e38aa5911433d04152", "value": 3201.0}}, "0f2b1a692483403e875cf6da5046301a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4c66def50e94b4eb5fff0bc56a56913": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3ae0ceee9b5d49a3945d34d65fa1de53": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0f2b1a692483403e875cf6da5046301a", "placeholder": "\u200b", "style": "IPY_MODEL_d4c66def50e94b4eb5fff0bc56a56913", "value": "mean_var_norm_emb.ckpt: 100%"}}, "3f5f158c582746cdbae2d58ead4d5dcf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0edb3f46e9464443aafe4d92d7b3ab8e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "96d4e6a13be045e08d88e39c40525e55": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3f5f158c582746cdbae2d58ead4d5dcf", "placeholder": "\u200b", "style": "IPY_MODEL_0edb3f46e9464443aafe4d92d7b3ab8e", "value": " 3.20k/3.20k [00:00<00:00, 561kB/s]"}}, "c1175ffb09ca45008dea575f0a5dbeac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf2028ae154041eeaab470485b9c7057": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ae0ceee9b5d49a3945d34d65fa1de53", "IPY_MODEL_b8fe97688aec475988139a33825e15bc", "IPY_MODEL_96d4e6a13be045e08d88e39c40525e55"], "layout": "IPY_MODEL_c1175ffb09ca45008dea575f0a5dbeac"}}, "6d4eb9686b714096a6d8889848552241": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e00fa72727748249882df329ed96aff": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6040624e864c41bdb83aeaa04f8aa9d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6d4eb9686b714096a6d8889848552241", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0e00fa72727748249882df329ed96aff", "value": 15856877.0}}, "6b5ab8828ca74f5596b554473509e9c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12e89e48c00343358a0b23b4f2f368cc": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "05dc8705a5b445499934dbba1221a3db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6b5ab8828ca74f5596b554473509e9c3", "placeholder": "\u200b", "style": "IPY_MODEL_12e89e48c00343358a0b23b4f2f368cc", "value": "classifier.ckpt: 100%"}}, "faa5c8e9349b4f46801e57ab2be5fe38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c4e385b270b48e58583c3555b4ff58c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c9246579d76b4b6bbec06e20cddd204d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_faa5c8e9349b4f46801e57ab2be5fe38", "placeholder": "\u200b", "style": "IPY_MODEL_7c4e385b270b48e58583c3555b4ff58c", "value": " 15.9M/15.9M [00:00<00:00, 327MB/s]"}}, "97cce1503aa74734b6b551bd054fcd17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f696161d15a46339ba8ec685620f8f1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_05dc8705a5b445499934dbba1221a3db", "IPY_MODEL_6040624e864c41bdb83aeaa04f8aa9d4", "IPY_MODEL_c9246579d76b4b6bbec06e20cddd204d"], "layout": "IPY_MODEL_97cce1503aa74734b6b551bd054fcd17"}}, "db1b40a907bd46e4b816ee387eceb30d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d49107bd695b4cdbae28131cbc6e36db": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc39895977884090b488f8a3d2f17a82": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_db1b40a907bd46e4b816ee387eceb30d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d49107bd695b4cdbae28131cbc6e36db", "value": 128619.0}}, "e13e8457e3d848f585471574e8419680": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71feb4423d0f4f5a8b9d0ec610e90a81": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "dee841d590964ade9e3c9cb082893d8d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e13e8457e3d848f585471574e8419680", "placeholder": "\u200b", "style": "IPY_MODEL_71feb4423d0f4f5a8b9d0ec610e90a81", "value": "label_encoder.txt: 100%"}}, "2a99b3a4ce1e4647aa71aafa1aa7bd56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d14546136774f2a961667230dc14db2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "74ec57b4bfd046d38a2b563311674201": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2a99b3a4ce1e4647aa71aafa1aa7bd56", "placeholder": "\u200b", "style": "IPY_MODEL_6d14546136774f2a961667230dc14db2", "value": " 129k/129k [00:00<00:00, 15.6MB/s]"}}, "6110d0547a26408f8e8cb1aa5ce7b23e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "773659e3df6c48f48142f06671708e58": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dee841d590964ade9e3c9cb082893d8d", "IPY_MODEL_cc39895977884090b488f8a3d2f17a82", "IPY_MODEL_74ec57b4bfd046d38a2b563311674201"], "layout": "IPY_MODEL_6110d0547a26408f8e8cb1aa5ce7b23e"}}}, "version_major": 2, "version_minor": 0} +{"state": {"28a7e56014b24b9f94dda47f6520d90e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6400df2246874fb0b249887559fc9486": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5ccd3a0954a54592a54e2568d1c472a5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_28a7e56014b24b9f94dda47f6520d90e", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6400df2246874fb0b249887559fc9486", "value": 2041.0}}, "6c50c0bbc73246b7b174131e3adbf2a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9a6a02251384992b51f0aa980cca633": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "74eb8c60ecd24f4b926e009041752331": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c50c0bbc73246b7b174131e3adbf2a6", "placeholder": "\u200b", "style": "IPY_MODEL_e9a6a02251384992b51f0aa980cca633", "value": "hyperparams.yaml: 100%"}}, "6834aafed13949c98109a8b5e5bd2b8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dead3185e31a404ba76cd0139d3d94ce": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "352b76e20da34e21a9c92a43bf03252a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6834aafed13949c98109a8b5e5bd2b8e", "placeholder": "\u200b", "style": "IPY_MODEL_dead3185e31a404ba76cd0139d3d94ce", "value": " 2.04k/2.04k [00:00<00:00, 352kB/s]"}}, "58d5b4d179d34163bb65df9add05a490": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6f2aa5a67684486bfbda83282364b58": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_74eb8c60ecd24f4b926e009041752331", "IPY_MODEL_5ccd3a0954a54592a54e2568d1c472a5", "IPY_MODEL_352b76e20da34e21a9c92a43bf03252a"], "layout": "IPY_MODEL_58d5b4d179d34163bb65df9add05a490"}}, "2a747585509f4642b1f2f9aa4758992b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "958c1665e8a046efa908ae88a9cc80ff": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9d2019daadc3474489f73515e95fe175": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2a747585509f4642b1f2f9aa4758992b", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_958c1665e8a046efa908ae88a9cc80ff", "value": 16887676.0}}, "431f9743417f4db5ad569cd3d273b3a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aac1df0740944f21be0dbfe93189bc94": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2290a69eacc54eefbfc087e6a79a9d0d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_431f9743417f4db5ad569cd3d273b3a7", "placeholder": "\u200b", "style": "IPY_MODEL_aac1df0740944f21be0dbfe93189bc94", "value": "embedding_model.ckpt: 100%"}}, "f70dddd3adba4ab7b4b9e4fd4e5cd67e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06686046112542b080055371222db88f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2dce50b9a8274f98a7a3f83354960b0d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f70dddd3adba4ab7b4b9e4fd4e5cd67e", "placeholder": "\u200b", "style": "IPY_MODEL_06686046112542b080055371222db88f", "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]"}}, "8b9114194de54c3c9bad2184e722e0cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebba0d68c4b241c2af67a3a44a8d0339": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2290a69eacc54eefbfc087e6a79a9d0d", "IPY_MODEL_9d2019daadc3474489f73515e95fe175", "IPY_MODEL_2dce50b9a8274f98a7a3f83354960b0d"], "layout": "IPY_MODEL_8b9114194de54c3c9bad2184e722e0cb"}}, "22e6244eb95e41c4bb9587b257df146b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52af6d8f817c4adf9454716fc882d33f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "75fa641737904229ad5ddb7100d1464e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_22e6244eb95e41c4bb9587b257df146b", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_52af6d8f817c4adf9454716fc882d33f", "value": 3201.0}}, "266e13cbe2424c1abe49b45e1e8a388d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4f84ed17f9934de7a0f5d54f2051fc46": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "63ae7edf879742928201344fe97d3fcf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_266e13cbe2424c1abe49b45e1e8a388d", "placeholder": "\u200b", "style": "IPY_MODEL_4f84ed17f9934de7a0f5d54f2051fc46", "value": "mean_var_norm_emb.ckpt: 100%"}}, "998d5bcb7cf5404d923a4c7221504415": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6555b4a769b0463187dcac4319595627": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a3d9103667a7487dbe524d8746816c29": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_998d5bcb7cf5404d923a4c7221504415", "placeholder": "\u200b", "style": "IPY_MODEL_6555b4a769b0463187dcac4319595627", "value": " 3.20k/3.20k [00:00<00:00, 543kB/s]"}}, "091e0a1ad866403391c5f6b8bd447652": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56604f8b373a425ea7ed243ad38fef7f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_63ae7edf879742928201344fe97d3fcf", "IPY_MODEL_75fa641737904229ad5ddb7100d1464e", "IPY_MODEL_a3d9103667a7487dbe524d8746816c29"], "layout": "IPY_MODEL_091e0a1ad866403391c5f6b8bd447652"}}, "3e3f4bb12c464bd3ae953da80f330201": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9cf76dae1b27424a85f1494996296773": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "87870b7c5844438584752a0402adaccb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3e3f4bb12c464bd3ae953da80f330201", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9cf76dae1b27424a85f1494996296773", "value": 15856877.0}}, "17b119b86ecc47bc853bedc53f24f8c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af12ee4740fa48d4836bd2d91616266b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a49457776ccf44f093af75553596654d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_17b119b86ecc47bc853bedc53f24f8c6", "placeholder": "\u200b", "style": "IPY_MODEL_af12ee4740fa48d4836bd2d91616266b", "value": "classifier.ckpt: 100%"}}, "348d6872707345ce9aad926e88cbcc41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63aaa434e0c94336a34a59d7e601995c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "40bafcae0718402f8513bd056cbfd2fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_348d6872707345ce9aad926e88cbcc41", "placeholder": "\u200b", "style": "IPY_MODEL_63aaa434e0c94336a34a59d7e601995c", "value": " 15.9M/15.9M [00:00<00:00, 353MB/s]"}}, "0e2c14e1ba434b8ca4adb5c1c6c1afab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bdb8d25320a4e73aeef38c5dbc480c8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a49457776ccf44f093af75553596654d", "IPY_MODEL_87870b7c5844438584752a0402adaccb", "IPY_MODEL_40bafcae0718402f8513bd056cbfd2fa"], "layout": "IPY_MODEL_0e2c14e1ba434b8ca4adb5c1c6c1afab"}}, "8b2a91f2eabb44179edf749732085dc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ef977dd5f954c028e7d8e192e1c786a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e19499d0c9e64e8787faffb57bcc20fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8b2a91f2eabb44179edf749732085dc7", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ef977dd5f954c028e7d8e192e1c786a", "value": 128619.0}}, "cf0d57433a2d418cac5d3b05b53cd554": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44cec74db603400799be13aca1b7d558": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "c71d018615ab4a4291e4806169ae7c2a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cf0d57433a2d418cac5d3b05b53cd554", "placeholder": "\u200b", "style": "IPY_MODEL_44cec74db603400799be13aca1b7d558", "value": "label_encoder.txt: 100%"}}, "0b2aae6cb838425795f1477f2aef35a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1266c5d495db4afca2cd78f795f5877e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "cfbb917925be425d9c988bf382029596": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b2aae6cb838425795f1477f2aef35a1", "placeholder": "\u200b", "style": "IPY_MODEL_1266c5d495db4afca2cd78f795f5877e", "value": " 129k/129k [00:00<00:00, 14.1MB/s]"}}, "9d755c4085a9491c80f4b25c4c7e2280": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b00edb7ecc7418dab379b63e58569bd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c71d018615ab4a4291e4806169ae7c2a", "IPY_MODEL_e19499d0c9e64e8787faffb57bcc20fb", "IPY_MODEL_cfbb917925be425d9c988bf382029596"], "layout": "IPY_MODEL_9d755c4085a9491c80f4b25c4c7e2280"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 3e9775a65..b13f23743 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:34.830008Z", - "iopub.status.busy": "2023-12-13T16:59:34.829816Z", - "iopub.status.idle": "2023-12-13T16:59:38.014153Z", - "shell.execute_reply": "2023-12-13T16:59:38.013547Z" + "iopub.execute_input": "2023-12-14T17:55:51.329964Z", + "iopub.status.busy": "2023-12-14T17:55:51.329456Z", + "iopub.status.idle": "2023-12-14T17:55:54.470793Z", + "shell.execute_reply": "2023-12-14T17:55:54.470192Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:38.017271Z", - "iopub.status.busy": "2023-12-13T16:59:38.016743Z", - "iopub.status.idle": "2023-12-13T16:59:38.019993Z", - "shell.execute_reply": "2023-12-13T16:59:38.019473Z" + "iopub.execute_input": "2023-12-14T17:55:54.473954Z", + "iopub.status.busy": "2023-12-14T17:55:54.473425Z", + "iopub.status.idle": "2023-12-14T17:55:54.476876Z", + "shell.execute_reply": "2023-12-14T17:55:54.476351Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:38.022378Z", - "iopub.status.busy": "2023-12-13T16:59:38.022028Z", - "iopub.status.idle": "2023-12-13T16:59:38.026836Z", - "shell.execute_reply": "2023-12-13T16:59:38.026336Z" + "iopub.execute_input": "2023-12-14T17:55:54.479413Z", + "iopub.status.busy": "2023-12-14T17:55:54.478927Z", + "iopub.status.idle": "2023-12-14T17:55:54.484071Z", + "shell.execute_reply": "2023-12-14T17:55:54.483605Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-13T16:59:38.029315Z", - "iopub.status.busy": "2023-12-13T16:59:38.028857Z", - "iopub.status.idle": "2023-12-13T16:59:39.698740Z", - "shell.execute_reply": "2023-12-13T16:59:39.697867Z" + "iopub.execute_input": "2023-12-14T17:55:54.486536Z", + "iopub.status.busy": "2023-12-14T17:55:54.486243Z", + "iopub.status.idle": "2023-12-14T17:55:56.186154Z", + "shell.execute_reply": "2023-12-14T17:55:56.185300Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-13T16:59:39.701965Z", - "iopub.status.busy": "2023-12-13T16:59:39.701734Z", - "iopub.status.idle": "2023-12-13T16:59:39.713707Z", - "shell.execute_reply": "2023-12-13T16:59:39.713048Z" + "iopub.execute_input": "2023-12-14T17:55:56.189554Z", + "iopub.status.busy": "2023-12-14T17:55:56.189035Z", + "iopub.status.idle": "2023-12-14T17:55:56.201169Z", + "shell.execute_reply": "2023-12-14T17:55:56.200559Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:39.746002Z", - "iopub.status.busy": "2023-12-13T16:59:39.745790Z", - "iopub.status.idle": "2023-12-13T16:59:39.751341Z", - "shell.execute_reply": "2023-12-13T16:59:39.750794Z" + "iopub.execute_input": "2023-12-14T17:55:56.233092Z", + "iopub.status.busy": "2023-12-14T17:55:56.232881Z", + "iopub.status.idle": "2023-12-14T17:55:56.238475Z", + "shell.execute_reply": "2023-12-14T17:55:56.237876Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-13T16:59:39.753796Z", - "iopub.status.busy": "2023-12-13T16:59:39.753420Z", - "iopub.status.idle": "2023-12-13T16:59:40.512182Z", - "shell.execute_reply": "2023-12-13T16:59:40.511595Z" + "iopub.execute_input": "2023-12-14T17:55:56.240745Z", + "iopub.status.busy": "2023-12-14T17:55:56.240547Z", + "iopub.status.idle": "2023-12-14T17:55:56.980573Z", + "shell.execute_reply": "2023-12-14T17:55:56.979930Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:40.514846Z", - "iopub.status.busy": "2023-12-13T16:59:40.514439Z", - "iopub.status.idle": "2023-12-13T16:59:41.272315Z", - "shell.execute_reply": "2023-12-13T16:59:41.271622Z" + "iopub.execute_input": "2023-12-14T17:55:56.983386Z", + "iopub.status.busy": "2023-12-14T17:55:56.982943Z", + "iopub.status.idle": "2023-12-14T17:55:57.791185Z", + "shell.execute_reply": "2023-12-14T17:55:57.790616Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-12-13T16:59:41.275396Z", - "iopub.status.busy": "2023-12-13T16:59:41.275045Z", - "iopub.status.idle": "2023-12-13T16:59:41.297325Z", - "shell.execute_reply": "2023-12-13T16:59:41.296713Z" + "iopub.execute_input": "2023-12-14T17:55:57.794068Z", + "iopub.status.busy": "2023-12-14T17:55:57.793819Z", + "iopub.status.idle": "2023-12-14T17:55:57.816256Z", + "shell.execute_reply": "2023-12-14T17:55:57.815647Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:41.299751Z", - "iopub.status.busy": "2023-12-13T16:59:41.299368Z", - "iopub.status.idle": "2023-12-13T16:59:41.302606Z", - "shell.execute_reply": "2023-12-13T16:59:41.302065Z" + "iopub.execute_input": "2023-12-14T17:55:57.818664Z", + "iopub.status.busy": "2023-12-14T17:55:57.818315Z", + "iopub.status.idle": "2023-12-14T17:55:57.821661Z", + "shell.execute_reply": "2023-12-14T17:55:57.821043Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:41.305006Z", - "iopub.status.busy": "2023-12-13T16:59:41.304610Z", - "iopub.status.idle": "2023-12-13T16:59:59.695712Z", - "shell.execute_reply": "2023-12-13T16:59:59.695001Z" + "iopub.execute_input": "2023-12-14T17:55:57.824008Z", + "iopub.status.busy": "2023-12-14T17:55:57.823675Z", + "iopub.status.idle": "2023-12-14T17:56:15.921461Z", + "shell.execute_reply": "2023-12-14T17:56:15.920775Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-13T16:59:59.699474Z", - "iopub.status.busy": "2023-12-13T16:59:59.698849Z", - "iopub.status.idle": "2023-12-13T16:59:59.703537Z", - "shell.execute_reply": "2023-12-13T16:59:59.702994Z" + "iopub.execute_input": "2023-12-14T17:56:15.924620Z", + "iopub.status.busy": "2023-12-14T17:56:15.924187Z", + "iopub.status.idle": "2023-12-14T17:56:15.928545Z", + "shell.execute_reply": "2023-12-14T17:56:15.928016Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T16:59:59.706156Z", - "iopub.status.busy": "2023-12-13T16:59:59.705713Z", - "iopub.status.idle": "2023-12-13T17:00:05.180701Z", - "shell.execute_reply": "2023-12-13T17:00:05.179876Z" + "iopub.execute_input": "2023-12-14T17:56:15.930941Z", + "iopub.status.busy": "2023-12-14T17:56:15.930741Z", + "iopub.status.idle": "2023-12-14T17:56:21.396362Z", + "shell.execute_reply": "2023-12-14T17:56:21.395708Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.185283Z", - "iopub.status.busy": "2023-12-13T17:00:05.183863Z", - "iopub.status.idle": "2023-12-13T17:00:05.192016Z", - "shell.execute_reply": "2023-12-13T17:00:05.191400Z" + "iopub.execute_input": "2023-12-14T17:56:21.400853Z", + "iopub.status.busy": "2023-12-14T17:56:21.399718Z", + "iopub.status.idle": "2023-12-14T17:56:21.407444Z", + "shell.execute_reply": "2023-12-14T17:56:21.406859Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.196603Z", - "iopub.status.busy": "2023-12-13T17:00:05.195289Z", - "iopub.status.idle": "2023-12-13T17:00:05.308090Z", - "shell.execute_reply": "2023-12-13T17:00:05.307365Z" + "iopub.execute_input": "2023-12-14T17:56:21.411876Z", + "iopub.status.busy": "2023-12-14T17:56:21.410739Z", + "iopub.status.idle": "2023-12-14T17:56:21.503024Z", + "shell.execute_reply": "2023-12-14T17:56:21.502315Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.311046Z", - "iopub.status.busy": "2023-12-13T17:00:05.310636Z", - "iopub.status.idle": "2023-12-13T17:00:05.320961Z", - "shell.execute_reply": "2023-12-13T17:00:05.320392Z" + "iopub.execute_input": "2023-12-14T17:56:21.506222Z", + "iopub.status.busy": "2023-12-14T17:56:21.505804Z", + "iopub.status.idle": "2023-12-14T17:56:21.515371Z", + "shell.execute_reply": "2023-12-14T17:56:21.514817Z" }, "scrolled": true }, @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.323577Z", - "iopub.status.busy": "2023-12-13T17:00:05.323165Z", - "iopub.status.idle": "2023-12-13T17:00:05.331545Z", - "shell.execute_reply": "2023-12-13T17:00:05.330909Z" + "iopub.execute_input": "2023-12-14T17:56:21.517906Z", + "iopub.status.busy": "2023-12-14T17:56:21.517502Z", + "iopub.status.idle": "2023-12-14T17:56:21.525780Z", + "shell.execute_reply": "2023-12-14T17:56:21.525140Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.334051Z", - "iopub.status.busy": "2023-12-13T17:00:05.333683Z", - "iopub.status.idle": "2023-12-13T17:00:05.338216Z", - "shell.execute_reply": "2023-12-13T17:00:05.337574Z" + "iopub.execute_input": "2023-12-14T17:56:21.528243Z", + "iopub.status.busy": "2023-12-14T17:56:21.527890Z", + "iopub.status.idle": "2023-12-14T17:56:21.532339Z", + "shell.execute_reply": "2023-12-14T17:56:21.531821Z" } }, "outputs": [ @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.340737Z", - "iopub.status.busy": "2023-12-13T17:00:05.340354Z", - "iopub.status.idle": "2023-12-13T17:00:05.346412Z", - "shell.execute_reply": "2023-12-13T17:00:05.345793Z" + "iopub.execute_input": "2023-12-14T17:56:21.534799Z", + "iopub.status.busy": "2023-12-14T17:56:21.534431Z", + "iopub.status.idle": "2023-12-14T17:56:21.540448Z", + "shell.execute_reply": "2023-12-14T17:56:21.539805Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.348883Z", - "iopub.status.busy": "2023-12-13T17:00:05.348500Z", - "iopub.status.idle": "2023-12-13T17:00:05.462715Z", - "shell.execute_reply": "2023-12-13T17:00:05.462131Z" + "iopub.execute_input": "2023-12-14T17:56:21.542968Z", + "iopub.status.busy": "2023-12-14T17:56:21.542531Z", + "iopub.status.idle": "2023-12-14T17:56:21.654431Z", + "shell.execute_reply": "2023-12-14T17:56:21.653778Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.465339Z", - "iopub.status.busy": "2023-12-13T17:00:05.464943Z", - "iopub.status.idle": "2023-12-13T17:00:05.572757Z", - "shell.execute_reply": "2023-12-13T17:00:05.572088Z" + "iopub.execute_input": "2023-12-14T17:56:21.657102Z", + "iopub.status.busy": "2023-12-14T17:56:21.656694Z", + "iopub.status.idle": "2023-12-14T17:56:21.762217Z", + "shell.execute_reply": "2023-12-14T17:56:21.761569Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.575235Z", - "iopub.status.busy": "2023-12-13T17:00:05.574969Z", - "iopub.status.idle": "2023-12-13T17:00:05.681432Z", - "shell.execute_reply": "2023-12-13T17:00:05.680744Z" + "iopub.execute_input": "2023-12-14T17:56:21.764874Z", + "iopub.status.busy": "2023-12-14T17:56:21.764390Z", + "iopub.status.idle": "2023-12-14T17:56:21.870780Z", + "shell.execute_reply": "2023-12-14T17:56:21.870159Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.684009Z", - "iopub.status.busy": "2023-12-13T17:00:05.683658Z", - "iopub.status.idle": "2023-12-13T17:00:05.789811Z", - "shell.execute_reply": "2023-12-13T17:00:05.789141Z" + "iopub.execute_input": "2023-12-14T17:56:21.873217Z", + "iopub.status.busy": "2023-12-14T17:56:21.872859Z", + "iopub.status.idle": "2023-12-14T17:56:21.977763Z", + "shell.execute_reply": "2023-12-14T17:56:21.977136Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:05.792600Z", - "iopub.status.busy": "2023-12-13T17:00:05.792189Z", - "iopub.status.idle": "2023-12-13T17:00:05.795681Z", - "shell.execute_reply": "2023-12-13T17:00:05.795105Z" + "iopub.execute_input": "2023-12-14T17:56:21.980509Z", + "iopub.status.busy": "2023-12-14T17:56:21.979968Z", + "iopub.status.idle": "2023-12-14T17:56:21.983497Z", + "shell.execute_reply": "2023-12-14T17:56:21.982868Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,22 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02fef93a1f0243bf8f01bef7633a3a62": { + "06686046112542b080055371222db88f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "091e0a1ad866403391c5f6b8bd447652": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,104 +1444,59 @@ "width": null } }, - "0529565bbc504d38b4358588033948fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1125b2cf584d431b99a043b3fa314767", - "placeholder": "​", - "style": "IPY_MODEL_e7e9df84134f49969cfe658f7679b845", - "value": "embedding_model.ckpt: 100%" - } - }, - "05dc8705a5b445499934dbba1221a3db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b5ab8828ca74f5596b554473509e9c3", - "placeholder": "​", - "style": "IPY_MODEL_12e89e48c00343358a0b23b4f2f368cc", - "value": "classifier.ckpt: 100%" - } - }, - "0dbd30b0c0aa403396fa1097a6643dc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_729a9ae74a424be5831b997818af3cde", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_690af6d48b7c4f5d8d76ffcfa3773c33", - "value": 16887676.0 - } - }, - "0e00fa72727748249882df329ed96aff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0edb3f46e9464443aafe4d92d7b3ab8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "0b2aae6cb838425795f1477f2aef35a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0f2b1a692483403e875cf6da5046301a": { + "0e2c14e1ba434b8ca4adb5c1c6c1afab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1578,29 +1548,22 @@ "width": null } }, - "0f696161d15a46339ba8ec685620f8f1": { + "1266c5d495db4afca2cd78f795f5877e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_05dc8705a5b445499934dbba1221a3db", - "IPY_MODEL_6040624e864c41bdb83aeaa04f8aa9d4", - "IPY_MODEL_c9246579d76b4b6bbec06e20cddd204d" - ], - "layout": "IPY_MODEL_97cce1503aa74734b6b551bd054fcd17" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1125b2cf584d431b99a043b3fa314767": { + "17b119b86ecc47bc853bedc53f24f8c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1652,22 +1615,28 @@ "width": null } }, - "12e89e48c00343358a0b23b4f2f368cc": { + "2290a69eacc54eefbfc087e6a79a9d0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_431f9743417f4db5ad569cd3d273b3a7", + "placeholder": "​", + "style": "IPY_MODEL_aac1df0740944f21be0dbfe93189bc94", + "value": "embedding_model.ckpt: 100%" } }, - "29684a44b25f41c3997193c94f068dd3": { + "22e6244eb95e41c4bb9587b257df146b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1719,7 +1688,7 @@ "width": null } }, - "2a99b3a4ce1e4647aa71aafa1aa7bd56": { + "266e13cbe2424c1abe49b45e1e8a388d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1771,28 +1740,7 @@ "width": null } }, - "3ae0ceee9b5d49a3945d34d65fa1de53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0f2b1a692483403e875cf6da5046301a", - "placeholder": "​", - "style": "IPY_MODEL_d4c66def50e94b4eb5fff0bc56a56913", - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "3f5f158c582746cdbae2d58ead4d5dcf": { + "28a7e56014b24b9f94dda47f6520d90e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1844,7 +1792,7 @@ "width": null } }, - "4af911423a2543b8a2d4f0300b846ba6": { + "2a747585509f4642b1f2f9aa4758992b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1896,7 +1844,7 @@ "width": null } }, - "4e6725d9fed9414d806640d5149473d4": { + "2dce50b9a8274f98a7a3f83354960b0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1911,76 +1859,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_809769764d824e648876ef72d6ee92e3", + "layout": "IPY_MODEL_f70dddd3adba4ab7b4b9e4fd4e5cd67e", "placeholder": "​", - "style": "IPY_MODEL_687261c90d1a4be9a540e32fea9f129b", - "value": " 16.9M/16.9M [00:00<00:00, 167MB/s]" - } - }, - "57824ef333f74c608e28c347ad773316": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5f51a6c112594c47a930bf3bcf0a2b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a7b6b3ae2ad14bf985daeb5a4c3e6f0c", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef21b82732a449a29101a39dab3f65dc", - "value": 2041.0 + "style": "IPY_MODEL_06686046112542b080055371222db88f", + "value": " 16.9M/16.9M [00:00<00:00, 143MB/s]" } }, - "6040624e864c41bdb83aeaa04f8aa9d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6d4eb9686b714096a6d8889848552241", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0e00fa72727748249882df329ed96aff", - "value": 15856877.0 - } - }, - "6110d0547a26408f8e8cb1aa5ce7b23e": { + "348d6872707345ce9aad926e88cbcc41": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2032,7 +1917,28 @@ "width": null } }, - "65ac5cd3bf1e41129fe53d6de65be6e2": { + "352b76e20da34e21a9c92a43bf03252a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6834aafed13949c98109a8b5e5bd2b8e", + "placeholder": "​", + "style": "IPY_MODEL_dead3185e31a404ba76cd0139d3d94ce", + "value": " 2.04k/2.04k [00:00<00:00, 352kB/s]" + } + }, + "3e3f4bb12c464bd3ae953da80f330201": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2084,38 +1990,28 @@ "width": null } }, - "687261c90d1a4be9a540e32fea9f129b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "690af6d48b7c4f5d8d76ffcfa3773c33": { + "40bafcae0718402f8513bd056cbfd2fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_348d6872707345ce9aad926e88cbcc41", + "placeholder": "​", + "style": "IPY_MODEL_63aaa434e0c94336a34a59d7e601995c", + "value": " 15.9M/15.9M [00:00<00:00, 353MB/s]" } }, - "6b5ab8828ca74f5596b554473509e9c3": { + "431f9743417f4db5ad569cd3d273b3a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2167,7 +2063,7 @@ "width": null } }, - "6d14546136774f2a961667230dc14db2": { + "44cec74db603400799be13aca1b7d558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2182,7 +2078,60 @@ "description_width": "" } }, - "6d4eb9686b714096a6d8889848552241": { + "4f84ed17f9934de7a0f5d54f2051fc46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "52af6d8f817c4adf9454716fc882d33f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56604f8b373a425ea7ed243ad38fef7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63ae7edf879742928201344fe97d3fcf", + "IPY_MODEL_75fa641737904229ad5ddb7100d1464e", + "IPY_MODEL_a3d9103667a7487dbe524d8746816c29" + ], + "layout": "IPY_MODEL_091e0a1ad866403391c5f6b8bd447652" + } + }, + "58d5b4d179d34163bb65df9add05a490": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2234,7 +2183,31 @@ "width": null } }, - "71feb4423d0f4f5a8b9d0ec610e90a81": { + "5ccd3a0954a54592a54e2568d1c472a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_28a7e56014b24b9f94dda47f6520d90e", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6400df2246874fb0b249887559fc9486", + "value": 2041.0 + } + }, + "63aaa434e0c94336a34a59d7e601995c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2249,7 +2222,59 @@ "description_width": "" } }, - "729a9ae74a424be5831b997818af3cde": { + "63ae7edf879742928201344fe97d3fcf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_266e13cbe2424c1abe49b45e1e8a388d", + "placeholder": "​", + "style": "IPY_MODEL_4f84ed17f9934de7a0f5d54f2051fc46", + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "6400df2246874fb0b249887559fc9486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6555b4a769b0463187dcac4319595627": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6834aafed13949c98109a8b5e5bd2b8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2301,28 +2326,7 @@ "width": null } }, - "74ec57b4bfd046d38a2b563311674201": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2a99b3a4ce1e4647aa71aafa1aa7bd56", - "placeholder": "​", - "style": "IPY_MODEL_6d14546136774f2a961667230dc14db2", - "value": " 129k/129k [00:00<00:00, 15.6MB/s]" - } - }, - "773659e3df6c48f48142f06671708e58": { + "6b00edb7ecc7418dab379b63e58569bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2337,29 +2341,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dee841d590964ade9e3c9cb082893d8d", - "IPY_MODEL_cc39895977884090b488f8a3d2f17a82", - "IPY_MODEL_74ec57b4bfd046d38a2b563311674201" + "IPY_MODEL_c71d018615ab4a4291e4806169ae7c2a", + "IPY_MODEL_e19499d0c9e64e8787faffb57bcc20fb", + "IPY_MODEL_cfbb917925be425d9c988bf382029596" ], - "layout": "IPY_MODEL_6110d0547a26408f8e8cb1aa5ce7b23e" + "layout": "IPY_MODEL_9d755c4085a9491c80f4b25c4c7e2280" } }, - "7c4e385b270b48e58583c3555b4ff58c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "809769764d824e648876ef72d6ee92e3": { + "6c50c0bbc73246b7b174131e3adbf2a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2411,7 +2400,52 @@ "width": null } }, - "810014f2a2e94e6b9e6f3603ce8bc395": { + "74eb8c60ecd24f4b926e009041752331": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c50c0bbc73246b7b174131e3adbf2a6", + "placeholder": "​", + "style": "IPY_MODEL_e9a6a02251384992b51f0aa980cca633", + "value": "hyperparams.yaml: 100%" + } + }, + "75fa641737904229ad5ddb7100d1464e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_22e6244eb95e41c4bb9587b257df146b", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52af6d8f817c4adf9454716fc882d33f", + "value": 3201.0 + } + }, + "7bdb8d25320a4e73aeef38c5dbc480c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -2426,14 +2460,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e2b601bca8c24f468a33608b38dc60b2", - "IPY_MODEL_5f51a6c112594c47a930bf3bcf0a2b9f", - "IPY_MODEL_c7de2f0579c94875b3e61cc1fe130d3b" + "IPY_MODEL_a49457776ccf44f093af75553596654d", + "IPY_MODEL_87870b7c5844438584752a0402adaccb", + "IPY_MODEL_40bafcae0718402f8513bd056cbfd2fa" ], - "layout": "IPY_MODEL_4af911423a2543b8a2d4f0300b846ba6" + "layout": "IPY_MODEL_0e2c14e1ba434b8ca4adb5c1c6c1afab" + } + }, + "7ef977dd5f954c028e7d8e192e1c786a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "87870b7c5844438584752a0402adaccb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e3f4bb12c464bd3ae953da80f330201", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9cf76dae1b27424a85f1494996296773", + "value": 15856877.0 } }, - "88e5e074f66245d9b8a33f39a0599933": { + "8b2a91f2eabb44179edf749732085dc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2485,28 +2559,7 @@ "width": null } }, - "96d4e6a13be045e08d88e39c40525e55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3f5f158c582746cdbae2d58ead4d5dcf", - "placeholder": "​", - "style": "IPY_MODEL_0edb3f46e9464443aafe4d92d7b3ab8e", - "value": " 3.20k/3.20k [00:00<00:00, 561kB/s]" - } - }, - "97cce1503aa74734b6b551bd054fcd17": { + "8b9114194de54c3c9bad2184e722e0cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2558,7 +2611,23 @@ "width": null } }, - "a7b6b3ae2ad14bf985daeb5a4c3e6f0c": { + "958c1665e8a046efa908ae88a9cc80ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "998d5bcb7cf5404d923a4c7221504415": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2610,7 +2679,7 @@ "width": null } }, - "b77024d970db41e38aa5911433d04152": { + "9cf76dae1b27424a85f1494996296773": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -2626,7 +2695,7 @@ "description_width": "" } }, - "b8fe97688aec475988139a33825e15bc": { + "9d2019daadc3474489f73515e95fe175": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2642,37 +2711,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_65ac5cd3bf1e41129fe53d6de65be6e2", - "max": 3201.0, + "layout": "IPY_MODEL_2a747585509f4642b1f2f9aa4758992b", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b77024d970db41e38aa5911433d04152", - "value": 3201.0 - } - }, - "bf2028ae154041eeaab470485b9c7057": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ae0ceee9b5d49a3945d34d65fa1de53", - "IPY_MODEL_b8fe97688aec475988139a33825e15bc", - "IPY_MODEL_96d4e6a13be045e08d88e39c40525e55" - ], - "layout": "IPY_MODEL_c1175ffb09ca45008dea575f0a5dbeac" + "style": "IPY_MODEL_958c1665e8a046efa908ae88a9cc80ff", + "value": 16887676.0 } }, - "c1175ffb09ca45008dea575f0a5dbeac": { + "9d755c4085a9491c80f4b25c4c7e2280": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2724,7 +2771,7 @@ "width": null } }, - "c7de2f0579c94875b3e61cc1fe130d3b": { + "a3d9103667a7487dbe524d8746816c29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2739,13 +2786,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_88e5e074f66245d9b8a33f39a0599933", + "layout": "IPY_MODEL_998d5bcb7cf5404d923a4c7221504415", "placeholder": "​", - "style": "IPY_MODEL_e0fa7cc0d54847f8abd51ea6604b0d79", - "value": " 2.04k/2.04k [00:00<00:00, 353kB/s]" + "style": "IPY_MODEL_6555b4a769b0463187dcac4319595627", + "value": " 3.20k/3.20k [00:00<00:00, 543kB/s]" } }, - "c9246579d76b4b6bbec06e20cddd204d": { + "a49457776ccf44f093af75553596654d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2760,53 +2807,50 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_faa5c8e9349b4f46801e57ab2be5fe38", + "layout": "IPY_MODEL_17b119b86ecc47bc853bedc53f24f8c6", "placeholder": "​", - "style": "IPY_MODEL_7c4e385b270b48e58583c3555b4ff58c", - "value": " 15.9M/15.9M [00:00<00:00, 327MB/s]" + "style": "IPY_MODEL_af12ee4740fa48d4836bd2d91616266b", + "value": "classifier.ckpt: 100%" } }, - "cc39895977884090b488f8a3d2f17a82": { + "a6f2aa5a67684486bfbda83282364b58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db1b40a907bd46e4b816ee387eceb30d", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d49107bd695b4cdbae28131cbc6e36db", - "value": 128619.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74eb8c60ecd24f4b926e009041752331", + "IPY_MODEL_5ccd3a0954a54592a54e2568d1c472a5", + "IPY_MODEL_352b76e20da34e21a9c92a43bf03252a" + ], + "layout": "IPY_MODEL_58d5b4d179d34163bb65df9add05a490" } }, - "d49107bd695b4cdbae28131cbc6e36db": { + "aac1df0740944f21be0dbfe93189bc94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "d4c66def50e94b4eb5fff0bc56a56913": { + "af12ee4740fa48d4836bd2d91616266b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2821,59 +2865,7 @@ "description_width": "" } }, - "db1b40a907bd46e4b816ee387eceb30d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "dee841d590964ade9e3c9cb082893d8d": { + "c71d018615ab4a4291e4806169ae7c2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2888,28 +2880,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e13e8457e3d848f585471574e8419680", + "layout": "IPY_MODEL_cf0d57433a2d418cac5d3b05b53cd554", "placeholder": "​", - "style": "IPY_MODEL_71feb4423d0f4f5a8b9d0ec610e90a81", + "style": "IPY_MODEL_44cec74db603400799be13aca1b7d558", "value": "label_encoder.txt: 100%" } }, - "e0fa7cc0d54847f8abd51ea6604b0d79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e13e8457e3d848f585471574e8419680": { + "cf0d57433a2d418cac5d3b05b53cd554": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2961,7 +2938,7 @@ "width": null } }, - "e2b601bca8c24f468a33608b38dc60b2": { + "cfbb917925be425d9c988bf382029596": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2976,13 +2953,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_02fef93a1f0243bf8f01bef7633a3a62", + "layout": "IPY_MODEL_0b2aae6cb838425795f1477f2aef35a1", "placeholder": "​", - "style": "IPY_MODEL_57824ef333f74c608e28c347ad773316", - "value": "hyperparams.yaml: 100%" + "style": "IPY_MODEL_1266c5d495db4afca2cd78f795f5877e", + "value": " 129k/129k [00:00<00:00, 14.1MB/s]" } }, - "e7e9df84134f49969cfe658f7679b845": { + "dead3185e31a404ba76cd0139d3d94ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2997,23 +2974,46 @@ "description_width": "" } }, - "ef21b82732a449a29101a39dab3f65dc": { + "e19499d0c9e64e8787faffb57bcc20fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b2a91f2eabb44179edf749732085dc7", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ef977dd5f954c028e7d8e192e1c786a", + "value": 128619.0 + } + }, + "e9a6a02251384992b51f0aa980cca633": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f34b748bdd064853ace83a8979beec48": { + "ebba0d68c4b241c2af67a3a44a8d0339": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -3028,14 +3028,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0529565bbc504d38b4358588033948fa", - "IPY_MODEL_0dbd30b0c0aa403396fa1097a6643dc2", - "IPY_MODEL_4e6725d9fed9414d806640d5149473d4" + "IPY_MODEL_2290a69eacc54eefbfc087e6a79a9d0d", + "IPY_MODEL_9d2019daadc3474489f73515e95fe175", + "IPY_MODEL_2dce50b9a8274f98a7a3f83354960b0d" ], - "layout": "IPY_MODEL_29684a44b25f41c3997193c94f068dd3" + "layout": "IPY_MODEL_8b9114194de54c3c9bad2184e722e0cb" } }, - "faa5c8e9349b4f46801e57ab2be5fe38": { + "f70dddd3adba4ab7b4b9e4fd4e5cd67e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index f7a45bd44..3cabc955e 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1306,7 +1306,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1702,7 +1702,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"f6fa40d74e0d4689b3558b01de49c12f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "86b90891db804a31bc1212cc055fa15e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eb7b1bb512ff42b3b557bda6a8b7075e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6fa40d74e0d4689b3558b01de49c12f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_86b90891db804a31bc1212cc055fa15e", "value": 132.0}}, "85ca08511f5d4427bf99574eba88b90c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbff8533a8404567b9a3d02da395245e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6b29b3cedf584904919586071f87eed9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_85ca08511f5d4427bf99574eba88b90c", "placeholder": "\u200b", "style": "IPY_MODEL_cbff8533a8404567b9a3d02da395245e", "value": "Saving the dataset (1/1 shards): 100%"}}, "980ed0ec234940b28b94b6cd49efb4aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "766937f6a9574b6a8609cdf3b676dbe6": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8166817f8f4d4a8a84f6df65efdb64d2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_980ed0ec234940b28b94b6cd49efb4aa", "placeholder": "\u200b", "style": "IPY_MODEL_766937f6a9574b6a8609cdf3b676dbe6", "value": " 132/132 [00:00<00:00, 10811.75 examples/s]"}}, "245ea6d33f5d4e24ab28428e22beb485": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a31a3d66aa8144acba37a55b47871825": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b29b3cedf584904919586071f87eed9", "IPY_MODEL_eb7b1bb512ff42b3b557bda6a8b7075e", "IPY_MODEL_8166817f8f4d4a8a84f6df65efdb64d2"], "layout": "IPY_MODEL_245ea6d33f5d4e24ab28428e22beb485"}}}, "version_major": 2, "version_minor": 0} +{"state": {"28c20561bda14044900ccbfc4ebe1294": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a4fbce51c6f4fbba01657909a8272f6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "464c525333ba47d4bd2250d963a8e9c6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_28c20561bda14044900ccbfc4ebe1294", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0a4fbce51c6f4fbba01657909a8272f6", "value": 132.0}}, "7ceb1b2ddc574a55953b9329dfc42b7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "858d62f0981940938763c4c8fe8b58cf": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2cdabce56b1647b08c8264096937a79d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7ceb1b2ddc574a55953b9329dfc42b7d", "placeholder": "\u200b", "style": "IPY_MODEL_858d62f0981940938763c4c8fe8b58cf", "value": "Saving the dataset (1/1 shards): 100%"}}, "b7709d1cc4694597a575e95f39475876": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a60e5c5dacf465f9ce688be014f4150": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a89a04a90fc64602a7e0a6631ad58a61": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b7709d1cc4694597a575e95f39475876", "placeholder": "\u200b", "style": "IPY_MODEL_8a60e5c5dacf465f9ce688be014f4150", "value": " 132/132 [00:00<00:00, 9307.04 examples/s]"}}, "a6498def40f040fa9294ebc028f05c28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1be6c3ef52a24e2fa2dc7dffc55d2189": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2cdabce56b1647b08c8264096937a79d", "IPY_MODEL_464c525333ba47d4bd2250d963a8e9c6", "IPY_MODEL_a89a04a90fc64602a7e0a6631ad58a61"], "layout": "IPY_MODEL_a6498def40f040fa9294ebc028f05c28"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 57bac3b9a..e9665b03e 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:11.048684Z", - "iopub.status.busy": "2023-12-13T17:00:11.048474Z", - "iopub.status.idle": "2023-12-13T17:00:12.106902Z", - "shell.execute_reply": "2023-12-13T17:00:12.106299Z" + "iopub.execute_input": "2023-12-14T17:56:27.534087Z", + "iopub.status.busy": "2023-12-14T17:56:27.533634Z", + "iopub.status.idle": "2023-12-14T17:56:28.584952Z", + "shell.execute_reply": "2023-12-14T17:56:28.584294Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.109739Z", - "iopub.status.busy": "2023-12-13T17:00:12.109466Z", - "iopub.status.idle": "2023-12-13T17:00:12.112690Z", - "shell.execute_reply": "2023-12-13T17:00:12.112152Z" + "iopub.execute_input": "2023-12-14T17:56:28.587893Z", + "iopub.status.busy": "2023-12-14T17:56:28.587573Z", + "iopub.status.idle": "2023-12-14T17:56:28.590797Z", + "shell.execute_reply": "2023-12-14T17:56:28.590191Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.115158Z", - "iopub.status.busy": "2023-12-13T17:00:12.114960Z", - "iopub.status.idle": "2023-12-13T17:00:12.124068Z", - "shell.execute_reply": "2023-12-13T17:00:12.123551Z" + "iopub.execute_input": "2023-12-14T17:56:28.593334Z", + "iopub.status.busy": "2023-12-14T17:56:28.592967Z", + "iopub.status.idle": "2023-12-14T17:56:28.602332Z", + "shell.execute_reply": "2023-12-14T17:56:28.601710Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.126450Z", - "iopub.status.busy": "2023-12-13T17:00:12.126093Z", - "iopub.status.idle": "2023-12-13T17:00:12.131033Z", - "shell.execute_reply": "2023-12-13T17:00:12.130549Z" + "iopub.execute_input": "2023-12-14T17:56:28.604599Z", + "iopub.status.busy": "2023-12-14T17:56:28.604397Z", + "iopub.status.idle": "2023-12-14T17:56:28.609141Z", + "shell.execute_reply": "2023-12-14T17:56:28.608650Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.133519Z", - "iopub.status.busy": "2023-12-13T17:00:12.133053Z", - "iopub.status.idle": "2023-12-13T17:00:12.404394Z", - "shell.execute_reply": "2023-12-13T17:00:12.403712Z" + "iopub.execute_input": "2023-12-14T17:56:28.611364Z", + "iopub.status.busy": "2023-12-14T17:56:28.611170Z", + "iopub.status.idle": "2023-12-14T17:56:28.876632Z", + "shell.execute_reply": "2023-12-14T17:56:28.876021Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.407299Z", - "iopub.status.busy": "2023-12-13T17:00:12.406941Z", - "iopub.status.idle": "2023-12-13T17:00:12.778148Z", - "shell.execute_reply": "2023-12-13T17:00:12.777497Z" + "iopub.execute_input": "2023-12-14T17:56:28.879284Z", + "iopub.status.busy": "2023-12-14T17:56:28.879072Z", + "iopub.status.idle": "2023-12-14T17:56:29.242903Z", + "shell.execute_reply": "2023-12-14T17:56:29.242216Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.780947Z", - "iopub.status.busy": "2023-12-13T17:00:12.780431Z", - "iopub.status.idle": "2023-12-13T17:00:12.805102Z", - "shell.execute_reply": "2023-12-13T17:00:12.804461Z" + "iopub.execute_input": "2023-12-14T17:56:29.245826Z", + "iopub.status.busy": "2023-12-14T17:56:29.245332Z", + "iopub.status.idle": "2023-12-14T17:56:29.269619Z", + "shell.execute_reply": "2023-12-14T17:56:29.269123Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.807727Z", - "iopub.status.busy": "2023-12-13T17:00:12.807287Z", - "iopub.status.idle": "2023-12-13T17:00:12.816507Z", - "shell.execute_reply": "2023-12-13T17:00:12.815915Z" + "iopub.execute_input": "2023-12-14T17:56:29.271999Z", + "iopub.status.busy": "2023-12-14T17:56:29.271753Z", + "iopub.status.idle": "2023-12-14T17:56:29.281050Z", + "shell.execute_reply": "2023-12-14T17:56:29.280563Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:12.819154Z", - "iopub.status.busy": "2023-12-13T17:00:12.818786Z", - "iopub.status.idle": "2023-12-13T17:00:14.058366Z", - "shell.execute_reply": "2023-12-13T17:00:14.057653Z" + "iopub.execute_input": "2023-12-14T17:56:29.283433Z", + "iopub.status.busy": "2023-12-14T17:56:29.283232Z", + "iopub.status.idle": "2023-12-14T17:56:30.539694Z", + "shell.execute_reply": "2023-12-14T17:56:30.538973Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.061784Z", - "iopub.status.busy": "2023-12-13T17:00:14.061149Z", - "iopub.status.idle": "2023-12-13T17:00:14.083693Z", - "shell.execute_reply": "2023-12-13T17:00:14.083155Z" + "iopub.execute_input": "2023-12-14T17:56:30.542556Z", + "iopub.status.busy": "2023-12-14T17:56:30.542218Z", + "iopub.status.idle": "2023-12-14T17:56:30.564459Z", + "shell.execute_reply": "2023-12-14T17:56:30.563936Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.086281Z", - "iopub.status.busy": "2023-12-13T17:00:14.085917Z", - "iopub.status.idle": "2023-12-13T17:00:14.106725Z", - "shell.execute_reply": "2023-12-13T17:00:14.106069Z" + "iopub.execute_input": "2023-12-14T17:56:30.567164Z", + "iopub.status.busy": "2023-12-14T17:56:30.566629Z", + "iopub.status.idle": "2023-12-14T17:56:30.587095Z", + "shell.execute_reply": "2023-12-14T17:56:30.586390Z" } }, "outputs": [ @@ -909,7 +909,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:297: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:327: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.109235Z", - "iopub.status.busy": "2023-12-13T17:00:14.108860Z", - "iopub.status.idle": "2023-12-13T17:00:14.124532Z", - "shell.execute_reply": "2023-12-13T17:00:14.123897Z" + "iopub.execute_input": "2023-12-14T17:56:30.589504Z", + "iopub.status.busy": "2023-12-14T17:56:30.589131Z", + "iopub.status.idle": "2023-12-14T17:56:30.603737Z", + "shell.execute_reply": "2023-12-14T17:56:30.603103Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.127165Z", - "iopub.status.busy": "2023-12-13T17:00:14.126922Z", - "iopub.status.idle": "2023-12-13T17:00:14.148912Z", - "shell.execute_reply": "2023-12-13T17:00:14.148286Z" + "iopub.execute_input": "2023-12-14T17:56:30.606361Z", + "iopub.status.busy": "2023-12-14T17:56:30.605840Z", + "iopub.status.idle": "2023-12-14T17:56:30.630240Z", + "shell.execute_reply": "2023-12-14T17:56:30.629619Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a31a3d66aa8144acba37a55b47871825", + "model_id": "1be6c3ef52a24e2fa2dc7dffc55d2189", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.151258Z", - "iopub.status.busy": "2023-12-13T17:00:14.150922Z", - "iopub.status.idle": "2023-12-13T17:00:14.166343Z", - "shell.execute_reply": "2023-12-13T17:00:14.165731Z" + "iopub.execute_input": "2023-12-14T17:56:30.632708Z", + "iopub.status.busy": "2023-12-14T17:56:30.632264Z", + "iopub.status.idle": "2023-12-14T17:56:30.647828Z", + "shell.execute_reply": "2023-12-14T17:56:30.647225Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.169158Z", - "iopub.status.busy": "2023-12-13T17:00:14.168754Z", - "iopub.status.idle": "2023-12-13T17:00:14.175798Z", - "shell.execute_reply": "2023-12-13T17:00:14.175184Z" + "iopub.execute_input": "2023-12-14T17:56:30.650275Z", + "iopub.status.busy": "2023-12-14T17:56:30.649924Z", + "iopub.status.idle": "2023-12-14T17:56:30.656910Z", + "shell.execute_reply": "2023-12-14T17:56:30.656271Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:14.178381Z", - "iopub.status.busy": "2023-12-13T17:00:14.178011Z", - "iopub.status.idle": "2023-12-13T17:00:14.197023Z", - "shell.execute_reply": "2023-12-13T17:00:14.196461Z" + "iopub.execute_input": "2023-12-14T17:56:30.659725Z", + "iopub.status.busy": "2023-12-14T17:56:30.659358Z", + "iopub.status.idle": "2023-12-14T17:56:30.679668Z", + "shell.execute_reply": "2023-12-14T17:56:30.678877Z" } }, "outputs": [ @@ -1430,7 +1430,45 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "245ea6d33f5d4e24ab28428e22beb485": { + "0a4fbce51c6f4fbba01657909a8272f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1be6c3ef52a24e2fa2dc7dffc55d2189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2cdabce56b1647b08c8264096937a79d", + "IPY_MODEL_464c525333ba47d4bd2250d963a8e9c6", + "IPY_MODEL_a89a04a90fc64602a7e0a6631ad58a61" + ], + "layout": "IPY_MODEL_a6498def40f040fa9294ebc028f05c28" + } + }, + "28c20561bda14044900ccbfc4ebe1294": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1482,7 +1520,7 @@ "width": null } }, - "6b29b3cedf584904919586071f87eed9": { + "2cdabce56b1647b08c8264096937a79d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1497,49 +1535,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_85ca08511f5d4427bf99574eba88b90c", + "layout": "IPY_MODEL_7ceb1b2ddc574a55953b9329dfc42b7d", "placeholder": "​", - "style": "IPY_MODEL_cbff8533a8404567b9a3d02da395245e", + "style": "IPY_MODEL_858d62f0981940938763c4c8fe8b58cf", "value": "Saving the dataset (1/1 shards): 100%" } }, - "766937f6a9574b6a8609cdf3b676dbe6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8166817f8f4d4a8a84f6df65efdb64d2": { + "464c525333ba47d4bd2250d963a8e9c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_980ed0ec234940b28b94b6cd49efb4aa", - "placeholder": "​", - "style": "IPY_MODEL_766937f6a9574b6a8609cdf3b676dbe6", - "value": " 132/132 [00:00<00:00, 10811.75 examples/s]" + "layout": "IPY_MODEL_28c20561bda14044900ccbfc4ebe1294", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0a4fbce51c6f4fbba01657909a8272f6", + "value": 132.0 } }, - "85ca08511f5d4427bf99574eba88b90c": { + "7ceb1b2ddc574a55953b9329dfc42b7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1591,23 +1617,37 @@ "width": null } }, - "86b90891db804a31bc1212cc055fa15e": { + "858d62f0981940938763c4c8fe8b58cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8a60e5c5dacf465f9ce688be014f4150": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "980ed0ec234940b28b94b6cd49efb4aa": { + "a6498def40f040fa9294ebc028f05c28": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1659,68 +1699,28 @@ "width": null } }, - "a31a3d66aa8144acba37a55b47871825": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6b29b3cedf584904919586071f87eed9", - "IPY_MODEL_eb7b1bb512ff42b3b557bda6a8b7075e", - "IPY_MODEL_8166817f8f4d4a8a84f6df65efdb64d2" - ], - "layout": "IPY_MODEL_245ea6d33f5d4e24ab28428e22beb485" - } - }, - "cbff8533a8404567b9a3d02da395245e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "eb7b1bb512ff42b3b557bda6a8b7075e": { + "a89a04a90fc64602a7e0a6631ad58a61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f6fa40d74e0d4689b3558b01de49c12f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86b90891db804a31bc1212cc055fa15e", - "value": 132.0 + "layout": "IPY_MODEL_b7709d1cc4694597a575e95f39475876", + "placeholder": "​", + "style": "IPY_MODEL_8a60e5c5dacf465f9ce688be014f4150", + "value": " 132/132 [00:00<00:00, 9307.04 examples/s]" } }, - "f6fa40d74e0d4689b3558b01de49c12f": { + "b7709d1cc4694597a575e95f39475876": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index b8828fc4f..001bc81cc 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -1050,7 +1050,7 @@

2. Create and load the data (can skip these details)3. Get out-of-sample predicted probabilities from a classifier#

To detect certain types of issues in classification data (e.g. label errors), Datalab relies on predicted class probabilities from a trained model. Ideally, the prediction for each example should be out-of-sample (to avoid overfitting), coming from a copy of the model that was not trained on this example.

This tutorial uses a simple logistic regression model and the cross_val_predict() function from scikit-learn to generate out-of-sample predicted class probabilities for every example in the training set. You can replace this with any other classifier model and train it with cross-validation to get out-of-sample predictions.

-
+

4. Use Datalab to find issues in the dataset#

@@ -1076,18 +1085,35 @@

4. Use Datalab to find issues in the dataset +
 Finding label issues ...
+
+
+
+
+
+
+
+/home/runner/work/cleanlab/cleanlab/cleanlab/filter.py:904: UserWarning: May not flag all label issues in class: 2, it has too few examples (see `min_examples_per_class` argument)
+  warnings.warn(
+
+
+
+
+
+
+
 Finding outlier issues ...
 Fitting OOD estimator based on provided features ...
 Finding near_duplicate issues ...
 Finding non_iid issues ...
+Finding class_imbalance issues ...
 
-Audit complete. 21 issues found in the dataset.
+Audit complete. 30 issues found in the dataset.
 

Now let’s review the results of this audit using report(). This provides a high-level summary of each type of issue found in the dataset.

@@ -1106,13 +1132,14 @@

4. Use Datalab to find issues in the dataset
 Here is a summary of the different kinds of issues found in the data:
 
-    issue_type  num_issues
-         label          11
-       outlier           6
-near_duplicate           4
-       non_iid           0
+     issue_type  num_issues
+          label          17
+        outlier           6
+ near_duplicate           4
+class_imbalance           3
+        non_iid           0
 
-Dataset Information: num_examples: 132, num_classes: 3
+Dataset Information: num_examples: 132, num_classes: 4
 
 
 ----------------------- label issues -----------------------
@@ -1122,16 +1149,16 @@ 

4. Use Datalab to find issues in the dataset

+ +
+

Class Imbalance Issues#

+

Let’s inspect the examples that are flagged to have class imbalance issue. Each example below has been assigned the rarest class label in the dataset. The class_imbalance_score is the proportion of examples belonging to the rarest class.

+
+
[17]:
+
+
+
lab.get_issues("class_imbalance").query("is_class_imbalance_issue").sort_values("class_imbalance_score")
+
+
+
+
+
[17]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
is_class_imbalance_issueclass_imbalance_score
8True0.022727
58True0.022727
77True0.022727
+
+

Datalab makes it very easy to check your datasets for all sorts of issues that are important to deal with for training robust models. The inputs it uses to detect issues can come from any model you have trained (the better your model, the more accurate the issue detection will be).

To learn more, check out this example notebook (demonstrates Datalab applied to a real dataset) and the advanced Datalab tutorial (demonstrates configuration and customization options to exert greater control).

@@ -1756,6 +1887,7 @@

Near duplicate issues5. Learn more about the issues in your dataset diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index d7218150a..3f78b9f5b 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:19.138671Z", - "iopub.status.busy": "2023-12-13T17:00:19.138488Z", - "iopub.status.idle": "2023-12-13T17:00:20.221418Z", - "shell.execute_reply": "2023-12-13T17:00:20.220749Z" + "iopub.execute_input": "2023-12-14T17:56:35.614753Z", + "iopub.status.busy": "2023-12-14T17:56:35.614561Z", + "iopub.status.idle": "2023-12-14T17:56:36.690043Z", + "shell.execute_reply": "2023-12-14T17:56:36.689426Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.224388Z", - "iopub.status.busy": "2023-12-13T17:00:20.224054Z", - "iopub.status.idle": "2023-12-13T17:00:20.227448Z", - "shell.execute_reply": "2023-12-13T17:00:20.226859Z" + "iopub.execute_input": "2023-12-14T17:56:36.692905Z", + "iopub.status.busy": "2023-12-14T17:56:36.692432Z", + "iopub.status.idle": "2023-12-14T17:56:36.695554Z", + "shell.execute_reply": "2023-12-14T17:56:36.694999Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.229877Z", - "iopub.status.busy": "2023-12-13T17:00:20.229681Z", - "iopub.status.idle": "2023-12-13T17:00:20.239104Z", - "shell.execute_reply": "2023-12-13T17:00:20.238579Z" + "iopub.execute_input": "2023-12-14T17:56:36.698242Z", + "iopub.status.busy": "2023-12-14T17:56:36.697689Z", + "iopub.status.idle": "2023-12-14T17:56:36.707710Z", + "shell.execute_reply": "2023-12-14T17:56:36.707089Z" }, "nbsphinx": "hidden" }, @@ -342,6 +342,11 @@ "\n", " noisy_labels_idx = generate_noisy_labels(y_train_idx, noise_matrix)\n", " noisy_labels = np.array([list(BINS_MAP.keys())[i] for i in noisy_labels_idx])\n", + " # Assign few datapoints to rare class\n", + " random_idx = np.random.randint(0, X_train.shape[0], 3)\n", + " noisy_labels[random_idx] = \"max\"\n", + " noisy_labels_idx[random_idx] = np.max(y_bin_idx) + 1\n", + " \n", "\n", " return X_train, y_train_idx, noisy_labels, noisy_labels_idx, X_out, X_duplicate" ] @@ -351,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.241257Z", - "iopub.status.busy": "2023-12-13T17:00:20.241066Z", - "iopub.status.idle": "2023-12-13T17:00:20.245687Z", - "shell.execute_reply": "2023-12-13T17:00:20.245057Z" + "iopub.execute_input": "2023-12-14T17:56:36.710236Z", + "iopub.status.busy": "2023-12-14T17:56:36.709894Z", + "iopub.status.idle": "2023-12-14T17:56:36.714767Z", + "shell.execute_reply": "2023-12-14T17:56:36.714273Z" } }, "outputs": [], @@ -443,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.248238Z", - "iopub.status.busy": "2023-12-13T17:00:20.247899Z", - "iopub.status.idle": "2023-12-13T17:00:20.519537Z", - "shell.execute_reply": "2023-12-13T17:00:20.518848Z" + "iopub.execute_input": "2023-12-14T17:56:36.717212Z", + "iopub.status.busy": "2023-12-14T17:56:36.716848Z", + "iopub.status.idle": "2023-12-14T17:56:36.984172Z", + "shell.execute_reply": "2023-12-14T17:56:36.983583Z" }, "nbsphinx": "hidden" }, @@ -515,16 +520,16 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.522337Z", - "iopub.status.busy": "2023-12-13T17:00:20.522132Z", - "iopub.status.idle": "2023-12-13T17:00:20.891259Z", - "shell.execute_reply": "2023-12-13T17:00:20.890589Z" + "iopub.execute_input": "2023-12-14T17:56:36.986990Z", + "iopub.status.busy": "2023-12-14T17:56:36.986664Z", + "iopub.status.idle": "2023-12-14T17:56:37.353745Z", + "shell.execute_reply": "2023-12-14T17:56:37.353061Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACmg0lEQVR4nOydd3hUZdqH7zOT3ikpEAKEThJaIKEGEukiFkBARbAgrhXFBqy76PqtYFkE6wqKooCLoiIqBkEIhJpQEnpPaKmEkF5nzvfHyUxmkkkyk0xI4b2viyuZc95zzntmhsxvnvd5fo8ky7KMQCAQCAQCgaBGVA09AYFAIBAIBIKmghBOAoFAIBAIBGYihJNAIBAIBAKBmQjhJBAIBAKBQGAmQjgJBAKBQCAQmIkQTgKBQCAQCARmIoSTQCAQCAQCgZkI4SQQCAQCgUBgJkI4CQQCgUAgEJiJEE4CgaBREx4eTnh4+C27XlRUFJIkERUVZfGxjzzyCC4uLladz62+f4FAUD1COAkEgjrz9ddfI0kSDg4OXLt2rdL+8PBwgoKCGmBmAoFAYF2EcBIIBFajqKiIJUuWWPWcf/75J3/++adVzykQCAS1RQgngUBgNfr27cvKlStJSkqy2jnt7Oyws7Oz2vkEAoGgLgjhJBAIrMbChQvRaDRmRZ1KS0t566236Ny5M/b29nTs2JGFCxdSVFRkNM5Ujs9HH31EYGAgTk5OtGjRggEDBrBu3ToAduzYgSRJ/Pzzz5WuuW7dOiRJYt++fRbdV3R0NPfffz/t27fH3t4ePz8/XnzxRQoKCkyOv3jxImPHjsXZ2Zm2bdvyr3/9C1mWjcZotVqWLVtGYGAgDg4OeHt78+STT5KZmVnjfKq7f4FAUL8I4SQQCKyGv78/M2fONCvqNHv2bP75z38SHBzMBx98wIgRI1i8eDHTp0+v9riVK1fy/PPPExAQwLJly3jzzTfp27cvBw4cABSh5efnx9q1aysdu3btWjp37szgwYMtuq8ffviB/Px8nnrqKT766CPGjh3LRx99xMyZMyuN1Wg0jBs3Dm9vb95991369+/PokWLWLRokdG4J598kldeeYWhQ4eyfPlyHn30UdauXcvYsWMpKSmp9f0LBIJ6RhYIBII68tVXX8mAHBsbK1+4cEG2sbGRn3/+ef3+ESNGyIGBgfrHcXFxMiDPnj3b6Dwvv/yyDMjbt283OnbEiBH6x/fcc4/RuUyxYMEC2d7eXr5586Z+W1pammxjYyMvWrSo2mN37NghA/KOHTv02/Lz8yuNW7x4sSxJknzp0iX9tlmzZsmA/Nxzz+m3abVaecKECbKdnZ2cnp4uy7IsR0dHy4C8du1ao3NGRkZW2l6b+xcIBPWHiDgJBAKr0qlTJx5++GFWrFhBcnKyyTGbN28GYN68eUbbX3rpJQB+//33Ks/v4eHB1atXiY2NrXLMzJkzKSoqYsOGDfpt69evp7S0lBkzZph9LzocHR31v+fl5XH9+nWGDBmCLMscOXKk0vhnn31W/7skSTz77LMUFxezbds2QIlgubu7M3r0aK5fv67/179/f1xcXNixY0eVczHn/gUCQf0hhJNAILA6r7/+OqWlpVXmOl26dAmVSkWXLl2Mtvv4+ODh4cGlS5eqPPdrr72Gi4sLoaGhdO3alWeeeYY9e/YYjenRowchISFGy3Vr165l0KBBla5pDpcvX+aRRx6hZcuWuLi44OnpyYgRIwDIysoyGqtSqejUqZPRtm7dugGQmJgIwLlz58jKysLLywtPT0+jf7m5uaSlpdXp/gUCQf1h09ATEAgEzY9OnToxY8YMVqxYwfz586scJ0mSxefu2bMnZ86c4bfffiMyMpIff/yRTz/9lH/+85+8+eab+nEzZ85k7ty5XL16laKiIvbv38/HH39s8fU0Gg2jR4/mxo0bvPbaa/To0QNnZ2euXbvGI488glartficWq0WLy8vk3lYAJ6enlUea+79CwSC+kEIJ4FAUC+8/vrrrFmzhnfeeafSvg4dOqDVajl37hw9e/bUb09NTeXmzZt06NCh2nM7Ozszbdo0pk2bRnFxMZMmTeLf//43CxYswMHBAYDp06czb948vvvuOwoKCrC1tWXatGkW38exY8c4e/Ysq1evNkoG37p1q8nxWq2Wixcv6qNMAGfPngWgY8eOAHTu3Jlt27YxdOhQo2VAczHn/gUCQf0gluoEAkG90LlzZ2bMmMHnn39OSkqK0b4777wTgGXLlhltX7p0KQATJkyo8rwZGRlGj+3s7AgICECWZaNqtNatWzN+/HjWrFnD2rVrGTduHK1bt7b4PtRqNYCRnYAsyyxfvrzKYwwjW7Is8/HHH2Nra8vIkSMBmDp1KhqNhrfeeqvSsaWlpdy8ebPKc5t7/wKBoH4QESeBQFBv/P3vf+fbb7/lzJkzBAYG6rf36dOHWbNmsWLFCm7evMmIESOIiYlh9erV3HvvvURERFR5zjFjxuDj48PQoUPx9vbm1KlTfPzxx0yYMAFXV1ejsTNnzmTKlCkAJkWKOfTo0YPOnTvz8ssvc+3aNdzc3Pjxxx+r9FtycHAgMjKSWbNmMXDgQP744w9+//13Fi5cqF+CGzFiBE8++SSLFy8mLi6OMWPGYGtry7lz5/jhhx9Yvny5ft51uX+BQFAPNGRJn0AgaB4Y2hFURFeiX7GEvqSkRH7zzTdlf39/2dbWVvbz85MXLFggFxYWGo2rWI7/+eefy8OHD5dbtWol29vby507d5ZfeeUVOSsrq9K1i4qK5BYtWsju7u5yQUGBWfdiyo7g5MmT8qhRo2QXFxe5devW8hNPPCHHx8fLgPzVV18Z3auzs7N84cIFecyYMbKTk5Ps7e0tL1q0SNZoNJWutWLFCrl///6yo6Oj7OrqKvfq1Ut+9dVX5aSkJKvcv0AgsD6SLFewsxUIBIJmQmlpKW3btmXixIl8+eWXDT0dgUDQDBA5TgKBoNmyceNG0tPTTTp8CwQCQW0QESeBQNDsOHDgAEePHuWtt96idevWHD58uKGnJBAImgki4iQQCJodn332GU899RReXl588803DT0dgUDQjBARJ4FAIBAIBAIzEREngUAgEAgEAjMRwkkgEAgEAoHATIQBJkqLhKSkJFxdXWvVO0sgEAgEAkHTRZZlcnJyaNu2LSpV9TElIZyApKQk/Pz8GnoaAoFAIBAIGpArV67Qrl27ascI4QT6NgVXrlzBzc2tgWcjEAgEAoHgVpKdnY2fn59ZbYuEcAL98pybm5sQTgKBQCAQ3KaYk64jksMFAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMBMhnAQCgUAgEAjMRAgngUAgEAgEAjMRwkkgEAgEAoHATIRwEggEAoFAIDATIZwEAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMykyQsnjUbDP/7xD/z9/XF0dKRz58689dZbyLLc0FMTCAQCgUDQzLBp6AnUlXfeeYfPPvuM1atXExgYyMGDB3n00Udxd3fn+eefb+jpCQQCgUAgaEY0eeG0d+9e7rnnHiZMmABAx44d+e6774iJiWngmQkEAoFAIGhuNHnhNGTIEFasWMHZs2fp1q0b8fHx7N69m6VLl1Z5TFFREUVFRfrH2dnZt2KqAoFAIGiCaLVaiouLG3oaAithZ2eHSlX7TKUmL5zmz59PdnY2PXr0QK1Wo9Fo+Pe//81DDz1U5TGLFy/mzTffvIWzFAgEAkFTpLi4mISEBLRabUNPRWAlVCoV/v7+2NnZ1ep4SW7iWdT/+9//eOWVV3jvvfcIDAwkLi6OF154gaVLlzJr1iyTx5iKOPn5+ZGVlYWbm9utmrpAIBAIGjGyLHP58mVKSkpo27ZtnaIUgsaBVqslKSkJW1tb2rdvjyRJgKID3N3dzdIBTT7i9MorrzB//nymT58OQK9evbh06RKLFy+uUjjZ29tjb29/K6cpEAgEgiZGaWkp+fn5tG3bFicnp4aejsBKeHp6kpSURGlpKba2thYf3+Tlc35+fqVvAWq1WoRVBQKBQFAnNBoNQK2XdASNE93rqXt9LaXJR5wmTpzIv//9b9q3b09gYCBHjhxh6dKlPPbYYw09NYFAIBA0A3TLOYLmQV1fzyYfcfroo4+YMmUKTz/9ND179uTll1/mySef5K233mroqQkEAoGgGaLRaFi2bBn9+vXDyckJFxcXevTowTPPPKMfI0lSgwmunTt3Mm7cOFq0aIGjoyM9e/bkgw8+AOCRRx5BkiS+/vrrWzKXxMREJEnCx8fH4mPDw8ORJImoqCiLj/3666+RJIlHHnnE4mNroslHnFxdXVm2bBnLli1r6KkIBAKB4DZg+vTpbNiwAX9/f9544w08PDyIj4/nxx9/5JNPPgHgu+++a5C5bdy4kcmTJ2NjY8Nzzz1HQEAAp06dYs+ePbz44osNMqfmRpOPOAkEAoFAcKvYvXs3GzZswMPDgwMHDvDqq68yZ84cPvnkE86dO6cf98ADD/DAAw8AMGLECCRJ4uTJkwCcOHECSZIYNmwYAMeOHWP8+PG0bNmS1q1bM3XqVK5duwbAG2+8gSRJTJ8+neHDh+Pq6kpERATp6ekm5/fSSy+h1Wr55JNPeP/993nsscd47733+P77702O//vf/46vry92dnZ4enpy3333kZSUBMDFixcJDw/Hzc0NBwcHunbtyrp16wBYvXo1Xbt2xd7eHg8PDwYNGlTlnKoiJyeHgQMH4uHhgb29Pf7+/rz99tuVxkVGRtK5c2datGjBc889R2lpKQCXLl1i6tSpeHt74+Hhwfjx4zl16pRFc6gNTT7iJBAIBALBrWL//v0AhIWF4enpCcD169f1+x0cHCpVas2ZM4ddu3bxzTffsGTJEr755hsAnnzySbKyshg7diylpaU899xzlJSUsHTpUq5evcrevXv159i8eTP/93//h0ajISoqik8++YQ33njD6Drp6elcvHgRgEmTJhntq8pKoVOnTvz9739HpVJx4sQJPv74Y5ycnFi7di0ffvghO3fuZP78+XTr1o0zZ87oE6rnzp2Lk5MTn332Gfn5+cTGxuoFjblIksTYsWN54oknyMvLY/369fz9738nJCSE0aNH68f98ccfzJ8/n08++YSPP/6Y7t2789RTTzFx4kQuXLjAs88+i5OTEx9++CF33nknZ86csWgeliKEk0AgEAgEtaSwsFAvoED5kB83bpzRmClTpvD888+zdu1a/u///o+1a9fSokUL7r//fnbs2EFycjIA//rXv/TH7Nu3j8zMTP3jhx9+mOeffx5HR0f27t3L+fPnrTL/a9eusWzZMqNrHT58GICePXsC8Ndff5Gfn8+AAQOYMmWKft+hQ4fYvHkzQUFBzJ49mzZt2lh07fz8fPbv38/bb79tVOF2+PBhI+G0aNEiJk2aRKtWrZg8eTKRkZGMHDmSY8eOAfDuu+/qx964cYMTJ05Y+CxYhliqEwgEAoHATAYPHgwoS3YZGRnY2dmxdetWevfuXeUx9vb2zJw5k6tXr/L6669z7do1Zs6ciYODg35MSEgIW7du1f/bsmULjo6O+v06caaLZpmK7nh6etK5c2dAyXUyxJRFz9mzZ1m0aBGSJLF+/Xp++OEHAAoKCgAlIrZ792798t3MmTP1XTn++usvVq9eTZcuXdiwYQPDhw9n06ZN1T95FVi2bBlbt25l7Nix/PHHH8yePdvo+ubQvn37Ss9bx44dLZqHpYiIk0DQTImPj6dPnz71Nl4guB0ZOnQo999/Pz/88AODBw/mb3/7G61btyY3N7fa4+bMmcOyZcv00ZE5c+YASr/VNm3acOjQIXbs2EGXLl04ffo0u3btYt++fRbP7/3332fy5Mk8/fTTnDp1ip49e3L27FkuXLigF0YVKS4uJiMjg61btxpt//TTT0lNTcXf35/Q0FA2bNjA5cuXAUVU9e/fn8DAQE6ePMmJEyf0+0yRm5vL66+/rn8cHBxstC8xMZEtW7aYPPbNN9/kxo0bfPzxxwCMGzeObt26ERQUxPHjx/npp58IDQ0lISGBNWvWcOHCBfOerNoiC+SsrCwZkLOyshp6KgKBVVixYoUMyIsXLzZr/OLFi2VAXrFiRT3PTCBoOhQUFMgnT56UCwoKjLaXlJTI7733nhwUFCTb2dnJbm5ucmBgoPzcc8/J165dk2VZlgG54kfssGHDZEAeNmyY0fajR4/KEyZMkFu1aiU7OTnJAQEB8j/+8Q9ZlmV50aJFMiAvWrRIlmVZ/uqrr2RAnjZtWpXzjoqKkseMGSO7ubnJ9vb2cteuXeX//Oc/sizL8qxZs2RA/uqrr2RZluU33nhDdnd3l728vOT//Oc/MiB36NBBlmVZXrVqldy9e3fZ0dFRdnJykkNDQ+Xo6GhZlmV5ypQpso+Pj2xrayu3bt1anjFjhpyTk1NpLgkJCfrnwvDfrFmz5NTUVDk8PFy2t7eXBwwYID/77LNG9zpixAgZkF999VW5R48esoeHh/zss8/KJSUlsizLcmJiojx9+nTZ29tbdnBwkLt06SLPmTPH6HmaNWuWWa+rJTqgyfeqswaW9KgRCBo78fHx9O3bV/948eLFzJ8/v8rxS5YsYcGCBfrHcXFxIvIkEKDkLyUkJODv72+0rCZo2ph6XS3RASLHSSBoZvTp04fFixfrHy9YsIAlS5ag0WqITYll88XNxKbEotFqKommxYsXC9EkEAgE1SBynAT1gizLok1BA6KLMOlE0YIFC/ji2Bc4jilPNi34s4AL68pzAWqKTAkEAoFARJwE9UBRURErVqzg0KFDtW6iKKg78+fPN4o8XVh3gfTfFIO69N/ShWgSNBuqMne01niBwBAhnARW59ChQyQnJ/Prr7/y8ccfExcXZ7IUVlD/vPLqK3R+sLP+ceqGVE4+fZLUDan6bV0e7MIrr77SENMTCOrMzJkzmTZtWiXvpKoYN24c06ZNY+bMmfU8M0FzRQgngdUJDQ1l3LhxuLi4kJmZycaNG/nkk084evSoEFC3mMNph3Ec44j3FG/9Nm1++WvgPcUbhzEOHE473BDTEwjqxPfff8+3334LwJYtW2oUT+PGjdOXvH/77bci8iSoFUI4CayOjY0NgwYNYu7cuYwZMwYnJycyMjL46aef+O9//2uxLb+g9qTnK0tznnd5onIy/u+uclLheZen0TiBoCkxdepUxo4dq3+sE0/FpcV8e/Jb3t7/Nt+e/Jbi0mIj0QQwduxYpk6d2hDTFjRxRHK4oN6wtbVlyJAh9O/fn5iYGPbu3YuPjw82NuJtd6vwdCoTRr+lG0WaQIk8pf+WjuddnvpxAkFTIzIy0kgUbdmyhVbBrej4Ukf9mKenP03usXKDyrFjxxIZGXmrp2oVJEkiMzMTDw+Php7KbYuIOAnqHXt7e8LCwvQRKB0ZGRmsXLmSs2fPIuzE6odgr2AK/iwwymkyjDylbkil8M9Cgr2CTR0uEDQJIiMjjSJPucdySXw/EYDE9xObjWgSNA6EcBLcMhwcHHBxcdE/3r17N9euXWPdunV8+eWXXLhwQQgoK/Peu+8ZVc95T/Em4NMAo5yn8+vO89677zXE9AQCq7Hpt0249Cr/+5J7PJfjjxwn93i5aHLp5cKm3yzrp1ZbkrMK2HvhOslZ5vdds5SDBw8yZMgQevfuTWhoKHv27AFg4cKFvP322wBs3rwZSZI4e/YsAI899hjffPNNvc3pdkAIJ0GDMXr0aIYOHYqtrS1Xr17l22+/5auvviIhIaGhp9YsqGhu2fnBzvqcJs+7POnyYBf9Pp1JpkDQVFl/dj0dX+qIS5CLyf0uQS50fKkj68+ur/+5xF5m6JLtPLjyAEOXbGd9bNU93GpLcXExkyZNYtGiRRw9epSlS5cyefJkcnNzGTVqFNu2bQNg69atDB48WP9427ZtjBo1yurzuZ0QwknQYDg5OTF69Gjmzp3LoEGDsLGx4fLly6xevZr16+v/j1tzxpQj+Jlvz7Bq7CreCXuHVWNXcfrb0yYdxgWCpsiV7CsAdHy5o8n9uu26cfVFclYBC346hrYseK6VYeFPx60eeTpz5gwqlUq/RDls2DC8vb2Ji4tj6NChxMXFUVBQwM6dO/m///s/tm3bxpkzZ3B2dqZt27ZWncvthhBOggbHxcWFcePG8fzzzxMSEoJarcbHx6ehp9VkiY+PrySa5s+fj1qlJsQnhDs73UmITwhqlbqSSeaCBQuIj49viGkLBHXCz80PQJ/bVBHddt24+iLhep5eNOnQyDKJ1/Pr9bqAvluDvb09AwYM4IcffsDR0ZHw8HCOHj3Kli1bGDlyZL3Po7kjhJOg0eDm5saECRN4/vnnGTRokH77+fPnWbduHcnJyQ04u6ZDnz59WLFiBWCeI7iheFqxYoXoVSdokkzrNo3E/yQa5TQZkns8l8T/JDKt27R6nYd/a2dUFbpNqSWJjq2drHqd7t27o9Vq2bp1KwB79+4lJSVF3+B71KhR/POf/2TkyJGoVCr69evH0qVLxTKdFRDCSdDocHd3x97eXv84KiqKs2fP8vnnn7N+/XpSU1OrOVoA8MQTTxAXF2d2G5X58+cTFxfHE088Uc8zEwjqh7vvutuoes4lyIWgr4OMcp5yj+Vy91131+s82rg7snhSL9Rl0R+1JPH2pCDauDvWcKRl2NnZ8dNPP7Fo0SJ69+7NCy+8wIYNG/QFOKNGjeLSpUt6oTR69GiuXLlCeHi4VedxOyLJooyJ7Oxs3N3dycrKws3N7ZZdNz4+3qJv95aOby5kZGSwc+dOjh07pq+6CwwMJDw8HE9P4T8kENzuVDS3dOnlYuTjlPif2lkSFBYWkpCQgL+/Pw4ODhbNKTmrgMTr+XRs7WR10SSoG6ZeV0t0gIg4NRArV66kb9++ZifjLlmyhL59+7Jy5cp6nlnjo1WrVkyaNImnn36awMBAAE6cOMGnn37Kjh07Gnh2AoGgITHlCJ5xOINXQ17lge4P8GrIq2QczjDpMF6ftHF3ZHDnVkI0NUNExIlbH3GKj4/Xr0NDzXkoFSuk4uLibsvIk47U1FR27NjB6dOnuf/++/ViSiAQ3F58//33TJtWnrNUUySposhav359tW1X6hJxEjReRMSpCdKnTx/TZeBaDSREw7ENyk+txmRZ+e0smgC8vb2ZPn06Tz31FAEBAfrtMTEx/Prrr2RlZTXg7AQCwa1i6tSpPPzww4B5y2+GDuMPP/yw6FUnqBUi4kTD5ThVEkV3ejI/pKh8f6w9CzaXN181p0LqdqW0tJQPPviAvLw81Go1/fv3JywsDFdX14aemkAgqGe+//57i0SQueNFxKl5UteIkxBONJxwAhPiaaQ984fZs2R3EQv+KhdRQjTVzKVLl9ixYweJiYkA2NjYEBISwrBhw3B2dm7YyQkEgiaHEE7NEyGcrEBDCie0GpZMbGMUWfJwgJuF5UMW3+nJ/F+TQaW+tXNroiQkJLB9+3auXFEcgm1tbZk4cSK9e/du4JkJBIKmhBBOzROR49TUubSX+SFFLB5Z7ltkJJpG2ivLd5f2NsDkmib+/v489thjzJgxA19fX0pKSvDy8mroaQkEAoGgGSCEU0OTq5g5zh9mj0eFLzQeDsp2w3EC85AkiS5dujB79myeeOIJoxYuW7duZefOnRQVFVVzBoFAIGi6JCUlERYWVuX+1q1b69MaBJZh09ATuO1x8QZgye4io0gTKJGnJbuLFPFUNk5gGZIk4evrq3+clZXFvn370Gq17N+/n6FDhxIaGoqdnV0DzlIgEAisS9u2bYmOjm7oaTRLRMSpoekwRKmeM0gEN4w8LfiriCWx9tBhSANMrvnh5ubGpEmTaN26NQUFBWzbto3ly5ezb98+SkpKGnp6AoGguZB1DRJ2KT+tiCRJ/Pvf/2bgwIF07NiRjRs3snjxYgYMGEDXrl2JiooCIDExEQ8PD/1xmzZtomfPnvTu3ZtXX33VqnO63RDCqYFZ8u57xpYDI+3JfM3NKOdpweZ0lrz7XkNMr9khSRJBQUE8/fTT3HfffbRs2ZK8vDy2bNnC8uXLuXz5ckNPUSAQNHUOfwPLgmD1ROXn4W+senoXFxcOHDjAl19+yYwZM2jTpg0HDx7k7bff5pVXXqk0Pi0tjUcffZQff/yRo0eP0qVLFzIyMqw6p9sJIZwaEJM+TmU5TfOH2bP4zvI+bHqTTIFVUKlU9OnTh2eeeYa7774bDw8PiouLad26dUNPTSAQNGWyrsGvc0HWKo9lLfz6glUjTzq39AEDBpCXl8f06dMBCA0N5dy5c5XG79+/n969e+sNgx9//HGRnlAHRI5TA2HKEXz+q68o1XO5qeDizfx/DoF339OP0/0Ufk7WQ61WExwcTJ8+fUhJScHJyQkAWZbZuHEjHTt2pHfv3qjVwgpCIBCYwY0L5aJJh6yBGxfB3df0MRaiK6HX/V0yfFxaWlrj8ZIkWWUetysi4tQAxMfHVxZN8+crPk3+YdBrivJTpWb+/PmV2rPEx8c3xLSbNWq12iiJPDExkfj4eH755Rc++eQT4uPj0Wq11ZxBIBAIgJadQarw0SqpoWWnhpkPMHjwYI4ePcrp06cBWLVqFcXFxQ02n6ZOsxBO165dY8aMGbRq1QpHR0d69erFwYMHG3paVdKnTx9WrFgBmOcIbiieVqxYcdv3qrsVtGvXjjFjxuDs7MyNGzf4+eef+fTTTzl+/DjCM1YgEFSJuy9MXK6IJVB+TlxmtWhTbfD09GTVqlXcd9999OnTh3PnztGqVasGm09Tp8k7h2dmZtKvXz8iIiJ46qmn8PT05Ny5c3Tu3JnOnTubdY6Gcg6Pj4+3SARZOl5Qd4qLi4mJiWHPnj0UFBQA4OXlxYMPPmhUsSIQCJofdXIOz7qmLM+17NSgoklQmbo6hzf5HKd33nkHPz8/vvrqK/02f3//BpyR+VgqgoRouvXY2dkxbNgwQkJC2L9/P/v27UOj0dz61jwCgaBp4e4rBFMzpckv1W3atIkBAwZw//334+XlRb9+/Vi5cmVDT0vQzLC3t2fEiBHMnTuX+++/H5VK+a9TWlrK+vXrOX/+vFjCEwgEgtuAJh9xunjxIp999hnz5s1j4cKFxMbG8vzzz2NnZ8esWbNMHlNUVGTUbiM7O/tWTVfQxHF0dMTR0VH/+MiRI5w6dYpTp07Rvn17IiIimkzEUyAQCASW0+QjTlqtluDgYN5++2369evHnDlzeOKJJ/jvf/9b5TGLFy/G3d1d/8/Pz+8WzljQnAgICGDw4MHY2Nhw+fJlVq9ezddff82lS5caemoCgUAgqAeavHBq06aN3tRLR8+ePat1gF6wYAFZWVn6f1euXKnvaQqaKc7OzowdO5a5c+cSGhqKWq0mMTGRr776im+//Va0cREIBIJmRpNfqhs6dChnzpwx2nb27Fk6dOhQ5TH29vbY29tXuV8gsBRXV1fuvPNOhg4dSnR0NIcPH0alUmFra9vQUxMIBAKBFWnyEacXX3yR/fv38/bbb3P+/HnWrVvHihUreOaZZxp6aoLbEHd3d+666y6ee+45xo0bp9+ek5PDDz/8QGpqagPOTiAQNHUkSeLmzZsm9915552VAgmmeOSRR1i2bJl1J3Yb0eQjTiEhIfz8888sWLCAf/3rX/j7+7Ns2TIeeuihhp6a4DamRYsWRo93797NiRMnOHHiBIGBgYSHh+Pp6VnF0QKBQGA5mzdvbugp3BY0+YgTwF133cWxY8coLCzk1KlTPPHEEw09JYHAiAEDBhAYGAjAiRMn+PTTT/npp59Eh3KBoJmSkpdCTHIMKXkpVj/3p59+SmhoKP7+/kYehh07diQuLg6A06dPM3jwYAIDA5k0aRJjxozh66+/1o89deoUI0eOpFu3bkyaNEm0YLGAZiGcBILGjqenJ/fffz9PPfUUPXv2RJZljh49yieffMLvv//e0NMTCARW5KdzPzH2x7E8/ufjjP1xLD+d+8mq57e3tycmJoY//viD559/3mRj34cffpg5c+Zw4sQJ/v3vf7Nr1y6j/XFxcfz666+cOnWK1NRUfvzxR6vOsTkjhJNAcAvx9vZm2rRpPPnkk3Tr1g2tVouNTZNfMRcIBGWk5KXw5r430cpKU3CtrOXNfW9aNfKkS0Xp0aMHNjY2pKQYnzs7O5u4uDhmzpwJKJXmw4YNMxpz33334eTkhFqtJjQ0lAsXLlhtfs0d8RdbIGgA2rRpw4MPPsjVq1eN8qGuXr3K0aNHCQsLw9XVtQFnKBAIasPl7Mt60aRDK2u5knMFH2cfq1zDsG+eWq02GXGqiCRJdT6HQEFEnASCBqRdu3Y4OzvrH+/YsYOYmBiWL19OZGQkubm5DTg7gUBgKe3d2qOSjD9aVZIKP9dbZ7Ts5uZGnz59WLNmDQBnzpxh9+7dt+z6zR0hnASCRsSwYcNo3749paWl7N+/n+XLl7N161by8/MbemoCgcAMfJx9WDR4kV48qSQViwYvslq0yVy++eYbPvvsM4KCgnjttdcICQnBw8Pjls6huSLJojMp2dnZuLu7k5WVJbreCxocWZa5ePEi27dv59q1awDY2dlxxx13MGjQoAaenUBw+1BYWEhCQgL+/v5GS1vmkJKXwpWcK/i5+t1y0QSQm5uLs7MzkiSRkJDA4MGDiY2NFS3GMP26WqIDRI6TQNDIkCSJzp0706lTJ86dO8eOHTtITk4WLuQCQRPCx9mnQQSTjr179/LKK68AoNFo+OCDD4RoshJCOAkEjRRJkujWrRtdu3bl7NmzdOnSRb/vxIkT3Lhxg4EDB2JnZ9eAsxQIBI2RMWPGMGbMmIaeRrNECCeBoJEjSRLdu3fXP9ZoNGzbto3MzEz27dvHsGHDCAkJEREpgUAguAWI5HCBoIkhSRIRERG0bNmS/Px8/vzzT5YvX87+/ftFSbFAIBDUMyLiJBA0MVQqFb179yYoKIj4+Hh27tzJzZs3iYyMZO/evUyYMMEoQiUQCOqGqKFqXtT19RTCSSBooqhUKvr160fv3r2Ji4tj165dZGVlYW9v39BTEwiaBba2tkiSRHp6Op6enpVMJAVND1mWSU9PR5KkWqc3CDsChB2BoHlQWlrK2bNnCQgI0G87cOAA9vb29O7dG5VKrMwLBJaSm5vL1atXRdSpGSFJEu3atcPFxUW/TdgRCAS3ITY2NkaiKS8vj7/++ovi4mKio6MJDw8nMDBQCKg6otFqOJx2mPT8dDydPAn2CkatUlttvKBx4eLiQteuXSkpKWnoqQishK2tLWp17f8PiogTIuLU7NBq4NJeyE0FF2/oMARuww+qkpISYmJi2LNnj9553MvLi/DwcHr27Fmvyw5NVSzUNO9tl7axJGYJqfmp+m3eTt7MD53PqA6jKp3P0vECgaBhsEQHCOGEEE7NipOb4I9XISe5fJtrGxj/LgTc3XDzakCKioo4cOAAe/fspjDlHBTn4ePbnnsefYE2vu2sfr2mKhZqmve2S9uYFzUPGeM/mRKKAF0avtTo/iwdLxAIGg4hnCxECKdmwslN8P3DVe+f+u1tK544uYnCX19h38mr7L+qoVQLz49qj/u974JTK6tF55qqWKhp3u+PeJ93Y981ElUVx3k7eRM5ORK1So1Gq2Hsj2PNHi8QCBoWIZwsRAinZoBWA+91hoLMqsc4toRXzt9+y3YnN8H3M6FMFBSUyFzO0tK9dfnzsCOhlA4eKvzb+yLVMjrXVMWCOfP2sPcgs6ia91YZq8auIsQnhNiUWB7b8pjZ4wWNm+LiYgoKChp6Grc9jo6O9dYpQSSHC24/EqKrF00ABTeUcZ3Db8mUGgVaDUS+BgaRFEdbyUg0Jedo2XmpFC5Bh8TL3HFlBh3mrLFYPB1OO1yl+ACQkUnJT+Fw2uFGJRbMmbc5ogkgPT/d6Ke54wWNl/T0dJKSkoQVQSNAlmXatm2Lp6dng85DCCdB8+DSbvPH3U7C6dJeyE6qdoirvcRAXzUHk7RcytLwVZyWTv/3NyIW98avQ0ezL9WUxIJhEviFmxesdl5PJ0+jn+aOFzROiouLSUpKws3NDS8vLyGeGhBZlklLSyMpKQl3d/cG7dEphJOgeWDugvPttjCdW3UkRYeLncT4rrYMbS+z61IpR5K1XEzK4OLSN+kaOoqJEyeatYTdVMSCqSRwc2hh34KbRTcr5UFB+TJksFcwAMFewXg7edd4jcxC8yJZgoahoKAASZLw8vLC2dm5oadz2+Pl5UVOTg4FBQUNKpyEoYugeeAfZt1xzQUXb7OHutlL3NXNlucG2hHcRo2qJI/kpGs4phyCYxuUZU6tpsrjdWJBl1BdEQkJHycfvbhoCHRJ4JaIJt28Xx/0uv5xxf0Ar4W+ps/dUqvUvBryao3nfi/2PTTVPKeCxoGINDUOGsvrIISToHnQcZiS/F0dDi2Un2aIgGZDhyHg1haqEDOm8HCQuLu7Lc+22s196cuxXXcv/Pg42q8nsOVvHUmL/sbkcWqVmvmh8wHzxMWtRqPVsCRmicmIUVUYzntMxzEsDV+Kl5OX0RhvJ2+T1YItdO+3atDlfDUGNFoNsSmxbL64mdiUWCHoqsDX1xdJkkz+mzJlSkNPD1A83O69915cXFyQJIlnnnmm0pgpU6YgSRLvvfdeA8ywaSOW6gTNA5UaJi6v3o5AkuAbg4Rnt7Yw7p2mZVFgqbmnSq3c4/czUcST+aKhpTqPlk7lj0+kadl3Np39/5hD0L0nGTHjZVq3bm10zKgOo1gavtSkH9Jroa81qBVBTUngpqg471EdRhHhF2GWuWdTyvlqqt5bDcH7779PXl4eV69e5c0338TDw0MvPjp37tzAs1PYu3cvv/zyCz4+Prz33nsEBzdclLc5IiJOguZDwN2KV5NbW+PtukhUwQ3j7dnJiqA4uenWzK+unNwEy4Jg9V3w4+PKz2VBNc8/4G6Y+g24tanT5X1cJHq2ViEDx/74kk8+/oiNGzdy44bx8zqqwyi2TN7CqrGreCfsHVaNXUXk5MgG/wA2V6DM6T2n2nmrVWpCfEK4s9OdhPiEVBlBa0o5X6aWL9Py05gXNY9tl7ZVeeztGKV64IEHmD17Nvfeey8ATk5OzJ49m3bt2nHHHXcwZswY/dgxY8YgSRJbt27lpZdeQpIk7r77bgYMGICLiwvDhw/n6tWrAOTk5PDUU0/h6+uLo6MjAQEB/O9//6tyHqtXryYgIABHR0fatGnD448/TlZWFps3byY8PByAlJQUnn76aWJiYmq8r48//pgOHTpgZ2eHq6srffr0ISkpifz8fCZPnkyLFi2wtbXFy8uLJ598EkB/T7qI1kcffWQUebP0npoKIuIkaF4E3A09JpRHZZxawy9PgUkLFhmQIHK+ckwj8haqRAUvJj068Tf1m+ojZxWfFxdvyMuAzfMgP8OsKXg6q5gWpCI5R0tUYh5nMi8TFydx9OhR+vbty/jx4/XdxnXiojFhrkAZ1GaQVeauy/lKy08zK6G8Iahu+VJGRkLinZh3iPCLqCQQRZTKmHHjxtGrVy+2b9/OhQsXcHd3Z+fOnXTt2pXRo0cTGRkJQFRUFAsXLmTnzp1ERkYye/ZsIiMjefrpp1mzZg2TJ0+mW7du/Pjjjzz88MN06dKFAQMGGF1r69atPPbYY7Rs2ZJ//etfbN26lVWrVpGTk8MHH3zA3LlzWb58OZ06dWLBggUMGzasxvkvWLAAR0dH3nvvPfLz8zl48CAlJSX89NNP/PTTT4wePZp77rmHq1evkpeXZ9ZzYsk9NSVExEnQ/FCplSTwXlOU36stx5ch+5oiKBorJryYyinbFjm/5pwtw+fFPwyC7oVxSyyeThtXFQ/0suWJiYPo0qULWq2WtLQ0bGxMfA/TapR8skaQV1YfyevVRVwae84XWOa9ZUhdolTNmXnz5qHRaPjggw9YvXo1xcXFPP7440ZjJk+ezPz581m9ejUA0dHRAGzevBmAH3/8kcWLF3P27FlKS0v12w356aef0Gq1zJ49m1deeYVvv/0WgD/++ANfX1991KtVq1bMnj2bHj161Dj3zp07k5mZyR9//MH169eZM2cOHTp0oEePHqjVak6cOEF0dDQuLi689NJLZj0fltxTU0JEnATNGzPK8c0e11DNg2v0YjIQf5ZWDbrWfvnOt3MAM0aFceXKFVQqlb7ipbCwkF27djGkRSYu0W8Yz70B88p0QmZe1DwkJKMoS22EjDkRl8ac8wWVly8lrYwsoeQDVjGuLlGq5s7DDz/MP//5T9auXUv79u1xcnJizpw5Fp3jq6++okWL8sKCLl261HiMNarNoqOj+e6774iPj2fTpk0sXbqUtWvX8uCDDxIfH8/GjRs5deoUb731FkuXLiUpKQm1Wnl9S0tLAcjIMB29rs09NWZExEnQvDG3HL+mcbXNL7IG1hR/FalF1R1I4OarHAv4+fnh6+ur37t//372/vIVy1+bxZ9HLpNXbPAB28B5ZTohY25lXFVYEnFprDlfAF4qN3qfz+f+HTd4/Ld0/vZLGn/blM4jm9MZv/8m7VOKQJaNljlrG6W6HVCr1TzzzDPcvHmTo0ePcs899xgJBlCiL0uWLGHWrFkAhIUpX3buvPNOAFauXMnly5c5dOgQ//rXv7h8+XKl60yePBmVSsWXX37J+++/z8yZMwEYP358rec+c+ZMUlNTCQoKon379gBcunSJyMhI3n//fRwdHfW5WZmZmeTn5+sF0Pbt21m9ejVffvml0TktuaemhIg4CZo3OmGQnYzppS5J2V8mAkxS1/yiumIt8WcKi6vuygTWuCVVRts6+LWjXXoUV7Uye6+UcjBJw0BfNUP81Djalp2jAfPKKlbGtXJshSzL3Ci8QWxKbJVVcjpqE3FpdDlfmZkQHU3w0XjGnpbJKynV34+klXEskumYXIR/cjFyCw+CuxRC61KwsWlS1YINwbPPPsuSJUu4efMmzz77bKX9I0eOZMOGDZw+fZqwsDBWrlwJwKeffoqrqyubNm3i5Zdfxt3dneDgYJOVeqNGjWLVqlUsWbKEf/zjH7i7u/Poo4/ywQcf1HrehYWFfPjhh9y8eRMXFxfuvfdenn76aY4dO0ZsbCwbNmygqKiItm3bsnDhQlq0aMGsWbP4+eef2blzJ4sXL2bIkCF8//33+nNack9NCdHkF9Hkt9mjFz5gLAzKREB1wkerUSJLVS6VlQmvF47VnwjQz6EG8VeXOZzcpORRGd6nY0vleoY9AN18FdFUnVBMiEb+egLnb2jZkaghKUcLgL1aYoifmuEd1MrSwqzfGtyQtDYJzk2+gW9CAqxfD4WFAFy8eZEtiVsATC5fju04lk4enaB9e3jgAWKzjjft+7eArKwsLl26RJcuXXBycqpx/Llz5zhw4ABz5swhICCAgwcP6ve99NJLLF26lHnz5vGf//ynPqfdbMnPz+f8+fN06NABd3d3q55bNPkVCAzRleNXFAZubWsWAfWZX2QOuryqgHth/6dUjgrVHAEyC1NVd7oonKV5XbmpSJJE11ZqurRUcSZDy44EDal5WjIL5fJ8jNosLVoR3XJbxciRbrmtqqW7Jh1xuXAB1q0DTXkSeyePTowMupevtAdIIhuVVqZljoZe120Z3maoIpoALl+Gr74i+JFZjb5asKH473//y7Jly+jcuTMrVqxo6OkI6gkhnAS3B1UJAzNEgFnUhwgwFQWSJDAMEpsj/sxFV3VXEUsFocGSoSRJ9GitpnsrFaeua2njUp5Web3YnjN79hASEnLL+07VJcG5Nv5Mhk2FqzPNrFfS0pRIk4FowtcXhg6lW/fu/J+E8Rydu6OOi4e9e6GgQH8O9fc/MH/Eq8zb9bJVkuybE//5z3+qjCZVt0/QtBDCSXD7UJUwqI76yC8ypzqvqrwqWVn2YtDT0P3OW1fZZwkm8sokSSLAUzdPZWlxx/l8Tpw6xN69ewkLC6N///56H6j6xpIE54rLTZb6MzUav6MtW6C4uPxxr15w771QVhmlhspLa2Fh0LMnfPstZGUp2xITGdWvX6OuFhQI6hMhnASC6jDHHNK1rSJojm2oOZJlKopUsUS/Wt8mAAlO/gJj/q/xiSaoIeG8fGmxW0kHklJSyMzMJDIykj179hAWFkZwcLBpTygrUpflNktsDWq7HGh1MjKUZTpAK2tJbKXidG87PNMPl0e/qhL0rVvDjBmwcmW58IqNZdTs2Wa3nxEImhNCOAkEVaHVwJYFNY8rKTCvB5651XkNnVel0cDp03D0KNy8qSQR29iAoyN06AD9+0PLGhoqm5FX1gcICgoiLi6OXbt26dtF7Nmzh5EjR9K7d2/r31sZdW2HYo4/U6PyOypLUr548yK7r+3m66F2pO/9UT/n+W1GMirmm6oFvacnBAfD/v3KvqtXITkZdZs2TT4BXCCwFCGcBIKqqFHAlFGYafzYlE1Bje7fBiX65uZLXdxp3aW6/HyIiYFDhyAnx/SYq1dhzx7o0gUGDlR+VmW+Z0ZemVqtpn///vTpFcSRzavZtXsPWZkqsm/Wb2KxNdqh1NTwty7LgVZFo4EjR/TVc6ktbEhv4azfnZafyrzza1lamolR7Kvi+3jAgHLhBMr75K676m/eTZkrV+DaNdBqoVUr5f+JWkTimgvNTjgtWbKEBQsWMHfuXJYtW9bQ0xE0FnJyIC4OkpKUCIosg4ODsgzRr5/yx60itU74NtEDz5Iokrn5UtHvQfxa6zhxJyUp1Va5ueaNP39e+RccDBMmVP2hYE5e2clN2ES+Rkh2Ev2cZA4na+m7fx+0fhcC7iYhIYGcnByCgoJQqazj2WstF/Hq/Jnqu/rO7ITzrCy0BfnsvrYbGZlTHRyNdpe9W3mnVQsi8gtQV9yjex+3bg1+foooAEhJqdW8mzXHj8OffyqiyRAPDxg+XMkZs9J7WNBwNCvhFBsby+eff16vIX5BEyMxEWJj4dQp5dufKXbvhs6dISQEuncvj6DUxlBST4XlNEuq8wLvq8G00wBrmHBevgxr1hgnDgPY2irPi5OTErVITa38YXn4MOTlwbRppj8QakqEr7B8aaOSCPVVQ34KfD8T+f7VbIlOJiUlhejoaMLDwwkICLBKi4n6bodS1+XA6rAo4bywkOS8ZHJLFFGc41T5dZIliRQbGw472BNSWGS4x/h93KJFuXAq84ESlLFzJ2yqwhH/5k1l3+XL8NBDdRJPvr6+bNiwgcGDB9frMaAUdaSnp9O6dWtLp9msaTbCKTc3l4ceeoiVK1fyf//3fw09HUFDo9HAb7/BkSPmjb9wQfnXqRNMnapEo2p0HTcDnWCypDrPIjdvE9EtS8jIgO++MxZNLVsqy3B9+ijPg/5SsvJNOjYWjh0rF6JnzsDmzZWXbWpKhDdj+VL7x3wCQz4jKyuL9PR0fvjhB7y9vYmIiKB79+51FlA1LbfVBWssB5qiNgnn+SX5+t/lap6y9Koih6aEv/BOLufMmapFkyFxceDjA6NH1/uUGgOaMusLtcH7qqSkxOzqWUvG3kqaTczwmWeeYcKECYwaJcpgGwMFOt+XhqC0VBEDpkSThwf4+ysCydPEN/2LF2HVKiXfRydgAMt6uRmgE0z5GSBV99/NuP+bPrnazZwmvAZRAUvZvLncowega1f4298U4WQomkCJxLVrB/fdBw8+qESkdBw8qET3dOgiSRWXJw171ZmxfKnOTSKsvZq5c+cSHh6Ovb09qamp/O9//2PlypVcunTJ8nuugG657c5OdxLiE2K1RG3dciCUL//pqK3fUU0J5wDvxLyDRmvg1eTggJNtueu1a34VkVfA09DjyRDd+1hnSQBKsYBAYft248f9+8MLL8Brr8GoUcYRpuhoKCmx+hTeeOMNgoKC6NGjB0FBQfz1119G+1evXk1gYCDt27fnn//8p3778ePHCQ8PJygoiG7durF48WKzrrdo0SJ69+5NQEAAYWFhnD17FlAc0seOHUtYWBjdunVj+/btuLq68vTTTxMQEMCSJUs4ceIEQ4YMoVu3bvTo0YM1a9bozytJEi+++CJBQUE899xzVnhmrE+ziDj973//4/Dhw8TGxpo1vqioiKKi8nB0dnZ2fU3ttiQrK4uPP/6YwMBARowYUanJZb0iy/DLL0r+jQ5JUpbgQkMV0WQYpdBFUI4fVwQXKEaB330HM2dWUx3mCyX5xu1ITJGXoYiEHx6hxqhVRfdvXXJ11GLY9V7N925pTtb16/oSdUBpqTFtmlJBV4ZGKxOTcIO0nEK8XB0I9W+JWiUpya5Tpyp5UbrIQ2wsdOxofiL8qDfMm2duKg4ODoSHhzNw4ED27t3LgQMHSEpKaliBbgbWXg6sVcK5uzttWnbExdaFvJI8ul8u5FRHY9EjyTLeGg3BRst0YNTL8cYNMBSqXl4IUPr+Gf69CQxUvljoGD8e7OyULymgLG0fP67kVlqROXPm8MYbbwBK093HH3+chIQE/f60tDSOHTtGamoqwcHBDB8+nPDwcKZPn86aNWvo27cvOTk59O/fn6FDhzJ8+PAqr/X5559z5swZDh8+jI2NDZ999hlz5swhKioKgCNHjnD48GHatWvHmTNnyM3NJTAwkE8//RSA3r17M3PmTF5++WWOHz/OsGHDCA0NpVu3bgDY2Nhw/Phxqz4/1qTJC6crV64wd+5ctm7dikPFb8hVsHjxYt588816ntnty5kzZygpKSEuLo6jR4/Sr18/wsLC8PDwqP+LHz+uLCPpsLdXxECnTqbH+/oq/4YMgbVry79RX7mi5D5FRFRdHXbqV/hhVvXz2bKgLFhVjWiS1DB5lekcJZUa/EeYJ5wszcky6KMFwLhxRqIp8ngyb/56kuSs8lyWNu4OLJoYwLigNkp0qls32P8nFOdB1hUYMxpuHDMvET7PzKRog/tydHRk5MiRDBo0iPj4eLp3767fd+LECZydnenYsaN5571FWHM5sFYJ52o1qr79GJY2jC2JW2ibUUKrmyVkeCgRQ93XiNcybmI8owrtfCq+X4Jvv5YqJkmtIGQHDqw8ZsiQcuEEypczK3PgwAHefvttbt68iVqtJjExkby8PJydlQrKJ554ApVKRZs2bbjzzjvZsmULLVu25Pz580yfPl1/nry8PI4ePVqtcPrll1+Ij48nKCgIAG2F/NGIiAjatWunf2xjY8Pf/vY3AG7evMnJkyeZO3cuoFiSDBgwgL/++ksvnJ566ikrPCP1R5MXTocOHSItLY1gg//EGo2GXbt28fHHH1NUVGS0vgqwYMEC5s2bp3+cnZ2Nn5/fLZtzcyc0NBRfX1927NjB+fPnOXToEHFxcQQHBxMWFla/jZQPHCj/Xa1Wvvl16KDfVGUlkpeXEmH68ktlmQ6UD4qwMEVMmKoOczJRiVeRHDPsDGQNOFdzrhpzrQyiAuaSlKT8Ic/PVyJGbdsqOUuyDJJE5PFknlpzuNLVUrIKeWrNYT6bEcw4VSwcfx3ir5YPWLgNJj6IWTh71vq+nJ2dGTKkfHtRURG///47+fn5dOrUiYiIiEb1f7q66jtLqHXC+YABdIqJYWzHsey+tpuBp/L4Y6A7skrC28mH19rcwagb3wDluVBG7Xxu3FAKAXS0aaN84RBUxlTuVz3ngxUWFvLQQw8RGRnJ8OHDyczMpGXLlhQUFOiFkylkWcbNzY3Tp09bdD1Zlpk3bx4vvfSSyf0uLi5Gjx0cHCp9DhtSMVexXj8jrECTF04jR47kmGGEAXj00Ufp0aMHr732mskXy97eHnt7+1s1xdsSX19fZsyYweXLl9mxYwcJCQnExsZy4sQJ5s2bVz/O0ElJis+QjgEDjERTjZVIrVopEabff1d25uUp1Xi9epm+njX701V3LjOduI2W+UxVs2llOHmyvMrw6NHy8TY28MUX4OmJpv8AFv95o7qFNqI2rmJs6XtINlpwlKCgbHRKelkzYjNwbWP5fVWBVqslMDCQw4cPc/HiRS5evEiXLl2IiIjAtxl9wNc64dzLCzp2pFMidHTvSHJeMveXtEG+awLBPgOULw9DXjVdAXnzplJ1aVhFFxJStX/X7YaPj3EPyQMHoCwSo2fPHuPHVl7mLCgooKSkhE5lkfV33nmn0pgvv/yS8ePHk5aWxh9//ME333xD7969cXFx4cMPP+T5558HlMitp6cnXtXM8Z577uHDDz/k4YcfxsvLi6KiIg4dOmT0ZaYqPDw8CAgI4KOPPmLevHmcOHGCgwcP6pfxmgJNXji5urrqw4U6nJ2dadWqVaXtgltP+/btmTVrFomJiWzfvp327dsbiabCwkKzl1hrpOJSQkj5N3yzK5F694atW8urzA4erFo41cmuwMJzmeHErcdUNVt+K9AOB5eOyuOKyalOZcnD6ekkrfuRCfGp7GvfmyNtu1f6gJTQ8nzJFyAp0SkcVVBQllRcYs43a4NIkkpt/n1Vg6OjIxMmTGDo0KHs2rWLuLg4zp8/z/nz5+nevTtjxoyhlSmvriZGnfynxoyBr75CVVKCr4svvknAn6cgrLWylF0xqlpYCEcPwa5dxv5e7dopFZcCBQ8PJefv3Dnl8cmT8M03SrTawUH5G7JrV/l4F5eq/6aYyV133WX0d3Tfvn3Mnz+f0NBQWrRoweTJkysd4+npSWBgIDk5OcyePVtfSPXbb7/x7LPP8vHHH6PVamnRogXff/99tdf/29/+RkZGBmFhyvtFo9EwY8YMs4QTwHfffccTTzzB559/jiRJfPTRR3Tt2tXc229wJFlufjWl4eHh9O3b12wDzOzsbNzd3cnKymr0IcKmjCzLaLVafRQwMTGRdevWMXDgQIYMGYJjXat0PvpIKa8HJQl8lpJ/pNFqGPvj2CqTanXf0iMnRyofOL/9Vi7CJAlef920waNWA8uCql9qcm2jBE9qWo564Zh5VgIW+iIBcKUULpQJm8D7wLO7svRiGHEKDoay9/7plGwijyt+TfFturGj0wAj8TRIdZL/2RlYfhwrgYyy87uqoL9dDTchVfadMqfxsQXcuHGDXbt2ER8fDyg5E9V9g25qmIqe+jj51Jxwfvo0rF9feemoZUslSuLiolh5pKcr+YIVvb1atoTHH4dqln+aE1lZWVy6dIkuXbrgpPtyYYqzZ2HFCvOW5MaPVyrtBBaTn5/P+fPn6dChA+7u7lY9tyU6oMlHnEyhy+wXNC4kSTJaOj1+/DjFxcVER0cTExPD4MGDGTRoUO0jUPkG+Rk+PvpfLa5EamNgASDLyjdvUx8U5iyhjS8LmVthOUp/zaqcuE1VsyVp4EJp+fXObwPfICUaZ2dXXlI+YYJiS3DoEM525c9jn+SzlKhs2O1fXgHkxU3j6xpGmcz5ixK+oHIkyRyHcQto2bIl9957L8OGDSMhIcFINB06dIgOHTo0aVO/Wiec9+gBDzwAP/xgHHW8ccM4KmKKtm2VnMHbRDRZRLducM89SkVvdeKpf3+4445bNy9BvdAshZOgaTBhwgS6dOnCjh07SE1NJSoqiv379zNkyBAGDhxoeR6azk4AjKrDLK5Eqph/ZXjeipi7hGaF5agaqeiLlKOFc4Zzl8EzHyYPBr9BimeV7o/81aswZQoMH07bAzE4n/wveYXKB+uAaydJdWnJOU8lXywNj/JTFsiQbVBR42hG3kurzrW7v1rQunVrI4F048YNfv/9d2RZpnfv3owYMYKWNTUsbqTUOuG8Wzd44glFKJ08WbWjvg4XFyVfcMgQRWwLTBMWpuRJbt2qOIQb0rKl0nJl6FDRcqUZIISToMGQJIkePXrQvXt3Tp48SVRUFOnp6Wzfvp2zZ88ye/Zsy05ob1/+Ldog+mRxJZJh5AoqG0FWXFbqMaHqZra6sZpiuPe/ilDJv26V5ahKVEwwv6Ix/vbb0Ub5V3xDyWnq1k1xPAYlWTw3F1xcUA8ZTM9nCjn4n5X6Q0OuneRc6/ZIkkSstgcFjj44FqRCUgVR6WPG/VgzN6wWdOvWjdOnTxMfH8+xY8fo06cPI0aMuDV2GY0FLy9FKOfmKtVycXGKH5Hu/WJjo/SlGzBAiVKJBrXmERCg/NMVquia/HbuLARTM0IIJ0GDI0kSgYGB9OzZkxMnThAVFcWAAQP0+zUaDbIs11yJ5+FRnsR65gzceSeo1QS37M2gdCdcLqXgUKTBRgMlNhJ5jioutLXnqpc93s4+5ZVIp06Vn9PBwfhbdk1tRAypbqwVl6X0GAqSYhnSDSIJLdXQQW00TtM/mJRD28kvycfJ1gmfXTtR3zkBgGH3ReCQkkTchi3kFpXilXsDn5wMJL92LJoYgKPqPfj2YUg2uIarClyrizjVwjbByrRs2ZLp06eTlJTEjr/+4tzB7RyJPM7Rnb/SL3wid4waXX0uS3PDxUWJhAwfroimoiJFJNnYWLVqzuyGxM2Ftm2Vf4JmiRBOgkaDSqWiV69eBAYGGm0/cuQIO3fuZPjw4fTr169qAdWrV7kdQW4uxMRAXh7qw4dZkNSdLVcSAYwqkQISC8lyUTNy0mzURcWKAaZhmL137/IPEFOJ12C60a4lY62Fod9TcqlxtKmdWmn5UiZctl3axpK4xYxMOYV7rhI1crn0Fz1KEgi951kABkwbT3DKWa5lFpBXXMr4XhJdnrxDcQ7PGwm2D4L6ByjNUa7RVq14WxXcwCr5XPVI25sHeSj9ba6orhKVUsqFTC3Hz2xiZLtPIPj+WzaPRiUoJKlydNUKWNSQWCBoAjTLqjpLEVV1jZtVq1ZxuUzMuLu7M3z4cPr27VvZo6uwEP7zH2W5LjUVkpOVsuky4XPx5kV2X9ut7xIP4GLrwjDfYXTy6KQsX7VoobRh0fH008qyhr6CripDS4PqODB/rLU/JHWC7WAR5JZFgxwlCLVXnoep37DN2UlvzdDpWiFjY7LKZqU8T4PueZ5+9z2jRPDWrClvJ2FrC/Pnw5nT8L/PIT0F7JwUfeRmC7MehM7D4fTvplvUWDOfqy6YELWXbmrJKoLe3oo9gtxzIgcOHKBXr17VGgjWhdtBUFRlA6J7r5lqSNyYMLuqTnBLaCxVdUI4IYRTY6e0tJTDhw8THR1NTo4S3WjRogUjRoygd+/eqAxzB3791bhXXZs2Si6PJIG9PVovLxILrpGbm0HLG0W0dfRCpWu+e/my0qg2KEhJ5uzYER55RNmXEA2r76p5srN+U36aO7Y+luxOboLXZkNOWfsYXzX07wjjlqDpMaGSNUPwmTwGnlTEpISEs60zMwIfRtWtu5KjceCA8jMvD1rKcOJ3KMopv567B/x9OYSWt22wtr1AndHNJycZIhcoeWYmUUTt+bt+Zs2677CzsyM0NJQhQ4ZY9YOzqQsKc7DYBqQR0liFU2FhIfPmzeO3337DxsYGGxsbnn/+eZ599tlqj7t+/TpLly7l7bff1m8LDQ3l+eefZ8aMGbzwwgv06NFD3x6lsdFYhJNYqhM0emxsbAgNDaVfv34cOnSI6OhoMjMz2bhxI5cuXeKee+4pH9yqFRg0tiQ5WYkkPfQQDBuGys4Ofdc6XWLsnj2KZ40u0nTihNKAc8SI8vOY6xJuiZu4NZ3HDQm4G0KfhesJSg+5YUPggedApeZwSmylD7LD3ZyQJRh0IhcZmdySXJJzk/A9K0FKiuL9A5B3HezPGf/VcFRBjwLY/DdwcSqPKFnZXqBOmMo1qxKlj559+jHatm1LUlISu3fvJjY2lkGDBjF48OA6G7ZqtBqWxCwx6fwtIyMh8U7MO0T4RTRaQWEOtWpILDCLqVOnUlRUxPHjx3Fzc+PMmTOMHz+e0tJSXnjhhSqPy8jI4KOPPjISToaY631oSElJCba2thYf15QRaf6CJoOtrS2DBg1i7ty5jB6tJPH2799fv78kKwt5xw6lqkWXl9S+veJ0HB2teNecOqWIgdRU5Wd6upIQW2TQFV6jUSpgDJvFmlsJ5uJt2dj6wt4BWnQA7wBo1UMf7TFpzSBJHOnmzB+DPMhwV1RRfklZZaGmzNhSluHGRcUtHEAlQRs1BNuWWxBEzlciO40J3bKcWaKpHD83pSnqAw88gI+PD0VFRezcuZNly5axc+dOSquzqKgBSwRFU6ZWDYmbAW+88QYLFy402rZw4ULeeOMNq5z/+PHj/Pnnn3zzzTf6yEj37t155513eOedd9i8eTM9evTQjz948KC+7dDs2bPJz8+nR48eJjtrTJkyhbfeegtQ+j8+88wz9O7dmx49enDnnXeSnp6uHzd16lQGDBigb8x7OyEiToImh52dHUOHDiU0NNTom872L78kYd8+wjt2pHvPnkj5+eXiR5bRnj1D8pEofRVZG+c25ct0AQFK1OnGDaV02MlJiVyV9X6yuNGutZvyWoqTU7mtgi7ZXavBMyu5ykMS29iT6GOHz40Sxrj1huSyZHmAwizQFoOzGnxtFNsBW8OqKyVSw6W9jSfSZMoQ1FxcvJEkie7du9OtWzdOnTpFVFQUaWlpHD9+XN9qojbcLoKi1g2JmzBvvPEGb775pv7x22+/zcKFC1m8eLHRmLoQExNDhw4d8PY2/uIVHh5OSkoKqalVi/IvvviCAQMGmNXU94033sDJyYmjZR0GXnnlFV566SW++eYbAOLj4zlw4MDtZeNRhhBOgiaLoWgqLSnh2M6d5Obm8r/jx2nr5UXEM8/Q5dQppJSUmhPDVSoYOFCpytP1NIuNLRdOljbatVLz2lrTtStcL8vjuXYVflgIF9cRXJCJt19b0tRqZBPl5pKkAr/2+E9+GbJz4N13FT+fjHPgcwb62lZfpl5fy4+1oaIhqFlUFrWSJBEQEKC3y3BwcNDn1eny7/r162f2csXtIihq3ZC4CVNs0KJm8eLFfPzxx/q8zIr7Gzu///47OTk5/Prrr4CyJNeuXTv9/nvuuee2FE0gluqaDLqeW/U1vqljc+kSzwQFEda+PXZqNUnOzqzdsYMv1WrW9/JguSaKbE2e0TF5JXlEXtrCsZbFMGMGvPqq4v6r48wZyM4uf6xzCXdrY3Qe3NpWthewZGx9oPPBSj8Dez6EH5dBQSZqYH5GJgCSbDoxWd8k9tgxxcPK1RXcW0F7dc3ePg1sbmmExSKuelErSRJBQUF06dJFv+3gwYNs3ryZ5cuXExMTY9YSnk5Q6J7vyrOQ8HHyafKCQteQGKh0rzU2JG6ivP322yxYsED/2FA0LViwoMrcIksIDQ3l0qVLlSJLUVFR+Pj44Ovri9bADb6goKBW19FqtSxdupTTp09z+vRpLly4wM6dO/X7XV1da3cDzQAhnJoAK1eupG/fvixZssSs8UuWLKFv376sXLmy5sHNhcREHG1tGdmpE3MHD2bIffdha2vL5atXWPC/D/nNw5avxrfm5+Et2DzYg8iBHvwc5sHqca2Z1yYWTSd/RRQYGG+i1cKVK8bXCbgbXjiuVMRN/lL5+cIx00LIkrHWplUrcMiCEz9BaQGkaCBNyT8alV/A0rTreGmM85G8nbzLq7muXAGDP5L494aO7agaSbEcaEBzy0pYKuJqIWpdXFzw8PAgNzeXzZs38+GHH3Lw4EE0mqpzvW4nQTGqwyiWhi/Fy8m4wbLRe62Z8fbbb1cSFa6urlYRTQBBQUGMHDmSmTNn6oXZmTNneO2113jllVfo1q0bSUlJJCUp0davvvpKf2yLFi0oKiqisLCwxuvcddddfPDBB/pr5OTkcOjQIavcQ1NHLNU1cuLj45kzZw6A/pvM/Pnzqxy/ZMkS/bg5c+YQGhpKnz596n+iDY1BmxTnVq0Yc/fdDLnjDr785UvyT+bT0rclxXYqUlrZIWtkJLVkcKhBZY9Bc+CK59VjScVYQ1WXaTWQvcl426lS0AA+KkblFxCRX8BhB3vS1Wo8R/0fwX0eUT6sL1yA77837tHnUwqXqvpj27jMLfXUmJcGOLWGcYvBtU2tLBOCgoLo2bOn3i4jOzub3377jd27dzNixAj69u2LZCJKpxMUpnycXgt9rVkJilo3JG6iLFy40CjSBIroWLhwodXE04YNG3jxxRcJCAjA1tYWtVrN3LlzmTt3LgBPP/00ISEhtG7dmtGjR+uP8/LyYtKkSfTs2RNnZ2eOHz9e5TXeeustXnnlFaMCnHnz5hk9vl0RPk40fh8nQzEEytr5K6++RkzCDdJyCvFydSDUvyXvvftOpXHViaxmxc8/g255slUreO45ADZf3MwrO15BZVMeXL259yYAzj2dsW2h5KW8E/YOd3a6E4qLwfCP29ixMHhwzddvbL5FOt+pC6VwpcLykbNKcfn2VoFN2Yf6PSvAJkDJ66rYoNQtH7I+p4qVJXBsCROXNw5zy4rozS7BZK6ZFZdNS0tL9XYZubm5dO/enQceeKDaYxqVc7igEpb6OFVMBHd1da2X5brblWbj45Senk5SUhKdO3fGxcWl0v6cnByOHDnC8OHD63qp2xad+NGJogULFvBp1HlUfe/Tj9HG/cyVLV/qH99WogmUBr86CgqU8nlJwtPJ00g0afI0FKcXI2tlilKLsG9jj3MP5/JE3Ir5AOZ49ljSv+5Wocvv6aSGUhmSDZaO8rRwTgsXJLBF0RC528DlVOXz+PtD2uKqRROAjYPS5Lgxoss1M/n6WNfJ3MbGhoEDBxIcHExsbCyddIUFKH+Ur1y5QkBAgFEESq1SCw+jZoSdQV9LnUgyFFOG+wVNl1oLp9LSUp544gl9aaKdnR1PPvkkixcvxtHRUT/u5MmTREREVLvmL6iZiuLpypYv8SgsxX3Q/WTt/4GbO1frx952ogmU9iA68vPh0iXo2LFSZY/aWU3LkS3JP5NP4ZVCipOLsb1uywXvC3S4owNeFy4Yn7embzUN0ZPOHHT5PZIE3WzAQYJEjXH/Oq0MRYC9Gzi3qXyO/v2hpyusqdrCAICcpMZlQ1CRgLsVYXeLIoK2trYMGWKc6xUdHU1sbCze3t6Eh4fTo0cPk0t4jZWKkbE+rfsQfz1eRMoqoLMaKC4u1keWdD/t7Oys5uUkaFhqvVS3dOlSXn/9df7+97/Tv39/du7cyYcffki3bt2IjIzUe0wcOHCAIUOGNGrh1NiX6nRotDL+dz5hFFlS2TujLSqvFvMb+zgJm1cqjVhvJ7KyYNmycmEQGAj3K81ade0twLjBryZHQ97pPMJtw/F390cCHtJq6aJr4eLmBi+8oFgVmMKS/nU1fahYe6lPPzeD/J5CGZI0SvSpRPc8SBB4H3h2Vx7a2Sn9/UJClB59xzbAj4/XfL3JX0KvKbWfbzNn9+7dREdHU1RmtNqmTRsiIiLo2rWrkYBqjALFVE89laRCK5dXbjW3Hns6GmvLlduVJr9Ut2rVKv7xj3/oIyDjxo3j4Ycf5t5772XIkCFs2bLFqGxXUHdiEm6g6nsfHoWl+giToWjyGDELVd/7iEm4weDOrRpqmg2Duzt0717eHuTUKcjIgFatqkzE9fX25bWJr9HbsTdRUVEkHTlCRwMvHk3fvqirEk1ghk+QmaaQ9bHUZ8p3ykGCTjbQUQ3XtVDsAv1mg1+osiTZurUiOA2XPRuDC3ozYNiwYfTv3599+/axf/9+kpOTWbduHb6+vowcOZJOnTo1SoFSVU89wzkBpOWnMS9qXrOtlBMIDKm1cEpISKgUjg4ICGDfvn2MGzeOoUOH8scff9R5goJy0nKUqib3QfeTvX+DkWhS2TvjPuh+o3G3HSEh5cJJq4W1a+HRR8HVtcbKnqnDhlF05gw2ZZFRLfDfI0fwy81l+PDhpo3erNG/ztylvtpEpKrK73FuCXc8BcNfrnwOrUZJLNddx29gw7ugNxMcHR254447GDRoEHv27CEmJoZr165x4cIFLqovNjqBUl1PvYo0px57AkFN1Fo4tW7d2qS1e6tWrdixYwd33303ERERvPbaa3WaoKAcL1clUTlr/w9GogmUyFPW/h9wH3S/ftxtR6dO0KGDkt8ESvuUL76Au++GTp1MJ+JqNIrR4+bN2BssJ1/08yP9yhXSDx8mPj6efv36MXz4cOMQbl2jMdW2BJEBqaz/mxb+XFC7iJQl+T1VRb6CpsDej7CqC3pjq0K8hTg5OTF69GgGDx7M3r17GTR4EPf9cR8yMiU3S5A1MnatTCcR30qBUlNPPVNzE017BbcDtRZO/fv3Z+PGjUydOrXSPhcXFyIjI5k2bRqvv/56k0qCbMyE+rdEG/ezUSK4YY7TzZ2rcXWwIdT/zoaaYsMiSTB1Knz5pSKaQMl9+vZbxaIgJERpH2JrqzT1PXcODh2CPGMRSufOdHnwQR5PSmLHjh1cvHiRgwcPcuTIEQYMGMCwYcMUgztL+9dVxNylvg2zKu+yJPncHC+p6iJfez+Cwc9C/DrIzyjfV9vKtMZYhdgAuLi4MGbMGGJTYvUCJfdYLsXXi7HzssOlpwu2LSu3cblVAqW2vfKaeo89gaAmau0c/uCDD5KQkEBGRobJ/XZ2dvz444/MmTOH9u3b13qCgnLee/cdo8RwjxGz8HthPR4jyj9Yr2z5kvfefachptc4cHaGWbPAs0Kfr4wMiIyElSvh008VcbVrV2XR1LUrTJsGajV+fn7MnDmTRx55hA4dOqDRaDhw4AAffvghmZmZ5XlEQOV6fTOiMXXq61YmcCLnK9GbulBj5EuG/Z8Yiyan1jD27dqJpu9nVhaMOiF4cpPp46pDt7x4bIPys67Pxy1GJzRkrYzaRY2kkihOK+bGzhvc3HeTkpsl1R5XX9S2V15T77HX2PH19cXf35/u3bvTvn17Ro0axbZt2+p0zo8++khvlBkdHc2ECbW3F7l+/ToLFy6s03waOxYJpyxdp3RgypQp7Nu3j1atqk5CVqlU/Pe//yUhIaH2MxQAlU0w/cY+rs9pch90P35jyyufFixYYHZ7lmaJuzs8/jj07l11RVxF7OyUPnUPPKD8bkDHjh155JFHmDlzJn5+fvj6+pbnPAXcjWbyV7XrSVfnhGqD5PO6YE4z3Aq5NuRnwA+PWCZ0ahRoWC4ET25SqgdX36VU/62+S3lc1bwaocjSCQ1JJeHWz41Wo1rh2MERSSVRlFLEjR03yDqQRWm2sZGpZ1Zyvd5HTT31KtJceuzVlTcSE1l48aLRtoUXL/JGYqLVrrFu3TrOnDnD5cuXmTlzJvfddx87duywyrnDwsL4/fffa318RkYGH330kVXm0lixaKkuIiKCrVu3ViuWBNbHPOfwO3nv3S5GJplQfXuWZo2DA0yaBKNHK8txhw5BhTYIgFJyHxKiiCzDarIKSJJEp06d8Pf3p6ioSL/8nJ+fz3+3JtCvz0cM9gWHkpvm5+yY0xLEHOoUuart8QY5WD0mmJefZK0qRB2Wemg10iVCU15jbsFuOHVzIu90HkVXiyhMKsTOxw4bNxskwFsjE/zLvHq9D11PvXlR85CQqk0Sb2499mrLG4mJvGkgkN7u1ImFFy+y2MCN/42OHa16zZkzZ3LgwAHeffddfvvtN27evMmXXyorE4sXL+bQoUNs2LCBjz76iLVr1+Ls7ExiYiItWrRg7dq1dO/e3eh8mzdvZt68eZwuK7RZv349b731FiUlJUiSxGeffUZERAT33HMPFy5coLi4mLZt2/Ltt9/i5+fH7Nmzyc/Pp0ePHtjY2HD8+HGuXLnCk08+ydWrVyksLGT8+PEsX74cjUbDY489RnR0NLa2ttjY2BAbG9vorR8sijjFxcUxfPhwUlJSahxbUmI6vCywjPj4eJNtVNQqicGdW3FPX18Gd26FWiUxf/58I7v/BQsWEK9rQ3K74uoK4eHw4ovw5JPw8MPKUtysWfDMM/DUU4pwqkY0GSJJEg4GbuLx8fFkZ2ezM3o3yzYeZFemF0VtQ80TEuYs9ZlDXSNXtT7ewoiXuQItpwbDTbA8elUfS4RWoqqmvzYuNrgPcKflHS1x6uyEg5+DsleWmXU2lZv5BlHAerqPqpr0qiTjj47m3LTXEoq15a/J4suXcYuONhJNhvutyaBBgzh79myN4w4fPsz777/PhQsXGD9+PI8/Xr1H27Fjx3jqqadYs2YNZ86cIT4+nt69ewPw2Wefcfz4cc6ePcuQIUP0X9K/+OILnJycOH36tL4X3oMPPshzzz3H0aNHOXHiBIcPH+arr77iwIEDREdHc+7cOc6cOcOuXbuwN/NvcUNikXB69dVXOXXqFGFhYVyu2M/KgPXr19OjR486T04Affr0YcWKFYB5juCG4mnFihW3R4Nfc1CpoE0b6NwZevZUWol4eioJ5XVg0KBBTJ06FS8vLwoLC9m+fTvLly9nz549FBcX13wCnWWAqaW++1crP6sUURK4+dbdCkAX+bJErBlSkyDSLY+lnzbvfJELahYAlkSv6mOJ0MpUJ1Bs3Gxw7e2KpJLw1si8l5JO+pEcPokt4ZfTJWQWlOWhQb3cx6gOo9gyeQurxq7inbB3WDV2FbEPxho9jpwceduLJlAiTAsMcnpzDCp1F7Rvz9sGbXisibk+1v369aNfv34AzJ07lwMHDlBaWlrl+N9//53w8HD69u0LgL29vX7FadWqVQQFBdG1a1fWrFlTZcPg7Oxs9u3bx4svvkiPHj3o1asXly5d4tSpU3Tv3h2NRsO0adP4+OOPKS4uRq1u/BFLi5bqlixZgru7O3//+98JCwtj27ZtdO3aVb9///79zJs3jwMHDlh9orczTzzxBKGhoWaLoPnz5zN+/Hghmm4BkiQREBBAjx49OHHiBFFRUWRkZLB161YOHDjAc889h61t5cooI6qzDJBUxiaW5VdWftTGCqAipswyLaG6iJWp5bGayM+ouWLQEg8tay8R1hOmvMaMnMOzkgn+ZR4FxTIZLiqyMjQcSdEQn6qln4+K4R1scKd+7sOUlYewHDDN25068fG1a0aiyVWtrjfRBBATE0P37t1Rq9VGXToKC+vH0+/PP//k888/Z//+/fj6+rJu3Tr+9a9/mRyrE3WHDx82uQR3+vRpIiMj+euvv+jTpw87duwgMDCwXuZtLSyuqluwYAGffPIJV69eZfjw4Rw7dozExESmTZvG0KFD2b9/P+3bt2f16tU1n0xgNpaKoNtZNGm0MvsuZPBL3DX2XchAo61D/pCZqFQqevXqxTPPPMO9995LixYt6Nq1q5Fo0lYXptdZBvSaovzUiaHqIlLW7INX1XWk6v5E1BDxqmp5rEbMiJ5Y4qFlDaPSW4ROoNzZ6U5CfEKws7Erf2zjjhpwsZN4sJcts4Pt6NxChVaWOZSs4cMDxWw+V0JOamJD38ZtzcKLF41EEyiRp4oJ49Zi3bp1rF69mldeeYVu3boRFxdHaWkpOTk5/PLLL0Zj4+LiiIuLA5RKukGDBmFjU3X8ZOLEiezcuVN/TFFRERkZGWRkZODs7Iy3tzeFhYX6VRGAFi1aUFRUpBdt7u7uDBw4kH/84x/6MYmJiVy8eJGkpCRycnK47777+PDDD/H19W0S6SW18nF66qmncHNz49FHHyUsLIyioiKKiopo2bIlCxcu5NlnnxVdoAUNQuTxZN789STJWeXftNq4O7BoYgDjgkw0srUyKpWKvn370qtXL6M8v5SUFP73v/8RFhZG3759LQtH36omtaauk5cBGx4pG2BBxKva5TFzqCEKZImHlrk5WI29bUyF+bVzU/FwHzsu3dSyI7GUxJtaYq5p6KVxxLWBpni7UzER3FWt1oso3XZrRJ4efPBB7OzsKCgooGvXrvz8889EREQwePBgfvjhB7p06YKPjw+9evWioKBAf1y/fv14+eWXSUxMxMPDg7Vr11Z7ncDAQP773/8yY8YMSkpKUKvVfPbZZ0yaNIk1a9bQqVMnPDw8CA8P1+c+e3l5MWnSJHr27ImzszPHjx/n+++/55lnntH3ZnR0dOTzzz9Ho9EwZ84cSkpK0Gq1hISEMHny5Do/P/VNrZr8arVavvjiCxYsWEBmZiaSJDFt2jQ+++wzqzfeuxU0lSa/guqJPJ7MU2sOV/oY1WXufDYj+JaIJ1P88ssvHDlyBFC+kY0YMYLevXujMtcuoSExWY3mW735ZUK0Yg1QV6prHqyvqgOTos6wXU3FhsdGWNCMuSGp4T4SMmUuFLVg1KcX9fdx9uxZ2rVr1+irlBorljb5Nayq0+U0GYqpRR07Wr2qzlw++ugjNm3axNatWxvk+tagyTb5/fnnn/n73//OmTNnkGWZIUOGsG/fPrZt20ZCQoI+iUwguJVotDJv/nqyuuYlvPnrSUYH+KBW3Xon+wkTJuDt7c3u3bvJzMxk48aNREdHM2LECIKCghq3gKpNxMtay17VRYGq6sVX0dG82hwuK+aK1Tc13Id/Cwn/qR/p7yMnJ4fvv/8elUrFoEGDGDx4MI6Ojg0x89sGnSgq1mr1kSXdTzuVqsFEk8C6WBRxGjJkCAcOHECWZYKDg/nPf/7DiBEj+Oqrr5gzZw6urq78+uuvDB06tD7nbHVExKnps+9CBg+s3F/juO+eGMTgzg3nQ1ZSUkJsbCy7d+8mPz8fKDfYbFbUOeJkQRTI3L53tYmcNUbMvI/U1FQ2btxIcrJi7+Dg4MDgwYMZNGhQkyj5bgxYGnES1C+NJeJkkXBSqVS0a9eOf//73zz88MNG+3744QdmzJiBra0tP//8s96+vSkghFPT55e4a8z9X1yN45ZP78s9fX0tPr9GK1cwHG1Zp8hVUVERMTEx7N27l+HDhzN48GCgvAKlyfd3NGd5zLEFFGSWPa5mqc3a87qFzYXjc3Pp4+Ji/fFm3ocsy5w+fZodO3aQlpYGgKOjI0OHDiU0NFTkotaAEE6Ni8YinCxaqnvrrbd46aWXjAwAddx///04OzszZcoU7r77btatW8d9991n2cwFglri5Vr5PVmXcYbUR8K5vb09YWFhhISEGFW1nDx5kt27dxMREaFPpGySmLM8NnG58rOmpTZrz+sWWQ6sTEpiztmzLPb3Z36HDjWOX3LpEgsSEljRrRtPtG1b/WAz70OSJHr27Glkl3H9+nWioqLo3bu3EE5mUotUYEE90Fheh1olh1fHzp07mThxor7SrikgIk5NH41WZtg720nJKqwqvoGPuwO7X7vDokjRrU44/+KLL7h69SoA7dq1IyIigk6dOjVdAWXOstItjgLdCuJzc+l78KD+sZF4MnG/S65cZYFBT8+4AQMsilSZi1ar5dixY+Tm5hqlVJw+fZouXbpUW5p+O1JcXMypU6dwc3PDy8ur6f4/bAbIskxaWhrZ2dn07NnT6qK/3pbqzCUmJoY777yT69evW/vU9YIQTs0DncgBk/ENi0WOTowZRpoMqa0Yq478/Hz27NlDTEyM3s6gffv2RERE4O/vb5Vr3HKaoTAyB10EScdif3/mZx+C3+ZCUXb5uK6PsMD3PuNxZkSorMXVq1f54osvcHNzY/jw4fTr169JuDffKtLT00lKShKiqREgyzJt27bF09PT6uducOEEcPz4cYKCgurj1FZHCKfmQ22W1arKX2rIhPPc3Fx2797NwYMH9S0RBg4cyPjx4616HUEtMVMMVhJPF79h/uUfy/e3n8yCTjPL999i0QRw7tw5fv31V7KzFTHn4eHB8OHD6dOnjxBQZRQXFxv5IQkaBkdHx3pbXm4UwulWsXjxYn766SdOnz6No6MjQ4YM4Z133qnU8bk6hHBqXliSyF2d0Coq1dY54byuSeXZ2dns3r2bQ4cOMX36dH2LI1mWxTfghsLk8mNbJafLRF5WVeKpkmi6tpH5D/zH8micFSJ6paWlHDp0iOjoaHJzcwFo2bIlI0aMoFevXo3bLkMgsAK3lXAaN24c06dPJyQkhNLSUhYuXMjx48c5efIkzs7OZp1DCKfbk5ryl14Y1Y0PttXccbyqiJM1k8pzcnJwcXHRi6Vdu3Zx9epVIiIiaNOmYUw9b0v0pptVvGtMVQKWFrPkm6dY0Km8EtmjJJebtuU5TPpI1KzfLEtet1DE1URJSQkHDx5k9+7d5OXl4ebmxvPPPy9ynwTNnttKOFUkPT0dLy8vdu7cyfDhw806Rgin2w9z85dkWSY1u8jihPP6TCovLS1l6dKleh+onj17Eh4ejrd3I28ZUh1NIQ9Kb7FQVe+9Kryn9n0CWxZWijDpWHxiNfNTfwSVVL1TekVqI+LMpLi4mJiYGFxdXfV9L7VaLefPn69TtadGqzFqYhzsFYy6sb3OgtuSenUOb+xkZWUBSpi5KipW/OnW9gW3DzEJN6oUTaB8FCVnFfLiqK4s23auqoJ6Fk0MqCSa6tvF3MbGhscff5ydO3dy7NgxTp06xalTpwgMDCQ8PLxeEidrjTmCyMpRk3rj0t4aGhZX0V8vMxHytMz/63+80+Y+bjqWd5LzKMhh/g/rwFYCHzVozPQKqrYXYNm7LHK+4vheC2FiZ2fHsGHDjLYdO3aMn3/+GR8fHyIiIujWrZtFAmrbpW0siVlCan65q7y3kzfzQ+czqsMoi+coEDQUzWrhWqvV8sILLzB06NBqE9MXL16Mu7u7/p+fn98tnKWgMZCWU7VoMqRja2c+mxGMj7ux/5OPu0OVUSNzRVlMwg2L5mxIq1atmDRpEk8//TSBgYEAnDhxgk8//ZSDBw+i0crsu5DBL3HX2HchA422AQLLJzcpEZrVd8GPjys/lwUp2w3HfD+zsiDJTla2G45taMxtI2M4LjcXYtIhtpgl/pONRBPATUdXlgybCiUyJKlh4wHYsAFqsnKxRMRZieLiYuzt7UlJSeG7777jiy++4Pz582Z562y7tI15UfOMRBNAWn4a86Lmse3SNqvNUyCob5pVxOmZZ57h+PHj7N69u9pxCxYsYN68efrH2dnZQjzdZlhimDm4cytGB/iYneRtrigzd1x1eHp6cv/99zN8+HB27NjB2bNnuVjoyHNly5C6JHKTuVX1uTxW1TKSThBN/UaJhtRj1MTqVNc3z9S4jAxYswa0fiwZNo0Fox7TD/EoyNGLqAWjHgdgfkYxIMHx45CeDjNmgKtrxbMr1EbE1ZGQkBACAwPZu3cvBw4c4Nq1a6xZswY/Pz+9XYapCJRGq2FJzBJkE6+zjIyExDsx7xDhFyGW7QRNgmYTcXr22Wf57bff2LFjB+3atat2rL29PW5ubkb/BLcXof4taePuQFULDRJKIneof0uLK+Pq08UcMBlN8vb2Zvr06QSOnsZrvyXqI14F5w+Qf/4ASWkZPLXmMJHHlb5lZkWDakuNy0gogigh+pZHTepEhyHKEmJ17xo3X2VcTg588w1kZrKko7+RaFoc/zWZOx9i8bnV+m0LRj3OkpCx5adKTVVEV2EV4tpSEWclnJycGDVqFC+88AKDBw/GxsaGK1euEBUVZTxQq1Fe32MbOBz/daVIkyEyMin5KRxOO2zVuQoE9UWTjzjJssxzzz3Hzz//TFRUVNM1CRTcUtQqiUUTA3hqzeFq85e2nkyxuDJOJ8pqcjEP9a86D68qqqvUGx3gw/tRV/XX1BbmUpx6EZApTr2IvU8X/rlBy2hJi/qHWVQbDapLbpHZy0jVR4b11DZqYu2ImjltZMYtAUkF338PWVksad+eBZ066Uctvvgt8zN/BgeJ+dd+ArVKX223oFMnsLdn/rlzyuDUVNi4EaZPrzwXnYirrhegW1tlXD3g7OzM2LFjGTJkCLt376Znz576aFPB4R/I2LiAdqp0ANKdncCrdY3nTM9Pr5e5CgTWpslHnJ555hnWrFnDunXrcHV1JSUlhZSUFGFWJqiRcUFtqs1fAnhqzeFK+UopWYXG0ZsK6EQZVI5NVJdUXhO6Sr2q5vPx9vNG+1QOLrj0GoWNuzfIWoqSz3Ju+3r+WPoMecVaE1cwiAZpNRbNzQhzhY65aVe1iZrUV0Qt4G5FWLpVEM1ubcsFZ0ICXLlSWTT5+zN/5mcw9m0InQNj32b+zM9YbPBlb4GvL0vKvLoAOH0ayprzGqETcUCV77JxS+p9idPV1ZXx48fTsWNHZcPJTexd9ihf7LrC2qMlJOVo8dSY917ydGpERQ0CQTU0eTuCqqo6vvrqKx555BGzziHsCG5vTC3FAXVut2JNHydz7BPcnWy5mV9icn/JzRQKLx2lTe5Jpqh3YauSeLCXLf4tqvjuZKmfkCEJ0YpQqYmZm2Dj32qOmlQs76+JeizT11NdNGv9euIvX6ZvSIh+uKEjuKmS/Pcq9qqLjaVPXp7yIDQU7ryz6nutqRfgraLMruGPQ5eITdKiLfto6dZazWdDfMlqaY9s4u+1hIS3kzeRkyNFjpOgwbit7AiauO4TNALUKqmSgeW+CxlmV8ZV1W5lXFAbi5LKq8OcSr2qRBOArYcPNu7eBGcV43ttNzcKZNq6ls+jkhN5XZKKzV1G6jjMvKUvSz5M67lMX49KbVpYZmfDmTP00WpZceYMc7p3NxJN1ZXkL/bvyoKEBFZ060afixdBJ5zi42HkSLC3r3y9gLuVe2kMHlhlS7Tju9oysJ3MzsRSjqZqOXtdg/8fyezs1gLn7s6o3W31h0hlr/Nroa8J0SRoMjT5pTqBoD6wVmWcTpTd09eXwZ1b1boZsLnz8XC0rTp1WZJw8evB7GBb5vS3w95GGSnLMmuOlrAzsZSiUkVwnMh2rL2VgX4Zqarj5HJBZM7SlyU0QJm+EadOgVZZBn0iOZm4Nm2MRFN1JfkDOEfcgAE80bYtGESrKCqCCxeqvqZOxPWaovxsKAFiILZbOkrc19OWp0NsCfJS06mkhBFnM7E9l2t0iLeTN0vDlwofJ0GToslHnASCumJqqa6+K+MsxdzrPDq0o0nDTh37S7tR6NSGFlKqfsTFTJkLmVouZGrZd1VLz/YteGFjEbI6Dqj98qLZWBI1qSnh29IyfWsnkOfklP9uZ0efbt0A80vyIydHKhvLjtPTFEx6TeSieTqrmBKgIqy9mp2XNHzgnM3F3m+S7t4G+2J7+nj2oXWrmhPHBYLGhBBOgtuaqvKQ/jEhoNrKOIAWTra1qoyrDeZW6j17R1e6+7gy/6djJpfuMgu0vFg0nc/slpctk8h0aiExJcCWHYkarudp+de5rtxM+A2HdgHY+XTVJ5+b3SZGv1xWFSaWy6pa+jLEHIdxS8r068Ox3NA+wM4WEndDbiqHS7PMLskP8QkBOzuQJNClIlRlS9CYqGaJ1ttFxdRANbi1pVWfR0ClZv369Xx65lP69evH8OHDcXd3b5BpCwSWIpbqBLct1VWpPbPuMHf3aVNt4VdmfglbT6bU7yTLsKRSb3SADw42pv9ry8AWbSgLbF5BLlsekySJIC81k0N8ONHlERLseyCXFFKQcJjsg5soLchBRmkTY9ayXX0sl5nrMG7otaSRIVkDJ0sgrhgOF0N8CVx2g9PHYf3D1ncsty3L30k/Azve01f1pW973azD9SX5Gk25aAJFSDV2LKj002g0lJSUoNVqOXToEB9++CG///67aH8laBII4SS4LahoGllcqq22nxzApvhk3B2rDsrqes7dqnYm1dknfPJgMO6OdvwSd42v9ySQkl11yw4Z+F9uX/ZP3KlUz03+khOj1zGs6EMOet6Na/AEHLsMRGXvgsrOAZWDC2BBmxhru1qba6ip1Sgf3oNeh/MlsK8YzpRAmgZuaiFbhkwtOAyFZf+AmCK4UgqlctXnsxRnZ0U0nfgZ8rIgX8l3srgk/+pV4x1OZvawa2jMzFlTq9XMmDGDxx57DH9/fzQaDbGxsXz44YdERkaSm5tr4uQCQeNALNUJmj2mluNaOttyI6/qKjRd1Vx1mFNZZ21MVepl5hXx1u8na5xvRdLySqCvsjx2Pu4aWuIAkFRq7H26YOflj7a4QF9tJ2tKWLLsYxY9OpE+ffqgVleRC2RtV2tLIliZzrDtArjfDelbodQg58jeFbqMAhsHKCrbfqEUrmigly24qiqfz1JLBv+OcH4regGWpIUuKoILi/AuLSVNra62JD/YS/EPIzbWYKcETcnY14Kctfbt2zNr1iwSExPZvn07ly9fZv/+/bi5uTFkSP2YdwoEdUUIJ0GzRrccVzFWUZ1oshRr9JyzBEP7hMjjyTyz7ojZXpKGGCacm0o+l1Rq1GXRJoDilAvEXD3Pxl9+Yffu3YwYMYJevXqhUlUIXFvb1drcyNTOKEgsi+x4dofWXeHmFVCVgG978O4JxcVwZKvxccUyHClRxJOhr1VtLBmKE8A+D3QBvxQN+KtRqyXmZ2Qyz6s1kiwbiadKJfk5OUp1no7u3aE+8n/qs1ehOTlrBnTs2JFHH32UixcvEhMTQ4hBVWFaWhqurq44OjpaZ24CQR0RwknQbNFo5SqX46zJraqsq0ht789Uy5dQ/5Y1RuHsfLpQJMscvpaKd2YB1zN+Ijo6mvDwcAIDA8t9oIxak5i6Opb5M5kTmUrRQOZFaNGhfFs7P7hvEgQGluceARxvB//5FZI0UFT27GllOF4CwbbgrDL/uhXJTYW2asguc2YvleF0KQTYMCq/gKVp11nSqgWpNuV/er2dvHkt9DWlJF+jgZ9+0lsaAMbWBNaiPhLj64gkSXTu3JnOnTvrt8myzIYNG8jKymLw4MEMGjQIB4eG+f8mEOgQwknQbKnJNLI6dOJClmVSs4uqFCetnO3o36FFredYF2pzf1W1fFGrJO7r68uXexKrPlZtg0O7nhzTdOFg8lnszp5jeKdcrl+/TnR0NLNnz8bWUKA4ekBBpvFJHFvAxOWWfTjXFMEqAi45Qahf+baRI2HYMGWZqyIBo6BXe2iXpCSOZ5RFqTQynCqF/nbg7lu7Pm8u3uClgouSEskCSNfAKaC7Ip4i8gs4fM9S0t3b6J3D1Sq1Ujn3ww9KyxYdXl6ga9tirQhRVc7q1upVWBMW3EdOTg6SJFFUVERUVBQHDhxgyJAhDBw4ELumkDAvaJYI4SRottR2Cc1QXAAmGwHryMgrZsR7O+rX56gKanN/PtV4Mo0K8KlWOOmQ1LY4tAsEn278lXQaO7tsAgNbl4umKlueAAVmJJdXpKbmusml0Gmk0lwXIDwcwsqXiUy1OFHrzhdoC8fKksYBcmUliXxaLfu8dRgCHr4QeA3ii5VIFigJ6plaaGODursvIWUl+QBcvw4HD0JcnLHtgIMD3H+/Iv6sFSG6Vc7qVWHhfbi5ufG3v/2NkydPEhUVRXp6On/99Rf79u1j2LBhhISEGIt1geAW0OR71VkD0auuebLvQgYPrNxf47iWznbcyCvWP65o+GgqudwQndAy2+fISph7f/+Y0JPWrvY1tnzR9cOrzruqIhLg5SQR+fxQWni4g1ZD5ts9+SnmCiM62tC5hVShn2Qt+8+B6Q9dl7aQNhic2iuPW7WCZ5/VR5qqa3EyKi9fOV/qNThQDMhg7wbjH4cXllg2t4rz/H4mXC+zQtBXXZY9D0GToOtAxWKgqAhu3qx8Dnt7ePBB6NDBur33zO0jqOtVaM08qDreh1ar5fjx4+zcuZOMjAwAHnroIboaNkUWCGqJJTpACCeEcGqu1CQEdMtxO1+J4NClzGr7yRWXahm0eFuVOUDmNP21NubenyVz0iXTQ9UNU0zx3RODlIT1hGh+XTiWQ8nK8pefm4o7/G0qNxOubRPhih/k+S3ghw3l+8eNg0GDgPIWJxXdunXJ2EvDlzLKL0I53/oNkJwNHn5gYwvz5inWArVFJ/KuXFVyp0rKRFmXUUrienV4eMADD4C3t75xbtVVhRYK0WMb4MfHax43+UtQ21kvD8qK96HVajl69Cjnz59n8uTJemGenJyMp6cnNjZiIUVgObdVk1+BoCp0ppGmltoMl+PsbFQ12gkcupRpln3BrbQmMPf+LBFyOq+o6iJsptAvG+amcoe/DXZqidgkDVeytayOL6ajh4qIjjZ08FDpx9WKitVaf/xR/ruNDfTtC5jf4iTCLwK1fxhM8oZ165QBGo3io9S9BoFTHYYl+TeuwtVcuFoE6derPqZdOyURPDBQuRewzIrBHCFqbsJ7xgWIWkyVeVDhC6BVZ/OjUFa8D5VKRd++felb9loDFBYW8s0332BnZ8eIESOqt8sQCOqIEE6CZk1VQqC6XB9TWKvpr7Wx1v1VPKfOK2rP+et8vON8jcfoKwtdvHG2kxjbxYYhfmqiL5dyKElL4k0tX8UVE+Cp5v4AG2LTbQi1eGYmKCgo/93DQ8kLAg6nHbasxYmPT9XnrS06kecP9EdxAr98Gc6ehbw8xRrB3h5cXKBnT2jbtvI5rG0maq5VxKGvqthfti3q7fJN5kShrH0fFcjIyMDGxoasrCw2bdpEdHQ0I0aMoHfv3pXtMgSCOiKEk6DZY8o0srpcH1PohIFbYS5+Wak4lBRho9VQZGNHjr0TlzzaUKq2aRBrAmvcX0V0XlGh/i358fDVGpcD9dYGBh/MrvZwZ1dbhvrJRF8u5XCyllaOEsm05oE/1XzilVz3nLDS0vLfDZZo9K1LakA/ruLyjuF5rYUkKTlLHTrUPFaHtcxEDZc4gx8pEz5VxCmDZxkLo5owpxrP2qaoFfD19eX555/n0KFDREdHk5mZycaNG43sMoSAElgLIZwEtwWGppEWo9USWnKdWQl78Lh2CcmEhCi0sSfFvzuhbgPrONPaUaf7q+G8Fi0HllXAyd/PREbp6eTuIHFXN1uG+Mk42MCLJQ+jRcWC1du40c+GkSPvwNu7dh+YGHr65OcrUR1JKm9dUgP6cfn5VZ+3IbGGmaippHrHlsr5DO0i3Noq/lqa4kqnqB4zqvGsbYpqAltbWwYNGkRwcDCxsbHs2bOHjIwMfvrpJ9q2bUurVrdmCV3Q/BHCSSCojqQk+PFH1BkZPNyqiN+umU6Zdigt4lnHdNSffAy9e8PEicamixag0cpWjR7VFYuXAwPu5uyIT3CNep22Urn9QKFDaxaUPMwWrbJId+XEQf4qsufs2TMEBgYSHh6Op6d5gkePh0f579nZcO0atGtHcOs+eGtk0lSYbnEiy3hrIbh1H2XDyZPGA+rDqbs21GTFANWbiVZVyaYTTOELK+cqJUTXYqI15CjV9T4swM7OjqFDhzJgwAAOHDhAXl6ekWhKTk7Gx8enQrWnQGA+QjgJBFVx/jysXw8lSlJ4Fy9X7uoNUWfSyS0qLUsxlnGxtyG8uyddvFyV444ehRs3lHJyC5uzmrI+qGiP0BBYuhx4ukU4LxZ9SKjqNF7cJA0PYrQ90Br0FXfsMpDWfjmQl8yJEyc4efIkvXr1YsSIEeZHB4KCYPv28sexsdCuHeorB5h//brpFidlhcSvXb+O+soB6DBU8VHS0bKlkqjdWNA1zjVZ4bak6uUxczybDq+uXMlWY3SoGqrLUartfdQSe3t7hg8fbrTt+vXrrFixgjZt2hAREUGXLl2EgBJYjLAjQNgRCExw9Sp8/bVxrotaDYGBaPoPIKbQnrT8ErztJUIKUlEfOqhEpwzx84OZM82OPFXVV8/IJ6p7a8jIUIwSZVlZUmrZUkkybkSY6zH13ROD6ORSSlRUFKfK+rOpVCrCwsKIiIgw72Jr1igiF5TX6Nln4cC7sP9Ttjk5Vmpx4lNaymsZmYzKL1DK7rVd4eefy883Zgw0xgazlnoqWerZZIg+UgUWiSdzbCbqs0deDZw4cYJffvmF4mJlOdLPz4+IiAj8/f2FgLrNEXYEAkFdKCyE774zFk3dusE994CzM2pgsNEBvtA/GBITlZYZeXnK5itXYMsWuKvmD6/q+s7JgGduJtveW8WYbqAqqWCLUCboCAlRIiWN4AMg1L8lbdwdzEoqV6skpk2bRnJyMjt27ODs2bO0bt3a/IuFhJQLJ40G3p8P8ndgJ5W3OHGwJ12txlOjIbiwCP3HdBaw87fycxlYGjQ6LGycW6dKtqqiQ1ViQY6SpfdhRQIDA+nYsSN79uwhNjaWK1eu8M0339ChQwfuuOMOOliSuC+4bRERJ0TESVCB/fshMrL8cc+eSusLc6pyMjLgyy/Lk43VarPMFKuK0Hjm3iD84kF8s5Xqr8nB7fBrWc3yn48PjB0L/v41z7WeqcpMsyan9aSkJHx8fPRVUIcOHSI1NZWwsDBcXV0rX0irhVWrlCihrIX9n4KUC91soYVkWkhqgNyW0PJR0Bg01A0LU/rcNTZqE6WpS8TJ1HUzLlRfjVffPe6sTE5ODrt37+bgwYNoNBocHR158cUXRQ+82xRLdICozxQIDJFlJU9Gh6srTJpkLJq0GuVD6dgG5adWU76vVSu42+DDQ6OBI0dqvKwp/yf/G9eYenSrXjQB5BXXUCafkgLffmvWNesbXVK5j7txhZqPu0O17Wnatm2rF02lpcoyXkxMDMuXLycyMpLc3FzjA1QqmD5dSRS/eQWKcqBQhqPFEFMCV0shSwu5WriphQulsK8IigcZi6YePcDc5cFbyclNiuv26rsU1+/VdymPT26q/jhdrhJVRSAlcKuhmbFKrex38VaSyMMXgmsFzyu3tk1ONAG4uroyfvx45s6dS0hICGFhYXrRJMsyqam1NGkVNHvEUp1AYEhCghI10tG/v3GOkjlNSrt1K/sQv6k8PnhQyZmpJmJV0f/J72YKE0/tQiVrjbbbdOoEY8OgRQslkpKdrTSHPX9eEX2gRGB++UWJdvXubdn9WxlLkspNVRPa2NgwadIkduzYweXLl9m/fz+HDh0iNDSUoUOH4qRLvndxgVmz4L2XjU9aoIXz2krXol2IceuTgAC47z7zooq3kqqq4szxTrJGJVtV73dT1XhNFDc3NyZMmGC07dy5c6xbt47u3bsTERGBT0WDVMFtjViqQyzVCQz4/ffyiJNKBS++qESdwLImpXv2wNat5UPmzDHtDF2GYd85t4IcHor7AztNeS5TYou2nO09iF/fmmy6ki0zE3bsUCr6dKjV8Nhj4Otr3r03IDVVE8qyzMWLF9m+fTvXrl0DwMbWlg59w3Dz7VwuyM78BW/cDWnaciFpij4PQosOSnL94MEwfHijyA0zwlr93UyKH9+aK9ms2Vy4ibFr1y527NiB7uMxICCA8PBwvLy8GnhmgvpCJIcLBLXFcBnI27tcNJlT2m1oANi5s7Fwqri8VAFDo8mQayeNRNMpL3+2dh3Epw8MqNrPqUULJWLi6qqINlCWCXfuVGwRGjFVVROmZBXy1JrD+mW9zp0706lTJ86dO8fHazby0/bjkOSHjWsOUCa07urBuIEdID0JkkshSQPFFSIt9q7QIxQGDoRevWrtt2UVCgvh+HFITS1v8+LoqLz3XG5ap7+bYd88c3OkLH2/NzOGDx9OQEAAUVFRequMU6dOERQUxIgRIywrXhA0O4RwEggMKSoq/90wSdTSJqX29mhlmWuZBeQVl1J0PpWgLl2rNbIcF9SGz+8P4OKCH9HFXVJcWnG8/wg+vadXeU5QVYnCkgSjRsH163DmjDL23DklGtWiRa2ejvqmpmpCCXjz15OMDvBBrZKQJImLxa5sKgqA7l7YuJb7PSUcjeHR4wf55YGXCc1+CTraQgc15MlQgpIQbiPB1GUw+MGGjTClpCiRzaNH9T5hlbhxFq6XQFs1uFSzhGhO9ZyllWzWbi7cBGndujVTpkxh+PDhREVFcfLkSY4dO0Z6ejpPPvmksC+4jRHCSSAwxFAsGX6gWVjavT3+Chd3J5BbpCRzb9KcpCC+uEYjyzGlaWgH++kFV+E9k/n32CHlgqumHCtJgmHDyoWTLMOhQ4qgaoTEJNwwWp6riAwkZxUSk3CDwZ1b6YUWkoSNW7nLuLYon8KrJ0DWcv8nLqx5aAGDkr/CNi8ZXMqeO3OWp+objQb++MPYcLMqJHslYpakAV81dLExLfYs6VNnbk5SPTflbUp4eXkxdepUUlJS2LFjB3379tWLppKSEvLy8vAwdLAXNHuEcBIIDDG0DUhLU2wFnJwsalIaeTyZ/67aRnhReQVcvq0DqRWWnkxy9CgqSVIsB1xcYMwgMBRN5iQKt2un2BKkpCj74+MbrXAyVU1Y3biqhJZk54BT10EUXj5GVk4OX8dkcMDvMcL6uNO/owc2Hm0bPom5tFRxoj93rvI+B4fyZeGcHGUJz8NPWVYsyoVrGigEAm3K3w+17VNXsZjBFNZuytuAppfWwsfHhwceeMBoW2xsLH/99RfBwcGEhYWJHNnbBCGcBAJDunVTIjSgfNDFxSkVcWY2KdX4DebNd6MYlVL+4Zhn60iaSwuTS0+VyDRoutqzp5LgDZbnnAQGlgunnBzlXmwa33/3itWENY2rSmhJkgo7L39sPTtQkpYA9pnk5uXzR3w+exLymDJlMO0b8oNalmHjxsqiyd9fMfDs3r38tdZo4PRpZSnv+mg48TMgQYYGzgA9bEAqW7qrTZ86cyryrNmUt7birQmQlJSERqMhNjaWI0eO0L9/f8LCwnBxcWnoqQnqkUZWeysQNDBduxo3eI2NVcr7daXdQGVfnPLS7phLWagvX6JVfpZ+73GfLmjLPtwMl55MUmggDAyjX5bknFQ8tuJ5GwiNVmbfhQx+ibvGvgsZaLSy3mG8Gqch2pQ5jEPNQkuSVNh5d+bRJ55i4sSJuLu7U1BQYH7vu/oiLk5JAtdhZwczZigWCgEB5aIJyp3gH3kE5r4Jfe8H+7IP4lQNpGpr9k6qUWijCG1DDzJDzHy/1xg10om3iu9dnXiryYuqkTNlyhQeeeQROnToQGlpKQcOHGD58uX8+eef5Ok6CAiaHY3vK6hA0JCoVDBgAPz1l/I4M1OxKLjrLrOalN7Yc4ax58odwLWSimM+XSpdpsolKrVaEWqgRB50WJpzUlrBKLOBo03V2Q3oqgmrcBpi0cQAfXTO3FYug7t4olZ50adPH5KTk3E2EJK//vorfn5+9O7dW2+0WSvMXX6SZdi3r/yxWg0PPQQG7T00Wg2H0w6Tnp+Op5MnwV7BqFVqJQI691/wbRfISITiPPBtD3OXgLqa19Qayd11bcp7m1TmdezYkUceeYSEhAS2b9/O1atX2bt3Lzk5OUyePLmhpyeoB4RwEggqEhwMu3eXV9gdOqSImQkTqi/tTk8nIPJHzhWVf9M827o9ufaVW6RUGTlxcoKssmiVoXOxpTknaWnl21SqWjcBNmVKWV1loCnMsRv4bEZwJWHlY+DjpMPQtsEcoWVjY4Ofn59+zKVLlzh06BCHDh0iOjqa8PBwAgMDLRdQliw/Xb5s/HoMGWIkmrZd2saSmCWk5pe/3t5O3swPnc+oDqOU5bxBg2Fv2d2WAknJShPpqqhrcrdOFGqK4d7/KuIv/7pl+Um3UWWeJEl06tQJf39/zp8/T1RUFGFh5feUl5eHWq3GwcG8pWlB40YIJ4GgIs7OMGWK0uhXF/05ckSpVOvXT4lI6f7QyzJcuKAs6Z09SweVFhd7G3KLSslwcmdH5xCjUxs2tzVJ+/Zw7Jjy+7lzivu4h4dlOSdFRcZGmH5+tSq9r8mU0hxqshsAJedr92t3mO0wrmvlYo7QqkibNm0YPXo0e/bsISMjgx9//JFdu3YRERFBz549zSsxtzR3yLCFjyQpbvRlbLu0jXlR85ArnCstP415UfNYGr5UEU8DBihRK52pZ2xs9cKpLsnd1YnCW9VkuIkiSRJdu3alS5cuRu+lv/76i5MnTzJkyBAGDhyIfS2/yAgaB0I4CQSm6NoV7r1XSejViaf8fMVccs8exaTQxkbJHTKwLVBJEuHdPVlzLo9fAiMosim3NzAVEanEgAHlwklnJTBypGXtM44ehuLi8t0hxuLNHMw1payJmuwGwNhuYHBn83KRLGnlYoidnR1Dhw5lwIABHDhwgL1795Kens7333+Pj48P06dPNyotrxRx6+CO2tLlpwsXyofo2vGgLM8tiVlSSTQpZ5KRkHgn5h0i/CJQt2wJXbqUJ5cbntMUtU3urktCeUWsXZnXhDAUTRqNhqSkJAoLC9m+fTv79+9n6NChhISEiIbCTRSRHC4QVEXv3kouilPlpTYKCpRqNRPmhV0G9mbI26/g7GUsAmpqbgsoESfDtg4HDkBysvK7LufErcLxhonCmZkQFVW+z9lZqc6zAHOjRBptzd2azLUb2HoyxfwJlqFWSQzu3Ip7+voyuHMri5YQ7e3tGT58OC+88AIjRozA3t6eoqIiXHWWACjicdg723lg5X7m/i+OB1bu57l3PrEsSV+rLXcEB8UqoozDaYeNlucqn0kmJT+Fw2mHKx1Lfn71LWVqk9xd14TyilijyXAzQK1WM2fOHCZPnkyrVq3Iz89n69atLF++nH379lFSlQGqoNEiIk4CQXV07gwvvKBURMXElJf4V0StVqqjQkLAz48xksTI/p0szw+SJKUVyK+/Ko+Li2HNGqVtiq9v9TlW16/D2rVgWM0zYIBxxZYZWGpKWR3m2g38EpfE3ydUE4mrJxwcHIiIiGDgwIHcvHkTddlz9Xv8VR5d9Am2Pl2wcffWRxBs8tLAnCBBVUn6Bu1d0vPTzZqjfpxhaxhZVs5dXbsYS5O7d71v3ZwkazQZbiaoVCp69epFYGAgR48eZefOnWRmZrJlyxZKSkoYPnx4Q09RYAFCOAkENWFnpySM9+sH165BQoLyjb+0VEm6dndXojoVvFt0ERGL6ddP8fHRLcvk5cGqVUpftZAQRUAZfnClpSk5L/Hxxkt0vr6Ki7iFWGpKWR2h/i1p6WzLjbzqv1Vn5BWbJcTqCycnJ5zKIosarcyClb9RfP0SxdcvYePmhUOHPti4e5GGh3kn1C0/2doqYlgXHTKwhfB08jRxYGX04wwtJdRq8yolze1Td3ITRL1t1nwsykmqa2VeM0OlUtG3b1969epFfHw8Bw4cIMRgKT07OxtnZ2e9gBc0TpqNcPrkk0947733SElJoU+fPnz00UeEhoY29LQEzQlJUpZLDJdM6gOVCu6/H779Fq5cUbZpNIoXUFyc0gDWw0OZT3Y2JJmIErRuDQ88UKsGtpaaUlaHWiVxX19fvtyTWONYcwVbfROTcIObtq2wb9OdopRzlGankXtsKzYePuxtH0SSZ0t8uIHp4FiF3CFJUhzBs7OVx2fPQng4AMFewXg7eZOWn2Yyz0lCwtvJm2CvYEV46drogHJOcxP+a+pTp1+iMxNLc5Jq02S4maNWqwkODqZfv376aKYsy2zYsIGcnBxGjBhRd7sMQb3RLF6V9evXM2/ePBYtWsThw4fp06cPY8eOJc2wBFggaErY2cHMmdCjR+V9qanKh+jp06ZFU4cO8PjjlSJg5mKpKWVNjArwMWucuYKtvknLKURl74Rj5wG4DbgHO5+uIKkovZlC9tFtzDjSjxKNkr5tTBXLT4GB5b8nJSlRS0CtUjM/dH7Zkcbn0j1+LfQ1xc/p6lVjewrDc9aVGm0DDKhtTpJOvPWaovy8jUWTIYZJ5Dk5Ody4cYPMzEw2btzIJ598wtGjR9HqilMEjYZmIZyWLl3KE088waOPPkpAQAD//e9/cXJyYtWqVQ09NYGg9tjawrRpSuSoS2UTzUq0bw+TJytu1I6Otb6szisJqkwrrr4ysALWFmL1jaGAU9k74dQlFLf+E7Hz7gKSiqPajjyvfZFipwqRl6rcvAcMMH5sYIY5qsMoloYvxcvJy2iIt5N3uRVBRQNNSap8zrpgydLbbZKT1BC4ubkxd+5cxowZg5OTExkZGfz000989tlnnDhx4v/bu/+gqur8j+OvC8SFEFAMMBUIf6SFJsovk0Ro/W5qNeNO69Z32l1yHazvQNnat0SaXWenDFuZHSfb8Mc0LFP2tXK3cdspzTF+FRr+yB+4oRG6GYSiq1wUuwT3fv8g74oaHhQ4l3ufjxlmuud+zuXt6ep93c/5nPeRs7uLAdCvLM4B/n+jra1NN998szZt2qS5c+e6tmdmZurs2bPavHnzFfvY7XbZLzY3VOd55aioKDU3N3OTRriv06c7+0l9+23nlVpOZ2dACg/vXBc1zNjMjlG90cfp0tf6nzc7rw67WtNKo+0N+kOHw6l7Xv74qt3JOy60yOJ0aMStkfrk2Rn67vDH2rL1I02fnqaIhG46YL/xRtcWAvfdJ9199yW/80c6h0ud7S+2bfvPvrff3nmxQG85WiEVP3Dtcel5UnoPTunhutntdlVVVamyslIXfrgq8+GHH9YdPbxCFsbZbDaFhoYaygEDfo3TqVOn1NHRocjIrt/+IiMjVVNTc9V98vPz9Yc//KE/ygN6z9Ch0syZ/fbrrrdX0o+91vU2rexv3XUn9wvsbFew7ME75evnp0/rpYO2Qar+4HNN+Pp7zZgxQ7fccsuVLzp9ulRX959F4lu3di76nz5dslrl6+OrpGGX9duy26Xy8s7gdJHFcl0L/rt1zZ5PkoKHS2n/27u/Fz/KarVq+vTpSkpK0s6dO/Xll19q3LhxrudtNpuCg4ONNWxFrxvwM04NDQ0aMWKEKisrdfcl3+Cee+45lZWV6bPPPrtiH2acAHP0xi1c+ouRGbeTJ0+qpKREX3zxhaTONSuTJk1SWlqawsIuO/W4c6e0ZUvXbf7+0qRJnTOGF28uffZs58zigQNdr5KUpDlzpL646MXV+FK66pxgTxpfotc5nU5XSGpvb9crr7yikJAQZWRkaNSoUQSoXtCTGacBH5yu51Td5XpywAB4D6NB79tvv1VpaakO/3Dlm4+PjxITEzV79uyuH2oVFf+5gXRP/dd/Samp17evEVe91coIr2wb4M6+/vprvfHGG67GmTExMcrIyNBtt91mbmEDnFcFJ0lKSUlRcnKyVq9eLUlyOByKjo5WTk6OcnNzr7k/wQlAb6ivr1dJSYlqa2uVnJysOXPmXDmoulr68MOujUq7M2iQNHt2715J92Mu3tyXtgFu7dy5c/rkk0+0e/dutf/QZDU2Nlb33ntvl5tawzivC05vv/22MjMztXbtWiUnJ2vVqlV65513VFNTc8Xap6shOAHoTcePH9fgwYNdt3BpaGjQgQMHdM8992jQoEGdzVO/+KKzcenXX1/9RWJiOhue3nFHj7u/wzvYbDZVVFRo79696ujovBVOTk7O1dfZoVtetThc6rzaoKmpSb///e/V2Nio+Ph4bdmyxVBoAoDedvm3/tLSUh05ckR79uxRUlKSUlNTFTRxYmc3+FOnOns0XewMHhDQ2eSUDz9cQ0hIiO6//36lpqaqoqJCra2tXULTuXPnOoM6epVHzDjdKGacAPSluro6ffzxx/rmm28kSf7+/kpJSdG0adMUeAM9t4BLXbqI3Gaz6ZVXXtHYsWOVkZGhiIiIa+zt3bzuVN2NIjgB6GtOp1O1tbUqKSlRww8d361Wq+69916lpKSYXB08zb59+7R582ZXmIqLi1N6ejqn8X6E152qAwB3Z7FYNHbsWI0ZM0aHDx9WSUmJTpw4waXk6BPx8fEaPny4ysrKdOjQIVVXV+vQoUO66667NGPGjCvbZcAwZpzEjBOA/ud0OlVTU6OxY8fKz6/zO2xNTY1Onz6tpKQk+fv7m1whPEVjY6NKS0tdTaGtVqueeeYZ3mOXYMYJANycxWLpcgsNh8Ohbdu26fTp06qsrNT06dOVmJjoClXA9Ro2bJgeeeQRNTQ0qKSkROHh4V1C0/nz5xUUFGRihQMLM05ixgmA+RwOhw4cOKCysjKdOXNGkhQcHKy0tDRNnjyZAIVe43A45OPjI6mzoWZxcbESEhI0ffp0VwsNb8Pi8B4iOAFwFx0dHdq3b5/Ky8vV3NwsSQoNDdWcOXO63K8M6A0fffSRKisrJUl+fn5KSkrSPffc43UzUASnHiI4AXA37e3t+vzzz1VeXq6Wlhb9+te/1qhRo8wuCx7G6XTq6NGjKikp0fHjxyVJN910k6tdxs0332xyhf2D4NRDBCcA7ur7779XTU2NJkyY4LoCb/fu3bJarYqLi3OdcgFuhNPp1FdffaWSkhLV19dLkiIjI/XEE094xZWfLA4HAA9x0003aeLEia7HFy5c0LZt22S321VeXq709HTdeeedXvHhhr5jsVg0ZswYjR49WkeOHFFJSYmSk5Nd76uOjg61t7fLarWaXKn5+KoCAAOIr6+vUlNTFRAQoKamJu3YscPskuBBLBaLxo0bp8cff1zx8fGu7YcOHdJ3F28L5OWYcQKAAcTf319paWlKTk7Wzp07FRMTw2wTep3FYunyvvL19VVoaKiJFbkPghMADEABAQFKT083uwx4ibi4OLNLcBucqgMAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAAAAMIjgBAAAYRHACAAAwiOAEAABgEMEJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwCCCEwAAgEEEJwAAAIMITgDcyv79+/t0PADcCIITALexfv16xcfHa8WKFYbGr1ixQvHx8Vq/fn0fVwYAnQhOANzC/v37tXDhQknS0qVLrxmeVqxYoaVLl0qSFi5cyMwTgH4xoIPTsWPHtGDBAsXGxiowMFCjR4/WsmXL1NbWZnZpAHpo0qRJys/Pdz2+GJ46HE7t+Oq0Nu+r146vTqvD4ewSmiQpPz9fkyZNMqNsAF7Gz+wCbkRNTY0cDofWrl2rMWPGqLq6WllZWTp//rwKCgrMLg9AD+Xm5kqSKxQtXbpUr5XWyif+Z64xjn3v6fjW112P8/PzXfsBQF+zOJ1Op9lF9KaVK1eqsLBQdXV1hvex2WwKDQ1Vc3OzQkJC+rA6AEZcPqM0eEamQqfOU/POd3W2rNi1ndAEoDf0JAcM6Bmnq2lublZYWJjZZQC4Ac8+t0Svlda6ZpbOlhXLtnOTHPbzrjFR9y3Qs88tMatEAF5qQK9xulxtba1Wr16txx9/vNtxdrtdNputyw8A91F19N/yif+ZBs/IdG27NDQNnpEpn/ifqerov80oD4AXc8vglJubK4vF0u1PTU1Nl33q6+s1a9YszZs3T1lZWd2+fn5+vkJDQ10/UVFRffnHAdBDJ1u+kySFTp0nH2tQl+d8rEEKnTqvyzgA6C9uucapqalJp0+f7nbMqFGj5O/vL0lqaGhQenq6pk6dqr/85S/y8ek+D9rtdtntdtdjm82mqKgo1jgBbmLHV6f13+t3XrGm6aKLa57+L2uq7h491IQKAXiSAb/GKTw8XOHh4YbG1tfXKyMjQwkJCSoqKrpmaJIkq9Uqq9V6o2UC6CPJsWFy7HuvS2jysQa5TtedLStWcICfkmPnmFUiAC/llqfqjKqvr1d6erqio6NVUFCgpqYmNTY2qrGx0ezSANyAlX98uUvLgcEzMhX19Ntd1jwd3/q6Vv7xZTPKA+DF3HLGyaht27aptrZWtbW1GjlyZJfn3PAMJAADLm9FEHXfAlcfp9Cp8xQc4OcKVRfH0ZIAQH9xyzVO/Y0+ToB7uFpH8GefW6Kqo//WyZbvFBEcoOTYMK3848tXjCM8AbhePckBBCcRnAB3sH//fsXHx7seXysMXR6y9u3bx21XAFyXnuSAAb3GCYDnmDRpktatWyfJ2AxSbm6u695269atIzQB6BfMOIkZJ8Cd7N+/v0chqKfjAeByzDgBGLB6GoIITQD6E8EJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwCCCEwAAgEEEJwAAAIMITgAAAAYRnAAAAAwiOAEAABhEcAIAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAAAAMIjgBAAAYRHACAAAwiOAEAABgEMEJAADAID+zC3AHTqdTkmSz2UyuBAAA9LeLn/8X80B3CE6SWlpaJElRUVEmVwIAAMzS0tKi0NDQbsdYnEbilYdzOBxqaGhQcHCwLBZLr762zWZTVFSUjh8/rpCQkF59bfw4jnv/45ibg+Pe/zjm5ujL4+50OtXS0qLhw4fLx6f7VUzMOEny8fHRyJEj+/R3hISE8BfMBBz3/scxNwfHvf9xzM3RV8f9WjNNF7E4HAAAwCCCEwAAgEEEpz5mtVq1bNkyWa1Ws0vxKhz3/scxNwfHvf9xzM3hLsedxeEAAAAGMeMEAABgEMEJAADAIIITAACAQQSnfnLs2DEtWLBAsbGxCgwM1OjRo7Vs2TK1tbWZXZrH+fOf/6zbbrtNAQEBSklJUVVVldklebT8/HwlJSUpODhYERERmjt3rg4fPmx2WV5lxYoVslgsevrpp80uxePV19frl7/8pYYOHarAwEBNnDhRu3fvNrssj9XR0aHf/e53XT47X3jhBUO3RukrNMDsJzU1NXI4HFq7dq3GjBmj6upqZWVl6fz58yooKDC7PI/x9ttva/HixVqzZo1SUlK0atUq3XfffTp8+LAiIiLMLs8jlZWVKTs7W0lJSWpvb1deXp5++tOf6p///KeCgoLMLs/j7dq1S2vXrtVdd91ldike78yZM0pNTVVGRoY+/PBDhYeH68svv9SQIUPMLs1jvfzyyyosLFRxcbHi4uK0e/duzZ8/X6GhoXrqqadMqYmr6ky0cuVKFRYWqq6uzuxSPEZKSoqSkpL06quvSuq8nU5UVJSefPJJ5ebmmlydd2hqalJERITKysqUlpZmdjke7dy5c5oyZYpee+01vfjii4qPj9eqVavMLstj5ebm6tNPP1VFRYXZpXiNBx54QJGRkXr99ddd2x566CEFBgbqzTffNKUmTtWZqLm5WWFhYWaX4THa2tq0Z88ezZw507XNx8dHM2fO1I4dO0yszLs0NzdLEu/tfpCdna3777+/y3sefefvf/+7EhMTNW/ePEVERGjy5Mlav3692WV5tGnTpmn79u06cuSIJGn//v365JNPNHv2bNNq4lSdSWpra7V69WpO0/WiU6dOqaOjQ5GRkV22R0ZGqqamxqSqvIvD4dDTTz+t1NRUTZgwwexyPNrGjRu1d+9e7dq1y+xSvEZdXZ0KCwu1ePFi5eXladeuXXrqqafk7++vzMxMs8vzSLm5ubLZbBo/frx8fX3V0dGh5cuX69FHHzWtJmacblBubq4sFku3P5d/aNfX12vWrFmaN2+esrKyTKoc6H3Z2dmqrq7Wxo0bzS7Fox0/flyLFi3Shg0bFBAQYHY5XsPhcGjKlCl66aWXNHnyZC1cuFBZWVlas2aN2aV5rHfeeUcbNmzQW2+9pb1796q4uFgFBQUqLi42rSZmnG7QM888o8cee6zbMaNGjXL9d0NDgzIyMjRt2jStW7euj6vzLrfccot8fX114sSJLttPnDihYcOGmVSV98jJydE//vEPlZeXa+TIkWaX49H27NmjkydPasqUKa5tHR0dKi8v16uvviq73S5fX18TK/RMt956q+68884u2+644w799a9/Nakiz/fss88qNzdXjzzyiCRp4sSJ+te//qX8/HzTZvkITjcoPDxc4eHhhsbW19crIyNDCQkJKioqko8PE369yd/fXwkJCdq+fbvmzp0rqfMb4vbt25WTk2NucR7M6XTqySef1HvvvafS0lLFxsaaXZLH+8lPfqKDBw922TZ//nyNHz9eS5YsITT1kdTU1CtabRw5ckQxMTEmVeT5Wltbr/is9PX1lcPhMKkiglO/qa+vV3p6umJiYlRQUKCmpibXc8yG9J7FixcrMzNTiYmJSk5O1qpVq3T+/HnNnz/f7NI8VnZ2tt566y1t3rxZwcHBamxslCSFhoYqMDDQ5Oo8U3Bw8BVryIKCgjR06FDWlvWh3/72t5o2bZpeeukl/eIXv1BVVZXWrVvH2YM+9OCDD2r58uWKjo5WXFycPv/8c/3pT3/Sb37zG/OKcqJfFBUVOSVd9Qe9a/Xq1c7o6Ginv7+/Mzk52blz506zS/JoP/a+LioqMrs0rzJjxgznokWLzC7D473//vvOCRMmOK1Wq3P8+PHOdevWmV2SR7PZbM5FixY5o6OjnQEBAc5Ro0Y5n3/+eafdbjetJvo4AQAAGMQiGwAAAIMITgAAAAYRnAAAAAwiOAEAABhEcAIAADCI4AQAAGAQwQkAAMAgghMAAIBBBCcAAACDCE4AAAAGEZwAeLwXX3xRFotFU6dOverzubm5slgsio+P15kzZ/q5OgADCfeqA+DxLly4oNtvv13ffPONNm3apIceesj1XH5+vvLy8jRu3DiVl5crIiLCxEoBuDtmnAB4vMDAQC1fvlyS9Pzzz6u9vV2SVFhYqLy8PMXGxmr79u2EJgDXxIwTAK/gdDqVmJiovXv3as2aNRo0aJB+9atfafjw4aqoqFBsbKxrbG1trQoKClRVVaWDBw9qxIgROnbsmHnFA3AbBCcAXqO0tFQZGRkaMmSIWlpaNGTIEJWXl2v8+PFdxm3evFnZ2dlKTk7W0aNHdebMGYITAEkEJwBeJjU1VZWVlQoODlZ5ebni4+OvGONwOOTj07mS4YknntCWLVsITgAkscYJgBcpKirSjh07JEl2u10hISFXHXcxNAHA5fjXAYBXePfdd5WVlaWwsDA9/PDDamtr05IlS8wuC8AAQ3AC4PE++OADPfroowoKCtLWrVu1Zs0ahYWFadOmTaqsrDS7PAADCMEJgEcrKyvTz3/+c/n5+en9999XQkKCBg8erLy8PEnS4sWLTa4QwEBCcALgsaqqqvTggw+qo6NDf/vb35SWluZ6LicnRzExMfrss8+0ceNGE6sEMJAQnAB4pIMHD2r27NlqbW3Vhg0bNGvWrC7PW61WvfDCC5KkpUuXym63m1EmgAGGdgQA0A3aEQC4lJ/ZBQCAu2ltbdUHH3wgSaqrq1Nra6s2bdokSUpKSlJMTIyZ5QEwETNOAHCZY8eOdbkFy6WKior02GOP9W9BANwGwQkAAMAgFocDAAAYRHACAAAwiOAEAABgEMEJAADAIIITAACAQQQnAAAAgwhOAAAABhGcAAAADCI4AQAAGERwAgAAMIjgBAAAYBDBCQAAwKD/B9RLP9oJB9ntAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGGCAYAAACNCg6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACkR0lEQVR4nOydeVxU9frH32eGfXdhUURFERVQFAVXFNJcMtu0tDJtMbttWrapt/uzbvem1b2m2WqLWWrXsjLbME1R3AA1cN9xBQQR2deZ8/vjMMMMDDADgyx+36+XL5hzvuec75kZmc883+f5PJIsyzICgUAgEAgEgjpRNfUEBAKBQCAQCFoKQjgJBAKBQCAQmIkQTgKBQCAQCARmIoSTQCAQCAQCgZkI4SQQCAQCgUBgJkI4CQQCgUAgEJiJEE4CgUAgEAgEZiKEk0AgEAgEAoGZCOEkEAgEAoFAYCZCOAkEgmZNVFQUUVFRN+x6sbGxSJJEbGysxcc+/PDDuLi4WHU+N/r+BQJB7QjhJBAIGsyXX36JJEk4ODhw+fLlavujoqIICQlpgpkJBAKBdRHCSSAQWI2SkhIWL15s1XP+8ccf/PHHH1Y9p0AgENQXIZwEAoHV6NevH59++impqalWO6ednR12dnZWO59AIBA0BCGcBAKB1ViwYAEajcasqFN5eTlvvPEG3bt3x97enq5du7JgwQJKSkqMxpnK8Vm+fDnBwcE4OTnRpk0bBg4cyNq1awHYtm0bkiTx448/Vrvm2rVrkSSJPXv2WHRfcXFx3HvvvXTu3Bl7e3v8/Px4/vnnKSoqMjn+7NmzjB07FmdnZzp27Mg///lPZFk2GqPValm6dCnBwcE4ODjg7e3NE088QXZ2dp3zqe3+BQJB4yKEk0AgsBr+/v5Mnz7drKjTzJkz+b//+z/CwsJ49913GTlyJIsWLWLq1Km1Hvfpp58ye/ZsgoKCWLp0Ka+//jr9+vUjPj4eUISWn58fa9asqXbsmjVr6N69O0OGDLHovr777jsKCwt58sknWb58OWPHjmX58uVMnz692liNRsO4cePw9vbm7bffZsCAASxcuJCFCxcajXviiSd46aWXGDZsGMuWLeORRx5hzZo1jB07lrKysnrfv0AgaGRkgUAgaCArV66UATkxMVE+c+aMbGNjI8+ePVu/f+TIkXJwcLD+cVJSkgzIM2fONDrPiy++KAPy1q1bjY4dOXKk/vGdd95pdC5TzJ8/X7a3t5evX7+u35aRkSHb2NjICxcurPXYbdu2yYC8bds2/bbCwsJq4xYtWiRLkiSfP39ev23GjBkyID/77LP6bVqtVp4wYYJsZ2cnZ2ZmyrIsy3FxcTIgr1mzxuicMTEx1bbX5/4FAkHjISJOAoHAqnTr1o2HHnqIFStWkJaWZnLMb7/9BsDcuXONtr/wwgsA/PrrrzWe38PDg0uXLpGYmFjjmOnTp1NSUsL69ev129atW0d5eTnTpk0z+150ODo66n8vKCjg6tWrDB06FFmW+euvv6qNf+aZZ/S/S5LEM888Q2lpKVu2bAGUCJa7uzu33norV69e1f8bMGAALi4ubNu2rca5mHP/AoGg8RDCSSAQWJ1XX32V8vLyGnOdzp8/j0qlIiAgwGi7j48PHh4enD9/vsZzv/LKK7i4uBAREUGPHj14+umn2bVrl9GYXr16ER4ebrRct2bNGgYPHlztmuZw4cIFHn74Ydq2bYuLiwuenp6MHDkSgJycHKOxKpWKbt26GW0LDAwE4Ny5cwCcOnWKnJwcvLy88PT0NPqXn59PRkZGg+5fIBA0HjZNPQGBQND66NatG9OmTWPFihXMmzevxnGSJFl87t69e3PixAl++eUXYmJi+P777/nwww/5v//7P15//XX9uOnTpzNnzhwuXbpESUkJe/fu5f3337f4ehqNhltvvZVr167xyiuv0KtXL5ydnbl8+TIPP/wwWq3W4nNqtVq8vLxM5mEBeHp61nisufcvEAgaByGcBAJBo/Dqq6+yevVq3nrrrWr7unTpglar5dSpU/Tu3Vu//cqVK1y/fp0uXbrUem5nZ2emTJnClClTKC0t5Z577uHf//438+fPx8HBAYCpU6cyd+5cvvnmG4qKirC1tWXKlCkW38ehQ4c4efIkq1atMkoG37x5s8nxWq2Ws2fP6qNMACdPngSga9euAHTv3p0tW7YwbNgwo2VAczHn/gUCQeMgluoEAkGj0L17d6ZNm8Ynn3xCenq60b7bbrsNgKVLlxptX7JkCQATJkyo8bxZWVlGj+3s7AgKCkKWZaNqtPbt2zN+/HhWr17NmjVrGDduHO3bt7f4PtRqNYCRnYAsyyxbtqzGYwwjW7Is8/7772Nra8uoUaMAuO+++9BoNLzxxhvVji0vL+f69es1ntvc+xcIBI2DiDgJBIJG4+9//ztff/01J06cIDg4WL89NDSUGTNmsGLFCq5fv87IkSNJSEhg1apV3HXXXURHR9d4zjFjxuDj48OwYcPw9vbm2LFjvP/++0yYMAFXV1ejsdOnT2fy5MkAJkWKOfTq1Yvu3bvz4osvcvnyZdzc3Pj+++9r9FtycHAgJiaGGTNmMGjQIH7//Xd+/fVXFixYoF+CGzlyJE888QSLFi0iKSmJMWPGYGtry6lTp/juu+9YtmyZft4NuX+BQNAINGVJn0AgaB0Y2hFURVeiX7WEvqysTH799ddlf39/2dbWVvbz85Pnz58vFxcXG42rWo7/ySefyCNGjJDbtWsn29vby927d5dfeuklOScnp9q1S0pK5DZt2sju7u5yUVGRWfdiyo7g6NGj8ujRo2UXFxe5ffv28uOPPy4nJyfLgLxy5Uqje3V2dpbPnDkjjxkzRnZycpK9vb3lhQsXyhqNptq1VqxYIQ8YMEB2dHSUXV1d5T59+sgvv/yynJqaapX7FwgE1keS5Sp2tgKBQNBKKC8vp2PHjkycOJHPP/+8qacjEAhaASLHSSAQtFo2bNhAZmamSYdvgUAgqA8i4iQQCFod8fHxHDx4kDfeeIP27dtz4MCBpp6SQCBoJYiIk0AgaHV89NFHPPnkk3h5efHVV1819XQEAkErQkScBAKBQCAQCMxERJwEAoFAIBAIzEQIJ4FAIBAIBAIzEQaYKC0SUlNTcXV1rVfvLIFAIBAIBC0XWZbJy8ujY8eOqFS1x5SEcAJSU1Px8/Nr6mkIBAKBQCBoQi5evEinTp1qHSOEE+jbFFy8eBE3N7cmno1AIBAIBIIbSW5uLn5+fma1LRLCCfTLc25ubkI4CQQCgUBwk2JOuo5IDhcIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMBMhnAQCgUAgEAjMRAgngUAgEAgEAjMRwkkgEAgEAoHATIRwEggEAoFAIDATIZwEAoFAIBAIzEQIJ4FAIBAIBAIzEcJJIBAIBAKBwEyEcBIIBAKBQCAwEyGcBAKBQCAQCMxECCeBQCAQCAQCMxHCSSAQCAQCgcBMhHASCAQCgUAgMJMWL5w0Gg3/+Mc/8Pf3x9HRke7du/PGG28gy3JTT00gEAgEAkErw6apJ9BQ3nrrLT766CNWrVpFcHAw+/bt45FHHsHd3Z3Zs2c39fQEAoFAIBC0Ilq8cNq9ezd33nknEyZMAKBr16588803JCQkNPHMBAKBQCAQtDZavHAaOnQoK1as4OTJkwQGBpKcnMzOnTtZsmRJjceUlJRQUlKif5ybm3sjpioQCASCFohWq6W0tLSppyGwEnZ2dqhU9c9UavHCad68eeTm5tKrVy/UajUajYZ///vfPPjggzUes2jRIl5//fUbOEuBQCAQtERKS0tJSUlBq9U29VQEVkKlUuHv74+dnV29jpfkFp5F/b///Y+XXnqJd955h+DgYJKSknjuuedYsmQJM2bMMHmMqYiTn58fOTk5uLm53aipCwQCgaAZI8syFy5coKysjI4dOzYoSiFoHmi1WlJTU7G1taVz585IkgQoOsDd3d0sHdDiI04vvfQS8+bNY+rUqQD06dOH8+fPs2jRohqFk729Pfb29jdymgKBQCBoYZSXl1NYWEjHjh1xcnJq6ukIrISnpyepqamUl5dja2tr8fEtXj4XFhZW+xagVqtFWFUgEAgEDUKj0QDUe0lH0DzRvZ6619dSWnzEaeLEifz73/+mc+fOBAcH89dff7FkyRIeffTRpp6aQCAQCFoBuuUcQeugoa9ni484LV++nMmTJ/PUU0/Ru3dvXnzxRZ544gneeOONpp6aQCAQCFohGo2GpUuX0r9/f5ycnHBxcaFXr148/fTT+jGSJDWZ4Nq+fTvjxo2jTZs2ODo60rt3b959910AHn74YSRJ4ssvv7whczl37hySJOHj42PxsVFRUUiSRGxsrMXHfvnll0iSxMMPP2zxsXXR4iNOrq6uLF26lKVLlzb1VAQCgUBwEzB16lTWr1+Pv78/r732Gh4eHiQnJ/P999/zwQcfAPDNN980ydw2bNjApEmTsLGx4dlnnyUoKIhjx46xa9cunn/++SaZU2ujxUecBAKBQCC4UezcuZP169fj4eFBfHw8L7/8MrNmzeKDDz7g1KlT+nH3338/999/PwAjR45EkiSOHj0KwJEjR5AkieHDhwNw6NAhxo8fT9u2bWnfvj333Xcfly9fBuC1115DkiSmTp3KiBEjcHV1JTo6mszMTJPze+GFF9BqtXzwwQf85z//4dFHH+Wdd97h22+/NTn+73//O76+vtjZ2eHp6cndd99NamoqAGfPniUqKgo3NzccHBzo0aMHa9euBWDVqlX06NEDe3t7PDw8GDx4cI1zqom8vDwGDRqEh4cH9vb2+Pv78+abb1YbFxMTQ/fu3WnTpg3PPvss5eXlAJw/f5777rsPb29vPDw8GD9+PMeOHbNoDvWhxUecBAKBQCC4UezduxeAyMhIPD09Abh69ap+v4ODQ7VKrVmzZrFjxw6++uorFi9ezFdffQXAE088QU5ODmPHjqW8vJxnn32WsrIylixZwqVLl9i9e7f+HL/99hv/+te/0Gg0xMbG8sEHH/Daa68ZXSczM5OzZ88CcM899xjtq8lKoVu3bvz9739HpVJx5MgR3n//fZycnFizZg3vvfce27dvZ968eQQGBnLixAl9QvWcOXNwcnLio48+orCwkMTERL2gMRdJkhg7diyPP/44BQUFrFu3jr///e+Eh4dz66236sf9/vvvzJs3jw8++ID333+fnj178uSTTzJx4kTOnDnDM888g5OTE++99x633XYbJ06csGgeliKEk0AgEAgE9aS4uFgvoED5kB83bpzRmMmTJzN79mzWrFnDv/71L9asWUObNm2499572bZtG2lpaQD885//1B+zZ88esrOz9Y8feughZs+ejaOjI7t37+b06dNWmf/ly5dZunSp0bUOHDgAQO/evQH4888/KSwsZODAgUyePFm/b//+/fz222+EhIQwc+ZMOnToYNG1CwsL2bt3L2+++aZRhduBAweMhNPChQu55557aNeuHZMmTSImJoZRo0Zx6NAhAN5++2392GvXrnHkyBELnwXLEEt1AoFAIBCYyZAhQwBlyS4rKws7Ozs2b95M3759azzG3t6e6dOnc+nSJV599VUuX77M9OnTcXBw0I8JDw9n8+bN+n+bNm3C0dFRv18nznTRLFPRHU9PT7p37w4ouU6GmLLoOXnyJAsXLkSSJNatW8d3330HQFFREaBExHbu3Klfvps+fbq+K8eff/7JqlWrCAgIYP369YwYMYKNGzfW/uRVYenSpWzevJmxY8fy+++/M3PmTKPrm0Pnzp2rPW9du3a1aB6WIiJOAkErJTk5mdDQ0EYbLxDcjAwbNox7772X7777jiFDhvC3v/2N9u3bk5+fX+txs2bNYunSpfroyKxZswCl32qHDh3Yv38/27ZtIyAggOPHj7Njxw727Nlj8fz+85//MGnSJJ566imOHTtG7969OXnyJGfOnNELo6qUlpaSlZXF5s2bjbZ/+OGHXLlyBX9/fyIiIli/fj0XLlwAFFE1YMAAgoODOXr0KEeOHNHvM0V+fj6vvvqq/nFYWJjRvnPnzrFp0yaTx77++utcu3aN999/H4Bx48YRGBhISEgIhw8f5ocffiAiIoKUlBRWr17NmTNnzHuy6osskHNycmRAzsnJaeqpCARWYcWKFTIgL1q0yKzxixYtkgF5xYoVjTwzgaDlUFRUJB89elQuKioy2l5WVia/8847ckhIiGxnZye7ubnJwcHB8rPPPitfvnxZlmVZBuSqH7HDhw+XAXn48OFG2w8ePChPmDBBbteunezk5CQHBQXJ//jHP2RZluWFCxfKgLxw4UJZlmV55cqVMiBPmTKlxnnHxsbKY8aMkd3c3GR7e3u5R48e8n//+19ZlmV5xowZMiCvXLlSlmVZfu2112R3d3fZy8tL/u9//ysDcpcuXWRZluUvvvhC7tmzp+zo6Cg7OTnJERERclxcnCzLsjx58mTZx8dHtrW1ldu3by9PmzZNzsvLqzaXlJQU/XNh+G/GjBnylStX5KioKNne3l4eOHCg/Mwzzxjd68iRI2VAfvnll+VevXrJHh4e8jPPPCOXlZXJsizL586dk6dOnSp7e3vLDg4OckBAgDxr1iyj52nGjBlmva6W6IAW36vOGljSo0YgaO4kJyfTr18//eNFixYxb968GscvXryY+fPn6x8nJSWJyJNAgJK/lJKSgr+/v9GymqBlY+p1tUQHiBwngaCVERoayqJFi/SP58+fz+LFi9FoNSSmJ/Lb2d9ITE9Eo9VUE02LFi0SokkgEAhqQeQ4CRoFWZZFm4ImRBdh0omi+fPn89mhz3AcU5lsWvRHEWfWVuYC1BWZEggEAoGIOAkagZKSElasWMH+/fvr3URR0HDmzZtnFHk6s/YMmb8oBnWZv2QK0SRoNdRk7mit8QKBIUI4CazO/v37SUtL4+eff+b9998nKSnJZCmsoPF56eWX6P5Ad/3jK+uvcPSpo1xZf0W/LeCBAF56+aWmmJ5A0GCmT5/OlClTqnkn1cS4ceOYMmUK06dPb+SZCVorQjgJrE5ERATjxo3DxcWF7OxsNmzYwAcffMDBgweFgLrBHMg4gOMYR7wne+u3aQsrXwPvyd44jHHgQMaBppieQNAgvv32W77++msANm3aVKd4GjdunL7k/euvvxaRJ0G9EMJJYHVsbGwYPHgwc+bMYcyYMTg5OZGVlcUPP/zAxx9/bLEtv6D+ZBYqS3Oet3uicjL+765yUuF5u6fROIGgJXHfffcxduxY/WOdeCotL+Xro1/z5t43+fro15SWlxqJJoCxY8dy3333NcW0BS0ckRwuaDRsbW0ZOnQoAwYMICEhgd27d+Pj44ONjXjb3Sg8nSqE0S+ZRpEmUCJPmb9k4nm7p36cQNDSiImJMRJFmzZtol1YO7q+0FU/5qmpT5F/qNKgcuzYscTExNzoqVoFSZLIzs7Gw8Ojqady0yIiToJGx97ensjISH0ESkdWVhaffvopJ0+eRNiJNQ5hXmEU/VFklNNkGHm6sv4KxX8UE+YVZupwgaBFEBMTYxR5yj+Uz7n/nAPg3H/OtRrRJGgeCOEkuGE4ODjg4uKif7xz504uX77M2rVr+fzzzzlz5owQUFbmnbffMaqe857sTdCHQUY5T6fXnuadt99piukJBFZj4y8bcelT+fcl/3A+hx8+TP7hStHk0seFjb9Y1k+tvqTlFLH7zFXScszvu2Yp+/btY+jQofTt25eIiAh27doFwIIFC3jzzTcB+O2335AkiZMnTwLw6KOP8tVXXzXanG4GhHASNBm33norw4YNw9bWlkuXLvH111+zcuVKUlJSmnpqrYKq5pbdH+iuz2nyvN2TgAcC9Pt0JpkCQUtl3cl1dH2hKy4hLib3u4S40PWFrqw7ua7x55J4gWGLt/LAp/EMW7yVdYk193CrL6Wlpdxzzz0sXLiQgwcPsmTJEiZNmkR+fj6jR49my5YtAGzevJkhQ4boH2/ZsoXRo0dbfT43E0I4CZoMJycnbr31VubMmcPgwYOxsbHhwoULrFq1inXrGv+PW2vGlCP4ia9P8MXYL3gr8i2+GPsFx78+btJhXCBoiVzMvQhA1xe7mtyv264b11ik5RQx/4dDaCuC51oZFvxw2OqRpxMnTqBSqfRLlMOHD8fb25ukpCSGDRtGUlISRUVFbN++nX/9619s2bKFEydO4OzsTMeOHa06l5sNIZwETY6Liwvjxo1j9uzZhIeHo1ar8fHxaepptViSk5OriaZ58+ahVqkJ9wnntm63Ee4TjlqlrmaSOX/+fJKTk5ti2gJBg/Bz8wPQ5zZVRbddN66xSLlaoBdNOjSyzLmrhY16XUDfrcHe3p6BAwfy3Xff4ejoSFRUFAcPHmTTpk2MGjWq0efR2hHCSdBscHNzY8KECcyePZvBgwfrt58+fZq1a9eSlpbWhLNrOYSGhrJixQrAPEdwQ/G0YsUK0atO0CKZEjiFc/89Z5TTZEj+4XzO/fccUwKnNOo8/Ns7o6rSbUotSXRt72TV6/Ts2ROtVsvmzZsB2L17N+np6foG36NHj+b//u//GDVqFCqViv79+7NkyRKxTGcFhHASNDvc3d2xt7fXP46NjeXkyZN88sknrFu3jitXrtRytADg8ccfJykpyew2KvPmzSMpKYnHH3+8kWcmEDQOd9x+h1H1nEuICyFfhhjlPOUfyueO2+9o1Hl0cHdk0T19UFdEf9SSxJv3hNDB3bGOIy3Dzs6OH374gYULF9K3b1+ee+451q9fry/AGT16NOfPn9cLpVtvvZWLFy8SFRVl1XncjEiyKGMiNzcXd3d3cnJycHNzu2HXTU5OtujbvaXjWwtZWVls376dQ4cO6avugoODiYqKwtNT+A8JBDc7Vc0tXfq4GPk4nftv/SwJiouLSUlJwd/fHwcHB4vmlJZTxLmrhXRt72R10SRoGKZeV0t0gIg4NRGffvop/fr1MzsZd/HixfTr149PP/20kWfW/GjXrh333HMPTz31FMHBwQAcOXKEDz/8kG3btjXx7AQCQVNiyhE860AWL4e/zP097+fl8JfJOpBl0mG8Meng7siQ7u2EaGqFiIgTNz7ilJycrF+HhrrzUKpWSCUlJd2UkScdV65cYdu2bRw/fpx7771XL6YEAsHNxbfffsuUKZU5S3VFkqqKrHXr1tXadqUhESdB80VEnFogoaGhpsvAtRpIiYND65WfWo3JsvKbWTQBeHt7M3XqVJ588kmCgoL02xMSEvj555/JyclpwtkJBIIbxX333cdDDz0EmLf8Zugw/tBDD4ledYJ6ISJONF2OUzVRdJsn88JLKvcn2jP/t8rmq+ZUSN2slJeX8+6771JQUIBarWbAgAFERkbi6ura1FMTCASNzLfffmuRCDJ3vIg4tU4aGnESwommE05gQjyNsmfecHsW7yxh/p+VIkqIpro5f/4827Zt49y5cwDY2NgQHh7O8OHDcXZ2btrJCQSCFocQTq0TIZysQFMKJ7QaFk/sYBRZ8nCA68WVQxbd5sm8n9NApb6xc2uhpKSksHXrVi5eVByCbW1tmThxIn379m3imQkEgpaEEE6tE5Hj1NI5v5t54SUsGlXpW2QkmkbZK8t353c3weRaJv7+/jz66KNMmzYNX19fysrK8PLyauppCQQCgaAVIIRTU5OvmDnOG26PR5UvNB4OynbDcQLzkCSJgIAAZs6cyeOPP27UwmXz5s1s376dkpKSWs4gEAgELZfU1FQiIyNr3N++fXt9WoPAMmyaegI3PS7eACzeWWIUaQIl8rR4Z4kinirGCSxDkiR8fX31j3NyctizZw9arZa9e/cybNgwIiIisLOza8JZCgQCgXXp2LEjcXFxTT2NVomIODU1XYYq1XMGieCGkaf5f5awONEeugxtgsm1Ptzc3Ljnnnto3749RUVFbNmyhWXLlrFnzx7KysqaenoCgaC1kHMZUnYoP62IJEn8+9//ZtCgQXTt2pUNGzawaNEiBg4cSI8ePYiNjQXg3LlzeHh46I/buHEjvXv3pm/fvrz88stWndPNhhBOTczit98xthwYZU/2K25GOU/zf8tk8dvvNMX0Wh2SJBESEsJTTz3F3XffTdu2bSkoKGDTpk0sW7aMCxcuNPUUBQJBS+fAV7A0BFZNVH4e+Mqqp3dxcSE+Pp7PP/+cadOm0aFDB/bt28ebb77JSy+9VG18RkYGjzzyCN9//z0HDx4kICCArKwsq87pZkIIpybEpI9TRU7TvOH2LLqtsg+b3iRTYBVUKhWhoaE8/fTT3HHHHXh4eFBaWkr79u2bemoCgaAlk3MZfp4DslZ5LGvh5+esGnnSuaUPHDiQgoICpk6dCkBERASnTp2qNn7v3r307dtXbxj82GOPifSEBiBynJoIU47g815+Samey78CLt7M+7+h8PY7+nG6n8LPyXqo1WrCwsIIDQ0lPT0dJycnAGRZZsOGDXTt2pW+ffuiVgsrCIFAYAbXzlSKJh2yBq6dBXdf08dYiK6EXvd3yfBxeXl5ncdLkmSVedysiIhTE5CcnFxdNM2bp/g0+UdCn8nKT5WaefPmVWvPkpyc3BTTbtWo1WqjJPJz586RnJzMTz/9xAcffEBycjJarbaWMwgEAgHQtjtIVT5aJTW07dY08wGGDBnCwYMHOX78OABffPEFpaWlTTaflk6rEE6XL19m2rRptGvXDkdHR/r06cO+ffuaelo1EhoayooVKwDzHMENxdOKFStu+l51N4JOnToxZswYnJ2duXbtGj/++CMffvghhw8fRnjGCgSCGnH3hYnLFLEEys+JS60WbaoPnp6efPHFF9x9992EhoZy6tQp2rVr12Tzaem0eOfw7Oxs+vfvT3R0NE8++SSenp6cOnWK7t270717d7PO0VTO4cnJyRaJIEvHCxpOaWkpCQkJ7Nq1i6KiIgC8vLx44IEHjCpWBAJB66NBzuE5l5XlubbdmlQ0CarTUOfwFp/j9NZbb+Hn58fKlSv12/z9/ZtwRuZjqQgSounGY2dnx/DhwwkPD2fv3r3s2bMHjUZz41vzCASCloW7rxBMrZQWv1S3ceNGBg4cyL333ouXlxf9+/fn008/beppCVoZ9vb2jBw5kjlz5nDvvfeiUin/dcrLy1m3bh2nT58WS3gCgUBwE9DiI05nz57lo48+Yu7cuSxYsIDExERmz56NnZ0dM2bMMHlMSUmJUbuN3NzcGzVdQQvH0dERR0dH/eO//vqLY8eOcezYMTp37kx0dHSLiXgKBAKBwHJafMRJq9USFhbGm2++Sf/+/Zk1axaPP/44H3/8cY3HLFq0CHd3d/0/Pz+/GzhjQWsiKCiIIUOGYGNjw4ULF1i1ahVffvkl58+fb+qpCQQCgaARaPHCqUOHDnpTLx29e/eu1QF6/vz55OTk6P9dvHixsacpaKU4OzszduxY5syZQ0REBGq1mnPnzrFy5Uq+/vpr0cZFIBAIWhktfqlu2LBhnDhxwmjbyZMn6dKlS43H2NvbY29vX+N+gcBSXF1due222xg2bBhxcXEcOHAAlUqFra1tU09NIBAIBFakxUecnn/+efbu3cubb77J6dOnWbt2LStWrODpp59u6qkJbkLc3d25/fbbefbZZxk3bpx+e15eHt999x1XrlxpwtkJBIKWjiRJXL9+3eS+2267rVogwRQPP/wwS5cute7EbiJafMQpPDycH3/8kfnz5/PPf/4Tf39/li5dyoMPPtjUUxPcxLRp08bo8c6dOzly5AhHjhwhODiYqKgoPD09azhaIBAILOe3335r6incFLT4iBPA7bffzqFDhyguLubYsWM8/vjjTT0lgcCIgQMHEhwcDMCRI0f48MMP+eGHH0SHcoGglZJekE5CWgLpBelWP/eHH35IREQE/v7+Rh6GXbt2JSkpCYDjx48zZMgQgoODueeeexgzZgxffvmlfuyxY8cYNWoUgYGB3HPPPaIFiwW0CuEkEDR3PD09uffee3nyySfp3bs3sixz8OBBPvjgA3799demnp5AILAiP5z6gbHfj+WxPx5j7Pdj+eHUD1Y9v729PQkJCfz+++/Mnj3bZGPfhx56iFmzZnHkyBH+/e9/s2PHDqP9SUlJ/Pzzzxw7dowrV67w/fffW3WOrRkhnASCG4i3tzdTpkzhiSeeIDAwEK1Wi41Ni18xFwgEFaQXpPP6ntfRykpTcK2s5fU9r1s18qRLRenVqxc2NjakpxufOzc3l6SkJKZPnw4olebDhw83GnP33Xfj5OSEWq0mIiKCM2fOWG1+rR3xF1sgaAI6dOjAAw88wKVLl4zyoS5dusTBgweJjIzE1dW1CWcoEAjqw4XcC3rRpEMra7mYdxEfZx+rXMOwb55arTYZcaqKJEkNPodAQUScBIImpFOnTjg7O+sfb9u2jYSEBJYtW0ZMTAz5+flNODuBQGApnd06o5KMP1pVkgo/1xtntOzm5kZoaCirV68G4MSJE+zcufOGXb+1I4STQNCMGD58OJ07d6a8vJy9e/eybNkyNm/eTGFhYVNPTSAQmIGPsw8LhyzUiyeVpGLhkIVWizaZy1dffcVHH31ESEgIr7zyCuHh4Xh4eNzQObRWJFl0JiU3Nxd3d3dycnJE13tBkyPLMmfPnmXr1q1cvnwZADs7O2655RYGDx7cxLMTCG4eiouLSUlJwd/f32hpyxzSC9K5mHcRP1e/Gy6aAPLz83F2dkaSJFJSUhgyZAiJiYmixRimX1dLdIDIcRIImhmSJNG9e3e6devGqVOn2LZtG2lpacKFXCBoQfg4+zSJYNKxe/duXnrpJQA0Gg3vvvuuEE1WQggngaCZIkkSgYGB9OjRg5MnTxIQEKDfd+TIEa5du8agQYOws7NrwlkKBILmyJgxYxgzZkxTT6NVIoSTQNDMkSSJnj176h9rNBq2bNlCdnY2e/bsYfjw4YSHh4uIlEAgENwARHK4QNDCkCSJ6Oho2rZtS2FhIX/88QfLli1j7969oqRYIBAIGhkRcRIIWhgqlYq+ffsSEhJCcnIy27dv5/r168TExLB7924mTJhgFKESCAQNQ9RQtS4a+noK4SQQtFBUKhX9+/enb9++JCUlsWPHDnJycrC3t2/qqQkErQJbW1skSSIzMxNPT89qJpKClocsy2RmZiJJUr3TG4QdAcKOQNA6KC8v5+TJkwQFBem3xcfHY29vT9++fVGpxMq8QGAp+fn5XLp0SUSdWhGSJNGpUydcXFz024QdgUBwE2JjY2MkmgoKCvjzzz8pLS0lLi6OqKgogoODhYBqIBqthgMZB8gszMTTyZMwrzDUKrXVxguaFy4uLvTo0YOysrKmnorAStja2qJW1///oIg4ISJOrQ6tBs7vhvwr4OINXYbCTfhBVVZWRkJCArt27dI7j3t5eREVFUXv3r0bddmhpYqFuua95fwWFics5krhFf02bydv5kXMY3SX0dXOZ+l4gUDQNFiiA4RwQginVsXRjfD7y5CXVrnNtQOMfxuC7mi6eTUhJSUlxMfHs3vXTorTT0FpAT6+nbnzkefo4NvJ6tdrqWKhrnlvOb+FubFzkTH+kymhCNAlUUuM7s/S8QKBoOkQwslChHBqJRzdCN8+VPP++76+acUTRzdS/PNL7Dl6ib2XNJRrYfbozrjf9TY4tbNadK6lioW65v2fkf/h7cS3jURV1XHeTt7ETIpBrVKj0WoY+/1Ys8cLBIKmRQgnCxHCqRWg1cA73aEou+Yxjm3hpdM337Ld0Y3w7XSoEAVFZTIXcrT0bF/5PGxLKaeLhwr/zr5I9YzOtVSxYM68Pew9yC6p5b1VwRdjvyDcJ5zE9EQe3fSo2eMFzZvS0lKKioqaeho3PY6Ojo3WKUEkhwtuPlLiahdNAEXXlHHdo27IlJoFWg3EvAIGkRRHW8lINKXladl+vhzOQ5dzF7jl4jS6zFptsXg6kHGgRvEBICOTXpjOgYwDzUosmDNvc0QTQGZhptFPc8cLmi+ZmZmkpqYKK4JmgCzLdOzYEU9PzyadhxBOgtbB+Z3mj7uZhNP53ZCbWusQV3uJQb5q9qVqOZ+jYWWSlm7/+hvRi/ri16Wr2ZdqqWLBmvPxdPI0+mnueEHzpLS0lNTUVNzc3PDy8hLiqQmRZZmMjAxSU1Nxd3dv0h6dQjgJWgfmLjjfbAvT+TVHUnS42EmM72HLsM4yO86X81ealrOpWZxd8jo9IkYzceJEs5awW6pYMHc+bezbcL3kerU8KKhchgzzCgMgzCsMbyfvWiNZANnF5kWyBE1DUVERkiTh5eWFs7NzU0/npsfLy4u8vDyKioqaVDgJQxdB68A/0rrjWgsu3mYPdbOXuD3QlmcH2RHWQY2qrIC01Ms4pu+HQ+uVZU6tpsbjdWJBl1BdFQkJHycfvbhoLpg771cHv6p/XHU/wCsRr+hzt9QqNS+Hv1zntd9JfAdNLc+poHkgIk3Ng+byOgjhJGgddB2uJH/XhkMb5acZIqDV0GUouHWEGkSBKTwcJO7oacsz7XZyd+YybNfeBd8/hvbLCWz6W1cy4r4yeZxapWZexDzAPHHRXDB33mO6jmFJ1BK8nLyMxng7eZusFmyje7/Vgi7nqzmg0WpITE/kt7O/kZieKARdDfj6+iJJksl/kydPburpAYqH21133YWLiwuSJPH0009XGzN58mQkSeKdd95pghm2bMRSnaB1oFLDxGW12xFIEnxlkPDs1hHGvdWyLAosNfdUqZV7/HY6ingyf62yrbqAtk6Vj49kaNlzMpO9/5hFyF1HGTntRdq3b290zOguo1kStcSkH9IrEa80SysCMH/eo7uMJtov2ixzz5aU89VSvbeagv/85z8UFBRw6dIlXn/9dTw8PPTio3v37k08O4Xdu3fz008/4ePjwzvvvENYWPOK8rZ0RMRJ0HoIukPxanLraLxdF4kquma8PTdNERRHN96Y+TWUoxthaQisuh2+f0z5uTSk7vkH3QH3fQVuHRp0eR8Xid7tVcjAod8/54P3l7NhwwauXTN+Xkd3Gc2mSZv4YuwXvBX5Fl+M/YKYSTHN/gPY3HmrVWrCfcK5rdtthPuE1xhBayk5XzoPq6r5WBmFGcyNncuW81tqPPZmjFLdf//9zJw5k7vuugsAJycnZs6cSadOnbjlllsYM2aMfuyYMWOQJInNmzfzwgsvIEkSd9xxBwMHDsTFxYURI0Zw6dIlAPLy8njyySfx9fXF0dGRoKAg/ve//9U4j1WrVhEUFISjoyMdOnTgscceIycnh99++42oqCgA0tPTeeqpp0hISKjzvt5//326dOmCnZ0drq6uhIaGkpqaSmFhIZMmTaJNmzbY2tri5eXFE088AaC/J11Ea/ny5UaRN0vvqaUgIk6C1kXQHdBrQmVUxqk9/PQkmLRgkQEJYuYpxzSzJSQjqngx6dGJv/u+qj1yVvV5cfGGgiz4bS4UZpk1BU9nFVNCVKTlaYk9V8CJ7AskJUkcPHiQfv36MX78eH23cZ24aGlYc9663KmMwgyzEsqbAo1Ww+KExSbnJyMjIfFWwltE+0VXE4giSmXMuHHj6NOnD1u3buXMmTO4u7uzfft2evTowa233kpMTAwAsbGxLFiwgO3btxMTE8PMmTOJiYnhqaeeYvXq1UyaNInAwEC+//57HnroIQICAhg4cKDRtTZv3syjjz5K27Zt+ec//8nmzZv54osvyMvL491332XOnDksW7aMbt26MX/+fIYPH17n/OfPn4+joyPvvPMOhYWF7Nu3j7KyMn744Qd++OEHbr31Vu68804uXbpEQUGBWc+JJffUkhARJ0HrQ6VWksD7TFZ+r7UcX4bcy4qgaK6Y8GKqpGJbzLy6c7YMnxf/SAi5C8Yttng6HVxV3N/HlscnDiYgIACtVktGRgY2Nia+h2k1Sj5ZK80rqy3i0hJyvizx3jKkIVGq1szcuXPRaDS8++67rFq1itLSUh577DGjMZMmTWLevHmsWrUKgLi4OAB+++03AL7//nsWLVrEyZMnKS8v12835IcffkCr1TJz5kxeeuklvv76awB+//13fH199VGvdu3aMXPmTHr16lXn3Lt37052dja///47V69eZdasWXTp0oVevXqhVqs5cuQIcXFxuLi48MILL5j1fFhyTy0JEXEStG7MKMc3e1xTNQ+u04vJQPxZWjXoWv/lO9/uQUwbHcnFixdRqVT6ipfi4mJ27NjB0DbZuMS9Zjz3lphXVgPmRFyae85X1fwqSSsjSyj5gDWMa0iUqrXz0EMP8X//93+sWbOGzp074+TkxKxZsyw6x8qVK2nTprKwICAgoM5jrFFtFhcXxzfffENycjIbN25kyZIlrFmzhgceeIDk5GQ2bNjAsWPHeOONN1iyZAmpqamo1crrW15eDkBWlunodX3uqTkjhJOgdWNuOX5d445uVKI+TSECrCn+qqKrustNw/zEcUk5pstQAPz8/Iz27t27l90/rSTx2I+E+6oZ5qfG2a7iD7u5S4vNnJp62+kiLoZVdpYklN9ovFRu9D1dSM+LxbgVaLAr0yKrJIptJa60teVIV0cueNsZ5WG1VIf4G4Farebpp59m3rx5XL9+nfvvv99IMIASfenZsyfbt28HIDJS+bJz2223sXr1aj799FOmTp1KZmYmv/76K//6178IDg42OsekSZNYsWIFn3/+Oe3atWPLFiXCN378+HrPffr06YSFhRESEsLx48c5ffo058+fJyYmhnXr1tGnTx8GDhxITEwM165do7CwUC+Atm7dyqpVq/j888+NzmnJPbUkhHAStG7qFAbGIsAkDc0vaijWEn+msLjqrkIAjVtcY7Sti18nOmXGckkrs/tiOftSNQzyVTPUT42jbcU5mlFemUarsUjU1Cfi0uxyvrKzIS6OsIPJjD0uU1BWrr8fSSvjWCLTNa0E/7RS5DYehAUUQ/tysLFpUdWCTcEzzzzD4sWLuX79Os8880y1/aNGjWL9+vUcP36cyMhIPv30UwA+/PBDXF1d2bhxIy+++CLu7u6EhYWZrNQbPXo0X3zxBYsXL+Yf//gH7u7uPPLII7z77rv1nndxcTHvvfce169fx8XFhbvuuounnnqKQ4cOkZiYyPr16ykpKaFjx44sWLCANm3aMGPGDH788Ue2b9/OokWLGDp0KN9++63+nJbcU0tCNPlFNPlt9eiFDxgLgwoRUJvw0WqUyrUal8oqhNdzhxpPBOjnUIf4a8gcTEXUHNsq1zPsAejmq4im2oRiShzylxM4fU3LtnMaUvO0ANirJYb6qRnRRa0sLcz4pckNSeuT4NziG/impMC6dVBcDMDZ62fZdG4TgJEY1OVhje06lm4e3aBzZ7j/fhJzDrfs+7eAnJwczp8/T0BAAE5OTnWOP3XqFPHx8cyaNYugoCD27dun3/fCCy+wZMkS5s6dy3//+9/GnHarpbCwkNOnT9OlSxfc3d2tem7R5FcgMERXjm9yqa0OEdCY+UXmoMurCroL9n5I9ahQ3REgszBVdaeLwlma15V/BUmS6NFOTUBbFSeytGxL0XClQEt2sVyZj1GfpUUrYslymyEtOuJy5gysXQuayiT2bh7dGBVyFyu18aSSi0or0zZPQ5+rtozoMEwRTQAXLsDKlYQ9PKPZVws2FR9//DFLly6le/furFixoqmnI2gkhHAS3BzUJAzMEAFm0RgiwFQUSJLAMEhsjvgzF13VXVUsFYQGS4aSJNGrvZqe7VQcu6qlg0tlIe/VUntO7NpFeHj4De871ZAE5/r4M1m6HNgoZGQokSYD0YSvLwwbRmDPnvxLwniOzj1RJyXD7t1QVKQ/h/rb75g38mXm7ngRCclklKqpqwWbiv/+9781RpNq2ydoWQjhJLh5qEkY1EZj5BeZU51XU16VrCx7Mfgp6HnbjavsswQTeWWSJBHkqZunsrS47XQhR47tZ/fu3URGRjJgwAC9D1Rj05AEZ0v9mZqN39GmTVBaWvm4Tx+46y6oqIxSQ/WltchI6N0bvv4acnKUbefOMbp//2ZdLSgQNCZCOAkEtWGOOaRrR0XQHFpfdyTLnOq8Wn2bACQ4+hOM+VfzE01QR8J55dJiYFkXUtPTyc7OJiYmhl27dhEZGUlYWJhpTygr0pDlNp0/09zYuXVGXOq7HGh1srKUZTpAK2s5107F8b52eGYeqIx+1STo27eHadPg008rhVdiIqNnzmy21YICQWMihJNAUBNaDWyaX/e4siLzeuCZW53X1HlVGg0cPw4HD8L160oSsY0NODpCly4wYAC0raOhshl5ZaFASEgISUlJ7NixQ98uYteuXYwaNYq+ffta/94qaGg7FHP8mZqV31FFkvLZ62fZeXknXw6zI3P39/o5z+switEJX9Us6D09ISwM9u5V9l26BGlpqDt0aPEJ4AKBpQjhJBDURJ0CpoLibOPHpmwK6nT/NijRNzdf6ux26y7VFRZCQgLs3w95eabHXLoEu3ZBQAAMGqT8rMl8z4y8MrVazYABAwjtE8Jfv61ix85d5GSryL3euInF1miHUpc/U7PxO9Jo4K+/9NVzV9rYkNnGWb87o/AKc0+vYUl5Nkaxr6rv44EDK4UTKO+T229vvHm3ZC5ehMuXQauFdu2U/ydqEYlrLbQ64bR48WLmz5/PnDlzWLp0aVNPR9BcyMuDpCRITVUiKLIMDg7KMkT//soft6rUO+HbRA88S6JI5uZLxb0DyWusY8KZmqpUW+Xnmzf+9GnlX1gYTJhQ84eCOXllRzdiE/MK4bmp9HeSOZCmpd/ePdD+bQi6g5SUFPLy8ggJCUGlsk6XKEuW2+o6T02ip7Gr78xOOM/JQVtUyM7LO5GROdbF0Wh3xbuVt9q1IbqwCHXVPbr3cfv24OeniAKA9PR6zbtVc/gw/PGHIpoM8fCAESOUnDErvYcFTUerEk6JiYl88sknjRriF7Qwzp2DxEQ4dkz59meKnTuhe3cID4eePSsjKPUxlNRTZTnNkuq84LvNd/O2hgnnhQuwerVx4jCAra3yvDg5KVGLK1eqf1geOAAFBTBliukPhLoS4assX9qoJCJ81VCYDt9OR753FZvi0khPTycuLo6oqCiCgoKs0mKisduhNHQ5sDYsSjgvLiatII38MkUU5zlVf51kSSLdxoYDDvaEF5cY7jF+H7dpUymcKnygBBVs3w4bN5red/26su/CBXjwwQaJJ19fX9avX8+QIUMa9RhQijoyMzNp3769pdNs1bQa4ZSfn8+DDz7Ip59+yr/+9a+mno6gqdFo4Jdf4K+/zBt/5ozyr1s3uO8+JRpVr3YkVdAJJkuq8yxy8zYR3bKErCz45htj0dS2rbIMFxqqPA/6S8nKN+nERDh0qFKInjgBv/1WfdmmrkR4M5Yvtb/PIzj8I3JycsjMzOS7777D29ub6Ohoevbs2WAB1ZjtUKyxHGiK+iScF5YV6n+Xa3nKMmuKHJoS/sI7uZITJ2oWTYYkJYGPD9x6a6NPqTmgqbC+UBu8r8rKysyunrVk7I2k1cQMn376aSZMmMDo0aIMtjlQpPN9aQrKyxUxYEo0eXiAv78ikDxNfNM/exa++ELJ99EJGEBfDWYpOsFUmAVSbf/dJMWVW2c6qUuudjOnCa9BVMBSfvut0qMHoEcP+NvfFOFkKJpAicR16gR33w0PPKBEpHTs26dE93ToIklVlyd1EbKjG81avlTnpxLZWc2cOXOIiorC3t6eK1eu8L///Y9PP/2U8+fPW37PVdAtt93W7TbCfcKtlqitWw6EyuU/HfX1O6or4RzgrYS30GgNvJocHHCyrXS9di2sIfIKeBp6PBmiex/rLAlAKRYQKGzdavx4wAB47jl45RUYPdo4whQXB2VlVp/Ca6+9RkhICL169SIkJIQ///zTaP+qVasIDg6mc+fO/N///Z9+++HDh4mKiiIkJITAwEAWLVpk1vUWLlxI3759CQoKIjIykpMnTwKKQ/rYsWOJjIwkMDCQrVu34urqylNPPUVQUBCLFy/myJEjDB06lMDAQHr16sXq1av155Ukieeff56QkBCeffZZKzwz1qdVRJz+97//ceDAARITE80aX1JSQklJZTg6Nze3saZ2U5KTk8P7779PcHAwI0eOrNbkslGRZfjpJyX/RockKUtwERGKaDKMUugiKIcPK4ILFKPAb76B6dNrqQ7zhbJC43YkpijIUkTCdw9TZ9Sqqvu3Lrk6dhHseKfue7c0J+vqVX2JOqC01JgyRamgq0CjlUlIuUZGXjFerg5E+LdFrZKUZNf77lPyonSRh8RE6NrV/ET40a+ZN8/8Kzg4OBAVFcWgQYPYvXs38fHxpKamNq1ANwNrLwfWK+Hc3Z0ObbviYutCQVkBPS8Uc6yrseiRZBlvjYYwo2U6MOrleO0aGApVLy+L5t5qyc42/nsTHKx8sdAxfjzY2SlfUkBZ2j58WMmttCKzZs3itddeA5Smu4899hgpKSn6/RkZGRw6dIgrV64QFhbGiBEjiIqKYurUqaxevZp+/fqRl5fHgAEDGDZsGCNGjKjxWp988gknTpzgwIED2NjY8NFHHzFr1ixiY2MB+Ouvvzhw4ACdOnXixIkT5OfnExwczIcffghA3759mT59Oi+++CKHDx9m+PDhREREEBgYCICNjQ2HDx+26vNjTVq8cLp48SJz5sxh8+bNOFT9hlwDixYt4vXXX2/kmd28nDhxgrKyMpKSkjh48CD9+/cnMjISDw+Pxr/44cPKMpIOe3tFDHTrZnq8r6/yb+hQWLOm8hv1xYtK7lN0dM3VYcd+hu9m1D6fTfMrglW1iCZJDZO+MJ2jpFKD/0jzhJOlOVkGfbQAGDfOSDTFHE7j9Z+PkpZTmcvSwd2BhRODGBfSQYlOBQbC3j+gtAByLsKYW+HaIfMS4QvMTIo2uC9HR0dGjRrF4MGDSU5OpmfPnvp9R44cwdnZma5du5p33huENZcD65Vwrlaj6tef4RnD2XRuEx2zymh3vYwsDyViqPsa8UrWdYxnVKWdT9X3S9jN11LFJFeqCNlBg6qPGTq0UjiB8uXMysTHx/Pmm29y/fp11Go1586do6CgAGdnpYLy8ccfR6VS0aFDB2677TY2bdpE27ZtOX36NFOnTtWfp6CggIMHD9YqnH766SeSk5MJCQkBQFslfzQ6OppOnTrpH9vY2PC3v/0NgOvXr3P06FHmzJkDKJYkAwcO5M8//9QLpyeffNIKz0jj0eKF0/79+8nIyCDM4D+xRqNhx44dvP/++5SUlBitrwLMnz+fuXPn6h/n5ubi5+d3w+bc2omIiMDX15dt27Zx+vRp9u/fT1JSEmFhYURGRjZuI+X4+Mrf1Wrlm1+XLvpNNVYieXkpEabPP1eW6UD5oIiMVMSEqeowJxOVeFXJM8POQNaAcy3nqjPXyiAqYC6pqcof8sJCJWLUsaOSsyTLIEnEHE7jydUHql0tPaeYJ1cf4KNpYYxTJcLhVyH5UuWABVtg4gOYhbNnve/L2dmZoUMrt5eUlPDrr79SWFhIt27diI6Oblb/p2urvrOEeiecDxxIt4QExnYdy87LOxl0rIDfB7kjqyS8nXx4pcMtjL72FVCZC2XUzufaNaUQQEeHDsoXDkF1TOV+NXI+WHFxMQ8++CAxMTGMGDGC7Oxs2rZtS1FRkV44mUKWZdzc3Dh+/LhF15Nlmblz5/LCCy+Y3O/i4mL02MHBodrnsCFVcxUb9TPCCrR44TRq1CgOGUYYgEceeYRevXrxyiuvmHyx7O3tsbe3v1FTvCnx9fVl2rRpXLhwgW3btpGSkkJiYiJHjhxh7ty5jeMMnZqq+AzpGDjQSDTVWYnUrp0SYfr1V2VnQYFSjdenj+nrWbM/XW3nMtOJ22iZz1Q1m1aGo0crqwwPHqwcb2MDn30Gnp5oBgxk0R/XaltoI3bDF4wtfwfJRguOEhRVjE7PrGhGbAauHSy/rxrQarUEBwdz4MABzp49y9mzZwkICCA6OhrfVvQBX++Ecy8v6NqVbuegq3tX0grSuLesA/LtEwjzGah8eRj6sukKyOvXlapLwyq68PCa/btuNnx8jHtIxsdDRSRGz65dxo+tvMxZVFREWVkZ3Soi62+99Va1MZ9//jnjx48nIyOD33//na+++oq+ffvi4uLCe++9x+zZswElcuvp6YlXLXO88847ee+993jooYfw8vKipKSE/fv3G32ZqQkPDw+CgoJYvnw5c+fO5ciRI+zbt0+/jNcSaPHCydXVVR8u1OHs7Ey7du2qbRfceDp37syMGTM4d+4cW7dupXPnzkaiqbi42Owl1jqpupQQXvkN3+xKpL59YfPmyiqzfftqFk4Nsiuw8FxmOHHrMVXNVtgOtCPApavyuGpyqlNF8nBmJqlrv2dC8hX2dO7LXx17VvuAlNAyu+wzkJToFI4qKKpIKi4z55u1QSRJpTb/vmrB0dGRCRMmMGzYMHbs2EFSUhKnT5/m9OnT9OzZkzFjxtDOlFdXC6NB/lNjxsDKlajKyvB18cU3FfjjGES2V5ayq0ZVi4vh4H7YscPY36tTJ6XiUqDg4aHk/J06pTw+ehS++kqJVjs4KH9DduyoHO/iUvPfFDO5/fbbjf6O7tmzh3nz5hEREUGbNm2YNGlStWM8PT0JDg4mLy+PmTNn6gupfvnlF5555hnef/99tFotbdq04dtvv631+n/729/IysoiMlJ5v2g0GqZNm2aWcAL45ptvePzxx/nkk0+QJInly5fTo0cPc2+/yZFkufXVlEZFRdGvXz+zDTBzc3Nxd3cnJyen2YcIWzKyLKPVavVRwHPnzrF27VoGDRrE0KFDcWxolc7y5Up5PShJ4DOU/CONVsPY78fWmFSr+5YeMylG+cD55ZdKESZJ8Oqrpg0etRpYGlL7UpNrByV4Utdy1HOHzLMSsNAXCYCL5XCmQtgE3w2ePZWlF8OIU1gYVLz3j6fnEnNY8WtK7hDItm4DjcTTYNVR/mdnYPlxqAyyKs7vqoIBdnXchFTdd8qcxscWcO3aNXbs2EFycjKg5EzU9g26pWEqeurj5FN3wvnx47BuXfWlo7ZtlSiJi4ti5ZGZqeQLVvX2atsWHnsMaln+aU3k5ORw/vx5AgICcNJ9uTDFyZOwYoV5S3LjxyuVdgKLKSws5PTp03Tp0gV3d3erntsSHdDiI06m0GX2C5oXkiQZLZ0ePnyY0tJS4uLiSEhIYMiQIQwePLj+EahCg/wMHx/9rxZXInUwsACQZeWbt6kPCnOW0MZXhMytsBylv2ZNTtymqtlSNXCmvPJ6p7eAb4gSjbOzqywpnzBBsSXYvx9nu8rnMTTtJGUqG3b6V1YAeXHd+LqGUSZz/qJEza8eSTLHYdwC2rZty1133cXw4cNJSUkxEk379++nS5cuLdrUr94J5716wf33w3ffGUcdr10zjoqYomNHJWfwJhFNFhEYCHfeqVT01iaeBgyAW265cfMSNAqtUjgJWgYTJkwgICCAbdu2ceXKFWJjY9m7dy9Dhw5l0KBBlueh6ewEwKg6zOJKpKr5V4bnrYq5S2hWWI6qk6q+SHlaOGU4dxk8C2HSEPAbrHhW6f7IX7oEkyfDiBF0jE/A+ejHFBQrH6wDLx/liktbTnkq+WIZeFSeskiGXIOKGkcz8l7ada/f/dWD9u3bGwmka9eu8euvvyLLMn379mXkyJG0rathcTOl3gnngYHw+OOKUDp6tGZHfR0uLkq+4NChitgWmCYyUsmT3LxZcQg3pG1bpeXKsGGi5UorQAgnQZMhSRK9evWiZ8+eHD16lNjYWDIzM9m6dSsnT55k5syZlp3Q3r7yW7RB9MniSiTDyBVUN4KsuqzUa0LNzWx1YzWlcNfHilApvGqV5ahqVE0wv6gx/vbb1Ub5V3pNyWkKDFQcj0FJFs/PBxcX1EOH0PvpYvb991P9oeGXj3KqfWckSSJR24siRx8ci65AahVR6WPG/VgzN6weBAYGcvz4cZKTkzl06BChoaGMHDnyxthlNBe8vBShnJ+vVMslJSl+RLr3i42N0pdu4EAlSiUa1JpHUJDyT1eoomvy2727EEytCCGcBE2OJEkEBwfTu3dvjhw5QmxsLAMHDtTv12g0yLJcdyWeh0dlEuuJE3DbbaBWW16JdOxY5U4HB+Nv2XW1ETGktrFWXJbSYyhISmXINIgktFVDF7XROM2AMNL3b6WwrBAnWyd8dmxHfdsEAIbfHY1DeipJ6zeRX1KOV/41fPKykPw6sXBiEI6qd+DrhyDN4BquKnCtLeJUD9sEK9O2bVumTp1Kamoq2/78k1P7tvJXzGEObv+Z/lETuWX0rbXnsrQ2XFyUSMiIEYpoKilRRJKNjVWr5sxuSNxa6NhR+SdolQjhJGg2qFQq+vTpQ3BwsNH2v/76i+3btzNixAj69+9fs4Dq06fSjiA/X0mEDQ62rBIpPd04zN63b+UHiKnEazDdaNeSsdbC0O8prdw42tRJrbR8qRAuW85vYXHSIkalH8M9X4kauZz/k15lKUTc+QwAA6eMJyz9JJeziygoLWd8H4mAJ25RnMMLRoHtA6D+DsrzlGt0VCveVkXXsEo+VyPS8fo+Hsx8k4uqS8Sml3MmW8vhExsZ1ekDCLv3hs2jWQkKSaoeXbUCFjUkFghaACJ2KGh2qFQqVAZh7YMHD5KXl8evv/7K8uXL2b9/v755pBGhocb90/bs0edv6FpfeDkZV1Z5O3lXWhHIMuyu0u9NF/mqs40IShsRrcaysdbEsLdeZpW8ozYVz+e4xWy5uI25sXO5UpTB3qDKRN+CsgL2r3yDv1b+W/HuadsWVY8e+LV1opePGz2vXUQta+HoEXhrPmRmQa/boe/9MHw6vPgzvHQa7vu6eo89t46NIxbrg0EfPT93FQ+F2vFIPztu61yE48bH4ehGZFlm7969FBQUNNo0tpzfwtjvx/Lopkd5Je4VHt30KGO/H8uW81sa7Zo3Gp0NSNXiDJ0NSGu6V8HNQ6u0I7AUYUfQvCkvL+fAgQPExcWRl6dEN9q0acPIkSPp27evkcji559h//7Kx2FhMHGiPmpU6zf8nTthi8Ef8q5d4eGHld9T4mDV7XVPdsYvyk9zxzbGkt3RjfDKTMiraB/jq4YBXWHcYjS9JlSzZgg7UcCgo8oSp4SEs60z04IfQhXYUxGe8fHKz4ICaCvDkV+hJK/yeu4e8PdlEFHZtsHa9gINRjefvDSIma/kmZlEWU48ffuPrF77DXZ2dkRERDB06FCrLuHV5Cumi4DqxXwLxmIbkGaI2XYEN5ji4mLmzp3LL7/8go2NDTY2NsyePZtnnnmm1uOuXr3KkiVLePPNN/XbIiIimD17NtOmTeO5556jV69e+vYozQ1hRyAQmImNjQ0RERH079+f/fv3ExcXR3Z2Nhs2bOD8+fPceeedlYOHDVN61en8Zw4cUJK9x4yBtm1NVyLl5ysVRgkJldskCUaONBhjpku4JW7i1nQeNyToDoh4Bq6mKD3khg+F+58FlZoD6YnVPsgOBDohSzD4SD4yMvll+aTlp+J7UlKWLnXtGAqugv0p478ajiroVQS//Q1cnCojSla2F2gQpnLNakTpo2efeYiOHTuSmprKzp07SUxMZPDgwQwZMqTBhq0arYbFCYtN5tvJyEhIvJXwFtF+0c1WUJhDvRoSC8zivvvuo6SkhMOHD+Pm5saJEycYP3485eXlPPfcczUel5WVxfLly42EkyHmeh8aUlZWhq1hpP8mQAgnQYvB1taWwYMHExYWRmJiIrt27WLAgAH6/WVlZdi0aYN0773wzTeVZdbHjyvJ4gEBSgSqTRtFGOXlQXKyUpJddelv/HjFRFOHuZVgllSMNWZ1mb0DtKloN9Oulz7aY9KaQZL4K9CZbFcbIo7l0y6nnMKyispC3fMiy3DtLHSsaLqiksBbBd1swLYifylmnlJd2Jw+7GvKNasDPzelKerJkyfZtm0b6enpbN++nfj4eIYMGcKwYcPq3TboZhEU9WpI3Ap47bXXKC0tNRInCxYswM7Ojtdee63B5z98+DB//PEH58+f10dGevbsyVtvvcXs2bMJDAxk7ty5+v5z+/bt48477+Ty5cvMnDmTwsJCevXqhY2NDYcPHzY69+TJkwkNDeUf//gHJSUlzJ07l7i4OEpLS+nWrRurVq3C09OTyZMno1KpOHv2LFlZWaSkpDT4vloSQjgJWhx2dnYMGzaMiIgIo286W7duJSUlhaioKHpOnoz0ww+VHkyyrLRE0LVFqI2xYyEiwnibpY12rd2U11KcnCptFXTJ7loNnjlpNR5yroM953zs8LlWxhi3vpBWCjkVy33FOaAtBWc1+NootgO2hlVXSqSG87ubT6Sp1lyzOnDxRpIkevbsSWBgIMeOHSM2NpaMjAwOHz6sbzVRH24WQVHvhsQtmNdee43XX39d//jNN99kwYIFLFq0yGhMQ0hISKBLly54ext/8YqKiiI9PZ0rV2oW5Z999hkDBw40q6nva6+9hpOTEwcrOgy89NJLvPDCC3z11VcAJCcnEx8ff3PZeFQghJOgxWIomsrLyzl06BD5+fn873//o2PHjkSPHEnAkSNI6enmnbBNG0U09epVfZ+ljXat1Ly23vToAVcr8nguX4LvFsDZtYQVZePt15EMtRrZRLm5JKnArzP+k16E3Dx4+23FzyfrFPicgH62tZepN9byY32oaghqFtVFrSRJBAUF6e0yHBwc9Hl1uvy7/v37m71ccbMIino3JG7BlBq0qFm0aBHvv/++Pi+z6v7mzq+//kpeXh4///wzoET0O3XqpN9/55133pSiCURVXYtB13Orsca3dGxsbHj66aeJjIzEzs6O1NRU1vz5J5+r1Zy99Vbkvn1Nm/hJEvTsCdOmwezZpkWTDp1LuDkVY5aMbQx01YCZJ2DXe/D9UijKRg3My8oGQJJNJybrrRkOHVI8rFxdwb0ddFbX7e3TxOaWRlgs4moXtZIkERISQkBAgH7bvn37+O2331i2bBkJCQmU1+YyX4FOUOie7+qzkPBx8mnxgkJnAwJUu9c6GxK3UN58803mz5+vf2womubPn19jbpElREREcP78+WqRpdjYWHx8fPD19UVr4AZfVFRUr+totVqWLFnC8ePHOX78OGfOnGH79u36/a6urvW7gVaAEE4tgE8//ZR+/fqxePFis8YvXryYfv368emnn9Y9uBXh6OjIqFGjmDNnDkOHDsXW1pZLly/z1ebN7O3QAV56CR59VOm3NXUqPPIIvPCC0rsrIMA8w7+gO+C5w0pF3KTPlZ/PHTIthCwZa23atQOHHDjyA5QXQboGMpR8pdGFRSzJuIpXlbwuI2uGixfB4I8k/n2haydqRgI33yY1t6yGpSKuHqLWxcUFDw8P8vPz+e2333jvvffYt2+fabuMCm4mQWGWDUgr480336wmKlxdXa0imgBCQkIYNWoU06dP1wuzEydO8Morr/DSSy8RGBhIamoqqalKtHXlypX6Y9u0aUNJSQnFxcV1Xuf222/n3Xff1V8jLy+P/YYVyzcxYqmumZOcnMysWbMA9N9k5s2bV+P4xYsX68fNmjWLiIgIQkNDG3+izQhnZ2fGjBnD0KFDiYuLIzk5mZCQEMXcr3NnysvL653YC1hWMdZU1WVaDeRuNN52rBw0gI+K0YVFRBcWccDBnky1Gs/R/yIs9GHlw/rMGfj2W+MefT7lcL6mP7bNy9xST515aYBTexi3CFw71MsyISQkhN69e+vtMnJzc/nll1/YuXMnI0eOpF+/fkgmBLlOUJgyhnwl4pVWJSjq3ZC4hbJgwQKjSBMoomPBggVWE0/r16/n+eefJygoCFtbW9RqNXPmzGHOnDkAPPXUU4SHh9O+fXtuvfVW/XFeXl7cc8899O7dG2dn52rJ4Ya88cYbvPTSS0YFOHPnzjV6fLMifJxo/j5OhmIIlLXzl15+hYSUa2TkFePl6kCEf1veefutauNqE1k3C6WlpdgZtE1Zs2YNsiwTHR2Nr6+vdS7S3HyLdL5TZ8rhYpXlI2eV4vLtrQKbig/1O1eATRAkJlZvUOpWCDmfUMPKEji2hYnLmoe5ZVX0VXVgMtfMisum5eXleruM/Px8evbsyf3331/rMc3KOVxQDUt9nKomgru6ujbKct3NSqvxccrMzCQ1NZXu3bvj4uJSbX9eXh5//fUXI0aMaOilblp04kcniubPn8+HsadR9btbP0ab9CMXN32ufyxEUyWGoun69eucOXMGrVbL6dOn6dmzJ9HR0fj4+NT/Apb0r7tR6PJ7uqmhXIY0g6WjAi2c0sIZCWxRNET+FnA5Vv08/v6Qsahm0QRg46DYEDRHdLlmJl+fxVZ9fWxsbBg0aJDeLqNbt276fbm5uVy8eJGgoCCjCJRJXzFBi8Xwb41OJBmKKcP9gpZLvYVTeXk5jz/+uL400c7OjieeeIJFixbh6OioH3f06FGio6NrXfMX1E1V8XRx0+d4FJfjPvhecvZ+x/Xtq/RjhWiqGQ8PD5555hl27NhBcnIyJ06c4MSJEwQFBREVFYWXl1fdJzGkKXrSmYMuv0eSINAGHCQ4pzHuX6eVoQSwdwPnDtXPMWAA9HaF1TVbGACQl9q8bAiqEnSHIuxuUETQ1taWoUONc73i4uJITEzE29ubqKgoevXqZXIJr7lSNTIW2j6U5KvJIlJWBZ3VgKGPk+6ntXycBE1PvZfqlixZwquvvsrf//53BgwYwPbt23nvvfcIDAwkJiZG7zERHx/P0KFDm7Vwau5LdTo0Whn/2x43iiyp7J3RllT20/Ib+xgpv32qNGIV1MrVq1fZvn07hw8fRpZlJEniwQcfNKqaqhWtBpaG1FLyXlHa/tyhuj+krb3Up5+bQX5PsQypGiX6VKb7by9B8N3g2VN5aGen9PwLDwcvLzi0Hr5/rO7rTfoc+kyu/3xbOTt37iQuLo6SkhIAOnToQHR0ND169DASUM1RoJhq0quSVGjlysqt1tq0t7m2XLlZafFLdV988QX/+Mc/9BGQcePG8dBDD3HXXXcxdOhQNm3aZP4HkMAsElKuoep3Nx7F5foIk6Fo8hg5A1W/u0lIucaQ7u2aapothvbt2zNp0iQiIyOJjY0lNTWVrl276vdrNBrUpiwMdNTpE2SmKWRjLPWZ8p1ykBSn765quKqFUhfoPxP8IpTE+fbtITgY7O0rz9MYjuk3IcOHD2fAgAHs2bOHvXv3kpaWxtq1a/H19WXUqFF069atWQqUmnrqGc4JKpv2ttZKOYHAkHoLp5SUlGrh6KCgIPbs2cO4ceMYNmwYv//+e4MnKKgkI0+panIffC+5e9cbiSaVvTPug+81GicwDy8vL33vJ121nVar5eOPP8bPz48RI0aYNnqzRv86c5f66hORqim/x7kt3PIkjHix+jm0GiWxXHcdv0FN74LeSnB0dOSWW25h8ODB7Nq1i4SEBC5fvsyZM2c4qz7b7ARKbT31qtKaeuwJBHVRb+HUvn17k9bu7dq1Y9u2bdxxxx1ER0fzyiuvNGiCgkq8XJXmojl7vzMSTaBEnnL2fof74Hv14wSWYW8QaTl79iyZmZlkZmaSnJxM//79GTFihHEIt6HRmFpbglT0hIuZp/Tc+2N+/SJSluT31BT5CpkMu5djVRf05laFeANxcnLi1ltvZciQIezevZvBQwZz9+93IyNTdr0MWSNj1850EvGNFCh19dQzNbfW0GNPIKiLehtgDhgwgA0bNpjc5+LiQkxMDLfccguvvvpqfS8hqEKEf1u0ST8aJYKr7J31v1/fvgpt0o9E+Ldtium1KgICAnjsscfo1q0bGo2Gffv2sWzZMn7//ffK8mKdT1CNJWd1mEKau9S3fkb1cbqI1NGNpg81ROcl1Wey8rMm0fTtdNPX2b0chjwDTlXeV/V1QT+6Ucm/WnW7kj+16nblsTn30opwcXFhzJgxHM8/rhco+Yfyyd6RTfaubMqulZk8zlCgNCb17ZXX0nvsCQR1UW/h9MADD5CSkkJWVpbJ/XZ2dnz//ffMmjWLzp0713uCgkreefsto8Rwj5Ez8HtuHR4jZ+i3Xdz0Oe+8/VZTTK/V4efnx/Tp03n44Yfp0qULGo2G+Ph43nvvPbKzsyvziIDq4smMaEyD+rpVRH5i5inRm4ZQZ+RLhr0fQKHB/3Wn9jD2zfqJppoEmrlCsCq65cVD65WfDX0+bjA6oSFrZdQuaiSVRGlGKde2X+P6nuuUXTctoBpboNS3V15L77HX3PH19cXf35+ePXvSuXNnRo8ezZYtWxp0zuXLl+uNMuPi4pgwof72IlevXmXBggUNmk9zxyLhlKPrlA5MnjyZPXv20K5dzUnIKpWKjz/+mJSUlPrPUABUN8H0G/uYPqfJffC9+I2trHyaP3++2e1ZBHXTtWtXHn74YaZPn46fnx++vr6VOU9Bd6CZtLJ+PekanFBtkHzeEMxphlsl14bCLPjuYcuETp0CDcuFoKXRq2YosnRCQ1JJuPV3o93odjh2cURSSZSkl3Bt2zVy4nMozzU2MvXMSWvU+6irp15VWkuPvYby2rlzLDh71mjbgrNnee3cOatdY+3atZw4cYILFy4wffp07r77brZt22aVc0dGRvLrr7/W+/isrCyWL19ulbk0VyzKcYqOjmbz5s21iiWB9THPOfw23nk7wMgkE2pvzyIwH0mS6NatG/7+/pSUlOhLyAsLC/l4cwr9Q5czxBccyq6bn7NjTksQc2hQ5Kq+xxvkYPWaYF5+krWqEHVY6qHVHI1KqRQoGYUZyMiondW4hbnhFOhEwfECSi6VUJxajJ2PHTZuNkiAt0Ym7Ke5jXofup56c2PnIiHVmiTe2nrs1ZfXzp3jdQOB9Ga3biw4e5ZFBm78rxlU7lqD6dOnEx8fz9tvv80vv/zC9evX+fxzZWVi0aJF7N+/n/Xr17N8+XLWrFmDs7Mz586do02bNqxZs4aePXsane+3335j7ty5HD9+HIB169bxxhtvUFZWhiRJfPTRR0RHR3PnnXdy5swZSktL6dixI19//TV+fn7MnDmTwsJCevXqhY2NDYcPH+bixYs88cQTXLp0ieLiYsaPH8+yZcvQaDQ8+uijxMXFYWtri42NDYmJic3e+sGiiFNSUhIjRowgPT29zrFlZabDywLLSE5ONtlGRa2SGNK9HXf282VI93aoVRLz5s0zsvufP38+ycnJTTHtVoskSTg4VCbfJycnk5uby/a4nSzdsI8d2V6UdIwwT0iYs9RnDg2NXNX7eAsjXuYKtLw6DDfB8uhVYywRWomamv7auNjgPtCdtre0xam7Ew5+DspeWWbGyStcLzSIAjbSfdTUpFclGX90tOamvZZQqq18TRZduIBbXJyRaDLcb00GDx7MyZMn6xx34MAB/vOf/3DmzBnGjx/PY4/V7tF26NAhnnzySVavXs2JEydITk6mb9++AHz00UccPnyYkydPMnToUP2X9M8++wwnJyeOHz+u74X3wAMP8Oyzz3Lw4EGOHDnCgQMHWLlyJfHx8cTFxXHq1ClOnDjBjh07jIp0misWCaeXX36ZY8eOERkZyYWq/awMWLduHb169Wrw5AQQGhrKihUrAPMcwQ3F04oVK266Br83msGDB3Pffffh5eVFcXExW7duZdmyZezatYvS0tK6T6CzDDC11HfvqoYln5tLnUnudVCXINItj2UeN+98MfPrFgCWRK8aY4nQytQmUGzcbHDt64qkkvDWyLyTnknmX3l8kFjGT8fLyC6qyEODRrmP0V1Gs2nSJr4Y+wVvRb7FF2O/IPGBRKPHMZNibnrRBEqEab5BTm+egfHz/M6dedOgDY81MdfHun///vTv3x+AOXPmEB8fT3l5eY3jf/31V6KioujXrx+gVB7rVpy++OILQkJC6NGjB6tXr66xYXBubi579uzh+eefp1evXvTp04fz589z7NgxevbsiUajYcqUKbz//vuUlpbW7p3XTLBoqW7x4sW4u7vz97//ncjISLZs2UKPHj30+/fu3cvcuXOJj4+3+kRvZh5//HEiIiLMFkHz5s1j/PjxQjTdACRJIigoiF69enHkyBFiY2PJyspi8+bNxMfH8+yzz2Jra1v7SWqzDJBUxiaWlVdWftTHCqAqpswyLaG2iJWp5bG6KMyqu12NJR5a1l4ibCRGdxlNtF90zc7hOWmE/TSXolKZLBcVOVka/krXkHxFS38fFSO62OBO49yHqZ56wnLANG9268b7ly8biSZXtbrRRBNAQkICPXv2RK1WG3XpKC5uHE+/P/74g08++YS9e/fi6+vL2rVr+ec//2lyrE7UHThwwOQS3PHjx4mJieHPP/8kNDSUbdu2ERwc3CjzthYWV9XNnz+fDz74gEuXLjFixAgOHTrEuXPnmDJlCsOGDWPv3r107tyZVatW1X0ygdlYKoJuZtGk0crsOZPFT0mX2XMmC422AflDZqJSqejTpw9PP/00d911F23atKFHjx5GoklbW5i+JsuA2iJS1uyDV9N1pNr+RNQR8appeaxOzIieWOKhZQ2j0huETqDc1u02wn3CsbOxq3xs444acLGTeKCPLTPD7OjeRoVWltmfpuG9+FJ+O1VG3pVzTX0bNzULzp41Ek2gRJ6qJoxbi7Vr17Jq1SpeeuklAgMDSUpKory8nLy8PH766SejsUlJSSQlJQFKJd3gwYP1pr+mmDhxItu3b9cfU1JSQlZWFllZWTg7O+Pt7U1xcbF+VQSgTZs2lJSU6EWbu7s7gwYN4h//+Id+zLlz5zh79iypqank5eVx991389577+Hr69si0kvqZYD55JNP4ubmxiOPPEJkZCQlJSWUlJTQtm1bFixYwDPPPCO6QAuahJjDabz+81HSciq/aXVwd2DhxCDGhZhoZGtlVCoV/fr1o0+fPkZ5funp6fzvf/8jMjKSfv36WRaOvlFNak1dpyAL1j9cMcCCiFety2PmUEcUqM7EegNHc3NzsJp725gq8+vkpuKhUDvOX9ey7Vw5565rSbisoY/GEdcmmuLNTtVEcFe1Wi+idNutEXl64IEHsLOzo6ioiB49evDjjz8SHR3NkCFD+O677wgICMDHx4c+ffpQVFSkP65///68+OKLnDt3Dg8PD9asWVPrdYKDg/n444+ZNm0aZWVlqNVqPvroI+655x5Wr15Nt27d8PDwICoqSp/77OXlxT333EPv3r1xdnbm8OHDfPvttzz99NP63oyOjo588sknaDQaZs2aRVlZGVqtlvDwcCZNmtTg56exqVeTX61Wy2effcb8+fPJzs5GkiSmTJnCRx99ZPXGezeCltLkV1A7MYfTeHL1gWofo7rMnY+mhd0Q8WSKn376ib/++gtQvpGNHDmSvn37olLV20rtxmGyGs1XEU01RbxS4hRrgIZSW/NgfVUdmBR1hu1qqjY8NsKCZsxNSR33kZItc6akDaM/PKu/j5MnT9KpU6dmX6XUXLG0ya9hVZ0up8lQTC3s2tXqVXXmsnz5cjZu3MjmzZub5PrWoMU2+f3xxx/5+9//zokTJ5BlmaFDh7Jnzx62bNlCSkqKPolMILiRaLQyr/98tLbmJbz+81FuDfJBrapnEnQDmDBhAt7e3uzcuZPs7Gw2bNhAXFwcI0eOJCQkpHkLqPpEvKy17FVbFKimXnxuHY1FXa05XFbMFWts6rgP/zYS/vct199HXl4e3377LSqVisGDBzNkyBAcHR2bYuY3DTpRVKrV6iNLup92KlWTiSaBdbEo4jR06FDi4+ORZZmwsDD++9//MnLkSFauXMmsWbNwdXXl559/ZtiwYY05Z6sjIk4tnz1nsrj/0711jvvm8cEM6d50PmRlZWUkJiayc+dOCgsLgUqDzVZFgyNOFkSBzO17V5/IWXPEzPu4cuUKGzZsIC1NsXdwcHBgyJAhDB48uEWUfDcHLI04CRqX5hJxskg4qVQqOnXqxL///W8eeugho33fffcd06ZNw9bWlh9//FFv394SEMKp5fNT0mXm/C+pznHLpvbjzn6+Fp9fo5WrGI62bVDkqqSkhISEBHbv3s2IESMYMmQIUFmBojPYbLGYszzm2AaKsise17LUZu153cDmwsn5+YS6uFh/vJn3Icsyx48fZ9u2bWRkZADg6OjIsGHDiIiIELmodSCEU/OiuQgni5bq3njjDV544QUjA0Ad9957L87OzkyePJk77riDtWvXcvfdd1s2c4Ggnni5Vn9PNmScIY2RcG5vb09kZCTh4eFGVS1Hjx5l586dREdH6xMpWyTmLI9NXKb8rGupzdrzukGWA5+mpjLr5EkW+fszr0uXOscvPn+e+SkprAgM5PGOHWsfbOZ9SJJE7969jewyrl69SmxsLH379hXCyUzqkQosaASay+tQr+Tw2ti+fTsTJ07UV9q1BETEqeWj0coMf2sr6TnFNcU38HF3YOcrt1gUKbrRCeefffYZly5dAqBTp05ER0fTrVu3liugzFlWusFRoBtBcn4+/fbt0z82Ek8m7nfxxUvMN+jpmTRwoEWRKnPRarUcOnSI/Px8o5SK48ePExAQUGtp+s1IaWkpx44dw83NDS8vr5b7/7AVIMsyGRkZ5Obm0rt3b6uL/kZbqjOXhIQEbrvtNq5evWrtUzcKQji1DnQiB0zGNywWOToxZhhpMqS+Yqw2CgsL2bVrFwkJCXo7g86dOxMdHY2/v79VrnHDaYXCyBx0ESQdi/z9mZe7H36ZAyW5leN6PMx837uNx5kRobIWly5d4rPPPsPNzY0RI0bQv3//FuHefKPIzMwkNTVViKZmgCzLdOzYEU9PT6ufu8mFE8Dhw4cJCQlpjFNbHSGcWg/1WVarKX+pKRPO8/Pz2blzJ/v27dO3RBg0aBDjx4+36nUE9cRMMVhNPJ39inkXvq/c33kS87tNr9x/g0UTwKlTp/j555/JzVXEnIeHByNGjCA0NFQIqApKS0uN/JAETYOjo2OjLS83C+F0o1i0aBE//PADx48fx9HRkaFDh/LWW29V6/hcG0I4tS4sSeSuTWiVlGsbnHDe0KTy3Nxcdu7cyf79+5k6daq+xZEsy+IbcFNhcvmxo5LTZSIvqybxVE00Xd7AvPv/a3k0zgoRvfLycvbv309cXBz5+fkAtG3blpEjR9KnT5/mbZchEFiBm0o4jRs3jqlTpxIeHk55eTkLFizg8OHDHD16FGdnZ7POIYTTzUld+UvPjQ7k3S11dxyvKeJkzaTyvLw8XFxc9GJpx44dXLp0iejoaDp0aBpTz5sSvelmDe8aU5WA5aUs/upJ5nerrET2KMvnum1lDpM+EjXjF8uS1y0UcXVRVlbGvn372LlzJwUFBbi5uTF79myR+yRo9dxUwqkqmZmZeHl5sX37dkaMGGHWMUI43XyYm78kyzJXckssTjhvzKTy8vJylixZoveB6t27N1FRUXh7N/OWIbXREvKg9BYLNfXeq8F7as8HsGlBtQiTjkVHVjHvyvegkmp3Sq9KfUScmZSWlpKQkICrq6u+76VWq+X06dMNqvbUaDVGTYzDvMJQN7fXWXBT0qjO4c2dnJwcQAkz10TVij/d2r7g5iEh5VqNogmUj6K0nGKeH92DpVtO1VRQz8KJQdVEU2O7mNvY2PDYY4+xfft2Dh06xLFjxzh27BjBwcFERUU1SuJkvTFHEFk5atJonN9dR8PiGvrrZZ+DAi3z/vwfb3W4m+uOlZ3kPIrymPfdWrCVwEcNGjO9gmrtBVjxLouZpzi+10OY2NnZMXz4cKNthw4d4scff8THx4fo6GgCAwMtElBbzm9hccJirhRWusp7O3kzL2Ieo7uMtniOAkFT0aoWrrVaLc899xzDhg2rNTF90aJFuLu76//5+fndwFkKmgMZeTWLJkO6tnfmo2lh+Lgb+z/5uDvUGDUyV5QlpFyzaM6GtGvXjnvuuYennnqK4OBgAI4cOcKHH37Ivn370Ghl9pzJ4qeky+w5k4VG2wSB5aMblQjNqtvh+8eUn0tDlO2GY76dXl2Q5KYp2w3HNjXmtpExHJefDwmZkFjKYv9JRqIJ4LqjK4uH3wdlMqSqYUM8rF8PdVm5WCLirERpaSn29vakp6fzzTff8Nlnn3H69GmzvHW2nN/C3Ni5RqIJIKMwg7mxc9lyfovV5ikQNDatKuL09NNPc/jwYXbu3FnruPnz5zN37lz949zcXCGebjIsMcwc0r0dtwb5mJ3kba4oM3dcbXh6enLvvfcyYsQItm3bxsmTJzlb7MizFcuQuiRyk7lVjbk8VtMykk4Q3feVEg1pxKiJ1amtb56pcVlZsHo1aP1YPHwK80c/qh/iUZSnF1HzRz8GwLysUkCCw4chMxOmTQNX16pnV6iPiGsg4eHhBAcHs3v3buLj47l8+TKrV6/Gz89Pb5dhKgKl0WpYnLAY2cTrLCMjIfFWwltE+0WLZTtBi6DVRJyeeeYZfvnlF7Zt20anTp1qHWtvb4+bm5vRP8HNRYR/Wzq4O1DTQoOEksgd4d/W4sq4xnQxB0xGk7y9vZk6dSrBt07hlV/O6SNeRafjKTwdT2pGFk+uPkDMYaVvmVnRoPpS5zISiiBKibvhUZMG0WWosoRY27vGzVcZl5cHX30F2dks7upvJJoWJX9J9vYHWXRqlX7b/NGPsTh8bOWprlxRRFdxDeLaUhFnJZycnBg9ejTPPfccQ4YMwcbGhosXLxIbG2s8UKtRXt9D6zmQ/GW1SJMhMjLphekcyDhg1bkKBI1Fi484ybLMs88+y48//khsbGzLNQkU3FDUKomFE4N4cvWBWvOXNh9Nt7gyTifK6nIxj/CvOQ+vJmqr1Ls1yIf/xF7SX1NbnE/plbOATOmVs9j7BPB/67XcKmlRfzeDWqNBDcktMnsZqfbIsJ76Rk2sHVEzp43MuMUgqeDbbyEnh8WdOzO/Wzf9qEVnv2Ze9o/gIDHv8g+gVumr7eZ36wb29sw7dUoZfOUKbNgAU6dWn4tOxNXWC9CtozKuEXB2dmbs2LEMHTqUnTt30rt3b320qejAd2RtmE8nVSYAmc5O4NW+znNmFmY2ylwFAmvT4iNOTz/9NKtXr2bt2rW4urqSnp5Oenq6MCsT1Mm4kA615i8BPLn6QLV8pfScYuPoTRV0ogyqxyZqSyqvC12lXk3zeX/raaN9KgcXXPqMxsbdG2QtJWknObV1Hb8veZqCUq2JKxhEg7Qai+ZmhLlCx9y0q/pETRorohZ0hyIs3aqIZreOlYIzJQUuXqwumvz9mTf9Ixj7JkTMgrFvMm/6Rywy+LI339eXxRVeXQAcPw4VzXmN0Ik4oMZ32bjFjb7E6erqyvjx4+natauy4ehGdi99hM92XGTNwTJS87R4asx7L3k6NaOiBoGgFlq8HUFNVR0rV67k4YcfNuscwo7g5sbUUhzQ4HYr1vRxMsc+wd3JluuFZSb3l11Pp/j8QTrkH2Wyege2KokH+tji36aG706W+gkZkhKnCJW6mL4RNvyt7qhJ1fL+umjEMn09tUWz1q0j+cIF+oWH64cbOoKbKsl/p2qvusREQgsKlAcREXDbbTXfa129AG8UFXYNv+8/T2KqFm3FR0tgezUfDfUlp609som/1xIS3k7exEyKETlOgibjprIjaOG6T9AMUKukagaWe85kmV0ZV1O7lXEhHSxKKq8Ncyr1ahJNALYePti4exOWU4rv5Z1cK5Lp6Fo5j2pO5A1JKjZ3GanrcPOWviz5MG3kMn09KrVpYZmbCydOEKrVsuLECWb17GkkmmoryV/k34P5KSmsCAwk9OxZ0Amn5GQYNQrs7atfL+gO5V6agwdWxRLt+B62DOoks/1cOQevaDl5VYP/72lsD2yDc09n1O62+kOkitf5lYhXhGgStBha/FKdQNAYWKsyTifK7uzny5Du7erdDNjc+Xg42tacuixJuPj1YmaYLbMG2GFvo4yUZZnVB8vYfq6cknJFcBzJday/lYF+Gamm4+RKQWTO0pclNEGZvhHHjoFWWQZ9PC2NpA4djERTbSX5AzlF0sCBPN6xIxhEqygpgTNnar6mTsT1maz8bCoBYiC22zpK3N3blqfCbQnxUtOtrIyRJ7OxPZVvdIi3kzdLopYIHydBi6LFR5wEgoZiaqmusSvjLMXc6zwyrKtJw04de8sDKXbqQBvpin7E2WyZM9lazmRr2XNJS+/ObXhuQwmyOgmo//Ki2VgSNakr4dvSMn1rJ5Dn5VX+bmdHaGAgYH5JfsykGGVjxXF6WoJJr4lcNE9nFZODVER2VrP9vIZ3nXM52/d1Mt07YF9qT6hnKO3b1Z04LhA0J4RwEtzU1JSH9I8JQbVWxgG0cbKtV2VcfTC3Uu+ZW3rQ08eVeT8cMrl0l12k5fmSqXxkt6ximUSmWxuJyUG2bDun4WqBln+e6sH1lF9w6BSEnU8PffK52W1i9MtlNWFiuaympS9DzHEYt6RMvzEcyw3tA+xs4dxOyL/CgfIcs0vyw33Cwc4OJAl0qQg12RI0J2pZovV2UXFfsBrcOtIu9GFQqVm3bh0fnviQ/v37M2LECNzd3Ztk2gKBpYilOsFNS21Vak+vPcAdoR1qLfzKLixj89H0xp1kBZZU6t0a5IODjen/2jKwSRvBfJuXkCuWxyRJIsRLzaRwH44EPEyKfS/ksmKKUg6Qu28j5UV5yChtYsxatmuM5TJzHcYNvZY0MqRp4GgZJJXCgVJILoMLbnD8MKx7yPqO5bYV+TuZJ2DbO/qqvswtr5p1uL4kX6OpFE2gCKnmjgWVfhqNhrKyMrRaLfv37+e9997j119/Fe2vBC0CIZwENwVVTSNLy7W19pMD2JichrtjzUFZXc+5G9XOpDb7hA8eCMPd0Y6fki7z5a4U0nNrbtkhA//L78feiduV6rlJn3Pk1rUML3mPfZ534Bo2AceAQajsXVDZOaBycAEsaBNjbVdrcw01tRrlw3vwq3C6DPaUwokyyNDAdS3kypCtBYdhsPQfkFACF8uhXK75fJbi7KyIpiM/QkEOFCr5ThaX5F+6ZLzDycwedk2NmTlrarWaadOm8eijj+Lv749GoyExMZH33nuPmJgY8vPzTZxcIGgeiKU6QavH1HJcW2dbrhXUXIWmq5qrDXMq66yNqUq97IIS3vj1aJ3zrUpGQRn0U5bHTiddRksSAJJKjb1PAHZe/mhLi/TVdrKmjMVL32fhIxMJDQ1Fra4hF8jartaWRLCynWHLGXC/AzI3Q7lBzpG9KwSMBhsHKKnYfqYcLmqgjy24qqqfz1JLBv+ucHozegGWqoUAFWHFJXiXl5OhVtdakh/mpfiHkZhosFOClmTsa0HOWufOnZkxYwbnzp1j69atXLhwgb179+Lm5sbQoY1j3ikQNBQhnAStGt1yXNVYRW2iyVKs0XPOEgztE2IOp/H02r/M9pI0xDDh3FTyuaRSo66INgGUpp8h4dJpNvz0Ezt37mTkyJH06dMHlapK4NrartbmRqa2x8K5isiOZ09o3wOuXwRVGfh2Bu/eUFoKf202Pq5Uhr/KFPFk6GtVH0uG0hSwLwBdwC9dA/5q1GqJeVnZzPVqjyTLRuKpWkl+Xp5SnaejZ09ojPyfxuxVaE7OmgFdu3blkUce4ezZsyQkJBBuUFWYkZGBq6srjo6O1pmbQNBAhHAStFo0WrnG5ThrcqMq66pS3/sz1fIlwr9tnVE4O58ASmSZA5ev4J1dxNWsH4iLiyMqKorg4OBKHyij1iSmro5l/kzmRKbSNZB9Ftp0qdzWyQ/uvgeCgytzjwAOd4L//gypGiipePa0MhwugzBbcFaZf92q5F+BjmrIrXBmL5fheDkE2TC6sIglGVdZ3K4NV2wq//R6O3nzSsQrSkm+RgM//KC3NACMrQmsRWMkxjcQSZLo3r073bt312+TZZn169eTk5PDkCFDGDx4MA4OTfP/TSDQIYSToNVSl2lkbejEhSzLXMktqVGctHO2Y0CXNvWeY0Ooz/3V1PJFrZK4u58vn+86V/OxahscOvXmkCaAfWknsTt5ihHd8rl69SpxcXHMnDkTW0OB4ugBRdnGJ3FsAxOXWfbhXFcEqwQ47wQRfpXbRo2C4cOVZa6qBI2GPp2hU6qSOJ5VEaXSyHCsHAbYgbtv/fq8uXiDlwrOSkokCyBTA8eAnop4ii4s4sCdS8h076B3Dler1Erl3HffKS1bdHh5ga5ti7UiRDU5q1urV2FdWHAfeXl5SJJESUkJsbGxxMfHM3ToUAYNGoRdS0iYF7RKhHAStFrqu4RmKC4Ak42AdWQVlDLynW2N63NUA/W5P59aPJlGB/nUKpx0SGpbHDoFg08gf6Yex84ul+Dg9pWiqcaWJ0CRGcnlVamruW5aOXQbpTTXBYiKgsjKZSJTLU7UuvMF28KhiqRxgHxZSSKfUs8+b12GgocvBF+G5FIlkgVKgnq2FjrYoO7pS3hFST4AV6/Cvn2QlGRsO+DgAPfeq4g/a0WIbpSzek1YeB9ubm787W9/4+jRo8TGxpKZmcmff/7Jnj17GD58OOHh4cZiXSC4AbT4XnXWQPSqa53sOZPF/Z/urXNcW2c7rhWU6h9XNXw0lVxuiE5ome1zZCXMvb9/TOhNe1f7Olu+6Prh1eZdVRUJ8HKSiJk9jDYe7qDVkP1mb35IuMjIrjZ0byNV6SdZz/5zYPpD16UjZAwBp87K43bt4Jln9JGm2lqcjC4oVM535TLElwIy2LvB+MfgucWWza3qPL+dDlcrrBD0VZcVz0PIPdBjkGIxUFIC169XP4e9PTzwAHTpYt3ee+b2EdT1KrRmHlQD70Or1XL48GG2b99OVlYWAA8++CA9DJsiCwT1xBIdIIQTQji1VuoSArrluO0vRbP/fHat/eRKy7UMXrSlxhwgc5r+Whtz78+SOemS6aHmhimm+ObxwUrCekocPy8Yy/40ZfnLz03FLf421ZsJ17eJcNUP8sI28N36yv3jxsHgwUBli5Oqbt26ZOwlUUsY7RetnG/dekjLBQ8/sLGFuXMVa4H6ohN5Fy8puVNlFaIsYLSSuF4bHh5w//3g7a1vnFtzVaGFQvTQevj+sbrHTfoc1HbWy4Oy4n1otVoOHjzI6dOnmTRpkl6Yp6Wl4enpiY2NWEgRWM5N1eRXIKgJnWmkqaU2w+U4OxtVnXYC+89nm2VfcCOtCcy9P0uEnM4rqrYImyn0y4b5V7jF3wY7tURiqoaLuVpWJZfS1UNFdFcbunio9OPqRdVqrd9/r/zdxgb69QPMb3ES7ReN2j8S7vGGtWuVARqN4qPUsw6BUxuGJfnXLsGlfLhUAplXaz6mUyclETw4WLkXsMyKwRwham7Ce9YZiF2E1fKgrHgfKpWKfv360a/itQYoLi7mq6++ws7OjpEjR9ZulyEQNBAhnAStmpqEQG25PqawVtNfa2Ot+6t6Tp1X1K7TV3l/2+k6j9FXFrp442wnMTbAhqF+auIulLM/Vcu561pWJpUS5Knm3iAbEjNtiLB4ZiYoKqr83cNDyQsCDmQcsKzFiY9PzeetLzqR5w8MQHECv3ABTp6EggLFGsHeHlxcoHdv6Nix+jmsbSZqrlXE/pU17K9nHpS176MKWVlZ2NjYkJOTw8aNG4mLi2PkyJH07du3ul2GQNBAhHAStHpMmUbWlutjCp0wcCvOxy/nCg5lJdhoNZTY2JFn78R5jw6Uq22axJrAGvdXFZ1XVIR/W74/cKnO5UC9tYHBB7OrPdzWw5ZhfjJxF8o5kKalnaNEGu25/w81H3ilNTwnrLy88neDJRp965I60I+rurxjeF5rIUlKzlKXLnWP1WEtM1HDJc6whyH2TUwm2gOEzajYXxP1MAi1tilqFXx9fZk9ezb79+8nLi6O7OxsNmzYYGSXIQSUwFoI4SS4KTA0jbQYrZaIsqvMSNmFx+XzSCYkRLGNPen+PYlwG9TAmdaPBt1fHee1aDmwogJO/nY6MkpPJ3cHidsDbRnqJ+NgA8+XPYQWFfNXbeFafxtGjboFb+/6fWBi6OlTWKhEdSSpsnVJHejHFRbWfN6mxBpmoqaS6h3bKucztItw66j4a2lKq53CJJZEh6xtimoCW1tbBg8eTFhYGImJiezatYusrCx++OEHOnbsSLt2N2YJXdD6EcJJIKiN1FT4/nvUWVk81K6EXy6bTpl2KC/hGcdM1B+8D337wsSJxqaLFqDRylaNHjUUi5cDg+7g5MgPcI19lY5Spf1AsUN75pc9xCatskh38cg+/iyx5+TJEwQHBxMVFYWnp3mCR4+HR+Xvublw+TJ06kRY+1C8NTIZKky3OJFlvLUQ1j5U2XD0qPGAxnDqrg91WTFA7WaiNVWy6QRT1AJo1924Yi4lzry5WRIdauh9WICdnR3Dhg1j4MCBxMfHU1BQYCSa0tLS8PHxqVLtKRCYj6iqQ1TVCWrg9GlYtw7KKpPCT2fkEXsik/yS8ooUYxkXexuienoS4OVaeWynTko5uYXNWU1ZH1S1R2gqLBF0PyVd5vn/HSBCdRwvrpOBBwnaXmgN+oprCnN4wC8Px4I0QHGO7tOnDyNHjjQ/OnDtGrz3XuXj0FC4+25IiWPLd/cy16s9YCyepIo/eUsyrjL63u+gyzBYulQRXgBt28Kzz5o2z2wqTPof+Spio6Yk7fpWsumPqyM6ZC1Libruw4pcvXqVDz74gA4dOhAdHU1AQIAQUAJA2BFYjBBOgmpcugRffmmc66JWQ3AwmgEDSSi2J6OwDG97ifCiK6j371OiU4b4+cH06WZHnmrqq2fkE9WzPWRlKUaJsqwsKbVtqyQZNyPM9Zj65vHBdHMpJzY2lmMV/dlUKhWRkZFER0ebd7HVqxWRC8pr9MwzEP827P2QLU6O1Vqc+JSX80pWNqMLi5Sye20P+PHHyvONGQPNscGspZ5Klno2GaKPVIHJ6FBD3MUbs0deHRw5coSffvqJ0lJlOdLPz4/o6Gj8/f2FgLrJEcLJQoRwEhhRXAzLlyuVTzoCA+HOO2v39jl3TmmZYXjcwIFwe90fXjpPpposADzzsxmZd563A0FVVsUWoULQER6uRLqawQdAfTym0tLS2LZtGydPnmTSpEn06dPHvIudOAHffFP5uCwN5G/ATjmvBjjgYE+mWo2nRkNYcQn6j+nRn8P2E5VRRRsbxcPJwkhhs8QSz6Y+k6tvb+LoUGNRUFDArl27SExMpKzide/SpQu33HILXSxJ3Be0KoRwshAhnARG7N0LMTGVj3v3VlpfmFOVk5UFn39emWysVptlplhThMYz/xpRZ/fhm6tUf00K64Rf21o+1H18YOxY8Peve66NTE1mmnU5raempuLj46Ovgtq/fz9XrlwhMjISV1fXauPRauGLL5QooayFvR+ClA+BttBGMi0kNUB+W2j7CGgMGupGRip97pob9YnSNCTi1JDrthDy8vLYuXMn+/btQ6PR4OjoyPPPPy964N2kWKIDRH2mQGCILENiYuVjV1e45x5j0aTVKB9Kh9YrP7Wayn3t2sEdBt/GNRr46686L2vK/8n/2mXuO7hZL5oACkrrKJNPT4evvzbrmo2NLqncx924Qs3H3aHW9jQdO3bUi6bycmUZLyEhgWXLlhETE0N+fr7xASoVTJ2qJIpfvwgleVAsw8FSSCiDS+WQo4V8LVzXwply2FMCpYONRVOvXmDu8uCN5OhGJedo1e1KBGnV7crjoxtrP05XyUZNEUhJiSDVVsmmUiv7XbwV8XR+t/H7vQXj6urK+PHjmTNnDuHh4URGRupFkyzLXLlST5NWQatHVNUJBIakpChRIx0DBhjnKJnTpDQwsOJD/LryeN8+JWemlohVVf8nv+vpTDy2A5WsNdpu060bjI2ENm2USEpurtIc9vRpRfSBEoH56Scl2tW3r2X3b2Us8ZgylXxuY2PDPffcw7Zt27hw4QJ79+5l//79REREMGzYMJx0S2ouLjBjBrzzovFJi7RwWlvtWnQKN259EhSkJJU3N6+fmqrizHHwtkYlm7WaCzdj3NzcmDBhgtG2U6dOsXbtWnr27El0dDQ+VQ1SBTc1YqkOsVQnMODXXysjTioVPP+8EnUCy5qU7toFmzdXDpk1y7QzdAWGOUFuRXk8mPQ7dprKXKZzbTpysu9gfn5jkulKtuxs2LYNDh6s3KZWw6OPgq+veffehNRVTSjLMmfPnmXr1q1cvnwZABtbW7r0i8TNt3ulIDvxJ7x2B2RoK4WkKUIfgDZdlOT6IUNgxIhmkRtmhLX6u9U3V8mazYVbGDt27GDbtm3oPh6DgoKIiorCy8uriWcmaCxErzqBoL4YLgN5e1eKJq1G+fAxtw1F9+7Gwqnq8lIVDI0mwy8fNRJNx7z82dxjMB/eP7BmP6c2bZSIiaurItpAWSbcvl2xRWjG1FRNmJ5TzJOrD+iX9bp37063bt04deoU76/ewA9bD0OqHzaueUCF0Lq9F+MGdYHMVEgrh1QNlFaJtNi7Qq8IGDQI+vSpt9+WVSguhsOH4cqVyjYvjo7Ke8/lunX6uxn2zTM3V8nS93srY8SIEQQFBREbG8uRI0c4evQox44dIyQkhJEjR9K+ffumnqKgCRHCSSAwpKSk8nfDJFFLm5Ta26OVZS5nF1FQWk7J6SuEBPSo1chyXEgHPrk3iLPzv0cXd0l3acfhASP58M4+lTlBNSXsShKMHg1XryqVZgCnTinRqDZt6vV0NDYarczrPx+t7eOZ138+yq1BPqhVEpIkcbbUlY0lQdDTCxvXSr+nlIMJPHJ4Hz/d/yIRuS9AV1voooYCGcpQEsJtJLhvKQx5oGkjTOnpSmTz4EEjnzAjrp2Eq2XQUQ0utSwhmuPgXbU5cl1Yu7lwC6R9+/ZMnjyZESNGEBsby9GjRzl06BCZmZk88cQTwr7gJkYIJ4HAEEOxZPiBZmGT0q3JFzm7M4X8EiWZe6PmKEXJpXUaWY4pz0A7xE8vuIrvnMS/xw6tFFx15ZxIEgwfXimcZBn271cEVTMkIeVajRYMoIintJxiElKuMaR7O73QQpKwcat0GdeWFFJ86QjIWu79wIXVD85ncNpKbAvSwKXiuWsOpfQaDfz+u5L3VheSvRIxS9WArxoCbEyLPUv61JlbGdfITXlbEl5eXtx3332kp6ezbds2+vXrpxdNZWVlFBQU4GHoYC9o9QjhJBAYYmgbkJGh2Ao4OVnUpDTmcBoff7GFqJLKCrhCWweuVFl6MsnBg6gkSbEccHGBMYPBUDSZkyjcqZNiS5CeruxPTm62wslUNWFt42oSWpKdA049BlN84RA5eXl8mZBFvN+jRIa6M6CrBzYeHZu+lL68XHGiP3Wq+j4Hh8pl4bw8ZQnPw09ZVizJh8saKAaCbSrfD/XtU2dOcre1m/K2AlsDHx8f7r//fqNtiYmJ/Pnnn4SFhREZGSlyZG8ShHASCAwJDFQiNKB80CUlKRVxZjYp1fgN4fW3YxmdXvnhWGDrSIZLG5NLT9XINmi62ru3kuANluecBAdXCqe8POVebJrff/eq1YR1jatJaEmSCjsvf2w9u1CWkQL22eQXFPJ7ciG7UgqYPHkInZvyg1qWYcOG6qLJ318xLu3Zs/K11mjg+HFlKe/qrXDkR0CCLA2cAHrZgFSxdFefPnXmVORZsylvK67MS01NRaPRkJiYyF9//cWAAQOIjIzExcWlqacmaESaWe2tQNDE9Ohh3OA1MVEp79eVdgPVfXEqS7sTzuegvnCedoU5+r2HfQLQVny4GS49maTYQBgYRr8syTmpemzV8zYRGq3MnjNZ/JR0mT1nstBoZSL829LB3aE2pyE6uCsVc1C30JIkFXbe3Xnk8SeZOHEi7u7uFBUVmd/7rrFISlKSwHXY2cG0aYqFQlBQpWiCSif4hx+GOa9Dv3vBvuKD+IoGrmgV4VGb8KlTaKMI7Zo8mcx8v9cZNdKJt6rvXZ14q8uLqpkzefJkHn74Ybp06UJ5eTnx8fEsW7aMP/74gwLDDgKCVkXz+woqEDQlKpXSJuXPP5XH2dmKRcHttysfUvd9VcO3ZyV35tquE4w9VekArpVUHPIJqHaZGpeo1GpFqIESedBhac5JeRWjzCaONtVmN6CrJqzBaYiFE4P00Tmd0KqrlcuQAE/UKi9CQ0NJS0vD2UBI/vzzz/j5+dG3b1+90Wa9MHf5SZZhz57Kx2o1PPggGLT30Gg1HMg4QGZhJp5OnoR5haFWqZUI6Jx/wtcBkHUOSgvAtzPMWQzqWl5TayR3m/F+r5WbpDKva9euPPzww6SkpLB161YuXbrE7t27ycvLY9KkSU09PUEjIISTQFCVsDDYubOywm7/fkXMTJhQe2l3ZiZBMd9zqqTym+bJ9p3Jt6/eIqXGyImTE+RURKsMnYstzTnJyKjcplLVuwmwKVPK2ioDTWGO3cBH08KqCSsfAx8nHYa2DeYILRsbG/z8/PRjzp8/z/79+9m/fz9xcXFERUURHBxsuYCyZPnpwgXj12PoUCPRtOX8FhYnLOZKYeXr7e3kzbyIeYzuMlpZzhs8BHZX3G05kJqmNJGuiYYmd+tEoaYU7vpYEX+FVy3LT7qJKvMkSaJbt274+/tz+vRpYmNjiYysvKeCggLUajUODuYtTQuaN0I4CQRVcXaGyZOVxrG66M9ffymVav37KxEp3R96WYYzZ5QlvZMn6aLS4mJvQ35JOVlO7mzrHm50al1ERLf0VI3OneHQIeX3U6cU93EPD8tyTkpKjI0w/fzqVXpflymlOdRlNwBKztfOV24x22Fc18rFHKFVlQ4dOnDrrbeya9cusrKy+P7779mxYwfR0dH07t3bvBJzS3OHDFv4SJLiRl/BlvNbmBs7F7nKuTIKM5gbO5clUUsU8TRwoBK10pl6JibWLpwaktxdmyi0RODchJV5kiTRo0cPAgICjN5Lf/75J0ePHmXo0KEMGjQI+3p+kRE0D4RwEghM0aMH3HWXktCrE0+FhYq55K5dikmhjY2SO2RgW6CSJKJ6erL6VAE/BUdTYlNpb2AqIlKNgQMrhZPOSmDUKMvaZxw8AKWllbvDjcWbOZhrSlkXddkNgLHdwJDu5uUiWdLKxRA7OzuGDRvGwIEDiY+PZ/fu3WRmZvLtt9/i4+PD1KlTjUrLq0XcurijtnT56cyZyiG6djwoy3OLExZXE03KmWQkJN5KeItov2jUbdtCQEBlcrnhOU1R3+TuhiSUV8XalXktCEPRpNFoSE1Npbi4mK1bt7J3716GDRtGeHi4aCjcQhHJ4QJBTfTtq+SiOFVfaqOoSKlWM2FeGDCoL0PffAlnL2MRUFdzW0CJOBm2dYiPh7Q05XddzolbleMNE4WzsyE2tnKfs7NSnWcB5kaJNNq6uzWZazew+Wi6+ROsQK2SGNK9HXf282VI93YWLSHa29szYsQInnvuOUaOHIm9vT0lJSW46iwBUMTj8Le2cv+ne5nzvyTu/3Qvz771gWVJ+lptpSM4KFYRFRzIOGC0PFf9TDLphekcyDhQ7VgKC2tvKVOf5O6GJpRXxRpNhlsBarWaWbNmMWnSJNq1a0dhYSGbN29m2bJl7Nmzh7KaDFAFzRYRcRIIaqN7d3juOaUiKiGhssS/Kmq1Uh0VHg5+foyRJEYN6GZ5fpAkKa1Afv5ZeVxaCqtXK21TfH1rz7G6ehXWrAHDap6BA40rtszAUlPK2jDXbuCnpFT+PqGWSFwj4eDgQHR0NIMGDeL69euoK56rX5Mv8cjCD7D1CcDG3VsfQbApyABzggQ1JekbtHfJLMw0a476cYatYWRZOXdt7WIsTe7e8R/r5iRZo8lwK0GlUtGnTx+Cg4M5ePAg27dvJzs7m02bNlFWVsaIESOaeooCCxDCSSCoCzs7JWG8f3+4fBlSUpRv/OXlStK1u7sS1ani3aKLiFhM//6Kj49uWaagAL74QumrFh6uCCjDD66MDCXnJTnZeInO11dxEbcQS00payPCvy1tnW25VlD7t+qsglKzhFhj4eTkhFNFZFGjlZn/6S+UXj1P6dXz2Lh54dAlFBt3LzLwMO+EuuUnW1tFDOuiQwa2EJ5OniYOrI5+nKGlhFptXqWkuX3qjm6E2DfNmo9FOUkNrcxrZahUKvr160efPn1ITk4mPj6ecIOl9NzcXJydnfUCXtA8aTXC6YMPPuCdd94hPT2d0NBQli9fTkRERFNPS9CakCRlucRwyaQxUKng3nvh66/h4kVlm0ajeAElJSkNYD08lPnk5kKqiShB+/Zw//31amBrqSllbahVEnf38+XzXefqHGuuYGtsElKucd22HfYdelKSfory3AzyD23GxsOH3Z1DSPVsiw/XMB0cq5I7JEmKI3hurvL45EmIigIgzCsMbydvMgozTOY5SUh4O3kT5hWmCC9dGx1Qzmluwn9dfer0S3RmYmlOUn2aDLdy1Go1YWFh9O/fXx/NlGWZ9evXk5eXx8iRIxtulyFoNFrFq7Ju3Trmzp3LwoULOXDgAKGhoYwdO5YMwxJggaAlYWcH06dDr17V9125onyIHj9uWjR16QKPPVYtAmYulppS1sXoIB+zxpkr2BqbjLxiVPZOOHYfiNvAO7Hz6QGSivLr6eQe3MK0v/pTplHSt42pYfkpOLjy99RUJWoJqFVq5kXMqzjS+Fy6x69EvKL4OV26ZGxPYXjOhlKnbYAB9c1J0om3PpOVnzexaDLEMIk8Ly+Pa9eukZ2dzYYNG/jggw84ePAgWl1xiqDZ0CqE05IlS3j88cd55JFHCAoK4uOPP8bJyYkvvviiqacmENQfW1uYMkWJHAVUN9GsRufOMGmS4kbt6Fjvy+q8kqDGtOLaKwOrYG0h1tgYCjiVvRNOARG4DZiInXcASCoOarsyW/s8pU5VIi81uXkPHGj82MAMc3SX0SyJWoKXk5fREG8n70orgqoGmpJU/ZwNwZKlt5skJ6kpcHNzY86cOYwZMwYnJyeysrL44Ycf+Oijjzhy5AhybcUAghuKJLfwV6O0tBQnJyfWr1/PXXfdpd8+Y8YMrl+/zk8//VTtmJKSEkp05oYo68p+fn7k5OSIJo2C5ktWluInlZamVGrJsiKQPD2VvCgf8yI75mINHyfDcz25WqkOM2Vaaa69wY1Ao5UZ/tZWk+7kmqI8JFmLbwdvdr40kuITW4nZ9AeRkSPwGlCLA/bXXxtbCIwdC0OGGFyzBudwUOwvNm+uPDYwUCkWsBYpcbDq9rrHRS2AKAuW9AT1pqSkhISEBHbv3k1RRVXmlClT6G1hhazAfHJzc3F3dzdLB7T4HKerV6+i0Wjw9jb+9uft7c3x48dNHrNo0SJef/31GzE9gcB6tGsHo0ffsMvV1yuppnPV17TyRlObO7mNo2JXsHBiEGobG3ZdhkO5Lhz+7S9CLpQxcuRI2rdvX/2kkZFw9mxlkvimTUrSf2Qk2NujVqkJ96nit1VSAjt2KMJJhyTVK+G/Vur0fAJcO8KIF617XUGN2NvbExkZSXh4OHv37uXUqVP07NlTvz83NxdXV1fzDFsFVqfFR5xSU1Px9fVl9+7dDDH4Bvfyyy+zfft24uPjqx0jIk4CQdNgjRYuNwpzIm4ZGRls27aNY8eOAUrOSmhoKCNGjKBt2ypLj3v3QkyM8TY7OwgNVSKGuubS168rkcWDB42rJAFuuw0ao+hFb3wJJmOClhhfCqyOLMt6kVReXs57772Hm5sb0dHRdOvWTQgoK2BJxKnFC6f6LNVVxZInTCAQ3DyYK/TS0tKIjY3lREXlm0ql+v/27j4oqvPQ4/hvgbBQhFUsmBqB4EtjgsZVYPFKopCmjZpmJp2UNnfSllgHkxlItGZSVzKtfyQGU5mOU9OgOBnKtOZqYpux6eSljuUtVYsvkYgtWoI2ZBkMsZZFSNfC7v2D696sGjxE4Cy738/MzmR3n8WfZzbuj+c8+xxlZWVp2bJlgR9qDQ3/fwHp4fr616Xc3C/2WiOueamVW8Jy24Bg9uGHH+rXv/61f+PMtLQ05efn69ZbbzU32DgXVsVJknJycuRwOLR161ZJktfrVWpqqkpKSuR0Oq/7eooTgJHgcrlUU1Oj1tZWORwOLV++/OpBzc3SW28FblQ6lAkTpGXLRvabdJ/n8sV92TYgqF28eFHvvvuujhw5ov7/22Q1PT1d99xzT8BFrWFc2BWn3bt3q7CwUNu3b5fD4dCWLVv06quvqqWl5aq1T9dCcQIwktrb2zVx4kT/JVw6Ojr0/vvv66677tKECRMGN0/9298GNy798MNr/5C0tMENT2+/fdi7vyM8uN1uNTQ06NixYxoYGLwUTklJybXX2WFIYbU4XBr8tkFXV5d++tOfqrOzU3a7XW+//bah0gQAI+3K3/pra2t1+vRpHT16VNnZ2crNzVXc3LmDu8F/8sngHk2XdwaPiRnc5JQPP1xHQkKC7r//fuXm5qqhoUF9fX0BpenixYuDRR0jKiRmnG4UM04ARlNbW5v+9Kc/6aOPPpIkRUdHKycnR4sWLVLsDey5BXzWZxeRu91u/eIXv9CsWbOUn5+v5OTk67w6vIXdqbobRXECMNp8Pp9aW1tVU1Ojjv/b8d1qteqee+5RTk6OyekQao4fP669e/f6y1RGRoby8vI4jfc5wu5UHQAEO4vFolmzZmnmzJk6deqUampqdO7cOb5KjlFht9s1depU1dXV6eTJk2pubtbJkyd15513asmSJVdvlwHDmHESM04Axp7P51NLS4tmzZqlqKjB32FbWlp0/vx5ZWdnKzo62uSECBWdnZ2qra31bwpttVr11FNP8R77DGacACDIWSyWgEtoeL1e7du3T+fPn9eBAwd09913Kysry1+qgC/q5ptv1sMPP6yOjg7V1NQoKSkpoDT19vYqLi7OxITjCzNOYsYJgPm8Xq/ef/991dXV6cKFC5Kk+Ph4LV68WPPnz6dAYcR4vV5FRERIGtxQs7q6WpmZmbr77rv9W2iEGxaHDxPFCUCwGBgY0PHjx1VfX6/u7m5Jks1m0/LlywOuVwaMhD/+8Y86cOCAJCkqKkrZ2dm66667wm4GiuI0TBQnAMGmv79f7733nurr69XT06Mf/OAHmj59utmxEGJ8Pp/OnDmjmpoatbe3S5Juuukm/3YZX/rSl0xOODYoTsNEcQIQrP7zn/+opaVFc+bM8X8D78iRI7JarcrIyPCfcgFuhM/n0wcffKCamhq5XC5J0pQpU/T444+HxTc/WRwOACHipptu0ty5c/33P/30U+3bt08ej0f19fXKy8vTHXfcERYfbhg9FotFM2fO1IwZM3T69GnV1NTI4XD431cDAwPq7++X1Wo1Oan5+FUFAMaRyMhI5ebmKiYmRl1dXTp48KDZkRBCLBaLbrvtNj322GOy2+3+x0+ePKl/X74sUJhjxgkAxpHo6GgtXrxYDodDhw4dUlpaGrNNGHEWiyXgfRUZGSmbzWZiouBBcQKAcSgmJkZ5eXlmx0CYyMjIMDtC0OBUHQAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAYRHECAAAwiOIEAABgEMUJAADAIIoTAACAQRQnAAAAgyhOAAAABlGcAAAADKI4AQAAGERxAhBUmpqaRnU8ANwIihOAoLFjxw7Z7XZt2rTJ0PhNmzbJbrdrx44do5wMAAZRnAAEhaamJq1atUqStH79+uuWp02bNmn9+vWSpFWrVjHzBGBMjOvidPbsWa1cuVLp6emKjY3VjBkztGHDBl26dMnsaACGad68eSorK/Pfv1yeBrw+HfzgvPYed+ngB+c14PUFlCZJKisr07x588yIDSDMRJkd4Ea0tLTI6/Vq+/btmjlzppqbm1VUVKTe3l6Vl5ebHQ/AMDmdTknyl6L169frpdpWRdi/5R/jPf662t952X+/rKzM/zoAGG0Wn8/nMzvESNq8ebMqKirU1tZm+DVut1s2m03d3d1KSEgYxXQAjLhyRmnikkLZFhao+9Br+lddtf9xShOAkTCcHjCuZ5yupbu7W4mJiWbHAHADnv7xOr1U2+qfWfpXXbXch/bI6+n1j0m5b6We/vE6syICCFPjeo3TlVpbW7V161Y99thjQ47zeDxyu90BNwDBo/HMPxVh/5YmLin0P/bZ0jRxSaEi7N9S45l/mhEPQBgLyuLkdDplsViGvLW0tAS8xuVyaenSpSooKFBRUdGQP7+srEw2m81/S0lJGc2/DoBh+rjn35Ik28ICRVjjAp6LsMbJtrAgYBwAjJWgXOPU1dWl8+fPDzlm+vTpio6OliR1dHQoLy9PCxcu1K9+9StFRAzdBz0ejzwej/++2+1WSkoKa5yAIHHwg/P67x2HrlrTdNnlNU//U7RQ/zVjsgkJAYSScb/GKSkpSUlJSYbGulwu5efnKzMzU1VVVdctTZJktVpltVpvNCaAUeJIT5T3+OsBpSnCGuc/XfevumrFx0TJkb7crIgAwlRQnqozyuVyKS8vT6mpqSovL1dXV5c6OzvV2dlpdjQAN2Dzz14I2HJg4pJCpazZHbDmqf2dl7X5Zy+YEQ9AGAvKGSej9u3bp9bWVrW2tmratGkBzwXhGUgABly5FUHKfSv9+zjZFhYoPibKX6ouj2NLAgBjJSjXOI019nECgsO1dgR/+sfr1Hjmn/q4599Kjo+RIz1Rm3/2wlXjKE8Avqjh9ACKkyhOQDBoamqS3W73379eGbqyZB0/fpzLrgD4QobTA8b1GicAoWPevHmqrKyUZGwGyel0+q9tV1lZSWkCMCaYcRIzTkAwaWpqGlYJGu54ALgSM04Axq3hliBKE4CxRHECAAAwiOIEAABgEMUJAADAIIoTAACAQRQnAAAAgyhOAAAABlGcAAAADKI4AQAAGERxAgAAMIjiBAAAYBDFCQAAwCCKEwAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAYRHECAAAwKMrsAMHA5/NJktxut8lJAADAWLv8+X+5DwyF4iSpp6dHkpSSkmJyEgAAYJaenh7ZbLYhx1h8RupViPN6vero6FB8fLwsFsuI/my3262UlBS1t7crISFhRH82Ph/HfexxzM3BcR97HHNzjOZx9/l86unp0dSpUxURMfQqJmacJEVERGjatGmj+mckJCTwP5gJOO5jj2NuDo772OOYm2O0jvv1ZpouY3E4AACAQRQnAAAAgyhOo8xqtWrDhg2yWq1mRwkrHPexxzE3B8d97HHMzREsx53F4QAAAAYx4wQAAGAQxQkAAMAgihMAAIBBFKcxcvbsWa1cuVLp6emKjY3VjBkztGHDBl26dMnsaCHnl7/8pW699VbFxMQoJydHjY2NZkcKaWVlZcrOzlZ8fLySk5P14IMP6tSpU2bHCiubNm2SxWLRmjVrzI4S8lwul773ve9p8uTJio2N1dy5c3XkyBGzY4WsgYEB/eQnPwn47Hz22WcNXRpltLAB5hhpaWmR1+vV9u3bNXPmTDU3N6uoqEi9vb0qLy83O17I2L17t9auXatt27YpJydHW7Zs0X333adTp04pOTnZ7Hghqa6uTsXFxcrOzlZ/f79KS0v1jW98Q3/9618VFxdndryQd/jwYW3fvl133nmn2VFC3oULF5Sbm6v8/Hy99dZbSkpK0t///ndNmjTJ7Ggh64UXXlBFRYWqq6uVkZGhI0eOaMWKFbLZbHryySdNycS36ky0efNmVVRUqK2tzewoISMnJ0fZ2dl68cUXJQ1eTiclJUVPPPGEnE6nyenCQ1dXl5KTk1VXV6fFixebHSekXbx4UQsWLNBLL72k5557Tna7XVu2bDE7VshyOp3685//rIaGBrOjhI1vfvObmjJlil5++WX/Yw899JBiY2P1m9/8xpRMnKozUXd3txITE82OETIuXbqko0eP6t577/U/FhERoXvvvVcHDx40MVl46e7uliTe22OguLhY999/f8B7HqPn97//vbKyslRQUKDk5GTNnz9fO3bsMDtWSFu0aJH279+v06dPS5Kampr07rvvatmyZaZl4lSdSVpbW7V161ZO042gTz75RAMDA5oyZUrA41OmTFFLS4tJqcKL1+vVmjVrlJubqzlz5pgdJ6Tt2rVLx44d0+HDh82OEjba2tpUUVGhtWvXqrS0VIcPH9aTTz6p6OhoFRYWmh0vJDmdTrndbs2ePVuRkZEaGBjQxo0b9cgjj5iWiRmnG+R0OmWxWIa8Xfmh7XK5tHTpUhUUFKioqMik5MDIKy4uVnNzs3bt2mV2lJDW3t6u1atXa+fOnYqJiTE7Ttjwer1asGCBnn/+ec2fP1+rVq1SUVGRtm3bZna0kPXqq69q586deuWVV3Ts2DFVV1ervLxc1dXVpmVixukGPfXUU3r00UeHHDN9+nT/f3d0dCg/P1+LFi1SZWXlKKcLL1/+8pcVGRmpc+fOBTx+7tw53XzzzSalCh8lJSX6wx/+oPr6ek2bNs3sOCHt6NGj+vjjj7VgwQL/YwMDA6qvr9eLL74oj8ejyMhIExOGpq985Su64447Ah67/fbb9dvf/takRKHv6aefltPp1MMPPyxJmjt3rv7xj3+orKzMtFk+itMNSkpKUlJSkqGxLpdL+fn5yszMVFVVlSIimPAbSdHR0crMzNT+/fv14IMPShr8DXH//v0qKSkxN1wI8/l8euKJJ/T666+rtrZW6enpZkcKeV/72td04sSJgMdWrFih2bNna926dZSmUZKbm3vVVhunT59WWlqaSYlCX19f31WflZGRkfJ6vSYlojiNGZfLpby8PKWlpam8vFxdXV3+55gNGTlr165VYWGhsrKy5HA4tGXLFvX29mrFihVmRwtZxcXFeuWVV7R3717Fx8ers7NTkmSz2RQbG2tyutAUHx9/1RqyuLg4TZ48mbVlo+hHP/qRFi1apOeff17f+c531NjYqMrKSs4ejKIHHnhAGzduVGpqqjIyMvTee+/p5z//uX74wx+aF8qHMVFVVeWTdM0bRtbWrVt9qampvujoaJ/D4fAdOnTI7Egh7fPe11VVVWZHCytLlizxrV692uwYIe+NN97wzZkzx2e1Wn2zZ8/2VVZWmh0ppLndbt/q1at9qampvpiYGN/06dN9zzzzjM/j8ZiWiX2cAAAADGKRDQAAgEEUJwAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AQt5zzz0ni8WihQsXXvN5p9Mpi8Uiu92uCxcujHE6AOMJ16oDEPI+/fRTffWrX9VHH32kPXv26KGHHvI/V1ZWptLSUt12222qr69XcnKyiUkBBDtmnACEvNjYWG3cuFGS9Mwzz6i/v1+SVFFRodLSUqWnp2v//v2UJgDXxYwTgLDg8/mUlZWlY8eOadu2bZowYYK+//3va+rUqWpoaFB6erp/bGtrq8rLy9XY2KgTJ07olltu0dmzZ80LDyBoUJwAhI3a2lrl5+dr0qRJ6unp0aRJk1RfX6/Zs2cHjNu7d6+Ki4vlcDh05swZXbhwgeIEQBLFCUCYyc3N1YEDBxQfH6/6+nrZ7farxni9XkVEDK5kePzxx/X2229TnABIYo0TgDBSVVWlgwcPSpI8Ho8SEhKuOe5yaQKAK/GvA4Cw8Nprr6moqEiJiYn67ne/q0uXLmndunVmxwIwzlCcAIS8N998U4888oji4uL0zjvvaNu2bUpMTNSePXt04MABs+MBGEcoTgBCWl1dnb797W8rKipKb7zxhjIzMzVx4kSVlpZKktauXWtyQgDjCcUJQMhqbGzUAw88oIGBAf3ud7/T4sWL/c+VlJQoLS1Nf/nLX7Rr1y4TUwIYTyhOAELSiRMntGzZMvX19Wnnzp1aunRpwPNWq1XPPvusJGn9+vXyeDxmxAQwzrAdAQAMge0IAHxWlNkBACDY9PX16c0335QktbW1qa+vT3v27JEkZWdnKy0tzcx4AEzEjBMAXOHs2bMBl2D5rKqqKj366KNjGwhA0KA4AQAAGMTicAAAAIMoTgAAAAZRnAAAAAyiOAEAABhEcQIAADCI4gQAAGAQxQkAAMAgihMAAIBBFCcAAACDKE4AAAAGUZwAAAAMojgBAAAY9L+YonlSRViTNQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -554,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.893796Z", - "iopub.status.busy": "2023-12-13T17:00:20.893486Z", - "iopub.status.idle": "2023-12-13T17:00:20.896482Z", - "shell.execute_reply": "2023-12-13T17:00:20.895870Z" + "iopub.execute_input": "2023-12-14T17:56:37.356569Z", + "iopub.status.busy": "2023-12-14T17:56:37.356006Z", + "iopub.status.idle": "2023-12-14T17:56:37.359204Z", + "shell.execute_reply": "2023-12-14T17:56:37.358576Z" } }, "outputs": [], @@ -596,13 +601,22 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.898967Z", - "iopub.status.busy": "2023-12-13T17:00:20.898598Z", - "iopub.status.idle": "2023-12-13T17:00:20.931594Z", - "shell.execute_reply": "2023-12-13T17:00:20.930997Z" + "iopub.execute_input": "2023-12-14T17:56:37.361817Z", + "iopub.status.busy": "2023-12-14T17:56:37.361616Z", + "iopub.status.idle": "2023-12-14T17:56:37.399075Z", + "shell.execute_reply": "2023-12-14T17:56:37.398459Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + " warnings.warn(\n" + ] + } + ], "source": [ "model = LogisticRegression()\n", "pred_probs = cross_val_predict(\n", @@ -632,10 +646,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:20.934524Z", - "iopub.status.busy": "2023-12-13T17:00:20.934031Z", - "iopub.status.idle": "2023-12-13T17:00:22.226313Z", - "shell.execute_reply": "2023-12-13T17:00:22.225548Z" + "iopub.execute_input": "2023-12-14T17:56:37.401560Z", + "iopub.status.busy": "2023-12-14T17:56:37.401192Z", + "iopub.status.idle": "2023-12-14T17:56:38.674141Z", + "shell.execute_reply": "2023-12-14T17:56:38.673419Z" } }, "outputs": [ @@ -646,6 +660,14 @@ "Finding label issues ...\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/runner/work/cleanlab/cleanlab/cleanlab/filter.py:904: UserWarning: May not flag all label issues in class: 2, it has too few examples (see `min_examples_per_class` argument)\n", + " warnings.warn(\n" + ] + }, { "name": "stdout", "output_type": "stream", @@ -654,8 +676,9 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", - "Audit complete. 21 issues found in the dataset.\n" + "Audit complete. 30 issues found in the dataset.\n" ] } ], @@ -677,10 +700,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.229382Z", - "iopub.status.busy": "2023-12-13T17:00:22.228591Z", - "iopub.status.idle": "2023-12-13T17:00:22.245907Z", - "shell.execute_reply": "2023-12-13T17:00:22.245372Z" + "iopub.execute_input": "2023-12-14T17:56:38.676983Z", + "iopub.status.busy": "2023-12-14T17:56:38.676493Z", + "iopub.status.idle": "2023-12-14T17:56:38.695012Z", + "shell.execute_reply": "2023-12-14T17:56:38.694379Z" } }, "outputs": [ @@ -690,13 +713,14 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 11\n", - " outlier 6\n", - "near_duplicate 4\n", - " non_iid 0\n", + " issue_type num_issues\n", + " label 17\n", + " outlier 6\n", + " near_duplicate 4\n", + "class_imbalance 3\n", + " non_iid 0\n", "\n", - "Dataset Information: num_examples: 132, num_classes: 3\n", + "Dataset Information: num_examples: 132, num_classes: 4\n", "\n", "\n", "----------------------- label issues -----------------------\n", @@ -706,16 +730,16 @@ " (e.g. due to annotation error) are flagged as having label issues.\n", " \n", "\n", - "Number of examples with this issue: 11\n", - "Overall dataset quality in terms of this issue: 0.9318\n", + "Number of examples with this issue: 17\n", + "Overall dataset quality in terms of this issue: 0.8561\n", "\n", "Examples representing most severe instances of this issue:\n", " is_label_issue label_score given_label predicted_label\n", - "77 True 0.006939 high mid\n", - "7 True 0.007830 low mid\n", - "40 True 0.014826 mid low\n", - "107 True 0.021220 high mid\n", - "120 True 0.026403 high mid\n", + "77 False 0.001894 max mid\n", + "58 False 0.003565 max high\n", + "8 False 0.007326 max mid\n", + "7 True 0.008974 low mid\n", + "120 True 0.009699 high mid\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -759,6 +783,23 @@ "51 False 3.857172e-02 [] 3.859087e-02\n", "\n", "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 3\n", + "Overall dataset quality in terms of this issue: 0.0227\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "8 True 0.022727\n", + "77 True 0.022727\n", + "58 True 0.022727\n", + "86 False 1.000000\n", + "87 False 1.000000\n", + "\n", + "\n", "---------------------- non_iid issues ----------------------\n", "\n", "About this issue:\n", @@ -814,10 +855,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.248409Z", - "iopub.status.busy": "2023-12-13T17:00:22.248049Z", - "iopub.status.idle": "2023-12-13T17:00:22.254851Z", - "shell.execute_reply": "2023-12-13T17:00:22.254328Z" + "iopub.execute_input": "2023-12-14T17:56:38.697276Z", + "iopub.status.busy": "2023-12-14T17:56:38.697083Z", + "iopub.status.idle": "2023-12-14T17:56:38.703832Z", + "shell.execute_reply": "2023-12-14T17:56:38.703319Z" } }, "outputs": [ @@ -851,8 +892,8 @@ " \n", " 0\n", " label\n", - " 0.931818\n", - " 11\n", + " 0.856061\n", + " 17\n", " \n", " \n", " 1\n", @@ -872,16 +913,23 @@ " 0.821750\n", " 0\n", " \n", + " \n", + " 4\n", + " class_imbalance\n", + " 0.022727\n", + " 3\n", + " \n", " \n", "\n", "

" ], "text/plain": [ - " issue_type score num_issues\n", - "0 label 0.931818 11\n", - "1 outlier 0.522080 6\n", - "2 near_duplicate 0.246459 4\n", - "3 non_iid 0.821750 0" + " issue_type score num_issues\n", + "0 label 0.856061 17\n", + "1 outlier 0.522080 6\n", + "2 near_duplicate 0.246459 4\n", + "3 non_iid 0.821750 0\n", + "4 class_imbalance 0.022727 3" ] }, "execution_count": 11, @@ -907,10 +955,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.257389Z", - "iopub.status.busy": "2023-12-13T17:00:22.256908Z", - "iopub.status.idle": "2023-12-13T17:00:22.263176Z", - "shell.execute_reply": "2023-12-13T17:00:22.262538Z" + "iopub.execute_input": "2023-12-14T17:56:38.706289Z", + "iopub.status.busy": "2023-12-14T17:56:38.705917Z", + "iopub.status.idle": "2023-12-14T17:56:38.712140Z", + "shell.execute_reply": "2023-12-14T17:56:38.711529Z" } }, "outputs": [ @@ -944,8 +992,8 @@ " \n", " 0\n", " label\n", - " 0.931818\n", - " 11\n", + " 0.856061\n", + " 17\n", " \n", " \n", "\n", @@ -953,7 +1001,7 @@ ], "text/plain": [ " issue_type score num_issues\n", - "0 label 0.931818 11" + "0 label 0.856061 17" ] }, "execution_count": 12, @@ -977,10 +1025,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.265659Z", - "iopub.status.busy": "2023-12-13T17:00:22.265318Z", - "iopub.status.idle": "2023-12-13T17:00:22.273828Z", - "shell.execute_reply": "2023-12-13T17:00:22.273271Z" + "iopub.execute_input": "2023-12-14T17:56:38.714391Z", + "iopub.status.busy": "2023-12-14T17:56:38.714196Z", + "iopub.status.idle": "2023-12-14T17:56:38.723674Z", + "shell.execute_reply": "2023-12-14T17:56:38.723140Z" } }, "outputs": [ @@ -1013,63 +1061,75 @@ " near_duplicate_score\n", " is_non_iid_issue\n", " non_iid_score\n", + " is_class_imbalance_issue\n", + " class_imbalance_score\n", " \n", " \n", " \n", " \n", " 0\n", " False\n", - " 0.864232\n", + " 0.859109\n", " False\n", " 0.586131\n", " False\n", " 0.235095\n", " False\n", " 0.970324\n", + " False\n", + " 1.0\n", " \n", " \n", " 1\n", " False\n", - " 0.825563\n", + " 0.816965\n", " False\n", " 0.548979\n", " False\n", " 0.221560\n", " False\n", " 0.890575\n", + " False\n", + " 1.0\n", " \n", " \n", " 2\n", " False\n", - " 0.533367\n", + " 0.530924\n", " False\n", " 0.622256\n", " False\n", " 0.199185\n", " False\n", " 0.826147\n", + " False\n", + " 1.0\n", " \n", " \n", " 3\n", " False\n", - " 0.755724\n", + " 0.752776\n", " False\n", " 0.499498\n", " False\n", " 0.179601\n", " False\n", " 0.948362\n", + " False\n", + " 1.0\n", " \n", " \n", " 4\n", " True\n", - " 0.133588\n", + " 0.090224\n", " False\n", " 0.632385\n", " False\n", " 0.292800\n", " False\n", " 0.878267\n", + " False\n", + " 1.0\n", " \n", " \n", "\n", @@ -1077,11 +1137,11 @@ ], "text/plain": [ " is_label_issue label_score is_outlier_issue outlier_score \\\n", - "0 False 0.864232 False 0.586131 \n", - "1 False 0.825563 False 0.548979 \n", - "2 False 0.533367 False 0.622256 \n", - "3 False 0.755724 False 0.499498 \n", - "4 True 0.133588 False 0.632385 \n", + "0 False 0.859109 False 0.586131 \n", + "1 False 0.816965 False 0.548979 \n", + "2 False 0.530924 False 0.622256 \n", + "3 False 0.752776 False 0.499498 \n", + "4 True 0.090224 False 0.632385 \n", "\n", " is_near_duplicate_issue near_duplicate_score is_non_iid_issue \\\n", "0 False 0.235095 False \n", @@ -1090,12 +1150,12 @@ "3 False 0.179601 False \n", "4 False 0.292800 False \n", "\n", - " non_iid_score \n", - "0 0.970324 \n", - "1 0.890575 \n", - "2 0.826147 \n", - "3 0.948362 \n", - "4 0.878267 " + " non_iid_score is_class_imbalance_issue class_imbalance_score \n", + "0 0.970324 False 1.0 \n", + "1 0.890575 False 1.0 \n", + "2 0.826147 False 1.0 \n", + "3 0.948362 False 1.0 \n", + "4 0.878267 False 1.0 " ] }, "execution_count": 13, @@ -1122,10 +1182,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.276308Z", - "iopub.status.busy": "2023-12-13T17:00:22.275849Z", - "iopub.status.idle": "2023-12-13T17:00:22.285634Z", - "shell.execute_reply": "2023-12-13T17:00:22.284997Z" + "iopub.execute_input": "2023-12-14T17:56:38.725945Z", + "iopub.status.busy": "2023-12-14T17:56:38.725746Z", + "iopub.status.idle": "2023-12-14T17:56:38.735380Z", + "shell.execute_reply": "2023-12-14T17:56:38.734861Z" } }, "outputs": [ @@ -1158,37 +1218,37 @@ " \n", " \n", " \n", - " 77\n", + " 7\n", " True\n", - " 0.006939\n", - " high\n", + " 0.008974\n", + " low\n", " mid\n", " \n", " \n", - " 7\n", + " 120\n", " True\n", - " 0.007830\n", - " low\n", + " 0.009699\n", + " high\n", " mid\n", " \n", " \n", " 40\n", " True\n", - " 0.014826\n", + " 0.013444\n", " mid\n", " low\n", " \n", " \n", " 107\n", " True\n", - " 0.021220\n", + " 0.025173\n", " high\n", " mid\n", " \n", " \n", - " 120\n", + " 53\n", " True\n", - " 0.026403\n", + " 0.026416\n", " high\n", " mid\n", " \n", @@ -1198,11 +1258,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "77 True 0.006939 high mid\n", - "7 True 0.007830 low mid\n", - "40 True 0.014826 mid low\n", - "107 True 0.021220 high mid\n", - "120 True 0.026403 high mid" + "7 True 0.008974 low mid\n", + "120 True 0.009699 high mid\n", + "40 True 0.013444 mid low\n", + "107 True 0.025173 high mid\n", + "53 True 0.026416 high mid" ] }, "execution_count": 14, @@ -1241,10 +1301,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.288036Z", - "iopub.status.busy": "2023-12-13T17:00:22.287693Z", - "iopub.status.idle": "2023-12-13T17:00:22.295297Z", - "shell.execute_reply": "2023-12-13T17:00:22.294765Z" + "iopub.execute_input": "2023-12-14T17:56:38.737888Z", + "iopub.status.busy": "2023-12-14T17:56:38.737507Z", + "iopub.status.idle": "2023-12-14T17:56:38.745120Z", + "shell.execute_reply": "2023-12-14T17:56:38.744507Z" }, "scrolled": true }, @@ -1282,33 +1342,43 @@ " \n", " \n", " 0\n", - " high\n", - " 0\n", - " 6\n", + " low\n", " 1\n", - " 0.206897\n", - " 0.041667\n", - " 0.793103\n", + " 12\n", + " 2\n", + " 0.428571\n", + " 0.111111\n", + " 0.571429\n", " \n", " \n", " 1\n", - " low\n", - " 1\n", + " high\n", + " 0\n", + " 11\n", " 2\n", - " 3\n", - " 0.071429\n", - " 0.103448\n", - " 0.928571\n", + " 0.407407\n", + " 0.111111\n", + " 0.592593\n", " \n", " \n", " 2\n", " mid\n", + " 3\n", + " 25\n", + " 5\n", + " 0.337838\n", + " 0.092593\n", + " 0.662162\n", + " \n", + " \n", + " 3\n", + " max\n", " 2\n", - " 4\n", - " 8\n", - " 0.053333\n", - " 0.101266\n", - " 0.946667\n", + " 1\n", + " 40\n", + " 0.333333\n", + " 0.952381\n", + " 0.666667\n", " \n", " \n", "\n", @@ -1316,14 +1386,16 @@ ], "text/plain": [ " Class Name Class Index Label Issues Inverse Label Issues Label Noise \\\n", - "0 high 0 6 1 0.206897 \n", - "1 low 1 2 3 0.071429 \n", - "2 mid 2 4 8 0.053333 \n", + "0 low 1 12 2 0.428571 \n", + "1 high 0 11 2 0.407407 \n", + "2 mid 3 25 5 0.337838 \n", + "3 max 2 1 40 0.333333 \n", "\n", " Inverse Label Noise Label Quality Score \n", - "0 0.041667 0.793103 \n", - "1 0.103448 0.928571 \n", - "2 0.101266 0.946667 " + "0 0.111111 0.571429 \n", + "1 0.111111 0.592593 \n", + "2 0.092593 0.662162 \n", + "3 0.952381 0.666667 " ] }, "execution_count": 15, @@ -1357,10 +1429,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:22.297686Z", - "iopub.status.busy": "2023-12-13T17:00:22.297299Z", - "iopub.status.idle": "2023-12-13T17:00:22.307508Z", - "shell.execute_reply": "2023-12-13T17:00:22.306966Z" + "iopub.execute_input": "2023-12-14T17:56:38.747453Z", + "iopub.status.busy": "2023-12-14T17:56:38.747111Z", + "iopub.status.idle": "2023-12-14T17:56:38.757181Z", + "shell.execute_reply": "2023-12-14T17:56:38.756582Z" } }, "outputs": [ @@ -1447,6 +1519,89 @@ "lab.get_issues(\"near_duplicate\").query(\"is_near_duplicate_issue\").sort_values(\"near_duplicate_score\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Class Imbalance Issues \n", + "\n", + "Let's inspect the examples that are flagged to have class imbalance issue. \n", + "Each example below has been assigned the *rarest class label* in the dataset. The `class_imbalance_score` is the proportion of examples belonging to the rarest class. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "execution": { + "iopub.execute_input": "2023-12-14T17:56:38.759602Z", + "iopub.status.busy": "2023-12-14T17:56:38.759261Z", + "iopub.status.idle": "2023-12-14T17:56:38.766741Z", + "shell.execute_reply": "2023-12-14T17:56:38.766218Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
is_class_imbalance_issueclass_imbalance_score
8True0.022727
58True0.022727
77True0.022727
\n", + "
" + ], + "text/plain": [ + " is_class_imbalance_issue class_imbalance_score\n", + "8 True 0.022727\n", + "58 True 0.022727\n", + "77 True 0.022727" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lab.get_issues(\"class_imbalance\").query(\"is_class_imbalance_issue\").sort_values(\"class_imbalance_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index 406878238..17c41595a 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -1052,6 +1052,7 @@

5. Use cleanlab to find label issues
 Here is a summary of the different kinds of issues found in the data:
 
-    issue_type  num_issues
-         label         294
-       outlier          46
-near_duplicate          17
-       non_iid           1
+     issue_type  num_issues
+          label         294
+        outlier          46
+ near_duplicate          17
+        non_iid           1
+class_imbalance           0
 
 Dataset Information: num_examples: 941, num_classes: 5
 
@@ -1164,6 +1166,23 @@ 

5. Use cleanlab to find label issues diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 4cbd898a7..8cd7492e4 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:27.190185Z", - "iopub.status.busy": "2023-12-13T17:00:27.189990Z", - "iopub.status.idle": "2023-12-13T17:00:28.204885Z", - "shell.execute_reply": "2023-12-13T17:00:28.204218Z" + "iopub.execute_input": "2023-12-14T17:56:43.657283Z", + "iopub.status.busy": "2023-12-14T17:56:43.657082Z", + "iopub.status.idle": "2023-12-14T17:56:44.671407Z", + "shell.execute_reply": "2023-12-14T17:56:44.670796Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.207546Z", - "iopub.status.busy": "2023-12-13T17:00:28.207248Z", - "iopub.status.idle": "2023-12-13T17:00:28.224008Z", - "shell.execute_reply": "2023-12-13T17:00:28.223523Z" + "iopub.execute_input": "2023-12-14T17:56:44.674341Z", + "iopub.status.busy": "2023-12-14T17:56:44.673904Z", + "iopub.status.idle": "2023-12-14T17:56:44.690571Z", + "shell.execute_reply": "2023-12-14T17:56:44.690058Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.226323Z", - "iopub.status.busy": "2023-12-13T17:00:28.226122Z", - "iopub.status.idle": "2023-12-13T17:00:28.395571Z", - "shell.execute_reply": "2023-12-13T17:00:28.395033Z" + "iopub.execute_input": "2023-12-14T17:56:44.693128Z", + "iopub.status.busy": "2023-12-14T17:56:44.692765Z", + "iopub.status.idle": "2023-12-14T17:56:44.888229Z", + "shell.execute_reply": "2023-12-14T17:56:44.887741Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.397873Z", - "iopub.status.busy": "2023-12-13T17:00:28.397673Z", - "iopub.status.idle": "2023-12-13T17:00:28.401373Z", - "shell.execute_reply": "2023-12-13T17:00:28.400875Z" + "iopub.execute_input": "2023-12-14T17:56:44.890666Z", + "iopub.status.busy": "2023-12-14T17:56:44.890303Z", + "iopub.status.idle": "2023-12-14T17:56:44.893968Z", + "shell.execute_reply": "2023-12-14T17:56:44.893428Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.403866Z", - "iopub.status.busy": "2023-12-13T17:00:28.403424Z", - "iopub.status.idle": "2023-12-13T17:00:28.411561Z", - "shell.execute_reply": "2023-12-13T17:00:28.410938Z" + "iopub.execute_input": "2023-12-14T17:56:44.896476Z", + "iopub.status.busy": "2023-12-14T17:56:44.896019Z", + "iopub.status.idle": "2023-12-14T17:56:44.904104Z", + "shell.execute_reply": "2023-12-14T17:56:44.903609Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.414534Z", - "iopub.status.busy": "2023-12-13T17:00:28.414071Z", - "iopub.status.idle": "2023-12-13T17:00:28.416964Z", - "shell.execute_reply": "2023-12-13T17:00:28.416332Z" + "iopub.execute_input": "2023-12-14T17:56:44.906876Z", + "iopub.status.busy": "2023-12-14T17:56:44.906350Z", + "iopub.status.idle": "2023-12-14T17:56:44.909338Z", + "shell.execute_reply": "2023-12-14T17:56:44.908825Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:28.419264Z", - "iopub.status.busy": "2023-12-13T17:00:28.418908Z", - "iopub.status.idle": "2023-12-13T17:00:32.048360Z", - "shell.execute_reply": "2023-12-13T17:00:32.047716Z" + "iopub.execute_input": "2023-12-14T17:56:44.911557Z", + "iopub.status.busy": "2023-12-14T17:56:44.911363Z", + "iopub.status.idle": "2023-12-14T17:56:48.485677Z", + "shell.execute_reply": "2023-12-14T17:56:48.485007Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:32.051592Z", - "iopub.status.busy": "2023-12-13T17:00:32.051129Z", - "iopub.status.idle": "2023-12-13T17:00:32.061537Z", - "shell.execute_reply": "2023-12-13T17:00:32.061025Z" + "iopub.execute_input": "2023-12-14T17:56:48.488476Z", + "iopub.status.busy": "2023-12-14T17:56:48.488268Z", + "iopub.status.idle": "2023-12-14T17:56:48.498046Z", + "shell.execute_reply": "2023-12-14T17:56:48.497556Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:32.064158Z", - "iopub.status.busy": "2023-12-13T17:00:32.063698Z", - "iopub.status.idle": "2023-12-13T17:00:33.407922Z", - "shell.execute_reply": "2023-12-13T17:00:33.407182Z" + "iopub.execute_input": "2023-12-14T17:56:48.500380Z", + "iopub.status.busy": "2023-12-14T17:56:48.500180Z", + "iopub.status.idle": "2023-12-14T17:56:49.808419Z", + "shell.execute_reply": "2023-12-14T17:56:49.807684Z" } }, "outputs": [ @@ -457,6 +457,7 @@ "Finding outlier issues ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 358 issues found in the dataset.\n" ] @@ -474,10 +475,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.411389Z", - "iopub.status.busy": "2023-12-13T17:00:33.410778Z", - "iopub.status.idle": "2023-12-13T17:00:33.432516Z", - "shell.execute_reply": "2023-12-13T17:00:33.431938Z" + "iopub.execute_input": "2023-12-14T17:56:49.811953Z", + "iopub.status.busy": "2023-12-14T17:56:49.811289Z", + "iopub.status.idle": "2023-12-14T17:56:49.835809Z", + "shell.execute_reply": "2023-12-14T17:56:49.835225Z" }, "scrolled": true }, @@ -488,11 +489,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 294\n", - " outlier 46\n", - "near_duplicate 17\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 294\n", + " outlier 46\n", + " near_duplicate 17\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 941, num_classes: 5\n", "\n", @@ -580,7 +582,24 @@ "898 False 0.740335\n", "\n", "Additional Information: \n", - "p-value: 0.0014153602099278074\n" + "p-value: 0.0014153602099278074\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1562\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "619 False 1.0\n", + "620 False 1.0\n", + "621 False 1.0\n", + "622 False 1.0\n" ] } ], @@ -602,10 +621,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.435420Z", - "iopub.status.busy": "2023-12-13T17:00:33.435044Z", - "iopub.status.idle": "2023-12-13T17:00:33.444808Z", - "shell.execute_reply": "2023-12-13T17:00:33.444206Z" + "iopub.execute_input": "2023-12-14T17:56:49.838906Z", + "iopub.status.busy": "2023-12-14T17:56:49.838532Z", + "iopub.status.idle": "2023-12-14T17:56:49.848528Z", + "shell.execute_reply": "2023-12-14T17:56:49.847942Z" } }, "outputs": [ @@ -709,10 +728,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.447633Z", - "iopub.status.busy": "2023-12-13T17:00:33.447263Z", - "iopub.status.idle": "2023-12-13T17:00:33.458899Z", - "shell.execute_reply": "2023-12-13T17:00:33.458327Z" + "iopub.execute_input": "2023-12-14T17:56:49.851645Z", + "iopub.status.busy": "2023-12-14T17:56:49.851270Z", + "iopub.status.idle": "2023-12-14T17:56:49.862948Z", + "shell.execute_reply": "2023-12-14T17:56:49.862371Z" } }, "outputs": [ @@ -841,10 +860,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.462803Z", - "iopub.status.busy": "2023-12-13T17:00:33.461672Z", - "iopub.status.idle": "2023-12-13T17:00:33.484608Z", - "shell.execute_reply": "2023-12-13T17:00:33.483243Z" + "iopub.execute_input": "2023-12-14T17:56:49.866121Z", + "iopub.status.busy": "2023-12-14T17:56:49.865748Z", + "iopub.status.idle": "2023-12-14T17:56:49.875598Z", + "shell.execute_reply": "2023-12-14T17:56:49.875025Z" } }, "outputs": [ @@ -958,10 +977,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.489513Z", - "iopub.status.busy": "2023-12-13T17:00:33.488366Z", - "iopub.status.idle": "2023-12-13T17:00:33.502327Z", - "shell.execute_reply": "2023-12-13T17:00:33.501835Z" + "iopub.execute_input": "2023-12-14T17:56:49.878792Z", + "iopub.status.busy": "2023-12-14T17:56:49.878422Z", + "iopub.status.idle": "2023-12-14T17:56:49.889928Z", + "shell.execute_reply": "2023-12-14T17:56:49.889336Z" } }, "outputs": [ @@ -1072,10 +1091,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.504786Z", - "iopub.status.busy": "2023-12-13T17:00:33.504443Z", - "iopub.status.idle": "2023-12-13T17:00:33.511692Z", - "shell.execute_reply": "2023-12-13T17:00:33.511162Z" + "iopub.execute_input": "2023-12-14T17:56:49.893864Z", + "iopub.status.busy": "2023-12-14T17:56:49.892713Z", + "iopub.status.idle": "2023-12-14T17:56:49.902220Z", + "shell.execute_reply": "2023-12-14T17:56:49.901741Z" } }, "outputs": [ @@ -1159,10 +1178,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.514113Z", - "iopub.status.busy": "2023-12-13T17:00:33.513914Z", - "iopub.status.idle": "2023-12-13T17:00:33.520774Z", - "shell.execute_reply": "2023-12-13T17:00:33.520131Z" + "iopub.execute_input": "2023-12-14T17:56:49.905674Z", + "iopub.status.busy": "2023-12-14T17:56:49.904630Z", + "iopub.status.idle": "2023-12-14T17:56:49.911718Z", + "shell.execute_reply": "2023-12-14T17:56:49.911252Z" } }, "outputs": [ @@ -1246,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:33.523344Z", - "iopub.status.busy": "2023-12-13T17:00:33.522927Z", - "iopub.status.idle": "2023-12-13T17:00:33.529852Z", - "shell.execute_reply": "2023-12-13T17:00:33.529240Z" + "iopub.execute_input": "2023-12-14T17:56:49.914634Z", + "iopub.status.busy": "2023-12-14T17:56:49.913641Z", + "iopub.status.idle": "2023-12-14T17:56:49.921398Z", + "shell.execute_reply": "2023-12-14T17:56:49.920887Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index a102b5464..d33426723 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -943,7 +943,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone'}
+Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin'}
 

Let’s view the i-th example in the dataset:

@@ -990,43 +990,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1086,6 +1086,7 @@

4. Use cleanlab to find issues in your dataset
 Here is a summary of the different kinds of issues found in the data:
 
-    issue_type  num_issues
-         label          41
-       outlier          38
-near_duplicate           4
-       non_iid           1
+     issue_type  num_issues
+          label          41
+        outlier          38
+ near_duplicate           4
+        non_iid           1
+class_imbalance           0
 
 Dataset Information: num_examples: 1000, num_classes: 10
 
@@ -1199,6 +1201,23 @@ 

4. Use cleanlab to find issues in your dataset @@ -1710,7 +1729,7 @@

Near-duplicate issuesWe see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets.

As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index ea5c5ef6c..0718cbc4a 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:38.238188Z", - "iopub.status.busy": "2023-12-13T17:00:38.237995Z", - "iopub.status.idle": "2023-12-13T17:00:40.527546Z", - "shell.execute_reply": "2023-12-13T17:00:40.526939Z" + "iopub.execute_input": "2023-12-14T17:56:54.750128Z", + "iopub.status.busy": "2023-12-14T17:56:54.749936Z", + "iopub.status.idle": "2023-12-14T17:56:56.957416Z", + "shell.execute_reply": "2023-12-14T17:56:56.956799Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4635d30f58e343b49bd1a0c28ea41086", + "model_id": "f869f04c558448168588593c53059c38", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.530394Z", - "iopub.status.busy": "2023-12-13T17:00:40.530061Z", - "iopub.status.idle": "2023-12-13T17:00:40.533707Z", - "shell.execute_reply": "2023-12-13T17:00:40.533070Z" + "iopub.execute_input": "2023-12-14T17:56:56.960473Z", + "iopub.status.busy": "2023-12-14T17:56:56.959945Z", + "iopub.status.idle": "2023-12-14T17:56:56.963427Z", + "shell.execute_reply": "2023-12-14T17:56:56.962906Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.536287Z", - "iopub.status.busy": "2023-12-13T17:00:40.535843Z", - "iopub.status.idle": "2023-12-13T17:00:40.539278Z", - "shell.execute_reply": "2023-12-13T17:00:40.538582Z" + "iopub.execute_input": "2023-12-14T17:56:56.965709Z", + "iopub.status.busy": "2023-12-14T17:56:56.965327Z", + "iopub.status.idle": "2023-12-14T17:56:56.968663Z", + "shell.execute_reply": "2023-12-14T17:56:56.968057Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.541640Z", - "iopub.status.busy": "2023-12-13T17:00:40.541439Z", - "iopub.status.idle": "2023-12-13T17:00:40.698350Z", - "shell.execute_reply": "2023-12-13T17:00:40.697721Z" + "iopub.execute_input": "2023-12-14T17:56:56.971146Z", + "iopub.status.busy": "2023-12-14T17:56:56.970719Z", + "iopub.status.idle": "2023-12-14T17:56:57.155053Z", + "shell.execute_reply": "2023-12-14T17:56:57.154444Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.700795Z", - "iopub.status.busy": "2023-12-13T17:00:40.700341Z", - "iopub.status.idle": "2023-12-13T17:00:40.704572Z", - "shell.execute_reply": "2023-12-13T17:00:40.703950Z" + "iopub.execute_input": "2023-12-14T17:56:57.157627Z", + "iopub.status.busy": "2023-12-14T17:56:57.157234Z", + "iopub.status.idle": "2023-12-14T17:56:57.161211Z", + "shell.execute_reply": "2023-12-14T17:56:57.160584Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'visa_or_mastercard', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone'}\n" + "Classes: {'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'change_pin'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.706985Z", - "iopub.status.busy": "2023-12-13T17:00:40.706631Z", - "iopub.status.idle": "2023-12-13T17:00:40.709754Z", - "shell.execute_reply": "2023-12-13T17:00:40.709124Z" + "iopub.execute_input": "2023-12-14T17:56:57.163603Z", + "iopub.status.busy": "2023-12-14T17:56:57.163217Z", + "iopub.status.idle": "2023-12-14T17:56:57.167015Z", + "shell.execute_reply": "2023-12-14T17:56:57.166480Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:40.712203Z", - "iopub.status.busy": "2023-12-13T17:00:40.711914Z", - "iopub.status.idle": "2023-12-13T17:00:50.013985Z", - "shell.execute_reply": "2023-12-13T17:00:50.013358Z" + "iopub.execute_input": "2023-12-14T17:56:57.169658Z", + "iopub.status.busy": "2023-12-14T17:56:57.169215Z", + "iopub.status.idle": "2023-12-14T17:57:08.247514Z", + "shell.execute_reply": "2023-12-14T17:57:08.246862Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ade63d337c42430aab512ff6d2e9fa86", + "model_id": "5a31c7b4dc4f492d9f86115ab8577bb5", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "deea84b1c6d044cebee3018df441ffa1", + "model_id": "60c8df6502984a62ae59c76dcc7fa9ac", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f4b39508ea314bdc8e50059de6ed1afc", + "model_id": "06bf58e6bb2e495fbfc5811e9e755646", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "489eca71f3cb4fccb53d1364bad1c0f1", + "model_id": "5cacc41592b74393a8c3f3d798b0278d", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7618f73e108545e19ec52ca356a62f52", + "model_id": "0ee2d9246b6f4f6d902232a81b6e5f08", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f2a92542fd8749e4aec7645ddf0a07ee", + "model_id": "0841369124434d6f9690c32240fd879d", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abd842d675ac44b1b45f9191e7860fd6", + "model_id": "6b19cafd24984e16977031581bcbcd70", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:50.017381Z", - "iopub.status.busy": "2023-12-13T17:00:50.016946Z", - "iopub.status.idle": "2023-12-13T17:00:51.190437Z", - "shell.execute_reply": "2023-12-13T17:00:51.189768Z" + "iopub.execute_input": "2023-12-14T17:57:08.250812Z", + "iopub.status.busy": "2023-12-14T17:57:08.250572Z", + "iopub.status.idle": "2023-12-14T17:57:09.453037Z", + "shell.execute_reply": "2023-12-14T17:57:09.452357Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:51.195140Z", - "iopub.status.busy": "2023-12-13T17:00:51.193953Z", - "iopub.status.idle": "2023-12-13T17:00:51.198586Z", - "shell.execute_reply": "2023-12-13T17:00:51.198010Z" + "iopub.execute_input": "2023-12-14T17:57:09.456611Z", + "iopub.status.busy": "2023-12-14T17:57:09.456148Z", + "iopub.status.idle": "2023-12-14T17:57:09.459310Z", + "shell.execute_reply": "2023-12-14T17:57:09.458745Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:51.202967Z", - "iopub.status.busy": "2023-12-13T17:00:51.201837Z", - "iopub.status.idle": "2023-12-13T17:00:52.505476Z", - "shell.execute_reply": "2023-12-13T17:00:52.504677Z" + "iopub.execute_input": "2023-12-14T17:57:09.462205Z", + "iopub.status.busy": "2023-12-14T17:57:09.461792Z", + "iopub.status.idle": "2023-12-14T17:57:10.766591Z", + "shell.execute_reply": "2023-12-14T17:57:10.765833Z" }, "scrolled": true }, @@ -616,6 +616,7 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 84 issues found in the dataset.\n" ] @@ -638,10 +639,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.509110Z", - "iopub.status.busy": "2023-12-13T17:00:52.508426Z", - "iopub.status.idle": "2023-12-13T17:00:52.530896Z", - "shell.execute_reply": "2023-12-13T17:00:52.530311Z" + "iopub.execute_input": "2023-12-14T17:57:10.770483Z", + "iopub.status.busy": "2023-12-14T17:57:10.769766Z", + "iopub.status.idle": "2023-12-14T17:57:10.794627Z", + "shell.execute_reply": "2023-12-14T17:57:10.794043Z" }, "scrolled": true }, @@ -652,11 +653,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 41\n", - " outlier 38\n", - "near_duplicate 4\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 41\n", + " outlier 38\n", + " near_duplicate 4\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 1000, num_classes: 10\n", "\n", @@ -744,7 +746,24 @@ "40 False 0.575874\n", "\n", "Additional Information: \n", - "p-value: 0.0\n" + "p-value: 0.0\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.0800\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "658 False 1.0\n", + "659 False 1.0\n", + "660 False 1.0\n", + "661 False 1.0\n" ] } ], @@ -766,10 +785,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.533982Z", - "iopub.status.busy": "2023-12-13T17:00:52.533608Z", - "iopub.status.idle": "2023-12-13T17:00:52.543783Z", - "shell.execute_reply": "2023-12-13T17:00:52.543196Z" + "iopub.execute_input": "2023-12-14T17:57:10.797756Z", + "iopub.status.busy": "2023-12-14T17:57:10.797365Z", + "iopub.status.idle": "2023-12-14T17:57:10.807589Z", + "shell.execute_reply": "2023-12-14T17:57:10.807024Z" }, "scrolled": true }, @@ -879,10 +898,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.546940Z", - "iopub.status.busy": "2023-12-13T17:00:52.546568Z", - "iopub.status.idle": "2023-12-13T17:00:52.551612Z", - "shell.execute_reply": "2023-12-13T17:00:52.551037Z" + "iopub.execute_input": "2023-12-14T17:57:10.810599Z", + "iopub.status.busy": "2023-12-14T17:57:10.810181Z", + "iopub.status.idle": "2023-12-14T17:57:10.815359Z", + "shell.execute_reply": "2023-12-14T17:57:10.814785Z" } }, "outputs": [ @@ -920,10 +939,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.554461Z", - "iopub.status.busy": "2023-12-13T17:00:52.554084Z", - "iopub.status.idle": "2023-12-13T17:00:52.561996Z", - "shell.execute_reply": "2023-12-13T17:00:52.561415Z" + "iopub.execute_input": "2023-12-14T17:57:10.818224Z", + "iopub.status.busy": "2023-12-14T17:57:10.817776Z", + "iopub.status.idle": "2023-12-14T17:57:10.826154Z", + "shell.execute_reply": "2023-12-14T17:57:10.825511Z" } }, "outputs": [ @@ -1040,10 +1059,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.565146Z", - "iopub.status.busy": "2023-12-13T17:00:52.564768Z", - "iopub.status.idle": "2023-12-13T17:00:52.570805Z", - "shell.execute_reply": "2023-12-13T17:00:52.570356Z" + "iopub.execute_input": "2023-12-14T17:57:10.828287Z", + "iopub.status.busy": "2023-12-14T17:57:10.828094Z", + "iopub.status.idle": "2023-12-14T17:57:10.834780Z", + "shell.execute_reply": "2023-12-14T17:57:10.834172Z" } }, "outputs": [ @@ -1126,10 +1145,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.572912Z", - "iopub.status.busy": "2023-12-13T17:00:52.572614Z", - "iopub.status.idle": "2023-12-13T17:00:52.578432Z", - "shell.execute_reply": "2023-12-13T17:00:52.577823Z" + "iopub.execute_input": "2023-12-14T17:57:10.836797Z", + "iopub.status.busy": "2023-12-14T17:57:10.836605Z", + "iopub.status.idle": "2023-12-14T17:57:10.842912Z", + "shell.execute_reply": "2023-12-14T17:57:10.842285Z" } }, "outputs": [ @@ -1237,10 +1256,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.580814Z", - "iopub.status.busy": "2023-12-13T17:00:52.580379Z", - "iopub.status.idle": "2023-12-13T17:00:52.589661Z", - "shell.execute_reply": "2023-12-13T17:00:52.589052Z" + "iopub.execute_input": "2023-12-14T17:57:10.845043Z", + "iopub.status.busy": "2023-12-14T17:57:10.844845Z", + "iopub.status.idle": "2023-12-14T17:57:10.854169Z", + "shell.execute_reply": "2023-12-14T17:57:10.853522Z" } }, "outputs": [ @@ -1351,10 +1370,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.592246Z", - "iopub.status.busy": "2023-12-13T17:00:52.591816Z", - "iopub.status.idle": "2023-12-13T17:00:52.597586Z", - "shell.execute_reply": "2023-12-13T17:00:52.596977Z" + "iopub.execute_input": "2023-12-14T17:57:10.856358Z", + "iopub.status.busy": "2023-12-14T17:57:10.856160Z", + "iopub.status.idle": "2023-12-14T17:57:10.861961Z", + "shell.execute_reply": "2023-12-14T17:57:10.861297Z" } }, "outputs": [ @@ -1422,10 +1441,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.599758Z", - "iopub.status.busy": "2023-12-13T17:00:52.599429Z", - "iopub.status.idle": "2023-12-13T17:00:52.605130Z", - "shell.execute_reply": "2023-12-13T17:00:52.604477Z" + "iopub.execute_input": "2023-12-14T17:57:10.864223Z", + "iopub.status.busy": "2023-12-14T17:57:10.863878Z", + "iopub.status.idle": "2023-12-14T17:57:10.869642Z", + "shell.execute_reply": "2023-12-14T17:57:10.868997Z" } }, "outputs": [ @@ -1503,10 +1522,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:52.607886Z", - "iopub.status.busy": "2023-12-13T17:00:52.607431Z", - "iopub.status.idle": "2023-12-13T17:00:52.613040Z", - "shell.execute_reply": "2023-12-13T17:00:52.612441Z" + "iopub.execute_input": "2023-12-14T17:57:10.872043Z", + "iopub.status.busy": "2023-12-14T17:57:10.871706Z", + "iopub.status.idle": "2023-12-14T17:57:10.877308Z", + "shell.execute_reply": "2023-12-14T17:57:10.876670Z" }, "nbsphinx": "hidden" }, @@ -1556,7 +1575,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0520df0cb529430bb110adcb2aee6966": { + "01390c41edcb4a15a07f9a7a69e01640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1571,28 +1590,57 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ff518ed57fdf46199744629476f70a04", + "layout": "IPY_MODEL_91676c2d6dcb4ddcb1233e13c621e43b", "placeholder": "​", - "style": "IPY_MODEL_d1fbad944853442bbd26ed11260ff72a", - "value": "tokenizer.json: 100%" + "style": "IPY_MODEL_f1393a2a3fa44caeab800dacc8b0e5a5", + "value": " 466k/466k [00:00<00:00, 27.6MB/s]" } }, - "0f93bb91aad740e3a71f3182fe15e4f6": { + "06bf58e6bb2e495fbfc5811e9e755646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa8d89c514024549b642be6c79c62bbb", + "IPY_MODEL_a6fb11bdd68f426da493fce6d687b23a", + "IPY_MODEL_a201a942b586447a9aa80c9d476ab314" + ], + "layout": "IPY_MODEL_27318de3d8014f9f8e62d7ecca08d313" + } + }, + "0841369124434d6f9690c32240fd879d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2735695f1c3e4301be295606df3e5000", + "IPY_MODEL_cb5965277a964592b931cd10b6041443", + "IPY_MODEL_5ff4f46e29ce49f68fd22f4093a2d439" + ], + "layout": "IPY_MODEL_efd787033326410eb01a9b16358eaf35" } }, - "11fe7fba62004878a81decfb4f4aaaa6": { + "0aaa74341404488a843ac4ec2ae99d87": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1644,7 +1692,7 @@ "width": null } }, - "1262696646774b34bdaaac77290a6a81": { + "0dcd81afd6b04d6fa45e5a964a5439d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1696,7 +1744,80 @@ "width": null } }, - "15eb001670f64dbd9e1f2260b0f1d060": { + "0ee2d9246b6f4f6d902232a81b6e5f08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8476619711b641a9b5f38a6a1e7888a1", + "IPY_MODEL_e0678ca3f2fb4f9f85b34cc4b9105782", + "IPY_MODEL_01390c41edcb4a15a07f9a7a69e01640" + ], + "layout": "IPY_MODEL_1b1d56febd49416e961eb3834985460c" + } + }, + "0f265254a2334f379a7cd1c422de6bdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0f6eca82b6594a06a234c196f129c7d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_404b65b720484e29beafcedb70c5309d", + "placeholder": "​", + "style": "IPY_MODEL_a2b7a76cced7460bb83b55c5113efa6b", + "value": "README.md: 100%" + } + }, + "131415acc2cc467ca697cb016f051df3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "145497d3ea254ec59fcbffb8a4599597": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1748,31 +1869,7 @@ "width": null } }, - "161c9be58c784b5188c4541f7565a4b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8f34372958be48e39a80b97ec8caa77f", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7b80376f9614f56a421461699c100d2", - "value": 466062.0 - } - }, - "1816e201b2ef47a88c620483c42cb738": { + "1b1d56febd49416e961eb3834985460c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1824,108 +1921,7 @@ "width": null } }, - "24b49954bb1948b2a276ee21aed9e3a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fbba1a4667e463eb7a5734592f88a50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fe7bfc1eccf4ece82278efefdb032f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "311d30e8d6154509b73fa92ab8f5dc0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "350822cf924943eb8e02ef480bfd1790": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6d6f0960e6204466aac56bfe811c2034", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a91300676e954582acf2db392aa56acb", - "value": 231508.0 - } - }, - "38f06f02562f42e992015651c5d32d25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3f501cd80b5f4a91ab455a50adf75f17": { + "1c01a283e9f24379a5e8cbcd99d5dd9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1977,7 +1973,38 @@ "width": null } }, - "42f67ff164864848a49ef7d8fa31f66b": { + "1eda8f57443143a3847994ccaab74230": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f5fe7ef6efc4b4a95c2548d36e9ce04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "27318de3d8014f9f8e62d7ecca08d313": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2029,7 +2056,7 @@ "width": null } }, - "433930143318460a8975f2e413073c03": { + "2735695f1c3e4301be295606df3e5000": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2044,72 +2071,58 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e274cc872fcf4fc4850e853a25b7e7e7", + "layout": "IPY_MODEL_77a4e8321bec472eb93f476e6cd9b039", "placeholder": "​", - "style": "IPY_MODEL_ab522d10b9ad4923a26d503a8d0ac706", - "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" + "style": "IPY_MODEL_6d665be3b8394f9bba08db6a57d3826f", + "value": "tokenizer_config.json: 100%" } }, - "4635d30f58e343b49bd1a0c28ea41086": { + "2833b8220ce846a3aeba7e7b79301e47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c361d7a82f824cbea4d39d723caa8a57", - "IPY_MODEL_59f74d1d56b446c282a59b86e53af7af", - "IPY_MODEL_b75aacd4740143429e65a8009c58d6a8" - ], - "layout": "IPY_MODEL_7889d87deadf4590bb7b2ddd17d48058" - } - }, - "477091a84aee4d42a10d4a4bfa9fc5a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_44cc0881f93948aca031a7eecde18e59", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d08ad8fcec7244f5bec8a48cc92398c4", + "value": 2211.0 } }, - "489eca71f3cb4fccb53d1364bad1c0f1": { + "2a22549242d94824b156781e28215fa2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c06c7f6f22dd4438a8023fadd6e94685", - "IPY_MODEL_cb6caced3c1644c9b5a0ac2ebefd3c43", - "IPY_MODEL_952a1086c39848dfb74ceacd08c8dd72" - ], - "layout": "IPY_MODEL_d763bc36e1954d1da06a694596e13602" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fbe01456c95d44ccbe6db82871a6cb9c", + "placeholder": "​", + "style": "IPY_MODEL_1eda8f57443143a3847994ccaab74230", + "value": "" } }, - "516f26fa363d452eb25037d6f35183bf": { + "3072bf43afae4439a43dd00c596b1286": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2158,10 +2171,50 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "32ce411af858442b995a2e5303bbb41d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0dcd81afd6b04d6fa45e5a964a5439d6", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_69d111b95fca4b0cb2155363d99d7bc4", + "value": 391.0 } }, - "54d56851944149e885d7828f9bd6ad46": { + "36fb1ab7a53d4f9d97a670aaa2265ae2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3b2f90361d7c42878905914559652b7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2213,7 +2266,7 @@ "width": null } }, - "572679faabc24d2f83b4d28bd281c5fa": { + "404b65b720484e29beafcedb70c5309d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2265,98 +2318,7 @@ "width": null } }, - "599fe68688b84a1ba42abac9aa545549": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "59f74d1d56b446c282a59b86e53af7af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_516f26fa363d452eb25037d6f35183bf", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5f865c0ad28a48d38e967835ad21ee02", - "value": 0.0 - } - }, - "5a8acd15e11e4f2e8ec8efcac153890d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5ac109ca2f2f40aea3fa370e99dc7d3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_15eb001670f64dbd9e1f2260b0f1d060", - "placeholder": "​", - "style": "IPY_MODEL_0f93bb91aad740e3a71f3182fe15e4f6", - "value": "README.md: 100%" - } - }, - "5f865c0ad28a48d38e967835ad21ee02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "63748e79a7084c728b31a6774b48a69c": { + "40558bdb649f4d90beb106c145365a8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2408,55 +2370,7 @@ "width": null } }, - "66b79cefd0e445a7a2edfef89972982c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_63748e79a7084c728b31a6774b48a69c", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_311d30e8d6154509b73fa92ab8f5dc0a", - "value": 29.0 - } - }, - "6951369b36924f0680dc1a7e19fe567e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f63eeb07947a430b991e520edeb17f99", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c32a2403ee034e17ba7ff59a20e277e3", - "value": 2211.0 - } - }, - "6d3ccc69c3e747f893a8306a6c3d6732": { + "431cc8999c0544df9e20dc91e334e9b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2508,7 +2422,7 @@ "width": null } }, - "6d6f0960e6204466aac56bfe811c2034": { + "44cc0881f93948aca031a7eecde18e59": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2560,7 +2474,222 @@ "width": null } }, - "6fe87329593c45d3becb6182ad8592dc": { + "46c951daaf694da984a41426476ab4c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40558bdb649f4d90beb106c145365a8d", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c1753f1b46246aaa381bacdcfb0eac4", + "value": 231508.0 + } + }, + "46eed859d54b461d82d84d4d326eed1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e04930e0b2a34c809f327d89d672a665", + "placeholder": "​", + "style": "IPY_MODEL_0f265254a2334f379a7cd1c422de6bdd", + "value": " 232k/232k [00:00<00:00, 12.9MB/s]" + } + }, + "48abc23013dd4288a7a78cb3d8387e10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ae9ba4bb5d648c29c0544c17a84932c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdad864ff4324dcf9377c0d014b35031", + "placeholder": "​", + "style": "IPY_MODEL_8f5e3b10d67e4a1faf8947a4aa8b3856", + "value": " 54.2M/54.2M [00:01<00:00, 31.9MB/s]" + } + }, + "55ff8c7ab23047f2884c690e2a768099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a31c7b4dc4f492d9f86115ab8577bb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_db0760ce1e76407f92680d4c68df6351", + "IPY_MODEL_32ce411af858442b995a2e5303bbb41d", + "IPY_MODEL_7008ba5905bb42cf8538acebf072a797" + ], + "layout": "IPY_MODEL_86a96ab8c2d847c691750b142c5c7298" + } + }, + "5a9535bd9e80483d9bae25a6a6a64238": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5c1753f1b46246aaa381bacdcfb0eac4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5cacc41592b74393a8c3f3d798b0278d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84bc13e1ba894795b9fb392e58f53a15", + "IPY_MODEL_a3bc4404d2d14aa692805e7278e15897", + "IPY_MODEL_4ae9ba4bb5d648c29c0544c17a84932c" + ], + "layout": "IPY_MODEL_e4c799652b304befa3db6f72d911700f" + } + }, + "5ff4f46e29ce49f68fd22f4093a2d439": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7c1863f7fdcd41adbb01224e989fb378", + "placeholder": "​", + "style": "IPY_MODEL_6cee7d0d611d4f8a91d846865270219c", + "value": " 29.0/29.0 [00:00<00:00, 3.91kB/s]" + } + }, + "60c8df6502984a62ae59c76dcc7fa9ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f6eca82b6594a06a234c196f129c7d9", + "IPY_MODEL_2833b8220ce846a3aeba7e7b79301e47", + "IPY_MODEL_c06dd9e01ed34002b3c5f0813c64fb06" + ], + "layout": "IPY_MODEL_3072bf43afae4439a43dd00c596b1286" + } + }, + "65880edcf2164a1fa1024b3a28c144bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2612,7 +2741,45 @@ "width": null } }, - "728819d15c464d4a8c67264dd3052d1b": { + "69d111b95fca4b0cb2155363d99d7bc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6b19cafd24984e16977031581bcbcd70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87c70e0e85ec4bb79ae7ad87d76f6795", + "IPY_MODEL_46c951daaf694da984a41426476ab4c4", + "IPY_MODEL_46eed859d54b461d82d84d4d326eed1c" + ], + "layout": "IPY_MODEL_1c01a283e9f24379a5e8cbcd99d5dd9e" + } + }, + "6cee7d0d611d4f8a91d846865270219c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2627,7 +2794,7 @@ "description_width": "" } }, - "75f19f4a474341da965fd4ad38d181fb": { + "6d665be3b8394f9bba08db6a57d3826f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2642,29 +2809,28 @@ "description_width": "" } }, - "7618f73e108545e19ec52ca356a62f52": { + "7008ba5905bb42cf8538acebf072a797": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0520df0cb529430bb110adcb2aee6966", - "IPY_MODEL_161c9be58c784b5188c4541f7565a4b9", - "IPY_MODEL_e68322704dc2412d953a7977a2ac6c2b" - ], - "layout": "IPY_MODEL_b93c2205a740472c8b94d79f634f2798" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_145497d3ea254ec59fcbffb8a4599597", + "placeholder": "​", + "style": "IPY_MODEL_48abc23013dd4288a7a78cb3d8387e10", + "value": " 391/391 [00:00<00:00, 50.6kB/s]" } }, - "7889d87deadf4590bb7b2ddd17d48058": { + "77a4e8321bec472eb93f476e6cd9b039": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2704,40 +2870,19 @@ "min_height": null, "min_width": null, "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7b1b2235feac4ff1999218df5d0da8c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_572679faabc24d2f83b4d28bd281c5fa", - "placeholder": "​", - "style": "IPY_MODEL_2fbba1a4667e463eb7a5734592f88a50", - "value": "config.json: 100%" + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "84cd5db2bfeb4dab81e9e5031654bc99": { + "7c1863f7fdcd41adbb01224e989fb378": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2789,28 +2934,7 @@ "width": null } }, - "8caf0a4bd43c4c97821bd485aeb04940": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_42f67ff164864848a49ef7d8fa31f66b", - "placeholder": "​", - "style": "IPY_MODEL_ef867703a6364811b639c466645a653d", - "value": " 29.0/29.0 [00:00<00:00, 3.74kB/s]" - } - }, - "8f34372958be48e39a80b97ec8caa77f": { + "81a2b42eaa814436b01abc8ebb82ca75": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2862,7 +2986,7 @@ "width": null } }, - "952a1086c39848dfb74ceacd08c8dd72": { + "8476619711b641a9b5f38a6a1e7888a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2877,13 +3001,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fe27cd2bb04a406db8a2092a809c4b6b", + "layout": "IPY_MODEL_aa3284b6cd544cb98404eb5af8f6599b", "placeholder": "​", - "style": "IPY_MODEL_e315f3025c4d4c59bb6c644af3ba2dbe", - "value": " 54.2M/54.2M [00:00<00:00, 294MB/s]" + "style": "IPY_MODEL_b9b6cfe06b3b4fe69c708f2461956922", + "value": "tokenizer.json: 100%" } }, - "95981757849b41c5a913e9b61b999d18": { + "84bc13e1ba894795b9fb392e58f53a15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2898,28 +3022,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6fe87329593c45d3becb6182ad8592dc", + "layout": "IPY_MODEL_3b2f90361d7c42878905914559652b7b", "placeholder": "​", - "style": "IPY_MODEL_728819d15c464d4a8c67264dd3052d1b", - "value": " 232k/232k [00:00<00:00, 25.6MB/s]" - } - }, - "9dd31a69420a43fdb7d3081d28d1e1bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_a581b3b0d2e04d75bd195679447774f0", + "value": "pytorch_model.bin: 100%" } }, - "9e415a3aba0e4a66b28675b99e11118b": { + "86a96ab8c2d847c691750b142c5c7298": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2971,7 +3080,7 @@ "width": null } }, - "9fd89d627e6d438fa7baa6afb55d3d42": { + "87c70e0e85ec4bb79ae7ad87d76f6795": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2986,65 +3095,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_6d3ccc69c3e747f893a8306a6c3d6732", + "layout": "IPY_MODEL_431cc8999c0544df9e20dc91e334e9b6", "placeholder": "​", - "style": "IPY_MODEL_75f19f4a474341da965fd4ad38d181fb", - "value": " 391/391 [00:00<00:00, 51.1kB/s]" + "style": "IPY_MODEL_131415acc2cc467ca697cb016f051df3", + "value": "vocab.txt: 100%" } }, - "a04ebf987d5346dba0fa2a0061771583": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "8f5e3b10d67e4a1faf8947a4aa8b3856": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "a3bd6caf83fa414ca4b7e1fa94fa98f1": { + "91676c2d6dcb4ddcb1233e13c621e43b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3096,7 +3168,7 @@ "width": null } }, - "a7b80376f9614f56a421461699c100d2": { + "91935df4108e4d64ac364b2b8f95e036": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -3112,23 +3184,43 @@ "description_width": "" } }, - "a91300676e954582acf2db392aa56acb": { + "937f5410f4dd46e1b4f7b54678caa6ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "ab522d10b9ad4923a26d503a8d0ac706": { + "a201a942b586447a9aa80c9d476ab314": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ada719f1788f45b997bab2824afd5692", + "placeholder": "​", + "style": "IPY_MODEL_55ff8c7ab23047f2884c690e2a768099", + "value": " 665/665 [00:00<00:00, 89.1kB/s]" + } + }, + "a2b7a76cced7460bb83b55c5113efa6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3143,87 +3235,122 @@ "description_width": "" } }, - "abd842d675ac44b1b45f9191e7860fd6": { + "a3bc4404d2d14aa692805e7278e15897": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb2e29dd11194d37a07d2d40027e0e4d", - "IPY_MODEL_350822cf924943eb8e02ef480bfd1790", - "IPY_MODEL_95981757849b41c5a913e9b61b999d18" - ], - "layout": "IPY_MODEL_b5acfa7ca39a498e8ac153de11ba6168" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ba833d7ef2c34a1b8851b44c40fb815b", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8c5a1402dec4e94829eb2bf3490056a", + "value": 54245363.0 } }, - "ade63d337c42430aab512ff6d2e9fa86": { + "a581b3b0d2e04d75bd195679447774f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb0b539676d04954817343c75ac8a753", - "IPY_MODEL_d801b3205aa4436f9694cc7475d1756f", - "IPY_MODEL_9fd89d627e6d438fa7baa6afb55d3d42" - ], - "layout": "IPY_MODEL_84cd5db2bfeb4dab81e9e5031654bc99" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "b0affa492dd84aa69a28b95192abbe82": { + "a6fb11bdd68f426da493fce6d687b23a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1816e201b2ef47a88c620483c42cb738", - "placeholder": "​", - "style": "IPY_MODEL_599fe68688b84a1ba42abac9aa545549", - "value": "tokenizer_config.json: 100%" + "layout": "IPY_MODEL_d06bb97ba84648c18828d2b89f875968", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_91935df4108e4d64ac364b2b8f95e036", + "value": 665.0 } }, - "b11243b4ea144c1397505cf89465fe83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "a76b139cc8434834895269d23fa12b5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" } }, - "b5acfa7ca39a498e8ac153de11ba6168": { + "aa3284b6cd544cb98404eb5af8f6599b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3275,28 +3402,7 @@ "width": null } }, - "b75aacd4740143429e65a8009c58d6a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_54d56851944149e885d7828f9bd6ad46", - "placeholder": "​", - "style": "IPY_MODEL_5a8acd15e11e4f2e8ec8efcac153890d", - "value": " 0/0 [00:00<?, ?it/s]" - } - }, - "b93c2205a740472c8b94d79f634f2798": { + "ada719f1788f45b997bab2824afd5692": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3348,7 +3454,7 @@ "width": null } }, - "b9aceb80baca46d3b28432b365828d2b": { + "af5454fae6944a8889b68925964844e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3363,81 +3469,76 @@ "description_width": "" } }, - "bb376354d2394cf68fdb14cd9ce98110": { + "b5707c9e6db74f15950bc0cc76aea1f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bedc5d5b53874d7d937887bfea2d818e": { + "b80c36df261d4dfdb607873cacf6f264": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "bf6572aaa8cb48748aae4ed4bd7233e8": { + "b936edc80e5d441e8c380195ca479f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d18580f01692480bb1129a85f38ffaca", - "placeholder": "​", - "style": "IPY_MODEL_38f06f02562f42e992015651c5d32d25", - "value": " 665/665 [00:00<00:00, 90.6kB/s]" + "layout": "IPY_MODEL_a76b139cc8434834895269d23fa12b5c", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f5fe7ef6efc4b4a95c2548d36e9ce04", + "value": 0.0 } }, - "c06c7f6f22dd4438a8023fadd6e94685": { + "b9b6cfe06b3b4fe69c708f2461956922": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a3bd6caf83fa414ca4b7e1fa94fa98f1", - "placeholder": "​", - "style": "IPY_MODEL_b9aceb80baca46d3b28432b365828d2b", - "value": "pytorch_model.bin: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "c2b2ba0b734741cfa16ec65a5cb1288d": { + "ba833d7ef2c34a1b8851b44c40fb815b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3489,65 +3590,7 @@ "width": null } }, - "c32a2403ee034e17ba7ff59a20e277e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c361d7a82f824cbea4d39d723caa8a57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f6728263ae76467089f777f6adad4939", - "placeholder": "​", - "style": "IPY_MODEL_9dd31a69420a43fdb7d3081d28d1e1bc", - "value": "" - } - }, - "cb0b539676d04954817343c75ac8a753": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e23db68e06304878a5b3344865f0d61d", - "placeholder": "​", - "style": "IPY_MODEL_24b49954bb1948b2a276ee21aed9e3a2", - "value": ".gitattributes: 100%" - } - }, - "cb2e29dd11194d37a07d2d40027e0e4d": { + "c06dd9e01ed34002b3c5f0813c64fb06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3562,61 +3605,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9e415a3aba0e4a66b28675b99e11118b", + "layout": "IPY_MODEL_cf197ecf2d384b978ad0333676acb1bd", "placeholder": "​", - "style": "IPY_MODEL_477091a84aee4d42a10d4a4bfa9fc5a3", - "value": "vocab.txt: 100%" - } - }, - "cb6caced3c1644c9b5a0ac2ebefd3c43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c2b2ba0b734741cfa16ec65a5cb1288d", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2fe7bfc1eccf4ece82278efefdb032f1", - "value": 54245363.0 - } - }, - "cca9f11d9db7431ea874e29edca83367": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_11fe7fba62004878a81decfb4f4aaaa6", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bedc5d5b53874d7d937887bfea2d818e", - "value": 665.0 + "style": "IPY_MODEL_af5454fae6944a8889b68925964844e4", + "value": " 2.21k/2.21k [00:00<00:00, 292kB/s]" } }, - "d18580f01692480bb1129a85f38ffaca": { + "c45f00ad57434722baeb6f078531252f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3668,22 +3663,23 @@ "width": null } }, - "d1fbad944853442bbd26ed11260ff72a": { + "c8c5a1402dec4e94829eb2bf3490056a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d763bc36e1954d1da06a694596e13602": { + "c9a0f9e9235a4b0e94803e5f0eff17a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3735,7 +3731,7 @@ "width": null } }, - "d801b3205aa4436f9694cc7475d1756f": { + "cb5965277a964592b931cd10b6041443": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3751,37 +3747,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a04ebf987d5346dba0fa2a0061771583", - "max": 391.0, + "layout": "IPY_MODEL_65880edcf2164a1fa1024b3a28c144bd", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bb376354d2394cf68fdb14cd9ce98110", - "value": 391.0 - } - }, - "deea84b1c6d044cebee3018df441ffa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ac109ca2f2f40aea3fa370e99dc7d3b", - "IPY_MODEL_6951369b36924f0680dc1a7e19fe567e", - "IPY_MODEL_433930143318460a8975f2e413073c03" - ], - "layout": "IPY_MODEL_1262696646774b34bdaaac77290a6a81" + "style": "IPY_MODEL_36fb1ab7a53d4f9d97a670aaa2265ae2", + "value": 29.0 } }, - "e23db68e06304878a5b3344865f0d61d": { + "cf197ecf2d384b978ad0333676acb1bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3833,7 +3807,7 @@ "width": null } }, - "e274cc872fcf4fc4850e853a25b7e7e7": { + "d06bb97ba84648c18828d2b89f875968": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3885,22 +3859,23 @@ "width": null } }, - "e315f3025c4d4c59bb6c644af3ba2dbe": { + "d08ad8fcec7244f5bec8a48cc92398c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e618e8aff4284b508a444acb950dfaa1": { + "d468003045574e20bd906b1d7a387184": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3952,7 +3927,7 @@ "width": null } }, - "e68322704dc2412d953a7977a2ac6c2b": { + "db0760ce1e76407f92680d4c68df6351": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3967,50 +3942,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3f501cd80b5f4a91ab455a50adf75f17", + "layout": "IPY_MODEL_c9a0f9e9235a4b0e94803e5f0eff17a8", "placeholder": "​", - "style": "IPY_MODEL_b11243b4ea144c1397505cf89465fe83", - "value": " 466k/466k [00:00<00:00, 34.1MB/s]" - } - }, - "ef867703a6364811b639c466645a653d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f2a92542fd8749e4aec7645ddf0a07ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b0affa492dd84aa69a28b95192abbe82", - "IPY_MODEL_66b79cefd0e445a7a2edfef89972982c", - "IPY_MODEL_8caf0a4bd43c4c97821bd485aeb04940" - ], - "layout": "IPY_MODEL_e618e8aff4284b508a444acb950dfaa1" + "style": "IPY_MODEL_937f5410f4dd46e1b4f7b54678caa6ae", + "value": ".gitattributes: 100%" } }, - "f48fc38b21f14c4c8df58fd07a3cf189": { + "e04930e0b2a34c809f327d89d672a665": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4062,29 +4000,31 @@ "width": null } }, - "f4b39508ea314bdc8e50059de6ed1afc": { + "e0678ca3f2fb4f9f85b34cc4b9105782": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7b1b2235feac4ff1999218df5d0da8c4", - "IPY_MODEL_cca9f11d9db7431ea874e29edca83367", - "IPY_MODEL_bf6572aaa8cb48748aae4ed4bd7233e8" - ], - "layout": "IPY_MODEL_f48fc38b21f14c4c8df58fd07a3cf189" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0aaa74341404488a843ac4ec2ae99d87", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a9535bd9e80483d9bae25a6a6a64238", + "value": 466062.0 } }, - "f63eeb07947a430b991e520edeb17f99": { + "e4c799652b304befa3db6f72d911700f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4136,7 +4076,7 @@ "width": null } }, - "f6728263ae76467089f777f6adad4939": { + "efd787033326410eb01a9b16358eaf35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4188,7 +4128,86 @@ "width": null } }, - "fe27cd2bb04a406db8a2092a809c4b6b": { + "f1393a2a3fa44caeab800dacc8b0e5a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f232c4045e1441f7a68656a08890af2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81a2b42eaa814436b01abc8ebb82ca75", + "placeholder": "​", + "style": "IPY_MODEL_b80c36df261d4dfdb607873cacf6f264", + "value": " 0/0 [00:00<?, ?it/s]" + } + }, + "f869f04c558448168588593c53059c38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a22549242d94824b156781e28215fa2", + "IPY_MODEL_b936edc80e5d441e8c380195ca479f69", + "IPY_MODEL_f232c4045e1441f7a68656a08890af2d" + ], + "layout": "IPY_MODEL_c45f00ad57434722baeb6f078531252f" + } + }, + "fa8d89c514024549b642be6c79c62bbb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d468003045574e20bd906b1d7a387184", + "placeholder": "​", + "style": "IPY_MODEL_b5707c9e6db74f15950bc0cc76aea1f7", + "value": "config.json: 100%" + } + }, + "fbe01456c95d44ccbe6db82871a6cb9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4240,7 +4259,7 @@ "width": null } }, - "ff518ed57fdf46199744629476f70a04": { + "fdad864ff4324dcf9377c0d014b35031": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 0eec6f2e6..f4e26ff05 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:57.399430Z", - "iopub.status.busy": "2023-12-13T17:00:57.398898Z", - "iopub.status.idle": "2023-12-13T17:00:58.419855Z", - "shell.execute_reply": "2023-12-13T17:00:58.419237Z" + "iopub.execute_input": "2023-12-14T17:57:15.907996Z", + "iopub.status.busy": "2023-12-14T17:57:15.907806Z", + "iopub.status.idle": "2023-12-14T17:57:16.917561Z", + "shell.execute_reply": "2023-12-14T17:57:16.916934Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.422828Z", - "iopub.status.busy": "2023-12-13T17:00:58.422386Z", - "iopub.status.idle": "2023-12-13T17:00:58.425292Z", - "shell.execute_reply": "2023-12-13T17:00:58.424740Z" + "iopub.execute_input": "2023-12-14T17:57:16.920272Z", + "iopub.status.busy": "2023-12-14T17:57:16.919962Z", + "iopub.status.idle": "2023-12-14T17:57:16.922967Z", + "shell.execute_reply": "2023-12-14T17:57:16.922421Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.427768Z", - "iopub.status.busy": "2023-12-13T17:00:58.427414Z", - "iopub.status.idle": "2023-12-13T17:00:58.440812Z", - "shell.execute_reply": "2023-12-13T17:00:58.440295Z" + "iopub.execute_input": "2023-12-14T17:57:16.925259Z", + "iopub.status.busy": "2023-12-14T17:57:16.925050Z", + "iopub.status.idle": "2023-12-14T17:57:16.938332Z", + "shell.execute_reply": "2023-12-14T17:57:16.937814Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:00:58.443255Z", - "iopub.status.busy": "2023-12-13T17:00:58.442912Z", - "iopub.status.idle": "2023-12-13T17:01:02.535155Z", - "shell.execute_reply": "2023-12-13T17:01:02.534469Z" + "iopub.execute_input": "2023-12-14T17:57:16.940720Z", + "iopub.status.busy": "2023-12-14T17:57:16.940333Z", + "iopub.status.idle": "2023-12-14T17:57:22.343910Z", + "shell.execute_reply": "2023-12-14T17:57:22.343231Z" }, "id": "dhTHOg8Pyv5G" }, @@ -2191,13 +2191,7 @@ "text": [ "\n", "Loaded the 'cifar100_test_set' dataset with predicted probabilities of shape (10000, 100)\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "-------------------------------------------------------------\n", "| Generating a Cleanlab Dataset Health Summary |\n", "| for your dataset with 10,000 examples and 100 classes. |\n", diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 4d44aed5d..5cda801e5 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -937,13 +937,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1277,7 +1277,7 @@

Can’t find an answer to your question?Cleanlab Github issues, Cleanlab Code Examples or our Slack Community.

If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 2fe6d09b8..6193285e3 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:07.038497Z", - "iopub.status.busy": "2023-12-13T17:01:07.038301Z", - "iopub.status.idle": "2023-12-13T17:01:08.066470Z", - "shell.execute_reply": "2023-12-13T17:01:08.065769Z" + "iopub.execute_input": "2023-12-14T17:57:26.486619Z", + "iopub.status.busy": "2023-12-14T17:57:26.486152Z", + "iopub.status.idle": "2023-12-14T17:57:27.484482Z", + "shell.execute_reply": "2023-12-14T17:57:27.483878Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:08.069585Z", - "iopub.status.busy": "2023-12-13T17:01:08.069242Z", - "iopub.status.idle": "2023-12-13T17:01:08.072930Z", - "shell.execute_reply": "2023-12-13T17:01:08.072288Z" + "iopub.execute_input": "2023-12-14T17:57:27.487671Z", + "iopub.status.busy": "2023-12-14T17:57:27.487188Z", + "iopub.status.idle": "2023-12-14T17:57:27.490631Z", + "shell.execute_reply": "2023-12-14T17:57:27.490071Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:08.075410Z", - "iopub.status.busy": "2023-12-13T17:01:08.074919Z", - "iopub.status.idle": "2023-12-13T17:01:10.083273Z", - "shell.execute_reply": "2023-12-13T17:01:10.082584Z" + "iopub.execute_input": "2023-12-14T17:57:27.493112Z", + "iopub.status.busy": "2023-12-14T17:57:27.492768Z", + "iopub.status.idle": "2023-12-14T17:57:29.443205Z", + "shell.execute_reply": "2023-12-14T17:57:29.442540Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.086671Z", - "iopub.status.busy": "2023-12-13T17:01:10.085946Z", - "iopub.status.idle": "2023-12-13T17:01:10.126337Z", - "shell.execute_reply": "2023-12-13T17:01:10.125540Z" + "iopub.execute_input": "2023-12-14T17:57:29.446572Z", + "iopub.status.busy": "2023-12-14T17:57:29.445895Z", + "iopub.status.idle": "2023-12-14T17:57:29.482811Z", + "shell.execute_reply": "2023-12-14T17:57:29.482126Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.129600Z", - "iopub.status.busy": "2023-12-13T17:01:10.129090Z", - "iopub.status.idle": "2023-12-13T17:01:10.165138Z", - "shell.execute_reply": "2023-12-13T17:01:10.164418Z" + "iopub.execute_input": "2023-12-14T17:57:29.485859Z", + "iopub.status.busy": "2023-12-14T17:57:29.485500Z", + "iopub.status.idle": "2023-12-14T17:57:29.519097Z", + "shell.execute_reply": "2023-12-14T17:57:29.518330Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.168233Z", - "iopub.status.busy": "2023-12-13T17:01:10.167808Z", - "iopub.status.idle": "2023-12-13T17:01:10.171034Z", - "shell.execute_reply": "2023-12-13T17:01:10.170450Z" + "iopub.execute_input": "2023-12-14T17:57:29.522378Z", + "iopub.status.busy": "2023-12-14T17:57:29.521948Z", + "iopub.status.idle": "2023-12-14T17:57:29.525216Z", + "shell.execute_reply": "2023-12-14T17:57:29.524690Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.173683Z", - "iopub.status.busy": "2023-12-13T17:01:10.173232Z", - "iopub.status.idle": "2023-12-13T17:01:10.176025Z", - "shell.execute_reply": "2023-12-13T17:01:10.175490Z" + "iopub.execute_input": "2023-12-14T17:57:29.527802Z", + "iopub.status.busy": "2023-12-14T17:57:29.527308Z", + "iopub.status.idle": "2023-12-14T17:57:29.530469Z", + "shell.execute_reply": "2023-12-14T17:57:29.529866Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.178857Z", - "iopub.status.busy": "2023-12-13T17:01:10.178324Z", - "iopub.status.idle": "2023-12-13T17:01:10.206219Z", - "shell.execute_reply": "2023-12-13T17:01:10.205510Z" + "iopub.execute_input": "2023-12-14T17:57:29.533019Z", + "iopub.status.busy": "2023-12-14T17:57:29.532534Z", + "iopub.status.idle": "2023-12-14T17:57:29.560060Z", + "shell.execute_reply": "2023-12-14T17:57:29.559395Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d017bfc24d25409785014f2513f7d09f", + "model_id": "68dba485d38a4925977c533d62a8ffda", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bee9625281d476fb394f78af1d65290", + "model_id": "933432f5bf264144b9cd31b71f7d05e3", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.213752Z", - "iopub.status.busy": "2023-12-13T17:01:10.213552Z", - "iopub.status.idle": "2023-12-13T17:01:10.220832Z", - "shell.execute_reply": "2023-12-13T17:01:10.220306Z" + "iopub.execute_input": "2023-12-14T17:57:29.568258Z", + "iopub.status.busy": "2023-12-14T17:57:29.567850Z", + "iopub.status.idle": "2023-12-14T17:57:29.574257Z", + "shell.execute_reply": "2023-12-14T17:57:29.573753Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.223269Z", - "iopub.status.busy": "2023-12-13T17:01:10.222815Z", - "iopub.status.idle": "2023-12-13T17:01:10.226626Z", - "shell.execute_reply": "2023-12-13T17:01:10.226089Z" + "iopub.execute_input": "2023-12-14T17:57:29.576729Z", + "iopub.status.busy": "2023-12-14T17:57:29.576299Z", + "iopub.status.idle": "2023-12-14T17:57:29.581054Z", + "shell.execute_reply": "2023-12-14T17:57:29.580410Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.229132Z", - "iopub.status.busy": "2023-12-13T17:01:10.228697Z", - "iopub.status.idle": "2023-12-13T17:01:10.235721Z", - "shell.execute_reply": "2023-12-13T17:01:10.235167Z" + "iopub.execute_input": "2023-12-14T17:57:29.583788Z", + "iopub.status.busy": "2023-12-14T17:57:29.583296Z", + "iopub.status.idle": "2023-12-14T17:57:29.590314Z", + "shell.execute_reply": "2023-12-14T17:57:29.589680Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.237836Z", - "iopub.status.busy": "2023-12-13T17:01:10.237638Z", - "iopub.status.idle": "2023-12-13T17:01:10.275509Z", - "shell.execute_reply": "2023-12-13T17:01:10.274836Z" + "iopub.execute_input": "2023-12-14T17:57:29.592630Z", + "iopub.status.busy": "2023-12-14T17:57:29.592206Z", + "iopub.status.idle": "2023-12-14T17:57:29.631261Z", + "shell.execute_reply": "2023-12-14T17:57:29.630469Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.278709Z", - "iopub.status.busy": "2023-12-13T17:01:10.278304Z", - "iopub.status.idle": "2023-12-13T17:01:10.314190Z", - "shell.execute_reply": "2023-12-13T17:01:10.313510Z" + "iopub.execute_input": "2023-12-14T17:57:29.634474Z", + "iopub.status.busy": "2023-12-14T17:57:29.634050Z", + "iopub.status.idle": "2023-12-14T17:57:29.670504Z", + "shell.execute_reply": "2023-12-14T17:57:29.669844Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.317466Z", - "iopub.status.busy": "2023-12-13T17:01:10.317047Z", - "iopub.status.idle": "2023-12-13T17:01:10.434258Z", - "shell.execute_reply": "2023-12-13T17:01:10.433553Z" + "iopub.execute_input": "2023-12-14T17:57:29.673797Z", + "iopub.status.busy": "2023-12-14T17:57:29.673342Z", + "iopub.status.idle": "2023-12-14T17:57:29.787978Z", + "shell.execute_reply": "2023-12-14T17:57:29.787345Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:10.437258Z", - "iopub.status.busy": "2023-12-13T17:01:10.436727Z", - "iopub.status.idle": "2023-12-13T17:01:12.959043Z", - "shell.execute_reply": "2023-12-13T17:01:12.958284Z" + "iopub.execute_input": "2023-12-14T17:57:29.790819Z", + "iopub.status.busy": "2023-12-14T17:57:29.790411Z", + "iopub.status.idle": "2023-12-14T17:57:32.275060Z", + "shell.execute_reply": "2023-12-14T17:57:32.274379Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:12.961677Z", - "iopub.status.busy": "2023-12-13T17:01:12.961460Z", - "iopub.status.idle": "2023-12-13T17:01:13.022761Z", - "shell.execute_reply": "2023-12-13T17:01:13.022122Z" + "iopub.execute_input": "2023-12-14T17:57:32.277828Z", + "iopub.status.busy": "2023-12-14T17:57:32.277408Z", + "iopub.status.idle": "2023-12-14T17:57:32.334803Z", + "shell.execute_reply": "2023-12-14T17:57:32.334181Z" } }, "outputs": [ @@ -802,7 +802,7 @@ }, { "cell_type": "markdown", - "id": "e657ad70", + "id": "97267ff0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -810,7 +810,7 @@ }, { "cell_type": "markdown", - "id": "af9f82f6", + "id": "a0706c36", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -823,13 +823,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "1413ce5b", + "id": "1e410e74", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:13.025411Z", - "iopub.status.busy": "2023-12-13T17:01:13.025040Z", - "iopub.status.idle": "2023-12-13T17:01:13.120926Z", - "shell.execute_reply": "2023-12-13T17:01:13.120242Z" + "iopub.execute_input": "2023-12-14T17:57:32.337207Z", + "iopub.status.busy": "2023-12-14T17:57:32.336833Z", + "iopub.status.idle": "2023-12-14T17:57:32.433207Z", + "shell.execute_reply": "2023-12-14T17:57:32.432553Z" } }, "outputs": [ @@ -870,7 +870,7 @@ }, { "cell_type": "markdown", - "id": "49d3587e", + "id": "355117c2", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -879,13 +879,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "22f0a625", + "id": "b565301a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:13.124596Z", - "iopub.status.busy": "2023-12-13T17:01:13.123883Z", - "iopub.status.idle": "2023-12-13T17:01:13.212152Z", - "shell.execute_reply": "2023-12-13T17:01:13.211541Z" + "iopub.execute_input": "2023-12-14T17:57:32.436594Z", + "iopub.status.busy": "2023-12-14T17:57:32.435916Z", + "iopub.status.idle": "2023-12-14T17:57:32.524031Z", + "shell.execute_reply": "2023-12-14T17:57:32.523379Z" } }, "outputs": [ @@ -993,7 +993,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "09444f8dfce5412e9a4368fbf12f3e85": { + "204e1cad632b481393261fcfe41b63c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1045,120 +1045,7 @@ "width": null } }, - "0b44166a3ca041d683159da520b3b649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7f8cd69ec1a468fbd5a498aeddfbccf", - "placeholder": "​", - "style": "IPY_MODEL_754a2145c306468991edfc08c7d8c4a9", - "value": " 10000/? [00:00<00:00, 1119884.66it/s]" - } - }, - "15103b934abf494a87ec1f25f6f918fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "193178e2a04d4c25adf9f25960f5f07d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_364bc58a691b47f289e9bdc448f2c0b6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7452e7de545c4b08802706a9bdfed4bb", - "value": 50.0 - } - }, - "1bee9625281d476fb394f78af1d65290": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a7b7df3e32f94b0fb6dce7b16f271119", - "IPY_MODEL_c6901c4aa09e4a30bb8e2897576e94db", - "IPY_MODEL_0b44166a3ca041d683159da520b3b649" - ], - "layout": "IPY_MODEL_bf67452742b34f8f82a139257fb05ff9" - } - }, - "1c84f1e5f2e949629ea7909f6d96a485": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2d9d42b23a34455ca769afde2acb9756": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "364bc58a691b47f289e9bdc448f2c0b6": { + "2ea6d90cd7e74448bccc50bc9b2421ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1210,7 +1097,22 @@ "width": null } }, - "3686ed4f03d14c2eb86e2c736b722993": { + "305e2d1e8a1d4075a3a3accb7a043b62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "50e61574868c45f6bc7f4efa72f38f2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1262,53 +1164,7 @@ "width": null } }, - "3f1b345fa41c40f0af254d458357e649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7452e7de545c4b08802706a9bdfed4bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "754a2145c306468991edfc08c7d8c4a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "88a1035e24e745739ea394547bc99af6": { + "5edddf36602e40c494b0ce4edbac036c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1323,13 +1179,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_09444f8dfce5412e9a4368fbf12f3e85", + "layout": "IPY_MODEL_64abf9f881ac40efa2038cedea075116", "placeholder": "​", - "style": "IPY_MODEL_1c84f1e5f2e949629ea7909f6d96a485", - "value": " 10000/? [00:00<00:00, 1017318.88it/s]" + "style": "IPY_MODEL_c84916b5e53d4be09f97459528dc5a62", + "value": "number of examples processed for estimating thresholds: " } }, - "a7b7df3e32f94b0fb6dce7b16f271119": { + "63a586b552d340b88865972aa8c6d342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1344,13 +1200,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e7963f1ed2ed42e897e45a652ae15c72", + "layout": "IPY_MODEL_204e1cad632b481393261fcfe41b63c5", "placeholder": "​", - "style": "IPY_MODEL_15103b934abf494a87ec1f25f6f918fd", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_ec264338476d472592b8224a95ddaeda", + "value": " 10000/? [00:00<00:00, 998073.48it/s]" } }, - "b9268b38fb514d25ab58ae3a91b914b9": { + "64abf9f881ac40efa2038cedea075116": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1402,7 +1258,88 @@ "width": null } }, - "bf67452742b34f8f82a139257fb05ff9": { + "68dba485d38a4925977c533d62a8ffda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5edddf36602e40c494b0ce4edbac036c", + "IPY_MODEL_e24253714523414da459d912cb9f501d", + "IPY_MODEL_63a586b552d340b88865972aa8c6d342" + ], + "layout": "IPY_MODEL_d84bcaa436b34b71a404ea48fb706ec9" + } + }, + "933432f5bf264144b9cd31b71f7d05e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5ec9bf23d34491099f35b2b65440060", + "IPY_MODEL_e3ea5d75c30a4bbfbd15363b8f500e93", + "IPY_MODEL_b6b3600121274b0196b1f4948ce38c63" + ], + "layout": "IPY_MODEL_b94e4171c239422eb34c4f841b85695d" + } + }, + "9b3e5d81befc48b9846e88e85060cf9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a5ec9bf23d34491099f35b2b65440060": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b62e6ba539b243ccbc525a1da99f8ac1", + "placeholder": "​", + "style": "IPY_MODEL_305e2d1e8a1d4075a3a3accb7a043b62", + "value": "number of examples processed for checking labels: " + } + }, + "b62e6ba539b243ccbc525a1da99f8ac1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1454,53 +1391,7 @@ "width": null } }, - "c6901c4aa09e4a30bb8e2897576e94db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b9268b38fb514d25ab58ae3a91b914b9", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d9d42b23a34455ca769afde2acb9756", - "value": 50.0 - } - }, - "d017bfc24d25409785014f2513f7d09f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e53e80241d1f4456ace04cc18f6b0ce3", - "IPY_MODEL_193178e2a04d4c25adf9f25960f5f07d", - "IPY_MODEL_88a1035e24e745739ea394547bc99af6" - ], - "layout": "IPY_MODEL_e8bc1bab68b542bc9b68dcfdbf7d2249" - } - }, - "e53e80241d1f4456ace04cc18f6b0ce3": { + "b6b3600121274b0196b1f4948ce38c63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1515,13 +1406,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3686ed4f03d14c2eb86e2c736b722993", + "layout": "IPY_MODEL_e686f951da0149d4bd24904b864d8ee4", "placeholder": "​", - "style": "IPY_MODEL_3f1b345fa41c40f0af254d458357e649", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_e498c53c0d354548b230e62ebc0367aa", + "value": " 10000/? [00:00<00:00, 1152091.41it/s]" } }, - "e7963f1ed2ed42e897e45a652ae15c72": { + "b94e4171c239422eb34c4f841b85695d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1573,7 +1464,22 @@ "width": null } }, - "e8bc1bab68b542bc9b68dcfdbf7d2249": { + "c84916b5e53d4be09f97459528dc5a62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d84bcaa436b34b71a404ea48fb706ec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1625,7 +1531,70 @@ "width": null } }, - "f7f8cd69ec1a468fbd5a498aeddfbccf": { + "e24253714523414da459d912cb9f501d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_50e61574868c45f6bc7f4efa72f38f2c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdae2cf8c72140dfa8daa1092805479a", + "value": 50.0 + } + }, + "e3ea5d75c30a4bbfbd15363b8f500e93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2ea6d90cd7e74448bccc50bc9b2421ba", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9b3e5d81befc48b9846e88e85060cf9d", + "value": 50.0 + } + }, + "e498c53c0d354548b230e62ebc0367aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e686f951da0149d4bd24904b864d8ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1676,6 +1645,37 @@ "visibility": null, "width": null } + }, + "ec264338476d472592b8224a95ddaeda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdae2cf8c72140dfa8daa1092805479a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 83190026f..1af1b8087 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -879,67 +879,67 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1253,7 +1253,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 65.01it/s]
+100%|██████████| 40/40 [00:00<00:00, 64.63it/s]
 
@@ -1304,7 +1304,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 66.26it/s]
+100%|██████████| 40/40 [00:00<00:00, 65.67it/s]
 
@@ -1355,7 +1355,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:00<00:00, 65.90it/s]
+100%|██████████| 40/40 [00:00<00:00, 63.61it/s]
 
-
+
@@ -1477,6 +1478,7 @@

View report - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2353,7 +2372,7 @@

Low information images

Here we can see a lot of low information images belong to the Sandal class.

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index cf87a74df..90071e0d4 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:18.333247Z", - "iopub.status.busy": "2023-12-13T17:01:18.332786Z", - "iopub.status.idle": "2023-12-13T17:01:20.523355Z", - "shell.execute_reply": "2023-12-13T17:01:20.522739Z" + "iopub.execute_input": "2023-12-14T17:57:37.803140Z", + "iopub.status.busy": "2023-12-14T17:57:37.802615Z", + "iopub.status.idle": "2023-12-14T17:57:39.901856Z", + "shell.execute_reply": "2023-12-14T17:57:39.901210Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:20.526370Z", - "iopub.status.busy": "2023-12-13T17:01:20.525878Z", - "iopub.status.idle": "2023-12-13T17:01:20.529647Z", - "shell.execute_reply": "2023-12-13T17:01:20.529125Z" + "iopub.execute_input": "2023-12-14T17:57:39.904616Z", + "iopub.status.busy": "2023-12-14T17:57:39.904299Z", + "iopub.status.idle": "2023-12-14T17:57:39.908010Z", + "shell.execute_reply": "2023-12-14T17:57:39.907463Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:20.531910Z", - "iopub.status.busy": "2023-12-13T17:01:20.531540Z", - "iopub.status.idle": "2023-12-13T17:01:33.862081Z", - "shell.execute_reply": "2023-12-13T17:01:33.861534Z" + "iopub.execute_input": "2023-12-14T17:57:39.910230Z", + "iopub.status.busy": "2023-12-14T17:57:39.909996Z", + "iopub.status.idle": "2023-12-14T17:57:52.915255Z", + "shell.execute_reply": "2023-12-14T17:57:52.914633Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e0398fec90b1490eb4a29de274973548", + "model_id": "3f33d0d86e744d9bb8cd8ad21d9eac74", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cc9bdf180bc9420ba18e91a5bb91066f", + "model_id": "7c7118a121da44228d604eb7be2a6ad9", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1fc3f53344146138b4c2dc309bc4ea4", + "model_id": "439d0591585d47d0980cd15033196a97", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b67b07f948eb44ffa8bb4f272c2d9ed3", + "model_id": "6e870f18742d48758d578459b835e23a", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5b576277940543328ae8bfe6618396cc", + "model_id": "92832737fe64454baad97b42ab036e38", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca7b9eb29ac14e45932b61f4da703eea", + "model_id": "502915f99ec446b58154636b30ff90b1", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0bc6dd269923497bbbef508d22a01372", + "model_id": "a3b55af5cc4c4132afae8a5e74eb4bd7", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a91ab936fc44e0fbaded2b37f6b9396", + "model_id": "b47ef491be5d42f5bfb792f9cd47e1e8", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8ee66d1f8617459cb29fe3099f465d1a", + "model_id": "5e300f21826f4e03bf9162687a04b4bc", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "542b4370cf6d473b979b54911fc46509", + "model_id": "947de91902a5402bbb1aa40f89771217", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e38456412f5146d6a416b3548f5ce133", + "model_id": "a47fda1116b841a0991f3d7399cf6788", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:33.864706Z", - "iopub.status.busy": "2023-12-13T17:01:33.864337Z", - "iopub.status.idle": "2023-12-13T17:01:33.868395Z", - "shell.execute_reply": "2023-12-13T17:01:33.867806Z" + "iopub.execute_input": "2023-12-14T17:57:52.917880Z", + "iopub.status.busy": "2023-12-14T17:57:52.917466Z", + "iopub.status.idle": "2023-12-14T17:57:52.921641Z", + "shell.execute_reply": "2023-12-14T17:57:52.921047Z" } }, "outputs": [ @@ -372,17 +372,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:33.870705Z", - "iopub.status.busy": "2023-12-13T17:01:33.870505Z", - "iopub.status.idle": "2023-12-13T17:01:44.642781Z", - "shell.execute_reply": "2023-12-13T17:01:44.642172Z" + "iopub.execute_input": "2023-12-14T17:57:52.923880Z", + "iopub.status.busy": "2023-12-14T17:57:52.923540Z", + "iopub.status.idle": "2023-12-14T17:58:03.577595Z", + "shell.execute_reply": "2023-12-14T17:58:03.576989Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "556bebde4968465d9f5a1eda7e6a26bc", + "model_id": "9e409cb7855240519f18afa36ede24c8", "version_major": 2, "version_minor": 0 }, @@ -420,10 +420,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:01:44.645634Z", - "iopub.status.busy": "2023-12-13T17:01:44.645317Z", - "iopub.status.idle": "2023-12-13T17:02:06.460536Z", - "shell.execute_reply": "2023-12-13T17:02:06.459910Z" + "iopub.execute_input": "2023-12-14T17:58:03.580363Z", + "iopub.status.busy": "2023-12-14T17:58:03.580044Z", + "iopub.status.idle": "2023-12-14T17:58:25.011851Z", + "shell.execute_reply": "2023-12-14T17:58:25.011214Z" } }, "outputs": [], @@ -456,10 +456,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.463709Z", - "iopub.status.busy": "2023-12-13T17:02:06.463282Z", - "iopub.status.idle": "2023-12-13T17:02:06.469308Z", - "shell.execute_reply": "2023-12-13T17:02:06.468766Z" + "iopub.execute_input": "2023-12-14T17:58:25.014992Z", + "iopub.status.busy": "2023-12-14T17:58:25.014573Z", + "iopub.status.idle": "2023-12-14T17:58:25.020405Z", + "shell.execute_reply": "2023-12-14T17:58:25.019857Z" } }, "outputs": [], @@ -497,10 +497,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.471665Z", - "iopub.status.busy": "2023-12-13T17:02:06.471312Z", - "iopub.status.idle": "2023-12-13T17:02:06.475425Z", - "shell.execute_reply": "2023-12-13T17:02:06.474834Z" + "iopub.execute_input": "2023-12-14T17:58:25.022739Z", + "iopub.status.busy": "2023-12-14T17:58:25.022354Z", + "iopub.status.idle": "2023-12-14T17:58:25.026299Z", + "shell.execute_reply": "2023-12-14T17:58:25.025827Z" }, "nbsphinx": "hidden" }, @@ -637,10 +637,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.478120Z", - "iopub.status.busy": "2023-12-13T17:02:06.477666Z", - "iopub.status.idle": "2023-12-13T17:02:06.487649Z", - "shell.execute_reply": "2023-12-13T17:02:06.487046Z" + "iopub.execute_input": "2023-12-14T17:58:25.028786Z", + "iopub.status.busy": "2023-12-14T17:58:25.028436Z", + "iopub.status.idle": "2023-12-14T17:58:25.037941Z", + "shell.execute_reply": "2023-12-14T17:58:25.037421Z" }, "nbsphinx": "hidden" }, @@ -765,10 +765,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.490044Z", - "iopub.status.busy": "2023-12-13T17:02:06.489703Z", - "iopub.status.idle": "2023-12-13T17:02:06.518098Z", - "shell.execute_reply": "2023-12-13T17:02:06.517477Z" + "iopub.execute_input": "2023-12-14T17:58:25.040226Z", + "iopub.status.busy": "2023-12-14T17:58:25.039877Z", + "iopub.status.idle": "2023-12-14T17:58:25.068383Z", + "shell.execute_reply": "2023-12-14T17:58:25.067769Z" } }, "outputs": [], @@ -805,10 +805,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:06.520733Z", - "iopub.status.busy": "2023-12-13T17:02:06.520357Z", - "iopub.status.idle": "2023-12-13T17:02:38.003516Z", - "shell.execute_reply": "2023-12-13T17:02:38.002670Z" + "iopub.execute_input": "2023-12-14T17:58:25.070881Z", + "iopub.status.busy": "2023-12-14T17:58:25.070542Z", + "iopub.status.idle": "2023-12-14T17:58:55.181211Z", + "shell.execute_reply": "2023-12-14T17:58:55.180353Z" } }, "outputs": [ @@ -824,14 +824,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.669\n" + "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.530\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.604\n", + "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.283\n", "Computing feature embeddings ...\n" ] }, @@ -848,7 +848,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.48it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.87it/s]" ] }, { @@ -856,7 +856,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 48.81it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 49.83it/s]" ] }, { @@ -864,7 +864,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 60.55it/s]" ] }, { @@ -872,7 +872,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 66.48it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 66.28it/s]" ] }, { @@ -880,7 +880,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.03it/s]" + " 85%|████████▌ | 34/40 [00:00<00:00, 69.94it/s]" ] }, { @@ -888,7 +888,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.01it/s]" + "100%|██████████| 40/40 [00:00<00:00, 64.63it/s]" ] }, { @@ -918,7 +918,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.99it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 28.94it/s]" ] }, { @@ -926,7 +926,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 50.68it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.12it/s]" ] }, { @@ -934,7 +934,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 61.87it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 61.35it/s]" ] }, { @@ -942,7 +942,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 67.18it/s]" + " 65%|██████▌ | 26/40 [00:00<00:00, 67.50it/s]" ] }, { @@ -950,7 +950,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 71.59it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 72.96it/s]" ] }, { @@ -958,7 +958,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.94it/s]" + "100%|██████████| 40/40 [00:00<00:00, 66.88it/s]" ] }, { @@ -980,14 +980,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.687\n" + "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.540\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.541\n", + "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.215\n", "Computing feature embeddings ...\n" ] }, @@ -1004,7 +1004,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 3/40 [00:00<00:01, 27.50it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.70it/s]" ] }, { @@ -1012,7 +1012,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 11/40 [00:00<00:00, 54.32it/s]" + " 25%|██▌ | 10/40 [00:00<00:00, 51.60it/s]" ] }, { @@ -1020,7 +1020,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 19/40 [00:00<00:00, 63.27it/s]" + " 45%|████▌ | 18/40 [00:00<00:00, 62.09it/s]" ] }, { @@ -1028,7 +1028,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 67.24it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.86it/s]" ] }, { @@ -1036,7 +1036,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 72.36it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 70.07it/s]" ] }, { @@ -1044,7 +1044,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 66.26it/s]" + "100%|██████████| 40/40 [00:00<00:00, 65.67it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 17.09it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 26.42it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 49.62it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 55.28it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 60.51it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 64.57it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 65.58it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.25it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 34/40 [00:00<00:00, 70.19it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 74.34it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.50it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.85it/s]" ] }, { @@ -1136,14 +1136,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.450\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.408\n", + "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.416\n", "Computing feature embeddings ...\n" ] }, @@ -1160,7 +1160,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.45it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.95it/s]" ] }, { @@ -1168,7 +1168,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 10/40 [00:00<00:00, 51.97it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 47.45it/s]" ] }, { @@ -1176,7 +1176,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 18/40 [00:00<00:00, 62.55it/s]" + " 42%|████▎ | 17/40 [00:00<00:00, 59.31it/s]" ] }, { @@ -1184,7 +1184,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 67.62it/s]" + " 62%|██████▎ | 25/40 [00:00<00:00, 64.24it/s]" ] }, { @@ -1192,7 +1192,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 72.73it/s]" + " 82%|████████▎ | 33/40 [00:00<00:00, 67.84it/s]" ] }, { @@ -1200,7 +1200,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 65.90it/s]" + "100%|██████████| 40/40 [00:00<00:00, 63.61it/s]" ] }, { @@ -1230,7 +1230,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.01it/s]" + " 8%|▊ | 3/40 [00:00<00:01, 28.29it/s]" ] }, { @@ -1238,7 +1238,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▎ | 9/40 [00:00<00:00, 45.97it/s]" + " 28%|██▊ | 11/40 [00:00<00:00, 57.16it/s]" ] }, { @@ -1246,7 +1246,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▎ | 17/40 [00:00<00:00, 59.79it/s]" + " 48%|████▊ | 19/40 [00:00<00:00, 66.70it/s]" ] }, { @@ -1254,7 +1254,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▎ | 25/40 [00:00<00:00, 66.31it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 69.32it/s]" ] }, { @@ -1262,7 +1262,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▎ | 33/40 [00:00<00:00, 70.61it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 71.68it/s]" ] }, { @@ -1270,7 +1270,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 64.57it/s]" + "100%|██████████| 40/40 [00:00<00:00, 67.68it/s]" ] }, { @@ -1347,10 +1347,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.006419Z", - "iopub.status.busy": "2023-12-13T17:02:38.006144Z", - "iopub.status.idle": "2023-12-13T17:02:38.021121Z", - "shell.execute_reply": "2023-12-13T17:02:38.020339Z" + "iopub.execute_input": "2023-12-14T17:58:55.184238Z", + "iopub.status.busy": "2023-12-14T17:58:55.183812Z", + "iopub.status.idle": "2023-12-14T17:58:55.198495Z", + "shell.execute_reply": "2023-12-14T17:58:55.197987Z" } }, "outputs": [], @@ -1375,10 +1375,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.023704Z", - "iopub.status.busy": "2023-12-13T17:02:38.023496Z", - "iopub.status.idle": "2023-12-13T17:02:38.478953Z", - "shell.execute_reply": "2023-12-13T17:02:38.478326Z" + "iopub.execute_input": "2023-12-14T17:58:55.200872Z", + "iopub.status.busy": "2023-12-14T17:58:55.200545Z", + "iopub.status.idle": "2023-12-14T17:58:55.636523Z", + "shell.execute_reply": "2023-12-14T17:58:55.635900Z" } }, "outputs": [], @@ -1398,10 +1398,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:02:38.482144Z", - "iopub.status.busy": "2023-12-13T17:02:38.481677Z", - "iopub.status.idle": "2023-12-13T17:06:00.233378Z", - "shell.execute_reply": "2023-12-13T17:06:00.232677Z" + "iopub.execute_input": "2023-12-14T17:58:55.639341Z", + "iopub.status.busy": "2023-12-14T17:58:55.639092Z", + "iopub.status.idle": "2023-12-14T18:02:16.533981Z", + "shell.execute_reply": "2023-12-14T18:02:16.533323Z" } }, "outputs": [ @@ -1432,13 +1432,14 @@ "name": "stdout", "output_type": "stream", "text": [ + "Finding class_imbalance issues ...\n", "Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34a4a9d813a3425ca2625703fb2ff859", + "model_id": "9956e411c4f04e71aad3cc03ab4b77fa", "version_major": 2, "version_minor": 0 }, @@ -1477,10 +1478,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.236640Z", - "iopub.status.busy": "2023-12-13T17:06:00.235882Z", - "iopub.status.idle": "2023-12-13T17:06:00.715210Z", - "shell.execute_reply": "2023-12-13T17:06:00.714546Z" + "iopub.execute_input": "2023-12-14T18:02:16.536988Z", + "iopub.status.busy": "2023-12-14T18:02:16.536264Z", + "iopub.status.idle": "2023-12-14T18:02:17.013848Z", + "shell.execute_reply": "2023-12-14T18:02:17.013113Z" } }, "outputs": [ @@ -1497,6 +1498,7 @@ " low_information 166\n", " dark 16\n", " non_iid 0\n", + " class_imbalance 0\n", " blurry 0\n", " light 0\n", "odd_aspect_ratio 0\n", @@ -1591,6 +1593,23 @@ "p-value: 0.7834321613629787\n", "\n", "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1000\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "39992 False 1.0\n", + "39993 False 1.0\n", + "39994 False 1.0\n", + "39995 False 1.0\n", + "\n", + "\n", "\n", "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.5 \n", "------------------ low_information images ------------------\n", @@ -1652,10 +1671,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.718638Z", - "iopub.status.busy": "2023-12-13T17:06:00.718108Z", - "iopub.status.idle": "2023-12-13T17:06:00.782186Z", - "shell.execute_reply": "2023-12-13T17:06:00.781567Z" + "iopub.execute_input": "2023-12-14T18:02:17.020861Z", + "iopub.status.busy": "2023-12-14T18:02:17.020322Z", + "iopub.status.idle": "2023-12-14T18:02:17.081854Z", + "shell.execute_reply": "2023-12-14T18:02:17.081252Z" } }, "outputs": [ @@ -1759,10 +1778,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.784851Z", - "iopub.status.busy": "2023-12-13T17:06:00.784455Z", - "iopub.status.idle": "2023-12-13T17:06:00.793679Z", - "shell.execute_reply": "2023-12-13T17:06:00.793195Z" + "iopub.execute_input": "2023-12-14T18:02:17.084489Z", + "iopub.status.busy": "2023-12-14T18:02:17.084142Z", + "iopub.status.idle": "2023-12-14T18:02:17.093369Z", + "shell.execute_reply": "2023-12-14T18:02:17.092776Z" } }, "outputs": [ @@ -1892,10 +1911,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.796061Z", - "iopub.status.busy": "2023-12-13T17:06:00.795691Z", - "iopub.status.idle": "2023-12-13T17:06:00.800720Z", - "shell.execute_reply": "2023-12-13T17:06:00.800164Z" + "iopub.execute_input": "2023-12-14T18:02:17.095779Z", + "iopub.status.busy": "2023-12-14T18:02:17.095422Z", + "iopub.status.idle": "2023-12-14T18:02:17.100241Z", + "shell.execute_reply": "2023-12-14T18:02:17.099712Z" }, "nbsphinx": "hidden" }, @@ -1941,10 +1960,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:00.803170Z", - "iopub.status.busy": "2023-12-13T17:06:00.802766Z", - "iopub.status.idle": "2023-12-13T17:06:01.496763Z", - "shell.execute_reply": "2023-12-13T17:06:01.496073Z" + "iopub.execute_input": "2023-12-14T18:02:17.102631Z", + "iopub.status.busy": "2023-12-14T18:02:17.102267Z", + "iopub.status.idle": "2023-12-14T18:02:17.769054Z", + "shell.execute_reply": "2023-12-14T18:02:17.768398Z" } }, "outputs": [ @@ -1979,10 +1998,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.499417Z", - "iopub.status.busy": "2023-12-13T17:06:01.499053Z", - "iopub.status.idle": "2023-12-13T17:06:01.508494Z", - "shell.execute_reply": "2023-12-13T17:06:01.508017Z" + "iopub.execute_input": "2023-12-14T18:02:17.771740Z", + "iopub.status.busy": "2023-12-14T18:02:17.771285Z", + "iopub.status.idle": "2023-12-14T18:02:17.779777Z", + "shell.execute_reply": "2023-12-14T18:02:17.779284Z" } }, "outputs": [ @@ -2149,10 +2168,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.510740Z", - "iopub.status.busy": "2023-12-13T17:06:01.510541Z", - "iopub.status.idle": "2023-12-13T17:06:01.519296Z", - "shell.execute_reply": "2023-12-13T17:06:01.518679Z" + "iopub.execute_input": "2023-12-14T18:02:17.782287Z", + "iopub.status.busy": "2023-12-14T18:02:17.782088Z", + "iopub.status.idle": "2023-12-14T18:02:17.789876Z", + "shell.execute_reply": "2023-12-14T18:02:17.789309Z" }, "nbsphinx": "hidden" }, @@ -2228,10 +2247,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.521755Z", - "iopub.status.busy": "2023-12-13T17:06:01.521398Z", - "iopub.status.idle": "2023-12-13T17:06:01.988182Z", - "shell.execute_reply": "2023-12-13T17:06:01.987524Z" + "iopub.execute_input": "2023-12-14T18:02:17.791938Z", + "iopub.status.busy": "2023-12-14T18:02:17.791746Z", + "iopub.status.idle": "2023-12-14T18:02:18.253562Z", + "shell.execute_reply": "2023-12-14T18:02:18.252840Z" } }, "outputs": [ @@ -2268,10 +2287,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:01.990838Z", - "iopub.status.busy": "2023-12-13T17:06:01.990441Z", - "iopub.status.idle": "2023-12-13T17:06:02.006327Z", - "shell.execute_reply": "2023-12-13T17:06:02.005753Z" + "iopub.execute_input": "2023-12-14T18:02:18.256175Z", + "iopub.status.busy": "2023-12-14T18:02:18.255774Z", + "iopub.status.idle": "2023-12-14T18:02:18.271586Z", + "shell.execute_reply": "2023-12-14T18:02:18.270960Z" } }, "outputs": [ @@ -2428,10 +2447,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.008988Z", - "iopub.status.busy": "2023-12-13T17:06:02.008596Z", - "iopub.status.idle": "2023-12-13T17:06:02.014589Z", - "shell.execute_reply": "2023-12-13T17:06:02.014059Z" + "iopub.execute_input": "2023-12-14T18:02:18.274482Z", + "iopub.status.busy": "2023-12-14T18:02:18.273970Z", + "iopub.status.idle": "2023-12-14T18:02:18.280364Z", + "shell.execute_reply": "2023-12-14T18:02:18.279855Z" }, "nbsphinx": "hidden" }, @@ -2476,10 +2495,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.016959Z", - "iopub.status.busy": "2023-12-13T17:06:02.016584Z", - "iopub.status.idle": "2023-12-13T17:06:02.402059Z", - "shell.execute_reply": "2023-12-13T17:06:02.401435Z" + "iopub.execute_input": "2023-12-14T18:02:18.282622Z", + "iopub.status.busy": "2023-12-14T18:02:18.282261Z", + "iopub.status.idle": "2023-12-14T18:02:18.724419Z", + "shell.execute_reply": "2023-12-14T18:02:18.723732Z" } }, "outputs": [ @@ -2554,10 +2573,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.404783Z", - "iopub.status.busy": "2023-12-13T17:06:02.404483Z", - "iopub.status.idle": "2023-12-13T17:06:02.413874Z", - "shell.execute_reply": "2023-12-13T17:06:02.413142Z" + "iopub.execute_input": "2023-12-14T18:02:18.727554Z", + "iopub.status.busy": "2023-12-14T18:02:18.727310Z", + "iopub.status.idle": "2023-12-14T18:02:18.739287Z", + "shell.execute_reply": "2023-12-14T18:02:18.738665Z" } }, "outputs": [ @@ -2582,47 +2601,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2685,10 +2704,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.416642Z", - "iopub.status.busy": "2023-12-13T17:06:02.416423Z", - "iopub.status.idle": "2023-12-13T17:06:02.421804Z", - "shell.execute_reply": "2023-12-13T17:06:02.421073Z" + "iopub.execute_input": "2023-12-14T18:02:18.742126Z", + "iopub.status.busy": "2023-12-14T18:02:18.741893Z", + "iopub.status.idle": "2023-12-14T18:02:18.749322Z", + "shell.execute_reply": "2023-12-14T18:02:18.748713Z" }, "nbsphinx": "hidden" }, @@ -2725,10 +2744,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.424359Z", - "iopub.status.busy": "2023-12-13T17:06:02.424157Z", - "iopub.status.idle": "2023-12-13T17:06:02.589750Z", - "shell.execute_reply": "2023-12-13T17:06:02.589183Z" + "iopub.execute_input": "2023-12-14T18:02:18.752233Z", + "iopub.status.busy": "2023-12-14T18:02:18.752004Z", + "iopub.status.idle": "2023-12-14T18:02:18.947173Z", + "shell.execute_reply": "2023-12-14T18:02:18.946670Z" } }, "outputs": [ @@ -2770,10 +2789,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.592653Z", - "iopub.status.busy": "2023-12-13T17:06:02.592246Z", - "iopub.status.idle": "2023-12-13T17:06:02.600888Z", - "shell.execute_reply": "2023-12-13T17:06:02.600383Z" + "iopub.execute_input": "2023-12-14T18:02:18.949410Z", + "iopub.status.busy": "2023-12-14T18:02:18.949223Z", + "iopub.status.idle": "2023-12-14T18:02:18.956820Z", + "shell.execute_reply": "2023-12-14T18:02:18.956315Z" } }, "outputs": [ @@ -2859,10 +2878,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.603208Z", - "iopub.status.busy": "2023-12-13T17:06:02.602836Z", - "iopub.status.idle": "2023-12-13T17:06:02.766352Z", - "shell.execute_reply": "2023-12-13T17:06:02.765659Z" + "iopub.execute_input": "2023-12-14T18:02:18.959207Z", + "iopub.status.busy": "2023-12-14T18:02:18.958766Z", + "iopub.status.idle": "2023-12-14T18:02:19.148148Z", + "shell.execute_reply": "2023-12-14T18:02:19.147621Z" } }, "outputs": [ @@ -2893,10 +2912,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:02.769168Z", - "iopub.status.busy": "2023-12-13T17:06:02.768793Z", - "iopub.status.idle": "2023-12-13T17:06:02.773403Z", - "shell.execute_reply": "2023-12-13T17:06:02.772863Z" + "iopub.execute_input": "2023-12-14T18:02:19.150993Z", + "iopub.status.busy": "2023-12-14T18:02:19.150665Z", + "iopub.status.idle": "2023-12-14T18:02:19.155505Z", + "shell.execute_reply": "2023-12-14T18:02:19.154884Z" }, "nbsphinx": "hidden" }, @@ -2933,44 +2952,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01e1cfac352b427488a32d6e9c6d7844": { + "014dbdb5851b44419d8b227f14d765f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "03cd651cc3f74487a9a07f7eeb949efe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_36a7f194f94a4e9ba1fb7b11b3fd02b6", - "IPY_MODEL_a6d961f1bdf0474587f313b6c3cd3169", - "IPY_MODEL_6279b5554b78461888d215c17d919115" - ], - "layout": "IPY_MODEL_886ba220e0ee41a89d651787f95206df" - } - }, - "07aea01850d34474998ac8a6f466ff88": { + "019bbbe7096740a4a87d7b6554fdf160": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2985,29 +2983,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_71448bb136f54d07b222fd9243605271", + "layout": "IPY_MODEL_ac5b625ba17b4b9da9e9c0c588f6d3fe", "placeholder": "​", - "style": "IPY_MODEL_46c480b2e18a496e96e7523713bfb14f", - "value": "Downloading metadata: 100%" - } - }, - "082e36e6188d40deaa77dfb8eb428c52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_3118e675fe8b43108af52141e848e7e2", + "value": " 5.15k/5.15k [00:00<00:00, 631kB/s]" } }, - "08d627199ab64656b690cee99e57e562": { + "020489d2f6b74c85931035b639bb7017": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3059,44 +3041,7 @@ "width": null } }, - "09cf764d6385476499aee7342e77c38c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0bc6dd269923497bbbef508d22a01372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3efb3b480d942868c4969f4611bcc95", - "IPY_MODEL_5df488d0b02c4d879bb071a3401c330d", - "IPY_MODEL_dbbd2a3399d042469b7b80af25ad6d27" - ], - "layout": "IPY_MODEL_1b8385f7861b4bd48a0625bf7201d8ea" - } - }, - "0bd84402a26f4e789c2228250336d335": { + "0297dfa02651469bb4ebdd994566c67c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3148,7 +3093,7 @@ "width": null } }, - "0c3c3870080145939fdb0f88e7bc1068": { + "0599686ebcbd4643abf31809153f1d7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3200,7 +3145,7 @@ "width": null } }, - "0c5f31909c824faebddc26a08134ddd7": { + "0e950716bbca4abb9978d5aee7cd0d50": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3252,31 +3197,7 @@ "width": null } }, - "0cb0ae0ab19a4347ae7ccc4d2a440b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_08d627199ab64656b690cee99e57e562", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_66c809733f1a44028292fd329d52bd73", - "value": 10000.0 - } - }, - "0d6be435605f4127bffafe6b37e8b31e": { + "0fdbdcea3b124bab802b082e883d6117": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3328,7 +3249,7 @@ "width": null } }, - "0daba700b9d6475897f5f8b1a3469a50": { + "115e3623dbe241d99f0fadb4af055a07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3343,34 +3264,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0d6be435605f4127bffafe6b37e8b31e", + "layout": "IPY_MODEL_9da1efd0aad6469ea3121e38024d8186", "placeholder": "​", - "style": "IPY_MODEL_5778bfc248e94d2498b365d871888002", - "value": " 26.4M/26.4M [00:00<00:00, 101MB/s]" + "style": "IPY_MODEL_4d3db069e98b4b6a9152d897dbf744d7", + "value": "Map (num_proc=4): 100%" } }, - "1389d31fea384ae899c3f3c5f0894e7f": { + "11756a9d73604e3986f30a75b52b19f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aab878e6808a484cb2c8f63580276829", - "placeholder": "​", - "style": "IPY_MODEL_42627a368f284ddba8481b066ef89129", - "value": "Extracting data files: 100%" + "layout": "IPY_MODEL_302e445ed8db4e3fbc1b68d01cc2c167", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe40eaeee2e946d2bd495e0b5384a702", + "value": 4422102.0 } }, - "138eda2334ae402fb1b7e2a78894e0f6": { + "11a01f57a1384403b77056faaaa5bde3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3385,13 +3309,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_149f040ebbcc40d183b716e39424d5ed", + "layout": "IPY_MODEL_fd412c639a3e47a5aa05009fbf59a8d9", "placeholder": "​", - "style": "IPY_MODEL_ad5acf8a51df4352bbdff6e8ff0ccb12", - "value": "Generating test split: 100%" + "style": "IPY_MODEL_9d4edc796c83458f90341c6b912c5145", + "value": "Computing checksums: 100%" } }, - "1497b9b90d3844f9b3b30a7796014629": { + "12afa96dc03149fa9356048facc03f38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3406,7 +3330,7 @@ "description_width": "" } }, - "149f040ebbcc40d183b716e39424d5ed": { + "134e9e08d5bc4525aec9a080df8d3624": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3458,23 +3382,7 @@ "width": null } }, - "16c1366031a44b2fb55a420530173cf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1782fa00fcd540209e67907881bcdeee": { + "14034c5b42be45c488865dbbf5e04dcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3526,7 +3434,7 @@ "width": null } }, - "19016750ea0644cebdd042c4e8afb123": { + "18a355f302674f1baa78e0857a648c16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3541,59 +3449,28 @@ "description_width": "" } }, - "1a195c3b9d884c56b711fe82c523ee8b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1929871b9fbc4f4a9dcafd0dd2b5a133": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b8fed11cba44802b9a8197670112186", + "placeholder": "​", + "style": "IPY_MODEL_938ab0e33af0459a8ccbed6d26a50ab5", + "value": "Downloading builder script: 100%" } }, - "1a34aef4849b46aca3604c440d95e84a": { + "1fa37054022e4a899933618284437604": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3608,13 +3485,49 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da2096c48d64459b8e1351072d7413c3", + "layout": "IPY_MODEL_5cb14f0279594cebb9ece9f68b541d88", "placeholder": "​", - "style": "IPY_MODEL_4084c71d5f9c4e49a96fefbfc506012a", - "value": "Generating train split: 100%" + "style": "IPY_MODEL_db23f2aca6654d51b7c042964e54e9d0", + "value": "Extracting data files: 100%" + } + }, + "20fb64de89324c668b89d174d0ca28aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0a98bf39ab443dc845432721cfb507c", + "placeholder": "​", + "style": "IPY_MODEL_18a355f302674f1baa78e0857a648c16", + "value": "100%" + } + }, + "226a88b4f7e6490e8a6f2452b98eee2d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1b8385f7861b4bd48a0625bf7201d8ea": { + "26c2a89a460142f9b1904e475cfbd640": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3666,7 +3579,28 @@ "width": null } }, - "1ffd3508847a4344a79108f4d1b57169": { + "28589624fc5e436084d71b0417363cfa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3d09b9b69a55471081d816e2257aa958", + "placeholder": "​", + "style": "IPY_MODEL_ac82b28418e9487ca148c63f6b6b8e3e", + "value": "Downloading metadata: 100%" + } + }, + "28e285f905ac4328b66bd503970dd870": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3682,15 +3616,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_faf2e3f794b34b8d8ef7d28f8da9b28d", + "layout": "IPY_MODEL_b1fc5bf278f74ae9b8c0a7eefc6f9784", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c0e09f731e3140989ad77e431d8d24e0", + "style": "IPY_MODEL_96d1ebe50f57451b92a4b4464d84a357", "value": 60000.0 } }, - "21b2fec784114a04a249e568304f2aed": { + "2942a00a6bbb426c82f3061adffa9dca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3705,13 +3639,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf9b02a959f6482ba95301fcd4f34e30", + "layout": "IPY_MODEL_0297dfa02651469bb4ebdd994566c67c", "placeholder": "​", - "style": "IPY_MODEL_dd7fac76d6104f82971e7dfea693b76d", - "value": "Downloading data files: 100%" + "style": "IPY_MODEL_a2e95b1b5e914e658e7960b7f0c06e6e", + "value": "Downloading data: 100%" } }, - "260a869201514a69a170430381d0d6a3": { + "2e45616143474b8ea1ddb7218a6728e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "302e445ed8db4e3fbc1b68d01cc2c167": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3763,7 +3712,22 @@ "width": null } }, - "2817f6cae2a9469db6ca761753f83129": { + "3118e675fe8b43108af52141e848e7e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31af3f0e051b4350b6c14e425ba331a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3815,7 +3779,43 @@ "width": null } }, - "29ee4a1f566a4a3dbe5549f2b1287b81": { + "3929c1e23b5b4cf4a83c3c657bc369e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "399e53e117554755b3c9ba902c3c41d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0599686ebcbd4643abf31809153f1d7d", + "placeholder": "​", + "style": "IPY_MODEL_4c9f2258d1304bb2bad515a287c3ebc1", + "value": " 60000/60000 [00:28<00:00, 2061.85it/s]" + } + }, + "3d09b9b69a55471081d816e2257aa958": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3867,22 +3867,29 @@ "width": null } }, - "2bcd2e3a51a84009a1f6911da8bcd897": { + "3d60dedadaf045079b3f512339e92cb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11a01f57a1384403b77056faaaa5bde3", + "IPY_MODEL_449d9e36ba624c9b88ce85efd73da101", + "IPY_MODEL_c4f813e9649e48039c5bd0b35e207bb4" + ], + "layout": "IPY_MODEL_92d9ddb9ba4045eb83e540d44572b194" } }, - "2d4b3dc6c0cd44a89b34413b00d0ee98": { + "3e81f6f99ca34d5f8b36dc7bd8bc09db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3898,73 +3905,37 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c01e829787f64d0e84343e12c0d57782", - "max": 4.0, + "layout": "IPY_MODEL_463a5aa54a62493885b2cc3551e87ecc", + "max": 26421880.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_082e36e6188d40deaa77dfb8eb428c52", - "value": 4.0 - } - }, - "2ef3b42427c24dc59fd1ebcc8357f1f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c4e3f61330494f299c313e1fba9879d5", - "placeholder": "​", - "style": "IPY_MODEL_914f8d29e73e419085c5d034f2efe252", - "value": " 60000/60000 [00:10<00:00, 7643.43 examples/s]" - } - }, - "2f618c1e586c4a89ab03335f510a69ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_014dbdb5851b44419d8b227f14d765f7", + "value": 26421880.0 } }, - "2f628fea3c5440d1994e8c3fab26ed2f": { + "3f33d0d86e744d9bb8cd8ad21d9eac74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0c3c3870080145939fdb0f88e7bc1068", - "placeholder": "​", - "style": "IPY_MODEL_8d6e96fc317e467990950ae3a0a6e03f", - "value": " 29.5k/29.5k [00:00<00:00, 3.19MB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1929871b9fbc4f4a9dcafd0dd2b5a133", + "IPY_MODEL_c43c85feb148411ea0d8b7d5196aff75", + "IPY_MODEL_531c6cec6f5d4ab79270322a25a9bc22" + ], + "layout": "IPY_MODEL_ecdeb88b2f794811868d510bfea37fe6" } }, - "30f4cff7af6e40ef80069a0bc03522f4": { + "3f74a53a2336458daca7ae9298682eaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4016,7 +3987,7 @@ "width": null } }, - "31516b6ea860436baeaadca8a3c71bd1": { + "41ddfe888afe4facb40c6358834e798e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4068,22 +4039,59 @@ "width": null } }, - "334a90a0d7ec44f484c2177cc5a5def2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "43510d13349a47efbb1f2e90212f71a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "34a4a9d813a3425ca2625703fb2ff859": { + "439d0591585d47d0980cd15033196a97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4098,51 +4106,66 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7704e6dee4d426ea9ca0ab16798bda0", - "IPY_MODEL_451b5a345e594bc1aec3ec38e879f27f", - "IPY_MODEL_c0b16403518a450bb5854720e61602ca" + "IPY_MODEL_8d7a0c03e7174b5f891197f14f7786e3", + "IPY_MODEL_6a54534447fd4a11a5754d070bfa1972", + "IPY_MODEL_f4a8f347eb444ff29288ae43949fa5ef" ], - "layout": "IPY_MODEL_0c5f31909c824faebddc26a08134ddd7" + "layout": "IPY_MODEL_976b078102cd4af7a51ef4ccaae3f6ef" } }, - "36557b9afad54c6e9901a3cbd079fdb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "440830f3c9cd4d1287aee68635f8431d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "36a7f194f94a4e9ba1fb7b11b3fd02b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3e74139674d24bd4a9b0524dc34c13ad", - "placeholder": "​", - "style": "IPY_MODEL_a5fb3ae3f8674f3cb7fd09849d86c088", - "value": "Computing checksums: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "388f98d4c696461fbf1747dbd1052b46": { + "449d9e36ba624c9b88ce85efd73da101": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4158,15 +4181,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1782fa00fcd540209e67907881bcdeee", + "layout": "IPY_MODEL_6ccc63703ec445708623454c44a8a771", "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7f075ca310594f48a930b7f7e5fe6013", + "style": "IPY_MODEL_57f47b2f30f640e9ac06fc9d28635eec", "value": 4.0 } }, - "3a34f644af374f55a9d893d4067dbaa2": { + "45d8c5dfe1ff43de893ef5530820300d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4218,7 +4241,7 @@ "width": null } }, - "3e74139674d24bd4a9b0524dc34c13ad": { + "463a5aa54a62493885b2cc3551e87ecc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4270,40 +4293,10 @@ "width": null } }, - "4084c71d5f9c4e49a96fefbfc506012a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42627a368f284ddba8481b066ef89129": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "433909c73ea949c0a70391a762403d2e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "47ee65f161c648ddaaf1384646734c76": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -4352,31 +4345,22 @@ "width": null } }, - "451b5a345e594bc1aec3ec38e879f27f": { + "4942ecbef3d14e98be8326f7c313cf57": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_70b284acce6a4c5aa4272ac8a3c9a512", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_64ff003cb51a47aebeeb0566824a09cf", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "46c480b2e18a496e96e7523713bfb14f": { + "4b5f59b0ae4b447b9ab01f3c2cdc6a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4391,127 +4375,52 @@ "description_width": "" } }, - "4b816a40dcec462386205d5bd805c895": { + "4c9f2258d1304bb2bad515a287c3ebc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4c625c8f729943f58d075ff0c6d752df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4d3db069e98b4b6a9152d897dbf744d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "4cf1e355f56a49f59ee2bb2b26592d0a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "4fe8c5f972e74ccd90f020751e5ac103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" } }, - "4e74f42c3d14480ba53851aa84952484": { + "4fede3e8acf24fc3bc0a967a887c9210": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4563,22 +4472,7 @@ "width": null } }, - "51ab64ad12264b618b91334be90b9f98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "542b4370cf6d473b979b54911fc46509": { + "502915f99ec446b58154636b30ff90b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4593,14 +4487,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1a34aef4849b46aca3604c440d95e84a", - "IPY_MODEL_1ffd3508847a4344a79108f4d1b57169", - "IPY_MODEL_87e370afee1e41828f77297f56fb2b8f" + "IPY_MODEL_9d0abb3dda5d4728b8d903114969fcea", + "IPY_MODEL_9e853285ce0c4e059840c8ec124626a9", + "IPY_MODEL_c9489669f29b4b75abf976461fd966e4" ], - "layout": "IPY_MODEL_9ff7193cfa954becbe2dd3a89fab3283" + "layout": "IPY_MODEL_65e69603bc66496f8f3342c0c6f7ee12" } }, - "54702c3cf57e4602a5f10fd7212050e3": { + "50929fbb21b342f58ad999117cedd8b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4615,72 +4509,106 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b174639c66be410ba019b13356d9d15e", + "layout": "IPY_MODEL_c45bf70ed4ae4890aaabaca49d0f615e", "placeholder": "​", - "style": "IPY_MODEL_334a90a0d7ec44f484c2177cc5a5def2", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_a0519cab67a843169fbd9ebcc36788c6", + "value": " 60000/60000 [00:10<00:00, 7660.64 examples/s]" } }, - "556bebde4968465d9f5a1eda7e6a26bc": { + "531c6cec6f5d4ab79270322a25a9bc22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e07a35da9a194f8a9236c8d61852934f", - "IPY_MODEL_f161f6945aa345b0b12d889c6fff264a", - "IPY_MODEL_2ef3b42427c24dc59fd1ebcc8357f1f9" - ], - "layout": "IPY_MODEL_4c625c8f729943f58d075ff0c6d752df" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e31887c4d54c4b42b8d35af9a4b58419", + "placeholder": "​", + "style": "IPY_MODEL_e035a9648b1a46259ffd09cfdf0007c3", + "value": " 4.83k/4.83k [00:00<00:00, 580kB/s]" } }, - "5778bfc248e94d2498b365d871888002": { + "538433a444e648c7af52eeed55d68864": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "5b576277940543328ae8bfe6618396cc": { + "53e6e8b2681c4ec8adde8390793a9e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57f47b2f30f640e9ac06fc9d28635eec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "583f98afb9ee46e7bcad10d05e431370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_54702c3cf57e4602a5f10fd7212050e3", - "IPY_MODEL_f12619ccba3540df91fb1b4639e82c21", - "IPY_MODEL_0daba700b9d6475897f5f8b1a3469a50" - ], - "layout": "IPY_MODEL_d6d6925b7962471eb3bc6607439fcaff" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d32c70b4e6b8458e8eeecf1ebbdd94e6", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_538433a444e648c7af52eeed55d68864", + "value": 60000.0 } }, - "5cb2876ad7104d0c9be1f79a0c11e18c": { + "59e28ecdc12f4a4ca4be7e16dade4503": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4732,73 +4660,52 @@ "width": null } }, - "5df488d0b02c4d879bb071a3401c330d": { + "5c20c964c45547d48e2b4ed9d5124719": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2817f6cae2a9469db6ca761753f83129", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6736a6d7ffa24c5da58ede9f1b018ba4", - "value": 4422102.0 + "layout": "IPY_MODEL_c95d87d1b0df4546b686f4cf88ccb24f", + "placeholder": "​", + "style": "IPY_MODEL_8de3b9db63d1438f8dbec53c71acad4d", + "value": " 60000/60000 [00:08<00:00, 7593.07 examples/s]" } }, - "5e5725178eb7412c9238b68ec779d6ce": { + "5ca54b9f82a342caa0c1ae1055975c82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e603e243915f4bac8b6ccda96002d978", - "placeholder": "​", - "style": "IPY_MODEL_738f8a6c961a4c8fa438e48d67494c88", - "value": "Downloading data: 100%" - } - }, - "6279b5554b78461888d215c17d919115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b5d2180549b64f068a1068eee2f55685", - "placeholder": "​", - "style": "IPY_MODEL_2bcd2e3a51a84009a1f6911da8bcd897", - "value": " 4/4 [00:00<00:00, 677.51it/s]" + "layout": "IPY_MODEL_c976fabd45d9464ea008207c80d22966", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b02337ee5f49443a93f9f5921cec17bb", + "value": 4.0 } }, - "62eb93570b5d4b73a10c3294f5282169": { + "5cb14f0279594cebb9ece9f68b541d88": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4850,39 +4757,29 @@ "width": null } }, - "64ff003cb51a47aebeeb0566824a09cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "66c809733f1a44028292fd329d52bd73": { + "5e300f21826f4e03bf9162687a04b4bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1fa37054022e4a899933618284437604", + "IPY_MODEL_5ca54b9f82a342caa0c1ae1055975c82", + "IPY_MODEL_7d73c83e85844aa38da66f96ff6649ca" + ], + "layout": "IPY_MODEL_6a79f0ed11f5457cba39343a685e7a53" } }, - "6736a6d7ffa24c5da58ede9f1b018ba4": { + "61521b97c7ed4c10921e46f2dd86c2c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4898,22 +4795,7 @@ "description_width": "" } }, - "6bad75a8af114df9a143e70cbe160745": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "70b284acce6a4c5aa4272ac8a3c9a512": { + "65e69603bc66496f8f3342c0c6f7ee12": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4965,7 +4847,7 @@ "width": null } }, - "71448bb136f54d07b222fd9243605271": { + "699a3aaf8c1b481a9684344267561cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5017,38 +4899,31 @@ "width": null } }, - "738f8a6c961a4c8fa438e48d67494c88": { + "6a54534447fd4a11a5754d070bfa1972": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7f075ca310594f48a930b7f7e5fe6013": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc108e3dd9cb4537815fbbf5ce3bc882", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_61521b97c7ed4c10921e46f2dd86c2c6", + "value": 8845.0 } }, - "8194c24624824b878efc8405ff33b040": { + "6a79f0ed11f5457cba39343a685e7a53": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5100,7 +4975,7 @@ "width": null } }, - "833f8f8baa62471aa8529a301a62c939": { + "6bb319ab906c4db08607ae6b11f97f9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5152,7 +5027,7 @@ "width": null } }, - "866ebaf5eadb404199a5e32479345360": { + "6ccc63703ec445708623454c44a8a771": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5204,43 +5079,7 @@ "width": null } }, - "8692bbe72fda4e368edc927a5accf900": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "87e370afee1e41828f77297f56fb2b8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9dab8f73e9dc486d9b84baac94f113cd", - "placeholder": "​", - "style": "IPY_MODEL_fbb81b905fe843e3ba7427e41abf7b96", - "value": " 60000/60000 [00:08<00:00, 7455.46 examples/s]" - } - }, - "886ba220e0ee41a89d651787f95206df": { + "6e551d872a204c029bdca64427fba910": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5292,80 +5131,7 @@ "width": null } }, - "8a5c39d40b3b498fa4e1375a59789104": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bc734054f38d427bbe7bb80c076b71e6", - "placeholder": "​", - "style": "IPY_MODEL_eda7583c655149409947960a39bca2c6", - "value": " 4/4 [00:02<00:00, 1.46it/s]" - } - }, - "8a91ab936fc44e0fbaded2b37f6b9396": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e5725178eb7412c9238b68ec779d6ce", - "IPY_MODEL_fe986ccb368849c1a92738100b65d2d0", - "IPY_MODEL_e3fd248008384046ab9a745eb0620241" - ], - "layout": "IPY_MODEL_9878b527ea7342d8b5dff636f9948308" - } - }, - "8b2c38576a614ea0a18e7910d8b929df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8d6e96fc317e467990950ae3a0a6e03f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "8ee66d1f8617459cb29fe3099f465d1a": { + "6e870f18742d48758d578459b835e23a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5380,50 +5146,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1389d31fea384ae899c3f3c5f0894e7f", - "IPY_MODEL_388f98d4c696461fbf1747dbd1052b46", - "IPY_MODEL_94bc44f5a83041c280a7584feb946c43" + "IPY_MODEL_f0e548abc0f24df2baa826ad1e7ed39f", + "IPY_MODEL_c0cdc3fb53594cddbb99861ce1ece6da", + "IPY_MODEL_c3a2001bb9da4c5481b5e705cbe15224" ], - "layout": "IPY_MODEL_833f8f8baa62471aa8529a301a62c939" + "layout": "IPY_MODEL_6e551d872a204c029bdca64427fba910" } }, - "914f8d29e73e419085c5d034f2efe252": { + "70907cbecb1a4610b29420fca3ea0b88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "92b326679f98430daebffe621d903f8b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0bd84402a26f4e789c2228250336d335", - "placeholder": "​", - "style": "IPY_MODEL_01e1cfac352b427488a32d6e9c6d7844", - "value": "Downloading data: 100%" - } - }, - "94bc44f5a83041c280a7584feb946c43": { + "74286ffdc56141bca5599bc6f7de50bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5438,13 +5184,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_30f4cff7af6e40ef80069a0bc03522f4", + "layout": "IPY_MODEL_cb2373992b0b4605a51ffa888a78f450", "placeholder": "​", - "style": "IPY_MODEL_ae84e35a73d846bca2ad471b5f02817b", - "value": " 4/4 [00:00<00:00, 3.87it/s]" + "style": "IPY_MODEL_8550c4f4ed1946fd9ebc7051a35f29fc", + "value": " 3.13k/3.13k [00:00<00:00, 410kB/s]" } }, - "96271d112a674e299d595ea42991aa28": { + "74b653d96b0047c68f83224d5de6ba09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5496,22 +5242,7 @@ "width": null } }, - "97595412b8ca4aae811d82b2f4cd0ef6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9878b527ea7342d8b5dff636f9948308": { + "7a5fe91a72f3452984a04bd024fd0ea7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5563,7 +5294,7 @@ "width": null } }, - "9dab8f73e9dc486d9b84baac94f113cd": { + "7b8fed11cba44802b9a8197670112186": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5615,59 +5346,50 @@ "width": null } }, - "9fdc5354318d43cabcfd8a919c3f1341": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "7c7118a121da44228d604eb7be2a6ad9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28589624fc5e436084d71b0417363cfa", + "IPY_MODEL_d5dab5992d6d4f8cba376bdd291fc9c0", + "IPY_MODEL_74286ffdc56141bca5599bc6f7de50bb" + ], + "layout": "IPY_MODEL_134e9e08d5bc4525aec9a080df8d3624" } }, - "9ff7193cfa954becbe2dd3a89fab3283": { + "7d73c83e85844aa38da66f96ff6649ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_14034c5b42be45c488865dbbf5e04dcf", + "placeholder": "​", + "style": "IPY_MODEL_12afa96dc03149fa9356048facc03f38", + "value": " 4/4 [00:00<00:00, 3.82it/s]" + } + }, + "7eb91bbacbe141ec90ef46ca10b57dcd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5719,7 +5441,52 @@ "width": null } }, - "a03b51430c6c40509b96cd0f91eb1fa6": { + "7fc1d081c32941cfa14695378017a266": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8550c4f4ed1946fd9ebc7051a35f29fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "855be5b163824b1abde670fbcbb70189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8654619cdcc14e048da435b245904888": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5771,7 +5538,7 @@ "width": null } }, - "a3efb3b480d942868c4969f4611bcc95": { + "8d7a0c03e7174b5f891197f14f7786e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5786,28 +5553,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1a195c3b9d884c56b711fe82c523ee8b", + "layout": "IPY_MODEL_7a5fe91a72f3452984a04bd024fd0ea7", "placeholder": "​", - "style": "IPY_MODEL_09cf764d6385476499aee7342e77c38c", - "value": "Downloading data: 100%" - } - }, - "a4409717f73b4882889505847c293712": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_d26ecd4428c84aaa80ea156bb653f0d1", + "value": "Downloading readme: 100%" } }, - "a5fb3ae3f8674f3cb7fd09849d86c088": { + "8de3b9db63d1438f8dbec53c71acad4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5822,28 +5574,29 @@ "description_width": "" } }, - "a630ea700b574b72b048cb0f7e1ac3b7": { + "92832737fe64454baad97b42ab036e38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a65d1cd59a3a45d79eef7499e030dbb1", - "placeholder": "​", - "style": "IPY_MODEL_51ab64ad12264b618b91334be90b9f98", - "value": " 3.13k/3.13k [00:00<00:00, 380kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2942a00a6bbb426c82f3061adffa9dca", + "IPY_MODEL_3e81f6f99ca34d5f8b36dc7bd8bc09db", + "IPY_MODEL_e5823cb037b14ee89645f749f665da3b" + ], + "layout": "IPY_MODEL_699a3aaf8c1b481a9684344267561cc7" } }, - "a65d1cd59a3a45d79eef7499e030dbb1": { + "92d9ddb9ba4045eb83e540d44572b194": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5895,97 +5648,76 @@ "width": null } }, - "a6d961f1bdf0474587f313b6c3cd3169": { + "938ab0e33af0459a8ccbed6d26a50ab5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e702d1e3650047d0ba739dd044c70d27", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_af6e3e1e236a4762b3e60c0bcf144672", - "value": 4.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a7704e6dee4d426ea9ca0ab16798bda0": { + "947de91902a5402bbb1aa40f89771217": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_433909c73ea949c0a70391a762403d2e", - "placeholder": "​", - "style": "IPY_MODEL_c8de68eeaf27424297c9f722cd2d6c00", - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a3d6272f7f28471c9c458216c827c67a", + "IPY_MODEL_b1ca91d3bf4b4cd8b5e0da30998260a7", + "IPY_MODEL_5c20c964c45547d48e2b4ed9d5124719" + ], + "layout": "IPY_MODEL_c8c2db33e53547c59f1f8273d0afb14d" } }, - "a9e8f9de1a534ee68cd7f7069d753c2a": { + "96d1ebe50f57451b92a4b4464d84a357": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f8a9cbe4e8ea476b810ead003234750b", - "placeholder": "​", - "style": "IPY_MODEL_97595412b8ca4aae811d82b2f4cd0ef6", - "value": "Downloading readme: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa9e9d9a479249d8934a1ab0eb762852": { + "97589402b73543c68e2a47ed1f9a9163": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f20c8a1947134e95b50b3d8dda9d5597", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16c1366031a44b2fb55a420530173cf0", - "value": 8845.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aab878e6808a484cb2c8f63580276829": { + "976b078102cd4af7a51ef4ccaae3f6ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6037,22 +5769,29 @@ "width": null } }, - "ad5acf8a51df4352bbdff6e8ff0ccb12": { + "9956e411c4f04e71aad3cc03ab4b77fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_20fb64de89324c668b89d174d0ca28aa", + "IPY_MODEL_583f98afb9ee46e7bcad10d05e431370", + "IPY_MODEL_399e53e117554755b3c9ba902c3c41d9" + ], + "layout": "IPY_MODEL_8654619cdcc14e048da435b245904888" } }, - "ae84e35a73d846bca2ad471b5f02817b": { + "9a606f4ed9504752a80c04cbbcdd50ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6067,23 +5806,43 @@ "description_width": "" } }, - "af6e3e1e236a4762b3e60c0bcf144672": { + "9d0abb3dda5d4728b8d903114969fcea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6bb319ab906c4db08607ae6b11f97f9b", + "placeholder": "​", + "style": "IPY_MODEL_9a606f4ed9504752a80c04cbbcdd50ac", + "value": "Downloading data: 100%" + } + }, + "9d4edc796c83458f90341c6b912c5145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "b0878073014248e79baf346f850f545f": { + "9da1efd0aad6469ea3121e38024d8186": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6135,7 +5894,29 @@ "width": null } }, - "b0cc566f15984e70a64c4cc705b15a06": { + "9e409cb7855240519f18afa36ede24c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_115e3623dbe241d99f0fadb4af055a07", + "IPY_MODEL_28e285f905ac4328b66bd503970dd870", + "IPY_MODEL_50929fbb21b342f58ad999117cedd8b1" + ], + "layout": "IPY_MODEL_ed5f1ca0fe3040d0adcdf69318837b1d" + } + }, + "9e853285ce0c4e059840c8ec124626a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6151,22 +5932,117 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_866ebaf5eadb404199a5e32479345360", - "max": 4833.0, + "layout": "IPY_MODEL_020489d2f6b74c85931035b639bb7017", + "max": 29515.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ef367e5823c74c2499dfe159f4cfb315", - "value": 4833.0 + "style": "IPY_MODEL_70907cbecb1a4610b29420fca3ea0b88", + "value": 29515.0 } }, - "b174639c66be410ba019b13356d9d15e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "a0519cab67a843169fbd9ebcc36788c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a2e95b1b5e914e658e7960b7f0c06e6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a3b55af5cc4c4132afae8a5e74eb4bd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af287932886b45dd85c2ee170e36a856", + "IPY_MODEL_11756a9d73604e3986f30a75b52b19f5", + "IPY_MODEL_ac75479f667e462f8d7412fa800a7b3a" + ], + "layout": "IPY_MODEL_45d8c5dfe1ff43de893ef5530820300d" + } + }, + "a3d6272f7f28471c9c458216c827c67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41ddfe888afe4facb40c6358834e798e", + "placeholder": "​", + "style": "IPY_MODEL_3929c1e23b5b4cf4a83c3c657bc369e6", + "value": "Generating train split: 100%" + } + }, + "a47fda1116b841a0991f3d7399cf6788": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef3014e139214de482090413eec5339e", + "IPY_MODEL_d44404875f0d4b3681cfbf9f2c20b253", + "IPY_MODEL_c2a9ddc9a7ea457dbeb34154b0d6c96e" + ], + "layout": "IPY_MODEL_a5e049e1fb9e4b3b9828b391a82bd57d" + } + }, + "a5e049e1fb9e4b3b9828b391a82bd57d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -6211,7 +6087,7 @@ "width": null } }, - "b36908d89dac4259a3c16e665aa9b3c2": { + "ab1667c9b31a42f4b4962eeffec4c8d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6226,13 +6102,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e74f42c3d14480ba53851aa84952484", + "layout": "IPY_MODEL_31af3f0e051b4350b6c14e425ba331a0", "placeholder": "​", - "style": "IPY_MODEL_8692bbe72fda4e368edc927a5accf900", - "value": " 10000/10000 [00:01<00:00, 7437.72 examples/s]" + "style": "IPY_MODEL_dfe735786f3f441b8665cb854610e20e", + "value": "Downloading data: 100%" } }, - "b4e20adf03eb41fe9c2d1da311c63b42": { + "ac5b625ba17b4b9da9e9c0c588f6d3fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6284,7 +6160,104 @@ "width": null } }, - "b5d2180549b64f068a1068eee2f55685": { + "ac75479f667e462f8d7412fa800a7b3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f74a53a2336458daca7ae9298682eaa", + "placeholder": "​", + "style": "IPY_MODEL_4942ecbef3d14e98be8326f7c313cf57", + "value": " 4.42M/4.42M [00:00<00:00, 66.3MB/s]" + } + }, + "ac82b28418e9487ca148c63f6b6b8e3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "af287932886b45dd85c2ee170e36a856": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7f47b408a12408ead4d34e5b30ef233", + "placeholder": "​", + "style": "IPY_MODEL_4fe8c5f972e74ccd90f020751e5ac103", + "value": "Downloading data: 100%" + } + }, + "b02337ee5f49443a93f9f5921cec17bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b1ca91d3bf4b4cd8b5e0da30998260a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4fede3e8acf24fc3bc0a967a887c9210", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf39c4bba9634e8b8d569d3740b19f28", + "value": 60000.0 + } + }, + "b1fc5bf278f74ae9b8c0a7eefc6f9784": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6336,7 +6309,22 @@ "width": null } }, - "b61aaf7eb80c4254928c8401930158c8": { + "b2d1ac722ae54f7e808c0fe39ae86189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b41cec22ddfd4c8c8556567e9d2b3ba3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6388,7 +6376,7 @@ "width": null } }, - "b67b07f948eb44ffa8bb4f272c2d9ed3": { + "b47ef491be5d42f5bfb792f9cd47e1e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -6403,14 +6391,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_21b2fec784114a04a249e568304f2aed", - "IPY_MODEL_2d4b3dc6c0cd44a89b34413b00d0ee98", - "IPY_MODEL_8a5c39d40b3b498fa4e1375a59789104" + "IPY_MODEL_ab1667c9b31a42f4b4962eeffec4c8d7", + "IPY_MODEL_b63d32162852450eb443157f0b15c3dc", + "IPY_MODEL_019bbbe7096740a4a87d7b6554fdf160" ], - "layout": "IPY_MODEL_f747f97b10104b7fb39371d710739e8e" + "layout": "IPY_MODEL_0fdbdcea3b124bab802b082e883d6117" } }, - "b72d91067edf47128a0ecbb5d0d07034": { + "b534c4a719eb460b84946ab3c472692e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6462,59 +6450,31 @@ "width": null } }, - "bc734054f38d427bbe7bb80c076b71e6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "b63d32162852450eb443157f0b15c3dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_47ee65f161c648ddaaf1384646734c76", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_97589402b73543c68e2a47ed1f9a9163", + "value": 5148.0 } }, - "bf9b02a959f6482ba95301fcd4f34e30": { + "bc108e3dd9cb4537815fbbf5ce3bc882": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6566,59 +6526,31 @@ "width": null } }, - "c01e829787f64d0e84343e12c0d57782": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "c0cdc3fb53594cddbb99861ce1ece6da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da99cf7b8b5f4a8eaf59ed27de9fac56", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc315a763f8b4987b4a50427b6ff63ac", + "value": 4.0 } }, - "c0b16403518a450bb5854720e61602ca": { + "c2a9ddc9a7ea457dbeb34154b0d6c96e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6633,29 +6565,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b72d91067edf47128a0ecbb5d0d07034", + "layout": "IPY_MODEL_26c2a89a460142f9b1904e475cfbd640", "placeholder": "​", - "style": "IPY_MODEL_a4409717f73b4882889505847c293712", - "value": " 60000/60000 [00:29<00:00, 2062.58it/s]" + "style": "IPY_MODEL_7fc1d081c32941cfa14695378017a266", + "value": " 10000/10000 [00:01<00:00, 7419.38 examples/s]" } }, - "c0e09f731e3140989ad77e431d8d24e0": { + "c3a2001bb9da4c5481b5e705cbe15224": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fad4a7747af64c20b62a79b3ecfe38ca", + "placeholder": "​", + "style": "IPY_MODEL_4b5f59b0ae4b447b9ab01f3c2cdc6a99", + "value": " 4/4 [00:02<00:00, 1.64it/s]" } }, - "c4a894aa00d44aeb90606fb08f2dd07a": { + "c43c85feb148411ea0d8b7d5196aff75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -6671,15 +6608,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_96271d112a674e299d595ea42991aa28", - "max": 29515.0, + "layout": "IPY_MODEL_59e28ecdc12f4a4ca4be7e16dade4503", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4b816a40dcec462386205d5bd805c895", - "value": 29515.0 + "style": "IPY_MODEL_fdde77827c1f4322a24c797e54d496f2", + "value": 4833.0 } }, - "c4e3f61330494f299c313e1fba9879d5": { + "c45bf70ed4ae4890aaabaca49d0f615e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6731,105 +6668,7 @@ "width": null } }, - "c6d23ec20ed74038b0254bcbeb639579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c8de68eeaf27424297c9f722cd2d6c00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c98ca640ec97447c978096c9dffae108": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62eb93570b5d4b73a10c3294f5282169", - "max": 3126.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_36557b9afad54c6e9901a3cbd079fdb6", - "value": 3126.0 - } - }, - "ca7b9eb29ac14e45932b61f4da703eea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_92b326679f98430daebffe621d903f8b", - "IPY_MODEL_c4a894aa00d44aeb90606fb08f2dd07a", - "IPY_MODEL_2f628fea3c5440d1994e8c3fab26ed2f" - ], - "layout": "IPY_MODEL_f2bc0b63990743bba32c316992e1ba45" - } - }, - "cc9bdf180bc9420ba18e91a5bb91066f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07aea01850d34474998ac8a6f466ff88", - "IPY_MODEL_c98ca640ec97447c978096c9dffae108", - "IPY_MODEL_a630ea700b574b72b048cb0f7e1ac3b7" - ], - "layout": "IPY_MODEL_31516b6ea860436baeaadca8a3c71bd1" - } - }, - "cd14961194584d899e0d01297dd338c0": { + "c4f813e9649e48039c5bd0b35e207bb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6844,51 +6683,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b61aaf7eb80c4254928c8401930158c8", + "layout": "IPY_MODEL_7eb91bbacbe141ec90ef46ca10b57dcd", "placeholder": "​", - "style": "IPY_MODEL_19016750ea0644cebdd042c4e8afb123", - "value": " 8.85k/8.85k [00:00<00:00, 1.06MB/s]" + "style": "IPY_MODEL_d60d37b946794d3782378e0bd0f102b7", + "value": " 4/4 [00:00<00:00, 743.51it/s]" } }, - "cf6a762cd89347ef8a7bbde4bd08ddfe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "c8c2db33e53547c59f1f8273d0afb14d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d1fc3f53344146138b4c2dc309bc4ea4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9e8f9de1a534ee68cd7f7069d753c2a", - "IPY_MODEL_aa9e9d9a479249d8934a1ab0eb762852", - "IPY_MODEL_cd14961194584d899e0d01297dd338c0" - ], - "layout": "IPY_MODEL_260a869201514a69a170430381d0d6a3" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d217a6c4967444a19f6b17010f147e60": { + "c9489669f29b4b75abf976461fd966e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6903,34 +6756,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b4e20adf03eb41fe9c2d1da311c63b42", + "layout": "IPY_MODEL_b534c4a719eb460b84946ab3c472692e", "placeholder": "​", - "style": "IPY_MODEL_6bad75a8af114df9a143e70cbe160745", - "value": " 4.83k/4.83k [00:00<00:00, 569kB/s]" + "style": "IPY_MODEL_2e45616143474b8ea1ddb7218a6728e3", + "value": " 29.5k/29.5k [00:00<00:00, 3.31MB/s]" } }, - "d3f3d0e1a8a64e3cb5cd0cbfcd164ab0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "c95d87d1b0df4546b686f4cf88ccb24f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8194c24624824b878efc8405ff33b040", - "placeholder": "​", - "style": "IPY_MODEL_8b2c38576a614ea0a18e7910d8b929df", - "value": "Downloading builder script: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d6d6925b7962471eb3bc6607439fcaff": { + "c976fabd45d9464ea008207c80d22966": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6982,7 +6866,7 @@ "width": null } }, - "da2096c48d64459b8e1351072d7413c3": { + "cb2373992b0b4605a51ffa888a78f450": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7034,129 +6918,185 @@ "width": null } }, - "dbbd2a3399d042469b7b80af25ad6d27": { + "cc315a763f8b4987b4a50427b6ff63ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a03b51430c6c40509b96cd0f91eb1fa6", - "placeholder": "​", - "style": "IPY_MODEL_1497b9b90d3844f9b3b30a7796014629", - "value": " 4.42M/4.42M [00:00<00:00, 93.0MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dd7fac76d6104f82971e7dfea693b76d": { + "cf39c4bba9634e8b8d569d3740b19f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "e0398fec90b1490eb4a29de274973548": { + "d0c536c8a95c4cecbcbb06b5b8deb5ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d3f3d0e1a8a64e3cb5cd0cbfcd164ab0", - "IPY_MODEL_b0cc566f15984e70a64c4cc705b15a06", - "IPY_MODEL_d217a6c4967444a19f6b17010f147e60" - ], - "layout": "IPY_MODEL_29ee4a1f566a4a3dbe5549f2b1287b81" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d26ecd4428c84aaa80ea156bb653f0d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d32c70b4e6b8458e8eeecf1ebbdd94e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e07a35da9a194f8a9236c8d61852934f": { + "d44404875f0d4b3681cfbf9f2c20b253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9fdc5354318d43cabcfd8a919c3f1341", - "placeholder": "​", - "style": "IPY_MODEL_f977dbb14a0640abb2f6366985ec829f", - "value": "Map (num_proc=4): 100%" + "layout": "IPY_MODEL_440830f3c9cd4d1287aee68635f8431d", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d0c536c8a95c4cecbcbb06b5b8deb5ea", + "value": 10000.0 } }, - "e38456412f5146d6a416b3548f5ce133": { + "d5dab5992d6d4f8cba376bdd291fc9c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_138eda2334ae402fb1b7e2a78894e0f6", - "IPY_MODEL_0cb0ae0ab19a4347ae7ccc4d2a440b66", - "IPY_MODEL_b36908d89dac4259a3c16e665aa9b3c2" - ], - "layout": "IPY_MODEL_3a34f644af374f55a9d893d4067dbaa2" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74b653d96b0047c68f83224d5de6ba09", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53e6e8b2681c4ec8adde8390793a9e60", + "value": 3126.0 } }, - "e3fd248008384046ab9a745eb0620241": { + "d60d37b946794d3782378e0bd0f102b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b0878073014248e79baf346f850f545f", - "placeholder": "​", - "style": "IPY_MODEL_c6d23ec20ed74038b0254bcbeb639579", - "value": " 5.15k/5.15k [00:00<00:00, 589kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e603e243915f4bac8b6ccda96002d978": { + "d7f47b408a12408ead4d34e5b30ef233": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7208,7 +7148,7 @@ "width": null } }, - "e702d1e3650047d0ba739dd044c70d27": { + "da99cf7b8b5f4a8eaf59ed27de9fac56": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7260,7 +7200,7 @@ "width": null } }, - "eda7583c655149409947960a39bca2c6": { + "db23f2aca6654d51b7c042964e54e9d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7275,71 +7215,37 @@ "description_width": "" } }, - "ef367e5823c74c2499dfe159f4cfb315": { + "dfe735786f3f441b8665cb854610e20e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "f12619ccba3540df91fb1b4639e82c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc2e15f3b41b45fe896c1a9ccdb611c5", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf6a762cd89347ef8a7bbde4bd08ddfe", - "value": 26421880.0 - } - }, - "f161f6945aa345b0b12d889c6fff264a": { + "e035a9648b1a46259ffd09cfdf0007c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4cf1e355f56a49f59ee2bb2b26592d0a", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2f618c1e586c4a89ab03335f510a69ac", - "value": 60000.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f20c8a1947134e95b50b3d8dda9d5597": { + "e0a98bf39ab443dc845432721cfb507c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7391,7 +7297,7 @@ "width": null } }, - "f2bc0b63990743bba32c316992e1ba45": { + "e31887c4d54c4b42b8d35af9a4b58419": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7443,7 +7349,28 @@ "width": null } }, - "f747f97b10104b7fb39371d710739e8e": { + "e5823cb037b14ee89645f749f665da3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0e950716bbca4abb9978d5aee7cd0d50", + "placeholder": "​", + "style": "IPY_MODEL_855be5b163824b1abde670fbcbb70189", + "value": " 26.4M/26.4M [00:00<00:00, 118MB/s]" + } + }, + "ecdeb88b2f794811868d510bfea37fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7495,7 +7422,7 @@ "width": null } }, - "f8a9cbe4e8ea476b810ead003234750b": { + "ed5f1ca0fe3040d0adcdf69318837b1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7547,22 +7474,49 @@ "width": null } }, - "f977dbb14a0640abb2f6366985ec829f": { + "ef3014e139214de482090413eec5339e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b41cec22ddfd4c8c8556567e9d2b3ba3", + "placeholder": "​", + "style": "IPY_MODEL_fafbda45463b42eba56f0a9874bffbc5", + "value": "Generating test split: 100%" + } + }, + "f0e548abc0f24df2baa826ad1e7ed39f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43510d13349a47efbb1f2e90212f71a5", + "placeholder": "​", + "style": "IPY_MODEL_226a88b4f7e6490e8a6f2452b98eee2d", + "value": "Downloading data files: 100%" } }, - "faf2e3f794b34b8d8ef7d28f8da9b28d": { + "f28415fe204a4331a5e70d72c417a0ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7614,23 +7568,80 @@ "width": null } }, - "fb2f66e22d3c470bbe23d339ece3c6c2": { + "f4a8f347eb444ff29288ae43949fa5ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f28415fe204a4331a5e70d72c417a0ab", + "placeholder": "​", + "style": "IPY_MODEL_b2d1ac722ae54f7e808c0fe39ae86189", + "value": " 8.85k/8.85k [00:00<00:00, 1.13MB/s]" + } + }, + "fad4a7747af64c20b62a79b3ecfe38ca": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "fbb81b905fe843e3ba7427e41abf7b96": { + "fafbda45463b42eba56f0a9874bffbc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7645,7 +7656,7 @@ "description_width": "" } }, - "fc2e15f3b41b45fe896c1a9ccdb611c5": { + "fd412c639a3e47a5aa05009fbf59a8d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7697,28 +7708,36 @@ "width": null } }, - "fe986ccb368849c1a92738100b65d2d0": { + "fdde77827c1f4322a24c797e54d496f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5cb2876ad7104d0c9be1f79a0c11e18c", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fb2f66e22d3c470bbe23d339ece3c6c2", - "value": 5148.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fe40eaeee2e946d2bd495e0b5384a702": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 477858234..351332cad 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -1004,6 +1004,7 @@

Workflow 1: Use Datalab to detect many types of issues

@@ -1024,11 +1025,12 @@

Workflow 1: Use Datalab to detect many types of issues
 Here is a summary of the different kinds of issues found in the data:
 
-    issue_type  num_issues
-         label          64
-       outlier           7
-near_duplicate           6
-       non_iid           1
+     issue_type  num_issues
+          label          64
+        outlier           7
+ near_duplicate           6
+        non_iid           1
+class_imbalance           0
 
 Dataset Information: num_examples: 250, num_classes: 4
 
@@ -1117,6 +1119,23 @@ 

Workflow 1: Use Datalab to detect many types of issues diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 26c6048a7..6a1ef9928 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:07.603347Z", - "iopub.status.busy": "2023-12-13T17:06:07.602974Z", - "iopub.status.idle": "2023-12-13T17:06:08.676895Z", - "shell.execute_reply": "2023-12-13T17:06:08.676256Z" + "iopub.execute_input": "2023-12-14T18:02:24.072118Z", + "iopub.status.busy": "2023-12-14T18:02:24.071933Z", + "iopub.status.idle": "2023-12-14T18:02:25.128447Z", + "shell.execute_reply": "2023-12-14T18:02:25.127848Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.679906Z", - "iopub.status.busy": "2023-12-13T17:06:08.679448Z", - "iopub.status.idle": "2023-12-13T17:06:08.943624Z", - "shell.execute_reply": "2023-12-13T17:06:08.942970Z" + "iopub.execute_input": "2023-12-14T18:02:25.131275Z", + "iopub.status.busy": "2023-12-14T18:02:25.130898Z", + "iopub.status.idle": "2023-12-14T18:02:25.395723Z", + "shell.execute_reply": "2023-12-14T18:02:25.395121Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.946612Z", - "iopub.status.busy": "2023-12-13T17:06:08.946215Z", - "iopub.status.idle": "2023-12-13T17:06:08.958130Z", - "shell.execute_reply": "2023-12-13T17:06:08.957633Z" + "iopub.execute_input": "2023-12-14T18:02:25.398729Z", + "iopub.status.busy": "2023-12-14T18:02:25.398314Z", + "iopub.status.idle": "2023-12-14T18:02:25.410489Z", + "shell.execute_reply": "2023-12-14T18:02:25.409999Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:08.960386Z", - "iopub.status.busy": "2023-12-13T17:06:08.960018Z", - "iopub.status.idle": "2023-12-13T17:06:09.190939Z", - "shell.execute_reply": "2023-12-13T17:06:09.190300Z" + "iopub.execute_input": "2023-12-14T18:02:25.412814Z", + "iopub.status.busy": "2023-12-14T18:02:25.412441Z", + "iopub.status.idle": "2023-12-14T18:02:25.642334Z", + "shell.execute_reply": "2023-12-14T18:02:25.641675Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:09.193850Z", - "iopub.status.busy": "2023-12-13T17:06:09.193401Z", - "iopub.status.idle": "2023-12-13T17:06:09.220124Z", - "shell.execute_reply": "2023-12-13T17:06:09.219499Z" + "iopub.execute_input": "2023-12-14T18:02:25.645130Z", + "iopub.status.busy": "2023-12-14T18:02:25.644746Z", + "iopub.status.idle": "2023-12-14T18:02:25.670825Z", + "shell.execute_reply": "2023-12-14T18:02:25.670320Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:09.222766Z", - "iopub.status.busy": "2023-12-13T17:06:09.222312Z", - "iopub.status.idle": "2023-12-13T17:06:10.526128Z", - "shell.execute_reply": "2023-12-13T17:06:10.525412Z" + "iopub.execute_input": "2023-12-14T18:02:25.673173Z", + "iopub.status.busy": "2023-12-14T18:02:25.672789Z", + "iopub.status.idle": "2023-12-14T18:02:26.928470Z", + "shell.execute_reply": "2023-12-14T18:02:26.927823Z" } }, "outputs": [ @@ -449,6 +449,7 @@ "Fitting OOD estimator based on provided features ...\n", "Finding near_duplicate issues ...\n", "Finding non_iid issues ...\n", + "Finding class_imbalance issues ...\n", "\n", "Audit complete. 78 issues found in the dataset.\n" ] @@ -471,10 +472,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:10.528839Z", - "iopub.status.busy": "2023-12-13T17:06:10.528425Z", - "iopub.status.idle": "2023-12-13T17:06:10.545120Z", - "shell.execute_reply": "2023-12-13T17:06:10.544459Z" + "iopub.execute_input": "2023-12-14T18:02:26.931231Z", + "iopub.status.busy": "2023-12-14T18:02:26.930790Z", + "iopub.status.idle": "2023-12-14T18:02:26.948871Z", + "shell.execute_reply": "2023-12-14T18:02:26.948351Z" }, "scrolled": true }, @@ -485,11 +486,12 @@ "text": [ "Here is a summary of the different kinds of issues found in the data:\n", "\n", - " issue_type num_issues\n", - " label 64\n", - " outlier 7\n", - "near_duplicate 6\n", - " non_iid 1\n", + " issue_type num_issues\n", + " label 64\n", + " outlier 7\n", + " near_duplicate 6\n", + " non_iid 1\n", + "class_imbalance 0\n", "\n", "Dataset Information: num_examples: 250, num_classes: 4\n", "\n", @@ -577,7 +579,24 @@ "118 False 0.627675\n", "\n", "Additional Information: \n", - "p-value: 0.0\n" + "p-value: 0.0\n", + "\n", + "\n", + "------------------ class_imbalance issues ------------------\n", + "\n", + "About this issue:\n", + "\tExamples belonging to the most under-represented class in the dataset.\n", + "\n", + "Number of examples with this issue: 0\n", + "Overall dataset quality in terms of this issue: 0.1960\n", + "\n", + "Examples representing most severe instances of this issue:\n", + " is_class_imbalance_issue class_imbalance_score\n", + "0 False 1.0\n", + "158 False 1.0\n", + "159 False 1.0\n", + "160 False 1.0\n", + "161 False 1.0\n" ] } ], @@ -599,10 +618,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:10.547744Z", - "iopub.status.busy": "2023-12-13T17:06:10.547371Z", - "iopub.status.idle": "2023-12-13T17:06:11.410447Z", - "shell.execute_reply": "2023-12-13T17:06:11.409732Z" + "iopub.execute_input": "2023-12-14T18:02:26.951284Z", + "iopub.status.busy": "2023-12-14T18:02:26.950912Z", + "iopub.status.idle": "2023-12-14T18:02:27.819564Z", + "shell.execute_reply": "2023-12-14T18:02:27.818934Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +740,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.413450Z", - "iopub.status.busy": "2023-12-13T17:06:11.413010Z", - "iopub.status.idle": "2023-12-13T17:06:11.427644Z", - "shell.execute_reply": "2023-12-13T17:06:11.427018Z" + "iopub.execute_input": "2023-12-14T18:02:27.822151Z", + "iopub.status.busy": "2023-12-14T18:02:27.821898Z", + "iopub.status.idle": "2023-12-14T18:02:27.836253Z", + "shell.execute_reply": "2023-12-14T18:02:27.835653Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +792,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.430141Z", - "iopub.status.busy": "2023-12-13T17:06:11.429686Z", - "iopub.status.idle": "2023-12-13T17:06:11.515714Z", - "shell.execute_reply": "2023-12-13T17:06:11.514993Z" + "iopub.execute_input": "2023-12-14T18:02:27.838761Z", + "iopub.status.busy": "2023-12-14T18:02:27.838474Z", + "iopub.status.idle": "2023-12-14T18:02:27.920547Z", + "shell.execute_reply": "2023-12-14T18:02:27.919839Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +902,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.518396Z", - "iopub.status.busy": "2023-12-13T17:06:11.518137Z", - "iopub.status.idle": "2023-12-13T17:06:11.722244Z", - "shell.execute_reply": "2023-12-13T17:06:11.721551Z" + "iopub.execute_input": "2023-12-14T18:02:27.923153Z", + "iopub.status.busy": "2023-12-14T18:02:27.922893Z", + "iopub.status.idle": "2023-12-14T18:02:28.124987Z", + "shell.execute_reply": "2023-12-14T18:02:28.124368Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +942,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.725001Z", - "iopub.status.busy": "2023-12-13T17:06:11.724512Z", - "iopub.status.idle": "2023-12-13T17:06:11.742115Z", - "shell.execute_reply": "2023-12-13T17:06:11.741609Z" + "iopub.execute_input": "2023-12-14T18:02:28.127644Z", + "iopub.status.busy": "2023-12-14T18:02:28.127227Z", + "iopub.status.idle": "2023-12-14T18:02:28.144223Z", + "shell.execute_reply": "2023-12-14T18:02:28.143727Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +1007,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.744315Z", - "iopub.status.busy": "2023-12-13T17:06:11.744112Z", - "iopub.status.idle": "2023-12-13T17:06:11.754727Z", - "shell.execute_reply": "2023-12-13T17:06:11.754124Z" + "iopub.execute_input": "2023-12-14T18:02:28.146694Z", + "iopub.status.busy": "2023-12-14T18:02:28.146357Z", + "iopub.status.idle": "2023-12-14T18:02:28.156317Z", + "shell.execute_reply": "2023-12-14T18:02:28.155739Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1157,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.757214Z", - "iopub.status.busy": "2023-12-13T17:06:11.756730Z", - "iopub.status.idle": "2023-12-13T17:06:11.853800Z", - "shell.execute_reply": "2023-12-13T17:06:11.853047Z" + "iopub.execute_input": "2023-12-14T18:02:28.158710Z", + "iopub.status.busy": "2023-12-14T18:02:28.158335Z", + "iopub.status.idle": "2023-12-14T18:02:28.256938Z", + "shell.execute_reply": "2023-12-14T18:02:28.256266Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:11.856914Z", - "iopub.status.busy": "2023-12-13T17:06:11.856252Z", - "iopub.status.idle": "2023-12-13T17:06:12.009039Z", - "shell.execute_reply": "2023-12-13T17:06:12.008232Z" + "iopub.execute_input": "2023-12-14T18:02:28.259874Z", + "iopub.status.busy": "2023-12-14T18:02:28.259490Z", + "iopub.status.idle": "2023-12-14T18:02:28.395380Z", + "shell.execute_reply": "2023-12-14T18:02:28.394679Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1304,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.011969Z", - "iopub.status.busy": "2023-12-13T17:06:12.011491Z", - "iopub.status.idle": "2023-12-13T17:06:12.015682Z", - "shell.execute_reply": "2023-12-13T17:06:12.015062Z" + "iopub.execute_input": "2023-12-14T18:02:28.398368Z", + "iopub.status.busy": "2023-12-14T18:02:28.398085Z", + "iopub.status.idle": "2023-12-14T18:02:28.402424Z", + "shell.execute_reply": "2023-12-14T18:02:28.401807Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1345,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.018284Z", - "iopub.status.busy": "2023-12-13T17:06:12.017796Z", - "iopub.status.idle": "2023-12-13T17:06:12.022464Z", - "shell.execute_reply": "2023-12-13T17:06:12.021857Z" + "iopub.execute_input": "2023-12-14T18:02:28.404922Z", + "iopub.status.busy": "2023-12-14T18:02:28.404430Z", + "iopub.status.idle": "2023-12-14T18:02:28.409394Z", + "shell.execute_reply": "2023-12-14T18:02:28.408793Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1403,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.024940Z", - "iopub.status.busy": "2023-12-13T17:06:12.024437Z", - "iopub.status.idle": "2023-12-13T17:06:12.063869Z", - "shell.execute_reply": "2023-12-13T17:06:12.063310Z" + "iopub.execute_input": "2023-12-14T18:02:28.411716Z", + "iopub.status.busy": "2023-12-14T18:02:28.411384Z", + "iopub.status.idle": "2023-12-14T18:02:28.450038Z", + "shell.execute_reply": "2023-12-14T18:02:28.449401Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1457,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.066513Z", - "iopub.status.busy": "2023-12-13T17:06:12.066100Z", - "iopub.status.idle": "2023-12-13T17:06:12.111582Z", - "shell.execute_reply": "2023-12-13T17:06:12.111049Z" + "iopub.execute_input": "2023-12-14T18:02:28.452442Z", + "iopub.status.busy": "2023-12-14T18:02:28.452000Z", + "iopub.status.idle": "2023-12-14T18:02:28.496821Z", + "shell.execute_reply": "2023-12-14T18:02:28.496287Z" }, "id": "SLq-3q4xjruX" }, @@ -1510,10 +1529,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.114123Z", - "iopub.status.busy": "2023-12-13T17:06:12.113743Z", - "iopub.status.idle": "2023-12-13T17:06:12.219872Z", - "shell.execute_reply": "2023-12-13T17:06:12.219073Z" + "iopub.execute_input": "2023-12-14T18:02:28.499292Z", + "iopub.status.busy": "2023-12-14T18:02:28.498864Z", + "iopub.status.idle": "2023-12-14T18:02:28.600233Z", + "shell.execute_reply": "2023-12-14T18:02:28.599582Z" }, "id": "g5LHhhuqFbXK" }, @@ -1545,10 +1564,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.223160Z", - "iopub.status.busy": "2023-12-13T17:06:12.222675Z", - "iopub.status.idle": "2023-12-13T17:06:12.326671Z", - "shell.execute_reply": "2023-12-13T17:06:12.325965Z" + "iopub.execute_input": "2023-12-14T18:02:28.603153Z", + "iopub.status.busy": "2023-12-14T18:02:28.602888Z", + "iopub.status.idle": "2023-12-14T18:02:28.698958Z", + "shell.execute_reply": "2023-12-14T18:02:28.698359Z" }, "id": "p7w8F8ezBcet" }, @@ -1605,10 +1624,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.329549Z", - "iopub.status.busy": "2023-12-13T17:06:12.329271Z", - "iopub.status.idle": "2023-12-13T17:06:12.535420Z", - "shell.execute_reply": "2023-12-13T17:06:12.534727Z" + "iopub.execute_input": "2023-12-14T18:02:28.701927Z", + "iopub.status.busy": "2023-12-14T18:02:28.701423Z", + "iopub.status.idle": "2023-12-14T18:02:28.907110Z", + "shell.execute_reply": "2023-12-14T18:02:28.906417Z" }, "id": "WETRL74tE_sU" }, @@ -1643,10 +1662,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.538137Z", - "iopub.status.busy": "2023-12-13T17:06:12.537741Z", - "iopub.status.idle": "2023-12-13T17:06:12.753304Z", - "shell.execute_reply": "2023-12-13T17:06:12.752552Z" + "iopub.execute_input": "2023-12-14T18:02:28.909812Z", + "iopub.status.busy": "2023-12-14T18:02:28.909317Z", + "iopub.status.idle": "2023-12-14T18:02:29.114541Z", + "shell.execute_reply": "2023-12-14T18:02:29.113890Z" }, "id": "kCfdx2gOLmXS" }, @@ -1808,10 +1827,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.756072Z", - "iopub.status.busy": "2023-12-13T17:06:12.755577Z", - "iopub.status.idle": "2023-12-13T17:06:12.761820Z", - "shell.execute_reply": "2023-12-13T17:06:12.761304Z" + "iopub.execute_input": "2023-12-14T18:02:29.117309Z", + "iopub.status.busy": "2023-12-14T18:02:29.116894Z", + "iopub.status.idle": "2023-12-14T18:02:29.123291Z", + "shell.execute_reply": "2023-12-14T18:02:29.122790Z" }, "id": "-uogYRWFYnuu" }, @@ -1865,10 +1884,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.763982Z", - "iopub.status.busy": "2023-12-13T17:06:12.763781Z", - "iopub.status.idle": "2023-12-13T17:06:12.975718Z", - "shell.execute_reply": "2023-12-13T17:06:12.975010Z" + "iopub.execute_input": "2023-12-14T18:02:29.125851Z", + "iopub.status.busy": "2023-12-14T18:02:29.125470Z", + "iopub.status.idle": "2023-12-14T18:02:29.335341Z", + "shell.execute_reply": "2023-12-14T18:02:29.334643Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1915,10 +1934,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:12.978351Z", - "iopub.status.busy": "2023-12-13T17:06:12.978142Z", - "iopub.status.idle": "2023-12-13T17:06:14.037875Z", - "shell.execute_reply": "2023-12-13T17:06:14.037168Z" + "iopub.execute_input": "2023-12-14T18:02:29.338199Z", + "iopub.status.busy": "2023-12-14T18:02:29.337788Z", + "iopub.status.idle": "2023-12-14T18:02:30.387287Z", + "shell.execute_reply": "2023-12-14T18:02:30.386662Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 0e39bc20b..9d8c2cf19 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:19.079922Z", - "iopub.status.busy": "2023-12-13T17:06:19.079729Z", - "iopub.status.idle": "2023-12-13T17:06:20.122182Z", - "shell.execute_reply": "2023-12-13T17:06:20.121564Z" + "iopub.execute_input": "2023-12-14T18:02:35.498490Z", + "iopub.status.busy": "2023-12-14T18:02:35.498294Z", + "iopub.status.idle": "2023-12-14T18:02:36.503509Z", + "shell.execute_reply": "2023-12-14T18:02:36.502902Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.125300Z", - "iopub.status.busy": "2023-12-13T17:06:20.124844Z", - "iopub.status.idle": "2023-12-13T17:06:20.128115Z", - "shell.execute_reply": "2023-12-13T17:06:20.127530Z" + "iopub.execute_input": "2023-12-14T18:02:36.506716Z", + "iopub.status.busy": "2023-12-14T18:02:36.506138Z", + "iopub.status.idle": "2023-12-14T18:02:36.509385Z", + "shell.execute_reply": "2023-12-14T18:02:36.508856Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.130699Z", - "iopub.status.busy": "2023-12-13T17:06:20.130284Z", - "iopub.status.idle": "2023-12-13T17:06:20.139312Z", - "shell.execute_reply": "2023-12-13T17:06:20.138709Z" + "iopub.execute_input": "2023-12-14T18:02:36.511787Z", + "iopub.status.busy": "2023-12-14T18:02:36.511488Z", + "iopub.status.idle": "2023-12-14T18:02:36.520494Z", + "shell.execute_reply": "2023-12-14T18:02:36.519906Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.141908Z", - "iopub.status.busy": "2023-12-13T17:06:20.141438Z", - "iopub.status.idle": "2023-12-13T17:06:20.190324Z", - "shell.execute_reply": "2023-12-13T17:06:20.189625Z" + "iopub.execute_input": "2023-12-14T18:02:36.522849Z", + "iopub.status.busy": "2023-12-14T18:02:36.522472Z", + "iopub.status.idle": "2023-12-14T18:02:36.572485Z", + "shell.execute_reply": "2023-12-14T18:02:36.571994Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.193409Z", - "iopub.status.busy": "2023-12-13T17:06:20.193040Z", - "iopub.status.idle": "2023-12-13T17:06:20.212195Z", - "shell.execute_reply": "2023-12-13T17:06:20.211687Z" + "iopub.execute_input": "2023-12-14T18:02:36.574752Z", + "iopub.status.busy": "2023-12-14T18:02:36.574383Z", + "iopub.status.idle": "2023-12-14T18:02:36.592990Z", + "shell.execute_reply": "2023-12-14T18:02:36.592467Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.214506Z", - "iopub.status.busy": "2023-12-13T17:06:20.214306Z", - "iopub.status.idle": "2023-12-13T17:06:20.218422Z", - "shell.execute_reply": "2023-12-13T17:06:20.217880Z" + "iopub.execute_input": "2023-12-14T18:02:36.595331Z", + "iopub.status.busy": "2023-12-14T18:02:36.594967Z", + "iopub.status.idle": "2023-12-14T18:02:36.599239Z", + "shell.execute_reply": "2023-12-14T18:02:36.598724Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.220823Z", - "iopub.status.busy": "2023-12-13T17:06:20.220601Z", - "iopub.status.idle": "2023-12-13T17:06:20.248686Z", - "shell.execute_reply": "2023-12-13T17:06:20.248088Z" + "iopub.execute_input": "2023-12-14T18:02:36.601648Z", + "iopub.status.busy": "2023-12-14T18:02:36.601295Z", + "iopub.status.idle": "2023-12-14T18:02:36.630895Z", + "shell.execute_reply": "2023-12-14T18:02:36.630411Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.251936Z", - "iopub.status.busy": "2023-12-13T17:06:20.251446Z", - "iopub.status.idle": "2023-12-13T17:06:20.279964Z", - "shell.execute_reply": "2023-12-13T17:06:20.279376Z" + "iopub.execute_input": "2023-12-14T18:02:36.633391Z", + "iopub.status.busy": "2023-12-14T18:02:36.632950Z", + "iopub.status.idle": "2023-12-14T18:02:36.660359Z", + "shell.execute_reply": "2023-12-14T18:02:36.659871Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:20.283242Z", - "iopub.status.busy": "2023-12-13T17:06:20.282633Z", - "iopub.status.idle": "2023-12-13T17:06:21.643315Z", - "shell.execute_reply": "2023-12-13T17:06:21.642680Z" + "iopub.execute_input": "2023-12-14T18:02:36.662869Z", + "iopub.status.busy": "2023-12-14T18:02:36.662505Z", + "iopub.status.idle": "2023-12-14T18:02:37.955699Z", + "shell.execute_reply": "2023-12-14T18:02:37.955073Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.646385Z", - "iopub.status.busy": "2023-12-13T17:06:21.645901Z", - "iopub.status.idle": "2023-12-13T17:06:21.653462Z", - "shell.execute_reply": "2023-12-13T17:06:21.652862Z" + "iopub.execute_input": "2023-12-14T18:02:37.958717Z", + "iopub.status.busy": "2023-12-14T18:02:37.958174Z", + "iopub.status.idle": "2023-12-14T18:02:37.965605Z", + "shell.execute_reply": "2023-12-14T18:02:37.965053Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.655801Z", - "iopub.status.busy": "2023-12-13T17:06:21.655458Z", - "iopub.status.idle": "2023-12-13T17:06:21.669403Z", - "shell.execute_reply": "2023-12-13T17:06:21.668865Z" + "iopub.execute_input": "2023-12-14T18:02:37.968095Z", + "iopub.status.busy": "2023-12-14T18:02:37.967735Z", + "iopub.status.idle": "2023-12-14T18:02:37.981593Z", + "shell.execute_reply": "2023-12-14T18:02:37.981033Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.671893Z", - "iopub.status.busy": "2023-12-13T17:06:21.671444Z", - "iopub.status.idle": "2023-12-13T17:06:21.678194Z", - "shell.execute_reply": "2023-12-13T17:06:21.677625Z" + "iopub.execute_input": "2023-12-14T18:02:37.983916Z", + "iopub.status.busy": "2023-12-14T18:02:37.983562Z", + "iopub.status.idle": "2023-12-14T18:02:37.990191Z", + "shell.execute_reply": "2023-12-14T18:02:37.989690Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.680785Z", - "iopub.status.busy": "2023-12-13T17:06:21.680267Z", - "iopub.status.idle": "2023-12-13T17:06:21.683589Z", - "shell.execute_reply": "2023-12-13T17:06:21.682970Z" + "iopub.execute_input": "2023-12-14T18:02:37.992652Z", + "iopub.status.busy": "2023-12-14T18:02:37.992223Z", + "iopub.status.idle": "2023-12-14T18:02:37.995212Z", + "shell.execute_reply": "2023-12-14T18:02:37.994601Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.685825Z", - "iopub.status.busy": "2023-12-13T17:06:21.685630Z", - "iopub.status.idle": "2023-12-13T17:06:21.689981Z", - "shell.execute_reply": "2023-12-13T17:06:21.689429Z" + "iopub.execute_input": "2023-12-14T18:02:37.997724Z", + "iopub.status.busy": "2023-12-14T18:02:37.997203Z", + "iopub.status.idle": "2023-12-14T18:02:38.001471Z", + "shell.execute_reply": "2023-12-14T18:02:38.000852Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.692558Z", - "iopub.status.busy": "2023-12-13T17:06:21.692088Z", - "iopub.status.idle": "2023-12-13T17:06:21.695383Z", - "shell.execute_reply": "2023-12-13T17:06:21.694852Z" + "iopub.execute_input": "2023-12-14T18:02:38.003895Z", + "iopub.status.busy": "2023-12-14T18:02:38.003648Z", + "iopub.status.idle": "2023-12-14T18:02:38.006717Z", + "shell.execute_reply": "2023-12-14T18:02:38.006180Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.697730Z", - "iopub.status.busy": "2023-12-13T17:06:21.697349Z", - "iopub.status.idle": "2023-12-13T17:06:21.702211Z", - "shell.execute_reply": "2023-12-13T17:06:21.701688Z" + "iopub.execute_input": "2023-12-14T18:02:38.008990Z", + "iopub.status.busy": "2023-12-14T18:02:38.008791Z", + "iopub.status.idle": "2023-12-14T18:02:38.013309Z", + "shell.execute_reply": "2023-12-14T18:02:38.012653Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.704690Z", - "iopub.status.busy": "2023-12-13T17:06:21.704310Z", - "iopub.status.idle": "2023-12-13T17:06:21.737641Z", - "shell.execute_reply": "2023-12-13T17:06:21.737117Z" + "iopub.execute_input": "2023-12-14T18:02:38.015725Z", + "iopub.status.busy": "2023-12-14T18:02:38.015519Z", + "iopub.status.idle": "2023-12-14T18:02:38.048784Z", + "shell.execute_reply": "2023-12-14T18:02:38.048278Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:21.740300Z", - "iopub.status.busy": "2023-12-13T17:06:21.739831Z", - "iopub.status.idle": "2023-12-13T17:06:21.745031Z", - "shell.execute_reply": "2023-12-13T17:06:21.744383Z" + "iopub.execute_input": "2023-12-14T18:02:38.051054Z", + "iopub.status.busy": "2023-12-14T18:02:38.050851Z", + "iopub.status.idle": "2023-12-14T18:02:38.055912Z", + "shell.execute_reply": "2023-12-14T18:02:38.055371Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 018f21b5f..c61feaa6e 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:27.396687Z", - "iopub.status.busy": "2023-12-13T17:06:27.396478Z", - "iopub.status.idle": "2023-12-13T17:06:28.496471Z", - "shell.execute_reply": "2023-12-13T17:06:28.495775Z" + "iopub.execute_input": "2023-12-14T18:02:42.763434Z", + "iopub.status.busy": "2023-12-14T18:02:42.762892Z", + "iopub.status.idle": "2023-12-14T18:02:43.820680Z", + "shell.execute_reply": "2023-12-14T18:02:43.820071Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.499523Z", - "iopub.status.busy": "2023-12-13T17:06:28.499036Z", - "iopub.status.idle": "2023-12-13T17:06:28.796186Z", - "shell.execute_reply": "2023-12-13T17:06:28.795469Z" + "iopub.execute_input": "2023-12-14T18:02:43.823503Z", + "iopub.status.busy": "2023-12-14T18:02:43.823072Z", + "iopub.status.idle": "2023-12-14T18:02:44.102978Z", + "shell.execute_reply": "2023-12-14T18:02:44.102286Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.799154Z", - "iopub.status.busy": "2023-12-13T17:06:28.798934Z", - "iopub.status.idle": "2023-12-13T17:06:28.813494Z", - "shell.execute_reply": "2023-12-13T17:06:28.812856Z" + "iopub.execute_input": "2023-12-14T18:02:44.105821Z", + "iopub.status.busy": "2023-12-14T18:02:44.105615Z", + "iopub.status.idle": "2023-12-14T18:02:44.119669Z", + "shell.execute_reply": "2023-12-14T18:02:44.119156Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:28.815886Z", - "iopub.status.busy": "2023-12-13T17:06:28.815526Z", - "iopub.status.idle": "2023-12-13T17:06:31.419463Z", - "shell.execute_reply": "2023-12-13T17:06:31.418818Z" + "iopub.execute_input": "2023-12-14T18:02:44.122137Z", + "iopub.status.busy": "2023-12-14T18:02:44.121715Z", + "iopub.status.idle": "2023-12-14T18:02:46.746936Z", + "shell.execute_reply": "2023-12-14T18:02:46.746276Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:31.422186Z", - "iopub.status.busy": "2023-12-13T17:06:31.421804Z", - "iopub.status.idle": "2023-12-13T17:06:32.984966Z", - "shell.execute_reply": "2023-12-13T17:06:32.984232Z" + "iopub.execute_input": "2023-12-14T18:02:46.749721Z", + "iopub.status.busy": "2023-12-14T18:02:46.749312Z", + "iopub.status.idle": "2023-12-14T18:02:48.307171Z", + "shell.execute_reply": "2023-12-14T18:02:48.306560Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:32.987907Z", - "iopub.status.busy": "2023-12-13T17:06:32.987700Z", - "iopub.status.idle": "2023-12-13T17:06:33.007439Z", - "shell.execute_reply": "2023-12-13T17:06:33.006919Z" + "iopub.execute_input": "2023-12-14T18:02:48.309940Z", + "iopub.status.busy": "2023-12-14T18:02:48.309716Z", + "iopub.status.idle": "2023-12-14T18:02:48.336566Z", + "shell.execute_reply": "2023-12-14T18:02:48.336023Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:33.009809Z", - "iopub.status.busy": "2023-12-13T17:06:33.009509Z", - "iopub.status.idle": "2023-12-13T17:06:34.349489Z", - "shell.execute_reply": "2023-12-13T17:06:34.348718Z" + "iopub.execute_input": "2023-12-14T18:02:48.339001Z", + "iopub.status.busy": "2023-12-14T18:02:48.338797Z", + "iopub.status.idle": "2023-12-14T18:02:49.625773Z", + "shell.execute_reply": "2023-12-14T18:02:49.624920Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:34.352788Z", - "iopub.status.busy": "2023-12-13T17:06:34.351922Z", - "iopub.status.idle": "2023-12-13T17:06:37.093528Z", - "shell.execute_reply": "2023-12-13T17:06:37.092837Z" + "iopub.execute_input": "2023-12-14T18:02:49.628998Z", + "iopub.status.busy": "2023-12-14T18:02:49.628163Z", + "iopub.status.idle": "2023-12-14T18:02:52.406998Z", + "shell.execute_reply": "2023-12-14T18:02:52.406308Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.096333Z", - "iopub.status.busy": "2023-12-13T17:06:37.095893Z", - "iopub.status.idle": "2023-12-13T17:06:37.100859Z", - "shell.execute_reply": "2023-12-13T17:06:37.100308Z" + "iopub.execute_input": "2023-12-14T18:02:52.409621Z", + "iopub.status.busy": "2023-12-14T18:02:52.409397Z", + "iopub.status.idle": "2023-12-14T18:02:52.414622Z", + "shell.execute_reply": "2023-12-14T18:02:52.414082Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.103295Z", - "iopub.status.busy": "2023-12-13T17:06:37.102846Z", - "iopub.status.idle": "2023-12-13T17:06:37.107098Z", - "shell.execute_reply": "2023-12-13T17:06:37.106467Z" + "iopub.execute_input": "2023-12-14T18:02:52.417042Z", + "iopub.status.busy": "2023-12-14T18:02:52.416575Z", + "iopub.status.idle": "2023-12-14T18:02:52.420727Z", + "shell.execute_reply": "2023-12-14T18:02:52.420115Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:37.109523Z", - "iopub.status.busy": "2023-12-13T17:06:37.109175Z", - "iopub.status.idle": "2023-12-13T17:06:37.112700Z", - "shell.execute_reply": "2023-12-13T17:06:37.112051Z" + "iopub.execute_input": "2023-12-14T18:02:52.423253Z", + "iopub.status.busy": "2023-12-14T18:02:52.422926Z", + "iopub.status.idle": "2023-12-14T18:02:52.426410Z", + "shell.execute_reply": "2023-12-14T18:02:52.425763Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 0956e9bd5..2fcb325d0 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:42.258095Z", - "iopub.status.busy": "2023-12-13T17:06:42.257899Z", - "iopub.status.idle": "2023-12-13T17:06:43.359119Z", - "shell.execute_reply": "2023-12-13T17:06:43.358503Z" + "iopub.execute_input": "2023-12-14T18:02:57.429594Z", + "iopub.status.busy": "2023-12-14T18:02:57.429128Z", + "iopub.status.idle": "2023-12-14T18:02:58.499464Z", + "shell.execute_reply": "2023-12-14T18:02:58.498784Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:43.362153Z", - "iopub.status.busy": "2023-12-13T17:06:43.361586Z", - "iopub.status.idle": "2023-12-13T17:06:44.856607Z", - "shell.execute_reply": "2023-12-13T17:06:44.855829Z" + "iopub.execute_input": "2023-12-14T18:02:58.502402Z", + "iopub.status.busy": "2023-12-14T18:02:58.502104Z", + "iopub.status.idle": "2023-12-14T18:03:00.118583Z", + "shell.execute_reply": "2023-12-14T18:03:00.117820Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.859733Z", - "iopub.status.busy": "2023-12-13T17:06:44.859220Z", - "iopub.status.idle": "2023-12-13T17:06:44.862725Z", - "shell.execute_reply": "2023-12-13T17:06:44.862095Z" + "iopub.execute_input": "2023-12-14T18:03:00.121672Z", + "iopub.status.busy": "2023-12-14T18:03:00.121202Z", + "iopub.status.idle": "2023-12-14T18:03:00.124506Z", + "shell.execute_reply": "2023-12-14T18:03:00.123948Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.865297Z", - "iopub.status.busy": "2023-12-13T17:06:44.864952Z", - "iopub.status.idle": "2023-12-13T17:06:44.870714Z", - "shell.execute_reply": "2023-12-13T17:06:44.870104Z" + "iopub.execute_input": "2023-12-14T18:03:00.126936Z", + "iopub.status.busy": "2023-12-14T18:03:00.126572Z", + "iopub.status.idle": "2023-12-14T18:03:00.132181Z", + "shell.execute_reply": "2023-12-14T18:03:00.131708Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:44.873309Z", - "iopub.status.busy": "2023-12-13T17:06:44.872918Z", - "iopub.status.idle": "2023-12-13T17:06:45.494774Z", - "shell.execute_reply": "2023-12-13T17:06:45.494107Z" + "iopub.execute_input": "2023-12-14T18:03:00.134510Z", + "iopub.status.busy": "2023-12-14T18:03:00.134140Z", + "iopub.status.idle": "2023-12-14T18:03:00.743601Z", + "shell.execute_reply": "2023-12-14T18:03:00.742930Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.497832Z", - "iopub.status.busy": "2023-12-13T17:06:45.497579Z", - "iopub.status.idle": "2023-12-13T17:06:45.503564Z", - "shell.execute_reply": "2023-12-13T17:06:45.503070Z" + "iopub.execute_input": "2023-12-14T18:03:00.746269Z", + "iopub.status.busy": "2023-12-14T18:03:00.745888Z", + "iopub.status.idle": "2023-12-14T18:03:00.752029Z", + "shell.execute_reply": "2023-12-14T18:03:00.751516Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.505902Z", - "iopub.status.busy": "2023-12-13T17:06:45.505703Z", - "iopub.status.idle": "2023-12-13T17:06:45.510134Z", - "shell.execute_reply": "2023-12-13T17:06:45.509630Z" + "iopub.execute_input": "2023-12-14T18:03:00.754357Z", + "iopub.status.busy": "2023-12-14T18:03:00.754157Z", + "iopub.status.idle": "2023-12-14T18:03:00.758191Z", + "shell.execute_reply": "2023-12-14T18:03:00.757693Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:45.512327Z", - "iopub.status.busy": "2023-12-13T17:06:45.512134Z", - "iopub.status.idle": "2023-12-13T17:06:46.178970Z", - "shell.execute_reply": "2023-12-13T17:06:46.178326Z" + "iopub.execute_input": "2023-12-14T18:03:00.760695Z", + "iopub.status.busy": "2023-12-14T18:03:00.760286Z", + "iopub.status.idle": "2023-12-14T18:03:01.298819Z", + "shell.execute_reply": "2023-12-14T18:03:01.298089Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.181828Z", - "iopub.status.busy": "2023-12-13T17:06:46.181431Z", - "iopub.status.idle": "2023-12-13T17:06:46.293697Z", - "shell.execute_reply": "2023-12-13T17:06:46.293024Z" + "iopub.execute_input": "2023-12-14T18:03:01.301346Z", + "iopub.status.busy": "2023-12-14T18:03:01.301133Z", + "iopub.status.idle": "2023-12-14T18:03:01.401779Z", + "shell.execute_reply": "2023-12-14T18:03:01.401111Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.296344Z", - "iopub.status.busy": "2023-12-13T17:06:46.295841Z", - "iopub.status.idle": "2023-12-13T17:06:46.300612Z", - "shell.execute_reply": "2023-12-13T17:06:46.299988Z" + "iopub.execute_input": "2023-12-14T18:03:01.404183Z", + "iopub.status.busy": "2023-12-14T18:03:01.403981Z", + "iopub.status.idle": "2023-12-14T18:03:01.408512Z", + "shell.execute_reply": "2023-12-14T18:03:01.407936Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.303088Z", - "iopub.status.busy": "2023-12-13T17:06:46.302638Z", - "iopub.status.idle": "2023-12-13T17:06:46.681155Z", - "shell.execute_reply": "2023-12-13T17:06:46.680455Z" + "iopub.execute_input": "2023-12-14T18:03:01.410816Z", + "iopub.status.busy": "2023-12-14T18:03:01.410617Z", + "iopub.status.idle": "2023-12-14T18:03:01.786933Z", + "shell.execute_reply": "2023-12-14T18:03:01.786303Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:46.684464Z", - "iopub.status.busy": "2023-12-13T17:06:46.684251Z", - "iopub.status.idle": "2023-12-13T17:06:47.022206Z", - "shell.execute_reply": "2023-12-13T17:06:47.021556Z" + "iopub.execute_input": "2023-12-14T18:03:01.790104Z", + "iopub.status.busy": "2023-12-14T18:03:01.789600Z", + "iopub.status.idle": "2023-12-14T18:03:02.127665Z", + "shell.execute_reply": "2023-12-14T18:03:02.127011Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.025390Z", - "iopub.status.busy": "2023-12-13T17:06:47.025169Z", - "iopub.status.idle": "2023-12-13T17:06:47.381361Z", - "shell.execute_reply": "2023-12-13T17:06:47.380742Z" + "iopub.execute_input": "2023-12-14T18:03:02.131087Z", + "iopub.status.busy": "2023-12-14T18:03:02.130509Z", + "iopub.status.idle": "2023-12-14T18:03:02.517372Z", + "shell.execute_reply": "2023-12-14T18:03:02.516686Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.384596Z", - "iopub.status.busy": "2023-12-13T17:06:47.384385Z", - "iopub.status.idle": "2023-12-13T17:06:47.847132Z", - "shell.execute_reply": "2023-12-13T17:06:47.846409Z" + "iopub.execute_input": "2023-12-14T18:03:02.520922Z", + "iopub.status.busy": "2023-12-14T18:03:02.520544Z", + "iopub.status.idle": "2023-12-14T18:03:02.985910Z", + "shell.execute_reply": "2023-12-14T18:03:02.985211Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:47.852072Z", - "iopub.status.busy": "2023-12-13T17:06:47.851854Z", - "iopub.status.idle": "2023-12-13T17:06:48.302755Z", - "shell.execute_reply": "2023-12-13T17:06:48.302057Z" + "iopub.execute_input": "2023-12-14T18:03:02.990456Z", + "iopub.status.busy": "2023-12-14T18:03:02.990021Z", + "iopub.status.idle": "2023-12-14T18:03:03.442649Z", + "shell.execute_reply": "2023-12-14T18:03:03.441978Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.306212Z", - "iopub.status.busy": "2023-12-13T17:06:48.305792Z", - "iopub.status.idle": "2023-12-13T17:06:48.633691Z", - "shell.execute_reply": "2023-12-13T17:06:48.633015Z" + "iopub.execute_input": "2023-12-14T18:03:03.446284Z", + "iopub.status.busy": "2023-12-14T18:03:03.445836Z", + "iopub.status.idle": "2023-12-14T18:03:03.775130Z", + "shell.execute_reply": "2023-12-14T18:03:03.774481Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.636295Z", - "iopub.status.busy": "2023-12-13T17:06:48.635848Z", - "iopub.status.idle": "2023-12-13T17:06:48.816179Z", - "shell.execute_reply": "2023-12-13T17:06:48.815568Z" + "iopub.execute_input": "2023-12-14T18:03:03.777792Z", + "iopub.status.busy": "2023-12-14T18:03:03.777378Z", + "iopub.status.idle": "2023-12-14T18:03:03.975887Z", + "shell.execute_reply": "2023-12-14T18:03:03.975274Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:48.819273Z", - "iopub.status.busy": "2023-12-13T17:06:48.818800Z", - "iopub.status.idle": "2023-12-13T17:06:48.822646Z", - "shell.execute_reply": "2023-12-13T17:06:48.822115Z" + "iopub.execute_input": "2023-12-14T18:03:03.978540Z", + "iopub.status.busy": "2023-12-14T18:03:03.978149Z", + "iopub.status.idle": "2023-12-14T18:03:03.981920Z", + "shell.execute_reply": "2023-12-14T18:03:03.981385Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 6ea5de4cb..2ad76cfde 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -931,7 +931,7 @@

2. Pre-process the Cifar10 dataset
-
+
@@ -1276,7 +1276,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 32f88203c..72ea54a17 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:51.551871Z", - "iopub.status.busy": "2023-12-13T17:06:51.551419Z", - "iopub.status.idle": "2023-12-13T17:06:53.512736Z", - "shell.execute_reply": "2023-12-13T17:06:53.512092Z" + "iopub.execute_input": "2023-12-14T18:03:06.473589Z", + "iopub.status.busy": "2023-12-14T18:03:06.473022Z", + "iopub.status.idle": "2023-12-14T18:03:08.382197Z", + "shell.execute_reply": "2023-12-14T18:03:08.381577Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.515696Z", - "iopub.status.busy": "2023-12-13T17:06:53.515209Z", - "iopub.status.idle": "2023-12-13T17:06:53.826902Z", - "shell.execute_reply": "2023-12-13T17:06:53.826197Z" + "iopub.execute_input": "2023-12-14T18:03:08.385248Z", + "iopub.status.busy": "2023-12-14T18:03:08.384717Z", + "iopub.status.idle": "2023-12-14T18:03:08.695675Z", + "shell.execute_reply": "2023-12-14T18:03:08.694994Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.829891Z", - "iopub.status.busy": "2023-12-13T17:06:53.829488Z", - "iopub.status.idle": "2023-12-13T17:06:53.833589Z", - "shell.execute_reply": "2023-12-13T17:06:53.833098Z" + "iopub.execute_input": "2023-12-14T18:03:08.698618Z", + "iopub.status.busy": "2023-12-14T18:03:08.698245Z", + "iopub.status.idle": "2023-12-14T18:03:08.702260Z", + "shell.execute_reply": "2023-12-14T18:03:08.701754Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:53.836210Z", - "iopub.status.busy": "2023-12-13T17:06:53.835700Z", - "iopub.status.idle": "2023-12-13T17:06:58.191990Z", - "shell.execute_reply": "2023-12-13T17:06:58.191327Z" + "iopub.execute_input": "2023-12-14T18:03:08.704512Z", + "iopub.status.busy": "2023-12-14T18:03:08.704220Z", + "iopub.status.idle": "2023-12-14T18:03:12.869425Z", + "shell.execute_reply": "2023-12-14T18:03:12.868740Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9a5b816f7b634efdbea992faf652da21", + "model_id": "ee153bf7d4314328af5f224b811de6d5", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.194527Z", - "iopub.status.busy": "2023-12-13T17:06:58.194328Z", - "iopub.status.idle": "2023-12-13T17:06:58.199369Z", - "shell.execute_reply": "2023-12-13T17:06:58.198822Z" + "iopub.execute_input": "2023-12-14T18:03:12.872131Z", + "iopub.status.busy": "2023-12-14T18:03:12.871783Z", + "iopub.status.idle": "2023-12-14T18:03:12.876916Z", + "shell.execute_reply": "2023-12-14T18:03:12.876391Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.201778Z", - "iopub.status.busy": "2023-12-13T17:06:58.201344Z", - "iopub.status.idle": "2023-12-13T17:06:58.738680Z", - "shell.execute_reply": "2023-12-13T17:06:58.737957Z" + "iopub.execute_input": "2023-12-14T18:03:12.879361Z", + "iopub.status.busy": "2023-12-14T18:03:12.878993Z", + "iopub.status.idle": "2023-12-14T18:03:13.423588Z", + "shell.execute_reply": "2023-12-14T18:03:13.422906Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:58.741576Z", - "iopub.status.busy": "2023-12-13T17:06:58.741194Z", - "iopub.status.idle": "2023-12-13T17:06:59.360398Z", - "shell.execute_reply": "2023-12-13T17:06:59.359719Z" + "iopub.execute_input": "2023-12-14T18:03:13.426040Z", + "iopub.status.busy": "2023-12-14T18:03:13.425824Z", + "iopub.status.idle": "2023-12-14T18:03:14.052109Z", + "shell.execute_reply": "2023-12-14T18:03:14.051449Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:59.363195Z", - "iopub.status.busy": "2023-12-13T17:06:59.362686Z", - "iopub.status.idle": "2023-12-13T17:06:59.366603Z", - "shell.execute_reply": "2023-12-13T17:06:59.365978Z" + "iopub.execute_input": "2023-12-14T18:03:14.054844Z", + "iopub.status.busy": "2023-12-14T18:03:14.054413Z", + "iopub.status.idle": "2023-12-14T18:03:14.058140Z", + "shell.execute_reply": "2023-12-14T18:03:14.057617Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:06:59.368988Z", - "iopub.status.busy": "2023-12-13T17:06:59.368537Z", - "iopub.status.idle": "2023-12-13T17:07:11.497995Z", - "shell.execute_reply": "2023-12-13T17:07:11.497330Z" + "iopub.execute_input": "2023-12-14T18:03:14.060514Z", + "iopub.status.busy": "2023-12-14T18:03:14.060102Z", + "iopub.status.idle": "2023-12-14T18:03:26.100850Z", + "shell.execute_reply": "2023-12-14T18:03:26.100133Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:11.500711Z", - "iopub.status.busy": "2023-12-13T17:07:11.500491Z", - "iopub.status.idle": "2023-12-13T17:07:13.086720Z", - "shell.execute_reply": "2023-12-13T17:07:13.085965Z" + "iopub.execute_input": "2023-12-14T18:03:26.103663Z", + "iopub.status.busy": "2023-12-14T18:03:26.103270Z", + "iopub.status.idle": "2023-12-14T18:03:27.714837Z", + "shell.execute_reply": "2023-12-14T18:03:27.714093Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:13.090429Z", - "iopub.status.busy": "2023-12-13T17:07:13.090029Z", - "iopub.status.idle": "2023-12-13T17:07:13.359651Z", - "shell.execute_reply": "2023-12-13T17:07:13.358963Z" + "iopub.execute_input": "2023-12-14T18:03:27.718317Z", + "iopub.status.busy": "2023-12-14T18:03:27.717759Z", + "iopub.status.idle": "2023-12-14T18:03:27.979694Z", + "shell.execute_reply": "2023-12-14T18:03:27.978995Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:13.363269Z", - "iopub.status.busy": "2023-12-13T17:07:13.362486Z", - "iopub.status.idle": "2023-12-13T17:07:14.019512Z", - "shell.execute_reply": "2023-12-13T17:07:14.018803Z" + "iopub.execute_input": "2023-12-14T18:03:27.983091Z", + "iopub.status.busy": "2023-12-14T18:03:27.982846Z", + "iopub.status.idle": "2023-12-14T18:03:28.652536Z", + "shell.execute_reply": "2023-12-14T18:03:28.651849Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.022898Z", - "iopub.status.busy": "2023-12-13T17:07:14.022259Z", - "iopub.status.idle": "2023-12-13T17:07:14.535949Z", - "shell.execute_reply": "2023-12-13T17:07:14.535283Z" + "iopub.execute_input": "2023-12-14T18:03:28.655804Z", + "iopub.status.busy": "2023-12-14T18:03:28.655553Z", + "iopub.status.idle": "2023-12-14T18:03:29.144698Z", + "shell.execute_reply": "2023-12-14T18:03:29.144104Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.538817Z", - "iopub.status.busy": "2023-12-13T17:07:14.538310Z", - "iopub.status.idle": "2023-12-13T17:07:14.788025Z", - "shell.execute_reply": "2023-12-13T17:07:14.787322Z" + "iopub.execute_input": "2023-12-14T18:03:29.147261Z", + "iopub.status.busy": "2023-12-14T18:03:29.147048Z", + "iopub.status.idle": "2023-12-14T18:03:29.377648Z", + "shell.execute_reply": "2023-12-14T18:03:29.376973Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.791574Z", - "iopub.status.busy": "2023-12-13T17:07:14.790998Z", - "iopub.status.idle": "2023-12-13T17:07:14.873697Z", - "shell.execute_reply": "2023-12-13T17:07:14.873115Z" + "iopub.execute_input": "2023-12-14T18:03:29.380489Z", + "iopub.status.busy": "2023-12-14T18:03:29.380281Z", + "iopub.status.idle": "2023-12-14T18:03:29.452807Z", + "shell.execute_reply": "2023-12-14T18:03:29.452089Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:14.876693Z", - "iopub.status.busy": "2023-12-13T17:07:14.876210Z", - "iopub.status.idle": "2023-12-13T17:07:52.522504Z", - "shell.execute_reply": "2023-12-13T17:07:52.521855Z" + "iopub.execute_input": "2023-12-14T18:03:29.455954Z", + "iopub.status.busy": "2023-12-14T18:03:29.455417Z", + "iopub.status.idle": "2023-12-14T18:04:07.333379Z", + "shell.execute_reply": "2023-12-14T18:04:07.332653Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:52.525431Z", - "iopub.status.busy": "2023-12-13T17:07:52.524943Z", - "iopub.status.idle": "2023-12-13T17:07:53.713014Z", - "shell.execute_reply": "2023-12-13T17:07:53.712362Z" + "iopub.execute_input": "2023-12-14T18:04:07.336366Z", + "iopub.status.busy": "2023-12-14T18:04:07.335933Z", + "iopub.status.idle": "2023-12-14T18:04:08.506524Z", + "shell.execute_reply": "2023-12-14T18:04:08.505880Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.716256Z", - "iopub.status.busy": "2023-12-13T17:07:53.715617Z", - "iopub.status.idle": "2023-12-13T17:07:53.901684Z", - "shell.execute_reply": "2023-12-13T17:07:53.901092Z" + "iopub.execute_input": "2023-12-14T18:04:08.509954Z", + "iopub.status.busy": "2023-12-14T18:04:08.509200Z", + "iopub.status.idle": "2023-12-14T18:04:08.690971Z", + "shell.execute_reply": "2023-12-14T18:04:08.690211Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.904637Z", - "iopub.status.busy": "2023-12-13T17:07:53.904239Z", - "iopub.status.idle": "2023-12-13T17:07:53.907611Z", - "shell.execute_reply": "2023-12-13T17:07:53.907016Z" + "iopub.execute_input": "2023-12-14T18:04:08.694372Z", + "iopub.status.busy": "2023-12-14T18:04:08.693784Z", + "iopub.status.idle": "2023-12-14T18:04:08.697214Z", + "shell.execute_reply": "2023-12-14T18:04:08.696722Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:53.910340Z", - "iopub.status.busy": "2023-12-13T17:07:53.909896Z", - "iopub.status.idle": "2023-12-13T17:07:53.918473Z", - "shell.execute_reply": "2023-12-13T17:07:53.917861Z" + "iopub.execute_input": "2023-12-14T18:04:08.699663Z", + "iopub.status.busy": "2023-12-14T18:04:08.699216Z", + "iopub.status.idle": "2023-12-14T18:04:08.708226Z", + "shell.execute_reply": "2023-12-14T18:04:08.707739Z" }, "nbsphinx": "hidden" }, @@ -1017,28 +1017,47 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24f7cb4f7cb9402ea3cd950c60dd10ea": { + "04b70dbe97f74b799807f989574759b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4c5f2eecf1034a8783220614d135af16", - "placeholder": "​", - "style": "IPY_MODEL_ea41899b20f04e849205803619082605", - "value": "100%" + "layout": "IPY_MODEL_b72098d19efa4bb09a6232d17391c50d", + "max": 170498071.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0dfe478d861e4614992f604d5f9ae39c", + "value": 170498071.0 } }, - "3432bb5f169743b4b1a4c692f914bbd0": { + "0dfe478d861e4614992f604d5f9ae39c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "14c1a6a981094ab685e020bf5f4af86b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1090,31 +1109,22 @@ "width": null } }, - "4b7163d7a10241b6b0a45f6a47f29b33": { + "39d9fd37946c4d6da462f23d91cdba8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_910d3109834a4318b94258cc84f99e71", - "max": 170498071.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_826cceda4c96417a861144911300042f", - "value": 170498071.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "4c5f2eecf1034a8783220614d135af16": { + "4bfe3220305647e683c64052ba79652f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1166,7 +1176,7 @@ "width": null } }, - "6404a5dfeab14b3f9373840e48395d05": { + "66809dcbb17b442d9713a0a3d9d79b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1181,13 +1191,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3432bb5f169743b4b1a4c692f914bbd0", + "layout": "IPY_MODEL_b32be7bbd9984ff399359904f4bb1c95", "placeholder": "​", - "style": "IPY_MODEL_7d99e8c15280460283d8cfff670e1ae9", - "value": " 170498071/170498071 [00:01<00:00, 115224040.64it/s]" + "style": "IPY_MODEL_39d9fd37946c4d6da462f23d91cdba8d", + "value": " 170498071/170498071 [00:01<00:00, 115500246.87it/s]" + } + }, + "6dd13658ea27451099e708b7b09f3c94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6c77c8a4e13d4003ab449a707940923e": { + "b32be7bbd9984ff399359904f4bb1c95": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1239,38 +1264,7 @@ "width": null } }, - "7d99e8c15280460283d8cfff670e1ae9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "826cceda4c96417a861144911300042f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "910d3109834a4318b94258cc84f99e71": { + "b72098d19efa4bb09a6232d17391c50d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1322,7 +1316,7 @@ "width": null } }, - "9a5b816f7b634efdbea992faf652da21": { + "ee153bf7d4314328af5f224b811de6d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1337,26 +1331,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_24f7cb4f7cb9402ea3cd950c60dd10ea", - "IPY_MODEL_4b7163d7a10241b6b0a45f6a47f29b33", - "IPY_MODEL_6404a5dfeab14b3f9373840e48395d05" + "IPY_MODEL_fbe5e1b7fc014133bf0190803982f413", + "IPY_MODEL_04b70dbe97f74b799807f989574759b2", + "IPY_MODEL_66809dcbb17b442d9713a0a3d9d79b75" ], - "layout": "IPY_MODEL_6c77c8a4e13d4003ab449a707940923e" + "layout": "IPY_MODEL_14c1a6a981094ab685e020bf5f4af86b" } }, - "ea41899b20f04e849205803619082605": { + "fbe5e1b7fc014133bf0190803982f413": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4bfe3220305647e683c64052ba79652f", + "placeholder": "​", + "style": "IPY_MODEL_6dd13658ea27451099e708b7b09f3c94", + "value": "100%" } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index cc7ea110c..c68f11afb 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:58.589005Z", - "iopub.status.busy": "2023-12-13T17:07:58.588327Z", - "iopub.status.idle": "2023-12-13T17:07:59.662761Z", - "shell.execute_reply": "2023-12-13T17:07:59.662154Z" + "iopub.execute_input": "2023-12-14T18:04:13.360971Z", + "iopub.status.busy": "2023-12-14T18:04:13.360613Z", + "iopub.status.idle": "2023-12-14T18:04:14.429929Z", + "shell.execute_reply": "2023-12-14T18:04:14.429297Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.665787Z", - "iopub.status.busy": "2023-12-13T17:07:59.665341Z", - "iopub.status.idle": "2023-12-13T17:07:59.681423Z", - "shell.execute_reply": "2023-12-13T17:07:59.680938Z" + "iopub.execute_input": "2023-12-14T18:04:14.432941Z", + "iopub.status.busy": "2023-12-14T18:04:14.432431Z", + "iopub.status.idle": "2023-12-14T18:04:14.448458Z", + "shell.execute_reply": "2023-12-14T18:04:14.447979Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.683750Z", - "iopub.status.busy": "2023-12-13T17:07:59.683397Z", - "iopub.status.idle": "2023-12-13T17:07:59.686526Z", - "shell.execute_reply": "2023-12-13T17:07:59.685930Z" + "iopub.execute_input": "2023-12-14T18:04:14.450826Z", + "iopub.status.busy": "2023-12-14T18:04:14.450458Z", + "iopub.status.idle": "2023-12-14T18:04:14.453581Z", + "shell.execute_reply": "2023-12-14T18:04:14.453062Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.689029Z", - "iopub.status.busy": "2023-12-13T17:07:59.688672Z", - "iopub.status.idle": "2023-12-13T17:07:59.808774Z", - "shell.execute_reply": "2023-12-13T17:07:59.808110Z" + "iopub.execute_input": "2023-12-14T18:04:14.455962Z", + "iopub.status.busy": "2023-12-14T18:04:14.455667Z", + "iopub.status.idle": "2023-12-14T18:04:14.592545Z", + "shell.execute_reply": "2023-12-14T18:04:14.592027Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:07:59.811637Z", - "iopub.status.busy": "2023-12-13T17:07:59.811246Z", - "iopub.status.idle": "2023-12-13T17:08:00.086653Z", - "shell.execute_reply": "2023-12-13T17:08:00.086028Z" + "iopub.execute_input": "2023-12-14T18:04:14.594959Z", + "iopub.status.busy": "2023-12-14T18:04:14.594656Z", + "iopub.status.idle": "2023-12-14T18:04:14.860945Z", + "shell.execute_reply": "2023-12-14T18:04:14.860378Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.089638Z", - "iopub.status.busy": "2023-12-13T17:08:00.089221Z", - "iopub.status.idle": "2023-12-13T17:08:00.345461Z", - "shell.execute_reply": "2023-12-13T17:08:00.344776Z" + "iopub.execute_input": "2023-12-14T18:04:14.863901Z", + "iopub.status.busy": "2023-12-14T18:04:14.863513Z", + "iopub.status.idle": "2023-12-14T18:04:15.118478Z", + "shell.execute_reply": "2023-12-14T18:04:15.117825Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.348152Z", - "iopub.status.busy": "2023-12-13T17:08:00.347649Z", - "iopub.status.idle": "2023-12-13T17:08:00.352243Z", - "shell.execute_reply": "2023-12-13T17:08:00.351752Z" + "iopub.execute_input": "2023-12-14T18:04:15.121263Z", + "iopub.status.busy": "2023-12-14T18:04:15.120869Z", + "iopub.status.idle": "2023-12-14T18:04:15.125407Z", + "shell.execute_reply": "2023-12-14T18:04:15.124854Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.354511Z", - "iopub.status.busy": "2023-12-13T17:08:00.354313Z", - "iopub.status.idle": "2023-12-13T17:08:00.360504Z", - "shell.execute_reply": "2023-12-13T17:08:00.360017Z" + "iopub.execute_input": "2023-12-14T18:04:15.127846Z", + "iopub.status.busy": "2023-12-14T18:04:15.127476Z", + "iopub.status.idle": "2023-12-14T18:04:15.134103Z", + "shell.execute_reply": "2023-12-14T18:04:15.133614Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.362835Z", - "iopub.status.busy": "2023-12-13T17:08:00.362643Z", - "iopub.status.idle": "2023-12-13T17:08:00.365514Z", - "shell.execute_reply": "2023-12-13T17:08:00.364933Z" + "iopub.execute_input": "2023-12-14T18:04:15.136626Z", + "iopub.status.busy": "2023-12-14T18:04:15.136256Z", + "iopub.status.idle": "2023-12-14T18:04:15.139015Z", + "shell.execute_reply": "2023-12-14T18:04:15.138455Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:00.367648Z", - "iopub.status.busy": "2023-12-13T17:08:00.367458Z", - "iopub.status.idle": "2023-12-13T17:08:10.392041Z", - "shell.execute_reply": "2023-12-13T17:08:10.391302Z" + "iopub.execute_input": "2023-12-14T18:04:15.141367Z", + "iopub.status.busy": "2023-12-14T18:04:15.141022Z", + "iopub.status.idle": "2023-12-14T18:04:25.391523Z", + "shell.execute_reply": "2023-12-14T18:04:25.390868Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.395552Z", - "iopub.status.busy": "2023-12-13T17:08:10.395145Z", - "iopub.status.idle": "2023-12-13T17:08:10.402954Z", - "shell.execute_reply": "2023-12-13T17:08:10.402417Z" + "iopub.execute_input": "2023-12-14T18:04:25.394980Z", + "iopub.status.busy": "2023-12-14T18:04:25.394288Z", + "iopub.status.idle": "2023-12-14T18:04:25.402215Z", + "shell.execute_reply": "2023-12-14T18:04:25.401614Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.405245Z", - "iopub.status.busy": "2023-12-13T17:08:10.405044Z", - "iopub.status.idle": "2023-12-13T17:08:10.409024Z", - "shell.execute_reply": "2023-12-13T17:08:10.408501Z" + "iopub.execute_input": "2023-12-14T18:04:25.404652Z", + "iopub.status.busy": "2023-12-14T18:04:25.404275Z", + "iopub.status.idle": "2023-12-14T18:04:25.408008Z", + "shell.execute_reply": "2023-12-14T18:04:25.407503Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.411219Z", - "iopub.status.busy": "2023-12-13T17:08:10.411023Z", - "iopub.status.idle": "2023-12-13T17:08:10.414578Z", - "shell.execute_reply": "2023-12-13T17:08:10.413910Z" + "iopub.execute_input": "2023-12-14T18:04:25.410330Z", + "iopub.status.busy": "2023-12-14T18:04:25.409962Z", + "iopub.status.idle": "2023-12-14T18:04:25.413402Z", + "shell.execute_reply": "2023-12-14T18:04:25.412781Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.417018Z", - "iopub.status.busy": "2023-12-13T17:08:10.416675Z", - "iopub.status.idle": "2023-12-13T17:08:10.419867Z", - "shell.execute_reply": "2023-12-13T17:08:10.419309Z" + "iopub.execute_input": "2023-12-14T18:04:25.415871Z", + "iopub.status.busy": "2023-12-14T18:04:25.415511Z", + "iopub.status.idle": "2023-12-14T18:04:25.418687Z", + "shell.execute_reply": "2023-12-14T18:04:25.418141Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.422089Z", - "iopub.status.busy": "2023-12-13T17:08:10.421892Z", - "iopub.status.idle": "2023-12-13T17:08:10.430838Z", - "shell.execute_reply": "2023-12-13T17:08:10.430197Z" + "iopub.execute_input": "2023-12-14T18:04:25.421030Z", + "iopub.status.busy": "2023-12-14T18:04:25.420675Z", + "iopub.status.idle": "2023-12-14T18:04:25.429235Z", + "shell.execute_reply": "2023-12-14T18:04:25.428667Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.433343Z", - "iopub.status.busy": "2023-12-13T17:08:10.432906Z", - "iopub.status.idle": "2023-12-13T17:08:10.579446Z", - "shell.execute_reply": "2023-12-13T17:08:10.578754Z" + "iopub.execute_input": "2023-12-14T18:04:25.431804Z", + "iopub.status.busy": "2023-12-14T18:04:25.431443Z", + "iopub.status.idle": "2023-12-14T18:04:25.580141Z", + "shell.execute_reply": "2023-12-14T18:04:25.579553Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.582456Z", - "iopub.status.busy": "2023-12-13T17:08:10.581976Z", - "iopub.status.idle": "2023-12-13T17:08:10.713143Z", - "shell.execute_reply": "2023-12-13T17:08:10.712471Z" + "iopub.execute_input": "2023-12-14T18:04:25.582673Z", + "iopub.status.busy": "2023-12-14T18:04:25.582315Z", + "iopub.status.idle": "2023-12-14T18:04:25.714149Z", + "shell.execute_reply": "2023-12-14T18:04:25.713572Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:10.715948Z", - "iopub.status.busy": "2023-12-13T17:08:10.715524Z", - "iopub.status.idle": "2023-12-13T17:08:11.310366Z", - "shell.execute_reply": "2023-12-13T17:08:11.309644Z" + "iopub.execute_input": "2023-12-14T18:04:25.716807Z", + "iopub.status.busy": "2023-12-14T18:04:25.716448Z", + "iopub.status.idle": "2023-12-14T18:04:26.318339Z", + "shell.execute_reply": "2023-12-14T18:04:26.317663Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:11.313610Z", - "iopub.status.busy": "2023-12-13T17:08:11.313212Z", - "iopub.status.idle": "2023-12-13T17:08:11.395585Z", - "shell.execute_reply": "2023-12-13T17:08:11.394960Z" + "iopub.execute_input": "2023-12-14T18:04:26.321608Z", + "iopub.status.busy": "2023-12-14T18:04:26.321051Z", + "iopub.status.idle": "2023-12-14T18:04:26.402849Z", + "shell.execute_reply": "2023-12-14T18:04:26.402283Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:11.398637Z", - "iopub.status.busy": "2023-12-13T17:08:11.398162Z", - "iopub.status.idle": "2023-12-13T17:08:11.408112Z", - "shell.execute_reply": "2023-12-13T17:08:11.407476Z" + "iopub.execute_input": "2023-12-14T18:04:26.405486Z", + "iopub.status.busy": "2023-12-14T18:04:26.405071Z", + "iopub.status.idle": "2023-12-14T18:04:26.414961Z", + "shell.execute_reply": "2023-12-14T18:04:26.414461Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index a9cb30ea8..36d9476d6 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -960,13 +960,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1358,7 +1366,7 @@

Get label quality scores -{"state": {"a067181a586a4408aa939b446d9d25ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "411d08331f4e47cbae9bfc589edfde4f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6f3a5731a5d7404f8e55e0a5637d6d81": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a067181a586a4408aa939b446d9d25ef", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_411d08331f4e47cbae9bfc589edfde4f", "value": 244800.0}}, "bf7fa3af94f7445b9a178ef9800a5ba7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aab6556e148a426fa2d9eb9d4e1ee4f8": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "235ea091f1b24f04859b5e38d4e97cef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bf7fa3af94f7445b9a178ef9800a5ba7", "placeholder": "\u200b", "style": "IPY_MODEL_aab6556e148a426fa2d9eb9d4e1ee4f8", "value": "number of examples processed for estimating thresholds: "}}, "50d1ce88da4242cd9e979cee29b1557a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3602f2c765fe4c83adab29ef0fd39132": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3a0e98ae70304e9ab5c56d64b63fb95e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_50d1ce88da4242cd9e979cee29b1557a", "placeholder": "\u200b", "style": "IPY_MODEL_3602f2c765fe4c83adab29ef0fd39132", "value": " 300000/? [00:00<00:00, 5630593.27it/s]"}}, "f366559c679d4806bdceb947f6e23fc8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d927e4cf50cb4928b9613321f496759d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_235ea091f1b24f04859b5e38d4e97cef", "IPY_MODEL_6f3a5731a5d7404f8e55e0a5637d6d81", "IPY_MODEL_3a0e98ae70304e9ab5c56d64b63fb95e"], "layout": "IPY_MODEL_f366559c679d4806bdceb947f6e23fc8"}}, "9c57b6a4800e4a58b183b8f581682311": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33091ef73bc44f599dfe1f94768ba3e2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa1c45e7f5fc4d74b848bcb599c48ede": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9c57b6a4800e4a58b183b8f581682311", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_33091ef73bc44f599dfe1f94768ba3e2", "value": 244800.0}}, "8ded24f0ca2846a59532c8f92d867269": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a84f85477174415a8b3de95e192cd6d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b61b04712bbc413094927920a9b46949": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8ded24f0ca2846a59532c8f92d867269", "placeholder": "\u200b", "style": "IPY_MODEL_0a84f85477174415a8b3de95e192cd6d", "value": "number of examples processed for checking labels: "}}, "0c3ffbbd10994ece981f309218cb4451": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61303044aa3542edb8a27e225ee64606": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79760e2b72a74626a3e43e2e55f3b7d2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0c3ffbbd10994ece981f309218cb4451", "placeholder": "\u200b", "style": "IPY_MODEL_61303044aa3542edb8a27e225ee64606", "value": " 300000/? [00:02<00:00, 103449.78it/s]"}}, "2b4d7e91064046fa896d20fe02fdad54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a87c1d3c026e402c874e6d5b19f1859d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b61b04712bbc413094927920a9b46949", "IPY_MODEL_fa1c45e7f5fc4d74b848bcb599c48ede", "IPY_MODEL_79760e2b72a74626a3e43e2e55f3b7d2"], "layout": "IPY_MODEL_2b4d7e91064046fa896d20fe02fdad54"}}, "1d7044e8ffb44716ae5256e9ac593bd7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d71b28ea048746e2afe525a14354f8c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e8c270e2f7240f092f4c50d1ae0936c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1d7044e8ffb44716ae5256e9ac593bd7", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d71b28ea048746e2afe525a14354f8c9", "value": 30.0}}, "4801d4458666431aae231c4a715b9aaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3afccd430c2b4fa0ae6e71073466bd7c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "87f840f028564ffab1851a925631069f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4801d4458666431aae231c4a715b9aaa", "placeholder": "\u200b", "style": "IPY_MODEL_3afccd430c2b4fa0ae6e71073466bd7c", "value": "images processed using softmin: 100%"}}, "40ac22ea09954510bed8318f3a2ccc4f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ff4c9dd27ab4e08b47f83d0e7fe9c26": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "02436604ecee41e2b088cd6379477d42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_40ac22ea09954510bed8318f3a2ccc4f", "placeholder": "\u200b", "style": "IPY_MODEL_4ff4c9dd27ab4e08b47f83d0e7fe9c26", "value": " 30/30 [00:01<00:00, 23.53it/s]"}}, "00e577d60339476f830cbc28aaf8442e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65685581c6c34bacbf5abfd907437966": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_87f840f028564ffab1851a925631069f", "IPY_MODEL_0e8c270e2f7240f092f4c50d1ae0936c", "IPY_MODEL_02436604ecee41e2b088cd6379477d42"], "layout": "IPY_MODEL_00e577d60339476f830cbc28aaf8442e"}}}, "version_major": 2, "version_minor": 0} +{"state": {"23f64fec199d42d4bc235fc8762aa6e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ae696bd738f4527b33631f5a19c6bc6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "488f884d6b884266ab7c79f6a6b5385f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_23f64fec199d42d4bc235fc8762aa6e5", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ae696bd738f4527b33631f5a19c6bc6", "value": 244800.0}}, "0ed7d99c38084647894cffd675deefe1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48825d8adf614e35936ae88181ace27d": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "53d60ab6b9964518bb5ee01401d1b416": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0ed7d99c38084647894cffd675deefe1", "placeholder": "\u200b", "style": "IPY_MODEL_48825d8adf614e35936ae88181ace27d", "value": "number of examples processed for estimating thresholds: "}}, "e1e597c486194abeb1a36d541f32f17e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4923f516f25f4440b3bfd657af80a273": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6acd7910d5bb49c6815ec056b5cd1a7a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e1e597c486194abeb1a36d541f32f17e", "placeholder": "\u200b", "style": "IPY_MODEL_4923f516f25f4440b3bfd657af80a273", "value": " 300000/? [00:00<00:00, 5435970.19it/s]"}}, "e964897bcbdf44558b209f13a30570b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa91287f979447e585de2d2fb4a1de70": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_53d60ab6b9964518bb5ee01401d1b416", "IPY_MODEL_488f884d6b884266ab7c79f6a6b5385f", "IPY_MODEL_6acd7910d5bb49c6815ec056b5cd1a7a"], "layout": "IPY_MODEL_e964897bcbdf44558b209f13a30570b4"}}, "6351b23f48204ada8f5eeaf712eeb7f7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc3a9e89fd3a4770a5f12907dfbe6560": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "917761b3bc0b439e8d1270723fea1f18": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6351b23f48204ada8f5eeaf712eeb7f7", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cc3a9e89fd3a4770a5f12907dfbe6560", "value": 244800.0}}, "3bd83502019249d1bcc0ace03d78d154": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79ffef5cd1e14c4aafd18d243bb73a7c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "30fdefa852a0464097647eb380b38b83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3bd83502019249d1bcc0ace03d78d154", "placeholder": "\u200b", "style": "IPY_MODEL_79ffef5cd1e14c4aafd18d243bb73a7c", "value": "number of examples processed for checking labels: "}}, "4e83196d49674f3c92ebe98136252690": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "539923e59c324137ba7c7f77b35682fe": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "2da8c2dbab0d44aa85c13f1acfada8a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4e83196d49674f3c92ebe98136252690", "placeholder": "\u200b", "style": "IPY_MODEL_539923e59c324137ba7c7f77b35682fe", "value": " 300000/? [00:02<00:00, 102280.39it/s]"}}, "65455a44c75f4a07ad0e7f5c61451756": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed52d338862645e58b397d2b273b82ca": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_30fdefa852a0464097647eb380b38b83", "IPY_MODEL_917761b3bc0b439e8d1270723fea1f18", "IPY_MODEL_2da8c2dbab0d44aa85c13f1acfada8a7"], "layout": "IPY_MODEL_65455a44c75f4a07ad0e7f5c61451756"}}, "ca82d0e13c344f7b96b6bd77a4972b78": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b59ae4907af044bf9bd7215287fa744b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "532cdf38e8364c62a6cb4ea8dc782a30": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca82d0e13c344f7b96b6bd77a4972b78", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b59ae4907af044bf9bd7215287fa744b", "value": 30.0}}, "a2b5532d2cd64524a0b101c012abc1d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbf863b99af54f10b729df8f91267244": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "bd1bb3178fe34254af42b1feb8530a24": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a2b5532d2cd64524a0b101c012abc1d6", "placeholder": "\u200b", "style": "IPY_MODEL_fbf863b99af54f10b729df8f91267244", "value": "images processed using softmin: 100%"}}, "95a4cbec66134664a83dded5c5be8ed5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d279577af5a445ca22a13cb50ef11d2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "b7737efb439b4ce8bba796875333b736": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_95a4cbec66134664a83dded5c5be8ed5", "placeholder": "\u200b", "style": "IPY_MODEL_3d279577af5a445ca22a13cb50ef11d2", "value": " 30/30 [00:01<00:00, 23.24it/s]"}}, "7e538566e4074c2c97df7e7b7a8f2f0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ecfec940d10c47d48f693fa90b0a15b0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd1bb3178fe34254af42b1feb8530a24", "IPY_MODEL_532cdf38e8364c62a6cb4ea8dc782a30", "IPY_MODEL_b7737efb439b4ce8bba796875333b736"], "layout": "IPY_MODEL_7e538566e4074c2c97df7e7b7a8f2f0b"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index b89a92368..9311e4cf4 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:16.528270Z", - "iopub.status.busy": "2023-12-13T17:08:16.528080Z", - "iopub.status.idle": "2023-12-13T17:08:18.303213Z", - "shell.execute_reply": "2023-12-13T17:08:18.302463Z" + "iopub.execute_input": "2023-12-14T18:04:31.572090Z", + "iopub.status.busy": "2023-12-14T18:04:31.571645Z", + "iopub.status.idle": "2023-12-14T18:04:33.354278Z", + "shell.execute_reply": "2023-12-14T18:04:33.353457Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:08:18.306012Z", - "iopub.status.busy": "2023-12-13T17:08:18.305809Z", - "iopub.status.idle": "2023-12-13T17:15:03.142076Z", - "shell.execute_reply": "2023-12-13T17:15:03.141363Z" + "iopub.execute_input": "2023-12-14T18:04:33.357376Z", + "iopub.status.busy": "2023-12-14T18:04:33.357125Z", + "iopub.status.idle": "2023-12-14T18:05:33.661945Z", + "shell.execute_reply": "2023-12-14T18:05:33.661218Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:03.144811Z", - "iopub.status.busy": "2023-12-13T17:15:03.144590Z", - "iopub.status.idle": "2023-12-13T17:15:04.156573Z", - "shell.execute_reply": "2023-12-13T17:15:04.155972Z" + "iopub.execute_input": "2023-12-14T18:05:33.664733Z", + "iopub.status.busy": "2023-12-14T18:05:33.664369Z", + "iopub.status.idle": "2023-12-14T18:05:34.676024Z", + "shell.execute_reply": "2023-12-14T18:05:34.675362Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.159277Z", - "iopub.status.busy": "2023-12-13T17:15:04.158979Z", - "iopub.status.idle": "2023-12-13T17:15:04.162496Z", - "shell.execute_reply": "2023-12-13T17:15:04.161994Z" + "iopub.execute_input": "2023-12-14T18:05:34.679063Z", + "iopub.status.busy": "2023-12-14T18:05:34.678520Z", + "iopub.status.idle": "2023-12-14T18:05:34.682027Z", + "shell.execute_reply": "2023-12-14T18:05:34.681387Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.165223Z", - "iopub.status.busy": "2023-12-13T17:15:04.164785Z", - "iopub.status.idle": "2023-12-13T17:15:04.169008Z", - "shell.execute_reply": "2023-12-13T17:15:04.168474Z" + "iopub.execute_input": "2023-12-14T18:05:34.684570Z", + "iopub.status.busy": "2023-12-14T18:05:34.684181Z", + "iopub.status.idle": "2023-12-14T18:05:34.688367Z", + "shell.execute_reply": "2023-12-14T18:05:34.687837Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.171334Z", - "iopub.status.busy": "2023-12-13T17:15:04.171006Z", - "iopub.status.idle": "2023-12-13T17:15:04.174994Z", - "shell.execute_reply": "2023-12-13T17:15:04.174437Z" + "iopub.execute_input": "2023-12-14T18:05:34.690635Z", + "iopub.status.busy": "2023-12-14T18:05:34.690319Z", + "iopub.status.idle": "2023-12-14T18:05:34.694812Z", + "shell.execute_reply": "2023-12-14T18:05:34.694288Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.177478Z", - "iopub.status.busy": "2023-12-13T17:15:04.177043Z", - "iopub.status.idle": "2023-12-13T17:15:04.180198Z", - "shell.execute_reply": "2023-12-13T17:15:04.179574Z" + "iopub.execute_input": "2023-12-14T18:05:34.697132Z", + "iopub.status.busy": "2023-12-14T18:05:34.696759Z", + "iopub.status.idle": "2023-12-14T18:05:34.699918Z", + "shell.execute_reply": "2023-12-14T18:05:34.699277Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:04.182679Z", - "iopub.status.busy": "2023-12-13T17:15:04.182255Z", - "iopub.status.idle": "2023-12-13T17:15:56.059544Z", - "shell.execute_reply": "2023-12-13T17:15:56.058770Z" + "iopub.execute_input": "2023-12-14T18:05:34.702223Z", + "iopub.status.busy": "2023-12-14T18:05:34.701920Z", + "iopub.status.idle": "2023-12-14T18:06:25.919761Z", + "shell.execute_reply": "2023-12-14T18:06:25.919069Z" } }, "outputs": [ @@ -350,7 +350,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d927e4cf50cb4928b9613321f496759d", + "model_id": "aa91287f979447e585de2d2fb4a1de70", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a87c1d3c026e402c874e6d5b19f1859d", + "model_id": "ed52d338862645e58b397d2b273b82ca", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:56.062712Z", - "iopub.status.busy": "2023-12-13T17:15:56.062468Z", - "iopub.status.idle": "2023-12-13T17:15:56.810121Z", - "shell.execute_reply": "2023-12-13T17:15:56.809460Z" + "iopub.execute_input": "2023-12-14T18:06:25.922723Z", + "iopub.status.busy": "2023-12-14T18:06:25.922278Z", + "iopub.status.idle": "2023-12-14T18:06:26.662887Z", + "shell.execute_reply": "2023-12-14T18:06:26.662267Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:56.812756Z", - "iopub.status.busy": "2023-12-13T17:15:56.812279Z", - "iopub.status.idle": "2023-12-13T17:15:58.941647Z", - "shell.execute_reply": "2023-12-13T17:15:58.940964Z" + "iopub.execute_input": "2023-12-14T18:06:26.665761Z", + "iopub.status.busy": "2023-12-14T18:06:26.665211Z", + "iopub.status.idle": "2023-12-14T18:06:28.773210Z", + "shell.execute_reply": "2023-12-14T18:06:28.772540Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:15:58.944114Z", - "iopub.status.busy": "2023-12-13T17:15:58.943907Z", - "iopub.status.idle": "2023-12-13T17:16:27.484085Z", - "shell.execute_reply": "2023-12-13T17:16:27.483468Z" + "iopub.execute_input": "2023-12-14T18:06:28.775970Z", + "iopub.status.busy": "2023-12-14T18:06:28.775582Z", + "iopub.status.idle": "2023-12-14T18:06:57.711421Z", + "shell.execute_reply": "2023-12-14T18:06:57.710776Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 17105/4997436 [00:00<00:29, 171043.64it/s]" + " 0%| | 17330/4997436 [00:00<00:28, 173286.94it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 34368/4997436 [00:00<00:28, 171969.88it/s]" + " 1%| | 34775/4997436 [00:00<00:28, 173966.54it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 51830/4997436 [00:00<00:28, 173176.63it/s]" + " 1%| | 52225/4997436 [00:00<00:28, 174202.80it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 69376/4997436 [00:00<00:28, 174075.00it/s]" + " 1%|▏ | 69698/4997436 [00:00<00:28, 174405.08it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 86924/4997436 [00:00<00:28, 174579.30it/s]" + " 2%|▏ | 87163/4997436 [00:00<00:28, 174490.00it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 104530/4997436 [00:00<00:27, 175081.64it/s]" + " 2%|▏ | 104720/4997436 [00:00<00:27, 174854.41it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122049/4997436 [00:00<00:27, 175115.07it/s]" + " 2%|▏ | 122206/4997436 [00:00<00:27, 174847.43it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 139609/4997436 [00:00<00:27, 175265.91it/s]" + " 3%|▎ | 139691/4997436 [00:00<00:27, 174786.22it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 157185/4997436 [00:00<00:27, 175416.76it/s]" + " 3%|▎ | 157239/4997436 [00:00<00:27, 174998.79it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 174727/4997436 [00:01<00:27, 175313.55it/s]" + " 3%|▎ | 174739/4997436 [00:01<00:27, 174945.02it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 192284/4997436 [00:01<00:27, 175389.37it/s]" + " 4%|▍ | 192234/4997436 [00:01<00:27, 174691.24it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 209958/4997436 [00:01<00:27, 175798.51it/s]" + " 4%|▍ | 209782/4997436 [00:01<00:27, 174929.03it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 227597/4997436 [00:01<00:27, 175976.69it/s]" + " 5%|▍ | 227293/4997436 [00:01<00:27, 174982.21it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245198/4997436 [00:01<00:27, 175985.66it/s]" + " 5%|▍ | 244792/4997436 [00:01<00:27, 174961.19it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 262811/4997436 [00:01<00:26, 176025.29it/s]" + " 5%|▌ | 262381/4997436 [00:01<00:27, 175239.43it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 280515/4997436 [00:01<00:26, 176327.32it/s]" + " 6%|▌ | 279905/4997436 [00:01<00:26, 175108.51it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 298148/4997436 [00:01<00:26, 176153.16it/s]" + " 6%|▌ | 297416/4997436 [00:01<00:26, 175050.57it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 315851/4997436 [00:01<00:26, 176414.09it/s]" + " 6%|▋ | 314922/4997436 [00:01<00:26, 175020.63it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 333880/4997436 [00:01<00:26, 177574.70it/s]" + " 7%|▋ | 332425/4997436 [00:01<00:26, 175017.48it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 351868/4997436 [00:02<00:26, 178263.56it/s]" + " 7%|▋ | 349927/4997436 [00:02<00:26, 174967.59it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 369921/4997436 [00:02<00:25, 178941.68it/s]" + " 7%|▋ | 367424/4997436 [00:02<00:26, 174892.80it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 387927/4997436 [00:02<00:25, 179274.60it/s]" + " 8%|▊ | 384927/4997436 [00:02<00:26, 174931.12it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405855/4997436 [00:02<00:25, 179266.40it/s]" + " 8%|▊ | 402421/4997436 [00:02<00:26, 174727.42it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 423786/4997436 [00:02<00:25, 179276.97it/s]" + " 8%|▊ | 419894/4997436 [00:02<00:26, 174606.10it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 441729/4997436 [00:02<00:25, 179320.11it/s]" + " 9%|▉ | 437393/4997436 [00:02<00:26, 174719.31it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 459662/4997436 [00:02<00:25, 179183.30it/s]" + " 9%|▉ | 454865/4997436 [00:02<00:26, 174502.70it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 477581/4997436 [00:02<00:25, 179133.37it/s]" + " 9%|▉ | 472343/4997436 [00:02<00:25, 174583.07it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 495574/4997436 [00:02<00:25, 179369.83it/s]" + " 10%|▉ | 489846/4997436 [00:02<00:25, 174714.69it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 513512/4997436 [00:02<00:25, 179259.13it/s]" + " 10%|█ | 507318/4997436 [00:02<00:25, 174714.09it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531438/4997436 [00:03<00:24, 179129.36it/s]" + " 11%|█ | 524790/4997436 [00:03<00:25, 174416.28it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 549388/4997436 [00:03<00:24, 179239.21it/s]" + " 11%|█ | 542232/4997436 [00:03<00:25, 174370.75it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567312/4997436 [00:03<00:25, 176736.45it/s]" + " 11%|█ | 559670/4997436 [00:03<00:25, 174243.38it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 585052/4997436 [00:03<00:24, 176930.13it/s]" + " 12%|█▏ | 577105/4997436 [00:03<00:25, 174272.63it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 602919/4997436 [00:03<00:24, 177445.20it/s]" + " 12%|█▏ | 594533/4997436 [00:03<00:25, 174242.39it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 620747/4997436 [00:03<00:24, 177691.63it/s]" + " 12%|█▏ | 611958/4997436 [00:03<00:25, 174147.52it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 638558/4997436 [00:03<00:24, 177812.82it/s]" + " 13%|█▎ | 629373/4997436 [00:03<00:25, 173818.31it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 656342/4997436 [00:03<00:24, 177790.81it/s]" + " 13%|█▎ | 646778/4997436 [00:03<00:25, 173884.50it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674191/4997436 [00:03<00:24, 177996.41it/s]" + " 13%|█▎ | 664204/4997436 [00:03<00:24, 173996.17it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692024/4997436 [00:03<00:24, 178092.46it/s]" + " 14%|█▎ | 681654/4997436 [00:03<00:24, 174145.35it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 709870/4997436 [00:04<00:24, 178201.52it/s]" + " 14%|█▍ | 699069/4997436 [00:04<00:24, 173917.82it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 727691/4997436 [00:04<00:24, 177873.68it/s]" + " 14%|█▍ | 716461/4997436 [00:04<00:24, 173770.95it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 745508/4997436 [00:04<00:23, 177959.29it/s]" + " 15%|█▍ | 733931/4997436 [00:04<00:24, 174048.15it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 763305/4997436 [00:04<00:23, 177688.37it/s]" + " 15%|█▌ | 751336/4997436 [00:04<00:24, 173957.66it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781075/4997436 [00:04<00:23, 176406.92it/s]" + " 15%|█▌ | 768799/4997436 [00:04<00:24, 174156.44it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 798928/4997436 [00:04<00:23, 177038.54it/s]" + " 16%|█▌ | 786299/4997436 [00:04<00:24, 174407.73it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 816845/4997436 [00:04<00:23, 177673.11it/s]" + " 16%|█▌ | 803829/4997436 [00:04<00:24, 174672.44it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834756/4997436 [00:04<00:23, 178099.81it/s]" + " 16%|█▋ | 821357/4997436 [00:04<00:23, 174852.43it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 852701/4997436 [00:04<00:23, 178502.61it/s]" + " 17%|█▋ | 838854/4997436 [00:04<00:23, 174884.11it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 870691/4997436 [00:04<00:23, 178918.15it/s]" + " 17%|█▋ | 856380/4997436 [00:04<00:23, 174993.78it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 888629/4997436 [00:05<00:22, 179054.30it/s]" + " 17%|█▋ | 873880/4997436 [00:05<00:24, 167743.44it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 906547/4997436 [00:05<00:22, 179090.11it/s]" + " 18%|█▊ | 891223/4997436 [00:05<00:24, 169396.32it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 924457/4997436 [00:05<00:22, 179074.82it/s]" + " 18%|█▊ | 908726/4997436 [00:05<00:23, 171048.74it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 942365/4997436 [00:05<00:22, 178937.88it/s]" + " 19%|█▊ | 926150/4997436 [00:05<00:23, 171990.89it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 960259/4997436 [00:05<00:22, 178073.34it/s]" + " 19%|█▉ | 943594/4997436 [00:05<00:23, 172716.00it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 978118/4997436 [00:05<00:22, 178226.12it/s]" + " 19%|█▉ | 961035/4997436 [00:05<00:23, 173216.87it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 995942/4997436 [00:05<00:22, 177680.19it/s]" + " 20%|█▉ | 978510/4997436 [00:05<00:23, 173673.52it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1013716/4997436 [00:05<00:22, 177696.84it/s]" + " 20%|█▉ | 995998/4997436 [00:05<00:22, 174031.24it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1031629/4997436 [00:05<00:22, 178123.18it/s]" + " 20%|██ | 1013510/4997436 [00:05<00:22, 174354.60it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1049488/4997436 [00:05<00:22, 178260.70it/s]" + " 21%|██ | 1031016/4997436 [00:05<00:22, 174562.53it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1067353/4997436 [00:06<00:22, 178374.95it/s]" + " 21%|██ | 1048477/4997436 [00:06<00:22, 174548.62it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1085191/4997436 [00:06<00:22, 177373.76it/s]" + " 21%|██▏ | 1065935/4997436 [00:06<00:22, 174512.56it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1102938/4997436 [00:06<00:21, 177400.27it/s]" + " 22%|██▏ | 1083445/4997436 [00:06<00:22, 174686.32it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1120680/4997436 [00:06<00:21, 177010.48it/s]" + " 22%|██▏ | 1100928/4997436 [00:06<00:22, 174727.95it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1138541/4997436 [00:06<00:21, 177486.14it/s]" + " 22%|██▏ | 1118402/4997436 [00:06<00:22, 174605.16it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1156399/4997436 [00:06<00:21, 177810.67it/s]" + " 23%|██▎ | 1136039/4997436 [00:06<00:22, 175132.22it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1174202/4997436 [00:06<00:21, 177872.96it/s]" + " 23%|██▎ | 1153733/4997436 [00:06<00:21, 175671.53it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1192052/4997436 [00:06<00:21, 178059.47it/s]" + " 23%|██▎ | 1171493/4997436 [00:06<00:21, 176248.62it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1209868/4997436 [00:06<00:21, 178086.22it/s]" + " 24%|██▍ | 1189119/4997436 [00:06<00:21, 176171.46it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227677/4997436 [00:06<00:21, 177968.72it/s]" + " 24%|██▍ | 1206738/4997436 [00:06<00:21, 176171.66it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1245576/4997436 [00:07<00:21, 178271.17it/s]" + " 24%|██▍ | 1224356/4997436 [00:07<00:21, 176072.11it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1263404/4997436 [00:07<00:20, 178090.44it/s]" + " 25%|██▍ | 1241964/4997436 [00:07<00:22, 170153.55it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1281214/4997436 [00:07<00:20, 177854.10it/s]" + " 25%|██▌ | 1259415/4997436 [00:07<00:21, 171426.09it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1299000/4997436 [00:07<00:20, 176917.01it/s]" + " 26%|██▌ | 1276876/4997436 [00:07<00:21, 172362.67it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1316980/4997436 [00:07<00:20, 177776.16it/s]" + " 26%|██▌ | 1294417/4997436 [00:07<00:21, 173263.58it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334845/4997436 [00:07<00:20, 178034.41it/s]" + " 26%|██▋ | 1311851/4997436 [00:07<00:21, 173582.46it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1352650/4997436 [00:07<00:20, 176879.68it/s]" + " 27%|██▋ | 1329350/4997436 [00:07<00:21, 173999.91it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1370407/4997436 [00:07<00:20, 177082.63it/s]" + " 27%|██▋ | 1346760/4997436 [00:07<00:20, 173936.45it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1388117/4997436 [00:07<00:20, 176791.01it/s]" + " 27%|██▋ | 1364254/4997436 [00:07<00:20, 174234.83it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1405804/4997436 [00:07<00:20, 176811.39it/s]" + " 28%|██▊ | 1381745/4997436 [00:07<00:20, 174434.22it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1423486/4997436 [00:08<00:20, 176674.67it/s]" + " 28%|██▊ | 1399192/4997436 [00:08<00:20, 174315.91it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441154/4997436 [00:08<00:20, 176412.67it/s]" + " 28%|██▊ | 1416626/4997436 [00:08<00:21, 167024.55it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458796/4997436 [00:08<00:20, 176342.85it/s]" + " 29%|██▊ | 1434042/4997436 [00:08<00:21, 169096.31it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1476431/4997436 [00:08<00:19, 176285.66it/s]" + " 29%|██▉ | 1451506/4997436 [00:08<00:20, 170721.43it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1494125/4997436 [00:08<00:19, 176480.52it/s]" + " 29%|██▉ | 1468953/4997436 [00:08<00:20, 171827.81it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1511822/4997436 [00:08<00:19, 176625.83it/s]" + " 30%|██▉ | 1486380/4997436 [00:08<00:20, 172551.50it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529485/4997436 [00:08<00:19, 176351.15it/s]" + " 30%|███ | 1503786/4997436 [00:08<00:20, 172999.31it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1547134/4997436 [00:08<00:19, 176371.88it/s]" + " 30%|███ | 1521102/4997436 [00:08<00:20, 172842.69it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1564772/4997436 [00:08<00:19, 176061.96it/s]" + " 31%|███ | 1538617/4997436 [00:08<00:19, 173529.92it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1582379/4997436 [00:08<00:19, 175076.40it/s]" + " 31%|███ | 1556055/4997436 [00:08<00:19, 173781.45it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1599888/4997436 [00:09<00:19, 174384.08it/s]" + " 31%|███▏ | 1573460/4997436 [00:09<00:19, 173860.15it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1617328/4997436 [00:09<00:19, 174205.06it/s]" + " 32%|███▏ | 1590850/4997436 [00:09<00:19, 173669.23it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1634761/4997436 [00:09<00:19, 174239.54it/s]" + " 32%|███▏ | 1608220/4997436 [00:09<00:19, 173259.57it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1652186/4997436 [00:09<00:19, 173983.24it/s]" + " 33%|███▎ | 1625549/4997436 [00:09<00:19, 173055.36it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1669586/4997436 [00:09<00:19, 173985.45it/s]" + " 33%|███▎ | 1642891/4997436 [00:09<00:19, 173162.00it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1687083/4997436 [00:09<00:18, 174275.00it/s]" + " 33%|███▎ | 1660271/4997436 [00:09<00:19, 173349.83it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1704511/4997436 [00:09<00:18, 174159.92it/s]" + " 34%|███▎ | 1677674/4997436 [00:09<00:19, 173549.91it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1721928/4997436 [00:09<00:18, 174048.90it/s]" + " 34%|███▍ | 1695235/4997436 [00:09<00:18, 174164.60it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1739486/4997436 [00:09<00:18, 174505.64it/s]" + " 34%|███▍ | 1712675/4997436 [00:09<00:18, 174233.47it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1757031/4997436 [00:09<00:18, 174785.79it/s]" + " 35%|███▍ | 1730188/4997436 [00:09<00:18, 174500.96it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1774529/4997436 [00:10<00:18, 174842.43it/s]" + " 35%|███▍ | 1747639/4997436 [00:10<00:18, 174335.95it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1792070/4997436 [00:10<00:18, 175008.52it/s]" + " 35%|███▌ | 1765073/4997436 [00:10<00:18, 172127.76it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1809648/4997436 [00:10<00:18, 175235.78it/s]" + " 36%|███▌ | 1782733/4997436 [00:10<00:18, 173455.19it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1827211/4997436 [00:10<00:18, 175353.31it/s]" + " 36%|███▌ | 1800459/4997436 [00:10<00:18, 174587.90it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844749/4997436 [00:10<00:17, 175359.36it/s]" + " 36%|███▋ | 1818178/4997436 [00:10<00:18, 175361.28it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1862285/4997436 [00:10<00:17, 174970.45it/s]" + " 37%|███▋ | 1835923/4997436 [00:10<00:17, 175984.11it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1879783/4997436 [00:10<00:17, 174875.46it/s]" + " 37%|███▋ | 1853732/4997436 [00:10<00:17, 176611.93it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1897272/4997436 [00:10<00:17, 174874.50it/s]" + " 37%|███▋ | 1871465/4997436 [00:10<00:17, 176825.28it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1914760/4997436 [00:10<00:17, 174782.29it/s]" + " 38%|███▊ | 1889151/4997436 [00:10<00:17, 176834.47it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1932381/4997436 [00:10<00:17, 175207.90it/s]" + " 38%|███▊ | 1906881/4997436 [00:10<00:17, 176970.65it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1949902/4997436 [00:11<00:17, 175191.81it/s]" + " 39%|███▊ | 1924579/4997436 [00:11<00:17, 176942.26it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1967422/4997436 [00:11<00:17, 175147.61it/s]" + " 39%|███▉ | 1942274/4997436 [00:11<00:17, 171681.45it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1984937/4997436 [00:11<00:17, 175121.72it/s]" + " 39%|███▉ | 1959734/4997436 [00:11<00:17, 172534.84it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2002450/4997436 [00:11<00:17, 174788.88it/s]" + " 40%|███▉ | 1977435/4997436 [00:11<00:17, 173854.26it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2019930/4997436 [00:11<00:17, 174619.83it/s]" + " 40%|███▉ | 1995087/4997436 [00:11<00:17, 174641.71it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037393/4997436 [00:11<00:16, 174567.09it/s]" + " 40%|████ | 2012751/4997436 [00:11<00:17, 175233.29it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2054908/4997436 [00:11<00:16, 174740.00it/s]" + " 41%|████ | 2030386/4997436 [00:11<00:16, 175563.22it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2072421/4997436 [00:11<00:16, 174853.17it/s]" + " 41%|████ | 2047951/4997436 [00:11<00:16, 175500.66it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2089907/4997436 [00:11<00:16, 174776.32it/s]" + " 41%|████▏ | 2065531/4997436 [00:11<00:16, 175588.37it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2107414/4997436 [00:11<00:16, 174860.78it/s]" + " 42%|████▏ | 2083094/4997436 [00:11<00:16, 175574.07it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2124901/4997436 [00:12<00:16, 174712.60it/s]" + " 42%|████▏ | 2100756/4997436 [00:12<00:16, 175886.03it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2142373/4997436 [00:12<00:16, 174259.16it/s]" + " 42%|████▏ | 2118431/4997436 [00:12<00:16, 176141.84it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159800/4997436 [00:12<00:16, 174183.92it/s]" + " 43%|████▎ | 2136047/4997436 [00:12<00:16, 174634.37it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2177219/4997436 [00:12<00:16, 174003.10it/s]" + " 43%|████▎ | 2153515/4997436 [00:12<00:16, 174140.58it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2194644/4997436 [00:12<00:16, 174073.33it/s]" + " 43%|████▎ | 2170932/4997436 [00:12<00:16, 173994.86it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2212084/4997436 [00:12<00:15, 174166.62it/s]" + " 44%|████▍ | 2188591/4997436 [00:12<00:16, 174765.24it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229501/4997436 [00:12<00:15, 173791.71it/s]" + " 44%|████▍ | 2206186/4997436 [00:12<00:15, 175117.28it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2246912/4997436 [00:12<00:15, 173861.34it/s]" + " 44%|████▍ | 2223832/4997436 [00:12<00:15, 175515.84it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2264299/4997436 [00:12<00:15, 173688.62it/s]" + " 45%|████▍ | 2241443/4997436 [00:12<00:15, 175692.43it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281668/4997436 [00:12<00:15, 173333.33it/s]" + " 45%|████▌ | 2259013/4997436 [00:12<00:15, 175167.34it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2299002/4997436 [00:13<00:15, 173138.15it/s]" + " 46%|████▌ | 2276531/4997436 [00:13<00:15, 174711.70it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2316440/4997436 [00:13<00:15, 173506.64it/s]" + " 46%|████▌ | 2294003/4997436 [00:13<00:15, 174431.14it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2333791/4997436 [00:13<00:15, 171618.28it/s]" + " 46%|████▋ | 2311447/4997436 [00:13<00:15, 168661.77it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2351230/4997436 [00:13<00:15, 172440.90it/s]" + " 47%|████▋ | 2328796/4997436 [00:13<00:15, 170068.59it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2368588/4997436 [00:13<00:15, 172778.43it/s]" + " 47%|████▋ | 2346344/4997436 [00:13<00:15, 171660.34it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2386129/4997436 [00:13<00:15, 173562.84it/s]" + " 47%|████▋ | 2363947/4997436 [00:13<00:15, 172953.06it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2404022/4997436 [00:13<00:14, 175164.40it/s]" + " 48%|████▊ | 2381511/4997436 [00:13<00:15, 173750.12it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421917/4997436 [00:13<00:14, 176292.98it/s]" + " 48%|████▊ | 2399002/4997436 [00:13<00:14, 174093.67it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2439671/4997436 [00:13<00:14, 176662.89it/s]" + " 48%|████▊ | 2416486/4997436 [00:13<00:14, 174314.01it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2457499/4997436 [00:13<00:14, 177145.39it/s]" + " 49%|████▊ | 2434027/4997436 [00:13<00:14, 174640.57it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475388/4997436 [00:14<00:14, 177666.51it/s]" + " 49%|████▉ | 2451529/4997436 [00:14<00:14, 174750.70it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2493291/4997436 [00:14<00:14, 178072.20it/s]" + " 49%|████▉ | 2469098/4997436 [00:14<00:14, 175028.10it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2511224/4997436 [00:14<00:13, 178444.72it/s]" + " 50%|████▉ | 2486604/4997436 [00:14<00:14, 174410.55it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2529069/4997436 [00:14<00:13, 178294.90it/s]" + " 50%|█████ | 2504067/4997436 [00:14<00:14, 174472.61it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2546899/4997436 [00:14<00:13, 178060.16it/s]" + " 50%|█████ | 2521577/4997436 [00:14<00:14, 174657.45it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2564768/4997436 [00:14<00:13, 178247.74it/s]" + " 51%|█████ | 2539044/4997436 [00:14<00:14, 174579.35it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2582593/4997436 [00:14<00:13, 177289.92it/s]" + " 51%|█████ | 2556538/4997436 [00:14<00:13, 174684.32it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2600365/4997436 [00:14<00:13, 177415.63it/s]" + " 52%|█████▏ | 2574008/4997436 [00:14<00:13, 174460.33it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2618212/4997436 [00:14<00:13, 177727.57it/s]" + " 52%|█████▏ | 2591494/4997436 [00:14<00:13, 174577.22it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2636080/4997436 [00:14<00:13, 178007.63it/s]" + " 52%|█████▏ | 2608953/4997436 [00:14<00:13, 174433.30it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2653882/4997436 [00:15<00:13, 177891.85it/s]" + " 53%|█████▎ | 2626397/4997436 [00:15<00:13, 174201.44it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2671672/4997436 [00:15<00:13, 177836.05it/s]" + " 53%|█████▎ | 2643859/4997436 [00:15<00:13, 174324.33it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2689456/4997436 [00:15<00:13, 177536.86it/s]" + " 53%|█████▎ | 2661292/4997436 [00:15<00:13, 173899.40it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2707210/4997436 [00:15<00:12, 177325.98it/s]" + " 54%|█████▎ | 2678706/4997436 [00:15<00:13, 173968.58it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2725056/4997436 [00:15<00:12, 177663.80it/s]" + " 54%|█████▍ | 2696104/4997436 [00:15<00:13, 173755.72it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2742823/4997436 [00:15<00:12, 177551.98it/s]" + " 54%|█████▍ | 2713491/4997436 [00:15<00:13, 173786.87it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2760579/4997436 [00:15<00:12, 177449.76it/s]" + " 55%|█████▍ | 2730937/4997436 [00:15<00:13, 173986.94it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2778415/4997436 [00:15<00:12, 177721.07it/s]" + " 55%|█████▍ | 2748336/4997436 [00:15<00:12, 173914.34it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2796279/4997436 [00:15<00:12, 177995.11it/s]" + " 55%|█████▌ | 2765728/4997436 [00:15<00:12, 173681.05it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2814158/4997436 [00:15<00:12, 178227.33it/s]" + " 56%|█████▌ | 2783097/4997436 [00:15<00:12, 173585.37it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2832025/4997436 [00:16<00:12, 178356.16it/s]" + " 56%|█████▌ | 2800456/4997436 [00:16<00:12, 173470.36it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2849861/4997436 [00:16<00:12, 178257.19it/s]" + " 56%|█████▋ | 2817869/4997436 [00:16<00:12, 173666.62it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2867687/4997436 [00:16<00:11, 177811.98it/s]" + " 57%|█████▋ | 2835254/4997436 [00:16<00:12, 173719.02it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2885469/4997436 [00:16<00:11, 177543.91it/s]" + " 57%|█████▋ | 2852626/4997436 [00:16<00:12, 173521.06it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2903321/4997436 [00:16<00:11, 177831.71it/s]" + " 57%|█████▋ | 2870040/4997436 [00:16<00:12, 173704.81it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2921105/4997436 [00:16<00:11, 177751.12it/s]" + " 58%|█████▊ | 2887411/4997436 [00:16<00:12, 173685.56it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2938881/4997436 [00:16<00:11, 177244.64it/s]" + " 58%|█████▊ | 2904780/4997436 [00:16<00:12, 173514.93it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2956606/4997436 [00:16<00:11, 176333.64it/s]" + " 58%|█████▊ | 2922132/4997436 [00:16<00:11, 173122.10it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2974241/4997436 [00:16<00:11, 176165.20it/s]" + " 59%|█████▉ | 2939445/4997436 [00:16<00:11, 172977.40it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2991964/4997436 [00:16<00:11, 176481.03it/s]" + " 59%|█████▉ | 2956743/4997436 [00:16<00:11, 172909.87it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3009810/4997436 [00:17<00:11, 177070.01it/s]" + " 60%|█████▉ | 2974086/4997436 [00:17<00:11, 173062.57it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3027644/4997436 [00:17<00:11, 177443.70it/s]" + " 60%|█████▉ | 2991509/4997436 [00:17<00:11, 173411.14it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3045510/4997436 [00:17<00:10, 177801.68it/s]" + " 60%|██████ | 3008851/4997436 [00:17<00:11, 173246.97it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3063299/4997436 [00:17<00:10, 177824.39it/s]" + " 61%|██████ | 3026460/4997436 [00:17<00:11, 174095.93it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3081118/4997436 [00:17<00:10, 177930.47it/s]" + " 61%|██████ | 3043910/4997436 [00:17<00:11, 174213.97it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3098912/4997436 [00:17<00:10, 177859.51it/s]" + " 61%|██████▏ | 3061540/4997436 [00:17<00:11, 174835.16it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3116790/4997436 [00:17<00:10, 178132.33it/s]" + " 62%|██████▏ | 3079221/4997436 [00:17<00:10, 175424.74it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3134634/4997436 [00:17<00:10, 178223.23it/s]" + " 62%|██████▏ | 3096913/4997436 [00:17<00:10, 175870.32it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3152520/4997436 [00:17<00:10, 178411.95it/s]" + " 62%|██████▏ | 3114535/4997436 [00:17<00:10, 175973.86it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3170362/4997436 [00:17<00:10, 178237.51it/s]" + " 63%|██████▎ | 3132207/4997436 [00:17<00:10, 176195.44it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3188186/4997436 [00:18<00:10, 177997.77it/s]" + " 63%|██████▎ | 3149827/4997436 [00:18<00:10, 175681.86it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3205986/4997436 [00:18<00:10, 177554.56it/s]" + " 63%|██████▎ | 3167396/4997436 [00:18<00:10, 175545.65it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3223742/4997436 [00:18<00:10, 176718.08it/s]" + " 64%|██████▎ | 3184978/4997436 [00:18<00:10, 175625.08it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3241415/4997436 [00:18<00:10, 164416.38it/s]" + " 64%|██████▍ | 3202628/4997436 [00:18<00:10, 175882.20it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3259129/4997436 [00:18<00:10, 168026.90it/s]" + " 64%|██████▍ | 3220217/4997436 [00:18<00:10, 175528.28it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3276757/4997436 [00:18<00:10, 170405.77it/s]" + " 65%|██████▍ | 3237840/4997436 [00:18<00:10, 175736.01it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3294585/4997436 [00:18<00:09, 172701.88it/s]" + " 65%|██████▌ | 3255450/4997436 [00:18<00:09, 175842.83it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 3312328/4997436 [00:18<00:09, 174090.11it/s]" + " 65%|██████▌ | 3273035/4997436 [00:18<00:09, 175733.78it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3330098/4997436 [00:18<00:09, 175155.66it/s]" + " 66%|██████▌ | 3290683/4997436 [00:18<00:09, 175955.80it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3347939/4997436 [00:18<00:09, 176119.32it/s]" + " 66%|██████▌ | 3308301/4997436 [00:18<00:09, 176020.29it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3365801/4997436 [00:19<00:09, 176860.45it/s]" + " 67%|██████▋ | 3325954/4997436 [00:19<00:09, 176169.63it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3383510/4997436 [00:19<00:09, 176823.43it/s]" + " 67%|██████▋ | 3343621/4997436 [00:19<00:09, 176316.20it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3401208/4997436 [00:19<00:09, 176863.35it/s]" + " 67%|██████▋ | 3361273/4997436 [00:19<00:09, 176375.98it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3418987/4997436 [00:19<00:08, 177137.51it/s]" + " 68%|██████▊ | 3378911/4997436 [00:19<00:09, 176339.41it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3436865/4997436 [00:19<00:08, 177627.62it/s]" + " 68%|██████▊ | 3396545/4997436 [00:19<00:09, 175971.85it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3454634/4997436 [00:19<00:08, 177340.69it/s]" + " 68%|██████▊ | 3414181/4997436 [00:19<00:08, 176076.83it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3472372/4997436 [00:19<00:08, 177239.28it/s]" + " 69%|██████▊ | 3431792/4997436 [00:19<00:08, 176084.18it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3490099/4997436 [00:19<00:08, 177214.63it/s]" + " 69%|██████▉ | 3449401/4997436 [00:19<00:08, 175901.19it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507828/4997436 [00:19<00:08, 177233.97it/s]" + " 69%|██████▉ | 3467017/4997436 [00:19<00:08, 175954.02it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3525553/4997436 [00:19<00:08, 177079.78it/s]" + " 70%|██████▉ | 3484622/4997436 [00:19<00:08, 175980.32it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3543537/4997436 [00:20<00:08, 177903.85it/s]" + " 70%|███████ | 3502228/4997436 [00:20<00:08, 176001.24it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3561367/4997436 [00:20<00:08, 178020.21it/s]" + " 70%|███████ | 3519829/4997436 [00:20<00:08, 175919.65it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3579170/4997436 [00:20<00:08, 175890.23it/s]" + " 71%|███████ | 3537558/4997436 [00:20<00:08, 176328.00it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3596987/4997436 [00:20<00:07, 176566.75it/s]" + " 71%|███████ | 3555191/4997436 [00:20<00:08, 176185.44it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614871/4997436 [00:20<00:07, 177243.25it/s]" + " 71%|███████▏ | 3572810/4997436 [00:20<00:08, 176185.22it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3632840/4997436 [00:20<00:07, 177970.18it/s]" + " 72%|███████▏ | 3590466/4997436 [00:20<00:07, 176296.50it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3650754/4997436 [00:20<00:07, 178317.68it/s]" + " 72%|███████▏ | 3608147/4997436 [00:20<00:07, 176447.25it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3668720/4997436 [00:20<00:07, 178715.98it/s]" + " 73%|███████▎ | 3625792/4997436 [00:20<00:07, 176419.87it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3686594/4997436 [00:20<00:07, 178638.64it/s]" + " 73%|███████▎ | 3643464/4997436 [00:20<00:07, 176508.54it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3704459/4997436 [00:20<00:07, 178518.29it/s]" + " 73%|███████▎ | 3661115/4997436 [00:20<00:07, 176174.05it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3722354/4997436 [00:21<00:07, 178643.07it/s]" + " 74%|███████▎ | 3678733/4997436 [00:21<00:07, 165115.58it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3740219/4997436 [00:21<00:07, 178585.73it/s]" + " 74%|███████▍ | 3696389/4997436 [00:21<00:07, 168388.33it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3758098/4997436 [00:21<00:06, 178644.07it/s]" + " 74%|███████▍ | 3714054/4997436 [00:21<00:07, 170783.06it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3775963/4997436 [00:21<00:06, 178630.19it/s]" + " 75%|███████▍ | 3731729/4997436 [00:21<00:07, 172529.35it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3793827/4997436 [00:21<00:06, 178433.43it/s]" + " 75%|███████▌ | 3749421/4997436 [00:21<00:07, 173824.00it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3811671/4997436 [00:21<00:06, 178059.55it/s]" + " 75%|███████▌ | 3767169/4997436 [00:21<00:07, 174906.34it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3829478/4997436 [00:21<00:06, 177297.89it/s]" + " 76%|███████▌ | 3784899/4997436 [00:21<00:06, 175614.99it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3847209/4997436 [00:21<00:06, 175850.39it/s]" + " 76%|███████▌ | 3802549/4997436 [00:21<00:06, 175877.41it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3865135/4997436 [00:21<00:06, 176861.90it/s]" + " 76%|███████▋ | 3820256/4997436 [00:21<00:06, 176232.82it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3883039/4997436 [00:21<00:06, 177509.12it/s]" + " 77%|███████▋ | 3837984/4997436 [00:22<00:06, 176543.75it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3900822/4997436 [00:22<00:06, 177602.22it/s]" + " 77%|███████▋ | 3855766/4997436 [00:22<00:06, 176924.67it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3918584/4997436 [00:22<00:06, 176898.22it/s]" + " 78%|███████▊ | 3873484/4997436 [00:22<00:06, 177000.07it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3936276/4997436 [00:22<00:06, 176710.09it/s]" + " 78%|███████▊ | 3891220/4997436 [00:22<00:06, 177105.59it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3953972/4997436 [00:22<00:05, 176781.77it/s]" + " 78%|███████▊ | 3908934/4997436 [00:22<00:06, 176881.43it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3971795/4997436 [00:22<00:05, 177211.32it/s]" + " 79%|███████▊ | 3926625/4997436 [00:22<00:06, 176406.96it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3989538/4997436 [00:22<00:05, 177273.30it/s]" + " 79%|███████▉ | 3944358/4997436 [00:22<00:05, 176681.99it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4007266/4997436 [00:22<00:05, 177089.69it/s]" + " 79%|███████▉ | 3962028/4997436 [00:22<00:05, 176581.68it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4024976/4997436 [00:22<00:05, 176307.96it/s]" + " 80%|███████▉ | 3979688/4997436 [00:22<00:05, 176544.36it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4042725/4997436 [00:22<00:05, 176659.57it/s]" + " 80%|███████▉ | 3997344/4997436 [00:22<00:05, 176416.29it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4060505/4997436 [00:22<00:05, 176998.81it/s]" + " 80%|████████ | 4015056/4997436 [00:23<00:05, 176625.11it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4078423/4997436 [00:23<00:05, 177648.14it/s]" + " 81%|████████ | 4032764/4997436 [00:23<00:05, 176759.08it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4096244/4997436 [00:23<00:05, 177812.30it/s]" + " 81%|████████ | 4050441/4997436 [00:23<00:05, 176581.43it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4114026/4997436 [00:23<00:05, 174767.74it/s]" + " 81%|████████▏ | 4068100/4997436 [00:23<00:05, 176346.46it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4131700/4997436 [00:23<00:04, 175346.94it/s]" + " 82%|████████▏ | 4085735/4997436 [00:23<00:05, 175489.58it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4149420/4997436 [00:23<00:04, 175893.03it/s]" + " 82%|████████▏ | 4103285/4997436 [00:23<00:05, 175142.87it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4167102/4997436 [00:23<00:04, 176166.90it/s]" + " 82%|████████▏ | 4120800/4997436 [00:23<00:05, 174982.36it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▎ | 4184848/4997436 [00:23<00:04, 176550.89it/s]" + " 83%|████████▎ | 4138299/4997436 [00:23<00:04, 174377.06it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4202507/4997436 [00:23<00:04, 175542.80it/s]" + " 83%|████████▎ | 4155738/4997436 [00:23<00:04, 174167.94it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4220065/4997436 [00:23<00:04, 175286.94it/s]" + " 84%|████████▎ | 4173156/4997436 [00:23<00:04, 173812.06it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4237599/4997436 [00:23<00:04, 175301.07it/s]" + " 84%|████████▍ | 4190538/4997436 [00:24<00:04, 173469.78it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4255339/4997436 [00:24<00:04, 175925.26it/s]" + " 84%|████████▍ | 4207910/4997436 [00:24<00:04, 173533.43it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4273246/4997436 [00:24<00:04, 176862.41it/s]" + " 85%|████████▍ | 4225282/4997436 [00:24<00:04, 173586.54it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4291230/4997436 [00:24<00:03, 177749.73it/s]" + " 85%|████████▍ | 4242646/4997436 [00:24<00:04, 173600.61it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4309125/4997436 [00:24<00:03, 178105.18it/s]" + " 85%|████████▌ | 4260007/4997436 [00:24<00:04, 172977.09it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326937/4997436 [00:24<00:03, 177957.71it/s]" + " 86%|████████▌ | 4277306/4997436 [00:24<00:04, 167547.21it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4344734/4997436 [00:24<00:03, 177881.01it/s]" + " 86%|████████▌ | 4294778/4997436 [00:24<00:04, 169644.58it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4362629/4997436 [00:24<00:03, 178197.42it/s]" + " 86%|████████▋ | 4312309/4997436 [00:24<00:03, 171313.52it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4380522/4997436 [00:24<00:03, 178415.53it/s]" + " 87%|████████▋ | 4329768/4997436 [00:24<00:03, 172282.25it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4398364/4997436 [00:24<00:03, 177029.86it/s]" + " 87%|████████▋ | 4347200/4997436 [00:24<00:03, 172883.19it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4416132/4997436 [00:25<00:03, 177221.29it/s]" + " 87%|████████▋ | 4364688/4997436 [00:25<00:03, 173476.92it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4433917/4997436 [00:25<00:03, 177405.63it/s]" + " 88%|████████▊ | 4382233/4997436 [00:25<00:03, 174063.26it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4451709/4997436 [00:25<00:03, 177555.87it/s]" + " 88%|████████▊ | 4399690/4997436 [00:25<00:03, 174213.63it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4469466/4997436 [00:25<00:03, 175238.49it/s]" + " 88%|████████▊ | 4417208/4997436 [00:25<00:03, 174501.24it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4487360/4997436 [00:25<00:02, 176333.70it/s]" + " 89%|████████▊ | 4434740/4997436 [00:25<00:03, 174744.68it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4505057/4997436 [00:25<00:02, 176520.71it/s]" + " 89%|████████▉ | 4452235/4997436 [00:25<00:03, 174800.52it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4522786/4997436 [00:25<00:02, 176747.95it/s]" + " 89%|████████▉ | 4469717/4997436 [00:25<00:03, 174569.60it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4540465/4997436 [00:25<00:02, 176534.63it/s]" + " 90%|████████▉ | 4487211/4997436 [00:25<00:02, 174679.36it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558121/4997436 [00:25<00:02, 176185.24it/s]" + " 90%|█████████ | 4504680/4997436 [00:25<00:02, 174572.08it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4575836/4997436 [00:25<00:02, 176470.46it/s]" + " 90%|█████████ | 4522138/4997436 [00:25<00:02, 174553.93it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4593643/4997436 [00:26<00:02, 176946.29it/s]" + " 91%|█████████ | 4539594/4997436 [00:26<00:02, 173126.73it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4611358/4997436 [00:26<00:02, 177005.95it/s]" + " 91%|█████████ | 4556910/4997436 [00:26<00:02, 172907.02it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4629060/4997436 [00:26<00:02, 176940.19it/s]" + " 92%|█████████▏| 4574382/4997436 [00:26<00:02, 173445.69it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4646755/4997436 [00:26<00:02, 175183.84it/s]" + " 92%|█████████▏| 4591737/4997436 [00:26<00:02, 173473.45it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4664278/4997436 [00:26<00:01, 174678.73it/s]" + " 92%|█████████▏| 4609103/4997436 [00:26<00:02, 173527.95it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4681864/4997436 [00:26<00:01, 175028.74it/s]" + " 93%|█████████▎| 4626457/4997436 [00:26<00:02, 166324.60it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4699530/4997436 [00:26<00:01, 175514.44it/s]" + " 93%|█████████▎| 4643667/4997436 [00:26<00:02, 168001.58it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4717117/4997436 [00:26<00:01, 175618.64it/s]" + " 93%|█████████▎| 4660963/4997436 [00:26<00:01, 169454.71it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4734681/4997436 [00:26<00:01, 175554.69it/s]" + " 94%|█████████▎| 4677977/4997436 [00:26<00:01, 169654.80it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4752238/4997436 [00:26<00:01, 175320.45it/s]" + " 94%|█████████▍| 4695073/4997436 [00:26<00:01, 170038.82it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4769771/4997436 [00:27<00:01, 175260.58it/s]" + " 94%|█████████▍| 4712461/4997436 [00:27<00:01, 171179.69it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4787298/4997436 [00:27<00:01, 175010.59it/s]" + " 95%|█████████▍| 4729826/4997436 [00:27<00:01, 171915.17it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4804832/4997436 [00:27<00:01, 175106.35it/s]" + " 95%|█████████▍| 4747154/4997436 [00:27<00:01, 172321.66it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4822343/4997436 [00:27<00:01, 175036.88it/s]" + " 95%|█████████▌| 4764403/4997436 [00:27<00:01, 172368.14it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4839893/4997436 [00:27<00:00, 175172.41it/s]" + " 96%|█████████▌| 4781646/4997436 [00:27<00:01, 172248.13it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4857418/4997436 [00:27<00:00, 175191.71it/s]" + " 96%|█████████▌| 4798875/4997436 [00:27<00:01, 172159.93it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4874956/4997436 [00:27<00:00, 175246.95it/s]" + " 96%|█████████▋| 4816180/4997436 [00:27<00:01, 172425.19it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4892481/4997436 [00:27<00:00, 175145.74it/s]" + " 97%|█████████▋| 4833517/4997436 [00:27<00:00, 172704.64it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4909996/4997436 [00:27<00:00, 174990.11it/s]" + " 97%|█████████▋| 4850883/4997436 [00:27<00:00, 172987.71it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4927614/4997436 [00:27<00:00, 175344.71it/s]" + " 97%|█████████▋| 4868193/4997436 [00:27<00:00, 173016.97it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4945149/4997436 [00:28<00:00, 175145.07it/s]" + " 98%|█████████▊| 4885505/4997436 [00:28<00:00, 173044.82it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4962751/4997436 [00:28<00:00, 175403.35it/s]" + " 98%|█████████▊| 4902810/4997436 [00:28<00:00, 171167.64it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4980292/4997436 [00:28<00:00, 175128.71it/s]" + " 98%|█████████▊| 4920207/4997436 [00:28<00:00, 172000.45it/s]" ] }, { @@ -2794,14 +2794,39 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997436/4997436 [00:28<00:00, 176507.64it/s]" + " 99%|█████████▉| 4937466/4997436 [00:28<00:00, 172173.57it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "\n" + "\r", + " 99%|█████████▉| 4954786/4997436 [00:28<00:00, 172477.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4972036/4997436 [00:28<00:00, 167862.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4989214/4997436 [00:28<00:00, 169011.05it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997436/4997436 [00:28<00:00, 174023.51it/s]" ] }, { @@ -2830,6 +2855,13 @@ "Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n" ] }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, { "data": { "text/html": [ @@ -3033,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:27.486996Z", - "iopub.status.busy": "2023-12-13T17:16:27.486498Z", - "iopub.status.idle": "2023-12-13T17:16:34.857210Z", - "shell.execute_reply": "2023-12-13T17:16:34.856546Z" + "iopub.execute_input": "2023-12-14T18:06:57.714183Z", + "iopub.status.busy": "2023-12-14T18:06:57.713810Z", + "iopub.status.idle": "2023-12-14T18:07:05.093577Z", + "shell.execute_reply": "2023-12-14T18:07:05.092823Z" } }, "outputs": [], @@ -3050,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:34.860127Z", - "iopub.status.busy": "2023-12-13T17:16:34.859893Z", - "iopub.status.idle": "2023-12-13T17:16:38.054952Z", - "shell.execute_reply": "2023-12-13T17:16:38.054273Z" + "iopub.execute_input": "2023-12-14T18:07:05.096960Z", + "iopub.status.busy": "2023-12-14T18:07:05.096351Z", + "iopub.status.idle": "2023-12-14T18:07:08.259252Z", + "shell.execute_reply": "2023-12-14T18:07:08.258606Z" } }, "outputs": [ @@ -3122,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:38.057828Z", - "iopub.status.busy": "2023-12-13T17:16:38.057424Z", - "iopub.status.idle": "2023-12-13T17:16:39.364828Z", - "shell.execute_reply": "2023-12-13T17:16:39.364164Z" + "iopub.execute_input": "2023-12-14T18:07:08.261887Z", + "iopub.status.busy": "2023-12-14T18:07:08.261475Z", + "iopub.status.idle": "2023-12-14T18:07:09.607314Z", + "shell.execute_reply": "2023-12-14T18:07:09.606684Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65685581c6c34bacbf5abfd907437966", + "model_id": "ecfec940d10c47d48f693fa90b0a15b0", "version_major": 2, "version_minor": 0 }, @@ -3162,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:39.367939Z", - "iopub.status.busy": "2023-12-13T17:16:39.367355Z", - "iopub.status.idle": "2023-12-13T17:16:39.565016Z", - "shell.execute_reply": "2023-12-13T17:16:39.564423Z" + "iopub.execute_input": "2023-12-14T18:07:09.610359Z", + "iopub.status.busy": "2023-12-14T18:07:09.609952Z", + "iopub.status.idle": "2023-12-14T18:07:09.809292Z", + "shell.execute_reply": "2023-12-14T18:07:09.808600Z" } }, "outputs": [], @@ -3179,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:39.567832Z", - "iopub.status.busy": "2023-12-13T17:16:39.567497Z", - "iopub.status.idle": "2023-12-13T17:16:44.336841Z", - "shell.execute_reply": "2023-12-13T17:16:44.336176Z" + "iopub.execute_input": "2023-12-14T18:07:09.812264Z", + "iopub.status.busy": "2023-12-14T18:07:09.811875Z", + "iopub.status.idle": "2023-12-14T18:07:14.587268Z", + "shell.execute_reply": "2023-12-14T18:07:14.586581Z" } }, "outputs": [ @@ -3255,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:44.339392Z", - "iopub.status.busy": "2023-12-13T17:16:44.339006Z", - "iopub.status.idle": "2023-12-13T17:16:44.395375Z", - "shell.execute_reply": "2023-12-13T17:16:44.394811Z" + "iopub.execute_input": "2023-12-14T18:07:14.589768Z", + "iopub.status.busy": "2023-12-14T18:07:14.589550Z", + "iopub.status.idle": "2023-12-14T18:07:14.645948Z", + "shell.execute_reply": "2023-12-14T18:07:14.645212Z" }, "nbsphinx": "hidden" }, @@ -3302,7 +3334,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e577d60339476f830cbc28aaf8442e": { + "0ed7d99c38084647894cffd675deefe1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3354,43 +3386,7 @@ "width": null } }, - "02436604ecee41e2b088cd6379477d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_40ac22ea09954510bed8318f3a2ccc4f", - "placeholder": "​", - "style": "IPY_MODEL_4ff4c9dd27ab4e08b47f83d0e7fe9c26", - "value": " 30/30 [00:01<00:00, 23.53it/s]" - } - }, - "0a84f85477174415a8b3de95e192cd6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0c3ffbbd10994ece981f309218cb4451": { + "23f64fec199d42d4bc235fc8762aa6e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3442,83 +3438,28 @@ "width": null } }, - "0e8c270e2f7240f092f4c50d1ae0936c": { + "2da8c2dbab0d44aa85c13f1acfada8a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1d7044e8ffb44716ae5256e9ac593bd7", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d71b28ea048746e2afe525a14354f8c9", - "value": 30.0 - } - }, - "1d7044e8ffb44716ae5256e9ac593bd7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_4e83196d49674f3c92ebe98136252690", + "placeholder": "​", + "style": "IPY_MODEL_539923e59c324137ba7c7f77b35682fe", + "value": " 300000/? [00:02<00:00, 102280.39it/s]" } }, - "235ea091f1b24f04859b5e38d4e97cef": { + "30fdefa852a0464097647eb380b38b83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3533,13 +3474,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf7fa3af94f7445b9a178ef9800a5ba7", + "layout": "IPY_MODEL_3bd83502019249d1bcc0ace03d78d154", "placeholder": "​", - "style": "IPY_MODEL_aab6556e148a426fa2d9eb9d4e1ee4f8", - "value": "number of examples processed for estimating thresholds: " + "style": "IPY_MODEL_79ffef5cd1e14c4aafd18d243bb73a7c", + "value": "number of examples processed for checking labels: " } }, - "2b4d7e91064046fa896d20fe02fdad54": { + "3bd83502019249d1bcc0ace03d78d154": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3591,23 +3532,22 @@ "width": null } }, - "33091ef73bc44f599dfe1f94768ba3e2": { + "3d279577af5a445ca22a13cb50ef11d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "3602f2c765fe4c83adab29ef0fd39132": { + "48825d8adf614e35936ae88181ace27d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3622,28 +3562,31 @@ "description_width": "" } }, - "3a0e98ae70304e9ab5c56d64b63fb95e": { + "488f884d6b884266ab7c79f6a6b5385f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_50d1ce88da4242cd9e979cee29b1557a", - "placeholder": "​", - "style": "IPY_MODEL_3602f2c765fe4c83adab29ef0fd39132", - "value": " 300000/? [00:00<00:00, 5630593.27it/s]" + "layout": "IPY_MODEL_23f64fec199d42d4bc235fc8762aa6e5", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ae696bd738f4527b33631f5a19c6bc6", + "value": 244800.0 } }, - "3afccd430c2b4fa0ae6e71073466bd7c": { + "4923f516f25f4440b3bfd657af80a273": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3658,7 +3601,7 @@ "description_width": "" } }, - "40ac22ea09954510bed8318f3a2ccc4f": { + "4e83196d49674f3c92ebe98136252690": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3710,23 +3653,67 @@ "width": null } }, - "411d08331f4e47cbae9bfc589edfde4f": { + "532cdf38e8364c62a6cb4ea8dc782a30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ca82d0e13c344f7b96b6bd77a4972b78", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b59ae4907af044bf9bd7215287fa744b", + "value": 30.0 + } + }, + "539923e59c324137ba7c7f77b35682fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "4801d4458666431aae231c4a715b9aaa": { + "53d60ab6b9964518bb5ee01401d1b416": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ed7d99c38084647894cffd675deefe1", + "placeholder": "​", + "style": "IPY_MODEL_48825d8adf614e35936ae88181ace27d", + "value": "number of examples processed for estimating thresholds: " + } + }, + "6351b23f48204ada8f5eeaf712eeb7f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3778,22 +3765,7 @@ "width": null } }, - "4ff4c9dd27ab4e08b47f83d0e7fe9c26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "50d1ce88da4242cd9e979cee29b1557a": { + "65455a44c75f4a07ad0e7f5c61451756": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3845,110 +3817,59 @@ "width": null } }, - "61303044aa3542edb8a27e225ee64606": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "65685581c6c34bacbf5abfd907437966": { + "6acd7910d5bb49c6815ec056b5cd1a7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_87f840f028564ffab1851a925631069f", - "IPY_MODEL_0e8c270e2f7240f092f4c50d1ae0936c", - "IPY_MODEL_02436604ecee41e2b088cd6379477d42" - ], - "layout": "IPY_MODEL_00e577d60339476f830cbc28aaf8442e" - } - }, - "6f3a5731a5d7404f8e55e0a5637d6d81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a067181a586a4408aa939b446d9d25ef", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_411d08331f4e47cbae9bfc589edfde4f", - "value": 244800.0 + "layout": "IPY_MODEL_e1e597c486194abeb1a36d541f32f17e", + "placeholder": "​", + "style": "IPY_MODEL_4923f516f25f4440b3bfd657af80a273", + "value": " 300000/? [00:00<00:00, 5435970.19it/s]" } }, - "79760e2b72a74626a3e43e2e55f3b7d2": { + "79ffef5cd1e14c4aafd18d243bb73a7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0c3ffbbd10994ece981f309218cb4451", - "placeholder": "​", - "style": "IPY_MODEL_61303044aa3542edb8a27e225ee64606", - "value": " 300000/? [00:02<00:00, 103449.78it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "87f840f028564ffab1851a925631069f": { + "7ae696bd738f4527b33631f5a19c6bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4801d4458666431aae231c4a715b9aaa", - "placeholder": "​", - "style": "IPY_MODEL_3afccd430c2b4fa0ae6e71073466bd7c", - "value": "images processed using softmin: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8ded24f0ca2846a59532c8f92d867269": { + "7e538566e4074c2c97df7e7b7a8f2f0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4000,7 +3921,31 @@ "width": null } }, - "9c57b6a4800e4a58b183b8f581682311": { + "917761b3bc0b439e8d1270723fea1f18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6351b23f48204ada8f5eeaf712eeb7f7", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc3a9e89fd3a4770a5f12907dfbe6560", + "value": 244800.0 + } + }, + "95a4cbec66134664a83dded5c5be8ed5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4052,7 +3997,7 @@ "width": null } }, - "a067181a586a4408aa939b446d9d25ef": { + "a2b5532d2cd64524a0b101c012abc1d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4104,7 +4049,7 @@ "width": null } }, - "a87c1d3c026e402c874e6d5b19f1859d": { + "aa91287f979447e585de2d2fb4a1de70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4119,29 +4064,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b61b04712bbc413094927920a9b46949", - "IPY_MODEL_fa1c45e7f5fc4d74b848bcb599c48ede", - "IPY_MODEL_79760e2b72a74626a3e43e2e55f3b7d2" + "IPY_MODEL_53d60ab6b9964518bb5ee01401d1b416", + "IPY_MODEL_488f884d6b884266ab7c79f6a6b5385f", + "IPY_MODEL_6acd7910d5bb49c6815ec056b5cd1a7a" ], - "layout": "IPY_MODEL_2b4d7e91064046fa896d20fe02fdad54" + "layout": "IPY_MODEL_e964897bcbdf44558b209f13a30570b4" } }, - "aab6556e148a426fa2d9eb9d4e1ee4f8": { + "b59ae4907af044bf9bd7215287fa744b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "b61b04712bbc413094927920a9b46949": { + "b7737efb439b4ce8bba796875333b736": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4156,13 +4102,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8ded24f0ca2846a59532c8f92d867269", + "layout": "IPY_MODEL_95a4cbec66134664a83dded5c5be8ed5", "placeholder": "​", - "style": "IPY_MODEL_0a84f85477174415a8b3de95e192cd6d", - "value": "number of examples processed for checking labels: " + "style": "IPY_MODEL_3d279577af5a445ca22a13cb50ef11d2", + "value": " 30/30 [00:01<00:00, 23.24it/s]" + } + }, + "bd1bb3178fe34254af42b1feb8530a24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2b5532d2cd64524a0b101c012abc1d6", + "placeholder": "​", + "style": "IPY_MODEL_fbf863b99af54f10b729df8f91267244", + "value": "images processed using softmin: 100%" } }, - "bf7fa3af94f7445b9a178ef9800a5ba7": { + "ca82d0e13c344f7b96b6bd77a4972b78": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4214,7 +4181,7 @@ "width": null } }, - "d71b28ea048746e2afe525a14354f8c9": { + "cc3a9e89fd3a4770a5f12907dfbe6560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4230,29 +4197,59 @@ "description_width": "" } }, - "d927e4cf50cb4928b9613321f496759d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "e1e597c486194abeb1a36d541f32f17e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_235ea091f1b24f04859b5e38d4e97cef", - "IPY_MODEL_6f3a5731a5d7404f8e55e0a5637d6d81", - "IPY_MODEL_3a0e98ae70304e9ab5c56d64b63fb95e" - ], - "layout": "IPY_MODEL_f366559c679d4806bdceb947f6e23fc8" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f366559c679d4806bdceb947f6e23fc8": { + "e964897bcbdf44558b209f13a30570b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4304,28 +4301,63 @@ "width": null } }, - "fa1c45e7f5fc4d74b848bcb599c48ede": { + "ecfec940d10c47d48f693fa90b0a15b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9c57b6a4800e4a58b183b8f581682311", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_33091ef73bc44f599dfe1f94768ba3e2", - "value": 244800.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd1bb3178fe34254af42b1feb8530a24", + "IPY_MODEL_532cdf38e8364c62a6cb4ea8dc782a30", + "IPY_MODEL_b7737efb439b4ce8bba796875333b736" + ], + "layout": "IPY_MODEL_7e538566e4074c2c97df7e7b7a8f2f0b" + } + }, + "ed52d338862645e58b397d2b273b82ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_30fdefa852a0464097647eb380b38b83", + "IPY_MODEL_917761b3bc0b439e8d1270723fea1f18", + "IPY_MODEL_2da8c2dbab0d44aa85c13f1acfada8a7" + ], + "layout": "IPY_MODEL_65455a44c75f4a07ad0e7f5c61451756" + } + }, + "fbf863b99af54f10b729df8f91267244": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } } }, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 74df6fe5f..5cada1faf 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:47.144428Z", - "iopub.status.busy": "2023-12-13T17:16:47.144237Z", - "iopub.status.idle": "2023-12-13T17:16:48.158768Z", - "shell.execute_reply": "2023-12-13T17:16:48.158174Z" + "iopub.execute_input": "2023-12-14T18:07:17.142639Z", + "iopub.status.busy": "2023-12-14T18:07:17.142453Z", + "iopub.status.idle": "2023-12-14T18:07:18.143615Z", + "shell.execute_reply": "2023-12-14T18:07:18.142944Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.161729Z", - "iopub.status.busy": "2023-12-13T17:16:48.161195Z", - "iopub.status.idle": "2023-12-13T17:16:48.178175Z", - "shell.execute_reply": "2023-12-13T17:16:48.177693Z" + "iopub.execute_input": "2023-12-14T18:07:18.146385Z", + "iopub.status.busy": "2023-12-14T18:07:18.146071Z", + "iopub.status.idle": "2023-12-14T18:07:18.163375Z", + "shell.execute_reply": "2023-12-14T18:07:18.162770Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.180564Z", - "iopub.status.busy": "2023-12-13T17:16:48.180197Z", - "iopub.status.idle": "2023-12-13T17:16:48.240528Z", - "shell.execute_reply": "2023-12-13T17:16:48.239982Z" + "iopub.execute_input": "2023-12-14T18:07:18.165798Z", + "iopub.status.busy": "2023-12-14T18:07:18.165606Z", + "iopub.status.idle": "2023-12-14T18:07:18.221913Z", + "shell.execute_reply": "2023-12-14T18:07:18.221297Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.243006Z", - "iopub.status.busy": "2023-12-13T17:16:48.242646Z", - "iopub.status.idle": "2023-12-13T17:16:48.246222Z", - "shell.execute_reply": "2023-12-13T17:16:48.245701Z" + "iopub.execute_input": "2023-12-14T18:07:18.224420Z", + "iopub.status.busy": "2023-12-14T18:07:18.224062Z", + "iopub.status.idle": "2023-12-14T18:07:18.227709Z", + "shell.execute_reply": "2023-12-14T18:07:18.227233Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.248686Z", - "iopub.status.busy": "2023-12-13T17:16:48.248308Z", - "iopub.status.idle": "2023-12-13T17:16:48.256929Z", - "shell.execute_reply": "2023-12-13T17:16:48.256431Z" + "iopub.execute_input": "2023-12-14T18:07:18.230111Z", + "iopub.status.busy": "2023-12-14T18:07:18.229769Z", + "iopub.status.idle": "2023-12-14T18:07:18.238547Z", + "shell.execute_reply": "2023-12-14T18:07:18.238053Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.259298Z", - "iopub.status.busy": "2023-12-13T17:16:48.258930Z", - "iopub.status.idle": "2023-12-13T17:16:48.261637Z", - "shell.execute_reply": "2023-12-13T17:16:48.261077Z" + "iopub.execute_input": "2023-12-14T18:07:18.240989Z", + "iopub.status.busy": "2023-12-14T18:07:18.240623Z", + "iopub.status.idle": "2023-12-14T18:07:18.243987Z", + "shell.execute_reply": "2023-12-14T18:07:18.243505Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.264045Z", - "iopub.status.busy": "2023-12-13T17:16:48.263582Z", - "iopub.status.idle": "2023-12-13T17:16:48.842281Z", - "shell.execute_reply": "2023-12-13T17:16:48.841588Z" + "iopub.execute_input": "2023-12-14T18:07:18.246343Z", + "iopub.status.busy": "2023-12-14T18:07:18.245982Z", + "iopub.status.idle": "2023-12-14T18:07:18.827690Z", + "shell.execute_reply": "2023-12-14T18:07:18.827074Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:48.845228Z", - "iopub.status.busy": "2023-12-13T17:16:48.845019Z", - "iopub.status.idle": "2023-12-13T17:16:50.043604Z", - "shell.execute_reply": "2023-12-13T17:16:50.042871Z" + "iopub.execute_input": "2023-12-14T18:07:18.830625Z", + "iopub.status.busy": "2023-12-14T18:07:18.830209Z", + "iopub.status.idle": "2023-12-14T18:07:20.033023Z", + "shell.execute_reply": "2023-12-14T18:07:20.032256Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.046473Z", - "iopub.status.busy": "2023-12-13T17:16:50.045905Z", - "iopub.status.idle": "2023-12-13T17:16:50.056284Z", - "shell.execute_reply": "2023-12-13T17:16:50.055740Z" + "iopub.execute_input": "2023-12-14T18:07:20.035954Z", + "iopub.status.busy": "2023-12-14T18:07:20.035367Z", + "iopub.status.idle": "2023-12-14T18:07:20.045950Z", + "shell.execute_reply": "2023-12-14T18:07:20.045399Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.058759Z", - "iopub.status.busy": "2023-12-13T17:16:50.058560Z", - "iopub.status.idle": "2023-12-13T17:16:50.063008Z", - "shell.execute_reply": "2023-12-13T17:16:50.062486Z" + "iopub.execute_input": "2023-12-14T18:07:20.048639Z", + "iopub.status.busy": "2023-12-14T18:07:20.048086Z", + "iopub.status.idle": "2023-12-14T18:07:20.052357Z", + "shell.execute_reply": "2023-12-14T18:07:20.051836Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.065421Z", - "iopub.status.busy": "2023-12-13T17:16:50.065043Z", - "iopub.status.idle": "2023-12-13T17:16:50.072579Z", - "shell.execute_reply": "2023-12-13T17:16:50.072074Z" + "iopub.execute_input": "2023-12-14T18:07:20.054960Z", + "iopub.status.busy": "2023-12-14T18:07:20.054496Z", + "iopub.status.idle": "2023-12-14T18:07:20.062080Z", + "shell.execute_reply": "2023-12-14T18:07:20.061570Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.075003Z", - "iopub.status.busy": "2023-12-13T17:16:50.074642Z", - "iopub.status.idle": "2023-12-13T17:16:50.197242Z", - "shell.execute_reply": "2023-12-13T17:16:50.196567Z" + "iopub.execute_input": "2023-12-14T18:07:20.064531Z", + "iopub.status.busy": "2023-12-14T18:07:20.064158Z", + "iopub.status.idle": "2023-12-14T18:07:20.187225Z", + "shell.execute_reply": "2023-12-14T18:07:20.186701Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.199855Z", - "iopub.status.busy": "2023-12-13T17:16:50.199478Z", - "iopub.status.idle": "2023-12-13T17:16:50.202398Z", - "shell.execute_reply": "2023-12-13T17:16:50.201857Z" + "iopub.execute_input": "2023-12-14T18:07:20.189601Z", + "iopub.status.busy": "2023-12-14T18:07:20.189384Z", + "iopub.status.idle": "2023-12-14T18:07:20.192253Z", + "shell.execute_reply": "2023-12-14T18:07:20.191679Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:50.204773Z", - "iopub.status.busy": "2023-12-13T17:16:50.204411Z", - "iopub.status.idle": "2023-12-13T17:16:51.623444Z", - "shell.execute_reply": "2023-12-13T17:16:51.622756Z" + "iopub.execute_input": "2023-12-14T18:07:20.194529Z", + "iopub.status.busy": "2023-12-14T18:07:20.194330Z", + "iopub.status.idle": "2023-12-14T18:07:21.626826Z", + "shell.execute_reply": "2023-12-14T18:07:21.625980Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:51.626323Z", - "iopub.status.busy": "2023-12-13T17:16:51.626101Z", - "iopub.status.idle": "2023-12-13T17:16:51.639803Z", - "shell.execute_reply": "2023-12-13T17:16:51.639183Z" + "iopub.execute_input": "2023-12-14T18:07:21.629833Z", + "iopub.status.busy": "2023-12-14T18:07:21.629608Z", + "iopub.status.idle": "2023-12-14T18:07:21.644083Z", + "shell.execute_reply": "2023-12-14T18:07:21.643403Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:51.642140Z", - "iopub.status.busy": "2023-12-13T17:16:51.641913Z", - "iopub.status.idle": "2023-12-13T17:16:51.692032Z", - "shell.execute_reply": "2023-12-13T17:16:51.691483Z" + "iopub.execute_input": "2023-12-14T18:07:21.646811Z", + "iopub.status.busy": "2023-12-14T18:07:21.646210Z", + "iopub.status.idle": "2023-12-14T18:07:21.725531Z", + "shell.execute_reply": "2023-12-14T18:07:21.724915Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index d83b2abaf..e71e11731 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -969,7 +969,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'cancel_transfer'}
+Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 99489385d..949492cf8 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:57.077413Z", - "iopub.status.busy": "2023-12-13T17:16:57.077220Z", - "iopub.status.idle": "2023-12-13T17:16:59.135460Z", - "shell.execute_reply": "2023-12-13T17:16:59.134767Z" + "iopub.execute_input": "2023-12-14T18:07:26.114725Z", + "iopub.status.busy": "2023-12-14T18:07:26.114527Z", + "iopub.status.idle": "2023-12-14T18:07:28.136609Z", + "shell.execute_reply": "2023-12-14T18:07:28.135911Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.138349Z", - "iopub.status.busy": "2023-12-13T17:16:59.138022Z", - "iopub.status.idle": "2023-12-13T17:16:59.141529Z", - "shell.execute_reply": "2023-12-13T17:16:59.140959Z" + "iopub.execute_input": "2023-12-14T18:07:28.139673Z", + "iopub.status.busy": "2023-12-14T18:07:28.139300Z", + "iopub.status.idle": "2023-12-14T18:07:28.143122Z", + "shell.execute_reply": "2023-12-14T18:07:28.142492Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.143792Z", - "iopub.status.busy": "2023-12-13T17:16:59.143455Z", - "iopub.status.idle": "2023-12-13T17:16:59.146719Z", - "shell.execute_reply": "2023-12-13T17:16:59.146122Z" + "iopub.execute_input": "2023-12-14T18:07:28.145399Z", + "iopub.status.busy": "2023-12-14T18:07:28.145031Z", + "iopub.status.idle": "2023-12-14T18:07:28.148405Z", + "shell.execute_reply": "2023-12-14T18:07:28.147792Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.149350Z", - "iopub.status.busy": "2023-12-13T17:16:59.148859Z", - "iopub.status.idle": "2023-12-13T17:16:59.227220Z", - "shell.execute_reply": "2023-12-13T17:16:59.226709Z" + "iopub.execute_input": "2023-12-14T18:07:28.150864Z", + "iopub.status.busy": "2023-12-14T18:07:28.150433Z", + "iopub.status.idle": "2023-12-14T18:07:28.202162Z", + "shell.execute_reply": "2023-12-14T18:07:28.201563Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.229601Z", - "iopub.status.busy": "2023-12-13T17:16:59.229157Z", - "iopub.status.idle": "2023-12-13T17:16:59.232985Z", - "shell.execute_reply": "2023-12-13T17:16:59.232364Z" + "iopub.execute_input": "2023-12-14T18:07:28.204477Z", + "iopub.status.busy": "2023-12-14T18:07:28.204134Z", + "iopub.status.idle": "2023-12-14T18:07:28.207848Z", + "shell.execute_reply": "2023-12-14T18:07:28.207317Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.235158Z", - "iopub.status.busy": "2023-12-13T17:16:59.234814Z", - "iopub.status.idle": "2023-12-13T17:16:59.238771Z", - "shell.execute_reply": "2023-12-13T17:16:59.238160Z" + "iopub.execute_input": "2023-12-14T18:07:28.210071Z", + "iopub.status.busy": "2023-12-14T18:07:28.209870Z", + "iopub.status.idle": "2023-12-14T18:07:28.214081Z", + "shell.execute_reply": "2023-12-14T18:07:28.213555Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'cancel_transfer'}\n" + "Classes: {'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'card_about_to_expire', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.241050Z", - "iopub.status.busy": "2023-12-13T17:16:59.240714Z", - "iopub.status.idle": "2023-12-13T17:16:59.244254Z", - "shell.execute_reply": "2023-12-13T17:16:59.243649Z" + "iopub.execute_input": "2023-12-14T18:07:28.216400Z", + "iopub.status.busy": "2023-12-14T18:07:28.216038Z", + "iopub.status.idle": "2023-12-14T18:07:28.219495Z", + "shell.execute_reply": "2023-12-14T18:07:28.218855Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.246562Z", - "iopub.status.busy": "2023-12-13T17:16:59.246226Z", - "iopub.status.idle": "2023-12-13T17:16:59.249666Z", - "shell.execute_reply": "2023-12-13T17:16:59.249052Z" + "iopub.execute_input": "2023-12-14T18:07:28.222008Z", + "iopub.status.busy": "2023-12-14T18:07:28.221668Z", + "iopub.status.idle": "2023-12-14T18:07:28.225138Z", + "shell.execute_reply": "2023-12-14T18:07:28.224535Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:16:59.252221Z", - "iopub.status.busy": "2023-12-13T17:16:59.251841Z", - "iopub.status.idle": "2023-12-13T17:17:07.937370Z", - "shell.execute_reply": "2023-12-13T17:17:07.936658Z" + "iopub.execute_input": "2023-12-14T18:07:28.227606Z", + "iopub.status.busy": "2023-12-14T18:07:28.227230Z", + "iopub.status.idle": "2023-12-14T18:07:36.892978Z", + "shell.execute_reply": "2023-12-14T18:07:36.892331Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.941048Z", - "iopub.status.busy": "2023-12-13T17:17:07.940505Z", - "iopub.status.idle": "2023-12-13T17:17:07.943692Z", - "shell.execute_reply": "2023-12-13T17:17:07.943065Z" + "iopub.execute_input": "2023-12-14T18:07:36.896474Z", + "iopub.status.busy": "2023-12-14T18:07:36.896026Z", + "iopub.status.idle": "2023-12-14T18:07:36.899140Z", + "shell.execute_reply": "2023-12-14T18:07:36.898591Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.946085Z", - "iopub.status.busy": "2023-12-13T17:17:07.945885Z", - "iopub.status.idle": "2023-12-13T17:17:07.948666Z", - "shell.execute_reply": "2023-12-13T17:17:07.948117Z" + "iopub.execute_input": "2023-12-14T18:07:36.901581Z", + "iopub.status.busy": "2023-12-14T18:07:36.901193Z", + "iopub.status.idle": "2023-12-14T18:07:36.904055Z", + "shell.execute_reply": "2023-12-14T18:07:36.903501Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:07.951026Z", - "iopub.status.busy": "2023-12-13T17:17:07.950671Z", - "iopub.status.idle": "2023-12-13T17:17:10.143612Z", - "shell.execute_reply": "2023-12-13T17:17:10.142757Z" + "iopub.execute_input": "2023-12-14T18:07:36.906516Z", + "iopub.status.busy": "2023-12-14T18:07:36.906044Z", + "iopub.status.idle": "2023-12-14T18:07:39.110585Z", + "shell.execute_reply": "2023-12-14T18:07:39.109817Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.147614Z", - "iopub.status.busy": "2023-12-13T17:17:10.146541Z", - "iopub.status.idle": "2023-12-13T17:17:10.154881Z", - "shell.execute_reply": "2023-12-13T17:17:10.154383Z" + "iopub.execute_input": "2023-12-14T18:07:39.114627Z", + "iopub.status.busy": "2023-12-14T18:07:39.113523Z", + "iopub.status.idle": "2023-12-14T18:07:39.122201Z", + "shell.execute_reply": "2023-12-14T18:07:39.121435Z" } }, "outputs": [ @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.157462Z", - "iopub.status.busy": "2023-12-13T17:17:10.156992Z", - "iopub.status.idle": "2023-12-13T17:17:10.161122Z", - "shell.execute_reply": "2023-12-13T17:17:10.160569Z" + "iopub.execute_input": "2023-12-14T18:07:39.124712Z", + "iopub.status.busy": "2023-12-14T18:07:39.124220Z", + "iopub.status.idle": "2023-12-14T18:07:39.128537Z", + "shell.execute_reply": "2023-12-14T18:07:39.127920Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.163496Z", - "iopub.status.busy": "2023-12-13T17:17:10.163003Z", - "iopub.status.idle": "2023-12-13T17:17:10.166704Z", - "shell.execute_reply": "2023-12-13T17:17:10.166061Z" + "iopub.execute_input": "2023-12-14T18:07:39.130976Z", + "iopub.status.busy": "2023-12-14T18:07:39.130489Z", + "iopub.status.idle": "2023-12-14T18:07:39.134097Z", + "shell.execute_reply": "2023-12-14T18:07:39.133464Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.169141Z", - "iopub.status.busy": "2023-12-13T17:17:10.168698Z", - "iopub.status.idle": "2023-12-13T17:17:10.172035Z", - "shell.execute_reply": "2023-12-13T17:17:10.171393Z" + "iopub.execute_input": "2023-12-14T18:07:39.136521Z", + "iopub.status.busy": "2023-12-14T18:07:39.136041Z", + "iopub.status.idle": "2023-12-14T18:07:39.139364Z", + "shell.execute_reply": "2023-12-14T18:07:39.138755Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.174400Z", - "iopub.status.busy": "2023-12-13T17:17:10.173919Z", - "iopub.status.idle": "2023-12-13T17:17:10.181054Z", - "shell.execute_reply": "2023-12-13T17:17:10.180534Z" + "iopub.execute_input": "2023-12-14T18:07:39.141842Z", + "iopub.status.busy": "2023-12-14T18:07:39.141339Z", + "iopub.status.idle": "2023-12-14T18:07:39.148744Z", + "shell.execute_reply": "2023-12-14T18:07:39.148104Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.183463Z", - "iopub.status.busy": "2023-12-13T17:17:10.183261Z", - "iopub.status.idle": "2023-12-13T17:17:10.435547Z", - "shell.execute_reply": "2023-12-13T17:17:10.434922Z" + "iopub.execute_input": "2023-12-14T18:07:39.151329Z", + "iopub.status.busy": "2023-12-14T18:07:39.150834Z", + "iopub.status.idle": "2023-12-14T18:07:39.413683Z", + "shell.execute_reply": "2023-12-14T18:07:39.413016Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.439607Z", - "iopub.status.busy": "2023-12-13T17:17:10.438470Z", - "iopub.status.idle": "2023-12-13T17:17:10.719600Z", - "shell.execute_reply": "2023-12-13T17:17:10.718952Z" + "iopub.execute_input": "2023-12-14T18:07:39.416831Z", + "iopub.status.busy": "2023-12-14T18:07:39.416392Z", + "iopub.status.idle": "2023-12-14T18:07:39.692892Z", + "shell.execute_reply": "2023-12-14T18:07:39.692295Z" }, "scrolled": true }, @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:10.724220Z", - "iopub.status.busy": "2023-12-13T17:17:10.723073Z", - "iopub.status.idle": "2023-12-13T17:17:10.728706Z", - "shell.execute_reply": "2023-12-13T17:17:10.728089Z" + "iopub.execute_input": "2023-12-14T18:07:39.695928Z", + "iopub.status.busy": "2023-12-14T18:07:39.695505Z", + "iopub.status.idle": "2023-12-14T18:07:39.699606Z", + "shell.execute_reply": "2023-12-14T18:07:39.699018Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 73ea4d608..0c9a30f3b 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -862,16 +862,16 @@

1. Install required dependencies and download data diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 2776cf2ad..661cbd05f 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:15.925156Z", - "iopub.status.busy": "2023-12-13T17:17:15.924965Z", - "iopub.status.idle": "2023-12-13T17:17:18.163686Z", - "shell.execute_reply": "2023-12-13T17:17:18.163019Z" + "iopub.execute_input": "2023-12-14T18:07:44.268168Z", + "iopub.status.busy": "2023-12-14T18:07:44.267974Z", + "iopub.status.idle": "2023-12-14T18:07:45.604982Z", + "shell.execute_reply": "2023-12-14T18:07:45.604320Z" } }, "outputs": [ @@ -86,9 +86,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-13 17:17:15-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 185.93.1.244, 2400:52e0:1a00::941:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", + "--2023-12-14 18:07:44-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "185.93.1.243, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", @@ -102,9 +115,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.80MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2023-12-13 17:17:16 (5.80 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-12-14 18:07:44 (7.58 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -124,9 +137,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-12-13 17:17:16-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.29.203, 52.216.221.209, 52.216.133.227, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.29.203|:443... " + "--2023-12-14 18:07:44-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.220, 3.5.8.173, 54.231.136.9, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.220|:443... " ] }, { @@ -154,47 +167,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 3%[ ] 587.51K 2.87MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 9%[> ] 1.56M 3.86MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 19%[==> ] 3.17M 5.23MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 35%[======> ] 5.77M 7.14MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 61%[===========> ] 10.04M 9.86MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 87%[================> ] 14.15M 11.6MB/s " + "pred_probs.npz 66%[============> ] 10.85M 54.2MB/s " ] }, { @@ -202,9 +175,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 12.2MB/s in 1.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 69.9MB/s in 0.2s \r\n", "\r\n", - "2023-12-13 17:17:18 (12.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-12-14 18:07:45 (69.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -221,10 +194,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:18.166389Z", - "iopub.status.busy": "2023-12-13T17:17:18.166183Z", - "iopub.status.idle": "2023-12-13T17:17:19.172866Z", - "shell.execute_reply": "2023-12-13T17:17:19.172149Z" + "iopub.execute_input": "2023-12-14T18:07:45.607674Z", + "iopub.status.busy": "2023-12-14T18:07:45.607288Z", + "iopub.status.idle": "2023-12-14T18:07:46.616365Z", + "shell.execute_reply": "2023-12-14T18:07:46.615763Z" }, "nbsphinx": "hidden" }, @@ -235,7 +208,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@e25a14772b2deb42bef0de3c0722f1fbc975a091\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4ad0b6e00150a4eb9af4425f666538a97268d0f9\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -261,10 +234,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.175871Z", - "iopub.status.busy": "2023-12-13T17:17:19.175401Z", - "iopub.status.idle": "2023-12-13T17:17:19.179007Z", - "shell.execute_reply": "2023-12-13T17:17:19.178465Z" + "iopub.execute_input": "2023-12-14T18:07:46.619197Z", + "iopub.status.busy": "2023-12-14T18:07:46.618722Z", + "iopub.status.idle": "2023-12-14T18:07:46.622320Z", + "shell.execute_reply": "2023-12-14T18:07:46.621804Z" } }, "outputs": [], @@ -314,10 +287,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.181367Z", - "iopub.status.busy": "2023-12-13T17:17:19.181069Z", - "iopub.status.idle": "2023-12-13T17:17:19.184296Z", - "shell.execute_reply": "2023-12-13T17:17:19.183703Z" + "iopub.execute_input": "2023-12-14T18:07:46.624674Z", + "iopub.status.busy": "2023-12-14T18:07:46.624309Z", + "iopub.status.idle": "2023-12-14T18:07:46.627465Z", + "shell.execute_reply": "2023-12-14T18:07:46.626965Z" }, "nbsphinx": "hidden" }, @@ -335,10 +308,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:19.186604Z", - "iopub.status.busy": "2023-12-13T17:17:19.186234Z", - "iopub.status.idle": "2023-12-13T17:17:27.209870Z", - "shell.execute_reply": "2023-12-13T17:17:27.209310Z" + "iopub.execute_input": "2023-12-14T18:07:46.629685Z", + "iopub.status.busy": "2023-12-14T18:07:46.629307Z", + "iopub.status.idle": "2023-12-14T18:07:54.293690Z", + "shell.execute_reply": "2023-12-14T18:07:54.293032Z" } }, "outputs": [], @@ -412,10 +385,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.212679Z", - "iopub.status.busy": "2023-12-13T17:17:27.212266Z", - "iopub.status.idle": "2023-12-13T17:17:27.218163Z", - "shell.execute_reply": "2023-12-13T17:17:27.217627Z" + "iopub.execute_input": "2023-12-14T18:07:54.296775Z", + "iopub.status.busy": "2023-12-14T18:07:54.296332Z", + "iopub.status.idle": "2023-12-14T18:07:54.302349Z", + "shell.execute_reply": "2023-12-14T18:07:54.301762Z" }, "nbsphinx": "hidden" }, @@ -455,10 +428,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.220385Z", - "iopub.status.busy": "2023-12-13T17:17:27.220021Z", - "iopub.status.idle": "2023-12-13T17:17:27.622818Z", - "shell.execute_reply": "2023-12-13T17:17:27.622194Z" + "iopub.execute_input": "2023-12-14T18:07:54.304685Z", + "iopub.status.busy": "2023-12-14T18:07:54.304323Z", + "iopub.status.idle": "2023-12-14T18:07:54.707506Z", + "shell.execute_reply": "2023-12-14T18:07:54.706875Z" } }, "outputs": [], @@ -495,10 +468,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.625870Z", - "iopub.status.busy": "2023-12-13T17:17:27.625469Z", - "iopub.status.idle": "2023-12-13T17:17:27.630693Z", - "shell.execute_reply": "2023-12-13T17:17:27.630112Z" + "iopub.execute_input": "2023-12-14T18:07:54.710576Z", + "iopub.status.busy": "2023-12-14T18:07:54.710166Z", + "iopub.status.idle": "2023-12-14T18:07:54.715829Z", + "shell.execute_reply": "2023-12-14T18:07:54.715313Z" } }, "outputs": [ @@ -570,10 +543,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:27.633054Z", - "iopub.status.busy": "2023-12-13T17:17:27.632684Z", - "iopub.status.idle": "2023-12-13T17:17:29.544495Z", - "shell.execute_reply": "2023-12-13T17:17:29.543734Z" + "iopub.execute_input": "2023-12-14T18:07:54.718467Z", + "iopub.status.busy": "2023-12-14T18:07:54.717927Z", + "iopub.status.idle": "2023-12-14T18:07:56.608674Z", + "shell.execute_reply": "2023-12-14T18:07:56.607863Z" } }, "outputs": [], @@ -595,10 +568,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.547999Z", - "iopub.status.busy": "2023-12-13T17:17:29.547242Z", - "iopub.status.idle": "2023-12-13T17:17:29.554400Z", - "shell.execute_reply": "2023-12-13T17:17:29.553758Z" + "iopub.execute_input": "2023-12-14T18:07:56.612257Z", + "iopub.status.busy": "2023-12-14T18:07:56.611413Z", + "iopub.status.idle": "2023-12-14T18:07:56.618518Z", + "shell.execute_reply": "2023-12-14T18:07:56.617959Z" } }, "outputs": [ @@ -634,10 +607,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.556939Z", - "iopub.status.busy": "2023-12-13T17:17:29.556468Z", - "iopub.status.idle": "2023-12-13T17:17:29.581111Z", - "shell.execute_reply": "2023-12-13T17:17:29.580485Z" + "iopub.execute_input": "2023-12-14T18:07:56.621086Z", + "iopub.status.busy": "2023-12-14T18:07:56.620533Z", + "iopub.status.idle": "2023-12-14T18:07:56.646064Z", + "shell.execute_reply": "2023-12-14T18:07:56.645428Z" } }, "outputs": [ @@ -815,10 +788,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.583787Z", - "iopub.status.busy": "2023-12-13T17:17:29.583455Z", - "iopub.status.idle": "2023-12-13T17:17:29.615860Z", - "shell.execute_reply": "2023-12-13T17:17:29.615349Z" + "iopub.execute_input": "2023-12-14T18:07:56.648608Z", + "iopub.status.busy": "2023-12-14T18:07:56.648233Z", + "iopub.status.idle": "2023-12-14T18:07:56.683699Z", + "shell.execute_reply": "2023-12-14T18:07:56.683080Z" } }, "outputs": [ @@ -920,10 +893,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.618351Z", - "iopub.status.busy": "2023-12-13T17:17:29.617875Z", - "iopub.status.idle": "2023-12-13T17:17:29.626309Z", - "shell.execute_reply": "2023-12-13T17:17:29.625806Z" + "iopub.execute_input": "2023-12-14T18:07:56.686134Z", + "iopub.status.busy": "2023-12-14T18:07:56.685792Z", + "iopub.status.idle": "2023-12-14T18:07:56.695800Z", + "shell.execute_reply": "2023-12-14T18:07:56.695181Z" } }, "outputs": [ @@ -997,10 +970,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:29.628818Z", - "iopub.status.busy": "2023-12-13T17:17:29.628336Z", - "iopub.status.idle": "2023-12-13T17:17:31.425398Z", - "shell.execute_reply": "2023-12-13T17:17:31.424739Z" + "iopub.execute_input": "2023-12-14T18:07:56.698185Z", + "iopub.status.busy": "2023-12-14T18:07:56.697838Z", + "iopub.status.idle": "2023-12-14T18:07:58.485152Z", + "shell.execute_reply": "2023-12-14T18:07:58.484496Z" } }, "outputs": [ @@ -1172,10 +1145,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-12-13T17:17:31.428105Z", - "iopub.status.busy": "2023-12-13T17:17:31.427747Z", - "iopub.status.idle": "2023-12-13T17:17:31.432094Z", - "shell.execute_reply": "2023-12-13T17:17:31.431460Z" + "iopub.execute_input": "2023-12-14T18:07:58.487990Z", + "iopub.status.busy": "2023-12-14T18:07:58.487537Z", + "iopub.status.idle": "2023-12-14T18:07:58.491933Z", + "shell.execute_reply": "2023-12-14T18:07:58.491327Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index dfd8c5905..624c99f76 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "e25a14772b2deb42bef0de3c0722f1fbc975a091", + commit_hash: "4ad0b6e00150a4eb9af4425f666538a97268d0f9", }; \ No newline at end of file